1
|
Zhou Y, Tang Y, Huang F, Wang Z, Wen Z, Fang Q, Wang C. The miR-1305/KLF5 negative regulatory loop affects pancreatic cancer cell proliferation and apoptosis. Hum Cell 2025; 38:51. [PMID: 39921786 DOI: 10.1007/s13577-025-01173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/05/2025] [Indexed: 02/10/2025]
Abstract
Pancreatic cancer (PC) is characterized by a high relapse rate and unfavorable prognosis. Currently, the optimal treatment for PC is complete resection followed by adjuvant systemic chemotherapy. Nevertheless, tumor cell repopulation and subsequent tumor relapse and metastasis after chemotherapy result in a poor prognosis. Therefore, it is of great value to explore the potential molecular mechanisms underlying PC for developing novel treatment strategies. Herein, we aimed to investigate the potential regulatory mechanism of miR-1305 upon aerobic proliferation, metastasis, and apoptosis in PC. miR-1305 was downregulated in PC tissues and cell lines. miR-1305 overexpression prominently inhibited PC cell proliferation and metastasis promoted cell apoptosis in vitro, and alleviated PC formation in vivo. As predicted, KLF5 could directly bind to miR-1305. Silencing of KLF5 or KLF5 inhibitor (ML264) suppressed PC cell viability and cell invasion, and enhanced cell apoptosis. KLF5 restrained miR-1305 transcription and expression by binding to its promoter region. miR-1305 exerted a suppressive effect on PC cell proliferation and apoptosis via regulation of the KLF5-ERBB2 axis; KLF5 gene is a transcriptional regulator of miR-1305, promising to be a new target for the diagnosis and treatment of PC.
Collapse
Affiliation(s)
- Yufu Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Yulin Tang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Feizhou Huang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Zhichao Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Zhengbin Wen
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Qi Fang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China
| | - Changfa Wang
- Department of Hepatobiliary and Pancreatic Surgery, The Third Xiangya Hospital, Central South University, 138 Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, China.
| |
Collapse
|
2
|
Resistance to Trastuzumab. Cancers (Basel) 2022; 14:cancers14205115. [PMID: 36291900 PMCID: PMC9600208 DOI: 10.3390/cancers14205115] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Trastuzumab is a humanized antibody that has significantly improved the management and treatment outcomes of patients with cancers that overexpress HER2. Many research groups, both in academia and industry, have contributed towards understanding the various mechanisms engaged by trastuzumab to mediate its anti-tumor effects. Nevertheless, data from several clinical studies have indicated that a significant proportion of patients exhibit primary or acquired resistance to trastuzumab therapy. In this article, we discuss underlying mechanisms that contribute towards to resistance. Furthermore, we discuss the potential strategies to overcome some of the mechanisms of resistance to enhance the therapeutic efficacy of trastuzumab and other therapies based on it. Abstract One of the most impactful biologics for the treatment of breast cancer is the humanized monoclonal antibody, trastuzumab, which specifically recognizes the HER2/neu (HER2) protein encoded by the ERBB2 gene. Useful for both advanced and early breast cancers, trastuzumab has multiple mechanisms of action. Classical mechanisms attributed to trastuzumab action include cell cycle arrest, induction of apoptosis, and antibody-dependent cell-mediated cytotoxicity (ADCC). Recent studies have identified the role of the adaptive immune system in the clinical actions of trastuzumab. Despite the multiple mechanisms of action, many patients demonstrate resistance, primary or adaptive. Newly identified molecular and cellular mechanisms of trastuzumab resistance include induction of immune suppression, vascular mimicry, generation of breast cancer stem cells, deregulation of long non-coding RNAs, and metabolic escape. These newly identified mechanisms of resistance are discussed in detail in this review, particularly considering how they may lead to the development of well-rationalized, patient-tailored combinations that improve patient survival.
Collapse
|
3
|
Hassan G, Seno M. ERBB Signaling Pathway in Cancer Stem Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1393:65-81. [PMID: 36587302 DOI: 10.1007/978-3-031-12974-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The epidermal growth factor receptor (EGFR) was first tyrosine kinase receptor linked to human cancers. EGFR or ERBB1 is a member of ERBB subfamily, which consists of four type I transmembrane receptor tyrosine kinases, ERBB1, 2, 3 and 4. ERBBs form homo/heterodimers after ligand binding except ERBB2 and consequently becomes activated. Different signal pathways, such as phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT), RAS/RAF/MEK/ERK, phospholipase Cγ and JAK-STAT, are triggered by ERBB activation. Since ERBBs, through these pathways, regulate stemness and differentiation of cancer stem cells (CSCs), their roles in CSC tumorigenicity have extensively been investigated. The hyperactivation of ERBBs and its downstream pathways stimulated by either genetic and/or epigenetic factors are frequently described in many types of human cancers. Their dysregulations make cells acquiring CSC characters such as survival, tumorigenicity and stemness. Because of the roles in tumor growth and progress, ERBBs are considered to be one of the drug targets as cancer treatment strategy. In this chapter, we will summarize the structure, function and roles of ERBB subfamily along with their relative pathways regulating the stemness and tumorigenicity of CSCs. Finally, we will discuss the targeting therapy strategies of cancer along with ERBBs in addition to some challenges and future perspectives.
Collapse
Affiliation(s)
- Ghmkin Hassan
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan
- Department of Microbiology and Biochemistry, Faculty of Pharmacy, Damascus University, Damascus, 10769, Syria
| | - Masaharu Seno
- Laboratory of Nano-Biotechnology, Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Department of Cancer Stem Cell Engineering, Faculty of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama, 700-8530, Japan.
- Laboratory of Natural Food and Medicine, Co., Ltd, Okayama University Incubator, Okayama, 700-8530, Japan.
| |
Collapse
|
4
|
Moser B, Edtmayer S, Witalisz-Siepracka A, Stoiber D. The Ups and Downs of STAT Inhibition in Acute Myeloid Leukemia. Biomedicines 2021; 9:1051. [PMID: 34440253 PMCID: PMC8392322 DOI: 10.3390/biomedicines9081051] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 01/03/2023] Open
Abstract
Aberrant Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling is implicated in the pathogenesis of acute myeloid leukemia (AML), a highly heterogeneous hematopoietic malignancy. The management of AML is complex and despite impressive efforts into better understanding its underlying molecular mechanisms, survival rates in the elderly have not shown a substantial improvement over the past decades. This is particularly due to the heterogeneity of AML and the need for personalized approaches. Due to the crucial role of the deregulated JAK-STAT signaling in AML, selective targeting of the JAK-STAT pathway, particularly constitutively activated STAT3 and STAT5 and their associated upstream JAKs, is of great interest. This strategy has shown promising results in vitro and in vivo with several compounds having reached clinical trials. Here, we summarize recent FDA approvals and current potential clinically relevant inhibitors for AML patients targeting JAK and STAT proteins. This review underlines the need for detailed cytogenetic analysis and additional assessment of JAK-STAT pathway activation. It highlights the ongoing development of new JAK-STAT inhibitors with better disease specificity, which opens up new avenues for improved disease management.
Collapse
Affiliation(s)
| | | | | | - Dagmar Stoiber
- Department of Pharmacology, Physiology and Microbiology, Division Pharmacology, Karl Landsteiner University of Health Sciences, 3500 Krems, Austria; (B.M.); (S.E.); (A.W.-S.)
| |
Collapse
|
5
|
Matsuzawa F, Kamachi H, Mizukami T, Einama T, Kawamata F, Fujii Y, Fukai M, Kobayashi N, Hatanaka Y, Taketomi A. Mesothelin blockage by Amatuximab suppresses cell invasiveness, enhances gemcitabine sensitivity and regulates cancer cell stemness in mesothelin-positive pancreatic cancer cells. BMC Cancer 2021; 21:200. [PMID: 33637083 PMCID: PMC7912898 DOI: 10.1186/s12885-020-07722-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 12/09/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Mesothelin is a 40-kDa glycoprotein that is highly overexpressed in various types of cancers, however molecular mechanism of mesothelin has not been well-known. Amatuximab is a chimeric monoclonal IgG1/k antibody targeting mesothelin. We recently demonstrated that the combine therapy of Amatuximab and gemcitabine was effective for peritonitis of pancreatic cancer in mouse model. METHODS We discover the role and potential mechanism of mesothelin blockage by Amatuximab in human pancreatic cells both expressing high or low level of mesothelin in vitro experiment and peritonitis mouse model of pancreatic cancer. RESULTS Mesothelin blockage by Amatuximab lead to suppression of invasiveness and migration capacity in AsPC-1 and Capan-2 (high mesothelin expression) and reduce levels of pMET expression. The combination of Amatuximab and gemcitabine suppressed proliferation of AsPC-1 and Capan-2 more strongly than gemcitabine alone. These phenomena were not observed in Panc-1 and MIA Paca-2 (Mesothelin low expression). We previously demonstrated that Amatuximab reduced the peritoneal mass in mouse AsPC-1 peritonitis model and induced sherbet-like cancer cell aggregates, which were vanished by gemcitabine. In this study, we showed that the cancer stem cell related molecule such as ALDH1, CD44, c-MET, as well as proliferation related molecules, were suppressed in sherbet-like aggregates, but once sherbet-like aggregates attached to peritoneum, they expressed these molecules strongly without the morphological changes. CONCLUSIONS Our work suggested that Amatuximab inhibits the adhesion of cancer cells to peritoneum and suppresses the stemness and viability of those, that lead to enhance the sensitivity for gemcitabine.
Collapse
Affiliation(s)
- Fumihiko Matsuzawa
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Hirofumi Kamachi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan.
| | - Tatsuzo Mizukami
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Takahiro Einama
- Department of Surgery, National Defense Medical College, Namiki 3-2, Tokorozawa, Saitama, 359-8513, Japan
| | - Futoshi Kawamata
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yuki Fujii
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Moto Fukai
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Nozomi Kobayashi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Yutaka Hatanaka
- Research Division of Companion Diagnostics, Hokkaido University Hospital, Kita 14, Nishi 5, Kita-ku, Sapporo, Hokkaido, 060-8638, Japan
| | - Akinobu Taketomi
- Department of Gastroenterological Surgery I, Hokkaido University Graduate School of Medicine, North 15, West 7, Kita-Ku, Sapporo, Hokkaido, 060-8638, Japan
| |
Collapse
|
6
|
Doxorubicin and Varlitinib Delivery by Functionalized Gold Nanoparticles Against Human Pancreatic Adenocarcinoma. Pharmaceutics 2019; 11:pharmaceutics11110551. [PMID: 31652942 PMCID: PMC6920992 DOI: 10.3390/pharmaceutics11110551] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 10/20/2019] [Accepted: 10/21/2019] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to develop drug delivery nanosystems based on pegylated gold nanoparticles (PEGAuNPs) for a combination against pancreatic cancer cells. Doxorubicin and varlitinib, an anthracycline and a tyrosine kinase inhibitor respectively, were conjugated with gold nanoparticles. The systems were characterized, after synthesis, regarding their size, stability and morphology. An efficient conjugation of doxorubicin and varlitinib with PEGAuNPs was revealed. The cytotoxicity effect induced by the combination of the nanoconjugates was investigated in pancreatic cancer cell lines. Doxorubicin and varlitinib conjugated with PEGAuNPs revealed a combined effect to decrease the cell survival of the cancer line S2-013s, while reducing the drugs' toxicity for the healthy pancreatic cells hTERT-HPNE. This study highlights the promising potential of PEGAuNPs for targeted delivery of therapeutic drugs into human cells, enhancing the antitumor growth-inhibition effect on cancer cells, and decreasing the toxicity against normal cells. In cancer therapy, the present approach based on PEGAuNP functionalization can be further explored to increase drug targeting efficiency and to reduce side effects.
Collapse
|
7
|
HER2 in Breast Cancer Stemness: A Negative Feedback Loop towards Trastuzumab Resistance. Cancers (Basel) 2017; 9:cancers9050040. [PMID: 28445439 PMCID: PMC5447950 DOI: 10.3390/cancers9050040] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/10/2017] [Accepted: 04/21/2017] [Indexed: 12/19/2022] Open
Abstract
HER2 receptor tyrosine kinase that is overexpressed in approximately 20% of all breast cancers (BCs) is a poor prognosis factor and a precious target for BC therapy. Trastuzumab is approved by FDA to specifically target HER2 for treating HER2+ BC. However, about 60% of patients with HER2+ breast tumor develop de novo resistance to trastuzumab, partially due to the loss of expression of HER2 extracellular domain on their tumor cells. This is due to shedding/cleavage of HER2 by metalloproteinases (ADAMs and MMPs). HER2 shedding results in the accumulation of intracellular carboxyl-terminal HER2 (p95HER2), which is a common phenomenon in trastuzumab-resistant tumors and is suggested as a predictive marker for trastuzumab resistance. Up-regulation of the metalloproteinases is a poor prognosis factor and is commonly seen in mesenchymal-like cancer stem cells that are risen during epithelial to mesenchymal transition (EMT) of tumor cells. HER2 cleavage during EMT can explain why secondary metastatic tumors with high percentage of mesenchymal-like cancer stem cells are mostly resistant to trastuzumab but still sensitive to lapatinib. Importantly, many studies report HER2 interaction with oncogenic/stemness signaling pathways including TGF-β/Smad, Wnt/β-catenin, Notch, JAK/STAT and Hedgehog. HER2 overexpression promotes EMT and the emergence of cancer stem cell properties in BC. Increased expression and activation of metalloproteinases during EMT leads to proteolytic cleavage and shedding of HER2 receptor, which downregulates HER2 extracellular domain and eventually increases trastuzumab resistance. Here, we review the hypothesis that a negative feedback loop between HER2 and stemness signaling drives resistance of BC to trastuzumab.
Collapse
|
8
|
Feng CM, Gao YL, Liu JX, Zheng CH, Yu J. PCA Based on Graph Laplacian Regularization and P-Norm for Gene Selection and Clustering. IEEE Trans Nanobioscience 2017; 16:257-265. [PMID: 28371780 DOI: 10.1109/tnb.2017.2690365] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In modern molecular biology, the hotspots and difficulties of this field are identifying characteristic genes from gene expression data. Traditional reconstruction-error-minimization model principal component analysis (PCA) as a matrix decomposition method uses quadratic error function, which is known sensitive to outliers and noise. Hence, it is necessary to learn a good PCA method when outliers and noise exist. In this paper, we develop a novel PCA method enforcing P-norm on error function and graph-Laplacian regularization term for matrix decomposition problem, which is called as PgLPCA. The heart of the method designing for reducing outliers and noise is a new error function based on non-convex proximal P-norm. Besides, Laplacian regularization term is used to find the internal geometric structure in the data representation. To solve the minimization problem, we develop an efficient optimization algorithm based on the augmented Lagrange multiplier method. This method is used to select characteristic genes and cluster the samples from explosive biological data, which has higher accuracy than compared methods.
Collapse
|
9
|
Pan LL, Wang XL, Luo XL, Liu SY, Xu P, Hu JF, Liu XH. Boehmenan, a Lignan From the Chinese Medicinal Plant Clematis armandii, Inhibits A431 Cell Growth via Blocking p70S6/S6 Kinase Pathway. Integr Cancer Ther 2016; 16:351-359. [PMID: 27698262 PMCID: PMC5759931 DOI: 10.1177/1534735416669803] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Previously, we have shown that boehmenan, a natural product isolated from the dried stem of Caulis clematidis armandii, exhibits various biological activities. The current study investigated the effects of boehmenan on the growth of human epidermoid carcinoma A431 cells. Cell viability and 50% inhibiting concentration (IC50) were assessed by CellTiter-Glo luminescent cell viability assay. Cell cycle arrest was measured by flow cytometry. Intracellular reactive oxygen species production and mitochondrial membrane potential (ΔΨm) collapse were analyzed by a fluorescence spectrophotometer. The activation of epidermal growth factor receptor signaling pathway was evaluated by Western blot. The results showed that boehmenan significantly inhibited the growth of A431 cells (IC50 = 1.6 µM) in a concentration- and time-dependent manner. This compound also blocked cell cycle progression at G2/M phase and modulated mitochondrial apoptosis-related proteins, as evidenced by upregulating p21, cleaved caspase-3, and cleaved poly (ADP-ribose) polymerase protein levels and by downregulating Bcl-2, pro-caspase-9 levels. In addition, boehmenan also markedly induced intracellular reactive oxygen species production and ΔΨm depolarization in a concentration-dependent manner. Furthermore, boehmenan-attenuated epidermal growth factor mediated the phosphorylation of signal transducer and activator of transcription 3 (STAT3), p70 ribosomal protein S6 kinase (p70S6)/S6 in a concentration-dependent manner. Taken together, our results suggest that boehmenan-mediated antiproliferative property in A431 cells was mediated partially by modulation of mitochondrial function and inhibition of STAT3 and p70S6 signal pathways.
Collapse
Affiliation(s)
| | | | | | | | - Peng Xu
- 1 Fudan University, Shanghai, China
| | | | | |
Collapse
|
10
|
Hong D, Kurzrock R, Kim Y, Woessner R, Younes A, Nemunaitis J, Fowler N, Zhou T, Schmidt J, Jo M, Lee SJ, Yamashita M, Hughes SG, Fayad L, Piha-Paul S, Nadella MVP, Mohseni M, Lawson D, Reimer C, Blakey DC, Xiao X, Hsu J, Revenko A, Monia BP, MacLeod AR. AZD9150, a next-generation antisense oligonucleotide inhibitor of STAT3 with early evidence of clinical activity in lymphoma and lung cancer. Sci Transl Med 2016; 7:314ra185. [PMID: 26582900 DOI: 10.1126/scitranslmed.aac5272] [Citation(s) in RCA: 356] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Next-generation sequencing technologies have greatly expanded our understanding of cancer genetics. Antisense technology is an attractive platform with the potential to translate these advances into improved cancer therapeutics, because antisense oligonucleotide (ASO) inhibitors can be designed on the basis of gene sequence information alone. Recent human clinical data have demonstrated the potent activity of systemically administered ASOs targeted to genes expressed in the liver. We describe the preclinical activity and initial clinical evaluation of a class of ASOs containing constrained ethyl modifications for targeting the gene encoding the transcription factor STAT3, a notoriously difficult protein to inhibit therapeutically. Systemic delivery of the unformulated ASO, AZD9150, decreased STAT3 expression in a broad range of preclinical cancer models and showed antitumor activity in lymphoma and lung cancer models. AZD9150 preclinical activity translated into single-agent antitumor activity in patients with highly treatment-refractory lymphoma and non-small cell lung cancer in a phase 1 dose-escalation study.
Collapse
Affiliation(s)
- David Hong
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Razelle Kurzrock
- UC San Diego Moores Cancer Center, 3855 Health Sciences Drive, La Jolla, CA 92093, USA.
| | - Youngsoo Kim
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Richard Woessner
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Anas Younes
- Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - John Nemunaitis
- Mary Crowley Cancer Research Center, 7777 Forest Lane, Dallas, TX 75230, USA
| | - Nathan Fowler
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Tianyuan Zhou
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Joanna Schmidt
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Minji Jo
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Samantha J Lee
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Mason Yamashita
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Steven G Hughes
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Luis Fayad
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Sarina Piha-Paul
- The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Murali V P Nadella
- Drug Safety and Metabolism, AstraZeneca Pharmaceuticals, Waltham, MA 02451, USA
| | - Morvarid Mohseni
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Deborah Lawson
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - Corinne Reimer
- Cancer Bioscience Drug Discovery, AstraZeneca Pharmaceuticals, 35 Gatehouse Drive, Waltham, MA 02451, USA
| | - David C Blakey
- Oncology iMED, AstraZeneca Pharmaceuticals, Alderley Park, Macclesfield SK10 4TF, UK
| | - Xiaokun Xiao
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Jeff Hsu
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Alexey Revenko
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - Brett P Monia
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA
| | - A Robert MacLeod
- Department of Antisense Drug Discovery, Isis Pharmaceuticals Inc., 2855 Gazelle Court, Carlsbad, CA 92008, USA.
| |
Collapse
|
11
|
Liu M, Zhu K, Qian X, Li W. Identification of miRNA/mRNA-Negative Regulation Pairs in Nasopharyngeal Carcinoma. Med Sci Monit 2016; 22:2215-34. [PMID: 27350400 PMCID: PMC4928598 DOI: 10.12659/msm.896047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Nasopharyngeal carcinoma (NPC) is a common malignancy in South-East Asia. NPC is characterized by distant metastasis and poor prognosis. The pathophysiological mechanism of nasopharyngeal carcinoma is unknown. This study aimed to identify the crucial miRNAs in nasopharyngeal carcinoma and their target genes, and to discover the potential mechanism of nasopharyngeal carcinoma development. Material/Methods Microarray expression profiling of miRNA and mRNA from the Gene Expression Omnibus database was downloaded, and we performed a significance analysis of differential expression. An interaction network of miRNAs and target genes was constructed. The underlying function of differentially expressed genes was predicted through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. To validate the microarray analysis data, significantly different expression levels of miRNAs and target genes were validated by quantitative real-time polymerase chain reaction. Results We identified 27 differentially expressed miRNAs and 982 differentially expressed mRNAs between NPC and normal control tissues. 12 miRNAs and 547 mRNAs were up-regulated and 15 miRNAs and 435 mRNAs were down-regulated in NPC samples. We found a total of 1185 negative correlation pairs between miRNA and mRNA. Differentially expressed target genes were significantly enriched in pathways in cancer, cell cycle, and cytokine-cytokine receptor interaction signaling pathways. Significantly differentially expressed miRNAs and genes, such as hsa-miR-205, hsa-miR-18b, hsa-miR-632, hsa-miR-130a, hsa-miR-34b, PIGR, SMPD3, CD22, DTX4, and CDC6, may play essential roles in the development of nasopharyngeal carcinoma. Conclusions hsa-miR-205, hsa-miR-18b, hsa-miR-632, hsa-miR-130a, and hsa-miR-34b may be related to the development of nasopharyngeal carcinoma by regulating the genes involved in pathways in cancer and cell cycle signaling pathways.
Collapse
Affiliation(s)
- Minglei Liu
- Department of Otolaryngology, Head and Neck Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Kangru Zhu
- Department of Pediatrics, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Xinmei Qian
- Department of Otolaryngology, Head and Neck Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| | - Wei Li
- Department of Otolaryngology, Head and Neck Surgery, Jining No. 1 People's Hospital, Jining, Shandong, China (mainland)
| |
Collapse
|
12
|
Jiang W, Zhao S, Xu L, Lu Y, Lu Z, Chen C, Ni J, Wan R, Yang L. The inhibitory effects of xanthohumol, a prenylated chalcone derived from hops, on cell growth and tumorigenesis in human pancreatic cancer. Biomed Pharmacother 2015. [PMID: 26211581 DOI: 10.1016/j.biopha.2015.05.020] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Pancreatic cancer (PC) is one of the most lethal human malignancies worldwide. Here, we demonstrated that xanthohumol (XN), the most abundant prenylated chalcone isolated from hops, inhibited the growth of cultured PC cells and their subcutaneous xenograft tumors. XN treatment was found to induce cell cycle arrest and apoptosis of PC cells (PANC-1, BxPC-3) by inhibiting phosphorylation of signal transducer and activator of transcription 3 (STAT3) and expression of its downstream targeted genes cyclinD1, survivin, and Bcl-xL at the messenger RNA level, which involved in regulation of apoptosis and the cell cycle. Overall, our results suggested that XN presents a promising candidate therapeutic agent against human PC and the STAT3 signaling pathway is its key molecular target.
Collapse
Affiliation(s)
- Weiliang Jiang
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Senlin Zhao
- Department of General Surgery, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Ling Xu
- Department of Gastroenterology, Shanghai Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yingying Lu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Zhanjun Lu
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Congying Chen
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Jianbo Ni
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Rong Wan
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| | - Lijuan Yang
- Department of Gastroenterology, Shanghai First People's Hospital, School of Medicine, Shanghai Jiao Tong University, No. 100, Hai Ning Road, Shanghai 200080, China.
| |
Collapse
|
13
|
Venkatasubbarao K, Peterson L, Zhao S, Hill P, Cao L, Zhou Q, Nawrocki ST, Freeman JW. Inhibiting signal transducer and activator of transcription-3 increases response to gemcitabine and delays progression of pancreatic cancer. Mol Cancer 2013; 12:104. [PMID: 24025152 PMCID: PMC3847497 DOI: 10.1186/1476-4598-12-104] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 09/05/2013] [Indexed: 12/27/2022] Open
Abstract
Background Among the solid tumors, human pancreatic ductal adenocarcinoma (PDAC) has the worst prognosis. Gemcitabine is the standard first line of therapy for pancreatic cancer but has limited efficacy due to inherent or rapid development of resistance and combining EGFR inhibitors with this regimen results in only a modest clinical benefit. The goal of this study was to identify molecular targets that are activated during gemcitabine therapy alone or in combination with an EGFR inhibitor. Methods PDAC cell lines were used to determine molecular changes and rates of growth after treatment with gemcitabine or an EGFR inhibitor, AG1478, by Western blot analysis and MTT assays respectively. Flow cytometric analysis was performed to study the cell cycle progression and rate of apoptosis after gemcitabine treatment. ShRNA was used to knockdown STAT3. An in vivo orthotopic animal model was used to evaluate STAT3 as a target. Immunohistochemical analysis was performed to analyze Ki67 and STAT3 expression in tumors. Results Treatment with gemcitabine increased the levels of EGFRTyr1068 and ERK phosphorylation in the PDAC cell lines tested. The constitutive STAT3Tyr705 phosphorylation observed in PDAC cell lines was not altered by treatment with gemcitabine. Treatment of cells with gemcitabine or AG1478 resulted in differential rate of growth inhibition. AG1478 efficiently blocked the phosphorylation of EGFRTyr1068 and inhibited the phosphorylation of down-stream effectors AKT and ERKs, while STAT3Tyr705 phosphorylation remained unchanged. Combining these two agents neither induced synergistic growth suppression nor inhibited STAT3Tyr705 phosphorylation, thus prompting further studies to assess whether targeting STAT3 improves the response to gemcitabine or AG1478. Indeed, knockdown of STAT3 increased sensitivity to gemcitabine by inducing pro-apoptotic signals and by increasing G1 cell cycle arrest. However, knockdown of STAT3 did not enhance the growth inhibitory potential of AG1478. In vivo orthotopic animal model results show that knockdown of STAT3 caused a significant reduction in tumor burden and delayed tumor progression with increased response to gemcitabine associated with a decrease in the Ki-67 positive cells. Conclusions This study suggests that STAT3 should be considered an important molecular target for therapy of PDAC for enhancing the response to gemcitabine.
Collapse
Affiliation(s)
- Kolaparthi Venkatasubbarao
- Department of Medicine, Division of Hematology and Oncology, University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Protein kinase C zeta regulates human pancreatic cancer cell transformed growth and invasion through a STAT3-dependent mechanism. PLoS One 2013; 8:e72061. [PMID: 24015205 PMCID: PMC3756013 DOI: 10.1371/journal.pone.0072061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/05/2013] [Indexed: 12/25/2022] Open
Abstract
Pancreatic cancer is a very aggressive disease with few therapeutic options. In this study, we investigate the role of protein kinase C zeta (PKCζ) in pancreatic cancer cells. PKCζ has been shown to act as either a tumor suppressor or tumor promoter depending upon the cellular context. We find that PKCζ expression is either maintained or elevated in primary human pancreatic tumors, but is never lost, consistent with PKCζ playing a promotive role in the pancreatic cancer phenotype. Genetic inhibition of PKCζ reduced adherent growth, cell survival and anchorage-independent growth of human pancreatic cancer cells in vitro. Furthermore, PKCζ inhibition reduced orthotopic tumor size in vivo by inhibiting tumor cell proliferation and increasing tumor necrosis. In addition, PKCζ inhibition reduced tumor metastases in vivo, and caused a corresponding reduction in pancreatic cancer cell invasion in vitro. Signal transducer and activator of transcription 3 (STAT3) is often constitutively active in pancreatic cancer, and plays an important role in pancreatic cancer cell survival and metastasis. Interestingly, inhibition of PKCζ significantly reduced constitutive STAT3 activation in pancreatic cancer cells in vitro and in vivo. Pharmacologic inhibition of STAT3 mimicked the phenotype of PKCζ inhibition, and expression of a constitutively active STAT3 construct rescued the transformed phenotype in PKCζ-deficient cells. We conclude that PKCζ is required for pancreatic cancer cell transformed growth and invasion in vitro and tumorigenesis in vivo, and that STAT3 is an important downstream mediator of the pro-carcinogenic effects of PKCζ in pancreatic cancer cells.
Collapse
|
15
|
Liu Y, Wang L, Wu Y, Lv C, Li X, Cao X, Yang M, Feng D, Luo Z. Pterostilbene exerts antitumor activity against human osteosarcoma cells by inhibiting the JAK2/STAT3 signaling pathway. Toxicology 2013; 304:120-31. [DOI: 10.1016/j.tox.2012.12.018] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Revised: 12/29/2012] [Accepted: 12/31/2012] [Indexed: 12/29/2022]
|
16
|
Hafeez BB, Jamal MS, Fischer JW, Mustafa A, Verma AK. Plumbagin, a plant derived natural agent inhibits the growth of pancreatic cancer cells in in vitro and in vivo via targeting EGFR, Stat3 and NF-κB signaling pathways. Int J Cancer 2012; 131:2175-86. [PMID: 22322442 PMCID: PMC3522120 DOI: 10.1002/ijc.27478] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 01/27/2012] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is the most aggressive malignant disease, ranks as the fourth most leading cause of cancer-related death among men and women in the United States. We present here that plumbagin (PL), a quinoid constituent isolated from the roots of the medicinal plant Plumbago zeylanica L, inhibits the growth of PC cells both in vitro and in vivo model systems. PL treatment induces apoptosis and inhibits cell viability of PC cells (PANC1, BxPC3 and ASPC1). In addition, i.p. administration of PL (2 mg/kg body weight, 5 days a week) in severe combined immunodeficiency (SCID) mice beginning 3 days after ectopic implantation of PANC1 cells resulted in a significant (P < 0.01) inhibition of both tumor weight and volume. PL treatment inhibited (1) constitutive expression of epidermal growth factor receptor (EGFR), pStat3Tyr705 and pStat3Ser727, (2) DNA binding of Stat3 and (3) physical interaction of EGFR with Stat3, in both cultured PANC1 cells and their xenograft tumors. PL treatment also inhibited phosphorylation and DNA-binding activity of NF-κB in both cultured PC cells (PANC1 and ASPC1) and in PANC1 cells xenograft tumors. Downstream target genes (cyclin D1, MMP9 and Survivin) of Stat3 and NF-κB were similarly inhibited. These results suggest that PL may be used as a novel therapeutic agent against human PC. Published 2012 Wiley-Liss, Inc. This article is a US Government work, and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Bilal Bin Hafeez
- Department of Human Oncology, Wisconsin Institute of Medical Research, Paul Carbone Comprehensive Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53792, USA.
| | | | | | | | | |
Collapse
|
17
|
Yi EH, Lee CS, Lee JK, Lee YJ, Shin MK, Cho CH, Kang KW, Lee JW, Han W, Noh DY, Kim YN, Cho IH, Ye SK. STAT3-RANTES Autocrine Signaling Is Essential for Tamoxifen Resistance in Human Breast Cancer Cells. Mol Cancer Res 2012; 11:31-42. [DOI: 10.1158/1541-7786.mcr-12-0217] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Yan H, Wu J, Liu W, Zuo Y, Chen S, Zhang S, Zeng M, Huang W. MicroRNA-20a overexpression inhibited proliferation and metastasis of pancreatic carcinoma cells. Hum Gene Ther 2011; 21:1723-34. [PMID: 20583868 DOI: 10.1089/hum.2010.061] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The aim of this study was to investigate the effect of microRNA-20a on pancreatic carcinoma cell proliferation and invasion and to find a new effective treatment strategy for pancreatic carcinoma. MicroRNA-20a expression was determined in 10 matched normal pancreatic tissues and pancreatic carcinoma by in situ hybridization. Quantitative real-time RT-PCR was used to evaluate the expression of microRNA-20a in two pancreatic carcinoma cell lines (BxPC-3 and Panc-1) and immortal human pancreatic duct epithelial cell line H6C7. Proliferation and invasion capacity were analyzed for the cells with lentivirus-mediated overexpression of microRNA-20a both in vitro and in vivo. In addition, the regulation of signal transducer and activator of transcription proteins 3 (Stat3) by microRNA-20a was determined to elucidate the underlying mechanisms. The pancreatic cancer cell lines (Panc-1 and BxPC-3) stably overexpressing microRNA-20a showed reduced proliferation and invasion capacity in vitro and in vivo, compared with parental cells or cells transfected with a control vector. Furthermore, we found that microRNA-20a negatively regulated Stat3 protein expression in a dose-dependent manner without changing the Stat3 mRNA level and decreased the activity of a luciferase reporter construct containing the Stat3 3'-untranslated region. These results show that microRNA-20a regulates Stat3 at the post-transcriptional level, resulting in inhibition of cell proliferation and invasion of pancreatic carcinoma. It may open a new perspective for the development of effective gene therapy for pancreatic carcinoma.
Collapse
Affiliation(s)
- Haijiao Yan
- Cancer Center, Sun Yat-sen University, Guangzhou, P R China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Activation of PDGFr-β Signaling Pathway after Imatinib and Radioimmunotherapy Treatment in Experimental Pancreatic Cancer. Cancers (Basel) 2011; 3:2501-15. [PMID: 24212821 PMCID: PMC3757429 DOI: 10.3390/cancers3022501] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 04/25/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022] Open
Abstract
Pancreatic cancer does not respond to a single-agent imatinib therapy. Consequently, multimodality treatments are contemplated. Published data indicate that in colorectal cancer, imatinib and radioimmunotherapy synergize to delay tumor growth. In pancreatic cancer, the tumor response is additive. This disparity of outcomes merited further studies because interactions between these modalities depend on the imatinib-induced reduction of the tumor interstitial fluid pressure. The examination of human and murine PDGFr-β/PDGF-B pathways in SW1990 pancreatic cancer xenografts revealed that the human branch is practically dormant in untreated tumors but the insult on the stromal component produces massive responses of human cancer cells. Inhibition of the stromal PDGFr-β with imatinib activates human PDGFr-β/PDGF-B signaling loop, silent in untreated xenografts, via an apparent paracrine rescue pathway. Responses are treatment-and time-dependent. Soon after treatment, levels of human PDGFr-β, compared to untreated tumors, are 3.4×, 12.4×, and 5.7× higher in imatinib-, radioimmunotherapy + imatinib-, and radioimmunotherapy-treated tumors, respectively. A continuous 14-day irradiation of imatinib-treated xenografts reduces levels of PDGFr-β and phosphorylated PDGFr-β by 5.3× and 4×, compared to earlier times. Human PDGF-B is upregulated suggesting that the survival signaling via the autocrine pathway is also triggered after stromal injury. These findings indicate that therapies targeting pancreatic cancer stromal components may have unintended mitogenic effects and that these effects can be reversed when imatinib is used in conjunction with radioimmunotherapy.
Collapse
|
20
|
Jaganathan S, Yue P, Paladino DC, Bogdanovic J, Huo Q, Turkson J. A functional nuclear epidermal growth factor receptor, SRC and Stat3 heteromeric complex in pancreatic cancer cells. PLoS One 2011; 6:e19605. [PMID: 21573184 PMCID: PMC3088706 DOI: 10.1371/journal.pone.0019605] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 04/12/2011] [Indexed: 11/18/2022] Open
Abstract
Evidence is presented for the nuclear presence of a functional heteromeric complex of epidermal growth factor (EGFR), Src and the Signal Transducer and Activator of Transcription (Stat)3 proteins in pancreatic cancer cells. Stat3 remains nuclear and associated with Src or EGFR, respectively, upon the siRNA knockdown of EGFR or Src, demonstrating the resistance of the complex to the modulation of EGFR or Src alone. Significantly, chromatin immunoprecipitation (ChIP) analyses reveal the nuclear EGFR, Src and Stat3 complex is bound to the c-Myc promoter. The siRNA knockdown of EGFR or Src, or the pharmacological inhibition of Stat3 activity only marginally suppressed c-Myc expression. By contrast, the concurrent modulation of Stat3 and EGFR, or Stat3 and Src, or EGFR and Src strongly suppressed c-Myc expression, demonstrating that the novel nuclear heteromeric complex intricately regulates the c-Myc gene. The prevalence of the transcriptionally functional EGFR, Src, and Stat3 nuclear complex provides an additional and novel mechanism for supporting the pancreatic cancer phenotype and explains in part the insensitivity of pancreatic cancer cells to the inhibition of EGFR, Src or Stat3 alone.
Collapse
Affiliation(s)
- Soumya Jaganathan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida, United States of America
| | | | | | | | | | | |
Collapse
|
21
|
Nallar SC, Kalakonda S, Sun P, Ohmori Y, Hiroi M, Mori K, Lindner DJ, Kalvakolanu DV. Identification of a structural motif in the tumor-suppressive protein GRIM-19 required for its antitumor activity. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:896-907. [PMID: 20595633 DOI: 10.2353/ajpath.2010.091280] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have previously isolated GRIM-19, a novel growth suppressor, using a genetic method. GRIM-19 ablates cell growth by inhibiting the transcription factor signal transducer and activator of transcription 3 (STAT3). Up-regulation of STAT3 and growth promotion were observed in a number of human tumors. Although the tumor-suppressive actions of GRIM-19 are known, the structural elements required for its antitumor actions are not understood. Mutational and protein sequence analyses identified a motif in the N terminus of GRIM-19 that exhibited similarity to certain RNA viral proteins. We show that disruption of specific amino acids within this motif cripples the antitumor actions of GRIM-19. These mutants fail to interact with STAT3 efficiently and consequently do not inhibit growth-promoting gene expression. More importantly, we show that a clinically observed mutation in the N terminus of GRIM-19 also weakened its interaction with STAT3 and antitumor action. Together, these studies identify a major role for the N terminus of GRIM-19 in mediating its tumor-suppressive actions.
Collapse
Affiliation(s)
- Shreeram C Nallar
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Jaganathan S, Yue P, Turkson J. Enhanced sensitivity of pancreatic cancer cells to concurrent inhibition of aberrant signal transducer and activator of transcription 3 and epidermal growth factor receptor or Src. J Pharmacol Exp Ther 2010; 333:373-81. [PMID: 20100905 PMCID: PMC2872953 DOI: 10.1124/jpet.109.162669] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 01/22/2010] [Indexed: 01/06/2023] Open
Abstract
Many molecular aberrations occur in pancreatic cancer. Although aberrant epidermal growth factor receptor (EGFR), Src, and signal transducer and activator of transcription 3 (Stat3) are implicated in pancreatic cancer, therapies that target only one of these entities are undermined by signaling cross-talk. In the human pancreatic cancer lines, Panc-1 and Colo-357, pY845EGFR, pY1068EGFR, pY1086EGFR, and pY1173EGFR levels and pY416c-Src are concurrently elevated with aberrantly active Stat3 in a complex signaling cross-talk. Thus, understanding the signaling integration would facilitate the design of effective multiple-targeted therapeutic modalities. In Panc-1 and Colo-357 lines, pY845EGFR, pY1068EGFR, and pY1086EGFR levels are responsive to c-Src inhibition in contrast to pY1173EGFR, which is EGFR kinase-dependent. Constitutively active Stat3 is sensitive to both EGFR and Src inhibition, but the early suppression of aberrantly active Stat3 in response to the inhibition of EGFR and Src is countered by a Janus kinase (Jaks)-dependent reactivation, suggesting that Jaks activity is a compensatory mechanism for Stat3 induction. The inhibition of EGFR, Src, or Stat3 alone induced weak biological responses. By contrast, the concurrent inhibition of Stat3 and EGFR or Src induced greater viability loss and apoptosis and decreased the migration/invasion of pancreatic cancer cells in vitro. Significantly, the concurrent inhibition, compared with monotargeting modality, induced stronger human pancreatic tumor growth inhibition in xenografts. We infer that the tumor growth inhibition in vivo is caused by the simultaneous suppression of the abnormal functions of Stat3 and EGFR or Src. These studies strongly suggest that the concurrent targeting of Stat3 and EGFR or Src could be a beneficial therapeutic approach for pancreatic cancer.
Collapse
Affiliation(s)
- Soumya Jaganathan
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32826, USA
| | | | | |
Collapse
|
23
|
Fukui M, Yamabe N, Zhu BT. Resveratrol attenuates the anticancer efficacy of paclitaxel in human breast cancer cells in vitro and in vivo. Eur J Cancer 2010; 46:1882-91. [PMID: 20223651 DOI: 10.1016/j.ejca.2010.02.004] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 02/01/2010] [Accepted: 02/05/2010] [Indexed: 01/14/2023]
Abstract
It was reported recently that resveratrol could sensitise a number of cancer cell lines to the anticancer actions of several other cancer drugs, including paclitaxel. In the present study, we further investigated whether resveratrol could sensitise human breast cancer cells to paclitaxel-induced cell death. Unexpectedly, we found that resveratrol strongly diminished the susceptibility of MDA-MB-435s, MDA-MB-231 and SKBR-3 cells to paclitaxel-induced cell death in culture, although this effect was not observed in MCF-7 cells. Using MDA-MB-435s cells as a representative model, a similar observation was made in athymic nude mice. Mechanistically, the modulating effect of resveratrol was partially attributable to its inhibition of paclitaxel-induced G(2)/M cell cycle arrest, together with an accumulation of cells in the S-phase. In addition, resveratrol could suppress paclitaxel-induced accumulation of reactive oxygen species (ROS) and subsequently the inactivation of anti-apoptotic Bcl-2 family proteins. These observations suggest that the strategy of concomitant use of resveratrol with paclitaxel is detrimental in certain types of human cancers. Given the widespread use of resveratrol among cancer patients, this study calls for more preclinical and clinical testing of the potential benefits and harms of using resveratrol as a dietary adjuvant in cancer patients.
Collapse
Affiliation(s)
- Masayuki Fukui
- Department of Pharmacology, Toxicology and Therapeutics, School of Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | | | | |
Collapse
|
24
|
Barbieri I, Quaglino E, Maritano D, Pannellini T, Riera L, Cavallo F, Forni G, Musiani P, Chiarle R, Poli V. Stat3 is required for anchorage-independent growth and metastasis but not for mammary tumor development downstream of the ErbB-2 oncogene. Mol Carcinog 2010; 49:114-20. [PMID: 20027636 DOI: 10.1002/mc.20605] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The oncogenic transcription factor Stat3 is constitutively active in a high percentage of human tumors including mammary adenocarcinomas and is reported to participate in the ErbB-2 oncogene signaling. In order to assess the role of signal transducer and activator of transcription 3 (Stat3) in mammary tumorigenesis downstream of ErbB-2, we generated mice expressing the activated rat ErbB-2 (neu) but lacking Stat3 in the mammary epithelium. Stat3 is apparently not required for neu-driven mammary tumorigenesis as tumors developed similarly in both Stat3-sufficient and Stat3-deficient glands. However, short hairpin RNA (shRNA)-mediated Stat3 silencing in a neu-overexpressing tumor-derived cell line completely abolished both neu-driven anchorage-independent growth and lung metastasis. Our data suggest that Stat3 might be a useful therapeutic target in breast tumors showing amplification and/or overexpression of the ErbB-2 oncogene, which normally display aggressive, metastatic behavior.
Collapse
Affiliation(s)
- Isaia Barbieri
- Molecular Biotechnology Center (MBC), University of Turin, 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Radulovich N, Pham NA, Strumpf D, Leung L, Xie W, Jurisica I, Tsao MS. Differential roles of cyclin D1 and D3 in pancreatic ductal adenocarcinoma. Mol Cancer 2010; 9:24. [PMID: 20113529 PMCID: PMC2824633 DOI: 10.1186/1476-4598-9-24] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 02/01/2010] [Indexed: 01/24/2023] Open
Abstract
Background The cyclin D1 (CCND1) and cyclin D3 (CCND3) are frequently co-overexpressed in pancreatic ductal adenocarcinoma (PDAC). Here we examine their differential roles in PDAC. Results CCND1 and CCND3 expression were selectively suppressed by shRNA in PDAC cell lines with expression levels of equal CCND1 and CCND3 (BxPC3), enhanced CCND1 (HPAC) or enhanced CCND3 (PANC1). Suppression of cell proliferation was greater with CCND3 than CCND1 downregulation. CCND3 suppression led to a reduced level of phosphorylated retinoblastoma protein (Ser795p-Rb/p110) and resulted in decreased levels of cyclin A mRNA and protein. A global gene expression analysis identified deregulated genes in D1- or D3-cyclin siRNA-treated PANC1 cells. The downregulated gene targets in CCND3 suppressed cells were significantly enriched in cell cycle associated processes (p < 0.005). In contrast, focal adhesion/actin cytoskeleton, MAPK and NF B signaling appeared to characterize the target genes and their interacting proteins in CCND1 suppressed PANC1 cells. Conclusions Our results suggest that CCND3 is the primary driver of the cell cycle, in cooperation with CCND1 that integrates extracellular mitogenic signaling. We also present evidence that CCND1 plays a role in tumor cell migration. The results provide novel insights for common and differential targets of CCND1 and CCND3 overexpression during pancreatic duct cell carcinogenesis.
Collapse
Affiliation(s)
- Nikolina Radulovich
- Ontario Cancer Institute and Princess Margaret Hospital, University Health Network, Toronto, Ontario M5G 2M9, Canada
| | | | | | | | | | | | | |
Collapse
|
26
|
Johnson SK, Haun RS. Insulin-like growth factor binding protein-5 influences pancreatic cancer cell growth. World J Gastroenterol 2009; 15:3355-66. [PMID: 19610136 PMCID: PMC2712896 DOI: 10.3748/wjg.15.3355] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the functional significance of insulin-like growth factor binding protein-5 (IGFBP-5) overexpression in pancreatic cancer (PaC).
METHODS: The effects of IGFBP-5 on cell growth were assessed by stable transfection of BxPC-3 and PANC-1 cell lines and measuring cell number and DNA synthesis. Alterations in the cell cycle were assessed by flow cytometry and immunoblot analyses. Changes in cell survival and signal transduction were evaluated after mitogen activated protein kinase and phosphatidylinositol 3-kinase (PI3K) inhibitor treatment.
RESULTS: After serum deprivation, IGFBP-5 expression increased both cell number and DNA synthesis in BxPC-3 cells, but reduced cell number in PANC-1 cells. Consistent with this observation, cell cycle analysis of IGFBP-5-expressing cells revealed accelerated cell cycle progression in BxPC-3 and G2/M arrest of PANC-1 cells. Signal transduction analysis revealed that Akt activation was increased in BxPC-3, but reduced in PANC-1 cells that express IGFBP-5. Inhibition of PI3K with LY294002 suppressed extracellular signal-regulated kinase-1 and -2 (ERK1/2) activation in BxPC-3, but enhanced ERK1/2 activation in PANC-1 cells that express IGFBP-5. When MEK1/2 was blocked, Akt activation remained elevated in IGFBP-5 expressing PaC cells; however, inhibition of PI3K or MEK1/2 abrogated IGFBP-5-mediated cell survival.
CONCLUSION: These results indicate that IGFBP-5 expression affects the cell cycle and survival signal pathways and thus it may be an important mediator of PaC cell growth.
Collapse
|
27
|
Kim S, Choi JH, Lim HI, Lee SK, Kim WW, Cho S, Kim JS, Kim JH, Choe JH, Nam SJ, Lee JE, Yang JH. EGF-induced MMP-9 expression is mediated by the JAK3/ERK pathway, but not by the JAK3/STAT-3 pathway in a SKBR3 breast cancer cell line. Cell Signal 2009; 21:892-8. [PMID: 19385051 DOI: 10.1016/j.cellsig.2009.01.034] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The number of epidermal growth factor receptors (EGFRs) and their ligands are highly expressed in malignant tumor cells. The EGF signaling pathway is also activated in up to one-third of patients with breast cancer. In this study, we investigated the novel function of the JAK3 inhibitor, WHI-P131, on EGF-induced MMP-9 expression and the regulatory mechanism of EGF-induced MMP-9 expression in SKBR3 cells. We observed that EGF increased MMP-9 mRNA and protein expression in a dose-dependent manner. EGF also induced the phosphorylation of EGFR, ERK, and STAT-3, and these effects were inhibited by the EGFR inhibitor, AG1478.To investigate the involvement of the STAT-3 pathway on EGF-induced MMP-9 expression, we pretreatedSKBR3 cells with JAK1, JAK2, and JAK3 inhibitors prior to EGF treatment. The results showed that the JAK3 inhibitor, WHI-P131, as well as JAK3 siRNA transfection, but not the JAK1 and JAK2 inhibitors, significantly decreased EGF-induced MMP-9 expression. In addition, EGF-induced STAT-3 phosphorylation was only inhibited by WHI-P131. We then transfected cells with adenoviral STAT-3 (Ad-STAT-3), followed by treatment with EGF. Interestingly, EGF-induced MMP-9 expression was decreased by Ad-STAT-3 overexpression in a dose-dependent manner, while it was significantly increased by STAT-3 siRNA transfection. Our results also showed that basal levels of MMP-9 expression were significantly increased by constitutive active-MEK (CAMEK)overexpression. EGF-induced ERK phosphorylation was prevented by WHI-P131, but not by JAK1 andJAK2 inhibitors. On the other hand, EGF-induced MMP-9 expression was decreased by the MEK1/2 inhibitor,UO126. Therefore, for the first time, we suggest that the JAK3 inhibitor, WHI-P131, inhibits EGF-induced STAT-3 phosphorylation as well as ERK phosphorylation. The JAK3/ERK pathway may play an important role in EGFinduced MMP-9 expression in SKBR3 cells.
Collapse
Affiliation(s)
- Sangmin Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Ilwon-dong 50, Kangnam-gu, Seoul, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hawthorne VS, Huang WC, Neal CL, Tseng LM, Hung MC, Yu D. ErbB2-mediated Src and signal transducer and activator of transcription 3 activation leads to transcriptional up-regulation of p21Cip1 and chemoresistance in breast cancer cells. Mol Cancer Res 2009; 7:592-600. [PMID: 19372587 DOI: 10.1158/1541-7786.mcr-08-0316] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Overexpression of the ErbB2 receptor tyrosine kinase is prevalent in approximately 30% of human breast cancers and confers Taxol resistance. Our previous work has shown that ErbB2 inhibits Taxol-induced apoptosis in breast cancer cells by transcriptionally up-regulating p21(Cip1). However, the mechanism of ErbB2-mediated p21(Cip1) up-regulation is unclear. Here, we show that ErbB2 up-regulates p21(Cip1) transcription through increased Src activity in ErbB2-overexpressing cells. Src activation further activated signal transducer and activator of transcription 3 (STAT3) that recognizes a SIE binding site on the p21(Cip1) promoter required for ErbB2-mediated p21(Cip1) transcriptional up-regulation. Both Src and STAT3 inhibitors restored Taxol sensitivity in resistant ErbB2-overexpressing breast cancer cells. Our data suggest that ErbB2 overexpression can activate STAT3 through Src leading to transcriptional up-regulation of p21(Cip1) that confers Taxol resistance of breast cancer cells. Our study suggests a potential clinical application of Src and STAT3 inhibitors in Taxol sensitization of ErbB2-overexpressing breast cancers.
Collapse
Affiliation(s)
- Valerie S Hawthorne
- Department of Molecular and Cellular Oncology, The University of Texas M. D. Anderson Cancer Center, Houston, TX 77030, USA
| | | | | | | | | | | |
Collapse
|
29
|
Cao P, Maira SM, García-Echeverría C, Hedley DW. Activity of a novel, dual PI3-kinase/mTor inhibitor NVP-BEZ235 against primary human pancreatic cancers grown as orthotopic xenografts. Br J Cancer 2009; 100:1267-76. [PMID: 19319133 PMCID: PMC2676548 DOI: 10.1038/sj.bjc.6604995] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The phosphatidylinositol-3-kinase (PI3K)/Akt signalling pathway is frequently deregulated in pancreatic cancers, and is believed to be an important determinant of their biological aggression and drug resistance. NVP-BEZ235 is a novel, dual class I PI3K/mammalian target of rapamycin (mTor) inhibitor undergoing phase I human clinical trials. To simulate clinical testing, the effects of NVP-BEZ235 were studied in five early passage primary pancreatic cancer xenografts, grown orthotopically. These tumours showed activated PKB/Akt, and increased levels of at least one of the receptor tyrosine kinases that are commonly activated in pancreatic cancers. Pharmacodynamic effects were measured following acute single doses, and anticancer effects were determined in separate groups following chronic drug exposure. Acute oral dosing with NVP-BEZ235 strongly suppressed the phosphorylation of PKB/Akt, followed by recovery over 24 h. There was also inhibition of Ser235/236 S6 ribosomal protein and Thr37/46 4E-BP1, consistent with the effects of NVP-BEZ235 as a dual PI3K/mTor inhibitor. Chronic dosing with 45 mg kg−1 of NVP-BEZ235 was well tolerated, and produced significant tumour growth inhibition in three models. These results predict that agents targeting the PI3K/Akt/mTor pathway might have anticancer activity in pancreatic cancer patients, and support the testing of combination studies involving chemotherapy or other molecular targeted agents.
Collapse
Affiliation(s)
- P Cao
- Division of Applied Molecular Oncology, Department of Medical Oncology and Hematology, Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
30
|
Bharadwaj U, Li M, Chen C, Yao Q. Mesothelin-induced pancreatic cancer cell proliferation involves alteration of cyclin E via activation of signal transducer and activator of transcription protein 3. Mol Cancer Res 2009; 6:1755-65. [PMID: 19010822 DOI: 10.1158/1541-7786.mcr-08-0095] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mesothelin (MSLN) is a cell surface glycoprotein that is overexpressed in human pancreatic cancer. Although its value as a tumor marker for diagnosis and prognosis and as a preferred target of immunointervention has been evaluated, there is little information on the growth advantage of MSLN on tumor cells. In this study, we examined the effect of MSLN on pancreatic cancer cell proliferation, cell cycle progression, expression of cell cycle regulatory proteins, and signal transduction pathways in two pancreatic cancer cell lines, MIA-MSLN (overexpressing MSLN in MIA PaCa-2 cells) and BxPC-siMSLN (silencing MSLN in BxPC-3 cells). Increased cyclin E and cyclin-dependent kinase 2 expression found in MIA-MSLN cells correlated with significantly increased cell proliferation and faster cell cycle progression compared with control cells. BxPC-siMSLN cells showed slower proliferation and slower entry into the S phase than control cells. Signal transducer and activator of transcription protein 3 (Stat3) was constitutively activated in MIA-MSLN cells, but not in control cells. Inhibition of Stat3 activation in MIA-MSLN cells by the Janus-activated kinase-selective inhibitor tyrphostin AG490 was followed by a marked decrease in proliferation of the cells. Small interfering RNA against Stat3 significantly reduced the MIA-MSLN cell cycle progression with a concomitant decrease in cyclin E expression. Our data indicate that overexpression of MSLN in pancreatic cancer cells leads to constitutive activation of the transcription factor Stat3, which results in enhanced expression of cyclin E and cyclin E/cyclin-dependent kinase 2 complex formation as well as increased G(1)-S transition.
Collapse
Affiliation(s)
- Uddalak Bharadwaj
- Molecular Surgeon Research Center, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | |
Collapse
|
31
|
Abstract
Pancreatic cancer is a leading cause of cancer death. This devastating disease has the horrible honour of close to equal incidence and mortality rates. Late diagnosis and a constitutive resistance to every chemotherapy approach are responsible for this scenario. However, molecular biology tools in cooperation with translational efforts have dissected several secrets that underlie pancreatic cancer. Progressive acquisition of malignant, invasive phenotypes from pre-malignant lesions, recent revelations on core signalling pathways and new targeted designed trials offer a better future for pancreatic cancer patients. This review will summarise recent advances in the molecular biology of pancreatic cancer.
Collapse
|
32
|
Zhao S, Venkatasubbarao K, Lazor JW, Sperry J, Jin C, Cao L, Freeman JW. Inhibition of STAT3 Tyr705 phosphorylation by Smad4 suppresses transforming growth factor beta-mediated invasion and metastasis in pancreatic cancer cells. Cancer Res 2008; 68:4221-8. [PMID: 18519681 DOI: 10.1158/0008-5472.can-07-5123] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The role of Smad4 in transforming growth factor beta (TGFbeta)-mediated epithelial-mesenchymal transition (EMT), invasion, and metastasis was investigated using isogenically matched pancreatic cancer cell lines that differed only in expression of Smad4. Cells expressing Smad4 showed an enhanced TGFbeta-mediated EMT as determined by increased expression of vimentin and decreased expression of beta-catenin and E-cadherin. TGFbeta-mediated invasion was suppressed in Smad4-intact cells as determined by in vitro assays, and these cells showed a reduced metastasis in an orthotopic model of pancreatic cancer. Interestingly, TGFbeta inhibited STAT3(Tyr705) phosphorylation in Smad4-intact cells. The decrease in STAT3(Tyr705) phosphorylation was linked to a TGFbeta/Smad4-dependent and enhanced activation of extracellular signal-regulated kinases, which caused an increase in serine phosphorylation of STAT3(Ser727). Down-regulating signal transducer and activator of transcription 3 (STAT3) expression by short hairpin RNA in Smad4-deficient cells prevented TGFbeta-induced invasion. Conversely, expressing a constitutively activated form of STAT3 (STAT3-C) in Smad4-intact cells enhanced invasion. This study indicates the requirement of STAT3 activity for TGFbeta-induced invasion in pancreatic cancer cells and implicates Smad4-dependent signaling in regulating STAT3 activity. These findings further suggest that loss of Smad4, leading to aberrant activation of STAT3, contributes to the switch of TGFbeta from a tumor-suppressive to a tumor-promoting pathway in pancreatic cancer.
Collapse
Affiliation(s)
- Shujie Zhao
- Division of Hematology and Medical Oncology, Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Lewis HD, Winter A, Murphy TF, Tripathi S, Pandey VN, Barton BE. STAT3 inhibition in prostate and pancreatic cancer lines by STAT3 binding sequence oligonucleotides: differential activity between 5' and 3' ends. Mol Cancer Ther 2008; 7:1543-1550. [PMID: 18566225 PMCID: PMC2561307 DOI: 10.1158/1535-7163.mct-08-0154] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Signal transducers and activators of transcription (STAT) were originally discovered as components of signal transduction pathways. Persistent aberrant activation of STAT3 is a feature of many malignancies including prostate cancer and pancreatic cancer. One consequence of persistently activated STAT3 in malignant cells is that they depend on it for survival; thus, STAT3 is an excellent molecular target for therapy. Previously, we reported that single-stranded oligonucleotides containing consensus STAT3 binding sequences (13410 and 13411) were more effective for inducing apoptosis in prostate cancer cells than antisense STAT3 oligonucleotides. Control oligonucleotides (scrambled sequences) had no effect. Here, we report that authentic STAT3 binding sequences, identified from published literature, were more effective for inducing apoptosis in prostate cancer cells and pancreatic cancer cells than was oligonucleotide 13410. Moreover, the authentic STAT3 binding sequences showed differing efficacies in the malignant cell lines depending on whether the canonical STAT3 binding sequence was truncated at the 5' or the 3' end. Finally, expression of one STAT3-regulated gene was decreased following treatment, suggesting that STAT3 may regulate the same set of genes in the two types of cancer. We conclude that truncating the 5' end left intact enough of the canonical STAT3 binding site for effective hybridization to the genome, whereas truncation of the 3' end, which is outside the canonical binding site, may have affected binding of required cofactors essential for STAT3 activity, thereby reducing the capacity of this modified oligonucleotide to induce apoptosis. Additional experiments to answer this hypothesis are under way.
Collapse
Affiliation(s)
- H Dan Lewis
- Department of Surgery, University of Medicine and Dentistry of New Jersey, New Jersey Medical School, 185 South Orange Avenue, Newark, NJ 07103, USA
| | | | | | | | | | | |
Collapse
|
34
|
Kataoka K, Kim DJ, Carbajal S, Clifford JL, DiGiovanni J. Stage-specific disruption of Stat3 demonstrates a direct requirement during both the initiation and promotion stages of mouse skin tumorigenesis. Carcinogenesis 2008; 29:1108-14. [PMID: 18453544 DOI: 10.1093/carcin/bgn061] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Constitutive activation of signal transducer and activator of transcription 3 (Stat3) has been found in a variety of human malignancies and has been suggested to play an important role in carcinogenesis. Recently, our laboratory demonstrated that Stat3 is required for the development of skin tumors via two-stage carcinogenesis using skin-specific loss-of-function transgenic mice. To investigate further the role of Stat3 in each stage of chemical carcinogenesis in mouse skin, i.e. initiation and promotion stages, we generated inducible Stat3-deficient mice (K5.Cre-ER(T2) x Stat3(fl/fl)) that show epidermal-specific disruption of Stat3 following topical treatment with 4-hydroxytamoxifen (TM). The epidermis of inducible Stat3-deficient mice treated with TM showed a significant increase in apoptosis induced by 7,12-dimethylbenz[a]anthracene (DMBA) and reduced proliferation following exposure to 12-O-tetradecanoylphorbol-13-acetate. In two-stage skin carcinogenesis assays, inducible Stat3-deficient mice treated with TM during the promotion stage showed a significant delay of tumor development and a significantly reduced number of tumors compared with control groups. Inducible Stat3-deficient mice treated with TM before initiation with DMBA also showed a significant delay in tumor development and a significantly reduced number of tumors compared with control groups. Finally, treatment of inducible Stat3-deficient mice that had existing skin tumors generated by the two-stage carcinogenesis protocol with TM (by intraperitoneal injection) led to inhibition of tumor growth compared with tumors formed in control groups. Collectively, these results directly demonstrate that Stat3 is required for skin tumor development during both the initiation and promotion stages of skin carcinogenesis in vivo.
Collapse
Affiliation(s)
- Ken Kataoka
- Department of Carcinogenesis, Science Park-Research Division, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, Smithville, TX 78957, USA
| | | | | | | | | |
Collapse
|
35
|
Pham NA, Schwock J, Iakovlev V, Pond G, Hedley DW, Tsao MS. Immunohistochemical analysis of changes in signaling pathway activation downstream of growth factor receptors in pancreatic duct cell carcinogenesis. BMC Cancer 2008; 8:43. [PMID: 18254976 PMCID: PMC2270852 DOI: 10.1186/1471-2407-8-43] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2007] [Accepted: 02/06/2008] [Indexed: 01/12/2023] Open
Abstract
Background The pathogenesis of pancreatic ductal adenocarcinoma (PDAC) involves multi-stage development of molecular aberrations affecting signaling pathways that regulate cancer growth and progression. This study was performed to gain a better understanding of the abnormal signaling that occurs in PDAC compared with normal duct epithelia. Methods We performed immunohistochemistry on a tissue microarray of 26 PDAC, 13 normal appearing adjacent pancreatic ductal epithelia, and 12 normal non-PDAC ducts. We compared the levels of 18 signaling proteins including growth factor receptors, tumor suppressors and 13 of their putative downstream phosphorylated (p-) signal transducers in PDAC to those in normal ductal epithelia. Results The overall profiles of signaling protein expression levels, activation states and sub-cellular distribution in PDAC cells were distinguishable from non-neoplastic ductal epithelia. The ERK pathway activation was correlated with high levels of S2448p-mTOR (100%, p = 0.05), T389p-S6K (100%, p = 0.02 and S235/236p-S6 (86%, p = 0.005). Additionally, T389p-S6K correlated with S727p-STAT3 (86%, p = 0.005). Advanced tumors with lymph node metastasis were characterized by high levels of S276p-NFκB (100%, p = 0.05) and S9p-GSK3β (100%, p = 0.05). High levels of PKBβ/AKT2, EGFR, as well as nuclear T202/Y204p-ERK and T180/Y182p-p38 were observed in normal ducts adjacent to PDAC compared with non-cancerous pancreas. Conclusion Multiple signaling proteins are activated in pancreatic duct cell carcinogenesis including those associated with the ERK, PKB/AKT, mTOR and STAT3 pathways. The ERK pathway activation appears also increased in duct epithelia adjacent to carcinoma, suggesting tumor micro-environmental effects.
Collapse
Affiliation(s)
- Nhu-An Pham
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.
| | | | | | | | | | | |
Collapse
|
36
|
Smirnova OV, Ostroukhova TY, Bogorad RL. JAK-STAT pathway in carcinogenesis: Is it relevant to cholangiocarcinoma progression. World J Gastroenterol 2007; 13:6478-91. [PMID: 18161917 PMCID: PMC4611286 DOI: 10.3748/wjg.v13.i48.6478] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The features of JAK-STAT signaling in liver cells are discussed in the current review. The role of this signaling cascade in carcinogenesis is accentuated. The possible involvement of this pathway and alteration of its elements are compared for normal cholangiocytes, cholangiocarcinoma predisposition and development. Prolactin and interleukin-6 are described in detail as the best studied examples. In addition, the non-classical nuclear translocation of cytokine receptors is discussed in terms of its possible implication to cholangiocarcinoma development.
Collapse
|
37
|
Stat3 up-regulates expression of nicotinamide N-methyltransferase in human cancer cells. J Cancer Res Clin Oncol 2007; 134:551-9. [PMID: 17922140 DOI: 10.1007/s00432-007-0318-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Accepted: 09/18/2007] [Indexed: 10/22/2022]
Abstract
PURPOSE To discover new molecular targets for cancer therapy and diagnosis, we surveyed signal transducers and activators of transcription 3 (Stat3)-regulated genes, because constitutive activation of Stat3 is associated with a wide variety of human malignancies. METHODS We investigated the Stat3-regulated genes in 293 cells with cDNA microarray analysis and found that Nicotinamide N-methyltransferase (NNMT) was induced on stimulation of the cells with leukemia inhibitory factor. We examined the expression of NNMT in several types of cancer cells by real-time quantitative RT-PCR. To examine the role of Stat3, Hep-G2 hepatocellular carcinoma cells were transfected with NNMT promoter-luciferase reporter construct together with conditionally active Stat3 (Stat3ER) or dominant-negative Stat3 expression vector and NNMT promoter activity was determined. The expression of NNMT and activated Stat3 in 88 colon cancer tissues and 17 normal colon tissues was examined with immunohistochemical analysis. RESULTS In Hep-G2 cells and SW480 colon cancer cells, NNMT expression increased on stimulation of the cells with interleukin 6. NNMT promoter activity in Hep-G2 cells was dependent on the activation of Stat3. MDA-MB-468 breast cancer cells and HT29 colon cancer cells expressed constitutively a high level of NNMT. Treatment of these cells with Stat3 siRNA or curcumin, which inhibited Stat3 phosphorylation, resulted in reduction of the NNMT level. We found a correlation between the expression of NNMT and activated Stat3 (P<0.001) in the colon cancer tissues. CONCLUSION NNMT is a novel Stat3-regulated gene. Its expression is enhanced with the activation of Stat3 in colon cancer tissues. NNMT may be a potential candidate for a tumor marker of various kinds of cancers.
Collapse
|
38
|
Tschoep K, Kohlmann A, Schlemmer M, Haferlach T, Issels RD. Gene expression profiling in sarcomas. Crit Rev Oncol Hematol 2007; 63:111-24. [PMID: 17555981 DOI: 10.1016/j.critrevonc.2007.04.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2005] [Revised: 02/28/2007] [Accepted: 04/11/2007] [Indexed: 12/30/2022] Open
Abstract
Sarcomas are a heterogeneous group of malignant mesenchymal tumors of difficult classification. There is considerable variability in both histological appearance and responsiveness to therapy. Their overall poor clinical prognosis is reflected by the fact that >65% of patients suffering retroperitoneal soft tissue sarcoma die within 5 years [Heslin MJ, et al. Prognostic factors associated with long-term survival for retroperitoneal sarcoma: implications for management. J Clin Oncol 1997;15(8):2832-9]. A greater understanding of the biology of sarcomas is needed in order to increase the potential for identifying new therapeutic targets and strategies. Microarray analysis permits a global approach to gene expression analysis of thousands of genes at the same time and has proven to be useful for further molecular characterization of tumor tissue and cell lines. This article provides a comprehensive review of possible new biomarkers identified in gene expression studies of sarcomas. These markers give new insight into the pathogenesis of sarcomas, such as malignant fibrous histiocytoma [Lee YF, et al. Molecular classification of synovial sarcomas, leiomyosarcomas and malignant fibrous histiocytomas by gene expression profiling. Br J Cancer 2003;88(4):510-5], allow a further subclassifcation of tumors like calponin-positive and calponin-negative leiomyosarcoma, or may help to predict treatment responsiveness and prognosis in patients based on an individual gene expression pattern. In some studies candidate targets for possible new treatment strategies were identified. For instance newly identified markers such as ERBB2 [Allander SV, et al. Expression profiling of synovial sarcoma by cDNA microarrays: association of ERBB2, IGFBP2, and ELF3 with epithelial differentiation. Am J Pathol 2002;161(5):1587-95] and EGFR [Nielsen TO, et al. Molecular characterization of soft tissue tumours: a gene expression study. Lancet 2002;359(9314):1301-7] might lead to the possible therapeutic use of Trastuzumab, Gefitinib or Cetuximab in synovial sarcoma, comparable to the use of tyrosine kinase inhibitor STI (Gleevec) that is the standard treatment today of CD117-positive gastrointestinal stromal tumors.
Collapse
Affiliation(s)
- Katharina Tschoep
- Medizinische Klinik und Poliklinik III, Ludwig-Maximilians-University, Medical Center-Grosshadern, Munich, Germany.
| | | | | | | | | |
Collapse
|
39
|
Zhao AG, Yang JK, You SF, Li T, Zhao HL, Gu Y, Tang LD, Qiu JX. Effects of Chinese herbal recipe Weichang'an in inducing apoptosis and related gene expression in human gastric cancer grafted onto nude mice. ACTA ACUST UNITED AC 2007; 5:287-97. [PMID: 17498489 DOI: 10.3736/jcim20070312] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To investigate the mechanism of Chinese herbal recipe Weichang'an (WCA) in inducing cell apoptosis of human gastric cancer grafted onto nude mice. METHODS The high performance liquid chromatography was used for monitoring the stability of WCA. A human gastric cancer cell line SGC-7901 grafted in nude mouse was used as the animal model. The mice were divided into untreated group and two experimental groups. Animals in the two experimental groups received either WCA over a 34-day period or 5-fluorouracil (5-FU) over a 6-day period starting at the 8th day after grafting. Animals in the untreated group received normal saline on an identical schedule. Animals were killed 41 days after being grafted. To assess the effect of the treatment on tumor, the tumor weight was determined by the electron balance immediately after the animals were killed. SP immunohistochemical method was used to detect the expression of proliferating cell nuclear antigen (PCNA) in grafts. Apoptotic indices (AI) of the tumor cells were examined by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate fluorescence nick end labeling (TUNEL) method. SP method was also used to detect the expressions of cleaved caspase-3, caspase-8 and caspase-9. SYBR green dye I real-time quantitative polymerase chain reaction (real-time quantitative [corrected] PCR) was used to assess the related gene alterations in mRNA level. The expressions of phospho-Stat3 (Tyr705) and bcl-2 proteins were detected by using SP method. RESULTS Compared with the untreated group, tumor growth was significantly inhibited by treatment of WCA or 5-FU (P<0.01, respectively). The tumor inhibition rate in the WCA-treated group was 48.70% and that in the 5-FU-treated group was 60.10%. The average labeling index (LI) for PCNA in the WCA-treated group and 5-FU-treated group was significantly decreased as compared with that in the untreated group, respectively. The AI of human gastric cancer grafted in the nude mice detected by using TUNEL method was significantly increased to (9.72+/-4.51)% in the WCA-treated group, while it was (2.45+/-1.37)% in the untreated group. 5-FU-treated group was also found a significantly increased AI compared with the untreated group. The expressions of cleaved caspase-3 and caspase-9 in the WCA-treated group and 5-FU-treated group were significantly increased as compared with those in the untreated group. But caspase-8 showed no significant alteration either in the WCA-treated group or in the 5-FU-treated group. The expression levels of Stat3 (2(-)delta delta C(T))=0.16) and bcl-2 (2(-)delta delta C(T))=0.10) detected by using real-time quantitative [corrected] PCR were lower in the WCA-treated group than those in the untreated group. The expressions of phospho-Stat3 (Tyr705) and bcl-2 in the WCA-treated group were significantly decreased as compared with those in the untreated group. CONCLUSIONS Chinese herbal recipe WCA can inhibit gastric cancer cell SGC-7901 growth in vivo, induce gastric cancer cell apoptosis and suppress the cell proliferation. WCA induces apoptosis through the caspase-9 and caspase-3 pathway in vivo. Its mechanism might be involved in the down-regulation of Stat3 and bcl-2 genes.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Caspases/metabolism
- Cell Line, Tumor
- Drugs, Chinese Herbal/pharmacology
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Random Allocation
- Reverse Transcriptase Polymerase Chain Reaction
- STAT3 Transcription Factor/genetics
- STAT3 Transcription Factor/metabolism
- Stomach Neoplasms/genetics
- Stomach Neoplasms/metabolism
- Stomach Neoplasms/pathology
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Ai-guang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; E-mail:
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Aho U, Zhao X, Löhr M, Andersson R. Molecular mechanisms of pancreatic cancer and potential targets of treatment. Scand J Gastroenterol 2007; 42:279-296. [PMID: 17354106 DOI: 10.1080/00365520601106384] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ursula Aho
- Department of Surgery, Lund University Hospital, University of Lund, Lund, Sweden
| | | | | | | |
Collapse
|
41
|
Frank DA. STAT3 as a central mediator of neoplastic cellular transformation. Cancer Lett 2006; 251:199-210. [PMID: 17129668 DOI: 10.1016/j.canlet.2006.10.017] [Citation(s) in RCA: 266] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Accepted: 10/23/2006] [Indexed: 12/13/2022]
Abstract
Much of the focus in understanding the molecular pathogenesis of tumors has centered on kinases that are activated in cancer. However, cancers driven by a diversity of activated kinases may have very similar pathological and clinical properties. This likely relates to the fact that the biological characteristics of a tumor are driven by the pattern of gene expression in that tumor, and that a wide spectrum of activating events at the cell surface and in the cytoplasm converge on a relatively small number of transcription factors that regulate the expression of key target genes. One transcription factor that has been found to be activated inappropriately in a wide range of human cancers is STAT3. STAT3 target genes are involved in fundamental events of tumor development including proliferation, survival, self-renewal, invasion, and angiogenesis. Furthermore, there is strong evidence that STAT3 is critical for these processes, in that inhibition of STAT3 by a variety of means can exert an anti-cancer effect. Since normal cells are relatively tolerant of interruption in STAT3 signaling, these findings suggest that STAT3 may also be an excellent target for the molecular therapy of cancer.
Collapse
Affiliation(s)
- David A Frank
- Department of Medical Oncology, Dana-Farber Cancer Institute, Department of Medicine, Harvard Medical School and Brigham and Women's Hospital, Boston, MA 02115, USA.
| |
Collapse
|
42
|
Deng X, Ewton DZ, Li S, Naqvi A, Mercer SE, Landas S, Friedman E. The kinase Mirk/Dyrk1B mediates cell survival in pancreatic ductal adenocarcinoma. Cancer Res 2006; 66:4149-58. [PMID: 16618736 DOI: 10.1158/0008-5472.can-05-3089] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Ductal adenocarcinoma of the pancreas is almost uniformly lethal as this cancer is invariably detected at an advanced stage and is resistant to treatment. The serine/threonine kinase Mirk/Dyrk1B has been shown to be antiapoptotic in rhabdomyosarcomas. We have now investigated whether Mirk might mediate survival in another cancer in which Mirk is widely expressed, pancreatic ductal adenocarcinoma. Mirk was an active kinase in each pancreatic cancer cell line where it was detected. Mirk knockdown by RNA interference (RNAi) reduced the clonogenicity of Panc1 pancreatic cancer cells 4-fold and decreased tumor cell number, showing that Mirk mediates survival in these cells. Mirk knockdown by synthetic duplex RNAis in Panc1, AsPc1, and SU86.86 pancreatic cancer cells induced apoptosis and enhanced the apoptosis induced by gemcitibine. Mirk knockdown did not increase the abundance or activation of Akt. However, four of five pancreatic carcinoma cell lines exhibited either elevated Mirk activity or elevated Akt activity, suggesting that pancreatic cancer cells primarily rely on Mirk or Akt for survival signaling. Mirk protein was detected by immunohistochemistry in 25 of 28 cases (89%) of pancreatic ductal adenocarcinoma, with elevated expression in 11 cases (39%). Increased expression of Mirk was seen in pancreatic carcinomas compared with primary cultures of normal ductal epithelium by serial analysis of gene expression and by immunohistochemistry. Thus, Mirk is a survival factor for pancreatic ductal adenocarcinoma. Because knockout of Mirk does not cause embryonic lethality, Mirk is not essential for normal cell growth and may represent a novel therapeutic target.
Collapse
Affiliation(s)
- Xiaobing Deng
- Department of Pathology, Upstate Medical University, State University of New York, Syracuse, New York 13210, USA
| | | | | | | | | | | | | |
Collapse
|
43
|
Diaz N, Minton S, Cox C, Bowman T, Gritsko T, Garcia R, Eweis I, Wloch M, Livingston S, Seijo E, Cantor A, Lee JH, Beam CA, Sullivan D, Jove R, Muro-Cacho CA. Activation of stat3 in primary tumors from high-risk breast cancer patients is associated with elevated levels of activated SRC and survivin expression. Clin Cancer Res 2006; 12:20-8. [PMID: 16397019 DOI: 10.1158/1078-0432.ccr-04-1749] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Constitutive activation of signal transducer and activator of transcription 3 (Stat3) protein has been observed in a wide variety of tumors, including breast cancer, and contributes to oncogenesis at least in part by prevention of apoptosis. In a study of 45 patients with high-risk breast cancer enrolled in a phase II neoadjuvant chemotherapy trial with docetaxel and doxorubicin, we evaluated the levels of Stat3 activation and potentially associated molecular biomarkers in invasive breast carcinoma compared with matched nonneoplastic tissues. EXPERIMENTAL DESIGN Using immunohistochemistry and image analysis, we quantified the levels of phospho-Stat3 (pY-Stat3), phospho-Src (pY-Src), epidermal growth factor receptor, HER2/neu, Ki-67, estrogen receptor, Bcl-2, Bcl-xL, Survivin, and apoptosis in formalin-fixed, paraffin-embedded sections from invasive carcinomas and their paired nonneoplastic parenchyma. The levels of molecular biomarkers in nonneoplastic and tumor tissues were analyzed as continuous variables for statistically significant correlations. RESULTS Levels of activated pY-Stat3 and pY-Src measured by immunohistochemistry were significantly higher in invasive carcinoma than in nonneoplastic tissue (P < 0.001). In tumors, elevated levels of pY-Stat3 correlated with those of pY-Src and Survivin. Levels of pY-Stat3 were higher in partial pathologic responders than in complete pathologic responders. In partial pathologic responders, pY-Stat3 levels correlated with Survivin expression. CONCLUSIONS Our findings suggest important roles for elevated activities of Stat3 and Src, as well as Survivin expression, in malignant progression of breast cancer. Furthermore, elevated Stat3 activity correlates inversely with complete pathologic response. These findings suggest that specific Stat3 or Src inhibitors could offer clinical benefits to patients with breast cancer.
Collapse
Affiliation(s)
- Nills Diaz
- Pathology, H. Lee Moffitt Cancer Center and Research Institute, Department of Interdisciplinary Oncology, University of South Florida College of Medicine, Tampa, Florida, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Lai R, Navid F, Rodriguez-Galindo C, Liu T, Fuller CE, Ganti R, Dien J, Dalton J, Billups C, Khoury JD. STAT3 is activated in a subset of the Ewing sarcoma family of tumours. J Pathol 2006; 208:624-32. [PMID: 16463269 DOI: 10.1002/path.1941] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
STAT3 is an oncogene that regulates critical cellular processes and whose constitutive activation has been demonstrated to correlate with biological and clinical features in many types of human malignancy. In this study, STAT3 activation was assessed in the Ewing sarcoma family of tumours (ESFT), which is characterized by fusion of the EWS gene with one of several Ets transcription factors, most commonly EWS-FLI1. STAT3 activation was assessed by immunohistochemistry using a monoclonal antibody specific for tyrosine(705)-phosphorylated STAT3 (pSTAT3(tyr705)) and a tissue microarray containing 49 paraffin-embedded ESFT tumours with known EWS translocations. Twenty-five (51%) tumours were pSTAT3(tyr705)-positive, as defined by more than 10% tumour cell immunostaining. STAT3 activation correlated with tumour site at presentation, with pSTAT3(tyr705)-negative ESFT involving axial sites predominantly (p = 0.008). Notably, among 31 patients who presented with localized disease, high-level STAT3 activation correlated with better overall survival (p = 0.02). STAT3 activation was not directly related to EWS-FLI1 expression, since EWS-FLI1 transfection did not result in STAT3 activation. Furthermore, detailed molecular analysis indicated that STAT3 activation may be seen with EWS-FLI1 or EWS-ERG and appears to be independent of EWS-FLI1 fusion type. In conclusion, STAT3 activation is present in approximately half of ESFT and correlates with clinical features. The role of STAT3 activation in ESFT pathogenesis seems to be independent of the type of EWS/Ets translocation.
Collapse
MESH Headings
- Adolescent
- Adult
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Bone Neoplasms/pathology
- Child
- Child, Preschool
- Female
- Gene Expression Regulation, Neoplastic
- Humans
- Immunoenzyme Techniques
- Male
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Oncogene Proteins, Fusion/metabolism
- Prognosis
- Protein Array Analysis/methods
- Proto-Oncogene Protein c-fli-1/metabolism
- RNA-Binding Protein EWS/genetics
- Reverse Transcriptase Polymerase Chain Reaction/methods
- STAT3 Transcription Factor/biosynthesis
- STAT3 Transcription Factor/genetics
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sarcoma, Ewing/pathology
- Survival Analysis
- Translocation, Genetic
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- R Lai
- Department of Pathology and Laboratory Medicine, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Mimeault M, Brand RE, Sasson AA, Batra SK. Recent advances on the molecular mechanisms involved in pancreatic cancer progression and therapies. Pancreas 2005; 31:301-16. [PMID: 16258363 DOI: 10.1097/01.mpa.0000175893.04660.1b] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review describes the recent advances in the molecular events involved in pancreatic cancer initiation, progression, and metastasis. Additionally, the importance of deregulated cellular signaling elements as potential targets for developing novel therapeutic strategies against incurable forms of pancreatic cancer is reported. The emphasis is on the critical functions gained by numerous growth factors and their receptors, such as epidermal growth factor receptor, hedgehog signaling, and proangiogenic agents such as vascular endothelial factor and interleukin-8 for the sustained growth, survival, and metastasis of pancreatic cancer cells. The molecular mechanisms associated with antitumoral properties and the clinical benefits of gemcitabine alone or in combination with other cytotoxic agents for the treatment of pancreatic cancer are discussed.
Collapse
Affiliation(s)
- Murielle Mimeault
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198-5870, USA
| | | | | | | |
Collapse
|
46
|
Abstract
Signal transducer and activator of transcription (STAT) proteins are latent cytoplasmic transcription factors that were discovered in the context of cytokine and growth factor signalling. Normal STAT signalling is tightly controlled with finite kinetics, which is in keeping with standard cellular responses. However, persistent STAT activation has also been observed and is frequently associated with malignant transformation. Constitutive activation of STAT proteins, notably of Stat3 and Stat5, is detected in many human tumour cells and cells transformed by oncoproteins that activate tyrosine kinase signalling pathways. It is well-established that constitutively active Stat3 is one of the molecular abnormalities that has a causal role in oncogenesis. Aberrant Stat3 promotes uncontrolled growth and survival through dysregulation of gene expression, including cyclin D1, c-Myc, Bcl-xL, Mcl-1 and survivin genes, and thereby contributes to oncogenesis. Moreover, recent studies reveal that persistently active Stat3 induces tumour angiogenesis by upregulation of vascular endothelial growth factor induction, and modulates immune functions in favour of tumour immune evasion. Overall, studies have validated Stat3 as a novel target for cancer therapy, and hence provided the rationale for developing small-molecule Stat3 inhibitors. This review will discuss current evidence for the critical role of aberrant STAT signalling in malignant transformation, and examine the validity as well as the therapeutic potential of Stat3 as a cancer target. An update on the efforts to develop novel Stat3 inhibitors for therapeutic application will also be provided.
Collapse
Affiliation(s)
- James Turkson
- Molecular Oncology Program, H. Lee Moffitt Cancer Center and Research Institute, 12902 Magnolia Drive, SRB 22214, Tampa, FL 33612, USA.
| |
Collapse
|
47
|
Venkatasubbarao K, Choudary A, Freeman JW. Farnesyl transferase inhibitor (R115777)-induced inhibition of STAT3(Tyr705) phosphorylation in human pancreatic cancer cell lines require extracellular signal-regulated kinases. Cancer Res 2005; 65:2861-71. [PMID: 15805288 DOI: 10.1158/0008-5472.can-04-2396] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In this study, we report that R115777, a nonpeptidomimetic farnesyl transferase inhibitor, suppresses the growth of human pancreatic adenocarcinoma cell lines and that this growth inhibition is associated with modulation in the phosphorylation levels of signal transducers and activators of transcription 3 (STAT3) and extracellular signal-regulated kinases (ERK). Treatment of cells with R115777 inhibited the tyrosine phosphorylation of STAT3((Tyr705)), while increasing the serine phosphorylation of STAT3((Ser727)). We found the differential phosphorylation of STAT3 was due to an increased and prolonged activation of ERKs. The biological significance of ERK-mediated inhibition of STAT3((Tyr705)) phosphorylation was further assessed by treating the cells with an inhibitor (PD98059) of mitogen-activated protein kinase kinase (MEK) or by transfecting the cells with a vector that expresses constitutively active MEK-1. Expression of constitutively active MEK-1 caused an increase of ERK activity and inhibited STAT3((Tyr705)) phosphorylation. Conversely, inhibition of ERK activity by PD98059 reversed the R115777-induced inhibition of STAT3((Tyr705)) phosphorylation. R115777 also caused the inhibition of the binding of STAT3 to its consensus binding element. An increase in the activation of ERKs either by overexpressing MEK-1 or treatment of cells with R115777 caused an up-regulation in the levels of a cyclin-dependent kinase (cdk) inhibitor, p21(cip1/waf1). These observations suggest that R115777-induced growth inhibition is partly due to the prolonged activation of ERKs that mediates an inhibition of STAT3((Tyr705)) phosphorylation and an increase in the levels of p21(cip1/waf1) in human pancreatic adenocarcinoma cell lines.
Collapse
Affiliation(s)
- Kolaparthi Venkatasubbarao
- Department of Medicine, Division of Medical Oncology, University of Texas Health Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
48
|
Hu YP, Venkateswarlu S, Sergina N, Howell G, St Clair P, Humphrey LE, Li W, Hauser J, Zborowska E, Willson JKV, Brattain MG. Reorganization of ErbB family and cell survival signaling after Knock-down of ErbB2 in colon cancer cells. J Biol Chem 2005; 280:27383-92. [PMID: 15888451 DOI: 10.1074/jbc.m414238200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The role of the ErbB family in supporting the malignant phenotype was characterized by stable transfection of a single chain antibody (ScFv5R) against ErbB2 containing a KDEL endoplasmic reticulum retention sequence into GEO human colon carcinoma cells. The antibody traps ErbB2 in the endoplasmic reticulum, thereby down-regulating cell surface ErbB2. The transfected cells showed inactivation of ErbB2 tyrosine phosphorylation and reduced heterodimerization of ErbB2 and ErbB3. This resulted in greater sensitivity to apoptosis induced by growth deprivation and delayed tumorigenicity in vivo. Furthermore, decreased heterodimerization of ErbB2 and ErbB3 led to a reorganization in ErbB function in transfected cells as heterodimerization between epidermal growth factor receptor (EGFR) and ErbB3 increased, whereas ErbB3 activation remained almost the same. Importantly, elimination of ErbB2 signaling resulted in an increase in EGFR expression and activation in transfected cells. Increased EGFR activation contributed to the sustained cell survival in transfected cells.
Collapse
Affiliation(s)
- Yi Peter Hu
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, New York 14263, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Metge B, Ofori-Acquah S, Stevens T, Balczon R. Stat3 activity is required for centrosome duplication in chinese hamster ovary cells. J Biol Chem 2004; 279:41801-6. [PMID: 15294906 DOI: 10.1074/jbc.m407094200] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The centrosome is the major microtubule organizing center in mammalian cells. During interphase, the single centrosome is duplicated and the progeny centrosomes then serve as the spindle poles during mitosis. Little is known about the signals that drive centrosome doubling. In these studies, various inhibitors and molecular approaches were used to demonstrate a role for the Stat pathway in regulating the events of centrosome doubling. Both piceatannol and a dominant negative behaving Stat3 adenovirus were able to disrupt centrosome duplication in hydroxyurea-arrested Chinese hamster ovary cells, demonstrating that Stat3 is a key signaling molecule in the events of centrosome duplication. Investigation into the role of Stat3 signaling during centrosome production demonstrated that Stat3 does not directly regulate the transcription of the centrosome genes encoding gamma-tubulin and PCM-1. Instead, Stat3 apparently regulated gamma-tubulin levels through post-transcriptional mechanisms whereas PCM-1 levels actually increased when Stat3 was inhibited, suggesting more complex mechanisms for regulating PCM-1 production. These studies demonstrate that Stat3 plays a vital role in centrosome duplication events, although the downstream targets of Stat3 activation leading to centrosome production remain to be established. The proposed signaling pathway utilizes Stat3 as a fundamental signaling molecule that directs the production of the various centrosome proteins indirectly.
Collapse
Affiliation(s)
- Brandon Metge
- Department of Cell Biology and Neuroscience, Department of Pharmacology, and Center for Lung Biology, University of South Alabama, Mobile, Alabama 36688, USA
| | | | | | | |
Collapse
|