1
|
Guo Z, Wang P, Han Y, Jiang S, Yang X, Cao S. SMARCA2 protein: Structure, function and perspectives of drug design. Eur J Med Chem 2025; 286:117319. [PMID: 39879937 DOI: 10.1016/j.ejmech.2025.117319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/21/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
SMARCA2 is an ATPase that regulates chromatin structure via ATP pathways, controlling cell division and differentiation. SMARCA2's bromodomain and ATPase domain, crucial for chromatin remodeling and cell regulation, are therapeutic targets in cancer treatment. This review explores the role of SMARCA2 in cancer development by studying its protein structure and physiological functions. It further discusses the roles and distinctions of SMARCA2 and its related family proteins in cancer. Additionally, this article categorizes known SMARCA2 inhibitors into four classes based on their basic structure and examines their structure-activity relationships (SAR). This review outlines the structural mechanisms of SMARCA2 inhibitors, highlighting interactions with specific amino acids. By analyzing the SAR of inhibitors, we propose a tailored inhibitor model for the bromodomain of SMARCA2, emphasizing α, γ-H-bond donors/acceptors, and β-rigid structures as crucial for effective binding. This research provides guidance for the design and optimization of future drugs targeting the SMARCA2 protein.
Collapse
Affiliation(s)
- Zhaolin Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Peng Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Yuxuan Han
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Sisi Jiang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Xinyu Yang
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430205, P. R. China.
| |
Collapse
|
2
|
Cyrta J, Dermawan JK, Tauziède-Espariat A, Liu T, Rosenblum M, Shroff S, Katabi N, Cardoen L, Guillemot D, Masliah-Planchon J, Hoare O, Delattre O, Bale T, Bourdeaut F, Antonescu CR. Expanding the clinicopathologic spectrum and genomic landscape of tumors with SMARCA2/4::CREM fusions. J Pathol 2024; 264:305-317. [PMID: 39344423 DOI: 10.1002/path.6350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 07/13/2024] [Accepted: 08/14/2024] [Indexed: 10/01/2024]
Abstract
CREB gene family (ATF1, CREB1, CREM) fusions with either EWSR1 or FUS gene partners drive the pathogenesis of a wide range of neoplasms, including various soft tissue tumors, intracranial myxoid mesenchymal tumors (IMMTs), hyalinizing clear cell carcinoma (HCCC), and rare mesotheliomas. Recently, a SMARCA2::CREM fusion was reported in one case each of IMMT and HCCC. In this study, we expand the clinicopathologic and molecular spectrum of these neoplasms by describing three additional cases with SMARCA2::CREM and one with a novel SMARCA4::CREM fusion, highlighting the recurrent potential of additional CREB gene fusion partners beyond FET family members. To evaluate if these fusions define a new pathologic entity, we performed a comprehensive genomic and methylation analysis and compared the results to other related tumors. Tumors occurred in children and young adults (median age 20 years) and spanned a broad anatomic distribution, including soft tissue, intracranial, head and neck, and prostatic urethra. Microscopically, the tumors shared an undifferentiated round to epithelioid cell phenotype and a hyalinized fibrous stroma. Immunohistochemically, a polyphenotypic profile was observed, with variable expression of SOX10, desmin, and/or epithelial markers. No targetable genomic alterations were found using panel-based DNA sequencing. By DNA methylation and transcriptomic analyses, tumors grouped closely to FET::CREB entities, but not with SMARCA4/SMARCB1-deficient tumors. High expression of CREM by immunohistochemistry was also documented in these tumors. Patients experienced local recurrence (n = 2), locoregional lymph node metastases (n = 2), and an isolated visceral metastasis (n = 1). Overall, our study suggests that SMARCA2/4::CREM fusions define a distinct group of neoplasms with round cell to epithelioid histology, a variable immunoprofile, and a definite risk of malignancy. Larger studies are needed to further explore the pathogenetic relationship with the FET::CREB family of tumors. © 2024 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Joanna Cyrta
- Department of Pathology, Institut Curie, PSL Research University, Paris, France
| | - Josephine K Dermawan
- Department of Pathology and Laboratory Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Arnault Tauziède-Espariat
- Department of Neuropathology, GHU Paris Psychiatry and Neurosciences, Sainte-Anne Hospital, Paris, France
| | - Ting Liu
- Department of Pathology, University of Utah/ARUP Laboratories, Salt Lake City, UT, USA
| | - Marc Rosenblum
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Seema Shroff
- Department of Pathology, Advent Health, Orlando, FL, USA
| | - Nora Katabi
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Delphine Guillemot
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Julien Masliah-Planchon
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
| | - Owen Hoare
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Olivier Delattre
- Genetics Unit, Department of Tumor Biology, Institut Curie, PSL Research University, Paris, France
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Tejus Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franck Bourdeaut
- SIREDO Oncology Center (Care, Innovation and Research for Children and AYA with Cancer), Institut Curie, Paris Cité University, Paris, France
| | - Cristina R Antonescu
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
3
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
4
|
Moreta-Moraleda C, Queralt C, Vendrell-Ayats C, Forcales S, Martínez-Balibrea E. Chromatin factors: Ready to roll as biomarkers in metastatic colorectal cancer? Pharmacol Res 2023; 196:106924. [PMID: 37709185 DOI: 10.1016/j.phrs.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the fourth leading cause of cancer-related fatalities in 2020. Survival rates for metastatic disease have slightly improved in recent decades, with clinical trials showing median overall survival of approximately 24-30 months. This progress can be attributed to the integration of chemotherapeutic treatments alongside targeted therapies and immunotherapy. Despite these modest improvements, the primary obstacle to successful treatment for advanced CRC lies in the development of chemoresistance, whether inherent or acquired, which remains the major cause of treatment failure. Epigenetics has emerged as a hallmark of cancer, contributing to master transcription regulation and genome stability maintenance. As a result, epigenetic factors are starting to appear as potential clinical biomarkers for diagnosis, prognosis, and prediction of treatment response in CRC.In recent years, numerous studies have investigated the influence of DNA methylation, histone modifications, and chromatin remodelers on responses to chemotherapeutic treatments. While there is accumulating evidence indicating their significant involvement in various types of cancers, the exact relationship between chromatin landscapes and treatment modulation in CRC remains elusive. This review aims to provide a comprehensive summary of the most pertinent and extensively researched epigenetic-associated mechanisms described between 2015 and 2022 and their potential usefulness as predictive biomarkers in the metastatic disease.
Collapse
Affiliation(s)
- Cristina Moreta-Moraleda
- Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain
| | - Cristina Queralt
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Carla Vendrell-Ayats
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Sonia Forcales
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| | - Eva Martínez-Balibrea
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain.
| |
Collapse
|
5
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
6
|
Tabuloc CA, Cai YD, Kwok RS, Chan EC, Hidalgo S, Chiu JC. CLOCK and TIMELESS regulate rhythmic occupancy of the BRAHMA chromatin-remodeling protein at clock gene promoters. PLoS Genet 2023; 19:e1010649. [PMID: 36809369 PMCID: PMC9983840 DOI: 10.1371/journal.pgen.1010649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 03/03/2023] [Accepted: 02/02/2023] [Indexed: 02/23/2023] Open
Abstract
Circadian clock and chromatin-remodeling complexes are tightly intertwined systems that regulate rhythmic gene expression. The circadian clock promotes rhythmic expression, timely recruitment, and/or activation of chromatin remodelers, while chromatin remodelers regulate accessibility of clock transcription factors to the DNA to influence expression of clock genes. We previously reported that the BRAHMA (BRM) chromatin-remodeling complex promotes the repression of circadian gene expression in Drosophila. In this study, we investigated the mechanisms by which the circadian clock feeds back to modulate daily BRM activity. Using chromatin immunoprecipitation, we observed rhythmic BRM binding to clock gene promoters despite constitutive BRM protein expression, suggesting that factors other than protein abundance are responsible for rhythmic BRM occupancy at clock-controlled loci. Since we previously reported that BRM interacts with two key clock proteins, CLOCK (CLK) and TIMELESS (TIM), we examined their effect on BRM occupancy to the period (per) promoter. We observed reduced BRM binding to the DNA in clk null flies, suggesting that CLK is involved in enhancing BRM occupancy to initiate transcriptional repression at the conclusion of the activation phase. Additionally, we observed reduced BRM binding to the per promoter in flies overexpressing TIM, suggesting that TIM promotes BRM removal from DNA. These conclusions are further supported by elevated BRM binding to the per promoter in flies subjected to constant light and experiments in Drosophila tissue culture in which the levels of CLK and TIM are manipulated. In summary, this study provides new insights into the reciprocal regulation between the circadian clock and the BRM chromatin-remodeling complex.
Collapse
Affiliation(s)
- Christine A. Tabuloc
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Yao D. Cai
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Rosanna S. Kwok
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Elizabeth C. Chan
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Sergio Hidalgo
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| | - Joanna C. Chiu
- Department of Entomology and Nematology, College of Agricultural and Environmental Sciences, University of California Davis, Davis, California, United States of America
| |
Collapse
|
7
|
Naidu SR, Capitano M, Ropa J, Cooper S, Huang X, Broxmeyer HE. Chromatin remodeling subunit BRM and valine regulate hematopoietic stem/progenitor cell function and self-renewal via intrinsic and extrinsic effects. Leukemia 2022; 36:821-833. [PMID: 34599272 PMCID: PMC9212754 DOI: 10.1038/s41375-021-01426-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 09/07/2021] [Accepted: 09/14/2021] [Indexed: 02/08/2023]
Abstract
Little is known of hematopoietic stem (HSC) and progenitor (HPC) cell self-renewal. The role of Brahma (BRM), a chromatin remodeler, in HSC function is unknown. Bone marrow (BM) from Brm-/- mice manifested increased numbers of long- and short-term HSCs, GMPs, and increased numbers and cycling of functional HPCs. However, increased Brm-/- BM HSC numbers had decreased secondary and tertiary engraftment, suggesting BRM enhances HSC self-renewal. Valine was elevated in lineage negative Brm-/- BM cells, linking intracellular valine with Brm expression. Valine enhanced HPC colony formation, replating of human cord blood (CB) HPC-derived colonies, mouse BM and human CB HPC survival in vitro, and ex vivo expansion of normal mouse BM HSCs and HPCs. Valine increased oxygen consumption rates of WT cells. BRM through CD98 was linked to regulated import of branched chain amino acids, such as valine, in HPCs. Brm-/- LSK cells exhibited upregulated interferon response/cell cycle gene programs. Effects of BRM depletion are less apparent on isolated HSCs compared to HSCs in the presence of HPCs, suggesting cell extrinsic effects on HSCs. Thus, intracellular valine is regulated by BRM expression in HPCs, and the BRM/valine axis regulates HSC and HPC self-renewal, proliferation, and possibly differentiation fate decisions.
Collapse
Affiliation(s)
- Samisubbu R. Naidu
- Medicine, Indiana University School of Medicine,Indiana University School of Medicine, Department of Microbiology/Immunology, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN 46202, Indiana University School of Medicine, Department of Medicine, 950 West Walnut Street, Bldg. R2, Room E435,These authors contributed equally to this work
| | - Maegan Capitano
- Departments of Microbiology and Immunology, Indiana University School of Medicine,These authors contributed equally to this work
| | - James Ropa
- Departments of Microbiology and Immunology, Indiana University School of Medicine,These authors contributed equally to this work
| | - Scott Cooper
- Departments of Microbiology and Immunology, Indiana University School of Medicine
| | - Xinxin Huang
- Departments of Microbiology and Immunology, Indiana University School of Medicine
| | - Hal E. Broxmeyer
- Departments of Microbiology and Immunology, Indiana University School of Medicine,Indiana University School of Medicine, Department of Microbiology/Immunology, 950 West Walnut Street, Bldg. R2, Room 302, Indianapolis, IN 46202, Indiana University School of Medicine, Department of Medicine, 950 West Walnut Street, Bldg. R2, Room E435
| |
Collapse
|
8
|
Differential requirements for different subfamilies of the mammalian SWI/SNF chromatin remodeling enzymes in myoblast cell cycle progression and expression of the Pax7 regulator. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194801. [PMID: 35217218 PMCID: PMC8948540 DOI: 10.1016/j.bbagrm.2022.194801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/29/2022] [Accepted: 02/14/2022] [Indexed: 11/21/2022]
Abstract
The mammalian SWItch/Sucrose Non-Fermentable (mSWI/SNF) families of ATP-dependent chromatin remodeling enzymes are established co-regulators of gene expression. mSWI/SNF complexes can be assembled into three major subfamilies: BAF (BRG1 or BRM-Associated Factor), PBAF (Polybromo containing BAF), or ncBAF (non-canonical BAF) that are distinguished by the presence of mutually exclusive subunits. The mechanisms by which each subfamily contributes to the establishment or function of specific cell lineages are poorly understood. Here, we determined the contributions of the BAF, ncBAF, and PBAF complexes to myoblast proliferation via knock down (KD) of distinguishing subunits from each complex. KD of subunits unique to the BAF or the ncBAF complexes reduced myoblast proliferation rate, while KD of PBAF-specific subunits did not affect proliferation. RNA-seq from proliferating KD myoblasts targeting Baf250A (BAF complex), Brd9 (ncBAF complex), or Baf180 (PBAF complex) showed mis-regulation of a limited number of genes. KD of Baf250A specifically reduced the expression of Pax7, which is required for myoblast proliferation, concomitant with decreased binding of Baf250A to and impaired chromatin remodeling at the Pax7 gene promoter. Although Brd9 also bound to the Pax7 promoter, suggesting occupancy by the ncBAF complex, no changes were detected in Pax7 gene expression, Pax7 protein expression or chromatin remodeling at the Pax7 promoter upon Brd9 KD. The data indicate that the BAF subfamily of the mSWI/SNF enzymes is specifically required for myoblast proliferation via regulation of Pax7 expression.
Collapse
|
9
|
Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, Palmisano NJ, Kohrman AQ, Chandhok Delos Reyes M, Adikes RC, Liu S, Bracht SA, Zhang W, Wen K, Kratsios P, Matus DQ. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet 2022; 18:e1009981. [PMID: 34982771 PMCID: PMC8759636 DOI: 10.1371/journal.pgen.1009981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis. Cellular invasion is required for animal development and homeostasis. Inappropriate activation of invasion however can result in cancer metastasis. Invasion programs are orchestrated by complex gene regulatory networks (GRN) that function in a coordinated fashion to turn on and off pro-invasive genes. While the core of GRNs are DNA binding transcription factors, they require aid from chromatin remodelers to access the genome. To identify the suite of pro-invasive chromatin remodelers, we paired high resolution imaging with RNA interference to individually knockdown 269 chromatin factors, identifying the evolutionarily conserved SWItching defective/Sucrose Non-Fermenting (SWI/SNF) ATP-dependent chromatin remodeling complex as a new regulator of Caenorhabditis elegans anchor cell (AC) invasion. Using a combination of CRISPR/Cas9 genome engineering and targeted protein degradation we demonstrate that the core SWI/SNF complex functions in a dose-dependent manner to control invasion. Further, we determine that the accessory SWI/SNF complexes, BAF and PBAF, contribute to invasion via distinctive mechanisms: BAF is required to prevent inappropriate proliferation while PBAF promotes AC attachment and remodeling of the basement membrane. Together, our data provide insights into how the SWI/SNF complex, which is mutated in many human cancers, can function in a dose-dependent fashion to regulate switching from invasive to proliferative fates.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nithin Parsan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taylor N. Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frances E. Q. Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas J. Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Abraham Q. Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mana Chandhok Delos Reyes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Rebecca C. Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Biology Department, Siena College, Loudonville, New York, United States of America
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sydney A. Bracht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kailong Wen
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Paschalis Kratsios
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
10
|
Sharma T, Robinson DCL, Witwicka H, Dilworth FJ, Imbalzano AN. The Bromodomains of the mammalian SWI/SNF (mSWI/SNF) ATPases Brahma (BRM) and Brahma Related Gene 1 (BRG1) promote chromatin interaction and are critical for skeletal muscle differentiation. Nucleic Acids Res 2021; 49:8060-8077. [PMID: 34289068 PMCID: PMC8373147 DOI: 10.1093/nar/gkab617] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 06/17/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle regeneration is mediated by myoblasts that undergo epigenomic changes to establish the gene expression program of differentiated myofibers. mSWI/SNF chromatin remodeling enzymes coordinate with lineage-determining transcription factors to establish the epigenome of differentiated myofibers. Bromodomains bind to acetylated lysines on histone N-terminal tails and other proteins. The mutually exclusive ATPases of mSWI/SNF complexes, BRG1 and BRM, contain bromodomains with undefined functional importance in skeletal muscle differentiation. Pharmacological inhibition of mSWI/SNF bromodomain function using the small molecule PFI-3 reduced differentiation in cell culture and in vivo through decreased myogenic gene expression, while increasing cell cycle-related gene expression and the number of cells remaining in the cell cycle. Comparative gene expression analysis with data from myoblasts depleted of BRG1 or BRM showed that bromodomain function was required for a subset of BRG1- and BRM-dependent gene expression. Reduced binding of BRG1 and BRM after PFI-3 treatment showed that the bromodomain is required for stable chromatin binding at target gene promoters to alter gene expression. Our findings demonstrate that mSWI/SNF ATPase bromodomains permit stable binding of the mSWI/SNF ATPases to promoters required for cell cycle exit and establishment of muscle-specific gene expression.
Collapse
Affiliation(s)
- Tapan Sharma
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - Daniel C L Robinson
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Hanna Witwicka
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | - F Jeffrey Dilworth
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, University of Ottawa, Ottawa, ON K1H 8L6, Canada.,Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Anthony N Imbalzano
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA 01605, USA
| |
Collapse
|
11
|
Rakesh R, Chanana UB, Hussain S, Sharma S, Goel K, Bisht D, Patne K, Swer PB, Hockensmith JW, Muthuswami R. Altering mammalian transcription networking with ADAADi: An inhibitor of ATP-dependent chromatin remodeling. PLoS One 2021; 16:e0251354. [PMID: 33999958 PMCID: PMC8128233 DOI: 10.1371/journal.pone.0251354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/23/2021] [Indexed: 11/30/2022] Open
Abstract
Active DNA-dependent ATPase A Domain inhibitor (ADAADi) is the only known inhibitor of ATP-dependent chromatin remodeling proteins that targets the ATPase domain of these proteins. The molecule is synthesized by aminoglycoside phosphotransferase enzyme in the presence of aminoglycosides. ADAADi interacts with ATP-dependent chromatin remodeling proteins through motif Ia present in the conserved helicase domain, and thus, can potentially inhibit all members of this family of proteins. We show that mammalian cells are sensitive to ADAADi but with variable responses in different cell lines. ADAADi can be generated from a wide variety of aminoglycosides; however, cells showed differential response to ADAADi generated from various aminoglycosides. Using HeLa and DU145 cells as model system we have explored the effect of ADAADi on cellular functions. We show that the transcriptional network of a cell type is altered when treated with sub-lethal concentration of ADAADi. Although ADAADi has no known effects on DNA chemical and structural integrity, expression of DNA-damage response genes was altered. The transcripts encoding for the pro-apoptotic proteins were found to be upregulated while the anti-apoptotic genes were found to be downregulated. This was accompanied by increased apoptosis leading us to hypothesize that the ADAADi treatment promotes apoptotic-type of cell death by upregulating the transcription of pro-apoptotic genes. ADAADi also inhibited migration of cells as well as their colony forming ability leading us to conclude that the compound has effective anti-tumor properties.
Collapse
Affiliation(s)
| | | | - Saddam Hussain
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, India
| | - Soni Sharma
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, India
| | - Kaveri Goel
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, India
| | - Deepa Bisht
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, India
| | - Ketki Patne
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, India
| | - Pynskhem Bok Swer
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, India
| | - Joel W Hockensmith
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, United States of America
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, JNU, New Delhi, India
| |
Collapse
|
12
|
Pijuan J, Rodríguez-Sanz M, Natera-de Benito D, Ortez C, Altimir A, Osuna-López M, Roura M, Ugalde M, Van de Vondel L, Reina-Castillón J, Fons C, Benítez R, Nascimento A, Hoenicka J, Palau F. Translational Diagnostics: An In-House Pipeline to Validate Genetic Variants in Children with Undiagnosed and Rare Diseases. J Mol Diagn 2020; 23:71-90. [PMID: 33223419 DOI: 10.1016/j.jmoldx.2020.10.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 09/10/2020] [Accepted: 10/13/2020] [Indexed: 12/26/2022] Open
Abstract
Diagnosis is essential for the management and treatment of patients with rare diseases. In a group of patients, the genetic study identifies variants of uncertain significance or inconsistent with the phenotype; therefore, it is urgent to develop novel strategies to reach the definitive diagnosis. Herein, we develop the in-house Translational Diagnostics Program (TDP) to validate genetic variants as part of the diagnostic process with the close collaboration of physicians, clinical scientists, and research scientists. The first 7 of 33 consecutive patients for whom exome-based tests were not diagnostic were investigated. The TDP pipeline includes four steps: (i) phenotype assessment, (ii) literature review and prediction of in silico pathogenicity, (iii) experimental functional studies, and (iv) diagnostic decision-making. Re-evaluation of the phenotype and re-analysis of the exome allowed the diagnosis in one patient. In the remaining patients, the studies included either cDNA cloning or PCR-amplified genomic DNA, or the use of patients' fibroblasts. A comparative computational analysis of confocal microscopy images and studies related to the protein function was performed. In five of these six patients, evidence of pathogenicity of the genetic variant was found, which was validated by physicians. The current research demonstrates the feasibility of the TDP to support and resolve intramural medical problems when the clinical significance of the patient variant is unknown or inconsistent with the phenotype.
Collapse
Affiliation(s)
- Jordi Pijuan
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - María Rodríguez-Sanz
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Daniel Natera-de Benito
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Carlos Ortez
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Arola Altimir
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Mireia Osuna-López
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Montserrat Roura
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Maddi Ugalde
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Liedewei Van de Vondel
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Judith Reina-Castillón
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain
| | - Carme Fons
- Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Raúl Benítez
- Automatic Control Department and Biomedical Engineering Research Center, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Andrés Nascimento
- Neuromuscular Unit, Department of Pediatric Neurology, Hospital Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain
| | - Janet Hoenicka
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain.
| | - Francesc Palau
- Laboratory of Neurogenetics and Molecular Medicine-Pediatric Institute of Rare Diseases, Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras, Barcelona, Spain; Department of Genetic Medicine-IPER, Hospital Sant Joan de Déu, Barcelona, Spain; Clinic Institute of Medicine and Dermatology, Hospital Clínic, Barcelona, Spain; Division of Pediatrics, Faculty of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain.
| |
Collapse
|
13
|
Torroglosa A, Villalba-Benito L, Fernández RM, Luzón-Toro B, Moya-Jiménez MJ, Antiñolo G, Borrego S. Identification of New Potential LncRNA Biomarkers in Hirschsprung Disease. Int J Mol Sci 2020; 21:ijms21155534. [PMID: 32748823 PMCID: PMC7432910 DOI: 10.3390/ijms21155534] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022] Open
Abstract
Hirschsprung disease (HSCR) is a neurocristopathy defined by intestinal aganglionosis due to alterations during the development of the Enteric Nervous System (ENS). A wide spectrum of molecules involved in different signaling pathways and mechanisms have been described in HSCR onset. Among them, epigenetic mechanisms are gaining increasing relevance. In an effort to better understand the epigenetic basis of HSCR, we have performed an analysis for the identification of long non-coding RNAs (lncRNAs) by qRT-PCR in enteric precursor cells (EPCs) from controls and HSCR patients. We aimed to test the presence of a set lncRNAs among 84 lncRNAs in human EPCs, which were previously related with crucial cellular processes for ENS development, as well as to identify the possible differences between HSCR patients and controls. As a result, we have determined a set of lncRNAs with positive expression in human EPCs that were screened for mutations using the exome data from our cohort of HSCR patients to identify possible variants related to this pathology. Interestingly, we identified three lncRNAs with different levels of their transcripts (SOCS2-AS, MEG3 and NEAT1) between HSCR patients and controls. We propose such lncRNAs as possible regulatory elements implicated in the onset of HSCR as well as potential biomarkers of this pathology.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - María José Moya-Jiménez
- Department of Pediatric Surgery, University Hospital Virgen del Rocío, 41013 Seville, Spain;
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain; (A.T.); (L.V.-B.); (R.M.F.); (B.L.-T.); (G.A.)
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain
- Correspondence:
| |
Collapse
|
14
|
Wang S, Wang P, Liang D, Wang Y. BRG1 Is Dispensable for Sertoli Cell Development and Functions in Mice. Int J Mol Sci 2020; 21:4358. [PMID: 32575410 PMCID: PMC7353015 DOI: 10.3390/ijms21124358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/13/2020] [Accepted: 06/18/2020] [Indexed: 12/30/2022] Open
Abstract
Sertoli cells are somatic supporting cells in spermatogenic niche and play critical roles in germ cell development, but it is yet to be understood how epigenetic modifiers regulate Sertoli cell development and contribution to spermatogenesis. BRG1 (Brahma related gene 1) is a catalytic subunit of the mammalian SWI/SNF chromatin remodeling complex and participates in transcriptional regulation. The present study aimed to define the functions of BRG1 in mouse Sertoli cells during mouse spermatogenesis. We found that BRG1 protein was localized in the nuclei of both Sertoli cells and germ cells in seminiferous tubules. We further examined the requirement of BRG1 in Sertoli cell development using a Brg1 conditional knockout mouse model and two Amh-Cre mouse strains to specifically delete Brg1 gene from Sertoli cells. We found that the Amh-Cre mice from Jackson Laboratory had inefficient recombinase activities in Sertoli cells, while the other Amh-Cre strain from the European Mouse Mutant Archive achieved complete Brg1 deletion in Sertoli cells. Nevertheless, the conditional knockout of Brg1 from Sertoli cells by neither of Amh-Cre strains led to any detectable abnormalities in the development of either Sertoli cells or germ cells, suggesting that BRG1-SWI/SNF complex is dispensable to the functions of Sertoli cells in spermatogenesis.
Collapse
Affiliation(s)
- Shuai Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (S.W.); (P.W.)
| | - Pengxiang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (S.W.); (P.W.)
| | - Dongli Liang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China; (S.W.); (P.W.)
| | - Yuan Wang
- Department of Animal Sciences, College of Agriculture and Natural Resources, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Chromatin dynamics during liver regeneration. Semin Cell Dev Biol 2020; 97:38-46. [DOI: 10.1016/j.semcdb.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/12/2019] [Accepted: 03/28/2019] [Indexed: 12/15/2022]
|
16
|
Jancewicz I, Siedlecki JA, Sarnowski TJ, Sarnowska E. BRM: the core ATPase subunit of SWI/SNF chromatin-remodelling complex-a tumour suppressor or tumour-promoting factor? Epigenetics Chromatin 2019; 12:68. [PMID: 31722744 PMCID: PMC6852734 DOI: 10.1186/s13072-019-0315-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
BRM (BRAHMA) is a core, SWI2/SNF2-type ATPase subunit of SWI/SNF chromatin-remodelling complex (CRC) involved in various important regulatory processes including development. Mutations in SMARCA2, a BRM-encoding gene as well as overexpression or epigenetic silencing were found in various human diseases including cancer. Missense mutations in SMARCA2 gene were recently connected with occurrence of Nicolaides-Baraitser genetics syndrome. By contrast, SMARCA2 duplication rather than mutations is characteristic for Coffin-Siris syndrome. It is believed that BRM usually acts as a tumour suppressor or a tumour susceptibility gene. However, other studies provided evidence that BRM function may differ depending on the cancer type and the disease stage, where BRM may play a role in the disease progression. The existence of alternative splicing forms of SMARCA2 gene, leading to appearance of truncated functional, loss of function or gain-of-function forms of BRM protein suggest a far more complicated mode of BRM-containing SWI/SNF CRCs actions. Therefore, the summary of recent knowledge regarding BRM alteration in various types of cancer and highlighting of differences and commonalities between BRM and BRG1, another SWI2/SNF2 type ATPase, will lead to better understanding of SWI/SNF CRCs function in cancer development/progression. BRM has been recently proposed as an attractive target for various anticancer therapies including the use of small molecule inhibitors, synthetic lethality induction or proteolysis-targeting chimera (PROTAC). However, such attempts have some limitations and may lead to severe side effects given the homology of BRM ATPase domain to other ATPases, as well as due to the tissue-specific appearance of BRM- and BRG1-containing SWI/SNF CRC classes. Thus, a better insight into BRM-containing SWI/SNF CRCs function in human tissues and cancers is clearly required to provide a solid basis for establishment of new safe anticancer therapies.
Collapse
Affiliation(s)
- Iga Jancewicz
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Janusz A Siedlecki
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland
| | - Tomasz J Sarnowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, Pawinskiego 5A, 02-106, Warsaw, Poland.
| | - Elzbieta Sarnowska
- Department of Molecular and Translational Oncology, The Maria Sklodowska-Curie Institute-Oncology Center in Warsaw, Wawelska 15B, 02-034, Warsaw, Poland.
| |
Collapse
|
17
|
Lee MJ, Kuehne N, Hueniken K, Liang S, Rai S, Sorotsky H, Herman M, Shepshelovich D, Bruce J, Liang M, Patel D, Cheng D, Chen Z, Eng L, Brown MC, Cho J, Leighl NB, de Perrot M, Reisman D, Xu W, Bradbury PA, Liu G. Association of two BRM promoter polymorphisms and smoking status with malignant pleural mesothelioma risk and prognosis. Mol Carcinog 2019; 58:1960-1973. [PMID: 31355511 DOI: 10.1002/mc.23088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 11/06/2022]
Abstract
Brahma (BRM), of the SWI/SNF complex, has two 6 to 7 bp insertion promoter polymorphisms (BRM-741/BRM-1321) that cause epigenetic BRM suppression, and are associated with risk of multiple cancers. BRM polymorphisms were genotyped in malignant pleural mesothelioma (MPM) cases and asbestos-exposed controls. Multivariable logistic regression (risk) and Cox regression (prognosis) were performed, including stratified analyses by smoking status to investigate the effect of polymorphisms on MPM risk and prognosis. Although there was no significant association overall between BRM-741/BRM-1321 and risk in patients with MPM, a differential effect by smoking status was observed (P-interaction < .001), where homozygous variants were protective (aOR of 0.18-0.28) in ever smokers, while never smokers had increased risk when carrying homozygous variants (aOR of 2.7-4.4). While there was no association between BRM polymorphisms and OS in ever-smokers, the aHR of carrying homozygous-variants of BRM-741, BRM-1321 or both were 4.0 to 8.6 in never-smokers when compared to wild-type carriers. Mechanistically, lower mRNA expression of BRM was associated with poorer general cancer prognosis. Electrophoretic mobility shift assays and chromatin immunoprecipitation experiments (ChIP) revealed high BRM insertion variant homology to MEF2 regulatory binding sites. ChIP experimentation confirmed MEF2 binding only occurs in the presence of insertion variants. DNA-affinity purification assays revealed YWHA scaffold proteins as vital to BRM mRNA expression. Never-smokers who carry BRM homozygous variants have an increased chance of developing MPM, which results in worse prognosis. In contrast, in ever-smokers, there may be a protective effect, with no difference in overall survival. Mechanisms for the interaction between BRM and smoking require further study.
Collapse
Affiliation(s)
- Min Joon Lee
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Nathan Kuehne
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Katrina Hueniken
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Shermi Liang
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Sudhir Rai
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Hadas Sorotsky
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Michael Herman
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Daniel Shepshelovich
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey Bruce
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Mindy Liang
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Devalben Patel
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dangxiao Cheng
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Zhuo Chen
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Lawson Eng
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - M Catherine Brown
- Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - John Cho
- Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Natasha B Leighl
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Marc de Perrot
- Division of Thoracic Surgery, Department of Surgery, University Health Network, Toronto, ON, Canada
| | - David Reisman
- Division of Hematology and Oncology, Department of Medicine, University of Florida, Gainesville, Florida
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Penelope A Bradbury
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Geoffrey Liu
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Medical Biophysics, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada.,Department of Epidemiology, Dalla Lana School of Public Health, Toronto, ON, Canada
| |
Collapse
|
18
|
Torroglosa A, Villalba-Benito L, Luzón-Toro B, Fernández RM, Antiñolo G, Borrego S. Epigenetic Mechanisms in Hirschsprung Disease. Int J Mol Sci 2019; 20:ijms20133123. [PMID: 31247956 PMCID: PMC6650840 DOI: 10.3390/ijms20133123] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/21/2019] [Accepted: 06/24/2019] [Indexed: 02/07/2023] Open
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is due to a failure of enteric precursor cells derived from neural crest (EPCs) to proliferate, migrate, survive or differentiate during Enteric Nervous System (ENS) formation. This is a complex process which requires a strict regulation that results in an ENS specific gene expression pattern. Alterations at this level lead to the onset of neurocristopathies such as HSCR. Gene expression is regulated by different mechanisms, such as DNA modifications (at the epigenetic level), transcriptional mechanisms (transcription factors, silencers, enhancers and repressors), postranscriptional mechanisms (3′UTR and ncRNA) and regulation of translation. All these mechanisms are finally implicated in cell signaling to determine the migration, proliferation, differentiation and survival processes for correct ENS development. In this review, we have performed an overview on the role of epigenetic mechanisms at transcriptional and posttranscriptional levels on these cellular events in neural crest cells (NCCs), ENS development, as well as in HSCR.
Collapse
Affiliation(s)
- Ana Torroglosa
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Leticia Villalba-Benito
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Berta Luzón-Toro
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Raquel María Fernández
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Guillermo Antiñolo
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| | - Salud Borrego
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), 41013 Seville, Spain.
| |
Collapse
|
19
|
Tuna M, Amos CI, Mills GB. Molecular mechanisms and pathobiology of oncogenic fusion transcripts in epithelial tumors. Oncotarget 2019; 10:2095-2111. [PMID: 31007851 PMCID: PMC6459343 DOI: 10.18632/oncotarget.26777] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/22/2019] [Indexed: 02/07/2023] Open
Abstract
Recurrent fusion transcripts, which are one of the characteristic hallmarks of cancer, arise either from chromosomal rearrangements or from transcriptional errors in splicing. DNA rearrangements include intrachromosomal or interchromosomal translocation, tandem duplication, deletion, inversion, or result from chromothripsis, which causes complex rearrangements. In addition, fusion proteins can be created through transcriptional read-through. Fusion genes can be transcribed to fusion transcripts and translated to chimeric proteins, with many having demonstrated transforming activities through multiple mechanisms in cells. Fusion proteins represent novel therapeutic targets and diagnostic biomarkers of diagnosis, disease status, or progression. This review focuses on the mechanisms underlying the formation of oncogenic fusion genes and transcripts and their impact on the pathobiology of epithelial tumors.
Collapse
Affiliation(s)
- Musaffe Tuna
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Christopher I. Amos
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Institute for Clinical and Translational Research, Baylor College of Medicine, Houston, TX, USA
| | - Gordon B. Mills
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Cell, Developmental and Cancer Biology, School of Medicine, Oregon Health Science University, Portland, OR, USA
- Precision Oncology, Knight Cancer Institute, Portland, OR, USA
| |
Collapse
|
20
|
Venkatesh T, Shetty A, Chakraborti S, Suresh PS. PTPH1 immunohistochemical expression and promoter methylation in breast cancer patients from India: A retrospective study. J Cell Physiol 2018; 234:1071-1079. [DOI: 10.1002/jcp.27211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022]
Affiliation(s)
- Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology Central University of Kerala, Paddanakkad Campus Kasargod Kerala India
| | - Abhishek Shetty
- Department of Biosciences Mangalore University Mangalore Karnataka India
| | | | | |
Collapse
|
21
|
Gillis NE, Taber TH, Bolf EL, Beaudet CM, Tomczak JA, White JH, Stein JL, Stein GS, Lian JB, Frietze S, Carr FE. Thyroid Hormone Receptor β Suppression of RUNX2 Is Mediated by Brahma-Related Gene 1-Dependent Chromatin Remodeling. Endocrinology 2018; 159:2484-2494. [PMID: 29750276 PMCID: PMC6692870 DOI: 10.1210/en.2018-00128] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
Thyroid hormone receptor β (TRβ) suppresses tumor growth through regulation of gene expression, yet the associated TRβ-mediated changes in chromatin assembly are not known. The chromatin ATPase brahma-related gene 1 (BRG1; SMARCA4), a key component of chromatin-remodeling complexes, is altered in many cancers, but its role in thyroid tumorigenesis and TRβ-mediated gene expression is unknown. We previously identified the oncogene runt-related transcription factor 2 (RUNX2) as a repressive target of TRβ. Here, we report differential expression of BRG1 in nonmalignant and malignant thyroid cells concordant with TRβ. BRG1 and TRβ have similar nuclear distribution patterns and significant colocalization. BRG1 interacts with TRβ, and together, they are part of the regulatory complex at the RUNX2 promoter. Loss of BRG1 increases RUNX2 levels, whereas reintroduction of TRβ and BRG1 synergistically decreases RUNX2 expression. RUNX2 promoter accessibility corresponded to RUNX2 expression levels. Inhibition of BRG1 activity increased accessibility of the RUNX2 promoter and corresponding expression. Our results reveal a mechanism of TRβ repression of oncogenic gene expression: TRβ recruitment of BRG1 induces chromatin compaction and diminishes RUNX2 expression. Therefore, BRG1-mediated chromatin remodeling may be obligatory for TRβ transcriptional repression and tumor suppressor function in thyroid tumorigenesis.
Collapse
Affiliation(s)
- Noelle E Gillis
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Thomas H Taber
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Eric L Bolf
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Caitlin M Beaudet
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jennifer A Tomczak
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jeffrey H White
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Janet L Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Gary S Stein
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Jane B Lian
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Biochemistry, Larner College of Medicine, University of Vermont, Burlington, Vermont
| | - Seth Frietze
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Department of Medical Laboratory Sciences, College of Nursing and Health Sciences, University of Vermont, Burlington, Vermont
| | - Frances E Carr
- Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, Vermont
- University of Vermont Cancer Center, Larner College of Medicine, University of Vermont, Burlington, Vermont
- Correspondence: Frances E. Carr, PhD, Department of Pharmacology, Larner College of Medicine, University of Vermont, 89 Beaumont Avenue, Burlington, Vermont 05405. E-mail:
| |
Collapse
|
22
|
Korpanty GJ, Eng L, Qiu X, Faluyi OO, Renouf DJ, Cheng D, Patel D, Chen Z, Tse BC, Knox JJ, Dodbiba L, Teichman J, Azad AK, Wong R, Darling G, Reisman D, Cuffe S, Liu G, Xu W. Association of BRM promoter polymorphisms and esophageal adenocarcinoma outcome. Oncotarget 2018; 8:28093-28100. [PMID: 28427211 PMCID: PMC5438633 DOI: 10.18632/oncotarget.15890] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/22/2017] [Indexed: 12/16/2022] Open
Abstract
Purpose Brahma (BRM) is a critical catalytic subunit of the SWI/SNF chromatin remodeling complex; expression of BRM is commonly lost in various cancer types. BRM promoter polymorphisms (BRM-741; BRM-1321) are associated with loss of BRM expression, and with cancer risk/survival. We evaluated these two polymorphisms in the overall survival (OS) of esophageal adenocarcinoma (EAC) patients. Results Of 270 patients, 37% were stage IV. Minor allele frequencies were 47−49%; 15% were double-homozygotes. When compared to the wild-type genotype, the homozygous variant of BRM-741 carried an adjusted OS hazard ratio (aHR) of 1.64 (95% CI:1.1−2.4); for BRM-1321, the aHR was 2.09 (95% CI:1.4−3.0). Compared to the double wild-type, carrying homozygous variants of both promoter polymorphisms (double-homozygote) yielded an aHR of 2.21 (95% CI:1.4−3.6). Directions/magnitudes of associations were similar in subsets by age, gender, smoking status, use of platinum agents, and disease stage, and for progression-free survival. Materials and Methods In a cohort of EAC patients of all stages (84% male; median age of 64 years), two BRM polymorphisms were genotyped. Cox proportional hazards models, adjusted for known prognostic variables, estimated the association of polymorphisms with OS. Conclusions BRM polymorphisms were associated with OS in EAC in this study. Validation studies are warranted.
Collapse
Affiliation(s)
- Grzegorz J Korpanty
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada.,Canadian Cancer Trials Group, Department of Medicine, Queens University, Kingston, ON, Canada
| | - Lawson Eng
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Xin Qiu
- Princess Margaret Cancer Centre, Department of Biostatistics, University Health Network, Toronto, ON, Canada
| | - Olusola Olusesan Faluyi
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Daniel J Renouf
- Department of Medical Oncology, University of British Columbia and British Columbia Cancer Agency, Vancouver, BC, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Brandon C Tse
- Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada
| | - Jennifer J Knox
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Lorin Dodbiba
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Jennifer Teichman
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Abul Kalam Azad
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Rebecca Wong
- Princess Margaret Cancer Centre, Radiation Medicine Program, University Health Network, Toronto, ON, Canada
| | - Gail Darling
- Department of Surgery, Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| | - David Reisman
- Department of Medicine in the College of Medicine, Division of Hematology and Oncology, University of Florida, Gainesville, FL, USA
| | - Sinead Cuffe
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre, Department of Medicine, University Health Network, Toronto, ON, Canada.,Princess Margaret Cancer Centre, Department of Medical Biophysics, University Health Network, Toronto, ON, Canada.,Department of Epidemiology, Dalla Lana School of Pubic Health, Toronto, ON, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre, Department of Biostatistics, University Health Network, Toronto, ON, Canada
| |
Collapse
|
23
|
Kaufmann B, Wang B, Zhong S, Laschinger M, Patil P, Lu M, Assfalg V, Cheng Z, Friess H, Hüser N, von Figura G, Hartmann D. BRG1 promotes hepatocarcinogenesis by regulating proliferation and invasiveness. PLoS One 2017; 12:e0180225. [PMID: 28700662 PMCID: PMC5507512 DOI: 10.1371/journal.pone.0180225] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/12/2017] [Indexed: 02/03/2023] Open
Abstract
The chromatin remodeler complex SWI/SNF plays an important role in physiological and pathological processes. Brahma related gene 1(BRG1), a catalytic subunit of the SWI/SNF complex, is known to be mutated in hepatocellular carcinoma (HCC). However, its role in HCC remains unclear. Here, we investigate the role of BRG1 on cell growth and invasiveness as well as its effect on the expression of putative target genes. Expression of BRG1 was examined in human liver tissue samples and in HCC cell lines. In addition, BRG1 was silenced in human HCC cell lines to analyse cell growth and invasiveness by growth curves, colony formation assay, invasion assay and the expression of putative target genes. BRG1 was found to be significantly increased in HCC samples compared to non-HCC samples. In addition, a declined proliferation rate of BRG1-silenced human HCC cell lines was associated with a decrease of expression of cyclin family members. In line with a decreased invasiveness of BRG1-siRNA-treated human HCC cell lines, down-regulation of MMP7 was detected. These results support the hypothesis that overexpression of BRG1 increases cell growth and invasiveness in HCC. Furthermore, the data highlight cyclin B, E and MMP7 to be associated with BRG1 during hepatocarcinogenesis.
Collapse
Affiliation(s)
- Benedikt Kaufmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Baocai Wang
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Suyang Zhong
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Melanie Laschinger
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Pranali Patil
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Miao Lu
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Volker Assfalg
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Zhangjun Cheng
- Department of General Surgery, the Affiliated Zhongda Hospital, Southeast University, Nanjing, China
| | - Helmut Friess
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Norbert Hüser
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Guido von Figura
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Daniel Hartmann
- Department of Surgery, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| |
Collapse
|
24
|
Wu Q, Lian JB, Stein JL, Stein GS, Nickerson JA, Imbalzano AN. The BRG1 ATPase of human SWI/SNF chromatin remodeling enzymes as a driver of cancer. Epigenomics 2017; 9:919-931. [PMID: 28521512 PMCID: PMC5705788 DOI: 10.2217/epi-2017-0034] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Mammalian SWI/SNF enzymes are ATP-dependent remodelers of chromatin structure. These multisubunit enzymes are heterogeneous in composition; there are two catalytic ATPase subunits, BRM and BRG1, that are mutually exclusive, and additional subunits are incorporated in a combinatorial manner. Recent findings indicate that approximately 20% of human cancers contain mutations in SWI/SNF enzyme subunits, leading to the conclusion that the enzyme subunits are critical tumor suppressors. However, overexpression of specific subunits without apparent mutation is emerging as an alternative mechanism by which cellular transformation may occur. Here we highlight recent evidence linking elevated expression of the BRG1 ATPase to tissue-specific cancers and work suggesting that inhibiting BRG1 may be an effective therapeutic strategy.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Jane B Lian
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Janet L Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Gary S Stein
- Department of Biochemistry, University of Vermont College of Medicine, 89 Beaumont Avenue, Burlington, VT 05405, USA
| | - Jeffrey A Nickerson
- Department of Pediatrics, University of Massachusetts Medical School, 55 Lake Avenue North, Worcester, MA 01655, USA
| | - Anthony N Imbalzano
- Department of Biochemistry & Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| |
Collapse
|
25
|
Marquez-Vilendrer SB, Rai SK, Gramling SJ, Lu L, Reisman DN. BRG1 and BRM loss selectively impacts RB and P53, respectively: BRG1 and BRM have differential functions in vivo. Oncoscience 2016; 3:337-350. [PMID: 28105458 PMCID: PMC5235922 DOI: 10.18632/oncoscience.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/23/2016] [Indexed: 12/11/2022] Open
Abstract
The SWI/SNF complex is an important regulator of gene expression that functions by interacting with a diverse array of cellular proteins. The catalytic subunits of SWI/SNF, BRG1 and BRM, are frequently lost alone or concomitantly in a range of different cancer types. This loss abrogates SWI/SNF complex function as well as the functions of proteins that are required for SWI/SNF function, such as RB1 and TP53. Yet while both proteins are known to be dependent on SWI/SNF, we found that BRG1, but not BRM, is functionally linked to RB1, such that loss of BRG1 can directly or indirectly inactivate the RB1 pathway. This newly discovered dependence of RB1 on BRG1 is important because it explains why BRG1 loss can blunt the growth-inhibitory effect of tyrosine kinase inhibitors (TKIs). We also observed that selection for Trp53 mutations occurred in Brm-positive tumors but did not occur in Brm-negative tumors. Hence, these data indicate that, during cancer development, Trp53 is functionally dependent on Brm but not Brg1. Our findings show for the first time the key differences in Brm- and Brg1-specific SWI/SNF complexes and help explain why concomitant loss of Brg1 and Brm frequently occurs in cancer, as well as how their loss impacts cancer development.
Collapse
Affiliation(s)
| | - Sudhir K Rai
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah Jb Gramling
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| | - Li Lu
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA; Department of Pathology, University of Florida, Gainesville, FL, USA
| | - David N Reisman
- Department of Hematology/Oncology, Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
26
|
Liu G, Cuffe S, Liang S, Azad AK, Cheng L, Brhane Y, Qiu X, Cescon DW, Bruce J, Chen Z, Cheng D, Patel D, Tse BC, Laurie SA, Goss G, Leighl NB, Hung R, Bradbury PA, Seymour L, Shepherd FA, Tsao MS, Chen BE, Xu W, Reisman DN. BRM Promoter Polymorphisms and Survival of Advanced Non-Small Cell Lung Cancer Patients in the Princess Margaret Cohort and CCTG BR.24 Trial. Clin Cancer Res 2016; 23:2460-2470. [PMID: 27827316 DOI: 10.1158/1078-0432.ccr-16-1640] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 10/04/2016] [Accepted: 10/23/2016] [Indexed: 01/08/2023]
Abstract
Introduction: BRM, a key catalytic subunit of the SWI/SNF chromatin remodeling complex, is a putative tumor susceptibility gene that is silenced in 15% of non-small cell lung cancer (NSCLC). Two novel BRM promoter polymorphisms (BRM-741 and BRM-1321) are associated with reversible epigenetic silencing of BRM protein expression.Experimental Design: Advanced NSCLC patients from the Princess Margaret (PM) cohort study and from the CCTG BR.24 clinical trial were genotyped for BRM promoter polymorphisms. Associations of BRM variants with survival were assessed using log-rank tests, the method of Kaplan and Meier, and Cox proportional hazards models. Promoter swap, luciferase assays, and chromatin immunoprecipitation (ChIP) experiments evaluated polymorphism function. In silico analysis of publicly available gene expression datasets with outcome were performed.Results: Carrying the homozygous variants of both polymorphisms ("double homozygotes", DH) when compared with those carrying the double wild-type was associated with worse overall survival, with an adjusted hazard ratios (aHR) of 2.74 (95% CI, 1.9-4.0). This was confirmed in the BR.24 trial (aHR, 8.97; 95% CI, 3.3-18.5). Lower BRM gene expression (by RNA-Seq or microarray) was associated with worse outcome (P < 0.04). ChIP and promoter swap experiments confirmed binding of MEF2D and HDAC9 only to homozygotes of each polymorphism, associated with reduced promoter activity in the DH.Conclusions: Epigenetic regulatory molecules bind to two BRM promoter sequence variants but not to their wild-type sequences. These variants are associated with adverse overall and progression-free survival. Decreased BRM gene expression, seen with these variants, is also associated with worse overall survival. Clin Cancer Res; 23(10); 2460-70. ©2016 AACR.
Collapse
Affiliation(s)
- Geoffrey Liu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada.
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Sinead Cuffe
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | | | - Abul Kalam Azad
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Lu Cheng
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Yonathan Brhane
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Xin Qiu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - David W Cescon
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Jeffrey Bruce
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Brandon C Tse
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | - Glenwood Goss
- Ottawa Hospital Cancer Centre, Ottawa, Ontario, Canada
| | - Natasha B Leighl
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Rayjean Hung
- Lunenfeld Research Institute and Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Penelope A Bradbury
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Lesley Seymour
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
| | - Frances A Shepherd
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Ming Sound Tsao
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | - Bingshu E Chen
- Canadian Cancer Trials Group, Queens University, Kingston, Ontario, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre and University Health Network, University of Toronto, Toronto, Ontario, Canada
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | |
Collapse
|
27
|
Segedi M, Anderson LN, Espin-Garcia O, Borgida A, Bianco T, Cheng D, Chen Z, Patel D, Brown MC, Xu W, Reisman D, Gallinger S, Cotterchio M, Hung R, Liu G, Cleary SP. BRM polymorphisms, pancreatic cancer risk and survival. Int J Cancer 2016; 139:2474-81. [PMID: 27487558 DOI: 10.1002/ijc.30369] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 05/31/2016] [Accepted: 06/20/2016] [Indexed: 12/30/2022]
Abstract
Variant alleles of two promoter polymorphisms in the BRM gene (BRM-741, BRM-1321), create MEF2D transcription binding sites that lead to epigenetic silencing of BRM, the key catalytic component of the SWI/SNF chromatin remodeling complex. BRM suppression can be reversed pharmacologically.(1) Our group and others have reported associations with lung, head and neck, hepatocellular cancer risk,(1-3) and with lung and esophageal cancer prognosis (ASCO 2013; abstract 11057 & 4077). Herein, we assessed risk and survival associations with pancreatic cancer. A provincial population-based case-control study was conducted with 623 histologically confirmed pancreatic adenocarcinoma cases and 1,192 age/gender distribution-matched controls.(4) Survival of cases was obtained through the Ontario Cancer Registry. Logistic and Cox proportional hazard regression models were fitted, adjusting for relevant covariates. Median age was 65 y; 52% were male; Stage I (8%), II (55%), III (14%), IV (23%); 53% after curative resection, 79% after chemotherapy; and 83% had died. In the risk analysis, adjusted odds ratios (aOR) were 1.01 (95% CI: 0.1-2.0) and 0.96 (95% CI: 0.7-1.3) for the homozygotes of BRM-741 and BRM-1321, respectively; aOR of double-homozygotes was 1.11 (95% CI: 0.80-1.53), compared to the double-wildtype. For the survival analysis, adjusted hazard ratios (aHR) were 2.19 (95% CI: 1.9-2.5) for BRM-741 and 1.94 (95% CI: 1.7-2.2) for BRM-1321, per unit increase in variant alleles. Compared with the double-wildtype, aHR for carrying no, one, and two double-homozygotes were 2.14 (95% CI: 1.6-2.8), 4.17 (95% CI: 3.0-5.7), 8.03 (95% CI: 5.7-11.4), respectively. In conclusion, two functional promoter BRM polymorphisms were not associated with pancreatic adenocarcinoma risk, but are strongly associated with survival.
Collapse
Affiliation(s)
- Maja Segedi
- Department of Surgery, University of British Columbia, Vancouver, BC, Canada.,Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Laura N Anderson
- Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Osvaldo Espin-Garcia
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Ayelet Borgida
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Teresa Bianco
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Dangxiao Cheng
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Zhuo Chen
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Devalben Patel
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - M Catherine Brown
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Wei Xu
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - David Reisman
- Medical Oncology, University of Florida, Gainesville, FL
| | - Steven Gallinger
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | | | - Rayjean Hung
- Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| | - Geoffrey Liu
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.
| | - Sean P Cleary
- Princess Margaret Cancer Centre-University Health Network-Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada.,Mount Sinai Hospital-Lunenfeld Research Institute, Toronto, ON, Canada
| |
Collapse
|
28
|
Role of Geminin in cell fate determination of hematopoietic stem cells (HSCs). Int J Hematol 2016; 104:324-9. [PMID: 27422432 DOI: 10.1007/s12185-016-2060-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 07/10/2016] [Accepted: 07/11/2016] [Indexed: 01/05/2023]
Abstract
Geminin exerts two distinct molecular roles. Geminin negatively regulates DNA replication licensing through the direct interaction with Cdt1 to prevent re-replication in proliferating cells. Geminin also regulates chromatin remodeling through the direct interaction with Brahma/Brg1 to maintain undifferentiated states of stem cells. We previously uncovered that Polycomb-group complex 1 and Hoxb4/Hoxa9, well-known intrinsic factors that are essential for maintaining the hematopoietic stem cell (HSC) activity, alternatively act as ubiquitin-proteasome systems for Geminin protein to reduce the protein expression level, and sustain the HSC activity. Thus, Geminin is presumed to play an important role in determining cell fate, i.e., turning on and off cellular quiescence and proliferation/differentiation, in HSCs. We recently generated recombinant cell-penetrating Geminin (CP-Geminin), enabling rapid incorporation and withdraw of Geminin protein in cells. CP-Geminin may be useful in regulating the cell cycle and chromatin configuration. In this article, we summarize current information on the molecular functions of Geminin and the regulatory system for Geminin protein expression, and argue for the molecular role of Geminin in cell fate determination of HSCs, and future perspective of a new technology for manipulating the activities of HSCs and cancer stem cells (CSCs).
Collapse
|
29
|
Torroglosa A, Alves MM, Fernández RM, Antiñolo G, Hofstra RM, Borrego S. Epigenetics in ENS development and Hirschsprung disease. Dev Biol 2016; 417:209-16. [PMID: 27321561 DOI: 10.1016/j.ydbio.2016.06.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/10/2016] [Accepted: 06/13/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, OMIM 142623) is a neurocristopathy caused by a failure of the enteric nervous system (ENS) progenitors derived from neural crest cells (NCCs), to migrate, proliferate, differentiate or survive to and within the gastrointestinal tract, resulting in aganglionosis in the distal colon. The formation of the ENS is a complex process, which is regulated by a large range of molecules and signalling pathways involving both the NCCs and the intestinal environment. This tightly regulated process needs correct regulation of the expression of ENS specific genes. Alterations in the expression of these genes can have dramatic consequences. Several mechanisms that control the expression of genes have been described, such as DNA modification (epigenetic mechanisms), regulation of transcription (transcription factor, enhancers, repressors and silencers), post-transcriptional regulation (3'UTR and miRNAs) and regulation of translation. In this review, we focus on the epigenetic DNA modifications that have been described so far in the context of the ENS development. Moreover we describe the changes that are found in relation to the onset of HSCR.
Collapse
Affiliation(s)
- A Torroglosa
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - M M Alves
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - R M Fernández
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - G Antiñolo
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | - R M Hofstra
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre UCL Institute of Child Health, London, UK
| | - S Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), University Hospital Virgen del Rocío/CSIC/University of Seville, Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain.
| |
Collapse
|
30
|
Ohno Y, Suzuki-Takedachi K, Yasunaga S, Kurogi T, Santo M, Masuhiro Y, Hanazawa S, Ohtsubo M, Naka K, Takihara Y. Manipulation of Cell Cycle and Chromatin Configuration by Means of Cell-Penetrating Geminin. PLoS One 2016; 11:e0155558. [PMID: 27195810 PMCID: PMC4873132 DOI: 10.1371/journal.pone.0155558] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 04/29/2016] [Indexed: 02/02/2023] Open
Abstract
Geminin regulates chromatin remodeling and DNA replication licensing which play an important role in regulating cellular proliferation and differentiation. Transcription of the Geminin gene is regulated via an E2F-responsive region, while the protein is being closely regulated by the ubiquitin-proteasome system. Our objective was to directly transduce Geminin protein into cells. Recombinant cell-penetrating Geminin (CP-Geminin) was generated by fusing Geminin with a membrane translocating motif from FGF4 and was efficiently incorporated into NIH 3T3 cells and mouse embryonic fibroblasts. The withdrawal study indicated that incorporated CP-Geminin was quickly reduced after removal from medium. We confirmed CP-Geminin was imported into the nucleus after incorporation and also that the incorporated CP-Geminin directly interacted with Cdt1 or Brahma/Brg1 as the same manner as Geminin. We further demonstrated that incorporated CP-Geminin suppressed S-phase progression of the cell cycle and reduced nuclease accessibility in the chromatin, probably through suppression of chromatin remodeling, indicating that CP-Geminin constitutes a novel tool for controlling chromatin configuration and the cell cycle. Since Geminin has been shown to be involved in regulation of stem cells and cancer cells, CP-Geminin is expected to be useful for elucidating the role of Geminin in stem cells and cancer cells, and for manipulating their activity.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Kyoko Suzuki-Takedachi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Shin’ichiro Yasunaga
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Nanakuma, Jonan-ku, Fukuoka, Japan
| | - Toshiaki Kurogi
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Mimoko Santo
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshikazu Masuhiro
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Shigemasa Hanazawa
- Department of Applied Biological Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa-city, Kanagawa, Japan
| | - Motoaki Ohtsubo
- Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Kita-ishigaki 82, Beppu-city, Oita, Japan
| | - Kazuhito Naka
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Kasumi, Minami-ku, Hiroshima, Japan
- * E-mail:
| |
Collapse
|
31
|
Schmoll M, Dattenböck C, Carreras-Villaseñor N, Mendoza-Mendoza A, Tisch D, Alemán MI, Baker SE, Brown C, Cervantes-Badillo MG, Cetz-Chel J, Cristobal-Mondragon GR, Delaye L, Esquivel-Naranjo EU, Frischmann A, Gallardo-Negrete JDJ, García-Esquivel M, Gomez-Rodriguez EY, Greenwood DR, Hernández-Oñate M, Kruszewska JS, Lawry R, Mora-Montes HM, Muñoz-Centeno T, Nieto-Jacobo MF, Nogueira Lopez G, Olmedo-Monfil V, Osorio-Concepcion M, Piłsyk S, Pomraning KR, Rodriguez-Iglesias A, Rosales-Saavedra MT, Sánchez-Arreguín JA, Seidl-Seiboth V, Stewart A, Uresti-Rivera EE, Wang CL, Wang TF, Zeilinger S, Casas-Flores S, Herrera-Estrella A. The Genomes of Three Uneven Siblings: Footprints of the Lifestyles of Three Trichoderma Species. Microbiol Mol Biol Rev 2016; 80:205-327. [PMID: 26864432 PMCID: PMC4771370 DOI: 10.1128/mmbr.00040-15] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The genus Trichoderma contains fungi with high relevance for humans, with applications in enzyme production for plant cell wall degradation and use in biocontrol. Here, we provide a broad, comprehensive overview of the genomic content of these species for "hot topic" research aspects, including CAZymes, transport, transcription factors, and development, along with a detailed analysis and annotation of less-studied topics, such as signal transduction, genome integrity, chromatin, photobiology, or lipid, sulfur, and nitrogen metabolism in T. reesei, T. atroviride, and T. virens, and we open up new perspectives to those topics discussed previously. In total, we covered more than 2,000 of the predicted 9,000 to 11,000 genes of each Trichoderma species discussed, which is >20% of the respective gene content. Additionally, we considered available transcriptome data for the annotated genes. Highlights of our analyses include overall carbohydrate cleavage preferences due to the different genomic contents and regulation of the respective genes. We found light regulation of many sulfur metabolic genes. Additionally, a new Golgi 1,2-mannosidase likely involved in N-linked glycosylation was detected, as were indications for the ability of Trichoderma spp. to generate hybrid galactose-containing N-linked glycans. The genomic inventory of effector proteins revealed numerous compounds unique to Trichoderma, and these warrant further investigation. We found interesting expansions in the Trichoderma genus in several signaling pathways, such as G-protein-coupled receptors, RAS GTPases, and casein kinases. A particularly interesting feature absolutely unique to T. atroviride is the duplication of the alternative sulfur amino acid synthesis pathway.
Collapse
Affiliation(s)
- Monika Schmoll
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | - Christoph Dattenböck
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Doris Tisch
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - Mario Ivan Alemán
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | - Scott E Baker
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Christopher Brown
- University of Otago, Department of Biochemistry and Genetics, Dunedin, New Zealand
| | | | - José Cetz-Chel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - Luis Delaye
- Cinvestav, Department of Genetic Engineering, Irapuato, Guanajuato, Mexico
| | | | - Alexa Frischmann
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | - Monica García-Esquivel
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | | | - David R Greenwood
- The University of Auckland, School of Biological Sciences, Auckland, New Zealand
| | - Miguel Hernández-Oñate
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| | - Joanna S Kruszewska
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Robert Lawry
- Lincoln University, Bio-Protection Research Centre, Lincoln, Canterbury, New Zealand
| | | | | | | | | | | | | | - Sebastian Piłsyk
- Polish Academy of Sciences, Institute of Biochemistry and Biophysics, Laboratory of Fungal Glycobiology, Warsaw, Poland
| | - Kyle R Pomraning
- Pacific Northwest National Laboratory, Richland, Washington, USA
| | - Aroa Rodriguez-Iglesias
- Austrian Institute of Technology, Department Health and Environment, Bioresources Unit, Tulln, Austria
| | | | | | - Verena Seidl-Seiboth
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | | | | | - Chih-Li Wang
- National Chung-Hsing University, Department of Plant Pathology, Taichung, Taiwan
| | - Ting-Fang Wang
- Academia Sinica, Institute of Molecular Biology, Taipei, Taiwan
| | - Susanne Zeilinger
- Research Division Biotechnology and Microbiology, Institute of Chemical Engineering, TU Wien, Vienna, Austria University of Innsbruck, Institute of Microbiology, Innsbruck, Austria
| | | | - Alfredo Herrera-Estrella
- LANGEBIO, National Laboratory of Genomics for Biodiversity, Cinvestav-Irapuato, Guanajuato, Mexico
| |
Collapse
|
32
|
Van Landeghem L, Santoro MA, Mah AT, Krebs AE, Dehmer JJ, McNaughton KK, Helmrath MA, Magness ST, Lund PK. IGF1 stimulates crypt expansion via differential activation of 2 intestinal stem cell populations. FASEB J 2015; 29:2828-42. [PMID: 25837582 DOI: 10.1096/fj.14-264010] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 03/06/2015] [Indexed: 01/24/2023]
Abstract
Insulin-like growth factor 1 (IGF1) has potent trophic effects on normal or injured intestinal epithelium, but specific effects on intestinal stem cells (ISCs) are undefined. We used Sox9-enhanced green fluorescent protein (EGFP) reporter mice that permit analyses of both actively cycling ISCs (Sox9-EGFP(Low)) and reserve/facultative ISCs (Sox9-EGFP(High)) to study IGF1 action on ISCs in normal intestine or during crypt regeneration after high-dose radiation-induced injury. We hypothesized that IGF1 differentially regulates proliferation and gene expression in actively cycling and reserve/facultative ISCs. IGF1 was delivered for 5 days using subcutaneously implanted mini-pumps in uninjured mice or after 14 Gy abdominal radiation. ISC numbers, proliferation, and transcriptome were assessed. IGF1 increased epithelial growth in nonirradiated mice and enhanced crypt regeneration after radiation. In uninjured and regenerating intestines, IGF1 increased total numbers of Sox9-EGFP(Low) ISCs and percentage of these cells in M-phase. IGF1 increased percentages of Sox9-EGFP(High) ISCs in S-phase but did not expand this population. Microarray revealed that IGF1 activated distinct gene expression signatures in the 2 Sox9-EGFP ISC populations. In vitro IGF1 enhanced enteroid formation by Sox9-EGFP(High) facultative ISCs but not Sox9-EGFP(Low) actively cycling ISCs. Our data provide new evidence that IGF1 activates 2 ISC populations via distinct regulatory pathways to promote growth of normal intestinal epithelium and crypt regeneration after irradiation.
Collapse
Affiliation(s)
- Laurianne Van Landeghem
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - M Agostina Santoro
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Amanda T Mah
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Adrienne E Krebs
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Jeffrey J Dehmer
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Kirk K McNaughton
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Michael A Helmrath
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - Scott T Magness
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| | - P Kay Lund
- *Department of Cell Biology and Physiology, Department of Nutrition, Department of Surgery, and Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA; Department of Surgery, University of Cincinnati, Cincinnati, Ohio, USA; and University of North Carolina/North Carolina State Biomedical Engineering, Chapel Hill, North Carolina, USA
| |
Collapse
|
33
|
Yamaguchi T, Kurita T, Nishio K, Tsukada J, Hachisuga T, Morimoto Y, Iwai Y, Izumi H. Expression of BAF57 in ovarian cancer cells and drug sensitivity. Cancer Sci 2015; 106:359-66. [PMID: 25611552 PMCID: PMC4409878 DOI: 10.1111/cas.12612] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 01/09/2015] [Accepted: 01/12/2015] [Indexed: 01/01/2023] Open
Abstract
The SMARCE1 (SWI / SNF-related, matrix-associated, and actin-dependent regulator of chromatin, subfamily e, member 1) encodes BAF57 protein. Previously, we reported that BAF57 is a predictive marker of endometrial carcinoma. In this study, we investigated BAF57 expression in ovarian cancer cell lines and their sensitivities to cisplatin, doxorubicin, paclitaxel, and 5-fluorouracil. BAF57 expression was strongly correlated with sensitivities to cisplatin, doxorubicin, and 5-fluorouracil in 10 ovarian cancer cell lines. Paclitaxel sensitivity was also correlated with BAF57 expression, but without significance. In A2780 ovarian cancer cells, knockdown of BAF57 using specific siRNA increased cell cycle arrest at G1 phase and the sensitivities to these anticancer agents. cDNA microarray analysis of A2780 cells transfected with BAF57 siRNA showed that 134 genes were positively regulated by BAF57, including ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2) encoding breast cancer resistance protein (BCRP). We confirmed that knockdown of BAF57 decreased BCRP expression in ovarian cancer cells by Western blot analysis, and that ABCG2 gene expression might be regulated transcriptionally. These results suggested that BAF57 is involved in ovarian cancer cell growth and sensitivity to anticancer agents, and that BAF57 may be a target for ovarian cancer therapy.
Collapse
Affiliation(s)
- Takahiro Yamaguchi
- Hematology, University of Occupational and Environmental Health, Kitakyushu, Japan
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Rao Q, Xia QY, Wang ZY, Li L, Shen Q, Shi SS, Wang X, Liu B, Wang YF, Shi QL, Ma HH, Lu ZF, He Y, Zhang RS, Yu B, Zhou XJ. Frequent co-inactivation of the SWI/SNF subunits SMARCB1, SMARCA2 and PBRM1 in malignant rhabdoid tumours. Histopathology 2015; 67:121-9. [PMID: 25496315 DOI: 10.1111/his.12632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 12/10/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Qiu Rao
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Qiu-yuan Xia
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Zi-yu Wang
- School of Basic Medical Sciences; Nanjing University of Traditional Chinese Medicine; Nanjing China
| | - Li Li
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Qin Shen
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Shan-shan Shi
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Xuan Wang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Biao Liu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Yan-fen Wang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Qun-li Shi
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Heng-hui Ma
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Zhen-feng Lu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Yan He
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Ru-song Zhang
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Bo Yu
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| | - Xiao-jun Zhou
- Department of Pathology; Nanjing Jinling Hospital; Nanjing University School of Medicine; Nanjing China
| |
Collapse
|
35
|
Freeman MD, Mazu T, Miles JS, Darling-Reed S, Flores-Rozas H. Inactivation of chromatin remodeling factors sensitizes cells to selective cytotoxic stress. Biologics 2014; 8:269-80. [PMID: 25484574 PMCID: PMC4238754 DOI: 10.2147/btt.s67046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The SWI/SNF chromatin-remodeling complex plays an essential role in several cellular processes including cell proliferation, differentiation, and DNA repair. Loss of normal function of the SWI/SNF complex because of mutations in its subunits correlates with tumorigenesis in humans. For many of these cancers, cytotoxic chemotherapy is the primary, and sometimes the only, therapeutic alternative. Among the antineoplastic agents, anthracyclines are a common treatment option. Although effective, resistance to these agents usually develops and serious dose-related toxicity, namely, chronic cardiotoxicity, limits its use. Previous work from our laboratory showed that a deletion of the SWI/SNF factor SNF2 resulted in hypersensitivity to doxorubicin. We further investigated the contribution of other chromatin remodeling complex components in the response to cytotoxic chemotherapy. Our results indicate that, of the eight SWI/SNF strains tested, snf2, taf14, and swi3 were the most sensitive and displayed distinct sensitivity to different cytotoxic agents, while snf5 displayed resistance. Our experimental results indicate that the SWI/SNF complex plays a critical role in protecting cells from exposure to cytotoxic chemotherapy and other cytotoxic agents. Our findings may prove useful in the development of a strategy aimed at targeting these genes to provide an alternative by hypersensitizing cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Miles D Freeman
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Tryphon Mazu
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Jana S Miles
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Selina Darling-Reed
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| | - Hernan Flores-Rozas
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, USA
| |
Collapse
|
36
|
Epigenetic regulation in neural crest development. Dev Biol 2014; 396:159-68. [PMID: 25446277 DOI: 10.1016/j.ydbio.2014.09.034] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Revised: 09/17/2014] [Accepted: 09/25/2014] [Indexed: 12/22/2022]
Abstract
The neural crest is a migratory and multipotent cell population that plays a crucial role in many aspects of embryonic development. In all vertebrate embryos, these cells emerge from the dorsal neural tube then migrate long distances to different regions of the body, where they contribute to formation of many cell types and structures. These include much of the peripheral nervous system, craniofacial skeleton, smooth muscle, and pigmentation of the skin. The best-studied regulatory events guiding neural crest development are mediated by transcription factors and signaling molecules. In recent years, however, growing evidence supports an important role for epigenetic regulation as an additional mechanism for controlling the timing and level of gene expression at different stages of neural crest development. Here, we summarize the process of neural crest formation, with focus on the role of epigenetic regulation in neural crest specification, migration, and differentiation as well as in neural crest related birth defects and diseases.
Collapse
|
37
|
Malli T, Duba HC, Erdel M, Marschon R, Kranewitter W, Deutschbauer S, Kralik J, Diel E, Güenther B, Mueller D, Webersinke G. Disruption of the ARID1B and ADAMTS6 loci due to a t(5;6)(q12.3;q25.3) in a patient with developmental delay. Am J Med Genet A 2014; 164A:3126-31. [PMID: 25250687 DOI: 10.1002/ajmg.a.36738] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2013] [Accepted: 07/24/2014] [Indexed: 11/09/2022]
Abstract
Here, we report on a male patient with developmental delay, speech impairment, mild dysmorphic features, and borderline intellectual disability, bearing a de novo balanced t(5;6)(q11;q25.3). By combining FISH and long distance inverse PCR, we identified two genes, ADAMTS6 and ARID1B, which were disrupted at the translocation breakpoints. Due to the opposing transcriptional directions of the two genes, no fusion transcripts could be formed. ADAMTS6 on chromosome 5 encodes a zinc metalloprotease. To date, there has been no information about the substrates and the exact role of this enzyme protein. ARID1B on chromosome 6 is involved in chromatin remodeling and transcriptional activation and is known to play a role in neural development. To our knowledge, this is the fourth translocation involving ARID1B reported in association with intellectual disability. ARID1B haploinsufficiency has already been described in patients with intellectual disabilities with or without corpus callosum abnormalities, Coffin-Siris syndrome and autism (OMIM 614562 and OMIM 614556). A review of patients with ARID1B mutations reveals their broad phenotypic variability. The phenotype of the present patient is of the mildest described to date and further underscores this observation. We conclude that the most prominent and consistent clinical findings in patients with ARID1B haploinsufficiency are developmental delay, speech impairment and intellectual disability and propose that patients with unresolved genetic background and these clinical findings should be considered for ARID1B mutation screening.
Collapse
Affiliation(s)
- Theodora Malli
- Laboratory for Molecular Biology and Tumor Cytogenetics, Department of Internal Medicine I, Hospital Barmherzige Schwestern Linz, Upper Austria, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Araújo AC, Marques S, Belo JA. Targeted inactivation of Cerberus like-2 leads to left ventricular cardiac hyperplasia and systolic dysfunction in the mouse. PLoS One 2014; 9:e102716. [PMID: 25033293 PMCID: PMC4102536 DOI: 10.1371/journal.pone.0102716] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/23/2014] [Indexed: 11/29/2022] Open
Abstract
Previous analysis of the Cerberus like 2 knockout (Cerl2−/−) mouse revealed a significant mortality during the first day after birth, mostly due to cardiac defects apparently associated with randomization of the left-right axis. We have however, identified Cerl2-associated cardiac defects, particularly a large increase in the left ventricular myocardial wall in neonates that cannot be explained by laterality abnormalities. Therefore, in order to access the endogenous role of Cerl2 in cardiogenesis, we analyzed the embryonic and neonatal hearts of Cerl2 null mutants that did not display a laterality phenotype. Neonatal mutants obtained from the compound mouse line Cer2−/−::Mlc1v-nLacZ24+, in which the pulmonary ventricle is genetically marked, revealed a massive enlargement of the ventricular myocardium in animals without laterality defects. Echocardiography analysis in Cerl2−/− neonates showed a left ventricular systolic dysfunction that is incompatible with a long lifespan. We uncovered that the increased ventricular muscle observed in Cerl2−/− mice is caused by a high cardiomyocyte mitotic index in the compact myocardium which is mainly associated with increased Ccnd1 expression levels in the left ventricle at embryonic day (E) 13. Interestingly, at this stage we found augmented left ventricular expression of Cerl2 levels when compared with the right ventricle, which may elucidate the regionalized contribution of Cerl2 to the left ventricular muscle formation. Importantly, we observed an increase of phosphorylated Smad2 (pSmad2) levels in embryonic (E13) and neonatal hearts indicating a prolonged TGFβs/Nodal-signaling activation. Concomitantly, we detected an increase of Baf60c levels, but only in Cerl2−/− embryonic hearts. These results indicate that independently of its well-known role in left-right axis establishment Cerl2 plays an important role during heart development in the mouse, mediating Baf60c levels by exerting an important control of the TGFβs/Nodal-signaling pathway.
Collapse
Affiliation(s)
- Ana Carolina Araújo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- PhD Program in Biomedical Sciences, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - Sara Marques
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
| | - José António Belo
- Laboratory of Embryology and Genetic Manipulation, Regenerative Medicine Program, Departamento de Ciências Biomédicas e Medicina, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- IBB - Institute for Biotechnology and Bioengineering, Centro de Biomedicina Molecular e Estrutural, Universidade do Algarve, Campus de Gambelas, Faro, Portugal
- CEDOC – Chronic Diseases Research Center, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
- * E-mail:
| |
Collapse
|
39
|
Kahali B, Yu J, Marquez SB, Thompson KW, Liang SY, Lu L, Reisman D. The silencing of the SWI/SNF subunit and anticancer gene BRM in Rhabdoid tumors. Oncotarget 2014; 5:3316-32. [PMID: 24913006 PMCID: PMC4102812 DOI: 10.18632/oncotarget.1945] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Accepted: 05/03/2014] [Indexed: 02/05/2023] Open
Abstract
Rhabdoid sarcomas are highly malignant tumors that usually occur in young children. A key to the genesis of this tumor is the mutational loss of the BAF47 gene as well as the widespread epigenetic suppression of other key anticancer genes. The BRM gene is one such epigenetically silenced gene in Rhabdoid tumors. This gene codes for an ATPase catalytic subunit that shifts histones and opens the chromatin. We show that BRM is an epigenetically silenced gene in 10/11 Rhabdoid cell lines and in 70% of Rhabdoid tumors. Moreover, BRM can be induced by BAF47 re-expression and by Flavopiridol. By selective shRNAi knockdown of BRM, we show that BRM re-expression is necessary for growth inhibition by BAF47 re-expression or Flavopiridol application. Similar to lung cancer cell lines, we found that HDAC3, HDAC9, MEF2D and GATA3 controlled BRM silencing and that HDAC9 was overexpressed in Rhabdoid cancer cell lines. In primary BRM-deficient Rhabdoid tumors, HDAC9 was also found to be highly overexpressed. Two insertional BRM promoter polymorphisms contribute to BRM silencing, but only the -1321 polymorphism correlated with BRM silencing in Rhabdoid cell lines. To determine how these polymorphisms were tied to BRM silencing, we conducted ChIP assays and found that both HDAC9 and MEF2D bound to the BRM promoter at or near these polymorphic sites. Using BRM promoter swap experiments, we indirectly showed that both HDAC9 and MEF2D bound to these polymorphic sites. Together, these data show that the mechanism of BRM silencing contributes to the pathogenesis of Rhabdoid tumors and appears to be conserved among tumor types.
Collapse
Affiliation(s)
- Bhaskar Kahali
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Jinlong Yu
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Stefanie B. Marquez
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Kenneth. W. Thompson
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Shermi Y. Liang
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| | - Li Lu
- Department of Pathology, University of Florida, Florida, USA
| | - David Reisman
- Division of Hematology/Oncology, Department of Medicine, University of Florida, Florida, USA
| |
Collapse
|
40
|
Prescott TAK, Rigby LP, Veitch NC, Simmonds MSJ. The haploinsufficiency profile of α-hederin suggests a caspofungin-like antifungal mode of action. PHYTOCHEMISTRY 2014; 101:116-120. [PMID: 24569176 DOI: 10.1016/j.phytochem.2014.01.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 06/03/2023]
Abstract
The leaves of common ivy (Hedera helix) contain the cytotoxic saponin α-hederin, which is inhibitory to Candida albicans at low concentrations. To investigate the mode of action of α-hederin, a haploinsufficiency screen was carried out using a library of 1152 Saccharomyces cerevisiae deletion strains. An ethanol ivy extract containing α-hederin was used in the initial screen to reduce the amount of compound required. Strains exhibiting disproportionately low growth were then examined in more detail by comparing growth curves in the presence and absence of α-hederin. This approach identified three hypersensitive strains carrying gene deletions for components of the transcription related proteins SWI/SNF, RNA polymerase II and the RSC complex. Saponin cytotoxicity is often attributed to membrane damage, however α-hederin did not induce hypersensitivity with an aminophospholipid translocase deletion strain that is frequently hypersensitive to membrane damaging agents. The haploinsufficiency profile of α-hederin is most similar to that reported for drugs such as caspofungin that inhibit synthesis of the fungal cell wall. Screening with plant extracts rather than isolated compounds, provides a valuable shortcut in haploinsufficiency screening provided hypersensitive strains are then confirmed as such using purified active principles.
Collapse
Affiliation(s)
| | - Luke P Rigby
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | - Nigel C Veitch
- Royal Botanic Gardens, Kew, Richmond, Surrey TW9 3AB, UK
| | | |
Collapse
|
41
|
Chen S, Ding Y, Zhang Z, Wang H, Liu C. Hyperlipidaemia impairs the circadian clock and physiological homeostasis of vascular smooth muscle cells via the suppression of Smarcd1. J Pathol 2014; 233:159-69. [PMID: 24615205 DOI: 10.1002/path.4338] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 01/25/2014] [Accepted: 02/13/2014] [Indexed: 11/06/2022]
Abstract
Many mammalian physiological processes show diurnal oscillation and are controlled by a circadian clock. Disruption of the circadian clock has been implicated in the pathogenesis of cardiovascular disorders, but the mechanism through which clock and vessel function are integrated is unclear. Here we show that the rhythmicity of key clock genes and Smarcd1, a member of the SWI/SNF chromatin remodelling complex family, is suppressed in the layer of vascular smooth muscle cells (VSMCs) of the thoracic aorta of hyperlipidaemic rats fed a high-fat diet (HFD). Smarcd1 stimulates the transcription of clock genes, notably bmal1, through co-activation of the nuclear orphan receptor RORα in VSMCs. The co-activation of Smarcd1 and RORα is dependent on the mediation of PGC-1α, a transcriptional co-activator. Pathophysiologically, Smarcd1 inhibits VSMC proliferation and migration by blocking cell cycle re-entry and via the activation of kinase signalling pathways. Our results demonstrate that Smarcd1 is a critical node integrating the circadian clock and VSMC physiological homeostasis.
Collapse
Affiliation(s)
- Siyu Chen
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology and College of Life Sciences, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | | | | | | | | |
Collapse
|
42
|
Kuzmanov A, Karina EI, Kirienko NV, Fay DS. The conserved PBAF nucleosome-remodeling complex mediates the response to stress in Caenorhabditis elegans. Mol Cell Biol 2014; 34:1121-35. [PMID: 24421384 PMCID: PMC3958046 DOI: 10.1128/mcb.01502-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/12/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022] Open
Abstract
To adapt to stress, cells must undergo major changes in their gene expression profiles. We have previously described a largely uncharacterized stress response pathway in Caenorhabditis elegans that acts through an evolutionarily conserved motif, termed ESRE, for ethanol and stress response element. We characterize here the requirements for ESRE gene expression and show that the ESRE network is regulated by a conserved SWI/SNF family nucleosome remodeling complex termed PBAF. Depletion of PBAF subunits SWSN-7/BAF200 and PBRM-1/BAF180 results in decreased expression of ESRE genes and increased sensitivity to thermal stress. When overexpressed, SWSN-7/BAF200 and PBRM-1/BAF180 led to increased ESRE transcription, enhanced thermotolerance, and induction of a nuclear ESRE-binding activity. Our data support a model in which PBAF is recruited by an ESRE-binding protein to genomic ESRE sites. We also show that the closely related SWI/SNF complex, BAF, which regulates stress induction through DAF-16/FOXO, does not contribute to ESRE gene expression or bind directly to ESRE sites. To our knowledge, this is the first report demonstrating direct and specific regulation of a stress response network by the PBAF nucleosome-remodeling complex in vivo in metazoa. In addition, we show that PBAF cooperates with the histone demethylase, JMJC-1/NO66, to promote expression of ESRE genes following stress.
Collapse
Affiliation(s)
- Aleksandra Kuzmanov
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming, USA
| | | | | | | |
Collapse
|
43
|
Ohno Y, Saeki K, Yasunaga S, Kurogi T, Suzuki-Takedachi K, Shirai M, Mihara K, Yoshida K, Voncken JW, Ohtsubo M, Takihara Y. Transcription of the Geminin gene is regulated by a negative-feedback loop. Mol Biol Cell 2014; 25:1374-83. [PMID: 24554762 PMCID: PMC3983001 DOI: 10.1091/mbc.e13-09-0534] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Geminin transcription, regulated by E2Fs, is negatively regulated by Geminin through the inhibition of chromatin remodeling. Geminin transcription is thus regulated by a negative-feedback loop through the chromatin configuration. Homeostatically regulated Geminin may help couple regulation of DNA replication and transcription. Geminin performs a central function in regulating cellular proliferation and differentiation in development and also in stem cells. Of interest, down-regulation of Geminin induces gene transcription regulated by E2F, indicating that Geminin is involved in regulation of E2F-mediated transcriptional activity. Because transcription of the Geminin gene is reportedly regulated via an E2F-responsive region (E2F-R) located in the first intron, we first used a reporter vector to examine the effect of Geminin on E2F-mediated transcriptional regulation. We found that Geminin transfection suppressed E2F1- and E2F2-mediated transcriptional activation and also mildly suppressed such activity in synergy with E2F5, 6, and 7, suggesting that Geminin constitutes a negative-feedback loop for the Geminin promoter. Of interest, Geminin also suppressed nuclease accessibility, acetylation of histone H3, and trimethylation of histone H3 at lysine 4, which were induced by E2F1 overexpression, and enhanced trimethylation of histone H3 at lysine 27 and monoubiquitination of histone H2A at lysine 119 in E2F-R. However, Geminin5EQ, which does not interact with Brahma or Brg1, did not suppress accessibility to nuclease digestion or transcription but had an overall dominant-negative effect. These findings suggest that E2F-mediated activation of Geminin transcription is negatively regulated by Geminin through the inhibition of chromatin remodeling.
Collapse
Affiliation(s)
- Yoshinori Ohno
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Hematology and Oncology, Research Institute for Radiation Biology and Medicine, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima 734-8553, Japan Department of Bioscience and Genetics, National Cerebral and Cardiovascular Center Research Institute, Suita 562-0025, Japan Department of Life Sciences, Meiji University School of Agriculture, Kawasaki 214-8571, Japan Department of Molecular Genetics, Maastricht University Medical Centre, 6229ER Maastricht, Netherlands Department of Food and Fermentation Science, Faculty of Food Science and Nutrition, Beppu University, Beppu 874-0915, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Wu CY, Feng X, Wei LN. Coordinated repressive chromatin-remodeling of Oct4 and Nanog genes in RA-induced differentiation of embryonic stem cells involves RIP140. Nucleic Acids Res 2014; 42:4306-17. [PMID: 24489122 PMCID: PMC3985664 DOI: 10.1093/nar/gku092] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Maintaining pluripotency and indefinite self-renewal of embryonic stem cells requires a tight control of the expression of several key stemness factors, particularly Nanog and Oct4 transcription factors. The mammalian SWItch/Sucrose NonFermentable (SWI/SNF) complex contains Brg1 or Brm as its core subunit, along with Brg1-associated factors. Our previous studies have addressed chromatin-remodeling of the Oct4 gene locus in retinoic acid (RA)-treated embryonal carcinoma cell line P19, which involves receptor-interacting protein 140 (RIP140) for heterochromatinization on the proximal promoter region of this gene locus. However, the mechanism of RIP140 action in RA-triggered repressive chromatin-remodeling is unclear. The current study examines RA repression of the Nanog gene and compares the results with RA repression of the Oct4 gene on the chromatin level. The results show a loose nucleosome array on the Nanog gene promoter in undifferentiated embryonic stem cells. On RA treatment, the Nanog gene locus remodels specifically in the CR1 region of its proximal promoter, with the insertion of a nucleosome and compaction of this region. Further, RA induces coordinated chromatin-remodeling of both Nanog and Oct4 gene loci, which requires RA receptor-α, RIP140 and Brm. Finally, in these RA-triggered repressive chromatin-remodeling processes, lysine acetylation of RIP140 is critical for its recruiting Brm.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
45
|
Selective Inhibition of Acetyl-Lysine Effector Domains of the Bromodomain Family in Oncology. NUCLEAR SIGNALING PATHWAYS AND TARGETING TRANSCRIPTION IN CANCER 2014. [DOI: 10.1007/978-1-4614-8039-6_11] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
46
|
Li L, Liu D, Bu D, Chen S, Wu J, Tang C, Du J, Jin H. Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1347-55. [DOI: 10.1016/j.bbamcr.2013.03.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 03/02/2013] [Accepted: 03/03/2013] [Indexed: 12/19/2022]
|
47
|
Identifying targets for the restoration and reactivation of BRM. Oncogene 2013; 33:653-64. [PMID: 23524580 DOI: 10.1038/onc.2012.613] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 11/12/2012] [Accepted: 11/14/2012] [Indexed: 12/15/2022]
Abstract
Brahma (BRM) is a novel anticancer gene, which is frequently inactivated in a variety of tumor types. Unlike many anticancer genes, BRM is not mutated, but rather epigenetically silenced. In addition, histone deacetylase complex (HDAC) inhibitors are known to reverse BRM silencing, but they also inactivate it via acetylation of its C-terminus. High-throughput screening has uncovered many compounds that are effective at pharmacologically restoring BRM and thereby inhibit cancer cell growth. As we do not know which specific proteins, if any, regulate BRM, we sought to identify the proteins, which underlie the epigenetic suppression of BRM. By selectively knocking down each HDAC, we found that HDAC3 and HDAC9 regulate BRM expression, whereas HDAC2 controls its acetylation. Similarly, we ectopically overexpressed 21 different histone acetyltransferases and found that KAT6A, KAT6B and KAT7 induce BRM expression, whereas KAT2B and KAT8 induce its acetylation. We also investigated the role of two transcription factors (TFs) linked to either BRM (GATA3) or HDAC9 (MEF2D) expression. Knockdown of either GATA3 and/or MEF2D downregulated HDAC9 and induced BRM. As targets for molecular biotherapy are typically uniquely, or simply differentially expressed in cancer cells, we also determined if any of these proteins are dysregulated. However, by sequencing, no mutations were found in any of these BRM-regulating HDACs, HATs or TFs. We selectively knocked down GATA3, MEF2D, HDAC3 and HDAC9, and found that each gene-specific knockdown induced growth inhibition. We observed that both GATA3 and HDAC9 were greatly overexpressed only in BRM-negative cell lines indicating that HDAC9 may be a good target for therapy. We also found that the mitogen-activated protein (MAP) kinase pathway regulates both BRM acetylation and BRM silencing as MAP kinase pathway inhibitors both induced BRM as well as caused BRM deacetylation. Together, these data identify a cadre of key proteins, which underlie the epigenetic regulation of BRM.
Collapse
|
48
|
BRG1 is a prognostic marker and potential therapeutic target in human breast cancer. PLoS One 2013; 8:e59772. [PMID: 23533649 PMCID: PMC3606107 DOI: 10.1371/journal.pone.0059772] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/18/2013] [Indexed: 02/06/2023] Open
Abstract
BRG1, a core component of the SWI/SNF chromatin-remodeling complex, has been implicated in cancer development; however, the biological significance of BRG1 in breast cancer remains unknown. We explored the role of BRG1 in human breast cancer pathogenesis. Using tissue microarray and immunohistochemistry, we evaluated BRG1 staining in 437 breast cancer specimens and investigated its role in breast cancer cell proliferation, migration and invasion. Our Kaplan-Meier survival curves showed that high BRG1 expression is inversely correlated with both overall (P = 0.000) and disease-specific (P = 0.000) 5-year patient survival. Furthermore, we found that knockdown of BRG1 by RNA interference markedly inhibits cell proliferation and causes cessation of cell cycle. This reduced cell proliferation is due to G1 phase arrest as cyclin D1 and cyclin E are diminished whereas p27 is upregulated. Moreover, BRG1 depletion induces the expression of TIMP-2 but reduces MMP-2, thereby inhibiting the ability of cells to migrate and to invade. These results highlight the importance of BRG1 in breast cancer pathogenesis and BRG1 may serve as a prognostic marker as well as a potentially selective therapeutic target.
Collapse
|
49
|
Transcription Factors and Gene Expression. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Sohni A, Mulas F, Ferrazzi F, Luttun A, Bellazzi R, Huylebroeck D, Ekker SC, Verfaillie CM. TGFβ1-induced Baf60c regulates both smooth muscle cell commitment and quiescence. PLoS One 2012; 7:e47629. [PMID: 23110084 PMCID: PMC3482188 DOI: 10.1371/journal.pone.0047629] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 09/13/2012] [Indexed: 02/02/2023] Open
Abstract
Smooth muscle cells (SMCs) play critical roles in a number of diseases; however, the molecular mechanism underlying their development is unclear. Although the role of TGFβ1 signaling in SMC development is well established, the downstream molecular signals are not fully understood. We used several rat multipotent adult progenitor cell ((r)MAPC) lines that express levels of Oct4 mRNA similar to hypoblast stem cells (HypoSC), and can differentiate robustly to mesodermal and endodermal cell types. TGFβ1 alone, or with PDGF-BB, induces differentiation of rMAPCs to SMCs, which expressed structural SMC proteins, including α-smooth muscle actin (αSMA), and contribute to the SMC coat of blood vessels in vivo. A genome-wide time-course transcriptome analysis revealed that transcripts of Baf60c, part of the SWI/SNF actin binding chromatin remodeling complex D-3 (SMARCD3/BAF60c), were significantly induced during MAPC-SMC differentiation. We demonstrated that BAF60c is a necessary co-regulator of TGFβ1 mediated induction of SMC genes. Knock-down of Baf60c decreased SMC gene expression in rMAPCs whereas ectopic expression of Baf60c was sufficient to commit rMAPCs to SMCs in the absence of exogenous cytokines. TGFβ1 activates Baf60c via the direct binding of SMAD2/3 complexes to the Baf60c promoter region. Chromatin- and co-immunoprecipitation studies demonstrated that regulation of SMC genes by BAF60c is mediated via interaction with SRF binding CArG box-containing promoter elements in SMC genes. We noted that compared with TGFβ1, Baf60c overexpression in rMAPC yielded SMC with a more immature phenotype. Similarly, Baf60c induced an immature phenotype in rat aortic SMCs marked by increased cell proliferation and decreased contractile marker expression. Thus, Baf60c is important for TGFβ-mediated commitment of primitive stem cells (rMAPCs) to SMCs and is associated with induction of a proliferative state of quiescent SMCs. The MAPC-SMC differentiation system may be useful for identification of additional critical (co-)regulators of SMC development.
Collapse
Affiliation(s)
- Abhishek Sohni
- Stem Cell Institute, Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Francesca Mulas
- Center for Tissue Engineering, University of Pavia, Pavia, Italy
| | - Fulvia Ferrazzi
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
| | - Aernout Luttun
- Center for Molecular and Vascular Biology, K.U.Leuven, Leuven, Belgium
| | - Riccardo Bellazzi
- Center for Tissue Engineering, University of Pavia, Pavia, Italy
- Dipartimento di Informatica e Sistemistica, University of Pavia, Pavia, Italy
| | - Danny Huylebroeck
- Laboratory of Molecular Biology (Celgen), Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
| | - Stephen C. Ekker
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Catherine M. Verfaillie
- Stem Cell Institute, Department of Development and Regeneration, K.U.Leuven, Leuven, Belgium
- Genetics Cell and Developmental Biology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|