1
|
Lan Y, Liu D, Liang B, Song X, Xie L, Peng H, Guo H, Hong C, Weng X, Wei X, Liao X, Liang R, Huang D, Liu M. ITGA3-MET interaction promotes papillary thyroid cancer progression via ERK and PI3K/AKT pathways. Ann Med 2025; 57:2483379. [PMID: 40138447 PMCID: PMC11948363 DOI: 10.1080/07853890.2025.2483379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 04/18/2024] [Accepted: 05/10/2024] [Indexed: 03/29/2025] Open
Abstract
BACKGROUND Studies have examined the role of integrin α3 (ITGA3) in papillary thyroid carcinoma (PTC). However, the functional and molecular mechanism by which ITGA3 is involved in the progression of PTC remains poorly understood. METHODS To investigate the role of ITGA3 in PTC, raw PTC transcriptome data underwent comprehensive bioinformatics analyses, including differential expression, co-expression network, and enrichment analyses. ITGA3 expression was validated via immunohistochemistry and western blotting in PTC tissues. Cell functional assays and xenograft models assessed PTC cell behaviour. The potential mechanisms of ITGA3 were elucidated using bioinformatics analyses, western blotting, co-immunoprecipitation, and immunofluorescence. Finally, integration of ITGA3 expression with clinical parameters enabled nomogram construction for precise prediction of cervical lymph node metastasis (CLNM) in PTC. RESULTS ITGA3 was upregulated in PTC and associated strongly with CLNM (79.5% vs. 53.84%, p = 0.016). ITGA3 expression enhanced PTC proliferation and migration in vitro and in vivo via cooperating with the MET protein tyrosine kinase, followed by phosphorylation of MET at Tyr1234/1235, and activation of ERK and PI3K/AKT signaling pathways. Furthermore, upregulation ITGA3 reduced phosphorylation at FAK-Tyr397 and Src-Tyr416 in PTC cells. Finally, a nomogram combining ITGA3 expression and clinical parameters for predicting CLNM was constructed and validated, achieving a ROC curve AUC of 0.719, suggesting potential application for PTC diagnosis. CONCLUSIONS ITGA3 promotes PTC cell proliferation and migration by cooperating with MET to activate MET-ERK and MET-PI3K-AKT signalling. ITGA3-MET cooperation may serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Youmian Lan
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongchen Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Bin Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Xuhong Song
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Lingzhu Xie
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Hanwei Peng
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Haipeng Guo
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Chaoqun Hong
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xuwu Weng
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaolong Wei
- Department of Pathology, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Xiaoqi Liao
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Rui Liang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
| | - Dongyang Huang
- Department of Cell Biology and Genetics, Key Laboratory of Molecular Biology in High Cancer Incidence Coastal Chaoshan Area of Guangdong Higher Education Institutes, Shantou University Medical College, Shantou, China
- Department of Central Laboratory, Cancer Hospital of Shantou University Medical College, Shantou, China
| | - Muyuan Liu
- Department of Head and Neck, Cancer Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
2
|
Zheng S, Zhang Y, Cai R, Cai B, Luo S, He S, Peng T, Wang W, Cui H, Li H, Lu X. The untold story of CD82: Exploring its non-canonical roles in cancer. Pathol Res Pract 2025; 270:155979. [PMID: 40252385 DOI: 10.1016/j.prp.2025.155979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/06/2025] [Accepted: 04/13/2025] [Indexed: 04/21/2025]
Abstract
CD82, traditionally recognized as a metastasis suppressor within the tetraspanin family, has emerged as a key player in diverse cancer-related processes beyond its canonical functions. This review highlights recent research on the non-canonical roles of CD82 in cancer progression, with a particular focus on its regulation of immune cell interactions, its impact on tumor microenvironment modulation, and its potential as both a therapeutic target and a biomarker. By examining the novel functions of CD82 in immune modulation and its influence on key signaling pathways, we propose that CD82 offers promising avenues for therapeutic interventions in cancer. This paper provides a comprehensive synthesis of the current understanding of CD82's expanded roles, underscoring its potential in improving cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shutao Zheng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Yao Zhang
- Beijing Beanstalk International Bilingual School, Beijing 100016, PR China
| | - Ren Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Bangwu Cai
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shujuan Luo
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Shuo He
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Tianyuan Peng
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Wei Wang
- Department of Digestive Internal Medicine, the Affiliated Tumor Hospital of Xinjiang Medical University, PR China
| | - Hong Cui
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China
| | - Huifang Li
- Department of Breast Surgery, the First Affiliated Hospital of Xinjiang Medical University, PR China
| | - Xiaomei Lu
- State Key Laboratory of Pathogenesis, Prevention, Treatment of Central Asian High Incidence Diseases, Clinical Medical Research Institute, First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang Uygur Autonomous Region 830011, PR China.
| |
Collapse
|
3
|
Gallo S, Folco CB, Crepaldi T. The MET Oncogene Network of Interacting Cell Surface Proteins. Int J Mol Sci 2024; 25:13692. [PMID: 39769452 PMCID: PMC11728269 DOI: 10.3390/ijms252413692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
The MET oncogene, encoding the hepatocyte growth factor (HGF) receptor, plays a key role in tumorigenesis, invasion, and resistance to therapy, yet its full biological functions and activation mechanisms remain incompletely understood. A feature of MET is its extensive interaction network, encompassing the following: (i) receptor tyrosine kinases (RTKs); (ii) co-receptors (e.g., CDCP1, Neuropilin1); (iii) adhesion molecules (e.g., integrins, tetraspanins); (iv) proteases (e.g., ADAM10); and (v) other receptors (e.g., CD44, plexins, GPCRs, and NMDAR). These interactions dynamically modulate MET's activation, signaling, intracellular trafficking, and degradation, enhancing its functional versatility and oncogenic potential. This review offers current knowledge on MET's partnerships, focusing on their functional impact on signaling output, therapeutic resistance, and cellular behavior. Finally, we evaluate emerging combination therapies targeting MET and its interactors, highlighting their potential to overcome resistance and improve clinical outcomes. By exploring the complex interplay within the MET network of interacting cell surface proteins, this review provides insights into advancing anti-cancer strategies and understanding the broader implications of RTK crosstalk in oncology.
Collapse
Affiliation(s)
- Simona Gallo
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Consolata Beatrice Folco
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| | - Tiziana Crepaldi
- Department of Oncology, University of Turin, Regione Gonzole 10, 10143 Orbassano, Italy; (S.G.); (C.B.F.)
- Candiolo Cancer Institute, FPO-IRCCS, SP142, Km 3.95, 10060 Candiolo, Italy
| |
Collapse
|
4
|
Tetraspanins interweave EV secretion, endosomal network dynamics and cellular metabolism. Eur J Cell Biol 2022; 101:151229. [DOI: 10.1016/j.ejcb.2022.151229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 04/07/2022] [Accepted: 04/24/2022] [Indexed: 12/19/2022] Open
|
5
|
Kim SJ, Sun EG, Bae JA, Park S, Hong C, Park Z, Kim H, Kim KK. A peptide interfering with the dimerization of oncogenic KITENIN protein and its stability suppresses colorectal tumour progression. Clin Transl Med 2022; 12:e871. [PMID: 35853101 PMCID: PMC9296036 DOI: 10.1002/ctm2.871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/20/2022] [Accepted: 04/26/2022] [Indexed: 12/22/2022] Open
Abstract
The stability of a protein, as well as its function and versatility, can be enhanced through oligomerization. KITENIN (KAI1 C-terminal interacting tetraspanin) is known to promote the malignant progression of colorectal cancer (CRC). How KITENIN maintains its structural integrity and stability are largely unknown, however. Here we investigated the mechanisms regulating the stability of KITENIN with the aim of developing therapeutics blocking its oncogenic functions. We found that KITENIN formed a homo-oligomeric complex and that the intracellular C-terminal domain (KITENIN-CTD) was needed for this oligomerization. Expression of the KITENIN-CTD alone interfered with the formation of the KITENIN homodimer, and the amino acid sequence from 463 to 471 within the KITENIN-CTD was the most effective. This sequence coupled with a cell-penetrating peptide was named a KITENIN dimerization-interfering peptide (KDIP). We next studied the mechanisms by which KDIP affected the stability of KITENIN. The KITENIN-interacting protein myosin-X (Myo10), which has oncogenic activity in several cancers, functioned as an effector to stabilize the KITENIN homodimer in the cis formation. Treatment with KDIP resulted in the disintegration of the homodimer via downregulation of Myo10, which led to increased binding of RACK1 to the exposed RACK1-interacting motif (463-471 aa), and subsequent autophagy-dependent degradation of KITENIN and reduced CRC cell invasion. Intravenous injection of KDIP significantly reduced the tumour burden in a syngeneic mouse tumour model and colorectal liver metastasis in an intrasplenic hepatic metastasis model. Collectively, our present results provide a new cancer therapeutic peptide for blocking colorectal liver metastasis, which acts by inducing the downregulation of Myo10 and specifically targeting the stability of the oncogenic KITENIN protein.
Collapse
Affiliation(s)
- Sung Jin Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Eun Gene Sun
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Jeong A Bae
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Sehoon Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Chang‐Soo Hong
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| | - Zee‐Yong Park
- School of Life SciencesGwangju Institute of Science and TechnologyGwangjuRepublic of Korea
| | - Hangun Kim
- College of PharmacySunchon National UniversitySuncheonRepublic of Korea
| | - Kyung Keun Kim
- Department of PharmacologyChonnam National University Medical SchoolGwangjuRepublic of Korea
| |
Collapse
|
6
|
Santos RCM, Lucena DMS, Loponte HFBR, Alisson-Silva F, Dias WB, Lins RD, Todeschini AR. GM2/GM3 controls the organizational status of CD82/Met microdomains: further studies in GM2/GM3 complexation. Glycoconj J 2022; 39:653-661. [PMID: 35536494 DOI: 10.1007/s10719-022-10061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/01/2022]
Abstract
At cell surface gangliosides might associate with signal transducers proteins, grown factor receptors, integrins, small G-proteins and tetraspanins establishing microdomains, which play important role in cell adhesion, cell activation, motility, and growth. Previously, we reported that GM2 and GM3 form a heterodimer that interacts with the tetraspanin CD82, controlling epithelial cell mobility by inhibiting integrin-hepatocyte growth factor-induced cMet tyrosine kinase signaling. By using molecular dynamics simulations to study the molecular basis of GM2/GM3 interaction we demonstrate, here, that intracellular levels of Ca2+ mediate GM2/GM3 complexation via electrostatic interaction with their carboxyl groups, while hydrogen bonds between the ceramide groups likely aid stabilizing the complex. The presence of GM2/GM3 complex alters localization of CD82 on cell surface and therefore downstream signalization. These data contribute for the knowledge of how glycosylation may control signal transduction and phenotypic changes.
Collapse
Affiliation(s)
- Ronan C M Santos
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniela M S Lucena
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Hector F B R Loponte
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Paulo de Goes Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, 21941-902, Brazil
| | - Wagner B Dias
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Roberto D Lins
- Aggeu Magalhães Institute, Oswaldo Cruz Foundation, Recife, Pernambuco, 50740-465, Brazil
| | - Adriane R Todeschini
- Carlos Chagas Filho Biophysics' Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
7
|
Bu J, Zhong W, Li M, He S, Zhang M, Zhang Y, Li Y. CD82 palmitoylation site mutations at Cys5+Cys74 affect EGFR internalization and metabolism through recycling pathway. Acta Biochim Biophys Sin (Shanghai) 2022; 54:400-408. [PMID: 35538033 PMCID: PMC9828285 DOI: 10.3724/abbs.2022011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Tetraspanin CD82 often participates in regulating the function of epidermal growth factor receptor (EGFR) and hepatocyte growth factor receptor (c-Met). Palmitoylation is a post-translational modification that contributes to tetraspanin web formation and affects tetraspanin-dependent cell signaling. However, the molecular mechanisms by which CD82 palmitoylation affects the localization and stability of EGFR and c-Met have not yet been elucidated. This study focuses on the expression and distribution of EGFR and c-Met in breast cancer as well as the related metabolic pathways and molecular mechanisms associated with different CD82 palmitoylation site mutations. The results show that CD82 with a palmitoylation mutation at Cys5+Cys74 can promote the internalization of EGFR. EGFR is internalized and strengthened by direct binding to CD82 with the tubulin assistance and located at the recycling endosome. After studying the recycling pathway marker proteins Rab11a and FIP2, we found that formation of the EGFR/CD82/Rab11a/FIP2 complex promotes the internalization and metabolism of EGFR through the recycling pathway and results in the re-expression of EGFR and CD82 on the cell membrane.
Collapse
Affiliation(s)
- Jingya Bu
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Weiliang Zhong
- Department of Orthopaedics Surgerythe First Affiliated Hospital of Dalian Medical UniversityDalian116011China,Key Laboratory of Molecular Mechanism for Repair and Remodeling of Orthopaedic DiseasesLiaoning ProvinceDalian116011China
| | - Meixian Li
- Department of Clinical LaboratoryJiangxi Maternal and Child Health HospitalNanchang330000China.
| | - Shuiqing He
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Mingzhe Zhang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Yu Zhang
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China
| | - Ying Li
- Department of Clinical Laboratorythe Second Affiliated Hospital of Dalian Medical UniversityDalian116023China,Correspondence address. Tel: +86-17709875388; E-mail:
| |
Collapse
|
8
|
Abdelgawad MA, Elkanzi NA, Nayl A, Musa A, Hadal Alotaibi N, Arafa W, Gomha SM, Bakr RB. Targeting tumor cells with pyrazolo[3,4-d]pyrimidine scaffold: A literature review on synthetic approaches, structure activity relationship, structural and target-based mechanisms. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
9
|
Stanislovas J, Kermorgant S. c-Met-integrin cooperation: Mechanisms, tumorigenic effects, and therapeutic relevance. Front Cell Dev Biol 2022; 10:994528. [PMID: 36330337 PMCID: PMC9624249 DOI: 10.3389/fcell.2022.994528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 08/23/2022] [Indexed: 11/13/2022] Open
Abstract
c-Met is a receptor tyrosine kinase which upon activation by its ligand, the hepatocyte growth factor, mediates many important signalling pathways that regulate cellular functions such as survival, proliferation, and migration. Its oncogenic and tumorigenic signalling mechanisms, greatly contributing to cancer development and progression, are well documented. Integrins, heterogeneous adhesion receptors which facilitate cell-extracellular matrix interactions, are important in biomechanically sensitive cell adhesion and motility but also modulate diverse cell behaviour. Here we review the studies which reported cooperation between c-Met and several integrins, particularly β1 and β4, in various cell models including many tumour cell types. From the various experimental models and results analysed, we propose that c-Met-integrin cooperation occurs via inside-out or outside-in signalling. Thus, either c-Met activation triggers integrin activation and cell adhesion or integrin adhesion to its extracellular ligand triggers c-Met activation. These two modes of cooperation require the adhesive function of integrins and mostly lead to cell migration and invasion. In a third, less conventional, mode of cooperation, the integrin plays the role of a signalling adaptor for c-Met, independently from its adhesive property, leading to anchorage independent survival. Recent studies have revealed the influence of endocytic trafficking in c-Met-integrin cooperation including the adaptor function of integrin occurring on endomembranes, triggering an inside-in signalling, believed to promote survival of metastatic cells. We present the evidence of the cooperation in vivo and in human tissues and highlight its therapeutic relevance. A better understanding of the mechanisms regulating c-Met-integrin cooperation in cancer progression could lead to the design of new therapies targeting this cooperation, providing more effective therapeutic approaches than c-Met or integrin inhibitors as monotherapies used in the clinic.
Collapse
Affiliation(s)
- Justas Stanislovas
- Spatial Signalling Group, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Stéphanie Kermorgant
- Spatial Signalling Group, John Vane Science Centre, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
10
|
Titu S, Grapa CM, Mocan T, Balacescu O, Irimie A. Tetraspanins: Physiology, Colorectal Cancer Development, and Nanomediated Applications. Cancers (Basel) 2021; 13:cancers13225662. [PMID: 34830819 PMCID: PMC8616055 DOI: 10.3390/cancers13225662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/01/2021] [Accepted: 11/09/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Considering the high incidence of colorectal cancer in adults, as well as the need for identifying novel therapies, we hereby explore the role of tetraspanins in the development of colorectal cancer. We have focused on variate aspects starting from the structure and general physiology and ending with the precise mechanisms involved in the dual reported role of tetraspanins (pro–tumoral and tumor suppressor key player element). Moreover, the present review focuses on the potential of tetraspanins as a target for nanotechnology-mediated therapies, also gathering the limited attempts towards this aim and their reported data. Abstract Tetraspanins are transmembrane proteins expressed in a multitude of cells throughout the organism. They contribute to many processes that surround cell–cell interactions and are associated with the progress of some diseases, including cancer. Their crucial role in cell physiology is often understated. Furthermore, recent studies have shown their great potential in being used as targeting molecules. Data have suggested the potential of tetraspanins as a targeting vector for nanomediated distribution and delivery for colorectal cancer applications. Our aim is to provide a review on the important part that tetraspanins play in the human organism and highlight their potential use for drug delivery systems using nanotechnology.
Collapse
Affiliation(s)
- Stefan Titu
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| | - Cristiana Maria Grapa
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
| | - Teodora Mocan
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Nanomedicine Department, Regional Institute of Gastroenterology and Hepatology, 400126 Cluj-Napoca, Romania
- Correspondence:
| | - Ovidiu Balacescu
- Department of Genetics, Genomics and Experimental Pathology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania;
| | - Alexandru Irimie
- “Iuliu Hatieganu” University of Medicine and Pharmacy, Faculty of Medicine, 400126 Cluj-Napoca, Romania; (S.T.); (C.M.G.); (A.I.)
- Department of Surgical Oncology, The Oncology Institute “Prof. Dr. Ion Chiricuta” Cluj-Napoca, 400015 Cluj-Napoca, Romania
| |
Collapse
|
11
|
Role of a metastatic suppressor gene KAI1/CD82 in the diagnosis and prognosis of breast cancer. Saudi J Biol Sci 2021; 28:3391-3398. [PMID: 34121877 PMCID: PMC8176039 DOI: 10.1016/j.sjbs.2021.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 02/28/2021] [Accepted: 03/01/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, breast cancer is the most common type of cancer in females and is one of the leading causes of cancer death in women. The advancement in the targeted therapies and the slight understanding of the molecular cascades of the disease have led to small improvement in the rate of survival of breast cancer patients. However, metastasis and resistance to the current drugs still remain as challenges in the management of breast cancer patients. Metastasis, potentially, leads to failure of the available treatment, and thereby, makes the research on metastatic suppressors a high priority. Tumor metastasis suppressors are several genes and their protein products that have the capability of arresting the metastatic process without affecting the tumor formation. The metastasis suppressors KAI1 (also known as CD82) has been found to inhibit tumor metastasis in various types of solid cancers, including breast cancer. KAI1 was identified as a metastasis suppressor that inhibits the process of metastasis by regulating several mechanisms, including cell motility and invasion, induction of cell senescence, cell–cell adhesion and apoptosis. KAI1 is a member of tetraspanin membrane protein family. It interacts with other tetraspanins, chemokines and integrins to control diverse signaling pathways, which are crucial for protein trafficking and intracellular communication. It follows that better understanding of the molecular events of such genes is needed to develop prognostic biomarkers, and to identify specific therapies for breast cancer patients. This review aims to discuss the role of KAI1/CD82 as a prognosticator in breast cancer.
Collapse
|
12
|
Wang S, Chen J, Li H, Qi X, Liu X, Guo X. Metabolomic Detection Between Pancreatic Cancer and Liver Metastasis Nude Mouse Models Constructed by Using the PANC1-KAI1/CD 82 Cell Line. Technol Cancer Res Treat 2021; 20:15330338211045204. [PMID: 34605330 PMCID: PMC8493323 DOI: 10.1177/15330338211045204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 08/20/2021] [Indexed: 02/05/2023] Open
Abstract
Background: Pancreatic cancer (PC) has a poor prognosis and is prone to liver metastasis. The KAI1/CD82 gene inhibits PC metastasis. This study aimed to explore differential metabolites and enrich the pathways in serum samples between PC and liver metastasis nude mouse models stably expressing KAI1/CD82. Methods: KAI1/CD82-PLV-EF1α-MCS-IRES-Puro vector and PANC1 cell line stably expressing KAI1/CD82 were constructed for the first time. This cell line was used to construct 3 PC nude mouse models and 3 liver metastasis nude mouse models. The different metabolites and Kyoto encyclopedia of genes and genomes (KEGG) and human metabolome database (HMDB) enrichment pathways were analyzed using the serum samples of the 2 groups of nude mouse models on the basis of untargeted ultra-performance liquid chromatography-tandem mass spectrometry platform. Results: KAI1/CD82-PLV-EF1α-MCS-IRES-Puro vector and PANC1 cell line stably expressing KAI1/CD82 were constructed successfully, and all nude mouse models survived and developed cancers. Among the 1233 metabolites detected, 18 metabolites (9 upregulated and 9 downregulated) showed differences. In agreement with the literature data, the most significant differences between both groups were found in the levels of bile acids (taurocholic acid, chenodeoxycholic acid), glycine, prostaglandin E2, vitamin D, guanosine monophosphate, and inosine. Bile recreation, primary bile acid biosynthesis, and purine metabolism KEGG pathways and a series of HMDB pathways (P < .05) contained differential metabolites that may be associated with liver metastasis from PC. However, the importance of these metabolites on PC liver metastases remains to be elucidated. Conclusions: Our findings suggested that the metabolomic approach may be a useful method to detect potential biomarkers in PC.
Collapse
Affiliation(s)
- Shuo Wang
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Jiang Chen
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Hongyu Li
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Xingshun Qi
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Xu Liu
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| | - Xiaozhong Guo
- General Hospital of Northern Theater Command of China Medical University, Shenyang, Liaoning Province, P.R. China
| |
Collapse
|
13
|
Dodla P, Bhoopalan V, Khoo SK, Miranti C, Sridhar S. Gene expression analysis of human prostate cell lines with and without tumor metastasis suppressor CD82. BMC Cancer 2020; 20:1211. [PMID: 33298014 PMCID: PMC7724878 DOI: 10.1186/s12885-020-07675-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/22/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND Tetraspanin CD82 is a tumor metastasis suppressor that is known to down regulate in various metastatic cancers. However, the exact mechanism by which CD82 prevents cancer metastasis is unclear. This study aims to identify genes that are regulated by CD82 in human prostate cell lines. METHODS We used whole human genome microarray to obtain gene expression profiles in a normal prostate epithelial cell line that expressed CD82 (PrEC-31) and a metastatic prostate cell line that does not express CD82 (PC3). Then, siRNA silencing was used to knock down CD82 expression in PrEC-31 while CD82 was re-expressed in PC3 to acquire differentially-expressed genes in the respective cell line. RESULTS Differentially-expressed genes with a P < 0.05 were identified in 3 data sets: PrEC-31 (+CD82) vs PrEC-31(-CD82), PC3-57 (+CD82) vs. PC3-5 V (-CD82), and PC3-29 (+CD82) vs. PC3-5 V (-CD82). Top 25 gene lists did not show overlap within the data sets, except (CALB1) the calcium binding protein calbindin 1 which was significantly up-regulated (2.8 log fold change) in PrEC-31 and PC3-29 cells that expressed CD82. Other most significantly up-regulated genes included serine peptidase inhibitor kazal type 1 (SPINK1) and polypeptide N-acetyl galactosaminyl transferase 14 (GALNT14) and most down-regulated genes included C-X-C motif chemokine ligand 14 (CXCL14), urotensin 2 (UTS2D), and fibroblast growth factor 13 (FGF13). Pathways related with cell proliferation and angiogenesis, migration and invasion, cell death, cell cycle, signal transduction, and metabolism were highly enriched in cells that lack CD82 expression. Expression of two mutually inclusive genes in top 100 gene lists of all data sets, runt-related transcription factor (RUNX3) and trefoil factor 3 (TFF3), could be validated with qRT-PCR. CONCLUSION Identification of genes and pathways regulated by CD82 in this study may provide additional insights into the role that CD82 plays in prostate tumor progression and metastasis, as well as identify potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Pushpaja Dodla
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Vanitha Bhoopalan
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Sok Kean Khoo
- Department of Cell and Molecular Biology, Grand Valley State University, Allendale, MI, 49401, USA
| | - Cindy Miranti
- Department of Cellular and Molecular Medicine, University of Arizona Cancer Center, University of Arizona, Tucson, AZ, 85724, USA
| | - Suganthi Sridhar
- Department of Integrative Biology, University of South Florida, 140, 7Th Avenue S, University of South Florida, St. Petersburg, FL, 33701, USA.
| |
Collapse
|
14
|
Hall A, Fontelonga T, Wright A, Bugda Gwilt K, Widrick J, Pasut A, Villa F, Miranti CK, Gibbs D, Jiang E, Meng H, Lawlor MW, Gussoni E. Tetraspanin CD82 is necessary for muscle stem cell activation and supports dystrophic muscle function. Skelet Muscle 2020; 10:34. [PMID: 33243288 PMCID: PMC7693590 DOI: 10.1186/s13395-020-00252-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 11/09/2020] [Indexed: 02/07/2023] Open
Abstract
Background Tetraspanins are a family of proteins known to assemble protein complexes at the cell membrane. They are thought to play diverse cellular functions in tissues by modifying protein-binding partners, thus bringing complexity and diversity in their regulatory networks. Previously, we identified the tetraspanin KAI/CD82 as a prospective marker for human muscle stem cells. CD82 expression appeared decreased in human Duchenne muscular dystrophy (DMD) muscle, suggesting a functional link to muscular dystrophy, yet whether this decrease is a consequence of dystrophic pathology or a compensatory mechanism in an attempt to rescue muscle from degeneration is currently unknown. Methods We studied the consequences of loss of CD82 expression in normal and dystrophic skeletal muscle and examined the dysregulation of downstream functions in mice aged up to 1 year. Results Expression of CD82 is important to sustain satellite cell activation, as in its absence there is decreased cell proliferation and less efficient repair of injured muscle. Loss of CD82 in dystrophic muscle leads to a worsened phenotype compared to control dystrophic mice, with decreased pulmonary function, myofiber size, and muscle strength. Mechanistically, decreased myofiber size in CD82−/− dystrophic mice is not due to altered PTEN/AKT signaling, although increased phosphorylation of mTOR at Ser2448 was observed. Conclusion Basal CD82 expression is important to dystrophic muscle, as its loss leads to significantly weakened myofibers and impaired muscle function, accompanied by decreased satellite cell activity that is unable to protect and repair myofiber damage. Supplementary Information The online version contains supplementary material available at 10.1186/s13395-020-00252-3.
Collapse
Affiliation(s)
- Arielle Hall
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Tatiana Fontelonga
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alec Wright
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Katlynn Bugda Gwilt
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Jeffrey Widrick
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Alessandra Pasut
- Laboratory of Angiogenesis and Vascular metabolism, Center for Cancer Biology, VIB and KU Leuven, 3000, Leuven, Belgium
| | - Francesco Villa
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Cynthia K Miranti
- Department of Cellular and Molecular Medicine, University of Arizona College of Medicine, Tucson, AZ, 85724, USA
| | - Devin Gibbs
- Molecular Biology Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Evan Jiang
- The University of Pennsylvania, College of Arts and Sciences, Philadelphia, PA, 19104, USA
| | - Hui Meng
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Michael W Lawlor
- Department of Pathology and Laboratory Medicine and Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, 53226, USA
| | - Emanuela Gussoni
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, 02115, USA. .,The Stem Cell Program at Boston Children's Hospital, Boston, MA, 02115, USA.
| |
Collapse
|
15
|
Yuan Y, Sheng Z, Liu Z, Zhang X, Xiao Y, Xie J, Zhang Y, Xu T. CMTM5-v1 inhibits cell proliferation and migration by downregulating oncogenic EGFR signaling in prostate cancer cells. J Cancer 2020; 11:3762-3770. [PMID: 32328181 PMCID: PMC7171480 DOI: 10.7150/jca.42314] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
Anomalous epidermal growth factor receptor (EGFR) signaling plays an important role in the progression of prostate cancer (PCa) and the transformation to castration-resistant PCa (CRPC). A novel tumor suppressor CKLF-like MARVEL transmembrane domain-containing member 5(CMTM5) has a MARVEL domain and may regulate transmembrane signaling. Thus, we postulated that CMTM5 could regulate EGFR and its downstream molecules to affect the biological behaviors of PCa cells. In this study, we found that CMTM5 was expressed in benign prostatic hyperplasia (BPH) tissues but was undetectable in PCa cells. However, the EGFR was upregulated in PCa cells, especially in two metastatic CRPC cell lines, PC3 and DU145. Furthermore, ectopic expression of CMTM5-v1 suppressed cell proliferation and migration and p-EGFR levels. Further investigation revealed that restoration of CMTM5-v1 inhibited not only EGF-mediated proliferation but also chemotactic migration by EGF in PC3 and DU145 cells. Moreover, mechanistic studies showed that CMTM5-v1 attenuated EGF-induced receptor signaling by repressing EGFR and Akt phosphorylation in PCa cells, which were essential for malignant features. Finally, CMTM5-v1can promote the sensitivity of PC3 cells to Gefetinib, a tyrosine kinase inhibitor (TKI) targeting the EGFR. These observations indicate that CMTM5-v1 suppressed PCa cells through EGFR signaling. The loss of CMTM5 may participate in the progression of PCa resulting from deregulated EGFR, and CMTM5 might be associated with the efficacy of TKIs in terms of their potent inhibition of EGFR and human epidermal growth factor-2 (HER2) activation.
Collapse
Affiliation(s)
- Yeqing Yuan
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Zhengzuo Sheng
- Department of Thoracic Surgery, Fu Xing Hospital, Capital Medical University, Beijing, 100038, China
| | - Zhenhua Liu
- Department of Urology, Beijing Jishuitan Hospital, Beijing, 100096, China
| | - Xiaowei Zhang
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jing Xie
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Yixiang Zhang
- Department of Urology, Shenzhen People's Hospital, The Second Clinical Medical College of Jinan University, The First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, China
| | - Tao Xu
- Department of Urology, Peking University People's Hospital, Beijing, 100044, China
| |
Collapse
|
16
|
Lu H, Jin LP, Huang HL, Ha SY, Yang HL, Chang RQ, Li DJ, Li MQ. Trophoblast-derived CXCL12 promotes CD56 bright CD82 - CD29 + NK cell enrichment in the decidua. Am J Reprod Immunol 2019; 83. [PMID: 31650642 DOI: 10.1111/aji.13203] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/22/2019] [Accepted: 10/22/2019] [Indexed: 01/04/2023] Open
Abstract
PROBLEM Decidual natural killer (dNK) cells play key roles in maternal-fetal immune regulation, trophoblast invasion, and vascular remodeling, and most dNK cell populations are CD56bright CD16- NK cells. However, the enrichment and redistribution of dNK cells in the local decidua have not been clarified yet. METHOD OF STUDY A total of 45 women with normal pregnancies and 8 unexplained recurrent spontaneous abortion (RSA) patients were included. We isolated primary human dNK (n = 53) and peripheral blood NK (pNK) cells (n = 5) from specimen and analyzed CD56, CD82, and CD29 by flow cytometry (FCM). We assessed their adhesion ability by cell counts of NK cells adhered to decidual stromal cells (DSCs) in a co-culture system. RESULTS We found that RSA patients had more CD56dim dNK cells with lower CD82 and higher CD29 than women with normal pregnancies. There were negative correlations of CD82 to CD29 on CD56dim and CD56+ dNK cells. In normal pregnancies, dNK cells had lower CD82 and higher CD29 expression with a stronger adhesion ability than pNK cells. Blocking CD82 on dNK cells increased the adhesive ability and CD29 expression, while blocking CD29 decreased the adhesive ability. Co-culturing dNK cells with trophoblast cells decreased CD82 expression and increased the adhesive ability of dNK cells and the percentage of CD56bright NK cells, while blocking trophoblast-derived CXCL12 increased CD82 expression, decreased CD29 expression, and impaired the adhesive ability of NK cells. CONCLUSION Trophoblast cells enhance the adhesive ability of NK cells to DSCs via the CXCL12/CD82/CD29 signaling pathway and contribute to CD56bright NK cell enrichment in the uterus.
Collapse
Affiliation(s)
- Han Lu
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Li-Ping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hong-Lan Huang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Si-Yao Ha
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Hui-Li Yang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Rui-Qi Chang
- Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Da-Jin Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| | - Ming-Qing Li
- NHC Key Lab of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Institute of Obstetrics and Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, China
| |
Collapse
|
17
|
Townsend SE, Gannon M. Extracellular Matrix-Associated Factors Play Critical Roles in Regulating Pancreatic β-Cell Proliferation and Survival. Endocrinology 2019; 160:1885-1894. [PMID: 31271410 PMCID: PMC6656423 DOI: 10.1210/en.2019-00206] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/27/2019] [Indexed: 12/27/2022]
Abstract
This review describes formation of the islet basement membrane and the function of extracellular matrix (ECM) components in β-cell proliferation and survival. Implications for islet transplantation are discussed. The insulin-producing β-cell is key for maintaining glucose homeostasis. The islet microenvironment greatly influences β-cell survival and proliferation. Within the islet, β-cells contact the ECM, which is deposited primarily by intraislet endothelial cells, and this interaction has been shown to modulate proliferation and survival. ECM-localized growth factors, such as vascular endothelial growth factor and cellular communication network 2, signal through specific receptors and integrins on the β-cell surface. Further understanding of how the ECM functions to influence β-cell proliferation and survival will provide targets for enhancing functional β-cell mass for the treatment of diabetes.
Collapse
Affiliation(s)
- Shannon E Townsend
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
| | - Maureen Gannon
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, Tennessee
- Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, Tennessee
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee
- Correspondence: Maureen Gannon, PhD, Vanderbilt University Medical Center, 2213 Garland Avenue, MRB IV 7465, Nashville, Tennessee 37232. E-mail:
| |
Collapse
|
18
|
Transcriptome Analysis of Yamame ( Oncorhynchus masou) in Normal Conditions after Heat Stress. BIOLOGY 2019; 8:biology8020021. [PMID: 30934851 PMCID: PMC6628215 DOI: 10.3390/biology8020021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 03/25/2019] [Accepted: 03/25/2019] [Indexed: 12/18/2022]
Abstract
Understanding the mechanism of high-temperature tolerance in cold-freshwater fish is crucial for predicting how certain species will cope with global warming. In this study, we investigated temperature tolerance in masu salmon (Oncorhynchus masou, known in Japan as ‘yamame’), an important aquaculture species. By selective breeding, we developed a group of yamame (F2) with high-temperature tolerance. This group was subjected to a high-temperature tolerance test and divided into two groups: High-temperature tolerant (HT) and non-high-temperature tolerant (NT). RNA was extracted from the gill and adipose fin tissues of each group, and the mRNA expression profiles were analyzed using RNA sequencing. A total of 2893 differentially expressed genes (DEGs) from the gill and 836 from the adipose fin were identified by comparing the HT and NT groups. Functional analyses were then performed to identify associated gene ontology (GO) terms and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The HT group showed a high expression of heat shock protein 70 (HSP70) gene and enriched gene expression in the extracellular matrix (ECM), cell junction, and adhesion pathways in gill tissues compared to the NT group. The HT group also exhibited highly expressed genes in glycolysis and showed lower expression of the genes in the p53 signaling pathway in adipose fin tissues. Taken together, the difference of expression of some genes in the normal condition may be responsible for the difference in heat tolerance between the HT and NT yamame in the heat stress condition.
Collapse
|
19
|
Bergsma A, Ganguly SS, Dick D, Williams BO, Miranti CK. Global deletion of tetraspanin CD82 attenuates bone growth and enhances bone marrow adipogenesis. Bone 2018; 113:105-113. [PMID: 29782939 DOI: 10.1016/j.bone.2018.05.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 05/16/2018] [Accepted: 05/16/2018] [Indexed: 01/13/2023]
Abstract
CD82 is a widely expressed member of the tetraspanin family of transmembrane proteins known to control cell signaling, adhesion, and migration. Tetraspanin CD82 is induced over 9-fold during osteoclast differentiation in vitro; however, its role in bone homeostasis is unknown. A globally deleted CD82 mouse model was used to assess the bone phenotype. Based on microCT and 4-point bending tests, CD82-deficient bones are smaller in diameter and weaker, but display no changes in bone density. Histomorphometry shows a decrease in size, erosion perimeter, and number of osteoclasts in situ, with a corresponding increase in trabecular surface area, specifically in male mice. Male-specific alterations are observed in trabecular structure by microCT and in vitro differentiated osteoclasts are morphologically abnormal. Histomorphometry did not reveal a significant reduction in osteoblast number; however, dynamic labeling reveals a significant decrease in bone growth. Consistent with defects in OB function, OB differentiation and mineralization are defective in vitro, whereas adipogenesis is enhanced. There is a corresponding increase in bone marrow adipocytes in situ. Thus, combined defects in both osteoclasts and osteoblasts can account for the observed bone phenotypes, and suggests a role for CD82 in both bone mesenchyme and myeloid cells.
Collapse
Affiliation(s)
- Alexis Bergsma
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA; Van Andel Institute Graduate School, Grand Rapids, MI, USA
| | - Sourik S Ganguly
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Daniel Dick
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Bart O Williams
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA
| | - Cindy K Miranti
- Center for Cancer and Cell Biology, Program for Skeletal Disease and Tumor Microenvironment, Van Andel Research Institute, Grand Rapids, MI, USA; University of Arizona Cancer Center, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
20
|
Wang G, Zhang L, Zhou Y, Sun Q, Xu H, Cai F, Xiang P, Chen Z, Jiang H. KAI1/CD82 Genetically Engineered Endothelial Progenitor Cells Inhibit Metastasis of Human Nasopharyngeal Carcinoma in a Mouse Model. Med Sci Monit 2018; 24:3146-3152. [PMID: 29755107 PMCID: PMC5975073 DOI: 10.12659/msm.907219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Endothelial progenitor cells (EPCs) are regarded as promising targeted vectors for delivering therapeutic genes or agents in cancer therapy. The purpose of this study was to investigate the role of intravenously administered KAI1/CD82 genetically transduced EPCs in the tumorigenesis and metastasis of nasopharyngeal carcinoma (NPC). Material/Methods EPCs were isolated from human umbilical cord blood, expanded in culture, and stably transduced with lentiviral vectors expressing KAI1/CD82. The KAI1/CD82 EPCs were injected intravenously into nude mice bearing human NPC xenografts. Tumor growth and the incidence of liver and lung metastases were observed. Expression of KAI1/CD82 was determined by immunofluorescent staining. Results The NPC model was successfully established. Tumor growth was not suppressed when mice were injected with KAI1/CD82 EPCs (KAI1/CD82 EPCs group) compared with when non-transduced EPCs was present (EPCs group) or the control (1.485±0.234, 1.388±0.204, and 1.487±0.223g, respectively; P>0.05). However, the incidence of lung metastasis was significantly reduced in the KAI1/CD82+ EPCs group compared with the EPCs group and the control group (10%, 55% and 45%, respectively; P=0.005), and there was a significant decrease in the number of metastatic foci on the lung surface (17.50±3.54, 34.27±5.35, and 38.44±9.63 respectively; P=0.007). Moreover, KAI1/CD82 was expressed in lung metastatic foci of the KAI1/CD82 EPCs group, but not in the EPCs group and control group. Conclusions EPCs can be used as a delivery vehicle for suppressor genes KAI1/CD82 to NPC, and the migration of KAI1/CD82 genetically engineered EPCs can inhibit NPC lung metastasis in a mouse model.
Collapse
Affiliation(s)
- Gengming Wang
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Lei Zhang
- Department of Cardiothoracic Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Yan Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Qian Sun
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Hongbo Xu
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Feng Cai
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Ping Xiang
- Central Laboratory, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| | - Zhendong Chen
- Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Bengbu, Anhui, China (mainland)
| | - Hao Jiang
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China (mainland)
| |
Collapse
|
21
|
Miller J, Dreyer TF, Bächer AS, Sinner EK, Heinrich C, Benge A, Gross E, Preis S, Rother J, Roberts A, Nelles G, Miteva T, Reuning U. Differential tumor biological role of the tumor suppressor KAI1 and its splice variant in human breast cancer cells. Oncotarget 2018; 9:6369-6390. [PMID: 29464079 PMCID: PMC5814219 DOI: 10.18632/oncotarget.23968] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 12/23/2017] [Indexed: 01/30/2023] Open
Abstract
The tetraspanin and tumor suppressor KAI1 is downregulated or lost in many cancers which correlates with poor prognosis. KAI1 acts via physical/functional crosstalk with other membrane receptors. Also, a splice variant of KAI1 (KAI1-SP) has been identified indicative of poor prognosis. We here characterized differential effects of the two KAI1 variants on tumor biological events involving integrin (αvß3) and/or epidermal growth factor receptor (EGF-R). In MDA-MB-231 and -435 breast cancer cells, differential effects were documented on the expression levels of the tumor biologically relevant integrin αvß3 which colocalized with KAI1-WT but not with KAI1-SP. Cellular motility was assessed by video image processing, including motion detection and vector analysis for the quantification and visualization of cell motion parameters. In MDA-MB-231 cells, KAI1-SP provoked a quicker wound gap closure and higher closure rates than KAI1-WT, also reflected by different velocities and average motion amplitudes of singular cells. KAI1-SP induced highest cell motion adjacent to the wound gap borders, whereas in MDA-MB-435 cells a comparable induction of both KAI1 variants was noticed. Moreover, while KAI1-WT reduced cell growth, KAI1-SP significantly increased it going along with a pronounced EGF-R upregulation. KAI1-SP-induced cell migration and proliferation was accompanied by the activation of the focal adhesion and Src kinase. Our findings suggest that splicing of KAI1 does not only abrogate its tumor suppressive functions, but even more, promotes tumor biological effects in favor of cancer progression and metastasis.
Collapse
Affiliation(s)
- Julia Miller
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Tobias F Dreyer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anne Sophie Bächer
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva-Kathrin Sinner
- BOKU, University of Natural Resources and Life Sciences, 1180 Vienna, Austria
| | - Christine Heinrich
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Anke Benge
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Eva Gross
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Sarah Preis
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| | - Jan Rother
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Anthony Roberts
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Gabriele Nelles
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Tzenka Miteva
- Materials Science Laboratory, Sony Europe Ltd ZN Deutschland, D-70327 Stuttgart, Germany
| | - Ute Reuning
- Department for Obstetrics & Gynecology, Technical University of Munich, D-81675 Munich, Germany
| |
Collapse
|
22
|
Bae WK, Hong CS, Park MR, Sun EG, Lee JH, Kang K, Ryu KH, Shim HJ, Hwang JE, Cho SH, Chung IJ. TAp73 inhibits cell invasion and migration by directly activating KAI1 expression in colorectal carcinoma. Cancer Lett 2017; 415:106-116. [PMID: 29222041 DOI: 10.1016/j.canlet.2017.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 11/24/2017] [Accepted: 12/02/2017] [Indexed: 01/23/2023]
Abstract
p73 is a member of the p53 family of transcription factors and, like p53, plays a role as a tumor suppressor. p73 is involved in development, proliferation, apoptosis and metastasis. However, the precise molecular mechanisms underlying its function in inhibiting metastasis remain largely unknown. Here, we show that induction of TAp73 decreased invasion and migration activity of colorectal cancer cells, whereas knockdown of TAp73 led to increased invasion and migration activity. KAI1 was identified as a transcriptional target of TAp73 and its expression is indispensable for TAp73-mediated inhibition of cell invasion and migration. Furthermore, induction of TAp73 in colorectal cancer cells elevated KAI1 expression and decreased the frequency of hepatic metastasis in vivo. Whereas, the decreased invasion and migration activities caused by TAp73 induction were abrogated by knockdown of KAI1. Interestingly, TAp73 and KAI1 are overexpressed in primary colorectal cancers and a significant correlation between TAp73 and KAI1 expression was detected, but their expressions were significantly down-regulated in metastatic cancers. Taken together, our results support a novel role for TAp73 in controlling colorectal cancer cell invasion, migration and metastasis by regulating transcription of KAI1.
Collapse
Affiliation(s)
- Woo-Kyun Bae
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Chang-Soo Hong
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Mi-Ra Park
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Eun-Gene Sun
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Ji-Hee Lee
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Keunsoo Kang
- Department of Microbiology, Dankook University, Cheonan, South Korea
| | - Kyung-Hyun Ryu
- Department of Biological Science, Sookmyung Women's University, Seoul, South Korea
| | - Hyun-Jeong Shim
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Jun-Eul Hwang
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Sang-Hee Cho
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea
| | - Ik-Joo Chung
- Department of Hemato-Oncology, Chonnam National University Hwasun Hospital, Hwasun, South Korea.
| |
Collapse
|
23
|
Li W, Hu M, Wang C, Lu H, Chen F, Xu J, Shang Y, Wang F, Qin J, Yan Q, Krueger BJ, Renne R, Gao SJ, Lu C. A viral microRNA downregulates metastasis suppressor CD82 and induces cell invasion and angiogenesis by activating the c-Met signaling. Oncogene 2017; 36:5407-5420. [PMID: 28534512 PMCID: PMC5608636 DOI: 10.1038/onc.2017.139] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 02/06/2023]
Abstract
Kaposi’s sarcoma (KS) is the most common AIDS-associated malignancy etiologically caused by Kaposi’s sarcoma-associated herpesvirus (KSHV). KS is a highly disseminated and vascularized tumor comprised of poorly differentiated spindle-shaped endothelial cells. KSHV encodes 12 pre-microRNAs (pre-miRNAs) that yield 25 mature miRNAs, but their roles in KSHV-induced tumor dissemination and angiogenesis remain largely unknown. KSHV-encoded miR-K12-6 (miR-K6) can produce two mature miRNAs, miR-K6-3p and miR-K6-5p. Recently, we have shown that miR-K6-3p promoted cell migration and angiogenesis by directly targeting SH3 domain binding glutamate-rich protein (SH3BGR) (PLoS Pathog. 2016;12(4):e1005605). Here, by using mass spectrometry, bioinformatics analysis and luciferase reporter assay, we showed that miR-K6-5p directly targeted the coding sequence (CDS) of CD82 molecule (CD82), a metastasis suppressor. Ectopic expression of miR-K6-5p specifically inhibited the expression of endogenous CD82 and strongly promoted endothelial cells invasion in vitro and angiogenesis in vivo. Overexpression of CD82 significantly inhibited cell invasion and angiogenesis induced by miR-K6-5p. Mechanistically, CD82 directly interacted with c-Met to inhibit its activation. MiR-K6-5p directly repressed CD82, relieving its inhibition on c-Met activation and inducing cell invasion and angiogenesis. Deletion of miR-K6 from KSHV genome abrogated KSHV suppression of CD82 resulting in compromised KSHV activation of c-Met pathway, and KSHV-induced invasion and angiogenesis. In conclusion, these results show that by inhibiting CD82, KSHV miR-K6-5p promotes cell invasion and angiogenesis by activating the c-Met pathway. Our findings illustrate that KSHV miRNAs may play an essential role in the dissemination and angiogenesis of KSHV-induced malignancies.
Collapse
Affiliation(s)
- W Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - M Hu
- Department of Pathogenic Biology and Immunology, Xuzhou Medical University, Xuzhou, China
| | - C Wang
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - H Lu
- Department of Obstetrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - F Chen
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Xu
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Y Shang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - F Wang
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - J Qin
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - Q Yan
- Department of Microbiology, Nanjing Medical University, Nanjing, China
| | - B J Krueger
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - R Renne
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - S-J Gao
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - C Lu
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China.,Key Laboratory of Pathogen Biology of Jiangsu Province, Nanjing Medical University, Nanjing, China.,Department of Microbiology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Termini CM, Gillette JM. Tetraspanins Function as Regulators of Cellular Signaling. Front Cell Dev Biol 2017; 5:34. [PMID: 28428953 PMCID: PMC5382171 DOI: 10.3389/fcell.2017.00034] [Citation(s) in RCA: 194] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 03/22/2017] [Indexed: 01/10/2023] Open
Abstract
Tetraspanins are molecular scaffolds that distribute proteins into highly organized microdomains consisting of adhesion, signaling, and adaptor proteins. Many reports have identified interactions between tetraspanins and signaling molecules, finding unique downstream cellular consequences. In this review, we will explore these interactions as well as the specific cellular responses to signal activation, focusing on tetraspanin regulation of adhesion-mediated (integrins/FAK), receptor-mediated (EGFR, TNF-α, c-Met, c-Kit), and intracellular signaling (PKC, PI4K, β-catenin). Additionally, we will summarize our current understanding for how tetraspanin post-translational modifications (palmitoylation, N-linked glycosylation, and ubiquitination) can regulate signal propagation. Many of the studies outlined in this review suggest that tetraspanins offer a potential therapeutic target to modulate aberrant signal transduction pathways that directly impact a host of cellular behaviors and disease states.
Collapse
Affiliation(s)
- Christina M Termini
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| | - Jennifer M Gillette
- Department of Pathology, University of New Mexico Health Sciences CenterAlbuquerque, NM, USA
| |
Collapse
|
25
|
The molecular effect of metastasis suppressors on Src signaling and tumorigenesis: new therapeutic targets. Oncotarget 2016; 6:35522-41. [PMID: 26431493 PMCID: PMC4742122 DOI: 10.18632/oncotarget.5849] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 08/15/2015] [Indexed: 02/07/2023] Open
Abstract
A major problem for cancer patients is the metastasis of cancer cells from the primary tumor. This involves: (1) migration through the basement membrane; (2) dissemination via the circulatory system; and (3) invasion into a secondary site. Metastasis suppressors, by definition, inhibit metastasis at any step of the metastatic cascade. Notably, Src is a non-receptor, cytoplasmic, tyrosine kinase, which becomes aberrantly activated in many cancer-types following stimulation of plasma membrane receptors (e.g., receptor tyrosine kinases and integrins). There is evidence of a prominent role of Src in tumor progression-related events such as the epithelial–mesenchymal transition (EMT) and the development of metastasis. However, the precise molecular interactions of Src with metastasis suppressors remain unclear. Herein, we review known metastasis suppressors and summarize recent advances in understanding the mechanisms of how these proteins inhibit metastasis through modulation of Src. Particular emphasis is bestowed on the potent metastasis suppressor, N-myc downstream regulated gene 1 (NDRG1) and its interactions with the Src signaling cascade. Recent studies demonstrated a novel mechanism through which NDRG1 plays a significant role in regulating cancer cell migration by inhibiting Src activity. Moreover, we discuss the rationale for targeting metastasis suppressor genes as a sound therapeutic modality, and we review several examples from the literature where such strategies show promise. Collectively, this review summarizes the essential interactions of metastasis suppressors with Src and their effects on progression of cancer metastasis. Moreover, interesting unresolved issues regarding these proteins as well as their potential as therapeutic targets are also discussed.
Collapse
|
26
|
Feng J, Huang C, Wren JD, Wang DW, Yan J, Zhang J, Sun Y, Han X, Zhang XA. Tetraspanin CD82: a suppressor of solid tumors and a modulator of membrane heterogeneity. Cancer Metastasis Rev 2016; 34:619-33. [PMID: 26335499 DOI: 10.1007/s10555-015-9585-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Tetraspanin CD82 suppresses the progression and metastasis of a wide range of solid malignant tumors. However, its roles in tumorigenesis and hematopoietic malignancy remain unclear. Ubiquitously expressed CD82 restrains cell migration and cell invasion by modulating both cell-matrix and cell-cell adhesiveness and confining outside-in pro-motility signaling. This restraint at least contributes to, if not determines, the metastasis-suppressive activity and, also likely, the physiological functions of CD82. As a modulator of cell membrane heterogeneity, CD82 alters microdomains, trafficking, and topography of the membrane by changing the membrane molecular landscape. The functional activities of membrane molecules and the cytoskeletal interaction of the cell membrane are subsequently altered, followed by changes in cellular functions. Given its pathological and physiological importance, CD82 is a promising candidate for clinically predicting and blocking tumor progression and metastasis and also an emerging model protein for mechanistically understanding cell membrane organization and heterogeneity.
Collapse
Affiliation(s)
- Jin Feng
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Huang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA
| | - Jonathan D Wren
- Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Dao-Wen Wang
- Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Jizhou Yan
- Institute for Marine Biosystem and Neurosciences, Shanghai Ocean University, Shanghai, China
| | - Jiexin Zhang
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Yujie Sun
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xiao Han
- Department of Biochemistry, Nanjing Medical University, Nanjing, China
| | - Xin A Zhang
- Stephenson Cancer Center and Department of Physiology, University of Oklahoma Health Sciences Center, BRC 1474, 975 NE 10th Street, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
27
|
Jung YR, Park JJ, Jin YB, Cao YJ, Park MJ, Kim EJ, Lee M. Silencing of ST6Gal I enhances colorectal cancer metastasis by down-regulating KAI1 via exosome-mediated exportation and thereby rescues integrin signaling. Carcinogenesis 2016; 37:1089-1097. [PMID: 27559112 DOI: 10.1093/carcin/bgw091] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2016] [Revised: 07/31/2016] [Accepted: 08/20/2016] [Indexed: 12/24/2022] Open
Abstract
Aberrant sialylation has long been correlated with human cancer. Increased ST6 Gal I (β-galactoside α 2, 6 sialyltransferase) and consequently higher levels of cell-surface α 2, 6 sialylation has been associated with human colorectal cancer (CRC) metastasis. We have extensive circumstantial data that sialylation is connected to cancer metastasis, but we do not understand in detail how sialylation can switch on/off multiple steps in cancer metastasis. To investigate the molecular mechanism underlying the ST6Gal I-mediated metastasis of CRC, we silenced the ST6Gal I gene in a metastatic SW620 CRC cell line (SW620-shST6Gal I) and examined the metastatic behavior of the cells. We found that various hallmarks of metastatic ability were considerably enhanced in ST6Gal 1-depleted SW620 clones, as assessed both in vitro and in vivo . In particular, the metastasis suppressor, KAI1, was down-regulated in ST6Gal I-deficient SW620 clones. This reflected the increased exosome-mediated exportation of KAI1, and was associated with a decrease in the KAI1-mediated inhibition of integrin. These findings indicate that gene silencing of ST6Gal I could enhance metastasis of CRC by down-regulating KAI1 activity and rescuing its negative effects on integrin signaling.
Collapse
Affiliation(s)
| | - Jung-Jin Park
- Department of Biochemistry and Medical Research Center , College of Medicine , Chungbuk National University , Cheongju 28644 , Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center , Korea Research Institute of Bioscience and Biotechnology , Cheongju 28116 , Republic of Korea
| | - Yuan Jie Cao
- Department of Radiation Oncology , Tianjin Medical University Cancer Institute and Hospital , National Clinical Research Center for Cancer and Tianjin Key laboratory of Cancer Prevention and Therapy , Huan-Hu-Xi Road , Ti-Yuan-Bei , He Xi District , Tianjin 300060 , P.R. China and
| | - Myung-Jin Park
- Division of Radiation Cancer Research , Korea Institute of Radiological and Medical Sciences , Seoul 01812 , Republic of Korea
| | | | | |
Collapse
|
28
|
Heiler S, Wang Z, Zöller M. Pancreatic cancer stem cell markers and exosomes - the incentive push. World J Gastroenterol 2016; 22:5971-6007. [PMID: 27468191 PMCID: PMC4948278 DOI: 10.3748/wjg.v22.i26.5971] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Revised: 06/03/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer (PaCa) has the highest death rate and incidence is increasing. Poor prognosis is due to late diagnosis and early metastatic spread, which is ascribed to a minor population of so called cancer stem cells (CSC) within the mass of the primary tumor. CSC are defined by biological features, which they share with adult stem cells like longevity, rare cell division, the capacity for self renewal, differentiation, drug resistance and the requirement for a niche. CSC can also be identified by sets of markers, which for pancreatic CSC (Pa-CSC) include CD44v6, c-Met, Tspan8, alpha6beta4, CXCR4, CD133, EpCAM and claudin7. The functional relevance of CSC markers is still disputed. We hypothesize that Pa-CSC markers play a decisive role in tumor progression. This is fostered by the location in glycolipid-enriched membrane domains, which function as signaling platform and support connectivity of the individual Pa-CSC markers. Outside-in signaling supports apoptosis resistance, stem cell gene expression and tumor suppressor gene repression as well as miRNA transcription and silencing. Pa-CSC markers also contribute to motility and invasiveness. By ligand binding host cells are triggered towards creating a milieu supporting Pa-CSC maintenance. Furthermore, CSC markers contribute to the generation, loading and delivery of exosomes, whereby CSC gain the capacity for a cell-cell contact independent crosstalk with the host and neighboring non-CSC. This allows Pa-CSC exosomes (TEX) to reprogram neighboring non-CSC towards epithelial mesenchymal transition and to stimulate host cells towards preparing a niche for metastasizing tumor cells. Finally, TEX communicate with the matrix to support tumor cell motility, invasion and homing. We will discuss the possibility that CSC markers are the initial trigger for these processes and what is the special contribution of CSC-TEX.
Collapse
|
29
|
Tesfay L, Schulz VV, Frank SB, Lamb LE, Miranti CK. Receptor tyrosine kinase Met promotes cell survival via kinase-independent maintenance of integrin α3β1. Mol Biol Cell 2016; 27:2493-504. [PMID: 27307589 PMCID: PMC4966988 DOI: 10.1091/mbc.e15-09-0649] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 06/08/2016] [Indexed: 01/13/2023] Open
Abstract
This study identifies a new mechanism by which the receptor tyrosine kinase Met promotes cell survival. The ectodomain and transmembrane domain of Met, independently of kinase activity, are required to maintain integrin α3β1 on the cell surface to prevent activation of intrinsic and extrinsic cell death pathways and maintain autophagic flux. Matrix adhesion via integrins is required for cell survival. Adhesion of epithelial cells to laminin via integrin α3β1 was previously shown to activate at least two independent survival pathways. First, integrin α3β1 is required for autophagy-induced cell survival after growth factor deprivation. Second, integrin α3β1 independently activates two receptor tyrosine kinases, EGFR and Met, in the absence of ligands. EGFR signaling to Erk promotes survival independently of autophagy. To determine how Met promotes cell survival, we inhibited Met kinase activity or blocked its expression with RNA interference. Loss of Met expression, but not inhibition of Met kinase activity, induced apoptosis by reducing integrin α3β1 levels, activating anoikis, and blocking autophagy. Met was specifically required for the assembly of autophagosomes downstream of LC3II processing. Reexpression of wild-type Met, kinase-dead Met, or integrin α3 was sufficient to rescue death upon removal of endogenous Met. Integrin α3β1 coprecipitated and colocalized with Met in cells. The extracellular and transmembrane domain of Met was required to fully rescue cell death and restore integrin α3 expression. Thus Met promotes survival of laminin-adherent cells by maintaining integrin α3β1 via a kinase-independent mechanism.
Collapse
Affiliation(s)
- Lia Tesfay
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Veronique V Schulz
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Sander B Frank
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Laura E Lamb
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| | - Cindy K Miranti
- Laboratory of Integrin Signaling and Tumorigenesis, Van Andel Research Institute, Grand Rapids, MI 49503
| |
Collapse
|
30
|
Huang YK, Fan XG, Qiu F. TM4SF1 Promotes Proliferation, Invasion, and Metastasis in Human Liver Cancer Cells. Int J Mol Sci 2016; 17:ijms17050661. [PMID: 27153056 PMCID: PMC4881487 DOI: 10.3390/ijms17050661] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/06/2023] Open
Abstract
Transmembrane 4 superfamily member 1 (TM4SF1) is a member of tetraspanin family, which mediates signal transduction events regulating cell development, activation, growth and motility. Our previous studies showed that TM4SF1 is highly expressed in liver cancer. HepG2 cells were transfected with TM4SFl siRNA and TM4SF1-expressing plasmids and their biological functions were analyzed in vitro and in vivo. HepG2 cells overexpressing TM4SF1 showed reduced apoptosis and increased cell migration in vitro and enhanced tumor growth and metastasis in vivo, whereas siRNA-mediated silencing of TM4SF1 had the opposite effect. TM4SF1 exerts its effect by regulating a few apoptosis- and migration-related genes including caspase-3, caspase-9, MMP-2, MMP-9 and VEGF. These results indicate that TM4SF1 is associated with liver tumor growth and progression, suggesting that TM4SF1 may be a potential target for treatment of liver cancer in future.
Collapse
Affiliation(s)
- Yu-Kun Huang
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China.
- Key Laboratory of Viral Hepatitis, Central South University, Changsha 410008, China.
| | - Xue-Gong Fan
- Department of Infectious Diseases, Xiangya Hospital, Central South University, Changsha 410008, China.
- Key Laboratory of Viral Hepatitis, Central South University, Changsha 410008, China.
| | - Fu Qiu
- Department of General Surgery, Xiangya Third Hospital, Central South University, Changsha 410013, China.
| |
Collapse
|
31
|
Nomura S, Iwata S, Hatano R, Komiya E, Dang NH, Iwao N, Ohnuma K, Morimoto C. Inhibition of VEGF-dependent angiogenesis by the anti-CD82 monoclonal antibody 4F9 through regulation of lipid raft microdomains. Biochem Biophys Res Commun 2016; 474:111-117. [PMID: 27103437 DOI: 10.1016/j.bbrc.2016.04.081] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 04/18/2016] [Indexed: 02/04/2023]
Abstract
CD82 (also known as KAI1) belongs to the tetraspanin superfamily of type III transmembrane proteins, and is involved in regulating cell adhesion, migration and proliferation. In contrast to these well-established roles of CD82 in tumor biology, its function in endothelial cell (EC) activity and tumor angiogenesis is yet to be determined. In this study, we show that suppression of CD82 negatively regulates vascular endothelial growth factor (VEGF)-induced angiogenesis. Moreover, we demonstrate that the anti-CD82 mAb 4F9 effectively inhibits phosphorylation of VEGF receptor 2 (VEGFR2), which is the principal mediator of the VEGF-induced angiogenic signaling process in tumor angiogenesis, by regulating the organization of the lipid raft microdomain signaling platform in human EC. Our present work therefore suggests that CD82 on EC is a potential target for anti-angiogenic therapy in VEGFR2-dependent tumor angiogenesis.
Collapse
Affiliation(s)
- Sayaka Nomura
- Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Satoshi Iwata
- Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Ryo Hatano
- Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Eriko Komiya
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Nam H Dang
- Division of Hematology/Oncology, University of Florida, 1600 SW Archer Road- Box 100278, Room MSB M410A, Gainesville, FL, 32610, USA
| | - Noriaki Iwao
- Department of Hematology, School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Kei Ohnuma
- Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| | - Chikao Morimoto
- Division of Clinical Immunology, Advanced Clinical Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan; Department of Rheumatology and Allergy, IMSUT Hospital, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| |
Collapse
|
32
|
CD82 suppresses CD44 alternative splicing-dependent melanoma metastasis by mediating U2AF2 ubiquitination and degradation. Oncogene 2016; 35:5056-5069. [PMID: 27041584 PMCID: PMC5033661 DOI: 10.1038/onc.2016.67] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/26/2015] [Accepted: 02/02/2016] [Indexed: 12/29/2022]
Abstract
Melanoma is one of the most lethal forms of skin cancer because of its early metastatic spread. The variant form of CD44 (CD44v), a cell surface glycoprotein, is highly expressed on metastatic melanoma. The mechanisms of regulation of CD44 alternative splicing in melanoma and its pathogenic contributions are so far poorly understood. Here, we investigated the expression level of CD44 in a large set of melanocytic lesions at different stages. We found that the expression of CD44v8-10 and a splicing factor, U2AF2, is significantly increased during melanoma progression, whereas CD82/KAI1, a tetraspanin family of tumor suppressor, is reduced in metastatic melanoma. CD44v8-10 and U2AF2 expression levels, which are negatively correlated with CD82 levels, are markedly elevated in primary melanoma compared with dysplastic nevi and further increased in metastatic melanoma. We also showed that patients with higher CD44v8-10 and U2AF2 expression levels tended to have shorter survival. By using both in vivo and in vitro assays, we demonstrated that CD82 inhibits the production of CD44v8-10 on melanoma. Mechanistically, U2AF2 is a downstream target of CD82 and in malignant melanoma facilitates CD44v8-10 alternative splicing. U2AF2-mediated CD44 isoform switch is required for melanoma migration in vitro and lung and liver metastasis in vivo. Notably, overexpression of CD82 suppresses U2AF2 activity by inducing U2AF2 ubiquitination. In addition, our data suggested that enhancement of melanoma migration by U2AF2-dependent CD44v8-10 splicing is mediated by Src/focal adhesion kinase/RhoA activation and formation of stress fibers, as well as CD44-E-selectin binding reinforcement. These findings uncovered a hitherto unappreciated function of CD82 in severing the linkage between U2AF2-mediated CD44 alternative splicing and cancer aggressiveness, with potential prognostic and therapeutic implications in melanoma.
Collapse
|
33
|
Timologou A, Zafrakas M, Grimbizis G, Miliaras D, Kotronis K, Stamatopoulos P, Tarlatzis BC. Immunohistochemical expression pattern of metastasis suppressors KAI1 and KISS1 in endometriosis and normal endometrium. Eur J Obstet Gynecol Reprod Biol 2016; 199:110-115. [PMID: 26918694 DOI: 10.1016/j.ejogrb.2016.02.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/03/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To analyze the expression pattern of metastasis suppressors KAI1 and KISS1 in the endometrium of patients with and without endometriosis. STUDY DESIGN In this pilot study, tissue samples were prospectively collected from 38 patients with endometriosis and 29 without endometriosis, undergoing operative laparoscopy in the proliferative phase of the menstrual cycle; diagnosis or absence of endometriosis was confirmed histologically. Protein expression of KAI1 and KISS1 were analyzed immunohistochemically in endometriotic lesions and the eutopic endometrium of patients with endometriosis and without endometriosis. RESULTS KAI1 expression was significantly decreased in the glandular eutopic endometrium of endometriosis patients as compared with that of patients without endometriosis (p=0.008). On the other hand, in endometriosis patients, KAI1 expression was significantly increased in the ectopic as compared with the eutopic endometrial stroma (p=0.021). There were no other significant differences in KAI1 expression between different groups. KISS1 expression in the ectopic glandular endometrium was significantly increased as compared with the eutopic glandular endometrium from patients with (p=0.004) and without endometriosis (p=0.008). There was no significant difference in KISS1 protein expression in the stromal endometrium between the three groups. CONCLUSIONS KAI1 and KISS1 are implicated in the pathogenesis and maintenance of endometriosis. Future studies should investigate whether KAI1 and KISS1 could be used as markers for early and minimally invasive detection of endometriosis based on their differential protein expression pattern in the eutopic endometrium of patients with and without endometriosis.
Collapse
Affiliation(s)
- Anna Timologou
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Menelaos Zafrakas
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece; School of Health and Medical Care, Alexander Technological Educational Institute of Thessaloniki, Thessaloniki, Greece.
| | - Grigorios Grimbizis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Dimosthenis Miliaras
- Laboratory of Histology & Embryology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Konstantinos Kotronis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Panayiotis Stamatopoulos
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Basil C Tarlatzis
- 1st Department of Obstetrics and Gynecology, Medical School, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
34
|
Liu W, Yue F, Zheng M, Merlot A, Bae DH, Huang M, Lane D, Jansson P, Lui GYL, Richardson V, Sahni S, Kalinowski D, Kovacevic Z, Richardson DR. The proto-oncogene c-Src and its downstream signaling pathways are inhibited by the metastasis suppressor, NDRG1. Oncotarget 2016; 6:8851-74. [PMID: 25860930 PMCID: PMC4496188 DOI: 10.18632/oncotarget.3316] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/08/2015] [Indexed: 11/25/2022] Open
Abstract
N-myc downstream regulated gene-1 (NDRG1) is a potent metastasis suppressor that plays a key role in regulating signaling pathways involved in mediating cancer cell invasion and migration, including those derived from prostate, colon, etc. However, the mechanisms and molecular targets through which NDRG1 reduces cancer cell invasion and migration, leading to inhibition of cancer metastasis, are not fully elucidated. In this investigation, using NDRG1 over-expression models in three tumor cell-types (namely, DU145, PC3MM and HT29) and also NDRG1 silencing in DU145 and HT29 cells, we reveal that NDRG1 decreases phosphorylation of a key proto-oncogene, cellular Src (c-Src), at a well-characterized activating site (Tyr416). NDRG1-mediated down-regulation of EGFR expression and activation were responsible for the decreased phosphorylation of c-Src (Tyr416). Indeed, NDRG1 prevented recruitment of c-Src to EGFR and c-Src activation. Moreover, NDRG1 suppressed Rac1 activity by modulating phosphorylation of a c-Src downstream effector, p130Cas, and its association with CrkII, which acts as a "molecular switch" to activate Rac1. NDRG1 also affected another signaling molecule involved in modulating Rac1 signaling, c-Abl, which then inhibited CrkII phosphorylation. Silencing NDRG1 increased cell migration relative to the control and inhibition of c-Src signaling using siRNA, or a pharmacological inhibitor (SU6656), prevented this increase. Hence, the role of NDRG1 in decreasing cell migration is, in part, due to its inhibition of c-Src activation. In addition, novel pharmacological agents, which induce NDRG1 expression and are currently under development as anti-metastatic agents, markedly increase NDRG1 and decrease c-Src activation. This study leads to important insights into the mechanism involved in inhibiting metastasis by NDRG1 and how to target these pathways with novel therapeutics.
Collapse
Affiliation(s)
- Wensheng Liu
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China.,Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Fei Yue
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Minhua Zheng
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, P.R.China
| | - Angelica Merlot
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Michael Huang
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius Lane
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Patric Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Goldie Yuan Lam Lui
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Vera Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Sumit Sahni
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Danuta Kalinowski
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
35
|
Zhang X, Song X, Su P, Gou M, Wang H, Liu X, Li Q. Molecular cloning, expression pattern, and phylogenetic analysis of a tetraspanin CD82-like molecule in lamprey Lampetra japonica. Dev Genes Evol 2016; 226:87-98. [PMID: 26935717 DOI: 10.1007/s00427-016-0530-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 02/09/2016] [Indexed: 11/25/2022]
Abstract
CD82, a member of the tetraspanins, is originally identified as an accessory molecule in T cell activation, and it participates in the formation of immune synapse both in T cells and antigen-presenting cells of jawed vertebrates. In the present study, a CD82 homologous complementary DNA (cDNA) sequence is identified in the lamprey Lampetra japonica. The open reading frame of this sequence is 801 bp long and encodes a 266-amino acid protein. The multialignment of this sequence with several typical CD82s and CD37s of jawed vertebrates shows that it also possesses their conserved four transmembrane domains and a six-cysteine motif Cys-Cys-Gly…Cys-Ser-Cys…Cys…Cys, which is a characteristic motif of CD82 and CD37 vertebrate tetraspanin sequences. Since it is close to CD82s in sequence similarity, we name it as Lja-CD82-like. From the distribution profile of the conserved motifs of CD82-like, CD82, and CD37 molecules from molluscas to mammals, it seems that the CD82s and CD37s evolved from a common ancestral gene through a gene duplication event to their modern forms by a short insertion or substitution approaches. The phylogenetic analysis indicated that CD82 and CD37 molecules of jawed vertebrates originated from a common ancestral gene which is close to agnathan CD82-like and evolved into two distinct paralogous groups maybe after the divergence of jawed and jawless vertebrates. An expression vector with trigger factor (TF) was constructed to ensure that Lja-CD82-like express in prokaryotic expression host. The expressions of Lja-CD82-like messenger RNA (mRNA) and protein in immune-related tissues of lamprey were detected by real-time quantitative polymerase chain reaction and western blotting. Results showed that the mRNA and the protein levels of Lja-CD82-like were significantly upregulated in lymphocyte-like cells, gills, and supraneural myeloid bodies after stimulation with mixed antigens, respectively. Our data provided a foundation for the further study of Lja-CD82-like and its role in immune response process of jawless vertebrates.
Collapse
Affiliation(s)
- Xiaoping Zhang
- College of Life Science, Liaoning Normal University, Dalian, 116029, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China
| | - Xueying Song
- College of Life Science, Liaoning Normal University, Dalian, 116029, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China
| | - Peng Su
- College of Life Science, Liaoning Normal University, Dalian, 116029, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China
| | - Meng Gou
- College of Life Science, Liaoning Normal University, Dalian, 116029, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China
| | - Hao Wang
- College of Life Science, Liaoning Normal University, Dalian, 116029, China
- Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China
| | - Xin Liu
- College of Life Science, Liaoning Normal University, Dalian, 116029, China.
- Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China.
| | - Qingwei Li
- College of Life Science, Liaoning Normal University, Dalian, 116029, China.
- Lamprey Research Center, Liaoning Normal University, Dalian, 116029, China.
| |
Collapse
|
36
|
Uchtmann K, Park ER, Bergsma A, Segula J, Edick MJ, Miranti CK. Homozygous loss of mouse tetraspanin CD82 enhances integrin αIIbβ3 expression and clot retraction in platelets. Exp Cell Res 2015; 339:261-9. [PMID: 26562164 DOI: 10.1016/j.yexcr.2015.11.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/03/2015] [Accepted: 11/07/2015] [Indexed: 11/15/2022]
Abstract
Integrin αIIbβ3 is critical for platelet-mediated blood clotting. Tetraspanins are well-established regulators of integrins and genetic loss of tetraspanin CD151 or TSSC6 in mice leads to increased bleeding due to inadequate integrin αIIbβ3 outside-in signaling. Conversely, mild but enhanced integrin αIIbβ3 activation and hyperaggregation is observed in CD9 and CD63 null mice respectively. CD82 is reportedly expressed in platelets; however its function is unknown. Using genetically engineered CD82 null mice, we investigated the role of the tetraspanin CD82 in platelet activation. Loss of CD82 resulted in reduced bleed times in vivo. CD82 was present on the surface of both human and mouse platelets, and its levels did not change upon platelet activation or degranulation. No differences in platelet activation, degranulation, or aggregation in response to ADP or collagen were detected in CD82 null mice. However, the kinetics of clot retraction was enhanced, which was intrinsic to the CD82-null platelets. Integrin αIIbβ3 surface expression was elevated on the platelets from CD82 null mice and they displayed enhanced adhesion and tyrosine kinase signaling on fibrinogen. This is the first report on CD82 function in platelets; which we found intrinsically modulates clot retraction, integrin αIIbβ3 expression, cell adhesion, and tyrosine signaling.
Collapse
Affiliation(s)
- Kristen Uchtmann
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Electa R Park
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Alexis Bergsma
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Justin Segula
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Mathew J Edick
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States
| | - Cindy K Miranti
- Lab of Integrin Signaling, Van Andel Research Institute, Grand Rapids, MI 49503 United States.
| |
Collapse
|
37
|
Zhou L, Yu L, Wu S, Feng Z, Song W, Gong X. Clinicopathological significance of KAI1 expression and epithelial-mesenchymal transition in non-small cell lung cancer. World J Surg Oncol 2015; 13:234. [PMID: 26231404 PMCID: PMC4522085 DOI: 10.1186/s12957-015-0657-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 07/20/2015] [Indexed: 01/31/2023] Open
Abstract
Background KAI1 and epithelial-mesenchymal transition (EMT) is related to both angiogenesis and lymphangiogenesis and is an important target in new cancer treatment strategies. We aimed to investigate the KAI1 and marker of EMT expression and correlation with lymph node metastasis (LNM) and explore their prognostic impact in non-small cell lung cancer (NSCLC). Methods Tumor tissue specimens from 312 resected patients with stage I–IIIA NSCLC were obtained. Immunohistochemistry was used to assess the expression of the molecular markers KAI1, E-cadherin (E-cad), vimentin, CD34, and D2-40. Results There were 153 N0 and 159 N+ patients. Tumor cell expression of KAI1and the marker of EMT, lymphatic vessel density (LVD), and microvessel density (MVD) were related to LNM. In multivariate analyses, the ages of patients, high tumor cell KAI1 expression, EMT, and the scores of MVD were independent factor of prognosis. Conclusions Tumor cell KAI1 expression, EMT, LVD, and MVD correlate with LNM. Thus, the detection of KAI1, expression of markers of EMT, and the scores of MVD may be used as a potential indicator of NSCLC prognosis.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Lan Yu
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Shiwu Wu
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Zhenzhong Feng
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Wenqing Song
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| | - Xiaomeng Gong
- Department of Pathology, the First Hospital Affiliated of Bengbu Medical College, Bengbu Medical College, No. 287 Changhuai Ave, Longzihu, Bengbu, Anhui Province, 233003, China.
| |
Collapse
|
38
|
Detchokul S, Williams ED, Parker MW, Frauman AG. Tetraspanins as regulators of the tumour microenvironment: implications for metastasis and therapeutic strategies. Br J Pharmacol 2015; 171:5462-90. [PMID: 23731188 DOI: 10.1111/bph.12260] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 05/16/2013] [Accepted: 05/16/2013] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED One of the hallmarks of cancer is the ability to activate invasion and metastasis. Cancer morbidity and mortality are largely related to the spread of the primary, localized tumour to adjacent and distant sites. Appropriate management and treatment decisions based on predicting metastatic disease at the time of diagnosis is thus crucial, which supports better understanding of the metastatic process. There are components of metastasis that are common to all primary tumours: dissociation from the primary tumour mass, reorganization/remodelling of extracellular matrix, cell migration, recognition and movement through endothelial cells and the vascular circulation and lodgement and proliferation within ectopic stroma. One of the key and initial events is the increased ability of cancer cells to move, escaping the regulation of normal physiological control. The cellular cytoskeleton plays an important role in cancer cell motility and active cytoskeletal rearrangement can result in metastatic disease. This active change in cytoskeletal dynamics results in manipulation of plasma membrane and cellular balance between cellular adhesion and motility which in turn determines cancer cell movement. Members of the tetraspanin family of proteins play important roles in regulation of cancer cell migration and cancer-endothelial cell interactions, which are critical for cancer invasion and metastasis. Their involvements in active cytoskeletal dynamics, cancer metastasis and potential clinical application will be discussed in this review. In particular, the tetraspanin member, CD151, is highlighted for its major role in cancer invasion and metastasis. LINKED ARTICLES This article is part of a themed section on Cytoskeleton, Extracellular Matrix, Cell Migration, Wound Healing and Related Topics. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2014.171.issue-24.
Collapse
Affiliation(s)
- S Detchokul
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine (Austin Health/Northern Health), The University of Melbourne, Heidelberg, Vic., Australia
| | | | | | | |
Collapse
|
39
|
Abstract
Tetraspanins are a superfamily of small transmembrane proteins that are expressed in almost all eukaryotic cells. Through interacting with one another and with other membrane and intracellular proteins, tetraspanins regulate a wide range of proteins such as integrins, cell surface receptors, and signaling molecules, and thereby engage in diverse cellular processes ranging from cell adhesion and migration to proliferation and differentiation. In particular, tetraspanins modulate the function of proteins involved in all determining factors of cell migration including cell-cell adhesion, cell-ECM adhesion, cytoskeletal protrusion/contraction, and proteolytic ECM remodeling. We herein provide a brief overview of collective in vitro and in vivo studies of tetraspanins to illustrate their regulatory functions in the migration and trafficking of cancer cells, vascular endothelial cells, skin cells (keratinocytes and fibroblasts), and leukocytes. We also discuss the involvement of tetraspanins in various pathologic and remedial processes that rely on cell migration and their potential value as targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Jiaping Zhang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| | - Yuesheng Huang
- a Institute of Burn Research ; State Key Laboratory of Trauma; Burns and Combined Injury; Southwest Hospital; The Third Military Medical University ; Chongqing , China
| |
Collapse
|
40
|
CMTM3 is reduced in prostate cancer and inhibits migration, invasion and growth of LNCaP cells. Clin Transl Oncol 2015; 17:632-9. [DOI: 10.1007/s12094-015-1288-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 04/07/2015] [Indexed: 12/11/2022]
|
41
|
EGFR over-expression in non-small cell lung cancers harboring EGFR mutations is associated with marked down-regulation of CD82. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1540-9. [PMID: 25912735 DOI: 10.1016/j.bbadis.2015.04.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/05/2015] [Accepted: 04/14/2015] [Indexed: 11/24/2022]
Abstract
Epidermal growth factor receptor (EGFR) gene mutations are strongly associated with lung adenocarcinoma and favorable response to EGFR tyrosine kinase inhibitor. The mutated EGFR proteins (EGFRs) are hyper-phosphorylated and refractory to receptor down-regulation. To address the discrepancy between hyper-phosphorylation and lack of down-regulation of mutant EGFRs, we have examined the expression of EGFR negative regulators in non-small cell lung cancer (NSCLC) cell lines. We found that NSCLC cell lines expressing mutant EGFRs often had low expression of various negative regulators for EGFR. Among them, tumor suppressor CD82 was up-regulated by wild type (WT) EGFR but down-regulated by mutant EGFRs. Reconstitution of CD82 exerted stronger suppressive effects on mutant EGFRs than on WT EGFR. Active exportation of CD82 through the exosome was one of the mechanisms involved in achieving the overall CD82 down-regulation in mutant EGFR-expressing lung cancer cell lines. Over-expression of mutant EGFR protein frequently occurred in the lung cancer tissues of mutant EGFR-transgenic mice and also associated with CD82 down-regulation. Immunoblot analyses on the tumor tissues from 23 lung adenocarcinoma patients (12 with WT EGFR, and 11 with mutant EGFRs) also identified significantly stronger down-regulation of CD82 in tumors with mutant EGFRs than WT. Our data indicate that CD82 down-regulation could be a critical step involved in the EGFR over-expression and the stronger tumorigenic activity triggered by EGFR mutations. Up-regulation of the CD82 level may become a promising new treatment strategy for lung adenocarcinoma.
Collapse
|
42
|
Cheong CM, Chow AWS, Fitter S, Hewett DR, Martin SK, Williams SA, To LB, Zannettino ACW, Vandyke K. Tetraspanin 7 (TSPAN7) expression is upregulated in multiple myeloma patients and inhibits myeloma tumour development in vivo. Exp Cell Res 2015; 332:24-38. [PMID: 25637218 DOI: 10.1016/j.yexcr.2015.01.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/13/2015] [Accepted: 01/16/2015] [Indexed: 01/05/2023]
Abstract
BACKGROUND Increased expression of the tetraspanin TSPAN7 has been observed in a number of cancers; however, it is unclear how TSPAN7 plays a role in cancer progression. METHODS We investigated the expression of TSPAN7 in the haematological malignancy multiple myleoma (MM) and assessed the consequences of TSPAN7 expression in the adhesion, migration and growth of MM plasma cells (PC) in vitro and in bone marrow (BM) homing and tumour growth in vivo. Finally, we characterised the association of TSPAN7 with cell surface partner molecules in vitro. RESULTS TSPAN7 was found to be highly expressed at the RNA and protein level in CD138(+) MM PC from approximately 50% of MM patients. TSPAN7 overexpression in the murine myeloma cell line 5TGM1 significantly reduced tumour burden in 5TGM1/KaLwRij mice 4 weeks after intravenous adminstration of 5TGM1 cells. While TSPAN7 overexpression did not affect cell proliferation in vitro, TSPAN7 increased 5TGM1 cell adhesion to BM stromal cells and transendothelial migration. In addition, TSPAN7 was found to associate with the molecular chaperone calnexin on the cell surface. CONCLUSION These results suggest that elevated TSPAN7 may be associated with better outcomes for up to 50% of MM patients.
Collapse
Affiliation(s)
- Chee Man Cheong
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
| | - Annie W S Chow
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia
| | - Stephen Fitter
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
| | - Duncan R Hewett
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia
| | - Sally K Martin
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia
| | - Sharon A Williams
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia
| | - L Bik To
- Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia
| | - Andrew C W Zannettino
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia; Centre for Cancer Biology and Hanson Institute, SA Pathology, Adelaide 5000, SA, Australia; Centre for Personalised Cancer Medicine, University of Adelaide, Adelaide 5000SA, Australia
| | - Kate Vandyke
- Myeloma Research Laboratory, School of Medical Sciences, University of Adelaide, and South Australian Health and Medical Research Institute (SAHMRI), Adelaide 5000, SA, Australia; Department of Haematology, SA Pathology, Adelaide 5000, SA, Australia; School of Medicine, University of Adelaide, Adelaide 5005, SA, Australia.
| |
Collapse
|
43
|
Viticchiè G, Muller PAJ. c-Met and Other Cell Surface Molecules: Interaction, Activation and Functional Consequences. Biomedicines 2015; 3:46-70. [PMID: 28536399 PMCID: PMC5344229 DOI: 10.3390/biomedicines3010046] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 01/08/2015] [Indexed: 12/18/2022] Open
Abstract
The c-Met receptor, also known as the HGF receptor, is one of the most studied tyrosine kinase receptors, yet its biological functions and activation mechanisms are still not fully understood. c-Met has been implicated in embryonic development and organogenesis, in tissue remodelling homeostasis and repair and in cancer metastasis. These functions are indicative of the many cellular processes in which the receptor plays a role, including cell motility, scattering, survival and proliferation. In the context of malignancy, sustained activation of c-Met leads to a signalling cascade involving a multitude of kinases that initiate an invasive and metastatic program. Many proteins can affect the activation of c-Met, including a variety of other cell surface and membrane-spanning molecules or receptors. Some cell surface molecules share structural homology with the c-Met extracellular domain and can activate c-Met via clustering through this domain (e.g., plexins), whereas other receptor tyrosine kinases can enhance c-Met activation and signalling through intracellular signalling cascades (e.g., EGFR). In this review, we provide an overview of c-Met interactions and crosstalk with partner molecules and the functional consequences of these interactions on c-Met activation and downstream signalling, c-Met intracellular localization/recycling and c-Met degradation.
Collapse
Affiliation(s)
- Giuditta Viticchiè
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| | - Patricia A J Muller
- MRC (Medical Research Council) Toxicology Unit, Lancaster Road, Leicester LE1 9HN, UK.
| |
Collapse
|
44
|
Qin Y, Mohandessi S, Gordon L, Wadehra M. Regulation of FAK Activity by Tetraspan Proteins: Potential Clinical Implications in Cancer. Crit Rev Oncog 2015; 20:391-405. [PMID: 27279237 PMCID: PMC5390008 DOI: 10.1615/critrevoncog.v20.i5-6.110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase that regulates multiple cell signaling pathways in both physiological and pathological conditions. Overexpression and activation of FAK is associated with many advanced stage cancers through promoting cancer cell tumorigenicity and progression as well as by regulating the tumor microenvironment. FAK has multiple binding partners through which FAK exerts its functions including RhoGEF, Src family, talin, cortactin, and paxilin. Over the last few years, it has been proposed that a novel group of four transmembrane proteins can interact with FAK and regulate its activity. These include select tetraspanins such as CD151 and CD9 as well as the GAS3 family members epithelial membrane protein-2 (EMP2) and peripheral myelin protein-22 (PMP22). In this review, we discuss the current knowledge of the interaction between FAK and tetraspan proteins in physiological and pathological conditions, with an emphasis on the potential of tetraspan family members as therapeutic targets in cancer.
Collapse
Affiliation(s)
- Yu Qin
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Shabnam Mohandessi
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Lynn Gordon
- Department of Ophthalmology, Jules Stein Eye Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA
| | - Madhuri Wadehra
- Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA
- Center to Eliminate Cancer Health Disparities, Charles Drew University, Los Angeles, CA
| |
Collapse
|
45
|
Ganguly SS, Li X, Miranti CK. The host microenvironment influences prostate cancer invasion, systemic spread, bone colonization, and osteoblastic metastasis. Front Oncol 2014; 4:364. [PMID: 25566502 PMCID: PMC4266028 DOI: 10.3389/fonc.2014.00364] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 11/29/2014] [Indexed: 12/28/2022] Open
Abstract
Prostate cancer (PCa) is the second leading cause of cancer death in men worldwide. Most PCa deaths are due to osteoblastic bone metastases. What triggers PCa metastasis to the bone and what causes osteoblastic lesions remain unanswered. A major contributor to PCa metastasis is the host microenvironment. Here, we address how the primary tumor microenvironment influences PCa metastasis via integrins, extracellular proteases, and transient epithelia-mesenchymal transition (EMT) to promote PCa progression, invasion, and metastasis. We discuss how the bone-microenvironment influences metastasis; where chemotactic cytokines favor bone homing, adhesion molecules promote colonization, and bone-derived signals induce osteoblastic lesions. Animal models that fully recapitulate human PCa progression from primary tumor to bone metastasis are needed to understand the PCa pathophysiology that leads to bone metastasis. Better delineation of the specific processes involved in PCa bone metastasize is needed to prevent or treat metastatic PCa. Therapeutic regimens that focus on the tumor microenvironment could add to the PCa pharmacopeia.
Collapse
Affiliation(s)
- Sourik S Ganguly
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA ; Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Xiaohong Li
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Tumor Microenvironment and Metastasis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| | - Cindy K Miranti
- Program for Skeletal Disease and Tumor Metastasis, Laboratory of Integrin Signaling and Tumorigenesis, Center for Cancer and Cell Biology, Van Andel Research Institute , Grand Rapids, MI , USA
| |
Collapse
|
46
|
Upheber S, Karle A, Miller J, Schlaugk S, Gross E, Reuning U. Alternative splicing of KAI1 abrogates its tumor-suppressive effects on integrin αvβ3-mediated ovarian cancer biology. Cell Signal 2014; 27:652-62. [PMID: 25435431 DOI: 10.1016/j.cellsig.2014.11.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/21/2014] [Indexed: 01/31/2023]
Abstract
Loss or downregulation of the tumor-suppressor KAI1 correlates with poor cancer patient prognosis. KAI1 functions by interacting with other proteins, including integrin cell adhesion and signaling receptors. We previously showed that KAI1 physically and functionally crosstalks with the tumor-biologically relevant integrin αvβ3, thereby suppressing ovarian cancer cell migration and proliferation. Interestingly, in metastases, a KAI1 splice variant had been identified, indicating poor patient prognosis. Thus, we here characterized differential effects of the two KAI1 proteins upon their cellular restoration. Opposite to KAI1, KAI1-splice reduced αvβ3-mediated cell adhesion, thereby inducing cell migration. This was accompanied by elevated αvβ3 levels and drastically elevated focal adhesion kinase activation, however, without any obvious colocalization with αvβ3, as observed for KAI1. Moreover, codistribution of KAI1 with the cell/cell-adhesion molecule E-cadherin was abrogated in KAI1-splice. Whereas KAI1 diminished cell proliferative activity, KAI1-splice prominently enhanced cell proliferation concomitant with elevated transcription and cell-surface expression of the epidermal growth factor receptor. Thus KAI1-splice does not only counteract the tumor-suppressive actions of KAI1, but - beyond that - promotes αvβ3-mediated biological functions in favor of tumor progression and metastasis.
Collapse
Affiliation(s)
- Sina Upheber
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Alexandra Karle
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Julia Miller
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany
| | - Stephanie Schlaugk
- Division of Tumor Genetics, Department for Obstetrics & Gynecology, Technische Universitaet Muenchen, Germany
| | - Eva Gross
- Division of Tumor Genetics, Department for Obstetrics & Gynecology, Technische Universitaet Muenchen, Germany
| | - Ute Reuning
- Clinical Research Unit, Department for Gynecology & Obstetrics, Technische Universitaet München, Germany.
| |
Collapse
|
47
|
CMTM5 is reduced in prostate cancer and inhibits cancer cell growth in vitro and in vivo. Clin Transl Oncol 2014; 17:431-7. [PMID: 25387568 DOI: 10.1007/s12094-014-1253-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/27/2014] [Indexed: 12/29/2022]
Abstract
PURPOSE A novel tumor suppressor CKLF-like MARVEL transmembrane domain-containing member 5 (CMTM5) is reduced or undetectable in many kinds of cancers and inhibits tumor cells' malignant features. To explore its role in prostate cancer (PCa), we detected its expression patterns in prostate tissues and PCa cells, and determined its anti-proliferation functions in PCa cells in vitro and in vivo. METHODS The expression of CMTM5 in prostate tissue microarray, specimens and cell lines was evaluated by immunohistochemistry and Western blot, respectively. After being transfected with CMTM5 adenovirus or vector, the proliferation and migration of DU145 cells were detected by MTT assay and transwell assay, respectively. Furthermore, the effects of CMTM5 on tumor growth were performed in nude mice xenograft in vivo. RESULTS We found CMTM5 was reduced in PCa tissues and cells compared with BPH tissues, and its expression in PCa tissues was related to the Gleason score. Moreover, after being transfected with adenovirus, ectopic expression of CMTM5-v1 in DU145 cells led to significant inhibition of cell proliferation and migration compared with the control, which may be attributed to decreased Akt activity. Finally, restoration of CMTM5 significantly suppressed tumor growth in vivo. CONCLUSIONS These results indicate that CMTM5 is down-regulated in PCa and exhibit tumor suppressor activities in androgen-independent PCa cells. Loss of CMTM5 protein may be contributed to the development of PCa and it is a potential therapeutic target for castration-resistant prostate cancer.
Collapse
|
48
|
Abstract
Tetraspanins are a family of proteins with four transmembrane domains that play a role in many aspects of cell biology and physiology; they are also used by several pathogens for infection and regulate cancer progression. Many tetraspanins associate specifically and directly with a limited number of proteins, and also with other tetraspanins, thereby generating a hierarchical network of interactions. Through these interactions, tetraspanins are believed to have a role in cell and membrane compartmentalization. In this Cell Science at a Glance article and the accompanying poster, we describe the basic principles underlying tetraspanin-based assemblies and highlight examples of how tetraspanins regulate the trafficking and function of their partner proteins that are required for the normal development and function of several organs, including, in humans, the eye, the kidney and the immune system.
Collapse
Affiliation(s)
- Stéphanie Charrin
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Stéphanie Jouannet
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Claude Boucheix
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| | - Eric Rubinstein
- Inserm, U1004, F-94807, Villejuif, France Université Paris-Sud, Institut André Lwoff, F-94807 Villejuif, France
| |
Collapse
|
49
|
LI HONGYU, LI JIANJUN, LIU XU, CHEN JIANG, WU CHUNYAN, GUO XIAOZHONG. Effect of PTEN and KAI1 gene overexpression on the proliferation, metastasis and radiosensitivity of ASPC-1 pancreatic cancer cells under hypoxic conditions. Mol Med Rep 2014; 10:1973-7. [DOI: 10.3892/mmr.2014.2404] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 05/09/2014] [Indexed: 11/06/2022] Open
|
50
|
Dai W, Wang C, Wang F, Wang Y, Shen M, Chen K, Cheng P, Zhang Y, Yang J, Zhu R, Zhang H, Li J, Zheng Y, Lu J, Zhou Y, Xu L, Guo C. Anti-miR-197 inhibits migration in HCC cells by targeting KAI 1/CD82. Biochem Biophys Res Commun 2014; 446:541-548. [PMID: 24613834 DOI: 10.1016/j.bbrc.2014.03.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/01/2014] [Indexed: 11/28/2022]
Abstract
AIM To investigate the metastatic effects and mechanisms of miR-197 in hepatocellular carcinoma (HCC). METHODS AND RESULTS The levels of miR-197 increased in HCC cells and tissues compared with a normal hepatic cell line (LO2) and adjacent nontumorous liver tissues, respectively. miR-197 expression negatively correlated with CD82 mRNA expression in these cell lines and tissues. Dual luciferase reporter assay and Western blot confirmed a direct interaction between miR-197 and CD82 3'UTR sequences. After miR-197 was silenced in HCC cells, CD82 expression increased. In the presence of human hepatocyte growth factor (HGF), cells silenced for anti-miR-197 exhibited elongated cellular tails and diminished lamellipodia due to reductions in both ROCK activity and the levels of Rac 1 protein. Downregulation of miR-197 along with the upregulation of CD82 in HCC cells resulted in the inhibition of HCC migration and invasion in vitro and in vivo. CONCLUSION Taken together, these data suggest that anti-miR-197 suppresses HCC migration and invasion by targeting CD82. The regulation of the miR-197/CD82 axis could be a novel therapeutic target in future HCC effective therapy.
Collapse
Affiliation(s)
- Weiqi Dai
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Chengfen Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Fan Wang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yugang Wang
- Department of Gastroenterology, Tong Ren Hospital, Jiaotong University, School of Medicine, Shanghai, China
| | - Miao Shen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Kan Chen
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ping Cheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yan Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jing Yang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Rong Zhu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Huawei Zhang
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jingjing Li
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yuanyuan Zheng
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Jie Lu
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Yingqun Zhou
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China
| | - Ling Xu
- Department of Gastroenterology, Tong Ren Hospital, Jiaotong University, School of Medicine, Shanghai, China.
| | - Chuanyong Guo
- Department of Gastroenterology, Shanghai Tenth People's Hospital, Tongji University, School of Medicine, Shanghai, China.
| |
Collapse
|