1
|
Cotino-Nájera S, Herrera LA, Domínguez-Gómez G, Díaz-Chávez J. Molecular mechanisms of resveratrol as chemo and radiosensitizer in cancer. Front Pharmacol 2023; 14:1287505. [PMID: 38026933 PMCID: PMC10667487 DOI: 10.3389/fphar.2023.1287505] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
One of the primary diseases that cause death worldwide is cancer. Cancer cells can be intrinsically resistant or acquire resistance to therapies and drugs used for cancer treatment through multiple mechanisms of action that favor cell survival and proliferation, becoming one of the leading causes of treatment failure against cancer. A promising strategy to overcome chemoresistance and radioresistance is the co-administration of anticancer agents and natural compounds with anticancer properties, such as the polyphenolic compound resveratrol (RSV). RSV has been reported to be able to sensitize cancer cells to chemotherapeutic agents and radiotherapy, promoting cancer cell death. This review describes the reported molecular mechanisms by which RSV sensitizes tumor cells to radiotherapy and chemotherapy treatment.
Collapse
Affiliation(s)
- Sandra Cotino-Nájera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
| | - Luis A. Herrera
- Laboratorio de Oncología Molecular, Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de México, Mexico
- Escuela de Medicina y Ciencias de la Salud-Tecnológico de Monterrey, México City, Mexico
| | - Guadalupe Domínguez-Gómez
- Subdirección de Investigación Clínica, Instituto Nacional de Cancerología (INCAN), Ciudad de México, Mexico
| | - José Díaz-Chávez
- Unidad de Investigación en Cáncer, Instituto de Investigaciones Biomédicas-Universidad Nacional Autónoma de México, Instituto Nacional de Cancerología, Ciudad de México, Mexico
| |
Collapse
|
2
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2023; 63:2494-2508. [DOI: https:/doi.org/10.1080/10408398.2021.1976721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
3
|
Resveratrol Analogs and Prodrugs Differently Affect the Survival of Breast Cancer Cells Impairing Estrogen/Estrogen Receptor α/Neuroglobin Pathway. Int J Mol Sci 2023; 24:ijms24032148. [PMID: 36768470 PMCID: PMC9916867 DOI: 10.3390/ijms24032148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/25/2023] Open
Abstract
Breast cancer is the first leading tumor in women in terms of incidence worldwide. Seventy percent of cases are estrogen receptor (ER) α-positive. In these malignancies, 17β-estradiol (E2) via ERα increases the levels of neuroglobin (NGB), a compensatory protein that protects cancer cells from stress-induced apoptosis, including chemotherapeutic drug treatment. Our previous data indicate that resveratrol (RSV), a plant-derived polyphenol, prevents E2/ERα-induced NGB accumulation in this cellular context, making E2-dependent breast cancer cells more prone to apoptosis. Unfortunately, RSV is readily metabolized, thus preventing its effectiveness. Here, four different RSV analogs have been developed, and their effect on the ERα/NGB pathway has been compared with RSV conjugated with highly hydrophilic gold nanoparticles as prodrug to evaluate if RSV derivatives maintain the breast cancer cells' susceptibility to the chemotherapeutic drug paclitaxel as the original compound. Results demonstrate that RSV conjugation with gold nanoparticles increases RSV efficacy, with respect to RSV analogues, reducing NGB levels and enhancing the pro-apoptotic action of paclitaxel, even preventing the anti-apoptotic action exerted by E2 treatment on these cells. Overall, RSV conjugation with gold nanoparticles makes this complex a promising agent for medical application in breast cancer treatment.
Collapse
|
4
|
Rostamabadi H, Samandari Bahraseman MR, Esmaeilzadeh-Salestani K. Froriepia subpinnata Leaf Extract-Induced Apoptosis in the MCF-7 Breast Cancer Cell Line by Increasing Intracellular Oxidative Stress. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2023; 22:e136643. [PMID: 38444704 PMCID: PMC10912875 DOI: 10.5812/ijpr-136643] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/04/2023] [Accepted: 08/17/2023] [Indexed: 03/07/2024]
Abstract
Background Froriepia subpinnata is one of the plants used in the diet of Iranian people. Previous studies have investigated the antioxidant and antibacterial effects of this plant extract, but no study has been conducted on its anticancer properties. Objectives In this study, we investigated the effect of F. subpinnata extract on MCF-7 breast cancer cells. Methods The inhibitory effect of F. subpinnata leaf extract was determined on the growth of cancer cells by the MTT test. The ROS (reactive oxygen species) test was used to investigate the impact of the extract on intracellular oxidative stress. Flow cytometry and real-time PCR tests were used to investigate the apoptosis-related molecular processes. The GC-MS analysis was performed to determine the most abundant components. Results The GC-MS analysis showed that phytol, mono-ethylhexyl phthalate (MEHP), cinnamaldehyde, and neophytadiene constituted 60% of the extracted content. The MTT assay demonstrated that F. subpinnata leaf extract caused 50% lethality at a 400 μg/mL dose in MCF7 cells. The F. subpinnata extract at low doses decreased the ROS level for 24 hours in MCF-7, but by increasing the concentration, the ROS levels increased. At the IC50 dose (inhibitory concentration (IC) associated with 50% impact), the ROS level increased 3.5 times compared to the control group. Examining the effect of N-acetyl cysteine (NAC) showed that this antioxidant agent could prevent the lethal impact of the extract and eliminate the ROS increase in MCF7 cells. Flow cytometry and real-time PCR results showed that the extract specifically induced apoptosis through the internal apoptosis pathway in this cancer cell line. Conclusions The F. subpinnata extract induced apoptosis by increasing ROS in MCF-7 cancer cells and can be considered for further studies.
Collapse
Affiliation(s)
- Hanieh Rostamabadi
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Rasoul Samandari Bahraseman
- Plant Production and Genetic Engineering Department, Faculty of Agriculture, Lorestan University, Khorramabad, Iran
- Varjavand Kesht Kariman, Limited Liability Company, Kerman, Iran
| | - Keyvan Esmaeilzadeh-Salestani
- Department of Biotechnology, Faculty of Science and Modern Technology, Graduate University of Advanced Technology, Kerman, Iran
- Chair of Crop Science and Plant Biology, Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, EE51014 Tartu, Estonia
| |
Collapse
|
5
|
Talib WH, Awajan D, Hamed RA, Azzam AO, Mahmod AI, AL-Yasari IH. Combination Anticancer Therapies Using Selected Phytochemicals. Molecules 2022; 27:5452. [PMID: 36080219 PMCID: PMC9458090 DOI: 10.3390/molecules27175452] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is still one of the most widespread diseases globally, it is considered a vital health challenge worldwide and one of the main barriers to long life expectancy. Due to the potential toxicity and lack of selectivity of conventional chemotherapeutic agents, discovering alternative treatments is a top priority. Plant-derived natural products have high potential in cancer treatment due to their multiple mechanisms of action, diversity in structure, availability in nature, and relatively low toxicity. In this review, the anticancer mechanisms of the most common phytochemicals were analyzed. Furthermore, a detailed discussion of the anticancer effect of combinations consisting of natural product or natural products with chemotherapeutic drugs was provided. This review should provide a strong platform for researchers and clinicians to improve basic and clinical research in the development of alternative anticancer medicines.
Collapse
Affiliation(s)
- Wamidh H. Talib
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Dima Awajan
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Reem Ali Hamed
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Aya O. Azzam
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Asma Ismail Mahmod
- Department of Clinical Pharmacy and Therapeutic, Applied Science Private University, Amman 11931-166, Jordan
| | - Intisar Hadi AL-Yasari
- Department of Genetic Engineering, College of Biotechnology, Al-Qasim Green University, Babylon 964, Iraq
| |
Collapse
|
6
|
Xu JF, Wan Y, Tang F, Chen L, Yang Y, Xia J, Wu JJ, Ao H, Peng C. Emerging Significance of Ginsenosides as Potentially Reversal Agents of Chemoresistance in Cancer Therapy. Front Pharmacol 2022; 12:720474. [PMID: 34975466 PMCID: PMC8719627 DOI: 10.3389/fphar.2021.720474] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Chemoresistance has become a prevalent phenomenon in cancer therapy, which alleviates the effect of chemotherapy and makes it difficult to break the bottleneck of the survival rate of tumor patients. Current approaches for reversing chemoresistance are poorly effective and may cause numerous new problems. Therefore, it is urgent to develop novel and efficient drugs derived from natural non-toxic compounds for the reversal of chemoresistance. Researches in vivo and in vitro suggest that ginsenosides are undoubtedly low-toxic and effective options for the reversal of chemoresistance. The underlying mechanism of reversal of chemoresistance is correlated with inhibition of drug transporters, induction of apoptosis, and modulation of the tumor microenvironment(TME), as well as the modulation of signaling pathways, such as nuclear factor erythroid-2 related factor 2 (NRF2)/AKT, lncRNA cancer susceptibility candidate 2(CASC2)/ protein tyrosine phosphatase gene (PTEN), AKT/ sirtuin1(SIRT1), epidermal growth factor receptor (EGFR)/ phosphatidylinositol 3-kinase (PI3K)/AKT, PI3K/AKT/ mammalian target of rapamycin(mTOR) and nuclear factor-κB (NF-κB). Since the effects and the mechanisms of ginsenosides on chemoresistance reversal have not yet been reviewed, this review summarized comprehensively experimental data in vivo and in vitro to elucidate the functional roles of ginsenosides in chemoresistance reversal and shed light on the future research of ginsenosides.
Collapse
Affiliation(s)
- Jin-Feng Xu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yan Wan
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fei Tang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lu Chen
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Yang
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jia Xia
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jiao-Jiao Wu
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hui Ao
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,Innovative Institute of Chinese Medicine and Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Characteristic Chinese Medicine Resources in Southwest China, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
7
|
Ambroxol Hydrochloride Loaded Gastro-Retentive Nanosuspension Gels Potentiate Anticancer Activity in Lung Cancer (A549) Cells. Gels 2021; 7:gels7040243. [PMID: 34940303 PMCID: PMC8700943 DOI: 10.3390/gels7040243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/18/2021] [Accepted: 11/25/2021] [Indexed: 12/19/2022] Open
Abstract
This study aimed to develop gastro-retentive sustained-release ambroxol (ABX) nanosuspensions utilizing ambroxol-kappa-carrageenan (ABX-CRGK) complexation formulations. The complex was characterized by differential scanning calorimetry, powder x-ray diffractometer, and scanning electron microscopy. The prepared co-precipitate complex was used for the development of the sustained-release formulation to overcome the high metabolic and poor solubility problems associated with ABX. Furthermore, the co-precipitate complex was formulated as a suspension in an aqueous floating gel-forming vehicle of sodium alginate with chitosan, which might be beneficial for targeting the stomach as a good absorption site for ABX. The suspension exhibited rapid floating gel behaviour for more than 8 h, thus confirming the gastro-retentive effects. Particle size analysis revealed that the optimum nanosuspension (ABX-NS) had a mean particle size of 332.3 nm. Afterward, the ABX released by the nanoparticles would be distributed to the pulmonary tissue as previously described. Based on extensive pulmonary distribution, the developed nanosuspension-released ABX nanoparticles showed significant cytotoxic enhancement compared to free ABX in A549 lung cancer cells. However, a significant loss of mitochondrial membrane potential (MMP) also occurred. The level of caspase-3 was the highest in the ABX-NS-released particle-treated samples, with a value of 416.6 ± 9.11 pg/mL. Meanwhile, the levels of nuclear factor kappa beta, interleukins 6 and 1 beta, and tumour necrosis alpha (NF-kB, IL-6, IL-1β, and TNF-α, respectively) were lower for ABX-NS compared to free ABX (p < 0.05). In caspase-3, Bax, and p53, levels significantly increased in the presence of ABX-NS compared to free ABX. Overall, ABX-NS produced an enhancement of the anticancer effects of ABX on the A549 cells, and the developed sustained-release gel was successful in providing a gastro-retentive effect.
Collapse
|
8
|
Sahin TK, Bilir B, Kucuk O. Modulation of inflammation by phytochemicals to enhance efficacy and reduce toxicity of cancer chemotherapy. Crit Rev Food Sci Nutr 2021; 63:2494-2508. [PMID: 34529530 DOI: 10.1080/10408398.2021.1976721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Treatment of cancer with chemotherapeutic drugs is associated with numerous adverse effects as well as the eventual development of resistance to chemotherapy. There is a great need for complementary therapies such as botanicals and nutritional supplements with little or no side effects that prevent resistance to chemotherapy and reduce its adverse effects. Inflammation plays a major role in the development of chemoresistance and the adverse effects of chemotherapy. Phytochemicals have well-established anti-inflammatory effects; thus, they could be used as complementary therapies along with chemotherapy to increase its efficacy and reduce its toxicity. Botanical compounds inhibit the NF-κB signaling pathway, which plays an important role in the generation of inflammation, chemotherapy resistance, and modulation of cell survival and apoptosis. Botanicals have previously been studied extensively for their cancer chemopreventive activities and are generally considered safe for human consumption. The present review focuses on the modulation of inflammation by phytochemicals and their role in increasing the efficacy and reducing the toxicity of cancer chemotherapy.
Collapse
Affiliation(s)
- Taha Koray Sahin
- Department of Internal Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Birdal Bilir
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Omer Kucuk
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
9
|
Ren B, Kwah MXY, Liu C, Ma Z, Shanmugam MK, Ding L, Xiang X, Ho PCL, Wang L, Ong PS, Goh BC. Resveratrol for cancer therapy: Challenges and future perspectives. Cancer Lett 2021; 515:63-72. [PMID: 34052324 DOI: 10.1016/j.canlet.2021.05.001] [Citation(s) in RCA: 231] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 05/05/2021] [Accepted: 05/05/2021] [Indexed: 12/20/2022]
Abstract
Resveratrol (3,4',5-trihydroxy-trans-stilbene) has been expected to ameliorate cancer and foster breakthroughs in cancer therapy. Despite thousands of preclinical studies on the anticancer activity of resveratrol, little progress has been made in translational research and clinical trials. Most studies have focused on its anticancer effects, cellular mechanisms, and signal transduction pathways in vitro and in vivo. In this review, we aimed to discern the causes that prevent resveratrol from being used in cancer treatment. Among the various limitations, poor pharmacokinetics and low potency seem to be the two main bottlenecks of resveratrol. In addition, resveratrol-induced nephrotoxicity in multiple myeloma patients hinders its further development as an anticancer drug. New insights and strategies have been proposed to accelerate the conversion of resveratrol from bench to bedside. In the interim, the most promising approach is to enhance the bioavailability of resveratrol with new formulations. Alternatively, more potent analogues of resveratrol could be developed to augment its anticancer potency. Given all the gaps mentioned, much work remains to be done. However, if remarkable progress can be made, resveratrol may finally be used for cancer therapy.
Collapse
Affiliation(s)
- Boxu Ren
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Marabeth Xin-Yi Kwah
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Cuiliu Liu
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Zhaowu Ma
- School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, China
| | - Muthu K Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Lingwen Ding
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Xiaoqiang Xiang
- Department of Clinical Pharmacy, School of Pharmacy, Fudan University, Shanghai, 201203, China
| | - Paul Chi-Lui Ho
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore
| | - Lingzhi Wang
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore.
| | - Pei Shi Ong
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore, 117543, Singapore.
| | - Boon Cher Goh
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; Cancer Science Institute of Singapore, National University of Singapore, Singapore, 117599, Singapore; Department of Haematology-Oncology, National University Cancer Institute, Singapore, 119228, Singapore.
| |
Collapse
|
10
|
Duarte D, Cardoso A, Vale N. Synergistic Growth Inhibition of HT-29 Colon and MCF-7 Breast Cancer Cells with Simultaneous and Sequential Combinations of Antineoplastics and CNS Drugs. Int J Mol Sci 2021; 22:ijms22147408. [PMID: 34299028 PMCID: PMC8306770 DOI: 10.3390/ijms22147408] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/06/2023] Open
Abstract
Several central nervous system (CNS) drugs exhibit potent anti-cancer activities. This study aimed to design a novel model of combination that combines different CNS agents and antineoplastic drugs (5-fluorouracil (5-FU) and paclitaxel (PTX)) for colorectal and breast cancer therapy, respectively. Cytotoxic effects of 5-FU and PTX alone and in combination with different CNS agents were evaluated on HT-29 colon and MCF-7 breast cancer cells, respectively. Three antimalarials alone and in combination with 5-FU were also evaluated in HT-29 cells. Different schedules and concentrations in a fixed ratio were added to the cultured cells and incubated for 48 h. Cell viability was evaluated using MTT and SRB assays. Synergism was evaluated using the Chou-Talalay, Bliss Independence and HSA methods. Our results demonstrate that fluphenazine, fluoxetine and benztropine have enhanced anticancer activity when used alone as compared to being used in combination, making them ideal candidates for drug repurposing in colorectal cancer (CRC). Regarding MCF-7 cells, sertraline was the most promising candidate alone for drug repurposing, with the lowest IC50 value. For HT-29 cells, the CNS drugs sertraline and thioridazine in simultaneous combination with 5-FU demonstrated the strongest synergism among all combinations. In MCF-7 breast cancer cells, the combination of fluoxetine, fluphenazine and benztropine with PTX resulted in synergism for all concentrations below IC50. We also found that the antimalarial artesunate administration prior to 5-FU produces better results in reducing HT-29 cell viability than the inverse drug schedule or the simultaneous combination. These results demonstrate that CNS drugs activity differs between the two selected cell lines, both alone and in combination, and support that some CNS agents may be promising candidates for drug repurposing in these types of cancers. Additionally, these results demonstrate that 5-FU or a combination of PTX with CNS drugs should be further evaluated. These results also demonstrate that antimalarial drugs may also be used as antitumor agents in colorectal cancer, besides breast cancer.
Collapse
Affiliation(s)
- Diana Duarte
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Armando Cardoso
- NeuroGen Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Unit of Anatomy, Department of Biomedicine, Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Nuno Vale
- OncoPharma Research Group, Center for Health Technology and Services Research (CINTESIS), Rua Doutor Plácido da Costa, 4200-450 Porto, Portugal;
- Department of Community Medicine, Health Information and Decision (MEDCIDS), Faculty of Medicine, University of Porto, Alameda Professor Hernâni Monteiro, 4200-319 Porto, Portugal
- Correspondence:
| |
Collapse
|
11
|
Milczarek M, Pogorzelska A, Wiktorska K. Synergistic Interaction between 5-FU and an Analog of Sulforaphane-2-Oxohexyl Isothiocyanate-In an In Vitro Colon Cancer Model. Molecules 2021; 26:molecules26103019. [PMID: 34069385 PMCID: PMC8158758 DOI: 10.3390/molecules26103019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/14/2021] [Accepted: 05/16/2021] [Indexed: 12/22/2022] Open
Abstract
Combination therapy is based on the beneficial effects of pharmacodynamic interaction (synergistic or additive) between combined drugs or substances. A considerable group of candidates for combined treatments are natural compounds (e.g., isothiocyanates) and their analogs, which are tested in combination with anticancer drugs. We tested the anticancer effect of the combined treatment of isothiocyanate 2-oxohexyl isothiocyanate and 5-fluorouracil in colon and prostate cancer cell lines. The type of interaction was described using the Chou-Talalay method. The cytostatic and cytotoxic activities of the most promising combined treatments were investigated. In conclusion, we showed that combined treatment with 5-fluorouracil and 2-oxohexyl isothiocyanate acted synergistically in colon cancer. This activity is dependent on the cytostatic properties of the tested compounds and leads to the intensification of their individual cytotoxic activity. The apoptotic process is considered to be the main mechanism of cytotoxicity in this combined treatment.
Collapse
|
12
|
Fukui M, Choi HJ, Wang P, Zhu BT. Mechanism underlying resveratrol's attenuation of paclitaxel cytotoxicity in human breast cancer cells: Role of the SIRT1-FOXO1-HER3 signaling pathway. Cancer Treat Res Commun 2021; 28:100386. [PMID: 34010730 DOI: 10.1016/j.ctarc.2021.100386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 04/14/2021] [Accepted: 05/02/2021] [Indexed: 01/14/2023]
Abstract
Resveratrol (RES), a dietary phenolic compound, was reported to have cancer chemoprotective and chemotherapeutic effects. Earlier we unexpectedly observed that RES has a growth-enhancing effect in some breast cancer cells and can diminish the susceptibility of MDA-MB-231 and SKBR-3 cells to paclitaxel-induced cell death, but this phenomenon is not observed in MCF-7 cells. The present study seeks to determine the mechanism underlying RES's attenuation of paclitaxel cytotoxicity in cancer cells. It is found that RES reduces the anticancer action of paclitaxel only in the human breast cancer cells that express HER3 protein. Treatment of SKBR-3 cells with RES increases HER3 expression in a dose-dependent manner. The induction of HER3 expression by RES confers resistance of breast cancer cells against paclitaxel cytotoxicity. Furthermore, it is observed that the SIRT1-FOXO1 signaling pathway plays an important role in mediating RES-induced upregulation of HER3 expression. In conclusion, the present study reveals the mechanism for RES-induced resistance against paclitaxel in some human breast cancer cells, and it is suggested that the combined use of RES and paclitaxel is not suitable for treating human breast cancer that expresses HER3 protein.
Collapse
Affiliation(s)
- Masayuki Fukui
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Hye Joung Choi
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Pan Wang
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; Shenzhen Bay Laboratory, Shenzhen 518055, China
| | - Bao Ting Zhu
- Shenzhen Key Laboratory of Steroid Drug Discovery and Development, School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China; Shenzhen Bay Laboratory, Shenzhen 518055, China.
| |
Collapse
|
13
|
Mortezaee K, Najafi M, Farhood B, Ahmadi A, Shabeeb D, Musa AE. Resveratrol as an Adjuvant for Normal Tissues Protection and Tumor Sensitization. Curr Cancer Drug Targets 2021; 20:130-145. [PMID: 31738153 DOI: 10.2174/1568009619666191019143539] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/12/2019] [Accepted: 07/22/2019] [Indexed: 12/24/2022]
Abstract
Cancer is one of the most complicated diseases in present-day medical science. Yearly, several studies suggest various strategies for preventing carcinogenesis. Furthermore, experiments for the treatment of cancer with low side effects are ongoing. Chemotherapy, targeted therapy, radiotherapy and immunotherapy are the most common non-invasive strategies for cancer treatment. One of the most challenging issues encountered with these modalities is low effectiveness, as well as normal tissue toxicity for chemo-radiation therapy. The use of some agents as adjuvants has been suggested to improve tumor responses and also alleviate normal tissue toxicity. Resveratrol, a natural flavonoid, has attracted a lot of attention for the management of both tumor and normal tissue responses to various modalities of cancer therapy. As an antioxidant and anti-inflammatory agent, in vitro and in vivo studies show that it is able to mitigate chemo-radiation toxicity in normal tissues. However, clinical studies to confirm the usage of resveratrol as a chemo-radioprotector are lacking. In addition, it can sensitize various types of cancer cells to both chemotherapy drugs and radiation. In recent years, some clinical studies suggested that resveratrol may have an effect on inducing cancer cell killing. Yet, clinical translation of resveratrol has not yielded desirable results for the combination of resveratrol with radiotherapy, targeted therapy or immunotherapy. In this paper, we review the potential role of resveratrol for preserving normal tissues and sensitization of cancer cells in combination with different cancer treatment modalities.
Collapse
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Bagher Farhood
- Department of Medical Physics and Radiology, Faculty of Paramedical Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Amirhossein Ahmadi
- Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari 48175-861, Iran
| | - Dheyauldeen Shabeeb
- Department of Physiology, College of Medicine, University of Misan, Misan, Iraq
| | - Ahmed E Musa
- Department of Medical Physics, Tehran University of Medical Sciences (International Campus), Tehran, Iran
| |
Collapse
|
14
|
CYP1B1 as a therapeutic target in cardio-oncology. Clin Sci (Lond) 2021; 134:2897-2927. [PMID: 33185690 PMCID: PMC7672255 DOI: 10.1042/cs20200310] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/12/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
Cardiovascular complications have been frequently reported in cancer patients and survivors, mainly because of various cardiotoxic cancer treatments. Despite the known cardiovascular toxic effects of these treatments, they are still clinically used because of their effectiveness as anti-cancer agents. In this review, we discuss the growing body of evidence suggesting that inhibition of the cytochrome P450 1B1 enzyme (CYP1B1) can be a promising therapeutic strategy that has the potential to prevent cancer treatment-induced cardiovascular complications without reducing their anti-cancer effects. CYP1B1 is an extrahepatic enzyme that is expressed in cardiovascular tissues and overexpressed in different types of cancers. A growing body of evidence is demonstrating a detrimental role of CYP1B1 in both cardiovascular diseases and cancer, via perturbed metabolism of endogenous compounds, production of carcinogenic metabolites, DNA adduct formation, and generation of reactive oxygen species (ROS). Several chemotherapeutic agents have been shown to induce CYP1B1 in cardiovascular and cancer cells, possibly via activating the Aryl hydrocarbon Receptor (AhR), ROS generation, and inflammatory cytokines. Induction of CYP1B1 is detrimental in many ways. First, it can induce or exacerbate cancer treatment-induced cardiovascular complications. Second, it may lead to significant chemo/radio-resistance, undermining both the safety and effectiveness of cancer treatments. Therefore, numerous preclinical studies demonstrate that inhibition of CYP1B1 protects against chemotherapy-induced cardiotoxicity and prevents chemo- and radio-resistance. Most of these studies have utilized phytochemicals to inhibit CYP1B1. Since phytochemicals have multiple targets, future studies are needed to discern the specific contribution of CYP1B1 to the cardioprotective and chemo/radio-sensitizing effects of these phytochemicals.
Collapse
|
15
|
Differential Response of Lung Cancer Cells, with Various Driver Mutations, to Plant Polyphenol Resveratrol and Vitamin D Active Metabolite PRI-2191. Int J Mol Sci 2021; 22:ijms22052354. [PMID: 33652978 PMCID: PMC7956761 DOI: 10.3390/ijms22052354] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/11/2021] [Accepted: 02/22/2021] [Indexed: 12/21/2022] Open
Abstract
Plant polyphenols and vitamins D exhibit chemopreventive and therapeutic anticancer effects. We first evaluated the biological effects of the plant polyphenol resveratrol (RESV) and vitamin D active metabolite PRI-2191 on lung cancer cells having different genetic backgrounds. RESV and PRI-2191 showed divergent responses depending on the genetic profile of cells. Antiproliferative activity of PRI-2191 was noticeable in EGFRmut cells, while RESV showed the highest antiproliferative and caspase-3-inducing activity in KRASmut cells. RESV upregulated p53 expression in wtp53 cells, while downregulated it in mutp53 cells with simultaneous upregulation of p21 expression in both cases. The effect of PRI-2191 on the induction of CYP24A1 expression was enhanced by RESV in two KRASmut cell lines. The effect of RESV combined with PRI-2191 on cytokine production was pronounced and modulated. RESV cooperated with PRI-2191 in regulating the expression of IL-8 in EGFRmut cells, while OPN in KRASmut cells and PD-L1 in both cell subtypes. We hypothesize that the differences in response to RESV and PRI-2191 between EGFRmut and KRASmut cell lines result from the differences in epigenetic modifications since both cell subtypes are associated with the divergent smoking history that can induce epigenetic alterations.
Collapse
|
16
|
Yar Saglam AS, Kayhan H, Alp E, Onen HI. Resveratrol enhances the sensitivity of FL118 in triple-negative breast cancer cell lines via suppressing epithelial to mesenchymal transition. Mol Biol Rep 2021; 48:475-489. [PMID: 33389483 DOI: 10.1007/s11033-020-06078-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 12/10/2020] [Indexed: 12/25/2022]
Abstract
We aimed to investigate whether resveratrol (RSV) could sensitize human triple-negative breast cancer (TNBC) cells to FL118-induced cell death, epithelial to mesenchymal transition (EMT), invasion, and migration. The effects of sequential administration of RSV and FL118 on MDA-MB-436 and MDA-MB-468 cells were evaluated in terms of cell viability, cytotoxicity, apoptosis, cell cycle distribution, active caspase-3/7 levels, migration and invasion. Furthermore, mRNA and protein levels of EMT associated genes and proteins were also evaluated. Sequential administration of RSV and FL118 inhibited the cell viability in both TNBC cell lines. Meanwhile sequential administration of RSV and FL118 also dramatically reduced the migratory and invasive capabilities, it also reversed the EMT process in both TNBC cells. Moreover, sequential administration of RSV and FL118 led to a significant increase of apoptotic cells, as well as active Caspase-3/7 levels. Sequential administration of RSV and FL118 caused TNBC cells accumulating in the G1 phase, and markedly suppressed the mRNA and protein levels of N-cadherin, β-catenin, Vimentin, Snail, and Slug, and also significantly downregulated mRNA levels of Fibronectin, Twist1, Twist2, Zeb1, and Zeb2 genes, while enhanced the mRNA and protein levels of E-cadherin genes. RSV sensitized TNBC cells to FL118 via facilitating apoptosis, migration, invasion, and EMT and enhancing intracellular entrapment of FL118. Thus, our results suggest that since RSV enhanced the in vitro anticancer activity of FL118 in BC, it may be a potential therapeutic agent in advanced BC.
Collapse
Affiliation(s)
- Atiye Seda Yar Saglam
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey.
| | - Handan Kayhan
- Department of Adult Hematology, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| | - Ebru Alp
- Department of Medical Biology, Faculty of Medicine, Giresun University, Giresun, Turkey
| | - Hacer Ilke Onen
- Department of Medical Biology and Genetics, Faculty of Medicine, Gazi University, Besevler, 06500, Ankara, Turkey
| |
Collapse
|
17
|
Motamedi Z, Amini SA, Raeisi E, Lemoigne Y, Heidarian E. Combined Effects of Protocatechuic Acid and 5-Fluorouracil on p53 Gene Expression and Apoptosis in Gastric Adenocarcinoma Cells. Turk J Pharm Sci 2020; 17:578-585. [PMID: 33389946 DOI: 10.4274/tjps.galenos.2019.69335] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Objectives This study evaluated the combined effects of protocatechuic acid (PCA) and 5-fluorouracil (5-FU) on gastric adenocarcinoma (AGS) cells. Materials and Methods The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, colony formation assay, flow cytometry technique, real-time quantitative polymerase chain reaction, and Western blotting were used to investigate cytotoxic effects, colony formation, apoptosis, p53 gene expression, and Bcl-2 protein level in AGS cells treated with 5-FU and PCA. Results Our results demonstrated that PCA (500 μM) alone or in combination with 5-FU (10 μM) inhibited AGS cell proliferation, inhibited a colony formation, and increased apoptosis compared with untreated control cells. Moreover, the combined 5-FU/PCA exposure led to upregulation of p53 and downregulation of Bcl-2 protein when compared to the untreated control cells. Conclusion The results demonstrate that the combined 5-FU/PCA may promote antiproliferative and pro-apoptotic effects with the inhibition of colony formation in AGS cells. The mechanisms by which the combined 5-FU/PCA exposure exerts its effects are associated with upregulation of p53 gene expression and downregulation of Bcl-2 level. Therefore, the combination of 5-FU with PCA not only could be a promising approach to potentially reduce the dose requirements of 5-FU but also could promote apoptosis via p53 and Bcl-2 signaling pathways.
Collapse
Affiliation(s)
- Zahra Motamedi
- Shahrekord University of Medical Sciences, Basic Health Sciences Institute, Clinical Biochemistry Research Center, Shahrekord, Iran
| | - Sayed Asadollah Amini
- Shahrekord University of Medical Sciences, Basic Health Sciences Institute, Cellular and Molecular Research Center, Shahrekord, Iran
| | - Elham Raeisi
- Shahrekord University of Medical Sciences, Department of Medical Physics and Radiology, School of Allied Medical Sciences, Shahrekord, Iran
| | | | - Esfandiar Heidarian
- Shahrekord University of Medical Sciences, Basic Health Sciences Institute, Clinical Biochemistry Research Center, Shahrekord, Iran
| |
Collapse
|
18
|
Han Y, Yu X, Li S, Tian Y, Liu C. New Perspectives for Resistance to PARP Inhibitors in Triple-Negative Breast Cancer. Front Oncol 2020; 10:578095. [PMID: 33324554 PMCID: PMC7724080 DOI: 10.3389/fonc.2020.578095] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 10/15/2020] [Indexed: 12/19/2022] Open
Abstract
Poly (ADP-ribose) polymerase (PARP) inhibitors are a therapeutic milestone exerting a synthetic lethal effect in the treatment of cancer involving BRCA1/2 mutation. Theoretically, PARP inhibitors (PARPi) eliminate tumor cells by disrupting DNA damage repair through either PARylation or the homologous recombination (HR) pathway. However, resistance to PARPi greatly hinders therapeutic effectiveness in triple-negative breast cancer (TNBC). Owing to the high heterogeneity and few genetic targets in TNBC, there has been limited therapeutic progress in the past decades. In view of this, there is a need to circumvent resistance to PARPi and develop potential treatment strategies for TNBC. We present, herein, a review of the scientific progress and explore the mechanisms underlying PARPi resistance in TNBC. The complicated mechanisms of PARPi resistance, including drug exporter formation, loss of poly (ADP-ribose) glycohydrolase (PARG), HR reactivation, and restoration of replication fork stability, are discussed in detail in this review. Additionally, we also discuss new combination therapies with PARPi that can improve the clinical response in TNBC. The new perspectives for PARPi bring novel challenges and opportunities to overcome PARPi resistance in breast cancer.
Collapse
Affiliation(s)
- Ye Han
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shuqiang Li
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ye Tian
- Department of Biomedical Informatics, College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, China
| | - Caigang Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
19
|
Venditti I, Iucci G, Fratoddi I, Cipolletti M, Montalesi E, Marino M, Secchi V, Battocchio C. Direct Conjugation of Resveratrol on Hydrophilic Gold Nanoparticles: Structural and Cytotoxic Studies for Biomedical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1898. [PMID: 32977463 PMCID: PMC7598182 DOI: 10.3390/nano10101898] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 12/12/2022]
Abstract
Strongly hydrophilic gold nanoparticles (AuNPs), functionalized with citrate and L-cysteine, were synthetized and used as Resveratrol (RSV) vehicle to improve its bioavailability. Two different conjugation procedures were investigated: the first by adding RSV during AuNPs synthesis (1) and the second by adding RSV after AuNPs synthesis (2). The two different conjugated systems, namely AuNPs@RSV1 and AuNPs@RSV2 respectively, showed good loading efficiency (η%): η1 = 80 ± 5% for AuNPs@RSV1 and η2 = 20 ± 3% for AuNPs@RSV2. Both conjugated systems were investigated by means of Dynamic Light Scattering (DLS), confirming hydrophilic behavior and nanodimension (<2RH> 1 = 45 ± 12 nm and <2RH> 2 = 170 ± 30 nm). Fourier Transform Infrared Spectroscopy (FT-IR), Synchrotron Radiation induced X-Ray Photoelectron Spectroscopy (SR-XPS) and Near Edge X-ray Absorption Fine Structure (NEXAFS) techniques were applied to deeply understand the hooking mode of RSV on AuNPs surface in the two differently conjugated systems. Moreover, the biocompatibility of AuNPs and AuNPs@RSV1 was evaluated in the concentration range 1.0-45.5 µg/mL by assessing their effect on breast cancer cell vitality. The obtained data confirmed that, at the concentration used, AuNPs do not induce cell death, whereas AuNPs@RSV1 maintains the same anticancer effects as the unconjugated RSV.
Collapse
Affiliation(s)
- Iole Venditti
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Giovanna Iucci
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Ilaria Fratoddi
- Department of Chemistry, Sapienza University of Rome, 00185 Rome, Italy;
| | - Manuela Cipolletti
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Emiliano Montalesi
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Maria Marino
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Valeria Secchi
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| | - Chiara Battocchio
- Department of Sciences, Roma Tre University of Rome, 00146 Rome, Italy; (G.I.); (M.C.); (E.M.); (M.M.); (V.S.); (C.B.)
| |
Collapse
|
20
|
The Phytochemical Indicaxanthin Synergistically Enhances Cisplatin-Induced Apoptosis in HeLa Cells via Oxidative Stress-Dependent p53/p21 waf1 Axis. Biomolecules 2020; 10:biom10070994. [PMID: 32630700 PMCID: PMC7407573 DOI: 10.3390/biom10070994] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/26/2020] [Accepted: 06/28/2020] [Indexed: 01/01/2023] Open
Abstract
Combining phytochemicals with chemotherapics is an emerging strategy to treat cancer to overcome drug toxicity and resistance with natural compounds. We assessed the effects of indicaxanthin (Ind), a pigment obtained from Opuntia ficus-indica (L. Mill) fruit, combined with cisplatin (CDDP) against cervical cancer cells (HeLa). Measured cell viability via Trypan blue assay; cell morphology via fluorescence microscopy; apoptosis, cell cycle, mitochondrial membrane potential (MMP) and cell redox balance via flow-cytometry; expression levels of apoptosis-related proteins via western blot. Cell viability assays and Chou-Talalay plot demonstrated that the combination of CDDP and Ind had synergistic cytotoxic effects. Combined treatment had significant effects (p < 0.05) on phosphatidylserine externalization, cell morphological changes, cell cycle arrest, fall in MMP, ROS production and GSH decay compared with the individual treatment groups. Bax, cytochrome c, p53 and p21waf1 were over-expressed, while Bcl-2 was downregulated. Pre-treatment with N-acetyl-l-cysteine abolished the observed synergistic effects. We also demonstrated potentiation of CDDP anticancer activity by nutritionally relevant concentrations of Ind. Oxidative stress-dependent mitochondrial cell death is the basis of the chemosensitizing effect of Ind combined with CDDP against HeLa cancer cells. ROS act as upstream signaling molecules to initiate apoptosis via p53/p21waf1 axis. Ind can be a phytochemical of interest in combo-therapy.
Collapse
|
21
|
Zhang W, Shi W, Wu S, Kuss M, Jiang X, Untrauer JB, Reid SP, Duan B. 3D printed composite scaffolds with dual small molecule delivery for mandibular bone regeneration. Biofabrication 2020; 12:035020. [PMID: 32369796 PMCID: PMC8059098 DOI: 10.1088/1758-5090/ab906e] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Functional reconstruction of craniomaxillofacial defects is challenging, especially for the patients who suffer from traumatic injury, cranioplasty, and oncologic surgery. Three-dimensional (3D) printing/bioprinting technologies provide a promising tool to fabricate bone tissue engineering constructs with complex architectures and bioactive components. In this study, we implemented multi-material 3D printing to fabricate 3D printed PCL/hydrogel composite scaffolds loaded with dual bioactive small molecules (i.e. resveratrol and strontium ranelate). The incorporated small molecules are expected to target several types of bone cells. We systematically studied the scaffold morphologies and small molecule release profiles. We then investigated the effects of the released small molecules from the drug loaded scaffolds on the behavior and differentiation of mesenchymal stem cells (MSCs), monocyte-derived osteoclasts, and endothelial cells. The 3D printed scaffolds, with and without small molecules, were further implanted into a rat model with a critical-sized mandibular bone defect. We found that the bone scaffolds containing the dual small molecules had combinational advantages in enhancing angiogenesis and inhibiting osteoclast activities, and they synergistically promoted MSC osteogenic differentiation. The dual drug loaded scaffolds also significantly promoted in vivo mandibular bone formation after 8 week implantation. This work presents a 3D printing strategy to fabricate engineered bone constructs, which can likely be used as off-the-shelf products to promote craniomaxillofacial regeneration.
Collapse
Affiliation(s)
- Wenhai Zhang
- First Hip Department of Orthopedics, Tianjin Hospital, Tianjin, 300211, China
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Wen Shi
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- College of Textiles & Clothing; Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Mitchell Kuss
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xiping Jiang
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- College of Medicine, Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Jason B Untrauer
- Division of Oral & Maxillofacial Surgery, Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE
| | - St Patrick Reid
- College of Medicine, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, USA
- Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Mechanical and Materials Engineering, University of Nebraska- Lincoln, Lincoln, NE, USA
| |
Collapse
|
22
|
Sui X, Zhang C, Jiang Y, Zhou J, Xu C, Tang F, Chen B, Xu H, Wang S, Wang X. Resveratrol activates DNA damage response through inhibition of polo-like kinase 1 (PLK1) in natural killer/T cell lymphoma. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:688. [PMID: 32617308 PMCID: PMC7327334 DOI: 10.21037/atm-19-4324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Background Extranodal natural killer/T cell lymphoma (NKTCL) is a highly aggressive non-Hodgkin lymphoma with a poor prognosis. Resveratrol (REV), a natural nontoxic pleiotropic agent, has antitumor effects, yet not being studied in NKTCL. Methods We performed immunohistochemical (IHC) staining with NKTCL tumor tissues. Apoptosis and cell cycle of NKTCL cell line NK-92 were detected by using flow cytometry. Then we detected the cellular expression level of polo-like kinase 1 (PLK1) and key molecules in DNA damage response (DDR) pathway by using RNA sequencing (RNA-seq) technology, real-time PCR, and Western blot. Results In this study, we found distinguishingly expressed phosphorylated ataxia telangiectasia mutated (ATM) in human NKTCL tumor tissues compared to normal lymph nodes samples. But low levels of phosphorylated checkpoint kinase 2 (Chk2) and phosphorylated p53 were shown, suggesting that DDR pathway is blocked midway in NKTCL. REV inhibited the proliferation of NK-92 cells in a time- and dose-dependent manner, arrested cell cycle at G1 phase, and induced mitochondrial apoptosis. PLK1 was inhibited in both mRNA and protein levels by REV in NK-92 cells. At the same time, phosphorylation levels of Chk2 and p53 were upregulated. Conclusions DDR pathway plays an important role in the pathogenesis of NKTCL. REV shows anti-NKTCL activity. The inhibition of PLK1 and the activation of DDR are vital for REV induced tumor cell apoptosis.
Collapse
Affiliation(s)
- Xianxian Sui
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Canjing Zhang
- Key Laboratory of Medical Molecular Virology of Ministry of Education & Ministry of Health, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Yudong Jiang
- Shanghai Medical College, Fudan University, Shanghai, China
| | - Jianan Zhou
- The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Feng Tang
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Bobin Chen
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Huiwen Xu
- Department of Hematology, Huashan Hospital, Fudan University, Shanghai, China
| | - Songmei Wang
- Laboratory of Medical Molecular Biology, Experimental Teaching Center, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xuanyi Wang
- Key Laboratory of Medical Molecular Virology of Ministry of Education & Ministry of Health, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
23
|
Idrissou M, Sanchez A, Penault-Llorca F, Bignon YJ, Bernard-Gallon D. Epi-drugs as triple-negative breast cancer treatment. Epigenomics 2020; 12:725-742. [PMID: 32396394 DOI: 10.2217/epi-2019-0312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Triple-negative breast cancer (TNBC) types with poor prognosis are due to the absence of estrogen receptors, progesterone receptors and HEGFR-2. The lack of suitable therapy for TNBC has led the research community to turn toward epigenetic regulation and its protagonists that can modulate certain oncogenes and tumor suppressors. This has opened an important new field of therapy using epi-drugs, in preclinical and clinical trials. The epi-drugs are natural or synthetic molecules capable of inhibiting or modulating the activity of epigenetic proteins such as DNA methyltransferases, modulating the expression of interferon microRNAs, as well as histone methyltransferases, demethylases, acetyltransferases and deacetylases. This review investigated the epi-drugs used in the treatment of TNBC.
Collapse
Affiliation(s)
- Mouhamed Idrissou
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Anna Sanchez
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Frédérique Penault-Llorca
- INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France.,Department of Biopathology, Centre Jean Perrin, 58 Rue Montalembert, Clermont-Ferrand 63011, France
| | - Yves-Jean Bignon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| | - Dominique Bernard-Gallon
- Department of Oncogenetics, Centre Jean Perrin, CBRV, 28 place Henri-Dunant, Clermont-Ferrand 63001, France.,INSERM U 1240 Molecular Imagery & Theranostic Strategies (IMoST), 58 Rue Montalembert, Clermont-Ferrand 63005, France
| |
Collapse
|
24
|
Park NC, Han SJ, Lee JW, Choi HJ, Kim EJ, Jung MH, Jang JB, Hwang DS, Kim KS. Apoptotic effect of Gyejibokryunghwan on uterine sarcoma cells (SK-UT-1B). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 61:152806. [PMID: 31035046 DOI: 10.1016/j.phymed.2018.12.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 12/18/2018] [Accepted: 12/23/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND Diagnosis of uterine sarcomais is a challenging task for clinicians because its position is not easily accessible by current conventional techniques. In addition, standardized treatment for uterine sarcoma has not yet been established due to its rarity and heterogeneity. HYPOTHESIS/PURPOSE We investigated the apoptotic cell death of uterine sarcoma cells (SK-UT-1B) induced by Gyejibokryunghwan (GBH). GBH, an herbal medicine, has been widely used for gynecological diseases in Koean medicine. METHODS SK-UT-1B cells were treated with GBH of varying concentrations from 0 to 500 µg/ml. The mechanism of cell death was investigated through multiple analysis methods, including flow cytometry, cell cycle, and western blotting. RESULTS Flow cytometric analysis revealed that the number of apoptotic cells increased in a GBH dose-dependent manner. The cell populations of sub-G1 and G0/G1 phases were increased by GBH treatment, indicating apoptosisand cell arrest, while the population of S and G2/M phases decreased. With GBH, the expression levels of cleaved caspase-3, -6, and -9 were upregulated, while the expression levels of pro-caspase-3, -6, and -9 were down-regulated in SK-UT-1B cells. CONCLUSION These results are the first observation of uterine sarcoma cell death induced by GBH and confirmation of the mechanism of cell death, which occurred through the intrinsic apoptotic pathway. Clinically, uterine sarcoma has a poor prognosis with no appropriate treatment. GBH may become a new treatment modality for uterine sarcoma.
Collapse
Affiliation(s)
- Nam Chun Park
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Se Jik Han
- Department of Medical Engineering, Graduate school, Kyung HeeUniversity, Seoul 02447, Korea; Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea
| | - Jin-Woo Lee
- Medical Science Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea
| | - Hyuck Jai Choi
- East-West Medical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea
| | - Eun-Jin Kim
- East-West Medical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea
| | - Min-Hyung Jung
- Department of Obstetrics & Gynecology, School of Medicine, Kyung Hee University, Kyung Hee Medical Center, Seoul 02447, Korea
| | - Jun-Bock Jang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; Department of Obstetrics & Gynecology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Deok-Sang Hwang
- Department of Clinical Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Korea; East-West Medical Research Institute, Kyung Hee University Medical Center, Seoul 02447, Korea; Department of Obstetrics & Gynecology, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 02447, Korea.
| |
Collapse
|
25
|
Iturri J, Weber A, Moreno-Cencerrado A, Vivanco MDM, Benítez R, Leporatti S, Toca-Herrera JL. Resveratrol-Induced Temporal Variation in the Mechanical Properties of MCF-7 Breast Cancer Cells Investigated by Atomic Force Microscopy. Int J Mol Sci 2019; 20:E3275. [PMID: 31277289 PMCID: PMC6651212 DOI: 10.3390/ijms20133275] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Atomic force microscopy (AFM) combined with fluorescence microscopy has been used to quantify cytomechanical modifications induced by resveratrol (at a fixed concentration of 50 µM) in a breast cancer cell line (MCF-7) upon temporal variation. Cell indentation methodology has been utilized to determine simultaneous variations of Young's modulus, the maximum adhesion force, and tether formation, thereby determining cell motility and adhesiveness. Effects of treatment were measured at several time-points (0-6 h, 24 h, and 48 h); longer exposures resulted in cell death. Our results demonstrated that AFM can be efficiently used as a diagnostic tool to monitor irreversible morpho/nano-mechanical changes in cancer cells during the early steps of drug treatment.
Collapse
Affiliation(s)
- Jagoba Iturri
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria.
| | - Andreas Weber
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| | - Alberto Moreno-Cencerrado
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
- Research Institute of Molecular Pathology (IMP). Campus-Vienna-Biocenter 1, 1030 Vienna, Austria
| | - Maria dM Vivanco
- Cancer Heterogeneity Lab, CIC bioGUNE, Bizkaia Science and Technology Park, 48160 Derio, Spain
| | - Rafael Benítez
- Department Matemáticas para la Economía y la Empresa, Facultad de Economía, Universidad de Valencia, Avda. Tarongers s/n, 46022 Valencia, Spain
| | - Stefano Leporatti
- CNR Nanotec-Istituto di Nanotecnologia, Polo di Nanotecnologia c/o Campus Ecoteckne, Via Monteroni, 73100 Lecce, Italy.
| | - José Luis Toca-Herrera
- Institute for Biophysics, Department of Nanobiotechnology (DNBT), BOKU University for Natural Resources and Life Sciences, Muthgasse 11 (Simon Zeisel Haus), A-1190 Vienna, Austria
| |
Collapse
|
26
|
Abdelgawad IY, Grant MKO, Zordoky BN. Leveraging the Cardio-Protective and Anticancer Properties of Resveratrol in Cardio-Oncology. Nutrients 2019; 11:nu11030627. [PMID: 30875799 PMCID: PMC6471701 DOI: 10.3390/nu11030627] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 12/25/2022] Open
Abstract
Cardio-oncology is a clinical/scientific discipline which aims to prevent and/or treat cardiovascular diseases in cancer patients. Although a large number of cancer treatments are known to cause cardiovascular toxicity, they are still widely used because they are highly effective. Unfortunately, therapeutic interventions to prevent and/or treat cancer treatment-induced cardiovascular toxicity have not been established yet. A major challenge for such interventions is to protect the cardiovascular system without compromising the therapeutic benefit of anticancer medications. Intriguingly, the polyphenolic natural compound resveratrol and its analogs have been shown in preclinical studies to protect against cancer treatment-induced cardiovascular toxicity. They have also been shown to possess significant anticancer properties on their own, and to enhance the anticancer effect of other cancer treatments. Thus, they hold significant promise to protect the cardiovascular system and fight the cancer at the same time. In this review, we will discuss the current knowledge regarding the cardio-protective and the anticancer properties of resveratrol and its analogs. Thereafter, we will discuss the challenges that face the clinical application of these agents. To conclude, we will highlight important gaps of knowledge and future research directions to accelerate the translation of these exciting preclinical findings to cancer patient care.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Marianne K O Grant
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Milczarek M, Mielczarek L, Lubelska K, Dąbrowska A, Chilmonczyk Z, Matosiuk D, Wiktorska K. In Vitro Evaluation of Sulforaphane and a Natural Analog as Potent Inducers of 5-Fluorouracil Anticancer Activity. Molecules 2018; 23:molecules23113040. [PMID: 30469330 PMCID: PMC6278648 DOI: 10.3390/molecules23113040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 11/13/2018] [Accepted: 11/19/2018] [Indexed: 12/20/2022] Open
Abstract
Isothiocyanates (R-NCS) are sulphur-containing phytochemicals. The main source are plants of the Brassicaceae family. The best known plant-derived isothiocyanate is sulforaphane that has exhibited anticancer activity in both in vivo and in vitro studies. Recent attempts to expand their use in cancer therapy involve combining them with standard chemotherapeutics in order to increase their therapeutic efficacy. The aim of this paper is to determine the impact of sulforaphane and its natural analog alyssin on the anticancer activity of the well-known anticancer drug 5-fluorouracil. The type of drug-drug interactions was determined in prostate and colon cancer cell lines. Confocal microscopy, western blot and flow cytometry methods were employed to determine the mechanism of cytotoxic and cytostatic action of the combinations. The study revealed that additive or synergistic interactions were observed between 5-fluorouracil and both isothiocyanates, which enhanced the anticancer activity of 5-fluorouracil, particularly in colon cancer cell lines. An increased cytostatic effect was observed in case of alyssin while for sulforaphane the synergistic interaction with 5-fluorouracil involved an intensification of apoptotic cell death.
Collapse
Affiliation(s)
- Małgorzata Milczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warsaw, Poland.
| | - Lidia Mielczarek
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warsaw, Poland.
| | - Katarzyna Lubelska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warsaw, Poland.
| | - Aleksandra Dąbrowska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warsaw, Poland.
| | - Zdzisław Chilmonczyk
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warsaw, Poland.
| | - Dariusz Matosiuk
- Chair and Department of Synthesis and Chemical Technology of Pharmaceutical Substances, Medical University of Lublin, 1 Aleje Racławickie St, 20-059 Lublin, Poland.
| | - Katarzyna Wiktorska
- Department of Drug Biotechnology and Bioinformatics, National Medicines Institute, 30/34 Chełmska St, 00-725 Warsaw, Poland.
| |
Collapse
|
28
|
Cipolletti M, Montalesi E, Nuzzo MT, Fiocchetti M, Ascenzi P, Marino M. Potentiation of paclitaxel effect by resveratrol in human breast cancer cells by counteracting the 17β-estradiol/estrogen receptor α/neuroglobin pathway. J Cell Physiol 2018; 234:3147-3157. [PMID: 30421506 DOI: 10.1002/jcp.27309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 08/02/2018] [Indexed: 12/28/2022]
Abstract
Neuroglobin (NGB), an antiapoptotic protein upregulated by 17β-estradiol (E2), is part of E2/estrogen receptor α (ERα) pathway pointed to preserve cancer cell survival in presence of microenvironmental stressors including chemotherapeutic drugs. Here, the possibility that resveratrol (Res), an anticancer plant polyphenol, could increase the susceptibility of breast cancer cells to paclitaxel (Pacl) by affecting E2/ERα/NGB pathway has been evaluated. In MCF-7 and T47D (ERα-positive), but not in MDA-MB 231 (ERα-negative) nor in SK-N-BE (ERα and ERβ positive), Res decreases NGB levels interfering with E2/ERα-induced NGB upregulation and with E2-induced ERα and protein kinase B phosphorylation. Although Res treatment does not reduce cell viability by itself, this compound potentiates Pacl proapoptotic effects. Notably, the increase of NGB levels by NGB expression vector transfection prevents Pacl or Res/Pacl effects. Taken together, these findings indicate a new Res-based mechanism that acts on tumor cells impairing the E2/ERα/NGB signaling pathways and increasing cancer cell susceptibility to chemotherapeutic agent.
Collapse
Affiliation(s)
| | | | | | | | - Paolo Ascenzi
- Department of Science, Roma Tre University, Rome, Italy
| | - Maria Marino
- Department of Science, Roma Tre University, Rome, Italy
| |
Collapse
|
29
|
Cipolletti M, Solar Fernandez V, Montalesi E, Marino M, Fiocchetti M. Beyond the Antioxidant Activity of Dietary Polyphenols in Cancer: the Modulation of Estrogen Receptors (ERs) Signaling. Int J Mol Sci 2018; 19:E2624. [PMID: 30189583 PMCID: PMC6165334 DOI: 10.3390/ijms19092624] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 08/31/2018] [Accepted: 09/03/2018] [Indexed: 02/07/2023] Open
Abstract
The potential "health benefits" of dietary polyphenols have been ascribed to their direct antioxidant activity and their impact on the regulation of cell and tissue redox balance. However, because of the relative poor bioavailability of many of these compounds, their effects could not be easily explained by the antioxidant action, which may occur only at high circulating and tissue concentrations. Therefore, many efforts have been put forward to clarify the molecular mechanisms underlining the biological effect of polyphenols in physiological and pathological conditions. Polyphenols' bioavailability, metabolism, and their effects on enzyme, membrane, and/or nuclear receptors and intracellular transduction mechanisms may define the overall impact of these compounds on cancer risk and progression, which is still debated and not yet clarified. Polyphenols are able to bind to estrogen receptor α (ERα) and β (ERβ), and therefore induce biological effects in human cells through mimicking or inhibiting the action of endogenous estrogens, even at low concentrations. In this work, the role and effects of food-contained polyphenols in hormone-related cancers will be reviewed, mainly focusing on the different polyphenols' mechanisms of action with particular attention on their estrogen receptor-based effects, and on the consequences of such processes on tumor progression and development.
Collapse
Affiliation(s)
- Manuela Cipolletti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | | | - Emiliano Montalesi
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Maria Marino
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| | - Marco Fiocchetti
- Department of Science, University Roma Tre, Viale Guglielmo Marconi 446, I-00146 Roma, Italy.
| |
Collapse
|
30
|
de Oliveira Júnior RG, Christiane Adrielly AF, da Silva Almeida JRG, Grougnet R, Thiéry V, Picot L. Sensitization of tumor cells to chemotherapy by natural products: A systematic review of preclinical data and molecular mechanisms. Fitoterapia 2018; 129:383-400. [DOI: 10.1016/j.fitote.2018.02.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 02/19/2018] [Accepted: 02/20/2018] [Indexed: 12/13/2022]
|
31
|
Caleja C, Ribeiro A, Barreiro MF, Ferreira ICFR. Phenolic Compounds as Nutraceuticals or Functional Food Ingredients. Curr Pharm Des 2018; 23:2787-2806. [PMID: 28025943 DOI: 10.2174/1381612822666161227153906] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Nowadays, the functional foods represent one the most promising, interesting and innovative areas in the food industry. Various components are being added to foods in order to render them functional. METHODS One example of these components are plant naturally occurring phenolic compounds, which are associated with a high antioxidant capacity and thus with benefits in relation to human health. RESULTS However, despite the huge number of scientific studies and patents on this topic and their natural presence in foods, namely in the ones from plant origin, there are still few marketable products enriched with these compounds. The commercialization of this type of functional products needs to go through various regulations, proving that they are safe and present the ascribed health benefits, conquering the target audience. In this review the growing interest of industry and consumers' appetence for functional foods and nutraceuticals is highlighted, focusing especially on phenolic compounds. CONCLUSION Although several published works show the multitude of bioactive properties of these compounds, ensuring their use as bioactive ingredients in food, they present inherent stability issues needing to be solved. However, considerable research is presently ongoing to overcome this problem, making viable the development of new products to be launched in the market.
Collapse
Affiliation(s)
- Cristina Caleja
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| | - Andreia Ribeiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Maria Filomena Barreiro
- Laboratory of Separation and Reaction Engineering (LSRE), Associate Laboratory LSRE/LCM, IPB, Braganca, Portugal
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Braganca, Braganca, Portugal
| |
Collapse
|
32
|
Khanzadeh T, Hagh MF, Talebi M, Yousefi B, Azimi A, Hossein Pour Feizi AA, Baradaran B. Investigation of BAX and BCL2 expression and apoptosis in a resveratrol- and prednisolone-treated human T-ALL cell line, CCRF-CEM. Blood Res 2018; 53:53-60. [PMID: 29662863 PMCID: PMC5898995 DOI: 10.5045/br.2018.53.1.53] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 12/04/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
Background The numerous side effects and chemo-resistance of conventional chemical drugs in the treatment of malignancies have led to consideration of the anti-cancer properties of natural products. In the present study, we aimed to explore the apoptotic effect of two natural components, resveratrol and prednisolone, on the T acute lymphoblastic leukemia (ALL) cell line, CCRF-CEM. Our findings suggested the incorporation of these natural agents into drug regimens to treat patients with ALL. Methods In this study, we investigated the effect of different doses of resveratrol (15, 50 and 100 µM) and prednisolone (700 µM) on BAX (apoptosis promoter) and BCL2 (apoptosis inhibitor) expressions following 24 and 48 hours of treatment on CCRF-CEM cells, using real-time PCR, and on apoptosis induction using flow cytometry. Results The results showed a time- and dose-dependent increase in BAX expression and a decrease in BCL2 expression. Apoptosis was induced in CCRF-CEM cells treated with resveratrol and prednisolone for 24 and 48 hours. Combined resveratrol and prednisolone treatment showed synergistic effects on the overexpression of BAX and the downregulation of BCL2. The drug combination had a greater influence on apoptosis induction compared with either drug administered alone after 48 hours of treatment. Conclusion The results of this study suggested that resveratrol exhibited a remarkable efficacy to improve the influence of glucocorticoids drugs, especially prednisolone, to induce apoptosis in the CCRF-CEM cell line.
Collapse
Affiliation(s)
- Taghi Khanzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Bahman Yousefi
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ako Azimi
- Department of Basic Sciences, Maragheh University of Medical Sciences, Maragheh, Iran
| | - Abbas Ali Hossein Pour Feizi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
33
|
Al-Zahrani AA. Saudi anti-human cancer plants database (SACPD): A collection of plants with anti-human cancer activities. Oncol Rev 2018; 12:349. [PMID: 29774137 PMCID: PMC5939832 DOI: 10.4081/oncol.2018.349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/01/2018] [Indexed: 01/31/2023] Open
Abstract
Several anticancer drugs have been developed from natural products such as plants. Successful experiments in inhibiting the growth of human cancer cell lines using Saudi plants were published over the last three decades. Up to date, there is no Saudi anticancer plants database as a comprehensive source for the interesting data generated from these experiments. Therefore, there was a need for creating a database to collect, organize, search and retrieve such data. As a result, the current paper describes the generation of the Saudi anti-human cancer plants database (SACPD). The database contains most of the reported information about the naturally growing Saudi anticancer plants. SACPD comprises the scientific and local names of 91 plant species that grow naturally in Saudi Arabia. These species belong to 38 different taxonomic families. In Addition, 18 species that represent16 family of medicinal plants and are intensively sold in the local markets in Saudi Arabia were added to the database. The website provides interesting details, including plant part containing the anticancer bioactive compounds, plants locations and cancer/cell type against which they exhibit their anticancer activity. Our survey revealed that breast, liver and leukemia were the most studied cancer cell lines in Saudi Arabia with percentages of 27%, 19% and 15%, respectively. The current SACPD represents a nucleus around which more development efforts can expand to accommodate all future submissions about new Saudi plant species with anticancer activities. SACPD will provide an excellent starting point for researchers and pharmaceutical companies who are interested in developing new anticancer drugs. SACPD is available online at https://teeqrani1.wixsite.com/sapd
Collapse
Affiliation(s)
- Ateeq Ahmed Al-Zahrani
- Biology and Chemistry Department, University College at Al-Qunfudhah, Umm AL-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
34
|
Natural compounds and combination therapy in colorectal cancer treatment. Eur J Med Chem 2018; 144:582-594. [DOI: 10.1016/j.ejmech.2017.12.039] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/11/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
|
35
|
Park YH. The nuclear factor-kappa B pathway and response to treatment in breast cancer. Pharmacogenomics 2017; 18:1697-1709. [PMID: 29182047 DOI: 10.2217/pgs-2017-0044] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nuclear factor-kappa B (NF-κB) pathway is known to contribute to critical signaling in cancer biology, including breast cancer, through promotion of proliferation, angiogenesis, metastasis, tumor progression, inflammation and cell survival. In this review, in vivo and in vitro studies of the NF-κB pathway in breast cancer are discussed, focusing on DNA damage and the epithelial-mesenchymal transition associated with breast cancer stem cell properties. The relationships between NF-κB signaling and conventional cancer treatments in terms of response to chemo- and radiotherapy will also be discussed. Then contribution and involvement of immune system in the NF-κB pathway will be covered. Furthermore, the future perspective of NF-κB targeting as an innovative strategy to overcome refractory breast cancer, including recent updates on out-receptor activator of NF-κB (RANKing), will be covered.
Collapse
Affiliation(s)
- Yeon Hee Park
- Division of Hematology-Oncology, Department of Medicine, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Biomedical Research Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea.,Samsung Advanced Institute for Health Sciences & Technology, Sungkyunkwan University School of Medicine, Seoul, 06351, Korea
| |
Collapse
|
36
|
Saha B, Patro BS, Koli M, Pai G, Ray J, Bandyopadhyay SK, Chattopadhyay S. trans-4,4'-Dihydroxystilbene (DHS) inhibits human neuroblastoma tumor growth and induces mitochondrial and lysosomal damages in neuroblastoma cell lines. Oncotarget 2017; 8:73905-73924. [PMID: 29088756 PMCID: PMC5650311 DOI: 10.18632/oncotarget.17879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 03/24/2017] [Indexed: 01/07/2023] Open
Abstract
In view of the inadequacy of neuroblastoma treatment, five hydroxystilbenes and resveratrol (Resv) were screened for their cytotoxic property against human neuroblastoma cell lines. The mechanism of cytotoxic action of the most potent compound, trans-4,4'-dihydroxystilbene (DHS) was investigated in vitro using human neuroblastoma cell lines. DHS was also tested in a mouse xenograft model of human neuroblastoma tumor. The MTT, sub-G1, annexin V and clonogenic assays as well as microscopy established higher cytotoxicity of DHS than Resv to the IMR32 cell line. DHS (20 μM) induced mitochondrial membrane permeabilization (MMP) in the cells, as revealed from JC-1 staining, cytochrome c and ApaF1 release and caspases-9/3 activation. DHS also induced lysosomal membrane permeabilization (LMP) to release cathepsins B, L and D, and the cathepsins inhibitors partially reduced MMP/caspase-3 activation. The ROS, produced by DHS activated the p38 and JNK MAPKs to augment the BAX activity and BID-cleavage, and induce LMP and MMP in the cells. DHS (100 mg/kg) also inhibited human neuroblastoma tumor growth in SCID mice by 51%. Hence, DHS may be a potential chemotherapeutic option against neuroblastoma. The involvement of an independent LMP as well as a partially LMP-dependent MMP by DHS is attractive as it provides options to target both mitochondria and lysosome.
Collapse
Affiliation(s)
- Bhaskar Saha
- Vijaygarh Jyotish Ray College, Jadavpur, Kolkata 700 032, India
- S. N. Pradhan Centre for Neuroscience, Ballygunge Science College, University of Calcutta, Kolkata 700 019, India
| | - Birija Sankar Patro
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mrunesh Koli
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Ganesh Pai
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Jharna Ray
- S. N. Pradhan Centre for Neuroscience, Ballygunge Science College, University of Calcutta, Kolkata 700 019, India
| | | | - Subrata Chattopadhyay
- Bio-Organic Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
37
|
A novel resveratrol derivative selectively inhibits the proliferation of colorectal cancer cells with KRAS mutation. Mol Cell Biochem 2017; 442:39-45. [DOI: 10.1007/s11010-017-3191-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 09/09/2017] [Indexed: 12/20/2022]
|
38
|
Design expert assisted nanoformulation design for co-delivery of topotecan and thymoquinone: Optimization, in vitro characterization and stability assessment. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
39
|
Opydo-Chanek M, Rak A, Cierniak A, Mazur L. Combination of ABT-737 and resveratrol enhances DNA damage and apoptosis in human T-cell acute lymphoblastic leukemia MOLT-4 cells. Toxicol In Vitro 2017; 42:38-46. [DOI: 10.1016/j.tiv.2017.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 02/02/2017] [Accepted: 03/29/2017] [Indexed: 01/12/2023]
|
40
|
Hah YS, Kim JG, Cho HY, Park JS, Heo EP, Yoon TJ. Procyanidins from Vitis vinifera seeds induce apoptotic and autophagic cell death via generation of reactive oxygen species in squamous cell carcinoma cells. Oncol Lett 2017; 14:1925-1932. [PMID: 28781636 PMCID: PMC5530194 DOI: 10.3892/ol.2017.6422] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 09/09/2016] [Indexed: 12/12/2022] Open
Abstract
Procyanidins can inhibit cell proliferation and tumorigenesis and induce apoptosis in human skin, breast and prostate carcinoma cell lines. Squamous cell carcinoma (SCC) of the skin is a common form of keratinocytic or non-melanoma skin cancer and is a deadly disease with a poor prognosis due to the ineffectiveness of therapy. The present study aimed to determine whether grape seed proanthocyanidin (GSP) may regulate different modes of cell death in the human SCC12 cell line. The present study found that the treatment of SCC12 cells with GSP inhibited proliferation in a dose-dependent manner and reduced the motility and invasiveness of SCC12 cells through suppression of matrix metalloproteinase-2/9 expression. GSP treatment also resulted in induction of apoptosis and autophagy via generation of reactive oxygen species. The inhibition of autophagy by 3-methyladenine decreased GSP-induced cell death, which suggested that GSP-induced autophagy can promote cell death. The results of the present study suggested that autophagy functions as a death mechanism in SCC and provided a rationale for the use of GSP in combination with autophagy activators for treating cancers such as SCC.
Collapse
Affiliation(s)
- Young-Sool Hah
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Jin Gu Kim
- Department of Dermatology, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Hee Young Cho
- Biomedical Research Institute, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Jin Sung Park
- Department of Orthopedic Surgery, Gyeongsang National University Hospital, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| | - Eun Phil Heo
- Department of Dermatology, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Gyeongsangnam-do 51353, Republic of Korea
| | - Tae-Jin Yoon
- Department of Dermatology, Gyeongsang National University Hospital, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju, Gyeongsangnam-do 52727, Republic of Korea
| |
Collapse
|
41
|
Vancauwenberghe E, Noyer L, Derouiche S, Lemonnier L, Gosset P, Sadofsky LR, Mariot P, Warnier M, Bokhobza A, Slomianny C, Mauroy B, Bonnal JL, Dewailly E, Delcourt P, Allart L, Desruelles E, Prevarskaya N, Roudbaraki M. Activation of mutated TRPA1 ion channel by resveratrol in human prostate cancer associated fibroblasts (CAF). Mol Carcinog 2017; 56:1851-1867. [PMID: 28277613 DOI: 10.1002/mc.22642] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 02/10/2017] [Accepted: 03/03/2017] [Indexed: 12/18/2022]
Abstract
Previous studies showed the effects of resveratrol (RES) on several cancer cells, including prostate cancer (PCa) cell apoptosis without taking into consideration the impact of the tumor microenvironment (TME). The TME is composed of cancer cells, endothelial cells, blood cells, and cancer-associated fibroblasts (CAF), the main source of growth factors. The latter cells might modify in the TME the impact of RES on tumor cells via secreted factors. Recent data clearly show the impact of CAF on cancer cells apoptosis resistance via secreted factors. However, the effects of RES on PCa CAF have not been studied so far. We have investigated here for the first time the effects of RES on the physiology of PCa CAF in the context of TME. Using a prostate cancer CAF cell line and primary cultures of CAF from prostate cancers, we show that RES activates the N-terminal mutated Transient Receptor Potential Ankyrin 1 (TRPA1) channel leading to an increase in intracellular calcium concentration and the expression and secretion of growth factors (HGF and VEGF) without inducing apoptosis in these cells. Interestingly, in the present work, we also show that when the prostate cancer cells were co-cultured with CAF, the RES-induced cancer cell apoptosis was reduced by 40%, an apoptosis reduction canceled in the presence of the TRPA1 channel inhibitors. The present work highlights CAF TRPA1 ion channels as a target for RES and the importance of the channel in the epithelial-stromal crosstalk in the TME leading to resistance to the RES-induced apoptosis.
Collapse
Affiliation(s)
- Eric Vancauwenberghe
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Lucile Noyer
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Sandra Derouiche
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Loïc Lemonnier
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Pierre Gosset
- Faculté Libre de Médecine, Laboratoire d'Anatomie et de Cytologie Pathologique du groupement hospitalier de l'Institut Catholique de Lille, Lille, France
| | - Laura R Sadofsky
- Cardiovascular and Respiratory Studies, The University of Hull, Castle Hill Hospital, Cottingham, United Kingdom
| | - Pascal Mariot
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Marine Warnier
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Alexandre Bokhobza
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Christian Slomianny
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Brigitte Mauroy
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Service d'Urologie de l'hôpital St-Philibert, Lille, France
| | - Jean-Louis Bonnal
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Service d'Urologie de l'hôpital St-Philibert, Lille, France
| | - Etienne Dewailly
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Philippe Delcourt
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Laurent Allart
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Emilie Desruelles
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Natalia Prevarskaya
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| | - Morad Roudbaraki
- Univ. Lille, Inserm, U1003-PHYCEL-Physiologie Cellulaire, Equipe labellisée par la Ligue Nationale contre le cancer, Villeneuve d'Ascq, Lille, France.,Laboratory of Excellence, Ion Channels Science and Therapeutics, Université Lille I Sciences et Technologies, Villeneuve d'Ascq, France
| |
Collapse
|
42
|
Alamolhodaei NS, Tsatsakis AM, Ramezani M, Hayes AW, Karimi G. Resveratrol as MDR reversion molecule in breast cancer: An overview. Food Chem Toxicol 2017; 103:223-232. [DOI: 10.1016/j.fct.2017.03.024] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/05/2017] [Accepted: 03/13/2017] [Indexed: 12/25/2022]
|
43
|
Khan Z, Khan AA, Yadav H, Prasad GBKS, Bisen PS. Survivin, a molecular target for therapeutic interventions in squamous cell carcinoma. Cell Mol Biol Lett 2017; 22:8. [PMID: 28536639 PMCID: PMC5415770 DOI: 10.1186/s11658-017-0038-0] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/27/2017] [Indexed: 12/14/2022] Open
Abstract
Squamous cell carcinoma (SCC) is the most common cancer worldwide. The treatment of locally advanced disease generally requires various combinations of radiotherapy, surgery, and systemic therapy. Despite aggressive multimodal treatment, most of the patients relapse. Identification of molecules that sustain cancer cell growth and survival has made molecular targeting a feasible therapeutic strategy. Survivin is a member of the Inhibitor of Apoptosis Protein (IAP) family, which is overexpressed in most of the malignancies including SCC and totally absent in most of the normal tissues. This feature makes survivin an ideal target for cancer therapy. It orchestrates several important mechanisms to support cancer cell survival including inhibition of apoptosis and regulation of cell division. Overexpression of survivin in tumors is also associated with poor prognosis, aggressive tumor behavior, resistance to therapy, and high tumor recurrence. Various strategies have been developed to target survivin expression in cancer cells, and their effects on apoptosis induction and tumor growth attenuation have been demonstrated. In this review, we discuss recent advances in therapeutic potential of survivin in cancer treatment.
Collapse
Affiliation(s)
- Zakir Khan
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India.,Department of Biomedical Sciences, Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, CA 90048 USA
| | - Abdul Arif Khan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hariom Yadav
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892 USA
| | | | - Prakash Singh Bisen
- School of Studies in Biotechnology, Jiwaji University, Gwalior, 474001 MP India
| |
Collapse
|
44
|
Thioredoxin 1 modulates apoptosis induced by bioactive compounds in prostate cancer cells. Redox Biol 2017; 12:634-647. [PMID: 28391184 PMCID: PMC5385622 DOI: 10.1016/j.redox.2017.03.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that natural bioactive compounds, alone or in combination with traditional chemotherapeutic agents, could be used as potential therapies to fight cancer. In this study, we employed four natural bioactive compounds (curcumin, resveratrol, melatonin, and silibinin) and studied their role in redox control and ability to promote apoptosis in androgen sensitive and insensitive prostate cancer cells. Here is shown that curcumin and resveratrol promote ROS production and induce apoptosis in LNCaP and PC-3. An increase in reactive species is a trigger event in curcumin-induced apoptosis and a consequence of resveratrol effects on other pathways within these cells. Moreover, here we demonstrated that these four compounds affect differently one of the main intracellular redox regulator, the thioredoxin system. Exposure to curcumin and resveratrol promoted TRX1 oxidation and altered its subcellular location. Furthermore, resveratrol diminished TRX1 levels in PC-3 cells and increased the expression of its inhibitor TXNIP. Conversly, melatonin and silibinin only worked as cytostatic agents, reducing ROS levels and showing preventive effects against TRX oxidation. All together, this work explores the effect of compounds currently tested as chemo-preventive agents in prostate cancer therapy, on the TRX1 redox state and function. Our work shows the importance that the TRX system might have within the differences found in their mechanisms of action. These bioactive compounds trigger different responses and affect ROS production and redox systems in prostate cancer cells, suggesting the key role that redox-related pathways might play in processes like differentiation or survival in prostate cancer. Resveratrol decreases TRX1 by increasing TXNIP while curcumin induces TRX1 oxidation. Antioxidants decrease TRX1 oxidation and nuclear translocation to prevent cell death. TRX1 oxidation and nuclear translocation play a key role in apoptosis. Differences in the apoptosis induction of bioactive compounds relay on TRX1 oxidation.
Collapse
|
45
|
Jia H, Ye J, You J, Shi X, Kang W, Wang T. Role of the cystathionine β-synthase/H2S system in liver cancer cells and the inhibitory effect of quinolone-indolone conjugate QIC2 on the system. Oncol Rep 2017; 37:3001-3009. [PMID: 28440458 DOI: 10.3892/or.2017.5513] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/30/2016] [Indexed: 11/06/2022] Open
Abstract
Hydrogen sulfide (H2S), the third gasotransmitter, plays important roles in cancer biological processes. As endogenous H2S exerts pro-cancer functions, inhibition of its production in cancer cells may provide a new cancer treatment strategy and be achieved via regulation of the function of cystathionine β-synthase (CBS), one of the main metabolic enzymes synthesizing H2S. This enzyme plays important roles in the development and progression of colon and ovarian cancer, primarily regulating mitochondrial bioenergetics and accelerating cell cycle progression. In the present study, we firstly investigated the role of the CBS/H2S system in human hepatoma cells, and then the inhibitory effect of a quinolone-indolone conjugate QIC2 on this system. When CBS was overexpressed in human hepatoma HepG2 and SMMC-7721 cells, inhibition of endogenous CBS/H2S significantly reduced their viability and growth rate, as well as the proliferation of SMMC-7721 cells. Meanwhile, CBS knockdown caused multiple effects, including apoptosis of SMMC-7721 cells, an increase in the Bcl-2-associated X protein (Bax)/B cell lymphoma/leukemia (Bcl-2) ratio, activation of caspase-3 and polyADP-ribose polymerase (PARP), when compared with the scramble siRNA (Sc siRNA)-transfected groups. Heme oxygenase-1 (HO-1; a microsomal enzyme) expression was significantly decreased while the reactive oxygen species (ROS) level was increased in the CBS siRNA-transfected SMMC-7721 cells. QIC2 significantly reduced SMMC-7721 cell viability in a dose-dependent manner and showed a lower toxicity in human normal liver HL-7702 cells relative to the positive controls sunitinib and doxorubicin (DOX). The compound also inhibited cell proliferation and induced cell apoptosis in SMMC-7721 cells. Further analysis indicated that QIC2 downregulated the CBS/H2S system, decreased both HO-1 protein and glutathione (GSH) levels while increased the ROS level and activated the caspase-3 cascade. Collectively, our results demonstrated that the CBS/H2S system plays important roles in human hepatoma cells and QIC2 significantly inhibited cell growth via downregulation of the system.
Collapse
Affiliation(s)
- Huina Jia
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Juan Ye
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jing You
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xiaoyan Shi
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wenyi Kang
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Tianxiao Wang
- Institute of Traditional Chinese Medicine, College of Pharmacy, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
46
|
Redondo-Blanco S, Fernández J, Gutiérrez-Del-Río I, Villar CJ, Lombó F. New Insights toward Colorectal Cancer Chemotherapy Using Natural Bioactive Compounds. Front Pharmacol 2017; 8:109. [PMID: 28352231 PMCID: PMC5348533 DOI: 10.3389/fphar.2017.00109] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Combination therapy consists in the simultaneous administration of a conventional chemotherapy drug (or sometimes, a radiotherapy protocol) together with one or more natural bioactives (usually from plant or fungal origin) of small molecular weight. This combination of anticancer drugs may be applied to cell cultures of tumor cells, or to an animal model for a cancer type (or its xenograft), or to a clinical trial in patients. In this review, we summarize current knowledge describing diverse synergistic effects on colorectal cancer cell cultures, animal models, and clinical trials of various natural bioactives (stilbenes, flavonoids, terpenes, curcumin, and other structural families), which may be important with respect to diminish final doses of the chemotherapy drug, although maintaining its biological effect. This is important as these approaches may help reduce side effects in patients under conventional chemotherapy. Also, these molecules may exerts their synergistic effects via different cell cycle pathways, including different ones to those responsible of resistance phenotypes: transcription factors, membrane receptors, adhesion and structural molecules, cell cycle regulatory components, and apoptosis pathways.
Collapse
Affiliation(s)
- Saúl Redondo-Blanco
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Javier Fernández
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Ignacio Gutiérrez-Del-Río
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Claudio J Villar
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| | - Felipe Lombó
- Departamento de Biología Funcional, Área de Microbiología, Facultad de Medicina, Instituto Universitario de Oncología del Principado de Asturias (IUOPA), Universidad de Oviedo Oviedo, Spain
| |
Collapse
|
47
|
Borska S, Pedziwiatr M, Danielewicz M, Nowinska K, Pula B, Drag-Zalesinska M, Olbromski M, Gomulkiewicz A, Dziegiel P. Classical and atypical resistance of cancer cells as a target for resveratrol. Oncol Rep 2016; 36:1562-8. [PMID: 27431533 DOI: 10.3892/or.2016.4930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/22/2016] [Indexed: 11/06/2022] Open
Abstract
The phenomenon of cancer cell resistance to chemotherapeutics is the main cause of insensitivity to anticancer therapy. Thus, the current challenge remains searching for substances sensitising the activity of cytostatic drugs. In this respect, resveratrol is a very promising therapeutic agent. It has pleiotropic effect on cancer cells, which can play a key role in numerous resistance mechanisms, both classical and atypical. The purpose of the present study was to assess the effect of resveratrol on the inhibition of human pancreatic cancer cell proliferation and on the level of cytostatic resistance-associated proteins. The study was performed on human pancreatic cancer cell lines EPP85-181P (control), EPP85-181RDB (daunorubicin resistance) and EPP85-181PRNOV (mitoxantrone resistance). The effect of resveratrol on the viability and proliferation of the studied cell lines was evaluated by SRB assay, whereas cell cycle arrest and cytostatic accumulation by FACS. Western blot analysis was used to determine the level of P-glycoprotein, topoisomerase II α and β and immunofluorescence technique to visualise the proteins in the cells. Resveratrol inhibited proliferation of all studied cell lines. Phase-specific cell cycle arrest depended on the type of cancer cells. Resveratrol decreased the level and activity of P-gp in EPP85-181RDB cells. In EPP85-181PRNOV cells, expression of both TopoII isoforms increased in a statistically significant manner. The results of in vitro studies support the possibility of potential use of resveratrol in breaking cancer cell resistance to chemotherapeutic drugs.
Collapse
Affiliation(s)
- Sylwia Borska
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Monika Pedziwiatr
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Monika Danielewicz
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Katarzyna Nowinska
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | - Bartosz Pula
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | | | - Mateusz Olbromski
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| | | | - Piotr Dziegiel
- Department of Histology and Embryology, Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
48
|
Deus CM, Serafim TL, Magalhães-Novais S, Vilaça A, Moreira AC, Sardão VA, Cardoso SM, Oliveira PJ. Sirtuin 1-dependent resveratrol cytotoxicity and pro-differentiation activity on breast cancer cells. Arch Toxicol 2016; 91:1261-1278. [DOI: 10.1007/s00204-016-1784-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 06/22/2016] [Indexed: 11/28/2022]
|
49
|
Cao L, Chen X, Xiao X, Ma Q, Li W. Resveratrol inhibits hyperglycemia-driven ROS-induced invasion and migration of pancreatic cancer cells via suppression of the ERK and p38 MAPK signaling pathways. Int J Oncol 2016; 49:735-43. [PMID: 27278736 DOI: 10.3892/ijo.2016.3559] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 05/26/2016] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence suggests that there is a strong relationship between diabetes mellitus (DM) and pancreatic cancer. Our previous study revealed that hyperglycemia could enhance the invasive and migratory activities of pancreatic cancer cells. Resveratrol, a natural polyphenolic phytoalexin, has many biological and pharmaceutical properties, including antioxidant and anti-tumorigenic capabilities. The aim of the present study was to evaluate whether resveratrol affects hyperglycemia-induced reactive oxygen species (ROS) production as well as the invasion and migration of pancreatic cancer and its underlying mechanisms. Human pancreatic cancer Panc-1 cells were exposed to high glucose condition with or without resveratrol, N-acetylcysteine (NAC, a scavenger of free radicals), PD 98059 (an ERK inhibitor) or SB 203580 (a p38 MAPK inhibitor). The intracellular ROS and hydrogen peroxide (H2O2) were determined using 2,7-dichlorodihydrofluorecein diacetate and H2O2 assay. MTT, wound healing assay and transwell matrigel invasion assay were used to detect the proliferation, migration and invasion potential of cancer cells. The expressions of uPA, E-cadherin and Glut-1 were examined using QT-PCR and western blot analysis at mRNA and protein levels. The activation of p-ERK, p-p38 and p-NF-κB were measured by western blot analysis. The results of the present study showed that resveratrol could significantly decrease high glucose-induced production of ROS and H2O2 in Panc-1 cells. Resveratrol was also able to inhibit high glucose-induced proliferation, migration and invasion of pancreatic cancer cells. High glucose-modulated expression of uPA, E-cadherin and Glut-1 were inhibited by resveratrol. In addition, high glucose-induced activation of ERK and p38 MAPK signaling pathways as well as the transcription factor NF-κB could also be suppressed by resveratrol. Furthermore, resveratrol was able to suppress H2O2-induced migration and invasion abilities of pancreatic cancer cells. Taken together, these data indicate that resveratrol plays an important role in suppressing hyperglycemia-driven ROS-induced pancreatic cancer progression by inhibiting the ERK and p38 MAPK signaling pathways, providing evidence that resveratrol might be a potential candidate for chemoprevention of pancreatic cancer.
Collapse
Affiliation(s)
- Lei Cao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Xin Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Xue Xiao
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi 710061, P.R. China
| | - Qingyong Ma
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Wei Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| |
Collapse
|
50
|
Sim DY, Sohng JK, Jung HJ. Anticancer activity of 7,8-dihydroxyflavone in melanoma cells via downregulation of α-MSH/cAMP/MITF pathway. Oncol Rep 2016; 36:528-34. [PMID: 27220989 DOI: 10.3892/or.2016.4825] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/17/2016] [Indexed: 11/05/2022] Open
Abstract
Malignant melanoma is one of the most aggressive skin cancer and highly resistant to most conventional treatment. In the present study, we aimed to investigate the anticancer effects and mechanisms of action of 7,8-dihydroxyflavone (7,8-DHF), a monophenolic flavone, in melanoma cells. At concentrations not exhibiting cytotoxicity, 7,8-DHF potently inhibited growth and clonogenic survival of alpha-melanocyte stimulating hormone (α-MSH)-stimulated B16F10 melanoma cells. Furthermore, it significantly blocked migration and invasion of the metastatic melanoma cells. We also observed that 7,8-DHF exhibits anti-melanogenic activity through inhibition of tyrosinase activity in α-MSH-stimulating condition. Notably, the suppressive activities of 7,8-DHF on melanoma progression were associated with the downregulation of microphthalmia-associated transcription factor (MITF) and its main downstream transcription targets, including hypoxia-inducible factor 1α (HIF1α) and c-MET, by a decrease in cyclic adenosine monophosphate (cAMP) level. In addition, combination treatment with 7,8-DHF and resveratrol, a known therapeutic agent against melanoma, had greater anticancer activities and MITF inhibition than treatment with each single agent in α-MSH-treated B16F10 cells. Collectively, these findings may contribute to the potential application of 7,8-DHF in the prevention and treatment of malignant melanoma.
Collapse
Affiliation(s)
- Deok Yong Sim
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 336-708, Republic of Korea
| | - Jae Kyung Sohng
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 336-708, Republic of Korea
| | - Hye Jin Jung
- Department of BT-Convergent Pharmaceutical Engineering, Sun Moon University, Chungnam 336-708, Republic of Korea
| |
Collapse
|