1
|
Wang Y, Wu Z, Zheng Y, Wang H, Cheng B, Xia J. Unraveling the genetic underpinnings of mitochondrial traits and associated circulating inflammatory proteins in Alzheimer's disease: Mitochondrial HtrA2-T cell CD5 negative axis. J Alzheimers Dis 2025; 105:505-518. [PMID: 40170213 DOI: 10.1177/13872877251329517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2025]
Abstract
BackgroundPrevious studies with limited sample sizes have indicated a link between mitochondrial traits, inflammatory proteins, and Alzheimer's disease. The exact causality and their mediation relationships remain unclear.ObjectiveOur study aimed to delve into the genetic underpinnings of mitochondrial function and circulating inflammatory proteins in the pathogenesis of Alzheimer's disease.MethodsWe leveraged aggregated data from the largest genome-wide association study, including 69 mitochondrial traits, 91 circulating inflammatory proteins, and Alzheimer's disease. Bidirectional mendelian randomization (MR) analyses were performed to investigate their primary causal relationships. Thereafter a two-step MR mediation analysis was utilized to clarify the modulating effects of inflammatory proteins on mitochondria and Alzheimer's disease.ResultsOur study identified mitochondrial phenylalanine-tRNA ligase and 4-hydroxy-2-oxoglutarate aldolase as risk factors for Alzheimer's disease, and serine protease HtrA2 and carbonic anhydrase 5A as protective factors against Alzheimer's disease. Four inflammatory proteins (T-cell surface glycoprotein CD5, C-X-C motif chemokine 11, TGF-α, and TNF-related apoptosis-inducing ligand) played protective roles against Alzheimer's disease. Axin-1 and IL-6 increased the risk of Alzheimer's disease. Furthermore, T-cell surface glycoprotein CD5 was found to be a significant mediator between mitochondrial serine protease HTRA2 and Alzheimer's disease with the two-step MR method, accounting for 10.83% of the total effect.ConclusionsOur study emphasized mitochondrial HtrA2-T cell CD5 as a negative axis in Alzheimer's disease, offering novel perspectives on its etiology, pathogenesis, and treatment.
Collapse
Affiliation(s)
- Yixi Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Zhuokai Wu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yiheng Zheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Haimeng Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
2
|
Jiang H, Liu M, Yang W, Hong YK, Xu D, Nalbant EK, Clutter ED, Foroozandeh P, Kaplan N, Wysocki J, Batlle D, Miller SD, Lu K, Peng H. Activation of limbal epithelial proliferation is partly controlled by the ACE2-LCN2 pathway. iScience 2024; 27:110534. [PMID: 39175771 PMCID: PMC11338997 DOI: 10.1016/j.isci.2024.110534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/19/2024] [Accepted: 07/15/2024] [Indexed: 08/24/2024] Open
Abstract
In response to corneal injury, an activation of corneal epithelial stem cells and their direct progeny the early transit amplifying (eTA) cells to rapidly proliferate is critical for proper re-epithelialization. Thus, it is important to understand how such stem/eTA cell activation is regulated. Angiotensin-converting enzyme 2 (ACE2) is predominantly expressed in the stem/eTA-enriched limbal epithelium but its role in the limbal epithelium was unclear. Single cell RNA sequencing (scRNA-seq) suggested that Ace2 involved the proliferation of the stem/eTA cells. Ace2 was reduced following corneal injury. Such reduction enhanced limbal epithelial proliferation and downregulated LCN2, a negative regulator of proliferation in a variety of tissues, via upregulating TGFA and consequently activating epidermal growth factor receptor (EGFR). Inhibition of EGFR or overexpression of LCN2 reversed the increased proliferation in limbal epithelial cells lacking ACE2. Our findings demonstrate that after corneal injury, ACE2 is downregulated, which activates limbal epithelial cell proliferation via a TGFA/EGFR/LCN2 pathway.
Collapse
Affiliation(s)
- Huimin Jiang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
- Department of Ophthalmology, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Min Liu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Wending Yang
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yi-Kai Hong
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Dan Xu
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elif Kayaalp Nalbant
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Elwin D. Clutter
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Parisa Foroozandeh
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nihal Kaplan
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Jan Wysocki
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Daniel Batlle
- Medicine (Nephrology and Hypertension), Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Stephen D. Miller
- Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Kurt Lu
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Han Peng
- Departments of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
3
|
Liang Z, Lou Y, Hao Y, Li H, Feng J, Liu S. The Relationship of Astrocytes and Microglia with Different Stages of Ischemic Stroke. Curr Neuropharmacol 2023; 21:2465-2480. [PMID: 37464832 PMCID: PMC10616922 DOI: 10.2174/1570159x21666230718104634] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 07/20/2023] Open
Abstract
Ischemic stroke is the predominant cause of severe morbidity and mortality worldwide. Post-stroke neuroinflammation has recently received increasing attention with the aim of providing a new effective treatment strategy for ischemic stroke. Microglia and astrocytes are major components of the innate immune system of the central nervous system. They can be involved in all phases of ischemic stroke, from the early stage, contributing to the first wave of neuronal cell death, to the late stage involving phagocytosis and repair. In the early stage of ischemic stroke, a vicious cycle exists between the activation of microglia and astrocytes (through astrocytic connexin 43 hemichannels), aggravating neuroinflammatory injury post-stroke. However, in the late stage of ischemic stroke, repeatedly activated microglia can induce the formation of glial scars by triggering reactive astrogliosis in the peri-infarct regions, which may limit the movement of activated microglia in reverse and restrict the diffusion of inflammation to healthy brain tissues, alleviating the neuroinflammatory injury poststroke. In this review, we elucidated the various roles of astrocytes and microglia and summarized their relationship with neuroinflammation. We also examined how astrocytes and microglia influence each other at different stages of ischemic stroke. Several potential therapeutic approaches targeting astrocytes and microglia in ischemic stroke have been reviewed. Understanding the details of astrocytemicroglia interaction processes will contribute to a better understanding of the mechanisms underlying ischemic stroke, contributing to the identification of new therapeutic interventions.
Collapse
Affiliation(s)
- Zhen Liang
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yingyue Lou
- Department of Rehabilitation, The Second Hospital of Jilin University, Changchun, China
| | - Yulei Hao
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Hui Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiachun Feng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Songyan Liu
- Department of Neurology, China-Japan Union Hospital, Jilin University, Changchun, China
| |
Collapse
|
4
|
Jung GA, Kim JA, Park HW, Lee H, Chang MS, Cho KO, Song BW, Kim HJ, Kwon YK, Oh IH. Induction of Nanog in neural progenitor cells for adaptive regeneration of ischemic brain. Exp Mol Med 2022; 54:1955-1966. [PMID: 36376495 PMCID: PMC9722910 DOI: 10.1038/s12276-022-00880-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
NANOG plays a key role in cellular plasticity and the acquisition of the stem cell state during reprogramming, but its role in the regenerative process remains unclear. Here, we show that the induction of NANOG in neuronal cells is necessary for the physiological initiation of neuronal regeneration in response to ischemic stress. Specifically, we found that NANOG was preferentially expressed in undifferentiated neuronal cells, and forced expression of Nanog in neural progenitor cells (NPCs) promoted their self-renewing expansion both in ex-vivo slice cultures and in vitro limiting dilution analysis. Notably, the upstream region of the Nanog gene contains sequence motifs for hypoxia-inducible factor-1 alpha (HIF-1α). Therefore, cerebral neurons exposed to hypoxia significantly upregulated NANOG expression selectively in primitive (CD133+) cells, but not in mature cells, leading to the expansion of NPCs. Notably, up to 80% of the neuronal expansion induced by hypoxia was attributed to NANOG-expressing neuronal cells, whereas knockdown during hypoxia abolished this expansion and was accompanied by the downregulation of other pluripotency-related genes. Moreover, the number of NANOG-expressing neuronal cells were transiently increased in response to ischemic insult, predominantly in the infarct area of brain regions undergoing neurogenesis, but not in non-neurogenic loci. Together, these findings reveal a functional effect of NANOG-induction for the initiation of adaptive neuronal regeneration among heterogeneous NPC subsets, pointing to cellular plasticity as a potential link between regeneration and reprogramming processes.
Collapse
Affiliation(s)
- Gyung-Ah Jung
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Jin-A Kim
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Hwan-Woo Park
- Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea
- Department of Cell Biology, Myunggok Medical Research Institute, Konyang University College of Medicine, Daejeon, Korea
| | - Hyemi Lee
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea
| | - Mi-Sook Chang
- Department of Oral Anatomy, Dental Research Institute & School of Dentistry, Seoul National University, Seoul, Korea
| | - Kyung-Ok Cho
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, Institute of Aging and Metabolic Diseases, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Byeong-Wook Song
- College of Medicine, Institute for Bio-Medical Convergence, Catholic Kwandong University, Gangneung-si, 25601, Korea
| | - Hyun-Ju Kim
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea.
| | - Yunhee Kim Kwon
- Department of Biomedical and Pharmaceutical Sciences, Kyung Hee University, Seoul, Korea.
| | - Il-Hoan Oh
- Catholic High-Performance Cell Therapy Center & Department of Medical Life Science, College of Medicine, The Catholic University of Korea, Seoul, Korea.
- Institute for Regenerative Medical Research, StemMeditech Inc., Seoul, Korea.
| |
Collapse
|
5
|
Prevot V, Sharif A. The polygamous GnRH neuron: Astrocytic and tanycytic communication with a neuroendocrine neuronal population. J Neuroendocrinol 2022; 34:e13104. [PMID: 35233849 DOI: 10.1111/jne.13104] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/12/2022] [Accepted: 01/30/2022] [Indexed: 11/28/2022]
Abstract
To ensure the survival of the species, hypothalamic neuroendocrine circuits controlling fertility, which converge onto neurons producing gonadotropin-releasing hormone (GnRH), must respond to fluctuating physiological conditions by undergoing rapid and reversible structural and functional changes. However, GnRH neurons do not act alone, but through reciprocal interactions with multiple hypothalamic cell populations, including several glial and endothelial cell types. For instance, it has long been known that in the hypothalamic median eminence, where GnRH axons terminate and release their neurohormone into the pituitary portal blood circulation, morphological plasticity displayed by distal processes of tanycytes modifies their relationship with adjacent neurons as well as the spatial properties of the neurohemal junction. These alterations not only regulate the capacity of GnRH neurons to release their neurohormone, but also the activation of discrete non-neuronal pathways that mediate feedback by peripheral hormones onto the hypothalamus. Additionally, a recent breakthrough has demonstrated that GnRH neurons themselves orchestrate the establishment of their neuroendocrine circuitry during postnatal development by recruiting an entourage of newborn astrocytes that escort them into adulthood and, via signalling through gliotransmitters such as prostaglandin E2, modulate their activity and GnRH release. Intriguingly, several environmental and behavioural toxins perturb these neuron-glia interactions and consequently, reproductive maturation and fertility. Deciphering the communication between GnRH neurons and other neural cell types constituting hypothalamic neuroendocrine circuits is thus critical both to understanding physiological processes such as puberty, oestrous cyclicity and aging, and to developing novel therapeutic strategies for dysfunctions of these processes, including the effects of endocrine disruptors.
Collapse
Affiliation(s)
- Vincent Prevot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| | - Ariane Sharif
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR-S1172, FHU 1000 Days for Health, Lille, France
| |
Collapse
|
6
|
Ding Z, Dai C, Shan W, Liu R, Lu W, Gao W, Zhang H, Huang W, Guan J, Yin Z. TNF-α up-regulates Nanog by activating NF-κB pathway to induce primary rat spinal cord astrocytes dedifferentiation. Life Sci 2021; 287:120126. [PMID: 34758295 DOI: 10.1016/j.lfs.2021.120126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 10/10/2021] [Accepted: 11/03/2021] [Indexed: 10/19/2022]
Abstract
AIMS Astrocytes re-acquire stem cell potential upon inflammation, thereby becoming a promising source of cells for regenerative medicine. Nanog is an essential transcription factor to maintain the characteristics of stem cells. We aimed to investigate the role of Nanog in astrocyte dedifferentiation. MAIN METHODS TNF-α was used to induce the dedifferentiation of primary rat spinal cord astrocytes. The expression of immature markers CD44 and Musashi-1 was detected by qRT-PCR and immunofluorescence. The Nanog gene is knocked down by small interference RNA. Nanog expression was measured by qRT-PCR and western blotting. BAY 11-7082 was used to suppress NF-κB signals in astrocytes. NF-κB signaling was evaluated by Western blotting. KEY FINDINGS Our results showed that TNF-α promoted the re-expression of CD44 and Musashi-1 in astrocytes. Dedifferentiated astrocytes could be induced to differentiate into oligodendrocyte lineage cells indicating that the astrocytes had pluripotency. In addition, TNF-α treatment activated NF-κB signaling pathway and up-regulated Nanog. Knockdown of Nanog reversed the increase of CD44 and Musashi-1 induced by TNF-α without affecting the activation of NF-κB signaling. Importantly, blocking NF-κB signaling by BAY 11-7082 inhibited the expression of immature markers suggesting that TNF-α induces dedifferentiation of astrocytes through the NF-κB signaling pathway. BAY 11-7082 could also inhibit the expression of Nanog, which indicated that Nanog was regulated by NF-κB signaling pathway. SIGNIFICANCE These findings indicate that activation of the NF-κB signaling pathway through TNF-α leads to astrocytes dedifferentiation via Nanog. These results expand our understanding of the mechanism of astrocytes dedifferentiation.
Collapse
Affiliation(s)
- Zhenfei Ding
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, 287#Chang Huai Road, Bengbu 230071, Anhui, China; Department of Orthopaedics, The Second People's Hospital of Hefei, Intersection of Guangde Road and Leshui Road, Hefei 230011, Anhui, China
| | - Ce Dai
- Department of Orthopaedics, The Second People's Hospital of Hefei, Intersection of Guangde Road and Leshui Road, Hefei 230011, Anhui, China
| | - Wenshan Shan
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Rui Liu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Wei Lu
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Weilu Gao
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Hui Zhang
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China
| | - Wei Huang
- Department of Orthopaedics, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China.
| | - Jianzhong Guan
- Department of Orthopaedics, The First Affiliated Hospital of Bengbu Medical College, 287#Chang Huai Road, Bengbu 230071, Anhui, China; Anhui Key Laboratory of Tissue Transplantation, 2600#Dong Hai Avenue, Bengbu 233030, Anhui, China.
| | - Zongsheng Yin
- Department of Orthopaedics, The First Affiliated Hospital of Anhui Medical University, 218#Ji Xi Road, Hefei 230032, Anhui, China.
| |
Collapse
|
7
|
Birck C, Ginolhac A, Pavlou MAS, Michelucci A, Heuschling P, Grandbarbe L. NF-κB and TNF Affect the Astrocytic Differentiation from Neural Stem Cells. Cells 2021; 10:840. [PMID: 33917855 PMCID: PMC8068246 DOI: 10.3390/cells10040840] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 01/26/2023] Open
Abstract
The NF-κB signaling pathway is crucial during development and inflammatory processes. We have previously shown that NF-κB activation induces dedifferentiation of astrocytes into neural progenitor cells (NPCs). Here, we provide evidence that the NF-κB pathway plays also a fundamental role during the differentiation of NPCs into astrocytes. First, we show that the NF-κB pathway is essential to initiate astrocytic differentiation as its early inhibition induces NPC apoptosis and impedes their differentiation. Second, we demonstrate that persistent NF-κB activation affects NPC-derived astrocyte differentiation. Tumor necrosis factor (TNF)-treated NPCs show NF-κB activation, maintain their multipotential and proliferation properties, display persistent expression of immature markers and inhibit astrocyte markers. Third, we analyze the effect of NF-κB activation on the main known astrocytic differentiation pathways, such as NOTCH and JAK-STAT. Our findings suggest that the NF-κB pathway plays a dual fundamental role during NPC differentiation into astrocytes: it promotes astrocyte specification, but its persistent activation impedes their differentiation.
Collapse
Affiliation(s)
- Cindy Birck
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Communication, University of Luxembourg, L-1511 Luxembourg, Luxembourg; (C.B.); (A.G.); (M.A.S.P.); (P.H.)
| | - Aurélien Ginolhac
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Communication, University of Luxembourg, L-1511 Luxembourg, Luxembourg; (C.B.); (A.G.); (M.A.S.P.); (P.H.)
| | - Maria Angeliki S. Pavlou
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Communication, University of Luxembourg, L-1511 Luxembourg, Luxembourg; (C.B.); (A.G.); (M.A.S.P.); (P.H.)
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg;
- Neuro-Immunology Group, Department of Oncology, Luxembourg Institute of Health, L-1526 Luxembourg, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul Heuschling
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Communication, University of Luxembourg, L-1511 Luxembourg, Luxembourg; (C.B.); (A.G.); (M.A.S.P.); (P.H.)
| | - Luc Grandbarbe
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Communication, University of Luxembourg, L-1511 Luxembourg, Luxembourg; (C.B.); (A.G.); (M.A.S.P.); (P.H.)
| |
Collapse
|
8
|
Almairac F, Turchi L, Sakakini N, Debruyne DN, Elkeurti S, Gjernes E, Polo B, Bianchini L, Fontaine D, Paquis P, Chneiweiss H, Junier MP, Verrando P, Burel-Vandenbos F, Virolle T. ERK-Mediated Loss of miR-199a-3p and Induction of EGR1 Act as a "Toggle Switch" of GBM Cell Dedifferentiation into NANOG- and OCT4-Positive Cells. Cancer Res 2020; 80:3236-3250. [PMID: 32366479 DOI: 10.1158/0008-5472.can-19-0855] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 01/27/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022]
Abstract
There is great interest in understanding how the cancer stem cell population may be maintained in solid tumors. Here, we show that tumor cells exhibiting stem-like properties and expression of pluripotency markers NANOG and OCT4 can arise from original differentiated tumor cells freshly isolated from human glioblastomas (GBM) and that have never known any serum culture conditions. Induction of EGR1 by EGFR/ERK signaling promoted cell conversion from a less aggressive, more differentiated cellular state to a self-renewing and strongly tumorigenic state, expressing NANOG and OCT4. Expression of these pluripotency markers occurred before the cells re-entered the cell cycle, demonstrating their capacity to change and dedifferentiate without any cell divisions. In differentiated GBM cells, ERK-mediated repression of miR-199a-3p induced EGR1 protein expression and triggered dedifferentiation. Overall, this signaling pathway constitutes an ERK-mediated "toggle switch" that promotes pluripotency marker expression and stem-like features in GBM cells. SIGNIFICANCE: This study defines an ERK-mediated molecular mechanism of dedifferentiation of GBM cells into a stem-like state, expressing markers of pluripotency.See related commentary by Koncar and Agnihotri, p. 3195.
Collapse
Affiliation(s)
- Fabien Almairac
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France.,Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, France
| | - Laurent Turchi
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France.,DRCI, CHU de Nice, France
| | - Nathalie Sakakini
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | | | - Sarah Elkeurti
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Elisabet Gjernes
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Beatrice Polo
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Laurence Bianchini
- Laboratory of Solid Tumor Genetics, Université Côte d'Azur (UCA), CNRS UMR7284, INSERM U1081, Institute for Research on Cancer and Aging, Nice (IRCAN), Nice, France
| | - Denys Fontaine
- Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, France
| | - Philippe Paquis
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France.,Service de Neurochirurgie, Hôpital Pasteur, CHU de Nice, France
| | - Herve Chneiweiss
- CNRS UMR8246 Neuroscience Paris Seine - IBPS; Team Glial Plasticity; 7 quai Saint-Bernard, Paris, France.,Inserm U1130, Neuroscience Paris Seine - IBPS; Team Glial Plasticity; 7 quai Saint-Bernard, Paris, France.,Sorbonne University, Neuroscience Paris Seine - IBPS; Team Glial Plasticity; 7 quai Saint-Bernard, Paris, France
| | - Marie-Pierre Junier
- CNRS UMR8246 Neuroscience Paris Seine - IBPS; Team Glial Plasticity; 7 quai Saint-Bernard, Paris, France.,Inserm U1130, Neuroscience Paris Seine - IBPS; Team Glial Plasticity; 7 quai Saint-Bernard, Paris, France.,Sorbonne University, Neuroscience Paris Seine - IBPS; Team Glial Plasticity; 7 quai Saint-Bernard, Paris, France
| | - Patrick Verrando
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France
| | - Fanny Burel-Vandenbos
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France.,Service d'Anatomopathologie, Hôpital Pasteur, CHU de Nice, France
| | - Thierry Virolle
- Université Côte D'Azur, CNRS, INSERM, Institut de Biologie Valrose, Nice, France.
| |
Collapse
|
9
|
Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and Functions in Brain Pathologies. Front Pharmacol 2019; 10:1114. [PMID: 31611796 PMCID: PMC6777416 DOI: 10.3389/fphar.2019.01114] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Astrocytes are a population of cells with distinctive morphological and functional characteristics that differ within specific areas of the brain. Postnatally, astrocyte progenitors migrate to reach their brain area and related properties. They have a regulatory role of brain functions that are implicated in neurogenesis and synaptogenesis, controlling blood-brain barrier permeability and maintaining extracellular homeostasis. Mature astrocytes also express some genes enriched in cell progenitors, suggesting they can retain proliferative potential. Considering heterogeneity of cell population, it is not surprising that their disorders are related to a wide range of different neuro-pathologies. Brain diseases are characterized by the active inflammatory state of the astrocytes, which is usually described as up-regulation of glial fibrillary acidic protein (GFAP). In particular, the loss of astrocytes function as a result of cellular senescence could have implications for the neurodegenerative disorders, such as Alzheimer disease and Huntington disease, and for the aging brain. Astrocytes can also drive the induction and the progression of the inflammatory state due to their Ca2+ signals and that it is strongly related to the disease severity/state. Moreover, they contribute to the altered neuronal activity in several frontal cortex pathologies such as ischemic stroke and epilepsy. There, we describe the current knowledge pertaining to astrocytes' role in brain pathologies and discuss the possibilities to target them as approach toward pharmacological therapies for neuro-pathologies.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
10
|
The Role of SVZ Stem Cells in Glioblastoma. Cancers (Basel) 2019; 11:cancers11040448. [PMID: 30934929 PMCID: PMC6521108 DOI: 10.3390/cancers11040448] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/27/2022] Open
Abstract
As most common primary brain cancer, glioblastoma is also the most aggressive and malignant form of cancer in the adult central nervous system. Glioblastomas are genetic and transcriptional heterogeneous tumors, which in spite of intensive research are poorly understood. Over the years conventional therapies failed to affect a cure, resulting in low survival rates of affected patients. To improve the clinical outcome, an important approach is to identify the cells of origin. One potential source for these are neural stem cells (NSCs) located in the subventricular zone, which is one of two niches in the adult nervous system where NSCs with the capacity of self-renewal and proliferation reside. These cells normally give rise to neuronal as well as glial progenitor cells. This review summarizes current findings about links between NSCs and cancer stem cells in glioblastoma and discusses current therapeutic approaches, which arise as a result of identifying the cell of origin in glioblastoma.
Collapse
|
11
|
Pavlou MAS, Grandbarbe L, Buckley NJ, Niclou SP, Michelucci A. Transcriptional and epigenetic mechanisms underlying astrocyte identity. Prog Neurobiol 2018; 174:36-52. [PMID: 30599178 DOI: 10.1016/j.pneurobio.2018.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/20/2018] [Accepted: 12/28/2018] [Indexed: 12/14/2022]
Abstract
Astrocytes play a significant role in coordinating neural development and provide critical support for the function of the CNS. They possess important adaptation capacities that range from their transition towards reactive astrocytes to their ability to undergo reprogramming, thereby revealing their potential to retain latent features of neural progenitor cells. We propose that the mechanisms underlying reactive astrogliosis or astrocyte reprogramming provide an opportunity for initiating neuronal regeneration, a process that is notably reduced in the mammalian nervous system throughout evolution. Conversely, this plasticity may also affect normal astrocytic functions resulting in pathologies ranging from neurodevelopmental disorders to neurodegenerative diseases and brain tumors. We postulate that epigenetic mechanisms linking extrinsic cues and intrinsic transcriptional programs are key factors to maintain astrocyte identity and function, and critically, to control the balance of regenerative and degenerative activity. Here, we will review the main evidences supporting this concept. We propose that unravelling the epigenetic and transcriptional mechanisms underlying the acquisition of astrocyte identity and plasticity, as well as understanding how these processes are modulated by the local microenvironment under specific threatening or pathological conditions, may pave the way to new therapeutic avenues for several neurological disorders including neurodegenerative diseases and brain tumors of astrocytic lineage.
Collapse
Affiliation(s)
- Maria Angeliki S Pavlou
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg; NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Luc Grandbarbe
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Noel J Buckley
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, United Kingdom
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; KG Jebsen Brain Tumour Research Center, Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Alessandro Michelucci
- NORLUX Neuro-Oncology Laboratory, Department of Oncology, Luxembourg Institute of Health, Luxembourg, Luxembourg; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-Belval, Luxembourg.
| |
Collapse
|
12
|
Adnani L, Han S, Li S, Mattar P, Schuurmans C. Mechanisms of Cortical Differentiation. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2018; 336:223-320. [DOI: 10.1016/bs.ircmb.2017.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Chen J, He W, Hu X, Shen Y, Cao J, Wei Z, Luan Y, He L, Jiang F, Tao Y. A role for ErbB signaling in the induction of reactive astrogliosis. Cell Discov 2017; 3:17044. [PMID: 29238610 PMCID: PMC5717352 DOI: 10.1038/celldisc.2017.44] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 10/23/2017] [Indexed: 02/07/2023] Open
Abstract
Reactive astrogliosis is a hallmark of many neurological disorders, yet its functions and molecular mechanisms remain elusive. Particularly, the upstream signaling that regulates pathological responses of astrocytes is largely undetermined. We used a mouse traumatic brain injury model to induce astrogliosis and revealed activation of ErbB receptors in reactive astrocytes. Moreover, cell-autonomous inhibition of ErbB receptor activity in reactive astrocytes by a genetic approach suppressed hypertrophic remodeling possibly through the regulation of actin dynamics. However, inhibiting ErbB signaling in reactive astrocytes did not affect astrocyte proliferation after brain injury, although it aggravated local inflammation. In contrast, active ErbB signaling in mature astrocytes of various brain regions in mice was sufficient to initiate reactive responses, reproducing characterized molecular and cellular features of astrogliosis observed in injured or diseased brains. Further, prevalent astrogliosis in the brain induced by astrocytic ErbB activation caused anorexia in animals. Therefore, our findings defined an unrecognized role of ErbB signaling in inducing reactive astrogliosis. Mechanistically, inhibiting ErbB signaling in reactive astrocytes prominently reduced Src and focal adhesion kinase (FAK) activity that is important for actin remodeling, although ErbB signaling activated multiple downstream signaling proteins. The discrepancies between the results from loss- and gain-of-function studies indicated that ErbB signaling regulated hypertrophy and proliferation of reactive astrocytes by different downstream signaling pathways. Our work demonstrated an essential mechanism in the pathological regulation of astrocytes and provided novel insights into potential therapeutic targets for astrogliosis-implicated diseases.
Collapse
Affiliation(s)
- Jing Chen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, China.,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China
| | - Wanwan He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xu Hu
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yuwen Shen
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Junyan Cao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Zhengdong Wei
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yifei Luan
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Li He
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fangdun Jiang
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yanmei Tao
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.,Key Lab of Organ Development and Regeneration of Zhejiang Province, Hangzhou, China.,Key Lab of GEM Resource and Model Research of Hangzhou, Hangzhou, Zhejiang, China
| |
Collapse
|
14
|
Ugbode CI, Smith I, Whalley BJ, Hirst WD, Rattray M. Sonic hedgehog signalling mediates astrocyte crosstalk with neurons to confer neuroprotection. J Neurochem 2017; 142:429-443. [PMID: 28485896 PMCID: PMC5575469 DOI: 10.1111/jnc.14064] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 04/18/2017] [Accepted: 05/03/2017] [Indexed: 01/10/2023]
Abstract
Sonic hedgehog (SHH) is a glycoprotein associated with development that is also expressed in the adult CNS and released after brain injury. Since the SHH receptors patched homolog‐1 and Smoothened are highly expressed on astrocytes, we hypothesized that SHH regulates astrocyte function. Primary mouse cortical astrocytes derived from embryonic Swiss mouse cortices, were treated with two chemically distinct agonists of the SHH pathway, which caused astrocytes to elongate and proliferate. These changes are accompanied by decreases in the major astrocyte glutamate transporter‐1 and the astrocyte intermediate filament protein glial fibrillary acidic protein. Multisite electrophysiological recordings revealed that the SHH agonist, smoothened agonist suppressed neuronal firing in astrocyte‐neuron co‐cultures and this was abolished by the astrocyte metabolic inhibitor ethylfluoroacetate, revealing that SHH stimulation of metabolically active astrocytes influences neuronal firing. Using three‐dimensional co‐culture, MAP2 western blotting and immunohistochemistry, we show that SHH‐stimulated astrocytes protect neurons from kainate‐induced cell death. Altogether the results show that SHH regulation of astrocyte function represents an endogenous neuroprotective mechanism. ![]()
Collapse
Affiliation(s)
- Christopher I Ugbode
- School of Pharmacy, University of Bradford, Bradford, UK.,School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK.,Department of Biology, University of York, Heslington, UK
| | - Imogen Smith
- School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK.,Portsmouth Brain Tumour Research Centre, University of Portsmouth, Portsmouth, UK
| | - Benjamin J Whalley
- School of Chemistry, Food & Pharmacy, University of Reading, Reading, UK
| | - Warren D Hirst
- Neurodegeneration and Neurologic Diseases, Pfizer Neuroscience Research Unit, Cambridge, Massachusetts, USA
| | - Marcus Rattray
- School of Pharmacy, University of Bradford, Bradford, UK
| |
Collapse
|
15
|
Integrating the glioblastoma microenvironment into engineered experimental models. Future Sci OA 2017; 3:FSO189. [PMID: 28883992 PMCID: PMC5583655 DOI: 10.4155/fsoa-2016-0094] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 02/22/2017] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma (GBM) is the most lethal cancer originating in the brain. Its high mortality rate has been attributed to therapeutic resistance and rapid, diffuse invasion - both of which are strongly influenced by the unique microenvironment. Thus, there is a need to develop new models that mimic individual microenvironmental features and are able to provide clinically relevant data. Current understanding of the effects of the microenvironment on GBM progression, established experimental models of GBM and recent developments using bioengineered microenvironments as ex vivo experimental platforms that mimic the biochemical and physical properties of GBM tumors are discussed.
Collapse
|
16
|
Yang H, Liu CC, Wang CY, Zhang Q, An J, Zhang L, Hao DJ. Therapeutical Strategies for Spinal Cord Injury and a Promising Autologous Astrocyte-Based Therapy Using Efficient Reprogramming Techniques. Mol Neurobiol 2016; 53:2826-2842. [DOI: 10.1007/s12035-015-9157-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
|
17
|
Leclerc C, Haeich J, Aulestia FJ, Kilhoffer MC, Miller AL, Néant I, Webb SE, Schaeffer E, Junier MP, Chneiweiss H, Moreau M. Calcium signaling orchestrates glioblastoma development: Facts and conjunctures. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1447-59. [PMID: 26826650 DOI: 10.1016/j.bbamcr.2016.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/18/2016] [Accepted: 01/22/2016] [Indexed: 01/06/2023]
Abstract
While it is a relatively rare disease, glioblastoma multiform (GBM) is one of the more deadly adult cancers. Following current interventions, the tumor is never eliminated whatever the treatment performed; whether it is radiotherapy, chemotherapy, or surgery. One hypothesis to explain this poor outcome is the "cancer stem cell" hypothesis. This concept proposes that a minority of cells within the tumor mass share many of the properties of adult neural stem cells and it is these that are responsible for the growth of the tumor and its resistance to existing therapies. Accumulating evidence suggests that Ca(2+) might also be an important positive regulator of tumorigenesis in GBM, in processes involving quiescence, maintenance, proliferation, or migration. Glioblastoma tumors are generally thought to develop by co-opting pathways that are involved in the formation of an organ. We propose that the cells initiating the tumor, and subsequently the cells of the tumor mass, must hijack the different checkpoints that evolution has selected in order to prevent the pathological development of an organ. In this article, two main points are discussed. (i) The first is the establishment of a so-called "cellular society," which is required to create a favorable microenvironment. (ii) The second is that GBM can be considered to be an organism, which fights to survive and develop. Since GBM evolves in a limited space, its only chance of development is to overcome the evolutionary checkpoints. For example, the deregulation of the normal Ca(2+) signaling elements contributes to the progression of the disease. Thus, by manipulating the Ca(2+) signaling, the GBM cells might not be killed, but might be reprogrammed toward a new fate that is either easy to cure or that has no aberrant functioning. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Catherine Leclerc
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France.
| | - Jacques Haeich
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Francisco J Aulestia
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France
| | - Marie-Claude Kilhoffer
- Laboratoire d'Innovation Thérapeutique, Laboratoire d'Excellence Médalis, UMR 7200 Université de Strasbourg / CNRS, 67412 Illkirch, France
| | - Andrew L Miller
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Isabelle Néant
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| | - Sarah E Webb
- Division of Life Science and State Key Laboratory of Molecular Neuroscience, HKUST, Clear Water Bay, Hong Kong, PR China
| | - Etienne Schaeffer
- IREBS UMR7242 ESBS, Pôle API, Parc d'Innovation d'Illkirch, 67412 Illkirch cedex, France
| | - Marie-Pierre Junier
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Hervé Chneiweiss
- Sorbonne Universités, UPMC Univ Paris 06, Centre National de la Recherche Scientifique (CNRS), UMR8246, Institut National de la Santé et de la Recherche Medicale (INSERM), U1130, Institut de Biologie Paris Seine (IBPS), Neuroscience Paris Seine (NPS), Team Glial Plasticity, 7/9 Quai St Bernard, Paris, France
| | - Marc Moreau
- Centre de Biologie du Développement, Université Toulouse 3, 118 route de Narbonne, F31062 Toulouse, Cedex 04, France; CNRS UMR5547, Toulouse F31062, France
| |
Collapse
|
18
|
Brites D. Early Differentiating Mouse Astroglial Progenitors Share Common Protein Signatures with GL261 Glioma Cells. ACTA ACUST UNITED AC 2016. [DOI: 10.15436/2471-0598.16.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol 2015; 144:103-20. [PMID: 26455456 DOI: 10.1016/j.pneurobio.2015.09.008] [Citation(s) in RCA: 438] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2015] [Revised: 08/06/2015] [Accepted: 09/05/2015] [Indexed: 01/04/2023]
Abstract
Astrocytes are the most abundant cell type within the central nervous system. They play essential roles in maintaining normal brain function, as they are a critical structural and functional part of the tripartite synapses and the neurovascular unit, and communicate with neurons, oligodendrocytes and endothelial cells. After an ischemic stroke, astrocytes perform multiple functions both detrimental and beneficial, for neuronal survival during the acute phase. Aspects of the astrocytic inflammatory response to stroke may aggravate the ischemic lesion, but astrocytes also provide benefit for neuroprotection, by limiting lesion extension via anti-excitotoxicity effects and releasing neurotrophins. Similarly, during the late recovery phase after stroke, the glial scar may obstruct axonal regeneration and subsequently reduce the functional outcome; however, astrocytes also contribute to angiogenesis, neurogenesis, synaptogenesis, and axonal remodeling, and thereby promote neurological recovery. Thus, the pivotal involvement of astrocytes in normal brain function and responses to an ischemic lesion designates them as excellent therapeutic targets to improve functional outcome following stroke. In this review, we will focus on functions of astrocytes and astrocyte-mediated events during stroke and recovery. We will provide an overview of approaches on how to reduce the detrimental effects and amplify the beneficial effects of astrocytes on neuroprotection and on neurorestoration post stroke, which may lead to novel and clinically relevant therapies for stroke.
Collapse
Affiliation(s)
- Zhongwu Liu
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA.
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA; Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
20
|
Inflammation Promotes a Conversion of Astrocytes into Neural Progenitor Cells via NF-κB Activation. Mol Neurobiol 2015; 53:5041-55. [PMID: 26381429 PMCID: PMC5012156 DOI: 10.1007/s12035-015-9428-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 09/07/2015] [Indexed: 11/23/2022]
Abstract
Brain inflammation, a common feature in neurodegenerative diseases, is a complex series of events, which can be detrimental and even lead to neuronal death. Nonetheless, several studies suggest that inflammatory signals are also positively influencing neural cell proliferation, survival, migration, and differentiation. Recently, correlative studies suggested that astrocytes are able to dedifferentiate upon injury and may thereby re-acquire neural stem cell (NSC) potential. However, the mechanism underlying this dedifferentiation process upon injury remains unclear. Here, we report that during the early response of reactive gliosis, inflammation induces a conversion of mature astrocytes into neural progenitors. A TNF treatment induces the decrease of specific astrocyte markers, such as glial fibrillary acidic protein (GFAP) or genes related to glycogen metabolism, while a subset of these cells re-expresses immaturity markers, such as CD44, Musashi-1, and Oct4. Thus, TNF treatment results in the appearance of cells that exhibit a neural progenitor phenotype and are able to proliferate and differentiate into neurons and/or astrocytes. This dedifferentiation process is maintained as long as TNF is present in the culture medium. In addition, we highlight a role for Oct4 in this process, since the TNF-induced dedifferentiation can be prevented by inhibiting Oct4 expression. Our results show that activation of the NF-κB pathway through TNF plays an important role in the dedifferentiation of astrocytes via the re-expression of Oct4. These findings indicate that the first step of reactive gliosis is in fact a dedifferentiation process of resident astrocytes mediated by the NF-κB pathway.
Collapse
|
21
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Data in support of metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. Data Brief 2015. [PMID: 26217695 PMCID: PMC4459766 DOI: 10.1016/j.dib.2014.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
2D-DIGE analysis coupled with mass spectrometry is a global, without a priori, comparative proteomic approach particularly suited to identify and quantify enzymes isoforms and structural proteins, thus making it an efficient tool for the characterization of the changes in cell phenotypes that occur in physiological and pathological conditions. In this data article in support of the research article entitled “Metabolic reprogramming in transformed mouse cortical astrocytes: a proteomic study” [1] we illustrate the changes in protein profile that occur during the metabolic reprogramming undergone by cultured mouse astrocytes in a model of in-vitro cancerous transformation [2].
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical Chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
22
|
Lee YM, Sun YH. Maintenance of glia in the optic lamina is mediated by EGFR signaling by photoreceptors in adult Drosophila. PLoS Genet 2015; 11:e1005187. [PMID: 25909451 PMCID: PMC4409299 DOI: 10.1371/journal.pgen.1005187] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 03/31/2015] [Indexed: 01/13/2023] Open
Abstract
The late onset of neurodegeneration in humans indicates that the survival and function of cells in the nervous system must be maintained throughout adulthood. In the optic lamina of the adult Drosophila, the photoreceptor axons are surrounded by multiple types of glia. We demonstrated that the adult photoreceptors actively contribute to glia maintenance in their target field within the optic lamina. This effect is dependent on the epidermal growth factor receptor (EGFR) ligands produced by the R1-6 photoreceptors and transported to the optic lamina to act on EGFR in the lamina glia. EGFR signaling is necessary and sufficient to act in a cell-autonomous manner in the lamina glia. Our results suggest that EGFR signaling is required for the trafficking of the autophagosome/endosome to the lysosome. The loss of EGFR signaling results in cell degeneration most likely because of the accumulation of autophagosomes. Our findings provide in vivo evidence for the role of adult neurons in the maintenance of glia and a novel role for EGFR signaling in the autophagic flux. Degeneration of the nervous system can be viewed as a failure to maintain cell survival or function in the nervous system. The late onset of neurodegeneration in humans indicates that the cell survival in the nervous system must be maintained throughout our lives. Neuronal survival is maintained by neurotrophic factors in adults; however, it is unclear whether glia survival is also maintained throughout adulthood. Here, we use the Drosophila visual system as a model to address the role played by adult neurons for the active maintenance of glia. We demonstrated that the adult photoreceptors secrete a signaling molecule, which is transported to the brain to act on the lamina glia and maintain its integrity. When this signaling pathway is blocked, the lamina glia undergoes a progressive and irreversible degeneration. The primary defect occurs in the trafficking from the late endosome and autophagosome to the lysosome. This defect leads to an accumulation of autophagosomes and subsequent cell degeneration as a result of autophagy. Our findings provide in vivo evidence for a novel aspect of the neuron-glia interaction and a novel role for EGFR signaling in regulating the maintenance and degeneration of the nervous system.
Collapse
Affiliation(s)
- Yuan-Ming Lee
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
| | - Y. Henry Sun
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Institute of Genomic Sciences, National Yang-Ming University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
23
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. J Proteomics 2014; 113:292-314. [PMID: 25305589 DOI: 10.1016/j.jprot.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is thought to play a key role in sustaining the survival and proliferation of cancer cells. These changes facilitate for example the uptake and release of nutrients required for nucleotide, protein and lipid synthesis necessary for macromolecule assembly and tumor growth. We applied a 2D-DIGE (two-dimensional differential in-gel electrophoresis) quantitative proteomic analysis to characterize the proteomes of mouse astrocytes that underwent in vitro cancerous transformation, and of their normal counterparts. Metabolic reprogramming effects on enzymatic and structural protein expression as well as associated metabolites abundance were quantified. Using enzymatic activity measurements and zymography, we documented and confirmed several changes in abundance and activity of various isoenzymes likely to participate in metabolic reprogramming. We found that after transformation, the cells increase their expression of glycolytic enzymes, thus augmenting their ability to use aerobic glycolysis (Warburg effect). An increased capacity to dispose of reducing equivalents through lactate production was also documented. Major effects on carbohydrates, amino acids and nucleotides metabolic enzymes were also observed. Conversely, the transformed cells reduced their enzymatic capacity for reactions of tricarboxylic acid oxidation, for neurotransmitter (glutamate) metabolism, for oxidative stress defense and their expression of astroglial markers. BIOLOGICAL SIGNIFICANCE The use of a global approach based on a 2D DIGE analysis allows obtaining a comprehensive view of the metabolic reprogramming undergone by astrocytes upon cancerous transformation. Indeed, except for a few enzymes such as pyruvate carboxylase and glutaminase that were not detected in our initial analysis, pertinent information on the abundance of most enzymes belonging to pathways relevant to metabolic reprogramming was directly obtained. In this in vitro model, transformation causes major losses of astrocyte-specific proteins and functions and the acquisition of metabolic adaptations that favor intermediate metabolites production for increased macromolecule biosynthesis. Thus our approach appears to be readily applicable for the investigation of changes in protein abundance that determine various transformed cell phenotypes. It could similarly be applied to the evaluation of the effects of treatments aimed at correcting the consequences of cell transformation.
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
24
|
Bruttel VS, Wischhusen J. Cancer stem cell immunology: key to understanding tumorigenesis and tumor immune escape? Front Immunol 2014; 5:360. [PMID: 25120546 PMCID: PMC4114188 DOI: 10.3389/fimmu.2014.00360] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2014] [Accepted: 07/13/2014] [Indexed: 12/20/2022] Open
Abstract
Cancer stem cell (CSC) biology and tumor immunology have shaped our understanding of tumorigenesis. However, we still do not fully understand why tumors can be contained but not eliminated by the immune system and whether rare CSCs are required for tumor propagation. Long latency or recurrence periods have been described for most tumors. Conceptually, this requires a subset of malignant cells which is capable of initiating tumors, but is neither eliminated by immune cells nor able to grow straight into overt tumors. These criteria would be fulfilled by CSCs. Stem cells are pluripotent, immune-privileged, and long-living, but depend on specialized niches. Thus, latent tumors may be maintained by a niche-constrained reservoir of long-living CSCs that are exempt from immunosurveillance while niche-independent and more immunogenic daughter cells are constantly eliminated. The small subpopulation of CSCs is often held responsible for tumor initiation, metastasis, and recurrence. Experimentally, this hypothesis was supported by the observation that only this subset can propagate tumors in non-obese diabetic/scid mice, which lack T and B cells. Yet, the concept was challenged when an unexpectedly large proportion of melanoma cells were found to be capable of seeding complex tumors in mice which further lack NK cells. Moreover, the link between stem cell-like properties and tumorigenicity was not sustained in these highly immunodeficient animals. In humans, however, tumor-propagating cells must also escape from immune-mediated destruction. The ability to persist and to initiate neoplastic growth in the presence of immunosurveillance – which would be lost in a maximally immunodeficient animal model – could hence be a decisive criterion for CSCs. Consequently, integrating scientific insight from stem cell biology and tumor immunology to build a new concept of “CSC immunology” may help to reconcile the outlined contradictions and to improve our understanding of tumorigenesis.
Collapse
Affiliation(s)
- Valentin S Bruttel
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, School of Medicine, University of Würzburg , Würzburg , Germany
| | - Jörg Wischhusen
- Section for Experimental Tumor Immunology, Department of Obstetrics and Gynecology, School of Medicine, University of Würzburg , Würzburg , Germany
| |
Collapse
|
25
|
Shoshani O, Zipori D. Stress as a fundamental theme in cell plasticity. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:371-7. [PMID: 25038585 DOI: 10.1016/j.bbagrm.2014.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 07/08/2014] [Accepted: 07/09/2014] [Indexed: 01/16/2023]
Abstract
Over a decade of intensive investigation of the possible plasticity of mammalian cells has eventually substantiated that mammalian species are endowed with a remarkable capacity to change mature cell fates. We review below the evidence for the occurrence of processes such as dedifferentiation and transdifferentiation within mammalian tissues in vivo, and in cells removed from their protective microenvironment and seeded in culture under conditions poorly resembling their physiological state in situ. Overall, these studies point to one major conclusion: stressful conditions, whether due to in vivo tissue damage or otherwise to isolation of cells from their in vivo restrictive niches, lead to extreme fate changes. Some examples of dedifferentiation are discussed in detail showing that rare cells within the population tend to turn back into less mature ones due to severe cell damage. It is proposed that cell stress, mechanistically sensed by isolation from neighboring cells, leads to dedifferentiation, in an attempt to build a new stem cell reservoir for subsequent regeneration of the damaged tissue. This article is part of a Special Issue entitled: Stress as a fundamental theme in cell plasticity.
Collapse
Affiliation(s)
- Ofer Shoshani
- Department of Cellular and Molecular Medicine, Ludwig Institute for Cancer Research, University of California, San Diego, La Jolla, CA, USA
| | - Dov Zipori
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Gao WL, Tian F, Zhang SQ, Zhang H, Yin ZS. Epidermal growth factor increases the expression of Nestin in rat reactive astrocytes through the Ras–Raf–ERK pathway. Neurosci Lett 2014; 562:54-9. [DOI: 10.1016/j.neulet.2014.01.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/19/2013] [Accepted: 01/13/2014] [Indexed: 12/18/2022]
|
27
|
Manda K, Kavanagh JN, Buttler D, Prise KM, Hildebrandt G. Low dose effects of ionizing radiation on normal tissue stem cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 761:6-14. [PMID: 24566131 DOI: 10.1016/j.mrrev.2014.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/03/2014] [Accepted: 02/13/2014] [Indexed: 12/18/2022]
Abstract
In recent years, there has been growing evidence for the involvement of stem cells in cancer initiation. As a result of their long life span, stem cells may have an increased propensity to accumulate genetic damage relative to differentiated cells. Therefore, stem cells of normal tissues may be important targets for radiation-induced carcinogenesis. Knowledge of the effects of ionizing radiation (IR) on normal stem cells and on the processes involved in carcinogenesis is very limited. The influence of high doses of IR (>5Gy) on proliferation, cell cycle and induction of senescence has been demonstrated in stem cells. There have been limited studies of the effects of moderate (0.5-5Gy) and low doses (<0.5Gy) of IR on stem cells however, the effect of low dose IR (LD-IR) on normal stem cells as possible targets for radiation-induced carcinogenesis has not been studied in any depth. There may also be important parallels between stem cell responses and those of cancer stem cells, which may highlight potential key common mechanisms of their response and radiosensitivity. This review will provide an overview of the current knowledge of radiation-induced effects on normal stem cells, with particular focus on low and moderate doses of IR.
Collapse
Affiliation(s)
- Katrin Manda
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Joy N Kavanagh
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Dajana Buttler
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| | - Kevin M Prise
- Centre for Cancer Research and Cell Biology, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Guido Hildebrandt
- Department of Radiotherapy and Radiation Oncology, University of Rostock, Suedring 75, 18059 Rostock, Germany.
| |
Collapse
|
28
|
Affiliation(s)
- Rafael Roesler
- Department of Pharmacology, Institute for Basic Health Sciences, Cancer Research Laboratory, University Hospital Research Center (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
29
|
Jin R, Liu L, Zhang S, Nanda A, Li G. Role of inflammation and its mediators in acute ischemic stroke. J Cardiovasc Transl Res 2013; 6:834-51. [PMID: 24006091 DOI: 10.1007/s12265-013-9508-6] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 08/23/2013] [Indexed: 01/04/2023]
Abstract
Inflammation plays an important role in the pathogenesis of ischemic stroke and other forms of ischemic brain injury. Increasing evidence suggests that inflammatory response is a double-edged sword, as it not only exacerbates secondary brain injury in the acute stage of stroke but also beneficially contributes to brain recovery after stroke. In this article, we provide an overview on the role of inflammation and its mediators in acute ischemic stroke. We discuss various pro-inflammatory and anti-inflammatory responses in different phases after ischemic stroke and the possible reasons for their failures in clinical trials. Undoubtedly, there is still much to be done in order to translate promising pre-clinical findings into clinical practice. A better understanding of the dynamic balance between pro- and anti-inflammatory responses and identifying the discrepancies between pre-clinical studies and clinical trials may serve as a basis for designing effective therapies.
Collapse
Affiliation(s)
- Rong Jin
- Department of Neurosurgery, Louisiana State University Health Science Center, Shreveport, LA, USA
| | | | | | | | | |
Collapse
|
30
|
Lessons from the embryonic neural stem cell niche for neural lineage differentiation of pluripotent stem cells. Stem Cell Rev Rep 2012; 8:813-29. [PMID: 22628111 PMCID: PMC3412081 DOI: 10.1007/s12015-012-9381-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Pluripotent stem cells offer an abundant and malleable source for the generation of differentiated cells for transplantation as well as for in vitro screens. Patterning and differentiation protocols have been developed to generate neural progeny from human embryonic or induced pluripotent stem cells. However, continued refinement is required to enhance efficiency and to prevent the generation of unwanted cell types. We summarize and interpret insights gained from studies of embryonic neuroepithelium. A multitude of factors including soluble molecules, interactions with the extracellular matrix and neighboring cells cooperate to control neural stem cell self-renewal versus differentiation. Applying these findings and concepts to human stem cell systems in vitro may yield more appropriately patterned cell types for biomedical applications.
Collapse
|
31
|
Liu H, Kato Y, Erzinger SA, Kiriakova GM, Qian Y, Palmieri D, Steeg PS, Price JE. The role of MMP-1 in breast cancer growth and metastasis to the brain in a xenograft model. BMC Cancer 2012; 12:583. [PMID: 23217186 PMCID: PMC3526403 DOI: 10.1186/1471-2407-12-583] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/26/2012] [Indexed: 01/24/2023] Open
Abstract
Background Brain metastasis is an increasingly common complication for breast cancer patients; approximately 15– 30% of breast cancer patients develop brain metastasis. However, relatively little is known about how these metastases form, and what phenotypes are characteristic of cells with brain metastasizing potential. In this study, we show that the targeted knockdown of MMP-1 in breast cancer cells with enhanced brain metastatic ability not only reduced primary tumor growth, but also significantly inhibited brain metastasis. Methods Two variants of the MDA-MB-231 human breast cancer cell line selected for enhanced ability to form brain metastases in nude mice (231-BR and 231-BR3 cells) were found to express high levels of matrix metalloproteinase-1 (MMP-1). Short hairpin RNA-mediated stable knockdown of MMP-1 in 231-BR and 231-BR3 cells were established to analyze tumorigenic ability and metastatic ability. Results Short hairpin RNA-mediated stable knockdown of MMP-1 inhibited the invasive ability of MDA-MB 231 variant cells in vitro, and inhibited breast cancer growth when the cells were injected into the mammary fat pad of nude mice. Reduction of MMP-1 expression significantly attenuated brain metastasis and lung metastasis formation following injection of cells into the left ventricle of the heart and tail vein, respectively. There were significantly fewer proliferating cells in brain metastases of cells with reduced MMP-1 expression. Furthermore, reduced MMP-1 expression was associated with decreased TGFα release and phospho-EGFR expression in 231-BR and BR3 cells. Conclusions Our results show that elevated expression of MMP-1 can promote the local growth and the formation of brain metastases by breast cancer cells.
Collapse
Affiliation(s)
- Hui Liu
- Department of Cancer Biology, The University of Texas, MD, Anderson Cancer Center, Houston, TX 77030, USA.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Lepski G. What do we know about the neurogenic potential of different stem cell types? ARQUIVOS DE NEURO-PSIQUIATRIA 2012; 70:540-6. [DOI: 10.1590/s0004-282x2012000700013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Accepted: 03/12/2012] [Indexed: 11/22/2022]
Abstract
Cell therapies, based on transplantation of immature cells, are being considered as a promising tool in the treatment of neurological disorders. Many efforts are being concentrated on the development of safe and effective stem cell lines. Nevertheless, the neurogenic potential of some cell lines, i.e., the ability to generate mature neurons either in vitro or in vivo, is largely unknown. Recent evidence indicate that this potential might be distinct among different cell lines, therefore limiting their broad use as replacement cells in the central nervous system. Here, we have reviewed the latest advancements regarding the electrophysiological maturation of stem cells, focusing our attention on fetal-derived-, embryonic-, and induced pluripotent stem cells. In summary, a large body of evidence supports the biological safety, high neurogenic potential, and in some diseases probable clinical efficiency related to fetal-derived cells. By contrast, reliable data regarding embryonic and induced pluripotent stem cells are still missing.
Collapse
|
33
|
Sonic hedgehog released from scratch-injured astrocytes is a key signal necessary but not sufficient for the astrocyte de-differentiation. Stem Cell Res 2012; 9:156-66. [PMID: 22771389 DOI: 10.1016/j.scr.2012.06.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Revised: 05/17/2012] [Accepted: 06/05/2012] [Indexed: 11/21/2022] Open
Abstract
Recent studies demonstrated that mature atrocytes have the capacity for de-differentiating into neural stem/progenitor cells (NSPCs) in vitro and in vivo. However, it is still unknown what signals endow astroglial cells with a de-differentiation potential. Furthermore, the signaling molecules and underlying mechanism that confer astrocytes with the competence of NSPC phenotypes have not been completely elucidated. Here, we found that sonic hedgehog (Shh) production in astrocytes following mechanical injury was significantly elevated, and that incubation of astrocyes with the injured astrocyte conditioned medium (ACM) causes astrocytes to gradually lose their immunophenotypical profiles, and acquire NSPC characteristics, as demonstrated by down-regulation of typical astrocytic markers (GFAP and S100) and up-regulation of markers that are generally expressed in NSCs, (nestin, Sox2, and CD133). ACM treated astrocytes exhibit self-renewal capacity and multipotency similar to NSPCs. Concomitantly, in addition to Ptc, there was a significant up-regulation of the Shh downstream signal components Gli2 and Cyclin D1 which are involved in cell proliferation, dramatic changes in cell morphology, and the disruption of cell-cycle G1 arrest. Conversely, the depletion of Shh by administration of its neutralizing antibody (Shh n-Ab) effectively inhibited the de-differentiation process. Strikingly, Shh alone had little effect on astrocyte de-differentiation to NSPCs. These data above suggest that Shh is a key instructive molecule while other molecules secreted from insulted astrocytes may synergistically promote the de-differentiation event.
Collapse
|
34
|
Abstract
Glioma is the most frequent primary brain tumor of adults that has a presumably glial origin. Although our knowledge regarding molecular mechanisms and signaling pathways involved in gliomagenesis has increased immensely during the past decade, high-grade glioma remains a lethal disease with dismal prognosis. The failure of current therapies has to a large extent been ascribed the functional heterogeneity of glioma cells. One reason for this heterogeneity is most certainly the large number of variations in genetic alterations that can be found in high-grade gliomas. Another factor that may influence glioma heterogeneity could be the cell type from which the glioma is initiated. The cell of origin for glioma is still undefined, and additional knowledge about this issue may prove critical for a more complete understanding of glioma biology. Based on information from patients, developmental biology, and experimental glioma models, the most putative target cells include astrocytes, neural stem cells, and oligodendrocyte precursor cells, which are all discussed in more detail in this article. Animal modeling of glioma suggests that these three cell types have the capability to be the origin of glioma, and we have reason to believe that, depending on the initiating cell type, prognosis and response to therapy may be significantly different. Thus, it is essential to explore further the role of cellular origin in glioma.
Collapse
Affiliation(s)
- Yiwen Jiang
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, SE-75185 Uppsala, Sweden
| | - Lene Uhrbom
- Uppsala University, Department of Immunology, Genetics and Pathology, Rudbeck Laboratory, SE-75185 Uppsala, Sweden
| |
Collapse
|
35
|
Barreto G, White RE, Ouyang Y, Xu L, Giffard RG. Astrocytes: targets for neuroprotection in stroke. Cent Nerv Syst Agents Med Chem 2012; 11:164-73. [PMID: 21521168 DOI: 10.2174/187152411796011303] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/05/2011] [Accepted: 03/09/2011] [Indexed: 02/08/2023]
Abstract
In the past two decades, over 1000 clinical trials have failed to demonstrate a benefit in treating stroke, with the exception of thrombolytics. Although many targets have been pursued, including antioxidants, calcium channel blockers, glutamate receptor blockers, and neurotrophic factors, often the focus has been on neuronal mechanisms of injury. Broader attention to loss and dysfunction of non-neuronal cell types is now required to increase the chance of success. Of the several glial cell types, this review will focus on astrocytes. Astrocytes are the most abundant cell type in the higher mammalian nervous system, and they play key roles in normal CNS physiology and in central nervous system injury and pathology. In the setting of ischemia astrocytes perform multiple functions, some beneficial and some potentially detrimental, making them excellent candidates as therapeutic targets to improve outcome following stroke and in other central nervous system injuries. The older neurocentric view of the central nervous system has changed radically with the growing understanding of the many essential functions of astrocytes. These include K+ buffering, glutamate clearance, brain antioxidant defense, close metabolic coupling with neurons, and modulation of neuronal excitability. In this review, we will focus on those functions of astrocytes that can both protect and endanger neurons, and discuss how manipulating these functions provides a novel and important strategy to enhance neuronal survival and improve outcome following cerebral ischemia.
Collapse
Affiliation(s)
- George Barreto
- Department of Anesthesia, Stanford University School of Medicine, S272, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
36
|
Abstract
Although rodent models have been essential to unveil the emerging functions of astrocytes, the existence of interspecies differences calls for caution in extrapolating data from rodent to human astrocytes. We have developed highly enriched primary astrocyte cultures from human fetuses and adult cerebro-cortical biopsies from neurosurgery patients. Immunocytochemical characterization shows that cultures are composed of more than 95% of cells expressing in vitro astrocytic markers. Examination of the morphological and proliferative properties of cultures derived from the cerebral cortex and the hypothalamus both in untreated conditions and after treatment with EGF-related ligands illustrates the high plasticity of human astrocytes and their functional heterogeneity according to the cerebral region of origin. Our preparation offers the opportunity to characterize human astrocyte functions in vitro and also provides a valuable tool for studying the functional heterogeneity of human astrocytes isolated from distinct brain regions.
Collapse
|
37
|
Transforming growth factor α transforms astrocytes to a growth-supportive phenotype after spinal cord injury. J Neurosci 2011; 31:15173-87. [PMID: 22016551 DOI: 10.1523/jneurosci.3441-11.2011] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Astrocytes are both detrimental and beneficial for repair and recovery after spinal cord injury (SCI). These dynamic cells are primary contributors to the growth-inhibitory glial scar, yet they are also neuroprotective and can form growth-supportive bridges on which axons traverse. We have shown that intrathecal administration of transforming growth factor α (TGFα) to the contused mouse spinal cord can enhance astrocyte infiltration and axonal growth within the injury site, but the mechanisms of these effects are not well understood. The present studies demonstrate that the epidermal growth factor receptor (EGFR) is upregulated primarily by astrocytes and glial progenitors early after SCI. TGFα directly activates the EGFR on these cells in vitro, inducing their proliferation, migration, and transformation to a phenotype that supports robust neurite outgrowth. Overexpression of TGFα in vivo by intraparenchymal adeno-associated virus injection adjacent to the injury site enhances cell proliferation, alters astrocyte distribution, and facilitates increased axonal penetration at the rostral lesion border. To determine whether endogenous EGFR activation is required after injury, SCI was also performed on Velvet (C57BL/6J-Egfr(Vel)/J) mice, a mutant strain with defective EGFR activity. The affected mice exhibited malformed glial borders, larger lesions, and impaired recovery of function, indicating that intrinsic EGFR activation is necessary for neuroprotection and normal glial scar formation after SCI. By further stimulating precursor proliferation and modifying glial activation to promote a growth-permissive environment, controlled stimulation of EGFR at the lesion border may be considered in the context of future strategies to enhance endogenous cellular repair after injury.
Collapse
|
38
|
Yang H, Ling W, Vitale A, Olivera C, Min Y, You S. ErbB2 activation contributes to de-differentiation of astrocytes into radial glial cells following induction of scratch-insulted astrocyte conditioned medium. Neurochem Int 2011; 59:1010-8. [PMID: 21924310 DOI: 10.1016/j.neuint.2011.08.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2011] [Revised: 08/19/2011] [Accepted: 08/27/2011] [Indexed: 10/17/2022]
Abstract
Radial glial cells play a significant role in the repair of spinal cord injuries as they exert critical role in the neurogenesis and act as a scaffold for neuronal migration. Our previous study showed that mature astrocytes of spinal cord can undergo a de-differentiation process and further transform into pluripotential neural precursors; the occurrence of these complex events arise directly from the induction of diffusible factors released from scratch-insulted astrocytes. However, it is unclear whether astrocytes can also undergo rejuvenation to revert to a radial glial progenitor phenotype after the induction of scratch-insulted astrocytes conditioned medium (ACM). Furthermore, the mechanism of astrocyte de-differentiation to the progenitor cells is still unclear. Here we demonstrate that upon treating mature astrocytes with ACM for 10 days, the astrocytes exhibit progressive morphological and functional conversion to radial glial cells. These changes include the appearance of radial glial progenitor cells, changes in the immunophenotypical profiles, characterized by the co-expression of nestin, paired homeobox protein (Pax6) and RC2 as well as enhanced capability of multipotential differentiation. Concomitantly, ErbB2 protein level was progressively up-regulated. Thereby these results provide a potential mechanism by which ACM could induce mature astrocytes to regain the profile of radial glial progenitors due to activating the ErbB2 signaling pathways.
Collapse
Affiliation(s)
- Hao Yang
- Institute of Neurosciences, The Fourth Military Medical University, Xi'an 710032, China.
| | | | | | | | | | | |
Collapse
|
39
|
Widera D, Heimann P, Zander C, Imielski Y, Heidbreder M, Heilemann M, Kaltschmidt C, Kaltschmidt B. Schwann cells can be reprogrammed to multipotency by culture. Stem Cells Dev 2011; 20:2053-64. [PMID: 21466279 DOI: 10.1089/scd.2010.0525] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Adult neural crest related-stem cells persist in adulthood, making them an ideal and easily accessible source of multipotent cells for potential clinical use. Recently, we reported the presence of neural crest-related stem cells within adult palatal ridges, thus raising the question of their localization in their endogenous niche. Using immunocytochemistry, reverse transcription-polymerase chain reaction, and correlative fluorescence and transmission electron microscopy, we identified myelinating Schwann cells within palatal ridges as a putative neural crest stem cell source. Palatal Schwann cells expressed nestin, p75(NTR), and S100. Correlative fluorescence and transmission electron microscopy revealed the exclusive nestin expression within myelinating Schwann cells. Palatal neural crest stem cells and nestin-positive Schwann cells isolated from adult sciatic nerves were able to grow under serum-free conditions as neurospheres in presence of FGF-2 and EGF. Spheres of palatal and sciatic origin showed overlapping expression pattern of neural crest stem cell and Schwann cell markers. Expression of the pluripotency factors Sox2, Klf4, c-Myc, Oct4, the NF-κB subunits p65, p50, and the NF-κB-inhibitor IκB-β were up-regulated in conventionally cultivated sciatic nerve Schwann cells and in neurosphere cultures. Finally, neurospheres of palatal and sciatic origin were able to differentiate into ectodermal, mesodermal, and endodermal cell types emphasizing their multipotency. Taken together, we show that nestin-positive myelinating Schwann cells can be reprogrammed into multipotent adult neural crest stem cells under appropriate culture conditions.
Collapse
Affiliation(s)
- Darius Widera
- Department of Cell Biology, University of Bielefeld, Bielefeld, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chneiweiss H. [Plasticity of the cellular phenotype]. Biol Aujourdhui 2011; 205:43-6. [PMID: 21501574 DOI: 10.1051/jbio/2011007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Indexed: 11/14/2022]
Abstract
The tragical consequences of the Hiroshima and Nagasaki atomic bombs in 1945 were to lead to the discovery of hematopoietic stem cells and their phenotypic plasticity, in response to environmental factors. These concepts were much later extended to the founding cells of other tissues. In the following collection of articles, the mechanisms underlying this plasticity, at the frontiers of developmental biology and oncology, are illustrated in the case of various cell types of neural origin and of some tumours.
Collapse
Affiliation(s)
- Hervé Chneiweiss
- Laboratoire de Plasticité Gliale, Centre de Psychiatrie et Neurosciences, UMR-S 894/Inserm, Université Paris-Descartes, CHU Sainte Ann, 2 ter rue d'Alésia, 75014 Paris, France.
| |
Collapse
|
41
|
Junier MP, Sharif A. [Instability of cell phenotype and tumor initiating cells in gliomas]. Biol Aujourdhui 2011; 205:63-74. [PMID: 21501577 DOI: 10.1051/jbio/2011002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Indexed: 05/30/2023]
Abstract
Gliomas, the most frequent primitive CNS tumors, have been suggested to originate from astrocytes or from neural progenitors/stem cells. However, the precise identity of the cells at the origin of gliomas remains a matter of debate because no pre-neoplastic state has been yet identified. TGFα, an EGF family member, is frequently over-expressed in the early stages of glioma progression. We questioned whether prolonged TGFα exposure affects the stability of the normal mature astrocyte phenotype and, eventually, their propensity to cancerous transformation. Using mouse astrocyte cultures devoid of residual neural stem cells or progenitors, we demonstrate that several days of TGFα-treatment result in the functional conversion of a population of mature astrocytes into radial glial cells, a population of neural progenitors, without any accompanying sign of cancerous transformation. In contrast, when astrocytes de-differentiated with TGFα were submitted to oncogenic stress using gamma irradiation, they acquired cancerous properties, forming high-grade glioma-like tumors after brain grafting. Gamma irradiation was without effect on astrocytes which were not treated with TGFα. These results suggested that most gliomas should contain tumor cells with stem-like properties (TSCs). Our study of 55 pediatric brain tumors show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a majority of gliomas. Survival analysis showed an association between isolation of TSCs with extended self-renewal capabilities and a patient's higher mortality rate.
Collapse
Affiliation(s)
- Marie-Pierre Junier
- Inserm, UMR894, Équipe Plasticité gliale, Université Paris V, 75006 Paris, France.
| | | |
Collapse
|
42
|
Thirant C, Bessette B, Varlet P, Puget S, Cadusseau J, Dos Reis Tavares S, Studler JM, Silvestre DC, Susini A, Villa C, Miquel C, Bogeas A, Surena AL, Dias-Morais A, Léonard N, Pflumio F, Bièche I, Boussin FD, Sainte-Rose C, Grill J, Daumas-Duport C, Chneiweiss H, Junier MP. Clinical relevance of tumor cells with stem-like properties in pediatric brain tumors. PLoS One 2011; 6:e16375. [PMID: 21297991 PMCID: PMC3030582 DOI: 10.1371/journal.pone.0016375] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 12/19/2010] [Indexed: 11/19/2022] Open
Abstract
Background Primitive brain tumors are the leading cause of cancer-related death in children. Tumor cells with stem-like properties (TSCs), thought to account for tumorigenesis and therapeutic resistance, have been isolated from high-grade gliomas in adults. Whether TSCs are a common component of pediatric brain tumors and are of clinical relevance remains to be determined. Methodology/Principal Findings Tumor cells with self-renewal properties were isolated with cell biology techniques from a majority of 55 pediatric brain tumors samples, regardless of their histopathologies and grades of malignancy (57% of embryonal tumors, 57% of low-grade gliomas and neuro-glial tumors, 70% of ependymomas, 91% of high-grade gliomas). Most high-grade glioma-derived oncospheres (10/12) sustained long-term self-renewal akin to neural stem cells (>7 self-renewals), whereas cells with limited renewing abilities akin to neural progenitors dominated in all other tumors. Regardless of tumor entities, the young age group was associated with self-renewal properties akin to neural stem cells (P = 0.05, chi-square test). Survival analysis of the cohort showed an association between isolation of cells with long-term self-renewal abilities and a higher patient mortality rate (P = 0.013, log-rank test). Sampling of low- and high-grade glioma cultures showed that self-renewing cells forming oncospheres shared a molecular profile comprising embryonic and neural stem cell markers. Further characterization performed on subsets of high-grade gliomas and one low-grade glioma culture showed combination of this profile with mesenchymal markers, the radio-chemoresistance of the cells and the formation of aggressive tumors after intracerebral grafting. Conclusions/Significance In brain tumors affecting adult patients, TSCs have been isolated only from high-grade gliomas. In contrast, our data show that tumor cells with stem cell-like or progenitor-like properties can be isolated from a wide range of histological sub-types and grades of pediatric brain tumors. They suggest that cellular mechanisms fueling tumor development differ between adult and pediatric brain tumors.
Collapse
Affiliation(s)
- Cécile Thirant
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Barbara Bessette
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Pascale Varlet
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Stéphanie Puget
- Pediatric Neurosurgical Department. Hospital Necker, University Paris Descartes, Paris, France
- CNRS UMR 8203, Vectorology and Anticancer Therapeutics, Gustave Roussy Cancer Institute, Villejuif, France
| | | | | | - Jeanne-Marie Studler
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Collège de France, Paris, France
| | - David Carlos Silvestre
- Laboratoire de Radiopathologie UMR 967, CEA-INSERM-Université Paris VII, Fontenay-aux-Roses, France
| | - Aurélie Susini
- Laboratoire d'Oncogénétique - INSERM U735, Institut Curie/Hôpital René Huguenin, St-Cloud, France
| | - Chiara Villa
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Catherine Miquel
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Alexandra Bogeas
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Anne-Laure Surena
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Amélia Dias-Morais
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Nadine Léonard
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Françoise Pflumio
- Laboratoire des Cellules Souches Hématopoïétiques et Leucémiques, UMR U967, CEA-INSERM-Université Paris VII, Fontenay-aux-Roses, France
| | - Ivan Bièche
- Laboratoire d'Oncogénétique - INSERM U735, Institut Curie/Hôpital René Huguenin, St-Cloud, France
| | - François D. Boussin
- Laboratoire de Radiopathologie UMR 967, CEA-INSERM-Université Paris VII, Fontenay-aux-Roses, France
| | - Christian Sainte-Rose
- Pediatric Neurosurgical Department. Hospital Necker, University Paris Descartes, Paris, France
| | - Jacques Grill
- CNRS UMR 8203, Vectorology and Anticancer Therapeutics, Gustave Roussy Cancer Institute, Villejuif, France
| | - Catherine Daumas-Duport
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
| | - Hervé Chneiweiss
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
| | - Marie-Pierre Junier
- Inserm, UMR894, Team Glial Plasticity, University Paris Descartes, Paris, France
- Department of Neuropathology, Hospital Sainte-Anne, Paris, France
- * E-mail:
| |
Collapse
|
43
|
Shao Z, Luo Q, Liu D, Mi Y, Zhang P, Ju G. Induced differentiation of neural stem cells of astrocytic origin to motor neurons in the rat. Stem Cells Dev 2011; 20:1163-70. [PMID: 21087155 DOI: 10.1089/scd.2010.0262] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Destruction of the motor neurons will lead to loss of innervation of the somatic muscle, which has long been considered an illness with no remedy. The only possible treatment is to substitute the injured motor neurons by neurons differentiated from stem cells. It has been recently reported that embryonic stems cells can be induced to differentiate to motor neurons. However, the use of embryonic stem cells has innate problems. The ideal source of motor neurons should be the cells from the patients themselves, which have the potential to be induced to motor neurons. Our previous study demonstrated that mature astrocyte has the potential of being dedifferentiated to neural stem cell. The present study was aimed to investigate if the neural stem cells of astrocytic origin can be induced to motor neurons. The results demonstrated that neural stem cells of astrocytic origin could be induced to differentiate into motor neurons and their progenitor cells with rich harvest. Further, it has been reported that astrocytes can be readily obtained via biopsy from the cerebral cortex of the patient, rendering autologous transplantation possible. In conclusion, matured astrocytes can be induced to motor neurons and be autologously transplanted to patients suffering from motor neuron destruction.
Collapse
Affiliation(s)
- Zhicheng Shao
- Institute of Neurosciences, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
44
|
The therapeutic implications of plasticity of the cancer stem cell phenotype. PLoS One 2010; 5:e14366. [PMID: 21179426 PMCID: PMC3003707 DOI: 10.1371/journal.pone.0014366] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/24/2010] [Indexed: 02/07/2023] Open
Abstract
The cancer stem cell hypothesis suggests that tumors contain a small population of cancer cells that have the ability to undergo symmetric self-renewing cell division. In tumors that follow this model, cancer stem cells produce various kinds of specified precursors that divide a limited number of times before terminally differentiating or undergoing apoptosis. As cells within the tumor mature, they become progressively more restricted in the cell types to which they can give rise. However, in some tumor types, the presence of certain extra- or intracellular signals can induce committed cancer progenitors to revert to a multipotential cancer stem cell state. In this paper, we design a novel mathematical model to investigate the dynamics of tumor progression in such situations, and study the implications of a reversible cancer stem cell phenotype for therapeutic interventions. We find that higher levels of dedifferentiation substantially reduce the effectiveness of therapy directed at cancer stem cells by leading to higher rates of resistance. We conclude that plasticity of the cancer stem cell phenotype is an important determinant of the prognosis of tumors. This model represents the first mathematical investigation of this tumor trait and contributes to a quantitative understanding of cancer.
Collapse
|
45
|
Abstract
Human tumors often display startling intratumor heterogeneity in various features including histology, gene expression, genotype, and metastatic and proliferative potential. This phenotypic and genetic heterogeneity plays an important role in neoplasia, cancer progression, and therapeutic resistance. In this issue of the journal (beginning on page 1388), Merlo et al. report their use of molecular data from 239 patients with Barrett's esophagus to evaluate the propensity of major diversity indices for predicting progression to esophageal adenocarcinoma. This work helps elucidate the implications of molecular heterogeneity for the evolution of neoplasia.
Collapse
Affiliation(s)
- Franziska Michor
- Dana-Farber Cancer Institute, Harvard School of Public Health, Boston, MA 02115, USA.
| | | |
Collapse
|
46
|
Ebben JD, Treisman DM, Zorniak M, Kutty RG, Clark PA, Kuo JS. The cancer stem cell paradigm: a new understanding of tumor development and treatment. Expert Opin Ther Targets 2010; 14:621-32. [PMID: 20426697 DOI: 10.1517/14712598.2010.485186] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IMPORTANCE OF THE FIELD Cancer is the second leading cause of death in the United States, and therefore remains a central focus of modern medical research. Accumulating evidence supports a 'cancer stem cell' (CSC) model - where cancer growth and/or recurrence is driven by a small subset of tumor cells that exhibit properties similar to stem cells. This model may provide a conceptual framework for developing more effective cancer therapies that target cells propelling cancer growth. AREAS COVERED IN THIS REVIEW We review evidence supporting the CSC model and associated implications for understanding cancer biology and developing novel therapeutic strategies. Current controversies and unanswered questions of the CSC model are also discussed. WHAT THE READER WILL GAIN This review aims to describe how the CSC model is key to developing novel treatments and discusses associated shortcomings and unanswered questions. TAKE HOME MESSAGE A fresh look at cancer biology and treatment is needed for many incurable cancers to improve clinical prognosis for patients. The CSC model posits a hierarchy in cancer where only a subset of cells drive malignancy, and if features of this model are correct, has implications for development of novel and hopefully more successful approaches to cancer therapy.
Collapse
Affiliation(s)
- Johnathan D Ebben
- University of Wisconsin,School of Medicine and Public Health, Department of Neurological Surgery, Brain Tumor Research Laboratory, CSC K4/879, 600 Highland Avenue, Madison, WI 53792, USA
| | | | | | | | | | | |
Collapse
|
47
|
Prevot V, Hanchate NK, Bellefontaine N, Sharif A, Parkash J, Estrella C, Allet C, de Seranno S, Campagne C, de Tassigny XD, Baroncini M. Function-related structural plasticity of the GnRH system: a role for neuronal-glial-endothelial interactions. Front Neuroendocrinol 2010; 31:241-58. [PMID: 20546773 DOI: 10.1016/j.yfrne.2010.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2010] [Revised: 05/17/2010] [Accepted: 05/18/2010] [Indexed: 12/18/2022]
Abstract
As the final common pathway for the central control of gonadotropin secretion, GnRH neurons are subjected to numerous regulatory homeostatic and external factors to achieve levels of fertility appropriate to the organism. The GnRH system thus provides an excellent model in which to investigate the complex relationships between neurosecretion, morphological plasticity and the expression of a physiological function. Throughout the reproductive cycle beginning from postnatal sexual development and the onset of puberty to reproductive senescence, and even within the ovarian cycle itself, all levels of the GnRH system undergo morphological plasticity. This structural plasticity within the GnRH system appears crucial to the timely control of reproductive competence within the individual, and as such must have coordinated actions of multiple signals secreted from glial cells, endothelial cells, and GnRH neurons. Thus, the GnRH system must be viewed as a complete neuro-glial-vascular unit that works in concert to maintain the reproductive axis.
Collapse
Affiliation(s)
- Vincent Prevot
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the Postnatal Brain, F-59000 Lille, France.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Differential distribution of erbB receptors in human glioblastoma multiforme: expression of erbB3 in CD133-positive putative cancer stem cells. J Neuropathol Exp Neurol 2010; 69:606-22. [PMID: 20467331 DOI: 10.1097/nen.0b013e3181e00579] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Glioblastomas are the most common primary central nervous system tumors in adults, and they remain resistant to current treatments. erbB1 signaling is frequently altered in glioblastomas, suggesting thaterbB receptor family members may represent targets for molecular therapy. We performed a comprehensive analysis of erbB receptor and ligand expression profiles in a panel of 9 glioblastomas andcompared them to nonneoplastic cerebral tissue containing neocortex and adjacent white matter. Quantitative reverse transcription-polymerase chain reaction and Western blot analysis showed that erbB1signaling and erbB2 receptors exhibited highly variable deregulation profiles in the tumors, with patterns ranging from underexpression to overexpression; in contrast, erbB3 and erbB4 were downregulated. We next performed immunohistochemistry to determinethe distribution patterns of erbB receptors among the main neuralcell types in the tumors with special reference to the putative tumor stem cell population. Results revealed intertumoral and intratumoral heterogeneity in all 4 erbB expression profiles, but each receptor exhibited a distinct distribution pattern among glial fibrillary acidic protein-, Olig2-, NeuN-, and CD133-positive populations. Although erbB1 immunoreactivity was detected in only small subsets of CD133-positive putative tumor stem cells, erbB3 immunoreactivity was prominent in this population, suggesting that erbB3 may represent a new potential therapeutic target.
Collapse
|
49
|
Sharif A, Prevot V. ErbB receptor signaling in astrocytes: a mediator of neuron-glia communication in the mature central nervous system. Neurochem Int 2010; 57:344-58. [PMID: 20685225 DOI: 10.1016/j.neuint.2010.05.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 03/29/2010] [Accepted: 05/18/2010] [Indexed: 10/19/2022]
Abstract
Astrocytes are now recognized as active players in the developing and mature central nervous system. Each astrocyte contacts vascular structures and thousands of synapses within discrete territories. These cells receive a myriad of inputs and generate appropriate responses to regulate the function of brain microdomains. Emerging evidence has implicated receptors of the ErbB tyrosine kinase family in the integration and processing of neuronal inputs by astrocytes: ErbB receptors can be activated by a wide range of neuronal stimuli; they control critical steps of glutamate-glutamine metabolism; and they regulate the biosynthesis and release of various glial-derived neurotrophic factors, gliomediators and gliotransmitters. These key properties of astrocytic ErbB signaling in neuron-glia interactions have significance for the physiology of the mature central nervous system, as exemplified by the central control of reproduction within the hypothalamus, and are also likely to contribute to pathological situations, since both dysregulation of ErbB signaling and glial dysfunction occur in many neurological disorders.
Collapse
Affiliation(s)
- Ariane Sharif
- Inserm, Jean-Pierre Aubert Research Center, U837, Development and Plasticity of the postnatal Brain, Lille, France.
| | | |
Collapse
|
50
|
Patru C, Romao L, Varlet P, Coulombel L, Raponi E, Cadusseau J, Renault-Mihara F, Thirant C, Leonard N, Berhneim A, Mihalescu-Maingot M, Haiech J, Bièche I, Moura-Neto V, Daumas-Duport C, Junier MP, Chneiweiss H. CD133, CD15/SSEA-1, CD34 or side populations do not resume tumor-initiating properties of long-term cultured cancer stem cells from human malignant glio-neuronal tumors. BMC Cancer 2010; 10:66. [PMID: 20181261 PMCID: PMC2841664 DOI: 10.1186/1471-2407-10-66] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 02/24/2010] [Indexed: 11/15/2022] Open
Abstract
Background Tumor initiating cells (TICs) provide a new paradigm for developing original therapeutic strategies. Methods We screened for TICs in 47 human adult brain malignant tumors. Cells forming floating spheres in culture, and endowed with all of the features expected from tumor cells with stem-like properties were obtained from glioblastomas, medulloblastoma but not oligodendrogliomas. Results A long-term self-renewal capacity was particularly observed for cells of malignant glio-neuronal tumors (MGNTs). Cell sorting, karyotyping and proteomic analysis demonstrated cell stability throughout prolonged passages. Xenografts of fewer than 500 cells in Nude mouse brains induced a progressively growing tumor. CD133, CD15/LeX/Ssea-1, CD34 expressions, or exclusion of Hoechst dye occurred in subsets of cells forming spheres, but was not predictive of their capacity to form secondary spheres or tumors, or to resist high doses of temozolomide. Conclusions Our results further highlight the specificity of a subset of high-grade gliomas, MGNT. TICs derived from these tumors represent a new tool to screen for innovative therapies.
Collapse
Affiliation(s)
- Cristina Patru
- Glial Plasticity lab, Inserm UMR 894, University Paris Descartes, Paris, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|