1
|
Lv Y, Zhou Y, Jin Z, Lai C, Chen Y, Yong Q. Structural characterization of galactomannan sulfated modification products with different molecular weight fractions and their in vitro anti-lung cancer activities. Int J Biol Macromol 2025; 315:144326. [PMID: 40388999 DOI: 10.1016/j.ijbiomac.2025.144326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 05/08/2025] [Accepted: 05/15/2025] [Indexed: 05/21/2025]
Abstract
The degradation of polysaccharides and the introduction of surface functional groups have been shown to significantly enhance the solubility and bioactivity of polysaccharides. This study aimed to compare the structural characteristics of three galactomannans with varying molecular weights (GMG0, GMG1, and GMG2) and their sulfated derivatives (S-GMG0-P, S-GMG1-P, and S-GMG2-P; P = 1-4), and to assess their potential anticancer effects on the A549 lung cancer cell line. The results indicated that a reduction in molecular weight facilitated the sulfation modification process, with the sulfated polysaccharides exhibiting higher molecular weights and more dynamic solution conformations. In vitro antitumor assays revealed that S-GMG0-4 exhibited the most potent antiproliferative effect compared to both the three polysaccharides and other sulfated derivatives. Furthermore, S-GMG0-4 and S-GMG1-4 significantly induced apoptosis in A549 cells and triggered G1-phase cell cycle arrest. The anticancer mechanisms of S-GMG0-4 and S-GMG1-4 were linked to the modulation of key apoptosis- and cell cycle-related genes, including p53, caspase 9, and Bcl-2. Additionally, both S-GMG0-4 and S-GMG1-4 effectively inhibited A549 cell migration. These findings provide a solid foundation for further exploration of sulfated galactomannans as promising candidates for the development of novel anticancer therapies.
Collapse
Affiliation(s)
- Ying Lv
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yubo Zhou
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Ziyi Jin
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Yanan Chen
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- National Key Laboratory for the Development and Utilization of Forest Food Resources, Nanjing Forestry University, Nanjing 210037, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Poku R, Amissah F, Alan JK. PI3K Functions Downstream of Cdc42 to Drive Cancer phenotypes in a Melanoma Cell Line. Small GTPases 2023; 14:1-13. [PMID: 37114375 PMCID: PMC10150613 DOI: 10.1080/21541248.2023.2202612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
Rho proteins are part of the Ras superfamily, which function to modulate cytoskeletal dynamics including cell adhesion and motility. Recently, an activating mutation in Cdc42, a Rho family GTPase, was found in a patient sample of melanoma. Previously, our work had shown the PI3K was important downstream of mutationally active Cdc42. Our present study sought to determine whether PI3K was a crucial downstream partner for Cdc42 in a melanoma cells line with a BRAF mutation, which is the most common mutation in cutaneous melanoma. In this work we were able to show that Cdc42 contributes to proliferation, anchorage-independent growth, cell motility and invasion. Treatment with a pan-PI3K inhibitor was able to effectively ameliorate all these cancer phenotypes. These data suggest that PI3K may be an important target downstream of Cdc42 in melanoma.
Collapse
Affiliation(s)
- Rosemary Poku
- College of Medicine, Central Michigan University, Mt. Pleasant, MI, USA
| | - Felix Amissah
- Department of Pharmaceutical Science, Ferris State University, Big Rapids, MI, USA
| | - Jamie K Alan
- Department of Pharmacology and Toxicology, College of Human Medicine, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Srivastava K, Lines KE, Jach D, Crnogorac-Jurcevic T. S100PBP is regulated by mutated KRAS and plays a tumour suppressor role in pancreatic cancer. Oncogene 2023; 42:3422-3434. [PMID: 37794133 PMCID: PMC10638088 DOI: 10.1038/s41388-023-02851-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
We have previously shown that expression of S100PBP, an S100P binding partner, gradually decreases during progression of pancreatic ductal adenocarcinomas (PDAC). Here, we show that loss of S100PBP leads to oncogenic transformation of pancreatic cells; after deregulation of S100PBP expression, both in silico and in vitro analyses highlighted alterations of genes known to modulate cytoskeleton, cell motility and survival. Overexpression of S100P reduced S100PBP expression, while co-immunoprecipitation indicated the interaction of S100P with S100PBP-p53-ubiquitin protein complex, likely causing S100PBP degradation. The doxycycline-induced KrasG12D activation resulted in decreased S100PBP levels, while low-dose treatment with HDAC inhibitor MS-275 rescued its expression in both human and mouse PDAC cell lines. This indicates KrasG12D as an upstream epigenetic regulator of S100PBP. Finally, analysis of TCGA PanCancer Atlas PDAC datasets demonstrated poor prognosis in patients with high S100P and low S100PBP expression, suggesting that S100PBP is a novel tumour suppressor gene with potential clinical utility.
Collapse
Affiliation(s)
- K Srivastava
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
- In-Vitro Pharmacology, UCB Pharmaceuticals Ltd, 216 Bath Road, Slough, Berkshire, SL1 3WE, UK.
| | - K E Lines
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - D Jach
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK
| | - T Crnogorac-Jurcevic
- Centre for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute, Queen Mary University of London, London, EC1M 6BQ, UK.
| |
Collapse
|
4
|
Zhang Z, Liu M, Zheng Y. Role of Rho GTPases in stem cell regulation. Biochem Soc Trans 2021; 49:2941-2955. [PMID: 34854916 PMCID: PMC9008577 DOI: 10.1042/bst20211071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 02/05/2023]
Abstract
The future of regenerative medicine relies on our understanding of stem cells which are essential for tissue/organ generation and regeneration to maintain and/or restore tissue homeostasis. Rho family GTPases are known regulators of a wide variety of cellular processes related to cytoskeletal dynamics, polarity and gene transcription. In the last decade, major new advances have been made in understanding the regulatory role and mechanism of Rho GTPases in self-renewal, differentiation, migration, and lineage specification in tissue-specific signaling mechanisms in various stem cell types to regulate embryonic development, adult tissue homeostasis, and tissue regeneration upon stress or damage. Importantly, implication of Rho GTPases and their upstream regulators or downstream effectors in the transformation, migration, invasion and tumorigenesis of diverse cancer stem cells highlights the potential of Rho GTPase targeting in cancer therapy. In this review, we discuss recent evidence of Rho GTPase signaling in the regulation of embryonic stem cells, multiple somatic stem cells, and cancer stem cells. We propose promising areas where Rho GTPase pathways may serve as useful targets for stem cell manipulation and related future therapies.
Collapse
Affiliation(s)
- Zheng Zhang
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| | - Ming Liu
- Department of Abdominal Oncology, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, U.S.A
| |
Collapse
|
5
|
Pal J, Becker AC, Dhamija S, Seiler J, Abdelkarim M, Sharma Y, Behr J, Meng C, Ludwig C, Kuster B, Diederichs S. Systematic analysis of migration factors by MigExpress identifies essential cell migration control genes in non-small cell lung cancer. Mol Oncol 2021; 15:1797-1817. [PMID: 33934493 PMCID: PMC8253088 DOI: 10.1002/1878-0261.12973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 04/01/2021] [Accepted: 04/07/2021] [Indexed: 11/07/2022] Open
Abstract
Cell migration is an essential process in health and in disease, including cancer metastasis. A comprehensive inventory of migration factors is nonetheless lacking-in part due to the difficulty in assessing migration using high-throughput technologies. Hence, there are currently very few screens that systematically reveal factors controlling cell migration. Here, we introduce MigExpress as a platform for the 'identification of Migration control genes by differential Expression'. MigExpress exploits the combination of in-depth molecular profiling and the robust quantitative analysis of migration capacity in a broad panel of samples and identifies migration-associated genes by their differential expression in slow- versus fast-migrating cells. We applied MigExpress to investigate non-small cell lung cancer (NSCLC), which is the most frequent cause of cancer mortality mainly due to metastasis. In 54 NSCLC cell lines, we comprehensively determined mRNA and protein expression. Correlating the transcriptome and proteome profiles with the quantified migration properties led to the discovery and validation of FLNC, DSE, CPA4, TUBB6, and BICC1 as migration control factors in NSCLC cells, which were also negatively correlated with patient survival. Notably, FLNC was the least expressed filamin in NSCLC, but the only one controlling cell migration and correlating with patient survival and metastatic disease stage. In our study, we present MigExpress as a new method for the systematic analysis of migration factors and provide a comprehensive resource of transcriptomic and proteomic data of NSCLC cell lines related to cell migration.
Collapse
Affiliation(s)
- Jagriti Pal
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Andrea C Becker
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Sonam Dhamija
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany.,CSIR Institute of Genomics and Integrative Biology, New Delhi, India
| | - Jeanette Seiler
- Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mahmoud Abdelkarim
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Yogita Sharma
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany
| | - Jürgen Behr
- Leibniz Institute for Food Systems, Technical University of Munich, Freising, Germany.,Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich, Freising, Germany.,Chair of Proteomics and Bioanalytics, DKTK Partner Site Munich, Freising, Germany
| | - Sven Diederichs
- Division of Cancer Research, Department of Thoracic Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK) - Partner Site Freiburg, Germany.,Division of RNA Biology & Cancer, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 162] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
7
|
Lorenzo-Martín LF, Fernández-Parejo N, Menacho-Márquez M, Rodríguez-Fdez S, Robles-Valero J, Zumalave S, Fabbiano S, Pascual G, García-Pedrero JM, Abad A, García-Macías MC, González N, Lorenzano-Menna P, Pavón MA, González-Sarmiento R, Segrelles C, Paramio JM, Tubío JMC, Rodrigo JP, Benitah SA, Cuadrado M, Bustelo XR. VAV2 signaling promotes regenerative proliferation in both cutaneous and head and neck squamous cell carcinoma. Nat Commun 2020; 11:4788. [PMID: 32963234 PMCID: PMC7508832 DOI: 10.1038/s41467-020-18524-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/27/2020] [Indexed: 12/30/2022] Open
Abstract
Regenerative proliferation capacity and poor differentiation are histological features usually linked to poor prognosis in head and neck squamous cell carcinoma (hnSCC). However, the pathways that regulate them remain ill-characterized. Here, we show that those traits can be triggered by the RHO GTPase activator VAV2 in keratinocytes present in the skin and oral mucosa. VAV2 is also required to maintain those traits in hnSCC patient-derived cells. This function, which is both catalysis- and RHO GTPase-dependent, is mediated by c-Myc- and YAP/TAZ-dependent transcriptomal programs associated with regenerative proliferation and cell undifferentiation, respectively. High levels of VAV2 transcripts and VAV2-regulated gene signatures are both associated with poor hnSCC patient prognosis. These results unveil a druggable pathway linked to the malignancy of specific SCC subtypes. The Rho signalling pathway is frequently activated in squamous carcinomas. Here, the authors find that the Rho GEF VAV2 is over expressed in both cutaneous and head and neck squamous cell carcinomas and that at the molecular level VAV2 promotes a pro-tumorigenic stem cell-like signalling programme.
Collapse
Affiliation(s)
- L Francisco Lorenzo-Martín
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Natalia Fernández-Parejo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Mauricio Menacho-Márquez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR). Facultad de Ciencias Médicas Universidad Nacional de Rosario (M.M.-M.) and CellPress editorial office (S.F.), S2000LRJ, Rosario, Argentina
| | - Sonia Rodríguez-Fdez
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Javier Robles-Valero
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Sonia Zumalave
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Salvatore Fabbiano
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR). Facultad de Ciencias Médicas Universidad Nacional de Rosario (M.M.-M.) and CellPress editorial office (S.F.), S2000LRJ, Rosario, Argentina
| | - Gloria Pascual
- Institute for Research in Biomedicine, 33011, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, 33011, Spain
| | - Juana M García-Pedrero
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Hospital Universitario Central de Asturias, Oviedo University, 33011, Oviedo, Spain
| | - Antonio Abad
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - María C García-Macías
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Nazareno González
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Pablo Lorenzano-Menna
- Laboratory of Molecular Oncology and National University of Quilmes, Buenos Aires, B1876BXD, Argentina.,National Council of Scientific and Technical Research (CONICET), National University of Quilmes, Buenos Aires, B1876BXD, Argentina
| | - Miguel A Pavón
- Institut Català d'Oncologia, 08908, L'Hospitalet de Llobregat, Spain.,Centro Biomédica de Investigación en Red de Enfermedades Respiratorias (CIBERESP), 08908, L'Hospitalet de Llobregat, Spain
| | - Rogelio González-Sarmiento
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Investigación Biomédica de Salamanca, 37007, Salamanca, Spain
| | - Carmen Segrelles
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040, Madrid, Spain
| | - Jesús M Paramio
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, 28040, Madrid, Spain
| | - José M C Tubío
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS), University of Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Juan P Rodrigo
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.,Hospital Universitario Central de Asturias, Oviedo University, 33011, Oviedo, Spain
| | - Salvador A Benitah
- Institute for Research in Biomedicine, 33011, Barcelona, Spain.,The Barcelona Institute of Science and Technology, Barcelona, 33011, Spain.,Catalan Institution for Research and Advanced Studies (ICREA), 33011, Barcelona, Spain
| | - Myriam Cuadrado
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain
| | - Xosé R Bustelo
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain. .,Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, 37007, Salamanca, Spain. .,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), CSIC-University of Salamanca, 37007, Salamanca, Spain.
| |
Collapse
|
8
|
Zhao K, Wang D, Zhao X, Wang C, Gao Y, Liu K, Wang F, Wu X, Wang X, Sun L, Zang J, Mei Y. WDR63 inhibits Arp2/3-dependent actin polymerization and mediates the function of p53 in suppressing metastasis. EMBO Rep 2020; 21:e49269. [PMID: 32128961 DOI: 10.15252/embr.201949269] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 01/30/2020] [Accepted: 02/07/2020] [Indexed: 12/20/2022] Open
Abstract
Accumulating evidence suggests that p53 plays a suppressive role in cancer metastasis, yet the underlying mechanism remains largely unclear. Regulation of actin dynamics is essential for the control of cell migration, which is an important step in metastasis. The Arp2/3 complex is a major nucleation factor to initiate branched actin polymerization that drives cell migration. However, it is unknown whether p53 could suppress metastasis through modulating Arp2/3 function. Here, we report that WDR63 is transcriptionally upregulated by p53. We show with migration assays and mouse xenograft models that WDR63 negatively regulates cell migration, invasion, and metastasis downstream of p53. Mechanistically, WDR63 interacts with the Arp2/3 complex and inhibits Arp2/3-mediated actin polymerization. Furthermore, WDR63 overexpression is sufficient to dampen the increase in cell migration, invasion, and metastasis induced by p53 depletion. Together, these findings suggest that WDR63 is an important player in the regulation of Arp2/3 function and also implicate WDR63 as a critical mediator of p53 in suppressing metastasis.
Collapse
Affiliation(s)
- Kailiang Zhao
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Decai Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Xiaolong Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Chenfeng Wang
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yongxiang Gao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Kaiyue Liu
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Fang Wang
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Xianning Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Xuejuan Wang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Linfeng Sun
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jianye Zang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Yide Mei
- The First Affiliated Hospital of USTC, The CAS Key Laboratory of Innate Immunity and Chronic Disease, Hefei National Laboratory for Physical Sciences at Microscale, Division of Lifesciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
9
|
Chou CW, Lin CH, Hsiao TH, Lo CC, Hsieh CY, Huang CC, Sher YP. Therapeutic effects of statins against lung adenocarcinoma via p53 mutant-mediated apoptosis. Sci Rep 2019; 9:20403. [PMID: 31892709 PMCID: PMC6938497 DOI: 10.1038/s41598-019-56532-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 12/11/2019] [Indexed: 12/15/2022] Open
Abstract
The p53 gene is an important tumour suppressor gene. Mutant p53 genes account for about half of all lung cancer cases. There is increasing evidence for the anti-tumour effects of statins via inhibition of the mevalonate pathway. We retrospectively investigated the correlation between statin use and lung cancer prognosis using the Taiwanese National Health Insurance Research Database, mainly focusing on early-stage lung cancer. This study reports the protective effects of statin use in early-stage lung cancer patients regardless of chemotherapy. Statin treatments reduced the 5-year mortality (odds ratio, 0.43; P < 0.001) in this population-based study. Significantly higher levels of cellular apoptosis, inhibited cell growth, and regulated lipid raft content were observed in mutant p53 lung cancer cells treated with simvastatin. Further, simvastatin increased the caspase-dependent apoptotic pathway, promotes mutant p53 protein degradation, and decreased motile activity in lung cancer cells with p53 missense mutations. These data suggest that statin use in selected lung cancer patients may have clinical benefits.
Collapse
Affiliation(s)
- Cheng-Wei Chou
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.,Division of Hematology/Medical Oncology, Department of Medicine, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Ching-Heng Lin
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Tzu-Hung Hsiao
- Department of Medical Research, Taichung Veterans General Hospital, Taichung, 407, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Chih-Ying Hsieh
- Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan
| | - Cheng-Chung Huang
- Department of Radiation Therapy and Oncology, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, 111, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung, 404, Taiwan. .,Chinese Medicine Research Center, China Medical University, Taichung, 404, Taiwan. .,Research Center for Chinese Herbal Medicine, China Medical University, Taichung, 404, Taiwan. .,Center for Molecular Medicine, China Medical University Hospital, Taichung, 404, Taiwan.
| |
Collapse
|
10
|
He S, Carman CV, Lee JH, Lan B, Koehler S, Atia L, Park CY, Kim JH, Mitchel JA, Park JA, Butler JP, Lu Q, Fredberg JJ. The tumor suppressor p53 can promote collective cellular migration. PLoS One 2019; 14:e0202065. [PMID: 30707705 PMCID: PMC6358060 DOI: 10.1371/journal.pone.0202065] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Accepted: 11/19/2018] [Indexed: 12/21/2022] Open
Abstract
Loss of function of the tumor suppressor p53 is known to increase the rate of migration of cells transiting the narrow pores of the traditional Boyden chamber assay. Here by contrast we investigate how p53 impacts the rate of cellular migration within a 2D confluent cell layer and a 3D collagen-embedded multicellular spheroid. We use two human carcinoma cell lines, the bladder carcinoma EJ and the colorectal carcinoma HCT116. In the confluent 2-D cell layer, for both EJ and HCT cells the migratory speeds and effective diffusion coefficients for the p53 null cells were significantly smaller than in p53-expressing cells. Compared to p53 expressers, p53-null cells exhibited more organized cortical actin rings together with reduced front-rear cell polarity. Furthermore, loss of p53 caused cells to exert smaller traction forces upon their substrates, and reduced formation of cryptic lamellipodia. In the 3D multicellular spheroid, loss of p53 consistently reduced collective cellular migration into surrounding collagen matrix. As regards the role of p53 in cellular migration, extrapolation from the Boyden chamber assay to other cellular microenvironments is seen to be fraught even in terms of the sign of the effect. Together, these paradoxical results show that the effects of p53 on cellular migration are context-dependent.
Collapse
Affiliation(s)
- Shijie He
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Christopher V. Carman
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jung Hyun Lee
- Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, United states of America
| | - Bo Lan
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Stephan Koehler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Lior Atia
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Chan Young Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jae Hun Kim
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jennifer A. Mitchel
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jin-Ah Park
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - James P. Butler
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Quan Lu
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| | - Jeffrey J. Fredberg
- Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United states of America
| |
Collapse
|
11
|
Yabasin IB, Sanches JGP, Ibrahim MM, Huidan J, Williams W, Lu ZL, Wen Q. Cisatracurium Retards Cell Migration and Invasion Upon Upregulation of p53 and Inhibits the Aggressiveness of Colorectal Cancer. Front Physiol 2018; 9:941. [PMID: 30108509 PMCID: PMC6079220 DOI: 10.3389/fphys.2018.00941] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is reported to be the third and fourth, most diagnosed and cause of cancer associated deaths respectively. In 2012 for instance, about 1.4 million new cases were reported, and approximately 700,000 deaths recorded. Survival from CRC is dependent on the stage at which it is diagnosed coupled with appropriate surgical and medical intervention. Cisatracurium is widely used for skeletal muscle relaxation during abdominal surgeries, including bowel and colon surgeries. Recent studies reported that cisatracurium inhibits progression of human cancer cells, however, the mechanisms leading to the inhibition are yet to be completely understood. To elucidate mechanisms resulting particularly in tumor cell growth and metastasis, we developed ex vivo and in in vivo xenograft models of CRC. Cisatracurium caused upregulation of p53 and its down-stream genes and proteins known to regulate proliferation and metastasis in vitro and in vivo. Genomic analyses of CRC following cisatracurium treatment revealed moderate to high DNA damage, while functional analyses demonstrated significant tumor cells growth regression, as well as repression of migration and invasion. Importantly, cisatracurium increased E-Cadherin and CALD-1 but decreased SNAI-1 and SLUG levels in vitro and in vivo. Together, the findings demonstrate that elevation of p53 upon cisatracurium-induced genomic injury, represent a potential mechanism by which cisatracurium result in the suppression of CRC progression and metastasis.
Collapse
Affiliation(s)
- Iddrisu B Yabasin
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | | | - Mohammed M Ibrahim
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Jin Huidan
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Walana Williams
- Department of Microbiology and Immunology, Dalian Medical University, Dalian, China
| | - Zhi-Li Lu
- Department of Ophthalmology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qingping Wen
- Department of Anesthesiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
12
|
Mutant p53 Protein and the Hippo Transducers YAP and TAZ: A Critical Oncogenic Node in Human Cancers. Int J Mol Sci 2017; 18:ijms18050961. [PMID: 28467351 PMCID: PMC5454874 DOI: 10.3390/ijms18050961] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/11/2017] [Accepted: 04/24/2017] [Indexed: 02/07/2023] Open
Abstract
p53 protein is a well-known tumor suppressor factor that regulates cellular homeostasis. As it has several and key functions exerted, p53 is known as “the guardian of the genome” and either loss of function or gain of function mutations in the TP53 coding protein sequence are involved in cancer onset and progression. The Hippo pathway is a key regulator of developmental and regenerative physiological processes but if deregulated can induce cell transformation and cancer progression. The p53 and Hippo pathways exert a plethora of fine-tuned functions that can apparently be in contrast with each other. In this review, we propose that the p53 status can affect the Hippo pathway function by switching its outputs from tumor suppressor to oncogenic activities. In detail, we discuss: (a) the oncogenic role of the protein complex mutant p53/YAP; (b) TAZ oncogenic activation mediated by mutant p53; (c) the therapeutic potential of targeting mutant p53 to impair YAP and TAZ oncogenic functions in human cancers.
Collapse
|
13
|
Lee E, Choi SY, Bin BH, Kim NH, Kim KH, Choi DH, Han J, Choi H, Lee AY, Lee TR, Cho EG. Interferon-inducible T-cell alpha chemoattractant (ITAC) induces the melanocytic migration and hypopigmentation through destabilizing p53 via histone deacetylase 5: a possible role of ITAC in pigment-related disorders. Br J Dermatol 2016; 176:127-137. [PMID: 27436825 DOI: 10.1111/bjd.14878] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2016] [Indexed: 11/26/2022]
Abstract
BACKGROUND Cell migration plays a major role in the immune response and in tumorigenesis. Interferon-inducible T-cell alpha chemoattractant (ITAC) elicits a strong chemotactic response from immune cells. OBJECTIVES To examine the effect of ITAC on melanocyte migration and pigmentation and its involvement in related disorders, and to investigate potential key players in these processes. METHODS Human melanocytes or melanoma cells were treated with ITAC and a migration assay was carried out. Global gene expression analysis was performed to find genes regulated by ITAC treatment. The function of key players involved in ITAC-induced cellular processes was addressed using knockdown or overexpression experiments in combination with ITAC treatment. ITAC expression in the inflammation-associated hypopigmentary disorder, vitiligo, was examined. RESULTS Among CXCR3 ligands, only ITAC induced melanocyte migration. ITAC treatment upregulated the expression of histone deacetylase 5 (HDAC5) and downregulated that of p53, a known target of HDAC5. Through knockdown or overexpression of HDAC5 and p53, we confirmed that HDAC5 mediates ITAC-induced migration by decreasing levels of p53 via deacetylation. In addition, ITAC treatment could decrease pigmentation in a p53- and HDAC5-dependent manner. Finally, the increased migration of human melanoma cells by ITAC treatment and the increased ITAC expression in the epidermis of vitiligo skin were verified. CONCLUSIONS This study provides in vitro evidence for the migratory and hypopigmentation effects of ITAC on melanocytic cells, gives translational insights into the roles of ITAC in pathological conditions, and suggests that HDAC5 and its substrate p53 are potent targets for regulating ITAC-induced cellular processes.
Collapse
Affiliation(s)
- E Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - S-Y Choi
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - B-H Bin
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - N-H Kim
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - K H Kim
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - D-H Choi
- Gyeonggi Bio Center, Gyeonggi Institute of Science & Technology Promotion, Suwon-si, Gyeonggi-do, Republic of Korea
| | - J Han
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - H Choi
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - A-Y Lee
- Department of Dermatology, Dongguk University Ilsan Hospital, Goyang-si, Gyeonggi-do, Republic of Korea
| | - T R Lee
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| | - E-G Cho
- Basic Research & Innovation Division, R&D Unit, AmorePacific Corporation, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
14
|
Maruyama K, Kawasaki T, Hamaguchi M, Hashimoto M, Furu M, Ito H, Fujii T, Takemura N, Karuppuchamy T, Kondo T, Kawasaki T, Fukasaka M, Misawa T, Saitoh T, Suzuki Y, Martino MM, Kumagai Y, Akira S. Bone-protective Functions of Netrin 1 Protein. J Biol Chem 2016; 291:23854-23868. [PMID: 27681594 DOI: 10.1074/jbc.m116.738518] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/16/2016] [Indexed: 12/27/2022] Open
Abstract
Netrin 1 was initially identified as an axon guidance factor, and recent studies indicate that it inhibits chemokine-directed monocyte migration. Despite its importance as a neuroimmune guidance cue, the role of netrin 1 in osteoclasts is largely unknown. Here we detected high netrin 1 levels in the synovial fluid of rheumatoid arthritis patients. Netrin 1 is potently expressed in osteoblasts and synovial fibroblasts, and IL-17 robustly enhances netrin 1 expression in these cells. The binding of netrin 1 to its receptor UNC5b on osteoclasts resulted in activation of SHP1, which inhibited VAV3 phosphorylation and RAC1 activation. This significantly impaired the actin polymerization and fusion, but not the differentiation of osteoclast. Strikingly, netrin 1 treatment prevented bone erosion in an autoimmune arthritis model and age-related bone destruction. Therefore, the netrin 1-UNC5b axis is a novel therapeutic target for bone-destructive diseases.
Collapse
Affiliation(s)
| | - Takahiko Kawasaki
- the Division of Brain Function, National Institute of Genetics, 1111 Yata, Mishima 411-8540, Japan
| | - Masahide Hamaguchi
- Experimental Immunology, World Premier Institute (WPI) Immunology Frontier Research Center (IFReC) and
| | - Motomu Hashimoto
- the Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Moritoshi Furu
- the Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Hiromu Ito
- the Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Takao Fujii
- the Department of the Control for Rheumatic Diseases, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | - Naoki Takemura
- the Division of Innate Immune Regulation, International Research and Development Center for Mucosal Vaccine, Institute for Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | | | | | | | | | | | - Tatsuya Saitoh
- From the Laboratories of Host Defense and.,the Department of Inflammation Biology, Institute for Enzyme Research, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Yutaka Suzuki
- the Departments of Functional Genomics and Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8562, Japan, and
| | - Mikaël M Martino
- From the Laboratories of Host Defense and.,the European Molecular Biology Laboratory, Australian Regenerative Medicine Institute, Monash University, Victoria 3800, Australia
| | | | - Shizuo Akira
- From the Laboratories of Host Defense and .,the Research Institute for Microbial Diseases, Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
15
|
The Δ133p53 isoform and its mouse analogue Δ122p53 promote invasion and metastasis involving pro-inflammatory molecules interleukin-6 and CCL2. Oncogene 2016; 35:4981-9. [PMID: 26996665 DOI: 10.1038/onc.2016.45] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/17/2016] [Accepted: 02/08/2016] [Indexed: 12/12/2022]
Abstract
A number of naturally occurring isoforms of the tumour suppressor protein p53 have been discovered, which appear to have differing roles in tumour prevention or promotion. We are investigating the tumour-promoting activities of the Δ133p53 isoform using our mouse model of Δ133p53 (Δ122p53). Here, we report that tumours from Δ122p53 homozygous mice show evidence of invasion and metastasis and that Δ122p53 promotes migration though a 3-dimensional collagen matrix. We also show that Δ122p53 and Δ133p53 promote cell migration in scratch wound and Transwell assays, similar to the 'gain-of-function' phenotypes seen with mutant p53. Using the well-defined B16 mouse melanoma metastatic model, we show that Δ122p53 leads to faster generation of lung metastases. The increased migratory phenotypes are dependent on secreted factors, including the cytokine interleukin-6 and the chemokine CCL2. We propose that Δ122p53 (and Δ133p53) acts in a similar manner to 'gain-of-function' mutant p53 proteins to promote migration, invasion and metastasis, which may contribute to poor survival in patients with Δ133p53-expressing tumours.
Collapse
|
16
|
Zhang C, Liu J, Zhao Y, Yue X, Zhu Y, Wang X, Wu H, Blanco F, Li S, Bhanot G, Haffty BG, Hu W, Feng Z. Glutaminase 2 is a novel negative regulator of small GTPase Rac1 and mediates p53 function in suppressing metastasis. eLife 2016; 5:e10727. [PMID: 26751560 PMCID: PMC4749555 DOI: 10.7554/elife.10727] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 12/06/2015] [Indexed: 01/13/2023] Open
Abstract
Glutaminase (GLS) isoenzymes GLS1 and GLS2 are key enzymes for glutamine metabolism. Interestingly, GLS1 and GLS2 display contrasting functions in tumorigenesis with elusive mechanism; GLS1 promotes tumorigenesis, whereas GLS2 exhibits a tumor-suppressive function. In this study, we found that GLS2 but not GLS1 binds to small GTPase Rac1 and inhibits its interaction with Rac1 activators guanine-nucleotide exchange factors, which in turn inhibits Rac1 to suppress cancer metastasis. This function of GLS2 is independent of GLS2 glutaminase activity. Furthermore, decreased GLS2 expression is associated with enhanced metastasis in human cancer. As a p53 target, GLS2 mediates p53's function in metastasis suppression through inhibiting Rac1. In summary, our results reveal that GLS2 is a novel negative regulator of Rac1, and uncover a novel function and mechanism whereby GLS2 suppresses metastasis. Our results also elucidate a novel mechanism that contributes to the contrasting functions of GLS1 and GLS2 in tumorigenesis.
Collapse
Affiliation(s)
- Cen Zhang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Juan Liu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Yuhan Zhao
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Xuetian Yue
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Yu Zhu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States.,Department of Neurosurgery, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaolong Wang
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Hao Wu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Felix Blanco
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Shaohua Li
- Department of Surgery, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Gyan Bhanot
- Department of Molecular Biology, Biochemistry & Physics, Rutgers, The State University of New Jersey, Piscataway, United States
| | - Bruce G Haffty
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Wenwei Hu
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| | - Zhaohui Feng
- Department of Radiation Oncology, Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, United States
| |
Collapse
|
17
|
Shi D, Murty VV, Gu W. PCDH10, a novel p53 transcriptional target in regulating cell migration. Cell Cycle 2015; 14:857-66. [PMID: 25590240 DOI: 10.1080/15384101.2015.1004935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cell cycle arrest, senescence and apoptosis are commonly regarded as the major tumor suppression mechanisms of p53. However, accumulating evidence indicates that loss of these canonical functions is not sufficient for tumor formation, highlighting the complexity of p53-mediated tumor suppression. PCDH10 belongs to a proto cadherin protein family and is a potential tumor suppressor protein as the dysregulation of PCDH10 gene frequently existed in multiple human tumors. Here, we found that PCDH10 is a transcriptional target of p53 and that the levels of PCDH10 expression can be induced by wild type p53 but not mutant p53 in a number of human cancer cell lines. Moreover, we identified a p53 consensus binding site located in the PCDH10 promoter region that is responsive to p53 regulation. Although upregulation of PCDH10 has no obvious effect on growth arrest or apoptosis in human cells, PCDH10 exhibits inhibitory roles in cancer cell motility and cell migration. These results suggest an important role of p53 in regulating tumor cell migration through activating PCDH10 expression and support the notion that non-canonical activities of p53 may contribute to its tumor suppressor function in vivo.
Collapse
Affiliation(s)
- Dingding Shi
- a Institute for Cancer Genetics and Department of Pathology and Cell Biology; College of Physicians & Surgeons ; Columbia University ; New York , NY USA
| | | | | |
Collapse
|
18
|
p53/PUMA expression in human pulmonary fibroblasts mediates cell activation and migration in silicosis. Sci Rep 2015; 5:16900. [PMID: 26576741 PMCID: PMC4649630 DOI: 10.1038/srep16900] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 10/22/2015] [Indexed: 11/08/2022] Open
Abstract
Phagocytosis of SiO2 into the lung causes an inflammatory cascade that results in fibroblast proliferation and migration, followed by fibrosis. Clinical evidence has indicated that the activation of alveolar macrophages by SiO2 produces rapid and sustained inflammation characterized by the generation of monocyte chemotactic protein 1, which, in turn, induces fibrosis. However, the details of events downstream of monocyte chemotactic protein 1 activity in pulmonary fibroblasts remain unclear. Here, to elucidate the role of p53 in fibrosis induced by silica, both the upstream molecular mechanisms and the functional effects on cell proliferation and migration were investigated. Experiments using primary cultured adult human pulmonary fibroblasts led to the following results: 1) SiO2 treatment resulted in a rapid and sustained increase in p53 and PUMA protein levels; 2) the MAPK and PI3K pathways were involved in the SiO2-induced alteration of p53 and PUMA expression; and 3) RNA interference targeting p53 and PUMA prevented the SiO2-induced increases in fibroblast activation and migration. Our study elucidated a link between SiO2-induced p53/PUMA expression in fibroblasts and cell migration, thereby providing novel insight into the potential use of p53/PUMA in the development of novel therapeutic strategies for silicosis treatment.
Collapse
|
19
|
Kumar G, Ho CC, Co CC. Cell-Substrate Interactions Feedback to Direct Cell Migration along or against Morphological Polarization. PLoS One 2015; 10:e0133117. [PMID: 26186588 PMCID: PMC4506050 DOI: 10.1371/journal.pone.0133117] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 06/24/2015] [Indexed: 12/19/2022] Open
Abstract
In response to external stimuli, cells polarize morphologically into teardrop shapes prior to moving in the direction of their blunt leading edge through lamellipodia extension and retraction of the rear tip. This textbook description of cell migration implies that the initial polarization sets the direction of cell migration. Using microfabrication techniques to control cell morphologies and the direction of migration without gradients, we demonstrate that after polarization, lamelipodia extension and attachment can feedback to change and even reverse the initial morphological polarization. Cells do indeed migrate faster in the direction of their morphologically polarization. However, feedback from subsequent lamellipodia extension and attachment can be so powerful as to induce cells to reverse and migrate against their initial polarization, albeit at a slower speed. Constitutively active mutants of RhoA show that RhoA stimulates cell motility when cells are guided either along or against their initial polarization. Cdc42 activation and inhibition, which results in loss of directional motility during chemotaxis, only reduces the speed of migration without altering the directionality of migration on the micropatterns. These results reveal significant differences between substrate directed cell migration and that induced by chemotactic gradients.
Collapse
Affiliation(s)
- Girish Kumar
- Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221–0012, United States of America
| | - Chia-Chi Ho
- Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221–0012, United States of America
| | - Carlos C. Co
- Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221–0012, United States of America
- * E-mail:
| |
Collapse
|
20
|
Abstract
Cell invasion of the extracellular matrix is prerequisite to cross tissue migration of tumor cells in cancer metastasis, and vascular smooth muscle cells in atherosclerosis. The tumor suppressor p53, better known for its roles in the regulation of cell cycle and apoptosis, has ignited much interest in its function as a suppressor of cell migration and invasion. How p53 and its gain-of-function mutants regulate cell invasion remains a puzzle and a challenge for future studies. In recent years, podosomes and invadopodia have also gained center stage status as veritable apparatus specialized in cell invasion. It is not clear, however, whether p53 regulates cell invasion through podosomes and invadopodia. In this review, evidence supporting a negative role of p53 in podosomes formation in vascular smooth muscle cells will be surveyed, and signaling nodes that may mediate this regulation in other cell types will be explored.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biomedical and Molecular Sciences; Queen's University; Kingston, ON Canada
| |
Collapse
|
21
|
Amelio I, Melino G. The p53 family and the hypoxia-inducible factors (HIFs): determinants of cancer progression. Trends Biochem Sci 2015; 40:425-34. [PMID: 26032560 DOI: 10.1016/j.tibs.2015.04.007] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 12/20/2022]
Abstract
HIFs have long been associated with resistance to therapy, metastasis, and poor survival rates in cancer patients. In parallel, although the tumor-suppressor p53 acts as the first barrier against tumor transformation, its inactivation also appears to be crucial for enabling cancer progression at advanced stages. p53 has been proposed to antagonize HIF, and emerging evidence suggests that the p53 siblings p63 and p73 also participate in this interplay. Crosstalk between HIFs and the p53 family acts as a determinant of cancer progression through regulating angiogenesis, the tumor microenvironment, dormancy, metastasis, and recurrence. We discuss the possible mechanisms underlying this regulation and the controversies in this field in an attempt to provide a unified view of current knowledge.
Collapse
Affiliation(s)
- Ivano Amelio
- Medical Research Council Toxicology Unit, Leicester University, Leicester LE1 9HN, UK
| | - Gerry Melino
- Medical Research Council Toxicology Unit, Leicester University, Leicester LE1 9HN, UK; Biochemistry Laboratory, Istituto Dermopatico dell'Immacolata (IDI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Department of Experimental Medicine and Surgery, University of Rome 'Tor Vergata', 00133 Rome, Italy.
| |
Collapse
|
22
|
SMIFH2 has effects on Formins and p53 that perturb the cell cytoskeleton. Sci Rep 2015; 5:9802. [PMID: 25925024 PMCID: PMC5386218 DOI: 10.1038/srep09802] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 03/19/2015] [Indexed: 01/08/2023] Open
Abstract
Formin proteins are key regulators of the cytoskeleton involved in developmental and homeostatic programs, and human disease. For these reasons, small molecules interfering with Formins' activity have gained increasing attention. Among them, small molecule inhibitor of Formin Homology 2 domains (SMIFH2) is often used as a pharmacological Formin blocker. Although SMIFH2 inhibits actin polymerization by Formins and affects the actin cytoskeleton, its cellular mechanism of action and target specificity remain unclear. Here we show that SMIFH2 induces remodelling of actin filaments, microtubules and the Golgi complex as a result of its effects on Formins and p53. We found that SMIFH2 triggers alternated depolymerization-repolymerization cycles of actin and tubulin, increases cell migration, causes scattering of the Golgi complex, and also cytotoxicity at high dose. Moreover, SMIFH2 reduces expression and activity of p53 through a post-transcriptional, proteasome-independent mechanism that influences remodelling of the cytoskeleton. As the action of SMIFH2 may go beyond Formin inhibition, only short-term and low-dose SMIFH2 treatments minimize confounding effects induced by loss of p53 and cytotoxicity.
Collapse
|
23
|
Wu JX, Zhang DG, Zheng JN, Pei DS. Rap2a is a novel target gene of p53 and regulates cancer cell migration and invasion. Cell Signal 2015; 27:1198-207. [PMID: 25728512 DOI: 10.1016/j.cellsig.2015.02.026] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Revised: 02/06/2015] [Accepted: 02/23/2015] [Indexed: 02/08/2023]
Abstract
The p53 transcription factor is a critical regulator of the cell cycle, DNA repair, and apoptosis. Recent evidences suggest that p53 may contribute to the regulation of cell invasion and migration. Rap2a, a member of the small GTPase superfamily, mediates diverse cellular events such as cell adhesion, migration and proliferation through various signaling pathways. In this study, we identify that Rap2a is a novel target of p53 and is induced upon DNA damage in a p53-dependent manner. Upon DNA damage, p53 directly binds to the promoter of Rap2a and activates its transcription. We show that Rap2a is significantly upregulated in many types of tumors. In addition, the ectopic expression of Rap2a enhances the migration and invasive ability of cancer cells and increases activities of matrix metalloproteinase MMP2 and MMP9. In contrast, the inactivation of Rap2a inhibits cell invasion and activities of MMP2 and MMP9. We also show that Rap2a regulates the phosphorylation level of Akt. Collectively, our results show that ectopic expression of Rap2a has a key role in enhancing migration, invasion and metastasis by upregulating p-Akt.
Collapse
Affiliation(s)
- Jin-Xia Wu
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Ding-Guo Zhang
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China
| | - Jun-Nian Zheng
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221002, China.
| | - Dong-Sheng Pei
- Jiangsu Key Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou 221002, China.
| |
Collapse
|
24
|
Panni S, Salvioli S, Santonico E, Langone F, Storino F, Altilia S, Franceschi C, Cesareni G, Castagnoli L. The adapter protein CD2AP binds to p53 protein in the cytoplasm and can discriminate its polymorphic variants P72R. J Biochem 2014; 157:101-11. [PMID: 25261582 DOI: 10.1093/jb/mvu059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proline-rich motifs are widely distributed in eukaryotic proteomes and are usually involved in the assembly of functional complexes through interaction with specific binding modules. The tumour-suppressor p53 protein presents a proline-rich region that is crucial for regulating apoptosis by connecting the p53 with a complex protein network. In humans, a common polymorphism determines the identity of residue 72, either proline or arginine, and affects the features of the motifs present in the polyproline domain. The two isoforms have different biochemical properties and markedly influence cancer onset and progression. In this article, we analyse the binding of the p53 proline-rich region with a pool of selected polyproline binding domains (i.e. SH3 and WW), and we present the first demonstration that the purified SH3 domains of the CD2AP/Cin85 protein family are able to directly bind the p53 protein, and to discriminate between the two polymorphic variants P72R.
Collapse
Affiliation(s)
- Simona Panni
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Stefano Salvioli
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Elena Santonico
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Francesca Langone
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Francesca Storino
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Serena Altilia
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Claudio Franceschi
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Gianni Cesareni
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| | - Luisa Castagnoli
- Department DiBEST, University of Calabria, Rende, 87036, Italy; DIMES, Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna 40126, Italy; CIG, Interdepartmental Center "Luigi Galvani", University of Bologna, Bologna 40126, Italy; Department of Biology, University of Rome Tor Vergata, Rome 00100, Italy; and Istituto Ricovero e Cura a Carattere Scientifico, Fondazione Santa Lucia, Rome, 00100, Italy
| |
Collapse
|
25
|
Payne LJ, Eves RL, Jia L, Mak AS. p53 Down regulates PDGF-induced formation of circular dorsal ruffles in rat aortic smooth muscle cells. PLoS One 2014; 9:e108257. [PMID: 25247424 PMCID: PMC4172730 DOI: 10.1371/journal.pone.0108257] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023] Open
Abstract
The tumor suppressor, p53, negatively regulates cell migration and invasion in addition to its role in apoptosis, cell cycle regulation and senescence. Here, we study the roles of p53 in PDGF-induced circular dorsal ruffle (CDR) formation in rat aortic smooth muscle (RASM) cells. In primary and immortalized RASM cells, up-regulation of p53 expression or increase in activity with doxorubicin inhibits CDR formation. In contrast, shRNA-knockdown of p53 or inhibition of its activity with pifithrin α promotes CDR formation. p53 acts by up-regulating PTEN expression, which antagonizes Rac and Cdc42 activation. Both lipid and protein phosphatase activities of PTEN are required for maximal suppression of CDR, but the lipid activity clearly plays the dominant role. N-WASP, the downstream effector of Cdc42, is the major positive contributor to CDR formation in RASM, and is an indirect target of p53. The Rac effector, WAVE2, appears to also play a minor role, while WAVE1 has no significant effect in CDR formation. In sum, we propose that p53 suppresses PDGF-induced CDR formation in RASM cells by upregulating PTEN leading mainly to the inhibition of the Cdc42-N-WASP pathway.
Collapse
Affiliation(s)
- Laura J. Payne
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Robert L. Eves
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Lilly Jia
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| | - Alan S. Mak
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
- * E-mail:
| |
Collapse
|
26
|
Li J, Gu J, Wang B, Xie M, Huang L, Liu Y, Zhang L, Xue J, Guo F, Zhang L, Zhang L. Activation of Dopamine D1 Receptors Regulates Dendritic Morphogenesis Through Rac1 and RhoA in Prefrontal Cortex Neurons. Mol Neurobiol 2014; 51:1024-37. [PMID: 24915967 DOI: 10.1007/s12035-014-8762-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 05/22/2014] [Indexed: 12/22/2022]
Abstract
Dopamine (DA) is an important regulator of neuronal plasticity in the prefrontal cortex (PFC) and plays a critical role in addiction-related neuroadaptation. The Rho GTPases, including Rac1, RhoA and Cdc42, are key regulators of actin cytoskeleton rearrangement that play important roles in dendritic morphogenesis. The goal of the current study was to use cultures of primary PFC neurons to gain a better understanding of the molecular mechanisms underlying DA-induced dendritic morphogenesis, a phenomenon that mimics the increase in DA synaptic transmission observed in the PFC of in vivo cocaine administration. We investigated the effects of repeated DA treatments on dendritic morphology changes in PFC neurons, and identified Rac1 and RhoA as downstream effectors of D1 receptors during the regulation of dendritic morphogenesis. Importantly, we found that D1 receptor-regulated Rac1 and RhoA have distinct roles in the regulation of dendritic morphogenesis after repeated DA treatments. Our data provide the first evidence that Rac1 and RhoA are effectors of D1 receptor signaling during dendritic morphogenesis and represent new signaling molecules involved in long-lasting neuroadaptation in the PFC.
Collapse
Affiliation(s)
- Juan Li
- Key Laboratory of Functional Proteomics of Guangdong Province, Department of Pathophysiology, Southern Medical University, Guangzhou, 510515, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Abstract
p53 is a crucial tumour suppressor that responds to diverse stress signals by orchestrating specific cellular responses, including transient cell cycle arrest, cellular senescence and apoptosis, which are all processes associated with tumour suppression. However, recent studies have challenged the relative importance of these canonical cellular responses for p53-mediated tumour suppression and have highlighted roles for p53 in modulating other cellular processes, including metabolism, stem cell maintenance, invasion and metastasis, as well as communication within the tumour microenvironment. In this Opinion article, we discuss the roles of classical p53 functions, as well as emerging p53-regulated processes, in tumour suppression.
Collapse
Affiliation(s)
- Kathryn T Bieging
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA
| | - Stephano Spano Mello
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA
| | - Laura D Attardi
- 1] Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA. [2] Department of Genetics, Stanford University School of Medicine, CCSR-South, Room 1255, 269 Campus Drive, Stanford, California 94305, USA
| |
Collapse
|
28
|
Guo AK, Hou YY, Hirata H, Yamauchi S, Yip AK, Chiam KH, Tanaka N, Sawada Y, Kawauchi K. Loss of p53 enhances NF-κB-dependent lamellipodia formation. J Cell Physiol 2014; 229:696-704. [PMID: 24647813 DOI: 10.1002/jcp.24505] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 09/30/2013] [Accepted: 10/23/2013] [Indexed: 12/29/2022]
Abstract
Tumor suppressor p53 prevents tumorigenesis and tumor growth by suppressing the activation of several transcription factors, including nuclear factor-κB (NF-κB) and STAT3. On the other hand, p53 stimulates actin cytoskeleton remodeling and integrin-related signaling cascades. Here, we examined the p53-mediated link between regulation of the actin cytoskeleton and activation of NF-κB and STAT3 in MCF-7 cells and mouse embryonic fibroblasts (MEFs). In the absence of p53, STAT3 was constitutively activated. This activation was attenuated by depleting the expression of p65, a component of NF-κB. Integrin β3 expression and lamellipodia formation were also downregulated by NF-κB depletion. Inhibition of integrin αvβ3, Rac1 or Arp2/3, which diminished lamellipodia formation, suppressed STAT3 activation induced by p53 depletion. These results suggest that loss of p53 leads to STAT3 activation via NF-κB-dependent lamellipodia formation. Our study proposes a novel role for p53 in modulating the actin cytoskeleton through suppression of NF-κB, which restricts STAT3 activation.
Collapse
|
29
|
Arjonen A, Kaukonen R, Mattila E, Rouhi P, Högnäs G, Sihto H, Miller BW, Morton JP, Bucher E, Taimen P, Virtakoivu R, Cao Y, Sansom OJ, Joensuu H, Ivaska J. Mutant p53-associated myosin-X upregulation promotes breast cancer invasion and metastasis. J Clin Invest 2014; 124:1069-82. [PMID: 24487586 PMCID: PMC3934176 DOI: 10.1172/jci67280] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 11/14/2013] [Indexed: 02/04/2023] Open
Abstract
Mutations of the tumor suppressor TP53 are present in many forms of human cancer and are associated with increased tumor cell invasion and metastasis. Several mechanisms have been identified for promoting dissemination of cancer cells with TP53 mutations, including increased targeting of integrins to the plasma membrane. Here, we demonstrate a role for the filopodia-inducing motor protein Myosin-X (Myo10) in mutant p53-driven cancer invasion. Analysis of gene expression profiles from 2 breast cancer data sets revealed that MYO10 was highly expressed in aggressive cancer subtypes. Myo10 was required for breast cancer cell invasion and dissemination in multiple cancer cell lines and murine models of cancer metastasis. Evaluation of a Myo10 mutant without the integrin-binding domain revealed that the ability of Myo10 to transport β₁ integrins to the filopodia tip is required for invasion. Introduction of mutant p53 promoted Myo10 expression in cancer cells and pancreatic ductal adenocarcinoma in mice, whereas suppression of endogenous mutant p53 attenuated Myo10 levels and cell invasion. In clinical breast carcinomas, Myo10 was predominantly expressed at the invasive edges and correlated with the presence of TP53 mutations and poor prognosis. These data indicate that Myo10 upregulation in mutant p53-driven cancers is necessary for invasion and that plasma-membrane protrusions, such as filopodia, may serve as specialized metastatic engines.
Collapse
Affiliation(s)
- Antti Arjonen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Riina Kaukonen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Elina Mattila
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Pegah Rouhi
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Gunilla Högnäs
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Harri Sihto
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Bryan W. Miller
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Jennifer P. Morton
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Elmar Bucher
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Pekka Taimen
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Reetta Virtakoivu
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Yihai Cao
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Owen J. Sansom
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Heikki Joensuu
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| | - Johanna Ivaska
- Medical Biotechnology, VTT Technical Research Centre of Finland, Turku, Finland.
Turku Centre for Biotechnology, University of Turku, Turku, Finland.
Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Stockholm, Sweden.
Laboratory of Molecular Oncology, University of Helsinki, Biomedicum, Helsinki, Finland.
CR-UK Beatson Institute for Cancer Research, University of Glasgow, Glasgow, United Kingdom.
Department of Pathology, University of Turku and Turku University Hospital, Turku, Finland.
Department of Medicine and Health Sciences, Linköping University, Linköping, Sweden.
Department of Cardiovascular Sciences, University of Leicester, and NIHR Leicester Cardiovascular Biomedical Research Unit, Glenfield Hospital, Leicester, United Kingdom.
Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland.
Department of Biochemistry and Food Chemistry, University of Turku, Turku, Finland
| |
Collapse
|
30
|
Abstract
Development of metastatic cancer is a complex series of events that includes genesis of tumor-related vascular and lymphatic systems, enhanced cellular motility, and the capacity to invade and survive at distant sites, as well as evasion of host defences. The wild-type p53 protein plays key roles in controlling these facets of tumor progression, and loss of normal p53 function can be sufficient to predispose tumor cells to gain metastatic properties. In contrast, dominant p53 mutants that have gained oncogenic functions can actively drive metastasis through a variety of mechanisms. This chapter aims to highlight these processes.
Collapse
Affiliation(s)
- W A Yeudall
- Department of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, 980566, Richmond, VA, 23298, USA,
| |
Collapse
|
31
|
Sayin VI, Nilton A, Ibrahim MX, Ågren P, Larsson E, Petit MM, Hultén LM, Ståhlman M, Johansson BR, Bergo MO, Lindahl P. Zfp148 deficiency causes lung maturation defects and lethality in newborn mice that are rescued by deletion of p53 or antioxidant treatment. PLoS One 2013; 8:e55720. [PMID: 23405202 PMCID: PMC3566028 DOI: 10.1371/journal.pone.0055720] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 12/29/2012] [Indexed: 12/18/2022] Open
Abstract
The transcription factor Zfp148 (Zbp-89, BFCOL, BERF1, htβ) interacts physically with the tumor suppressor p53 and is implicated in cell cycle control, but the physiological role of Zfp148 remains unknown. Here we show that Zfp148 deficiency leads to respiratory distress and lethality in newborn mice. Zfp148 deficiency prevented structural maturation of the prenatal lung without affecting type II cell differentiation or surfactant production. BrdU analyses revealed that Zfp148 deficiency caused proliferation arrest of pulmonary cells at E18.5–19.5. Similarly, Zfp148-deficient fibroblasts exhibited proliferative arrest that was dependent on p53, raising the possibility that cell stress is part of the underlying mechanism. Indeed, Zfp148 deficiency lowered the threshold for activation of p53 under oxidative conditions. Moreover, both in vivo and cellular phenotypes were rescued on Trp53+/− or Trp53−/− backgrounds and by antioxidant treatment. Thus, Zfp148 prevents respiratory distress and lethality in newborn mice by attenuating oxidative stress–dependent p53-activity during the saccular stage of lung development. Our results establish Zfp148 as a novel player in mammalian lung maturation and demonstrate that Zfp148 is critical for cell cycle progression in vivo.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Antioxidants/pharmacology
- Apoptosis
- Blotting, Southern
- Blotting, Western
- Cell Cycle
- Cell Proliferation
- Cells, Cultured
- DNA-Binding Proteins/physiology
- Embryo, Mammalian/cytology
- Embryo, Mammalian/drug effects
- Embryo, Mammalian/metabolism
- Female
- Fibroblasts/cytology
- Fibroblasts/drug effects
- Fibroblasts/metabolism
- Gene Deletion
- Genes, Lethal
- Immunoenzyme Techniques
- Lung/drug effects
- Lung/embryology
- Lung/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Oxidative Stress/drug effects
- RNA, Messenger/genetics
- Real-Time Polymerase Chain Reaction
- Respiratory Tract Diseases/genetics
- Respiratory Tract Diseases/pathology
- Respiratory Tract Diseases/prevention & control
- Reverse Transcriptase Polymerase Chain Reaction
- Transcription Factors/physiology
- Tumor Suppressor Protein p53/deficiency
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Volkan I. Sayin
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Anna Nilton
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Mohamed X. Ibrahim
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Pia Ågren
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Larsson
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marleen M. Petit
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Lillemor Mattsson Hultén
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Marcus Ståhlman
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Bengt R. Johansson
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Martin O. Bergo
- Sahlgrenska Cancer Center, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Per Lindahl
- Wallenberg Laboratory, Institute of Medicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Biochemistry, Institute of Biomedicine, The Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
32
|
Leve F, Morgado-Díaz JA. Rho GTPase signaling in the development of colorectal cancer. J Cell Biochem 2012; 113:2549-59. [PMID: 22467564 DOI: 10.1002/jcb.24153] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The involvement of Rho GTPases in major aspects of cancer development, such as cell proliferation, apoptosis, cell polarity, adhesion, migration, and invasion, have recently been attracting increasing attention. In this review, we have summarized the current findings in the literature, and we discuss the participation of the Rho GTPase members RhoA, Rac1, and Cdc42 in the development of colorectal cancer, the second most lethal neoplasia worldwide. First, we present an overview of the mechanisms of Rho GTPase regulation and the impact that regulator proteins exert on GTPase signaling. Second, we focus on the participation of Rho GTPases as modulators of colorectal cancer development. Third, we emphasize the involvement of activation and expression alterations of Rho GTPases in events associated with cancer progression, such as loss of cell-cell adhesion, proliferation, migration, and invasion. Finally, we highlight the potential use of novel anticancer drugs targeting specific components of the Rho GTPase signaling pathway with antineoplastic activity in this cancer type.
Collapse
Affiliation(s)
- Fernanda Leve
- Grupo de Biologia Estrutural, Divisão de Biologia Celular, Centro de Pesquisas, Instituto Nacional de Câncer-INCa, Rio de Janeiro 2231050, Brazil
| | | |
Collapse
|
33
|
Citterio C, Menacho-Márquez M, García-Escudero R, Larive RM, Barreiro O, Sánchez-Madrid F, Paramio JM, Bustelo XR. The rho exchange factors vav2 and vav3 control a lung metastasis-specific transcriptional program in breast cancer cells. Sci Signal 2012; 5:ra71. [PMID: 23033540 DOI: 10.1126/scisignal.2002962] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The guanosine triphosphatases of the Rho and Rac subfamilies regulate protumorigenic pathways and are activated by guanine nucleotide exchange factors (Rho GEFs), which could be potential targets for anticancer therapies. We report that two Rho GEFs, Vav2 and Vav3, play synergistic roles in breast cancer by sustaining tumor growth, neoangiogenesis, and many of the steps involved in lung-specific metastasis. The involvement of Vav proteins in these processes did not correlate with Rac1 and RhoA activity or cell migration, implying the presence of additional biological programs. Microarray analyses revealed that Vav2 and Vav3 controlled a vast transcriptional program in breast cancer cells through mechanisms that were shared between the two proteins, isoform-specific or synergistic. Furthermore, the abundance of Vav-regulated transcripts was modulated by Rac1-dependent and Rac1-independent pathways. This transcriptome encoded therapeutically targetable proteins that played nonredundant roles in primary tumorigenesis and lung-specific metastasis, such as integrin-linked kinase (Ilk), the transforming growth factor-β family ligand inhibin βA, cyclooxygenase-2, and the epithelial cell adhesion molecule Tacstd2. It also contained gene signatures that predicted disease outcome in breast cancer patients. These results identify possible targets for treating breast cancer and lung metastases and provide a potential diagnostic tool for clinical use.
Collapse
Affiliation(s)
- Carmen Citterio
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, 37007 Salamanca, Spain
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Takeba Y, Matsumoto N, Watanabe M, Takenoshita-Nakaya S, Ohta Y, Kumai T, Takagi M, Koizumi S, Asakura T, Otsubo T. The Rho kinase inhibitor fasudil is involved in p53-mediated apoptosis in human hepatocellular carcinoma cells. Cancer Chemother Pharmacol 2012; 69:1545-55. [DOI: 10.1007/s00280-012-1862-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2011] [Accepted: 03/12/2012] [Indexed: 01/10/2023]
|
35
|
The fungicide mancozeb induces toxic effects on mammalian granulosa cells. Toxicol Appl Pharmacol 2012; 260:155-61. [DOI: 10.1016/j.taap.2012.02.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 02/08/2012] [Accepted: 02/10/2012] [Indexed: 11/20/2022]
|
36
|
Morandell S, Yaffe MB. Exploiting synthetic lethal interactions between DNA damage signaling, checkpoint control, and p53 for targeted cancer therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2012; 110:289-314. [PMID: 22749150 DOI: 10.1016/b978-0-12-387665-2.00011-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
DNA damage signaling and checkpoint control pathways are among the most commonly mutated networks in human tumors. Emerging data suggest that synthetic lethal interactions between mutated oncogenes or tumor suppressor genes with molecules involved in the DNA damage response and DNA repair pathways can be therapeutically exploited to preferentially kill cancer cells. In this review, we discuss the concept of synthetic lethality with a focus on p53, a commonly lost tumor suppressor gene, in the context of DNA damage signaling. We describe several recent examples in which this concept was successfully applied to target tumor cells in culture or in mouse models, as well as in human cancer patients.
Collapse
Affiliation(s)
- Sandra Morandell
- Department of Biology, David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | | |
Collapse
|
37
|
Yeudall WA, Vaughan CA, Miyazaki H, Ramamoorthy M, Choi MY, Chapman CG, Wang H, Black E, Bulysheva AA, Deb SP, Windle B, Deb S. Gain-of-function mutant p53 upregulates CXC chemokines and enhances cell migration. Carcinogenesis 2011; 33:442-51. [PMID: 22114072 DOI: 10.1093/carcin/bgr270] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The role of dominant transforming p53 in carcinogenesis is poorly understood. Our previous data suggested that aberrant p53 proteins can enhance tumorigenesis and metastasis. Here, we examined potential mechanisms through which gain-of-function (GOF) p53 proteins can induce motility. Cells expressing GOF p53 -R175H, -R273H and -D281G showed enhanced migration, which was reversed by RNA interference (RNAi) or transactivation-deficient mutants. In cells with engineered or endogenous p53 mutants, enhanced migration was reduced by downregulation of nuclear factor-kappaB2, a GOF p53 target. We found that GOF p53 proteins upregulate CXC-chemokine expression, the inflammatory mediators that contribute to multiple aspects of tumorigenesis. Elevated expression of CXCL5, CXCL8 and CXCL12 was found in cells expressing oncogenic p53. Transcription was elevated as CXCL5 and CXCL8 promoter activity was higher in cells expressing GOF p53, whereas wild-type p53 repressed promoter activity. Chromatin immunoprecipitation assays revealed enhanced presence of acetylated histone H3 on the CXCL5 promoter in H1299/R273H cells, in agreement with increased transcriptional activity of the promoter, whereas RNAi-mediated repression of CXCL5 inhibited cell migration. Consistent with this, knockdown of the endogenous mutant p53 in lung cancer or melanoma cells reduced CXCL5 expression and cell migration. Furthermore, short hairpin RNA knockdown of mutant p53 in MDA-MB-231 cells reduced expression of a number of key targets, including several chemokines and other inflammatory mediators. Finally, CXCL5 expression was also elevated in lung tumor samples containing GOF p53, indicating relevance to human cancer. The data suggest a mechanistic link between GOF p53 proteins and chemokines in enhanced cell motility.
Collapse
Affiliation(s)
- W Andrew Yeudall
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Richmond, VA 23298, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Cheng JC, Chang HM, Leung PCK. Wild-type p53 attenuates cancer cell motility by inducing growth differentiation factor-15 expression. Endocrinology 2011; 152:2987-95. [PMID: 21586550 DOI: 10.1210/en.2011-0059] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A major function of the p53 tumor suppressor is the regulation of the cell cycle and apoptosis. In addition to its well-documented functions in malignant cancer cells, p53 can also regulate cell migration and invasion, which contribute to metastasis. Growth differentiation factor-15 (GDF-15), a member of the TGF-β superfamily, has been shown to be a downstream target of p53 and is associated with diverse human diseases and cancer progression. In this study, we examined the potential role of GDF-15 in p53-regulated cancer cell motility. We show that overexpression of wild-type p53 in two highly invasive p53-null human cancer cell lines, SKOV3 and PC3, attenuated cell migration and the movement through Matrigel. Using wild-type p53 and DNA-binding-deficient p53 mutants, we found that the transcriptional activity of p53 is required in the induction of GDF-15 expression. Cell movement through uncoated and Matrigel-coated transwell decreased in response to treatment with recombinant GDF-15, whereas the cell proliferation was not affected by GDF-15 treatment. Moreover, the induction of GDF-15 expression and secretion by p53 and the reduction in cell movement through Matrigel were diminished by treatment with GDF-15 small interfering RNA. This study demonstrates a mechanism by which p53 attenuates cancer cell motility through GDF-15 expression. In addition, our results indicate that GDF-15 mediates the functions of p53 by autocrine/paracrine action.
Collapse
Affiliation(s)
- Jung-Chien Cheng
- Department of Obstetrics and Gynecology, Child and Family Research Institute, University of British Columbia, 4490 Oak Street, Vancouver, British Columbia, Canada, V6H 3V5
| | | | | |
Collapse
|
39
|
Chen NH, Zhong JJ. p53 is important for the anti-invasion of ganoderic acid T in human carcinoma cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2011; 18:719-725. [PMID: 21353507 DOI: 10.1016/j.phymed.2011.01.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2010] [Revised: 11/24/2010] [Accepted: 01/15/2011] [Indexed: 05/30/2023]
Abstract
The function of p53 induced by ganoderic acids (GAs) in anti-invasion was unknown, although our previous work reported the inhibition of tumor invasion and metastasis by Ganoderic acid T (GA-T). This work indicated that GA-T promoted cell aggregation, inhibited cell adhesion and surpressed cell migration with a dose-dependent manner in human colon tumor cell lines of HCT-116 p53(+/+) and p53(-/-). Furthermore, comparing the ratios of HCT-116 p53(+/+) and p53(-/-) cells, p53 modified GA-T inhibition of migration and adhesion and GA-T promotion of cell aggregation, and p53 also modified GA-T inhibition of NF-κB nuclear translocation, IκBα degradation, and down-regulation of urokinase-type plaminogen activator (uPA), matrix metalloproteinase-2/9 (MMP-2/9), inducible nitric oxide synthase (iNOS/NOS2) protein expression and inducible nitric oxide (NO) production. The results indicated that p53 played an important role in anti-invasion of GA-T in human carcinoma cells. p53 may be an important target for GA-T inhibiting human carcinoma cells anti-invasion.
Collapse
Affiliation(s)
- Nian-Hong Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, PR China
| | | |
Collapse
|
40
|
Muller PAJ, Vousden KH, Norman JC. p53 and its mutants in tumor cell migration and invasion. ACTA ACUST UNITED AC 2011; 192:209-18. [PMID: 21263025 PMCID: PMC3172183 DOI: 10.1083/jcb.201009059] [Citation(s) in RCA: 369] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
In about half of all human cancers, the tumor suppressor p53 protein is either lost or mutated, frequently resulting in the expression of a transcriptionally inactive mutant p53 protein. Loss of p53 function is well known to influence cell cycle checkpoint controls and apoptosis. But it is now clear that p53 regulates other key stages of metastatic progression, such as cell migration and invasion. Moreover, recent data suggests that expression of mutant p53 is not the equivalent of p53 loss, and that mutant p53s can acquire new functions to drive cell migration, invasion, and metastasis, in part by interfering with p63 function.
Collapse
|
41
|
Mak AS. p53 regulation of podosome formation and cellular invasion in vascular smooth muscle cells. Cell Adh Migr 2011; 5:144-9. [PMID: 21164280 DOI: 10.4161/cam.5.2.14375] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The p53 transcription factor, discovered in 1979 ( 1;2) , is well known as a potent suppressor of tumor development by inhibiting cell cycle progression, and promoting senescence or apoptosis, when the genome is compromised or under oncogenic stress ( 3) . Accumulating evidence has pointed to an alternative role of p53 in the curtailment of tumor progression and colonization of secondary sites by negatively regulating tumor cell metastasis ( 4;5) . Recently, we have found that p53 suppresses Src-induced formation of podosomes and associated invasive phenotypes in fibroblasts and vascular smooth muscle cells (VSMC) ( 6;7) . In this review, I will focus on some recent studies that have identified p53 as a suppressor of cell migration and invasion in general, and VSMC podosome formation and ECM degradation in particular.
Collapse
Affiliation(s)
- Alan S Mak
- Department of Biochemistry, Queen's University, Kingston, Ontario, Canada.
| |
Collapse
|
42
|
Early proliferation alteration and differential gene expression in human periodontal ligament cells subjected to cyclic tensile stress. Arch Oral Biol 2011; 56:177-86. [DOI: 10.1016/j.archoralbio.2010.09.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2010] [Revised: 08/24/2010] [Accepted: 09/10/2010] [Indexed: 12/31/2022]
|
43
|
Rad is a p53 direct transcriptional target that inhibits cell migration and is frequently silenced in lung carcinoma cells. J Mol Med (Berl) 2011; 89:481-92. [PMID: 21221513 DOI: 10.1007/s00109-010-0717-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2010] [Revised: 12/08/2010] [Accepted: 12/20/2010] [Indexed: 01/16/2023]
Abstract
The p53 tumor suppressor exerts its function mainly as a transcriptional activator. Here we show that the Ras-related small GTPase Rad, an inhibitor of Rho kinase, is a direct transcriptional target of p53. Expression of Rad messenger RNA (mRNA) and protein was induced by DNA damage in a p53-dependent manner. The -2934/-2905-bp Rad promoter region, to which p53 bound, was required for p53-mediated Rad gene activation. Treatment by DNA damaging agents increased p53 occupancy and histone acetylation in the region of Rad promoter containing the p53-binding site. Expression of Rad diminished the inhibitory phosphorylation at Ser3 of cofilin, a regulator of actin dynamics, and suppressed migration and invasiveness of cancer cells. Knockdown of Rad promoted cell migration and alleviated the p53-mediated migration suppression. Frequent loss of Rad mRNA and protein expression was observed in non-small cell lung carcinoma tissues. Together our results reveal a mechanism that p53 may inhibit cell migration by disrupting actin dynamics via Rad activation and implicate a tumor suppressor role of Rad in lung cancer.
Collapse
|
44
|
Synthetic lethal interactions for the development of cancer therapeutics: biological and methodological advancements. Hum Genet 2010; 128:567-75. [DOI: 10.1007/s00439-010-0900-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 10/12/2010] [Indexed: 02/06/2023]
|
45
|
Sauzeau V, Berenjeno IM, Citterio C, Bustelo XR. A transcriptional cross-talk between RhoA and c-Myc inhibits the RhoA/Rock-dependent cytoskeleton. Oncogene 2010; 29:3781-92. [PMID: 20453885 PMCID: PMC2896432 DOI: 10.1038/onc.2010.134] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The GTPase RhoA participates in a number of cellular processes, including cytoskeletal organization, mitogenesis and tumorigenesis. We have previously shown that the transforming activity of an oncogenic version of RhoA (Q63L mutant) was highly dependent on the transcriptional factor c–Myc. In contrast to these positive effects in the RhoA route, we show here that c–Myc affects negatively the F–actin cytoskeleton induced by RhoAQ63L and its downstream effector, the serine/threonine kinase Rock. This effect entails the activation of a transcriptional program that requires synergistic interactions with RhoA–derived signals and that includes the upregulation of the GTPase Cdc42 and its downstream element Pak1 as well as the repression of specific integrin subunits. The negative effects of c–Myc in the F–actin cytoskeleton are eliminated by the establishment of cell–to–cell contacts, an effect associated with the rescue of Pak1 and integrin levels at the post–transcriptional and transcriptional levels, respectively. These results reveal the presence of a hitherto unknown signaling feed–back loop between RhoA and c–Myc oncogenes that can contribute to maintain fluid cytoskeletal dynamics in cancer cells.
Collapse
Affiliation(s)
- V Sauzeau
- Centro de Investigación del Cáncer, CSIC-University of Salamanca, Campus Unamuno, Salamanca, Spain
| | | | | | | |
Collapse
|
46
|
Moran DM, Maki CG. Nutlin-3a induces cytoskeletal rearrangement and inhibits the migration and invasion capacity of p53 wild-type cancer cells. Mol Cancer Ther 2010; 9:895-905. [PMID: 20371712 DOI: 10.1158/1535-7163.mct-09-1220] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MDM2 is an E3 ubiquitin ligase that binds and ubiquitinates the tumor suppressor protein p53, leading to its proteasomal degradation. Nutlin-3a (Nutlin) is a preclinical drug that binds MDM2 and prevents the interaction between MDM2 and p53, leading to p53 stabilization and activation of p53 signaling events. Previous studies have reported that Nutlin promotes growth arrest and/or apoptosis in cancer cells that express wild-type p53. In the current study, Nutlin treatment caused a cytoskeletal rearrangement in p53 wild-type human cancer cells from multiple etiologies. Specifically, Nutlin decreased actin stress fibers and reduced the size and number of focal adhesions in treated cells. This process was dependent on p53 expression but was independent of p21 expression and growth arrest. Consistent with this, Nutlin-treated cells failed to form filamentous actin-based motility structures (lamellipodia) and displayed significantly decreased directional persistence in response to migratory cues. Finally, chemotactic assays showed a p53-dependent/p21-independent decrease in migratory and invasive capacity of Nutlin-treated cells. Taken together, these findings reveal that Nutlin treatment can inhibit the migration and invasion capacity of p53 wild-type cells, adding to the potential therapeutic benefit of Nutlin and other small molecule MDM2 inhibitors. Mol Cancer Ther; 9(4); 895-905. (c)2010 AACR.
Collapse
Affiliation(s)
- Diarmuid M Moran
- Rush University Medical Center, Department of Anatomy and Cell Biology, 1653 West Congress Parkway, Jelke 1306, Chicago, IL 60612, USA
| | | |
Collapse
|
47
|
Roger L, Jullien L, Gire V, Roux P. Gain of oncogenic function of p53 mutants regulates E-cadherin expression uncoupled from cell invasion in colon cancer cells. J Cell Sci 2010; 123:1295-305. [PMID: 20332115 DOI: 10.1242/jcs.061002] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mutations in the p53 tumour suppressor gene are associated clinically with tumour progression and metastasis. Downregulation of the E-cadherin cell-cell adhesion molecule is a key event for epithelial to mesenchymal transition (EMT) in tumour progression. Here, we show that wild-type p53 induced to adopt a mutant conformation, and hot-spot p53 mutants, which are both transcriptionally inactive, downregulate E-cadherin expression in the colon carcinoma cell line HCT116. Downregulation of E-cadherin occurred concomitantly with the upregulation of Slug and Zeb-1, transcriptional factors known to repress E-cadherin gene expression. In addition, knockdown of Slug and Zeb-1 expression diminished p53-mediated E-cadherin repression. Knocking down endogenous mutant p53 in MDA-MB-231 and SW620 cancer cell lines lacking E-cadherin protein restored the expression of E-cadherin. Complete loss of E-cadherin expression in HCT116 cells induced morphological alterations along with upregulation of vimentin, a mesenchymal marker. These changes characteristic of the EMT phenotype were, however, not sufficient to confer invasiveness in a three-dimensional matrix. Downregulation of E-cadherin by mutant p53 was not required to promote the invasive phenotype induced by inactivation of p53. These findings indicate that independent control of E-cadherin expression and cell motility could be essential molecular events in p53 mutant-induced invasive phenotypes.
Collapse
Affiliation(s)
- Lauréline Roger
- Universités Montpellier 2 et 1, CRBM, CNRS UMR 5237, 1919 route de Mende, 34293 Montpellier, France
| | | | | | | |
Collapse
|
48
|
MT1-MMP is required for myeloid cell fusion via regulation of Rac1 signaling. Dev Cell 2010; 18:77-89. [PMID: 20152179 DOI: 10.1016/j.devcel.2009.11.012] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2009] [Revised: 10/02/2009] [Accepted: 11/09/2009] [Indexed: 01/17/2023]
Abstract
Cell fusion is essential for fertilization, myotube formation, and inflammation. Macrophages fuse under various circumstances, but the molecular signals involved in the distinct steps of their fusion are not fully characterized. Using null mice and derived cells, we show that the protease MT1-MMP is necessary for macrophage fusion during osteoclast and giant-cell formation in vitro and in vivo. Specifically, MT1-MMP is required for lamellipodia formation and for proper cell morphology and motility of bone marrow myeloid progenitors prior to membrane fusion. These functions of MT1-MMP do not depend on MT1-MMP catalytic activity or downstream pro-MMP-2 activation. Instead, MT1-MMP null cells show a decreased Rac1 activity and reduced membrane targeting of Rac1 and the adaptor protein p130Cas. Retroviral rescue experiments and protein binding assays delineate a signaling pathway in which MT1-MMP, via its cytosolic tail, contributes to macrophage migration and fusion by regulating Rac1 activity through an association with p130Cas.
Collapse
|
49
|
Sauzeau V, Sevilla MA, Montero MJ, Bustelo XR. The Rho/Rac exchange factor Vav2 controls nitric oxide-dependent responses in mouse vascular smooth muscle cells. J Clin Invest 2009; 120:315-30. [PMID: 20038798 DOI: 10.1172/jci38356] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Accepted: 10/14/2009] [Indexed: 01/21/2023] Open
Abstract
The regulation of arterial contractility is essential for blood pressure control. The GTPase RhoA promotes vasoconstriction by modulating the cytoskeleton of vascular smooth muscle cells. Whether other Rho/Rac pathways contribute to blood pressure regulation remains unknown. By studying a hypertensive knockout mouse lacking the Rho/Rac activator Vav2, we have discovered a new signaling pathway involving Vav2, the GTPase Rac1, and the serine/threonine kinase Pak that contributes to nitric oxide-triggered blood vessel relaxation and normotensia. This pathway mediated the Pak-dependent inhibition of phosphodiesterase type 5, a process that favored RhoA inactivation and the subsequent depolymerization of the F-actin cytoskeleton in vascular smooth muscle cells. The inhibition of phosphodiesterase type 5 required its physical interaction with autophosphorylated Pak1 but, unexpectedly, occurred without detectable transphosphorylation events between those 2 proteins. The administration of phosphodiesterase type 5 inhibitors prevented the development of hypertension and cardiovascular disease in Vav2-deficient animals, demonstrating the involvement of this new pathway in blood pressure regulation. Taken together, these results unveil one cause of the cardiovascular phenotype of Vav2-knockout mice, identify a new Rac1/Pak1 signaling pathway, and provide a mechanistic framework for better understanding blood pressure control in physiological and pathological states.
Collapse
Affiliation(s)
- Vincent Sauzeau
- Centro de Investigación del Cáncer, Instituto de Biología Molecular y Celular del Cáncer, CSIC-University of Salamanca, Campus Unamuno, Salamanca, Spain
| | | | | | | |
Collapse
|
50
|
Wang M, Bridges JP, Na CL, Xu Y, Weaver TE. Meckel-Gruber syndrome protein MKS3 is required for endoplasmic reticulum-associated degradation of surfactant protein C. J Biol Chem 2009; 284:33377-83. [PMID: 19815549 PMCID: PMC2785181 DOI: 10.1074/jbc.m109.034371] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2009] [Revised: 10/02/2009] [Indexed: 11/06/2022] Open
Abstract
Autosomal dominant mutations in the SFTPC gene are associated with idiopathic pulmonary fibrosis, a progressive lethal interstitial lung disease. Mutations that cause misfolding of the encoded proprotein surfactant protein C (SP-C) trigger endoplasmic reticulum (ER)-associated degradation, a pathway that segregates terminally misfolded substrate for retrotranslocation to the cytosol and degradation by proteasome. Microarray screens for genes involved in SP-C ER-associated degradation identified MKS3/TMEM67, a locus previously linked to the ciliopathy Meckel-Gruber syndrome. In this study, MKS3 was identified as a membrane glycoprotein predominantly localized to the ER. Expression of MKS3 was up-regulated by genetic or pharmacological inducers of ER stress. The ER lumenal domain of MKS3 interacted with a complex that included mutant SP-C and associated chaperones, whereas the region predicted to encode the transmembrane domains of MKS3 interacted with cytosolic p97. Deletion of the transmembrane and cytosolic domains abrogated interaction of MKS3 with p97 and resulted in accumulation of mutant SP-C proprotein; knockdown of MKS3 also inhibited degradation of mutant SP-C. These results support a model in which MKS3 links the ER lumenal quality control machinery with the cytosolic degradation apparatus.
Collapse
Affiliation(s)
- Mei Wang
- From the Division of Pulmonary Biology, Cincinnati Children's Research Foundation, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - James P. Bridges
- From the Division of Pulmonary Biology, Cincinnati Children's Research Foundation, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Cheng-Lun Na
- From the Division of Pulmonary Biology, Cincinnati Children's Research Foundation, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Yan Xu
- From the Division of Pulmonary Biology, Cincinnati Children's Research Foundation, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| | - Timothy E. Weaver
- From the Division of Pulmonary Biology, Cincinnati Children's Research Foundation, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229-3039
| |
Collapse
|