1
|
Rizzotto D, Vigorito V, Rieder P, Gallob F, Moretta GM, Soratroi C, Riley JS, Bellutti F, Veli SL, Mattivi A, Lohmüller M, Herzog S, Bornhauser BC, Jacotot ED, Villunger A, Fava LL. Caspase-2 kills cells with extra centrosomes. SCIENCE ADVANCES 2024; 10:eado6607. [PMID: 39475598 PMCID: PMC11524169 DOI: 10.1126/sciadv.ado6607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 09/25/2024] [Indexed: 11/02/2024]
Abstract
Centrosomes are membrane-less organelles that orchestrate a wide array of biological functions by acting as microtubule organizing centers. Here, we report that caspase-2-driven apoptosis is elicited in blood cells failing cytokinesis and that extra centrosomes are necessary to trigger this cell death. Activation of caspase-2 depends on the PIDDosome multi-protein complex, and priming of PIDD1 at extra centrosomes is necessary for pathway activation. Accordingly, loss of its centrosomal adapter, ANKRD26, allows for cell survival and unrestricted polyploidization in response to cytokinesis failure. Mechanistically, cell death is initiated upstream of mitochondria via caspase-2-mediated processing of the BCL2 family protein BID, driving BAX/BAK-dependent mitochondrial outer membrane permeabilization (MOMP). Remarkably, BID-deficient cells enforce apoptosis by engaging p53-dependent proapoptotic transcriptional responses initiated by caspase-2. Consistently, BID and MDM2 act as shared caspase-2 substrates, with BID being kinetically favored. Our findings document that the centrosome limits its own unscheduled duplication by the induction of PIDDosome-driven mitochondrial apoptosis to avoid potentially pathogenic polyploidization events.
Collapse
Affiliation(s)
- Dario Rizzotto
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Vincenza Vigorito
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Patricia Rieder
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Filip Gallob
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Gian Mario Moretta
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Claudia Soratroi
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Joel S. Riley
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Florian Bellutti
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Stefano Li Veli
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Alessia Mattivi
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| | - Michael Lohmüller
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Sebastian Herzog
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Beat C. Bornhauser
- Department of Oncology and Children’s Research Centre, University Children’s Hospital Zürich, 8032 Zürich, Switzerland
| | - Etienne D. Jacotot
- Inserm U1268, Medicinal Chemistry and Translational Research, Paris F-75006, France
- Faculté de Pharmacie, UMR 8038 CiTCoM, Université Paris Cité, Paris F-75006, France
| | - Andreas Villunger
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
- Institute for Developmental Immunology, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Luca L. Fava
- Armenise-Harvard Laboratory of Cell Division, Department of Cellular, Computational and Integrative Biology-CIBIO, University of Trento, Trento, Italy
| |
Collapse
|
2
|
Han JH, Karki R, Malireddi RKS, Mall R, Sarkar R, Sharma BR, Klein J, Berns H, Pisharath H, Pruett-Miller SM, Bae SJ, Kanneganti TD. NINJ1 mediates inflammatory cell death, PANoptosis, and lethality during infection conditions and heat stress. Nat Commun 2024; 15:1739. [PMID: 38409108 PMCID: PMC10897308 DOI: 10.1038/s41467-024-45466-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/25/2024] [Indexed: 02/28/2024] Open
Abstract
Innate immunity provides the first line of defense through multiple mechanisms, including pyrogen production and cell death. While elevated body temperature during infection is beneficial to clear pathogens, heat stress (HS) can lead to inflammation and pathology. Links between pathogen exposure, HS, cytokine release, and inflammation have been observed, but fundamental innate immune mechanisms driving pathology during pathogen exposure and HS remain unclear. Here, we use multiple genetic approaches to elucidate innate immune pathways in infection or LPS and HS models. Our results show that bacteria and LPS robustly increase inflammatory cell death during HS that is dependent on caspase-1, caspase-11, caspase-8, and RIPK3 through the PANoptosis pathway. Caspase-7 also contributes to PANoptosis in this context. Furthermore, NINJ1 is an important executioner of this cell death to release inflammatory molecules, independent of other pore-forming executioner proteins, gasdermin D, gasdermin E, and MLKL. In an in vivo HS model, mortality is reduced by deleting NINJ1 and fully rescued by deleting key PANoptosis molecules. Our findings suggest that therapeutic strategies blocking NINJ1 or its upstream regulators to prevent PANoptosis may reduce the release of inflammatory mediators and benefit patients.
Collapse
Affiliation(s)
- Joo-Hui Han
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Woosuk University, Wanju, 55338, Republic of Korea
| | - Rajendra Karki
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - R K Subbarao Malireddi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Raghvendra Mall
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
- Biotechnology Research Center, Technology Innovation Institute, Abu Dhabi, P.O. Box 9639, United Arab Emirates
| | - Roman Sarkar
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Bhesh Raj Sharma
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Jonathon Klein
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Harmut Berns
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Harshan Pisharath
- Animal Resources Center, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | - Sung-Jin Bae
- Department of Molecular Biology and Immunology, College of Medicine, Kosin University, Busan, 49267, Republic of Korea
| | | |
Collapse
|
3
|
Amason ME, Li L, Harvest CK, Lacey CA, Miao EA. Validation of the Intermolecular Disulfide Bond in Caspase-2. BIOLOGY 2024; 13:49. [PMID: 38248479 PMCID: PMC10813798 DOI: 10.3390/biology13010049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/05/2024] [Accepted: 01/15/2024] [Indexed: 01/23/2024]
Abstract
Caspases are a family of proteins involved in cell death. Although several caspase members have been well characterized, caspase-2 remains enigmatic. Caspase-2 has been implicated in several phenotypes, but there has been no consensus in the field about its upstream activating signals or its downstream protein targets. In addition, the unique ability of caspase-2 to form a disulfide-bonded dimer has not been studied in depth. Herein, we investigate the disulfide bond in the context of inducible dimerization, showing that disulfide bond formation is dimerization dependent. We also explore and review several stimuli published in the caspase-2 field, test ferroptosis-inducing stimuli, and study in vivo infection models. We hypothesize that the disulfide bond will ultimately prove to be essential for the evolved function of caspase-2. Proving this will require the discovery of cell death phenotypes where caspase-2 is definitively essential.
Collapse
Affiliation(s)
- Megan E. Amason
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Lupeng Li
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carissa K. Harvest
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Carolyn A. Lacey
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward A. Miao
- Department of Integrative Immunobiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Pathology, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
4
|
Bosc E, Anastasie J, Soualmia F, Coric P, Kim JY, Wang LQ, Lacin G, Zhao K, Patel R, Duplus E, Tixador P, Sproul AA, Brugg B, Reboud-Ravaux M, Troy CM, Shelanski ML, Bouaziz S, Karin M, El Amri C, Jacotot ED. Genuine selective caspase-2 inhibition with new irreversible small peptidomimetics. Cell Death Dis 2022; 13:959. [PMID: 36379916 PMCID: PMC9666555 DOI: 10.1038/s41419-022-05396-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022]
Abstract
Caspase-2 (Casp2) is a promising therapeutic target in several human diseases, including nonalcoholic steatohepatitis (NASH) and Alzheimer's disease (AD). However, the design of an active-site-directed inhibitor selective to individual caspase family members is challenging because caspases have extremely similar active sites. Here we present new peptidomimetics derived from the VDVAD pentapeptide structure, harboring non-natural modifications at the P2 position and an irreversible warhead. Enzyme kinetics show that these new compounds, such as LJ2 or its specific isomers LJ2a, and LJ3a, strongly and irreversibly inhibit Casp2 with genuine selectivity. In agreement with the established role of Casp2 in cellular stress responses, LJ2 inhibits cell death induced by microtubule destabilization or hydroxamic acid-based deacetylase inhibition. The most potent peptidomimetic, LJ2a, inhibits human Casp2 with a remarkably high inactivation rate (k3/Ki ~5,500,000 M-1 s-1), and the most selective inhibitor, LJ3a, has close to a 1000 times higher inactivation rate on Casp2 as compared to Casp3. Structural analysis of LJ3a shows that the spatial configuration of Cα at the P2 position determines inhibitor efficacy. In transfected human cell lines overexpressing site-1 protease (S1P), sterol regulatory element-binding protein 2 (SREBP2) and Casp2, LJ2a and LJ3a fully inhibit Casp2-mediated S1P cleavage and thus SREBP2 activation, suggesting a potential to prevent NASH development. Furthermore, in primary hippocampal neurons treated with β-amyloid oligomers, submicromolar concentrations of LJ2a and of LJ3a prevent synapse loss, indicating a potential for further investigations in AD treatment.
Collapse
Affiliation(s)
- Elodie Bosc
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Julie Anastasie
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Feryel Soualmia
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Pascale Coric
- Université de Paris, CNRS, CiTCoM, F-75006, Paris, France
| | - Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Lily Q Wang
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Gullen Lacin
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
- MicroBrain Biotech S.A.S. 52 Avenue de l'Europe, Marly-Le-Roi, F-78160, France
| | - Kaitao Zhao
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Ronak Patel
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Eric Duplus
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Philippe Tixador
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Andrew A Sproul
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Bernard Brugg
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Michelle Reboud-Ravaux
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Carol M Troy
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Michael L Shelanski
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Serge Bouaziz
- Université de Paris, CNRS, CiTCoM, F-75006, Paris, France
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, School of Medicine, La Jolla, CA, 92093, USA
| | - Chahrazade El Amri
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France
| | - Etienne D Jacotot
- INSERM U1164, CNRS UMR 8256, Sorbonne Université, Campus Pierre et Marie Curie, Paris, F-75005, France.
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA.
| |
Collapse
|
5
|
Hlynialuk C, Kemper L, Leinonen-Wright K, Petersen RC, Ashe K, Smith B. Caspase-2 mRNA levels are not elevated in mild cognitive impairment, Alzheimer's disease, Huntington's disease, or Lewy Body dementia. PLoS One 2022; 17:e0274784. [PMID: 36129947 PMCID: PMC9491574 DOI: 10.1371/journal.pone.0274784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 09/05/2022] [Indexed: 11/28/2022] Open
Abstract
Caspase-2 is a member of the caspase family that exhibits both apoptotic and non-apoptotic properties, and has been shown to mediate synaptic deficits in models of several neurological conditions, including Alzheimer's disease (AD), Huntington's disease (HD), and Lewy Body dementia (LBD). Our lab previously reported that caspase-2 protein levels are elevated in these diseases, leading us to hypothesize that elevated caspase-2 protein levels are due to increased transcription of caspase-2 mRNA. There are two major isoforms of caspase-2 mRNA, caspase-2L and caspase-2S. We tested our hypothesis by measuring the levels of these mRNA isoforms normalized to levels of RPL13 mRNA, a reference gene that showed no disease-associated changes. Here, we report no increases in caspase-2L mRNA levels in any of the three diseases studied, AD (with mild cognitive impairment (MCI)), HD and LBD, disproving our hypothesis. Caspase-2S mRNA showed a non-significant downward trend in AD. We also analyzed expression levels of SNAP25 and βIII-tubulin mRNA. SNAP25 mRNA was significantly lower in AD and there were downward trends in MCI, LBD, and HD. βIII-tubulin mRNA expression remained unchanged between disease groups and controls. These findings indicate that factors besides transcriptional regulation cause increases in caspase-2 protein levels. The reduction of SNAP25 mRNA expression suggests that presynaptic dysfunction contributes to cognitive deficits in neurodegeneration.
Collapse
Affiliation(s)
- Chris Hlynialuk
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| | - Lisa Kemper
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| | - Kailee Leinonen-Wright
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN, United States of America
| | - Karen Ashe
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
- Minneapolis VA Medical Center, Minneapolis, MN, United States of America
| | - Benjamin Smith
- N. Bud Grossman Center for Memory Research and Care, University of Minnesota, Minneapolis, MN, United States of America
- Department of Neurology, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
6
|
Sušjan-Leite P, Ramuta TŽ, Boršić E, Orehek S, Hafner-Bratkovič I. Supramolecular organizing centers at the interface of inflammation and neurodegeneration. Front Immunol 2022; 13:940969. [PMID: 35979366 PMCID: PMC9377691 DOI: 10.3389/fimmu.2022.940969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenesis of neurodegenerative diseases involves the accumulation of misfolded protein aggregates. These deposits are both directly toxic to neurons, invoking loss of cell connectivity and cell death, and recognized by innate sensors that upon activation release neurotoxic cytokines, chemokines, and various reactive species. This neuroinflammation is propagated through signaling cascades where activated sensors/receptors, adaptors, and effectors associate into multiprotein complexes known as supramolecular organizing centers (SMOCs). This review provides a comprehensive overview of the SMOCs, involved in neuroinflammation and neurotoxicity, such as myddosomes, inflammasomes, and necrosomes, their assembly, and evidence for their involvement in common neurodegenerative diseases. We discuss the multifaceted role of neuroinflammation in the progression of neurodegeneration. Recent progress in the understanding of particular SMOC participation in common neurodegenerative diseases such as Alzheimer's disease offers novel therapeutic strategies for currently absent disease-modifying treatments.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Taja Železnik Ramuta
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Elvira Boršić
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Sara Orehek
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
- EN-FIST Centre of Excellence, Ljubljana, Slovenia
| |
Collapse
|
7
|
PIDD1 in cell cycle control, sterile inflammation and cell death. Biochem Soc Trans 2022; 50:813-824. [PMID: 35343572 PMCID: PMC9162469 DOI: 10.1042/bst20211186] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 02/06/2023]
Abstract
The death fold domain-containing protein PIDD1 has recently attracted renewed attention as a regulator of the orphan cell death-related protease, Caspase-2. Caspase-2 can activate p53 to promote cell cycle arrest in response to centrosome aberrations, and its activation requires formation of the PIDDosome multi-protein complex containing multimers of PIDD1 and the adapter RAIDD/CRADD at its core. However, PIDD1 appears to be able to engage with multiple client proteins to promote an even broader range of biological responses, such as NF-κB activation, translesion DNA synthesis or cell death. PIDD1 shows features of inteins, a class of self-cleaving proteins, to create different polypeptides from a common precursor protein that allow it to serve these diverse functions. This review summarizes structural information and molecular features as well as recent experimental advances that highlight the potential pathophysiological roles of this unique death fold protein to highlight its drug-target potential.
Collapse
|
8
|
Thomas CN, Bernardo-Colón A, Courtie E, Essex G, Rex TS, Blanch RJ, Ahmed Z. Effects of intravitreal injection of siRNA against caspase-2 on retinal and optic nerve degeneration in air blast induced ocular trauma. Sci Rep 2021; 11:16839. [PMID: 34413361 PMCID: PMC8377143 DOI: 10.1038/s41598-021-96107-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 08/05/2021] [Indexed: 11/11/2022] Open
Abstract
Ocular repeated air blast injuries occur from low overpressure blast wave exposure, which are often repeated and in quick succession. We have shown that caspase-2 caused the death of retinal ganglion cells (RGC) after blunt ocular trauma. Here, we investigated if caspase-2 also mediates RGC apoptosis in a mouse model of air blast induced indirect traumatic optic neuropathy (b-ITON). C57BL/6 mice were exposed to repeated blasts of overpressure air (3 × 2 × 15 psi) and intravitreal injections of siRNA against caspase-2 (siCASP2) or against a control enhanced green fluorescent protein (siEGFP) at either 5 h after the first 2 × 15 psi ("post-blast") or 48 h before the first blast exposure ("pre-blast") and repeated every 7 days. RGC counts were unaffected by the b-ITON or intravitreal injections, despite increased degenerating ON axons, even in siCASP2 "post-blast" injection groups. Degenerating ON axons remained at sham levels after b-ITON and intravitreal siCASP2 "pre-blast" injections, but with less degenerating axons in siCASP2 compared to siEGFP-treated eyes. Intravitreal injections "post-blast" caused greater vitreous inflammation, potentiated by siCASP2, with less in "pre-blast" injected eyes, which was abrogated by siCASP2. We conclude that intravitreal injection timing after ocular trauma induced variable retinal and ON pathology, undermining our candidate neuroprotective therapy, siCASP2.
Collapse
Affiliation(s)
- Chloe N Thomas
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- School of Biomedical Sciences, Institute of Clinical Sciences, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | | | - Ella Courtie
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Gareth Essex
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK
| | - Tonia S Rex
- Vanderbilt Eye Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Ophthalmology Department, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK.
- Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK.
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, UK.
- Centre for Trauma Sciences Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
9
|
Ngolab J, Canchi S, Rasool S, Elmaarouf A, Thomas K, Sarsoza F, Grundman J, Mante M, Florio J, Nandankar N, Korouri S, Zago W, Masliah E, Rissman RA. Mutant three-repeat tau expression initiates retinal ganglion cell death through Caspase-2. Neurobiol Dis 2021; 152:105277. [PMID: 33516874 PMCID: PMC8373010 DOI: 10.1016/j.nbd.2021.105277] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/20/2021] [Accepted: 01/24/2021] [Indexed: 12/14/2022] Open
Abstract
The microtubule-associated protein tau is implicated in multiple degenerative diseases including retinal diseases such as glaucoma; however, the way tau initiates retinopathy is unclear. Previous retinal assessments in mouse models of tauopathy suggest that mutations in four-repeat (4R) tau are associated with disease-induced retinal dysfunction, while shifting tau isoform ratio to favor three-repeat (3R) tau production enhanced photoreceptor function. To further understand how alterations in tau expression impact the retina, we analyzed the retinas of transgenic mice overexpressing mutant 3R tau (m3R tau-Tg), a model known to exhibit Pick's Disease pathology in the brain. Analysis of retinal cross-sections from young (3 month) and adult (9 month) mice detected asymmetric 3R tau immunoreactivity in m3R tau-Tg retina, concentrated in the retinal ganglion and amacrine cells of the dorsal retinal periphery. Accumulation of hyperphosphorylated tau was detected specifically in the detergent insoluble fraction of the adult m3R tau-Tg retina. RNA-seq analysis highlighted biological pathways associated with tauopathy that were uniquely altered in m3R tau-Tg retina. The upregulation of transcript encoding apoptotic protease caspase-2 coincided with increased immunostaining in predominantly 3R tau positive retinal regions. In adult m3R tau-Tg, the dorsal peripheral retina of the adult m3R tau-Tg exhibited decreased cell density in the ganglion cell layer (GCL) and reduced thickness of the inner plexiform layer (IPL) compared to the ventral peripheral retina. Together, these data indicate that mutant 3R tau may mediate toxicity in retinal ganglion cells (RGC) by promoting caspase-2 expression which results in RGC degeneration. The m3R tau-Tg line has the potential to be used to assess tau-mediated RGC degeneration and test novel therapeutics for degenerative diseases such as glaucoma.
Collapse
Affiliation(s)
- Jennifer Ngolab
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Saranya Canchi
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, United States of America
| | - Suhail Rasool
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Amydis Inc, San Diego, CA 92121, United States of America
| | | | - Kimberly Thomas
- Prothena Biosciences, South San Francisco, CA 94080, United States of America
| | - Floyd Sarsoza
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, United States of America
| | - Jennifer Grundman
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Michael Mante
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Jazmin Florio
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Nimisha Nandankar
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Shaina Korouri
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America
| | - Wagner Zago
- Prothena Biosciences, South San Francisco, CA 94080, United States of America
| | - Eliezer Masliah
- Division of Neuroscience and Laboratory of Neurogenetics, National Institutes on Aging, NIH, Bethesda, MD 20892, United States of America
| | - Robert A Rissman
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA 92093, United States of America; Veterans Affairs San Diego Healthcare System, San Diego, CA 92161, United States of America.
| |
Collapse
|
10
|
Beauséjour M, Boutin A, Vachon PH. Anoikis and the Human Gut Epithelium in Health and Disease. ANOIKIS 2021:95-126. [DOI: 10.1007/978-3-030-73856-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
11
|
Brown-Suedel AN, Bouchier-Hayes L. Caspase-2 Substrates: To Apoptosis, Cell Cycle Control, and Beyond. Front Cell Dev Biol 2020; 8:610022. [PMID: 33425918 PMCID: PMC7785872 DOI: 10.3389/fcell.2020.610022] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/03/2020] [Indexed: 01/12/2023] Open
Abstract
Caspase-2 belongs to the caspase family of proteins responsible for essential cellular functions including apoptosis and inflammation. Uniquely, caspase-2 has been identified as a tumor suppressor, but how it regulates this function is still unknown. For many years, caspase-2 has been considered an “orphan” caspase because, although it is able to induce apoptosis, there is an abundance of conflicting evidence that questions its necessity for apoptosis. Recent evidence supports that caspase-2 has non-apoptotic functions in the cell cycle and protection from genomic instability. It is unclear how caspase-2 regulates these opposing functions, which has made the mechanism of tumor suppression by caspase-2 difficult to determine. As a protease, caspase-2 likely exerts its functions by proteolytic cleavage of cellular substrates. This review highlights the known substrates of caspase-2 with a special focus on their functional relevance to caspase-2’s role as a tumor suppressor.
Collapse
Affiliation(s)
- Alexandra N Brown-Suedel
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| | - Lisa Bouchier-Hayes
- Hematology-Oncology Section, Department of Pediatrics, Department of Molecular Cell Biology, Baylor College of Medicine, Houston, TX, United States.,William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, TX, United States
| |
Collapse
|
12
|
Reinehr S, Buschhorn V, Mueller-Buehl AM, Goldmann T, Grus FH, Wolfrum U, Dick HB, Joachim SC. Occurrence of Retinal Ganglion Cell Loss via Autophagy and Apoptotic Pathways in an Autoimmune Glaucoma Model. Curr Eye Res 2020; 45:1124-1135. [PMID: 31935132 DOI: 10.1080/02713683.2020.1716987] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE In glaucoma, an apoptotic death of retinal ganglion cells (RGCs) has been shown. However, little is known about other cell death mechanisms, like autophagy or necrosis. Therefore, we investigated these mechanisms in addition to antibody deposits in an experimental autoimmune glaucoma model. METHODS Rats were immunized with a retinal ganglion cell-layer homogenate (RGA), while controls received sodium chloride. Untreated rats served as natїve group. After seven weeks, retinal cross-sections were stained with antibodies against RGCs (Brn-3a), apoptosis (cleaved caspase 2, cleaved caspase 3 as well as caspase 3, 8, and 9), autophagy (LC3BII and LAMP1), and necrosis (RIPK3) followed by cell counts. Autophagy was additionally visualized via transmission electron microscopy on retinal sections. Antibody deposits were also analyzed. RESULTS We noted a RGC loss after RGA immunization compared to both control groups. Also, significantly more cleaved caspase 2+ RGCs were observed in RGA animals. More caspase 3 and 8 signals were noted in RGA retinas compared to both controls, while no changes were seen in regard to caspase 9. Furthermore, significantly more cleaved caspase 3+ cells were detected in RGA animals. We noted an increase of LC3BII+ and LAMP1+ autophagic cells in the RGA group, while no alterations were seen regarding necrotic RIPK3+ cells. Autophagic vesicles were observed via transmission electron microscopy. IgG staining revealed significant differences between the RGA group and controls concerning IgG deposits in the ganglion cell layer. CONCLUSIONS Due to the novel results from this study, we conclude that IgG antibodies are involved in RGC loss in this model leading to apoptotic and autophagic cell loss. These results could help to develop new therapy strategies for glaucoma patients.
Collapse
Affiliation(s)
- Sabrina Reinehr
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Verena Buschhorn
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Ana M Mueller-Buehl
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Tobias Goldmann
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - Franz H Grus
- Experimental Ophthalmology, University Medical Center Mainz , Mainz, Germany
| | - Uwe Wolfrum
- Molecular Cell Biology, Institute of Molecular Physiology, Johannes Gutenberg-University of Mainz , Germany
| | - H Burkhard Dick
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| | - Stephanie C Joachim
- Experimental Eye Research Institute, University Eye Hospital, Ruhr-University Bochum , Bochum, Germany
| |
Collapse
|
13
|
Connolly P, Garcia-Carpio I, Villunger A. Cell-Cycle Cross Talk with Caspases and Their Substrates. Cold Spring Harb Perspect Biol 2020; 12:a036475. [PMID: 31727679 PMCID: PMC7263087 DOI: 10.1101/cshperspect.a036475] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Caspases play central roles in mediating both cell death and inflammation. It has more recently become evident that caspases also drive other biological processes. Most prominently, caspases have been shown to be involved in differentiation. Several stem and progenitor cell types rely on caspases to initiate and execute their differentiation processes. These range from neural and glial cells, to skeletal myoblasts and osteoblasts, and several cell types of the hematopoietic system. Beyond differentiation, caspases have also been shown to play roles in other "noncanonical" processes, including cell proliferation, arrest, and senescence, thereby contributing to the mechanisms that regulate tissue homeostasis at multiple levels. Remarkably, caspases directly influence the course of the cell cycle in both a positive and negative manner. Caspases both cleave elements of the cell-cycle machinery and are themselves substrates of cell-cycle kinases. Here we aim to summarize the breadth of interactions between caspases and cell-cycle regulators. We also highlight recent developments in this area.
Collapse
Affiliation(s)
- Patrick Connolly
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Irmina Garcia-Carpio
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck 6020, Austria
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna 1090, Austria
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna 1090, Austria
| |
Collapse
|
14
|
Vigneswara V, Ahmed Z. The Role of Caspase-2 in Regulating Cell Fate. Cells 2020; 9:cells9051259. [PMID: 32438737 PMCID: PMC7290664 DOI: 10.3390/cells9051259] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/11/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 is the most evolutionarily conserved member of the mammalian caspase family and has been implicated in both apoptotic and non-apoptotic signaling pathways, including tumor suppression, cell cycle regulation, and DNA repair. A myriad of signaling molecules is associated with the tight regulation of caspase-2 to mediate multiple cellular processes far beyond apoptotic cell death. This review provides a comprehensive overview of the literature pertaining to possible sophisticated molecular mechanisms underlying the multifaceted process of caspase-2 activation and to highlight its interplay between factors that promote or suppress apoptosis in a complicated regulatory network that determines the fate of a cell from its birth and throughout its life.
Collapse
|
15
|
Sladky VC, Villunger A. Uncovering the PIDDosome and caspase-2 as regulators of organogenesis and cellular differentiation. Cell Death Differ 2020; 27:2037-2047. [PMID: 32415279 PMCID: PMC7308375 DOI: 10.1038/s41418-020-0556-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023] Open
Abstract
The PIDDosome is a multiprotein complex that drives activation of caspase-2, an endopeptidase originally implicated in apoptosis. Yet, unlike other caspases involved in cell death and inflammation, caspase-2 seems to exert additional versatile functions unrelated to cell death. These emerging roles range from control of transcription factor activity to ploidy surveillance. Thus, caspase-2 and the PIDDosome act as a critical regulatory unit controlling cellular differentiation processes during organogenesis and regeneration. These newly established functions of the PIDDosome and its downstream effector render its components attractive targets for drug-development aiming to prevent fatty liver diseases, neurodegenerative disorders or osteoporosis. ![]()
Collapse
Affiliation(s)
- Valentina C Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria. .,Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, 1090, Vienna, Austria. .,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090, Vienna, Austria.
| |
Collapse
|
16
|
Čermák V, Dostál V, Jelínek M, Libusová L, Kovář J, Rösel D, Brábek J. Microtubule-targeting agents and their impact on cancer treatment. Eur J Cell Biol 2020; 99:151075. [PMID: 32414588 DOI: 10.1016/j.ejcb.2020.151075] [Citation(s) in RCA: 148] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/25/2020] [Accepted: 03/17/2020] [Indexed: 02/07/2023] Open
Abstract
Microtubule-targeting agents (MTAs) constitute a diverse group of chemical compounds that bind to microtubules and affect their properties and function. Disruption of microtubules induces various cellular responses often leading to cell cycle arrest or cell death, the most common effect of MTAs. MTAs have found a plethora of practical applications in weed control, as fungicides and antiparasitics, and particularly in cancer treatment. Here we summarize the current knowledge of MTAs, the mechanisms of action and their role in cancer treatment. We further outline the potential use of MTAs in anti-metastatic therapy based on inhibition of cancer cell migration and invasiveness. The two main problems associated with cancer therapy by MTAs are high systemic toxicity and development of resistance. Toxic side effects of MTAs can be, at least partly, eliminated by conjugation of the drugs with various carriers. Moreover, some of the novel MTAs overcome the resistance mediated by both multidrug resistance transporters as well as overexpression of specific β-tubulin types. In anti-metastatic therapy, MTAs should be combined with other drugs to target all modes of cancer cell invasion.
Collapse
Affiliation(s)
- Vladimír Čermák
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Vojtěch Dostál
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Michael Jelínek
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lenka Libusová
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic
| | - Jan Kovář
- Department of Biochemistry, Cell and Molecular Biology & Center for Research of Diabetes, Metabolism, and Nutrition, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Daniel Rösel
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic
| | - Jan Brábek
- Department of Cell Biology, Charles University, Viničná 7, 12843 Prague, Czech Republic; Biotechnology and Biomedicine Centre of the Academy of Sciences and Charles University (BIOCEV), Průmyslová 595, 25242 Vestec u Prahy, Czech Republic.
| |
Collapse
|
17
|
Takahashi T, Nakano Y, Onomoto K, Yoneyama M, Ui-Tei K. LGP2 virus sensor enhances apoptosis by upregulating apoptosis regulatory genes through TRBP-bound miRNAs during viral infection. Nucleic Acids Res 2020; 48:1494-1507. [PMID: 31799626 PMCID: PMC7026649 DOI: 10.1093/nar/gkz1143] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 11/16/2019] [Accepted: 11/27/2019] [Indexed: 12/24/2022] Open
Abstract
During viral infection, viral nucleic acids are detected by virus sensor proteins including toll-like receptor 3 or retinoic acid-inducible gene I-like receptors (RLRs) in mammalian cells. Activation of these virus sensor proteins induces type-I interferon production and represses viral replication. Recently, we reported that an RLR family member, laboratory of genetics and physiology 2 (LGP2), modulates RNA silencing by interacting with an RNA silencing enhancer, TAR-RNA binding protein (TRBP). However, the biological implications remained unclear. Here, we show that LGP2 enhances apoptosis by upregulating apoptosis regulatory genes during viral infection. Sendai virus (SeV) infection increased LGP2 expression approximately 900 times compared to that in non-virus-infected cells. Then, the induced LGP2 interacted with TRBP, resulting in the inhibition of maturation of the TRBP-bound microRNA (miRNA) and its subsequent RNA silencing activity. Gene expression profiling revealed that apoptosis regulatory genes were upregulated during SeV infection: caspases-2, -8, -3 and -7, four cysteine proteases with key roles in apoptosis, were upregulated directly or indirectly through the repression of a typical TRBP-bound miRNA, miR-106b. Our findings may shed light on the mechanism of apoptosis, induced by the TRBP-bound miRNAs through the interaction of TRBP with LGP2, as an antiviral defense system in mammalian cells.
Collapse
Affiliation(s)
- Tomoko Takahashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Yuko Nakano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Koji Onomoto
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Mitsutoshi Yoneyama
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba 260-8673, Japan
| | - Kumiko Ui-Tei
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0033, Japan.,Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba 277-8561, Japan
| |
Collapse
|
18
|
Hüsemann LC, Reese A, Radine C, Piekorz RP, Budach W, Sohn D, Jänicke RU. The microtubule targeting agents eribulin and paclitaxel activate similar signaling pathways and induce cell death predominantly in a caspase-independent manner. Cell Cycle 2020; 19:464-478. [PMID: 31959066 DOI: 10.1080/15384101.2020.1716144] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Microtubule-targeting agents (MTAs) are the most effective chemotherapeutics used in cancer therapy to date, but their clinical use is often hampered by the acquisition of resistance. Thereby, elucidation of the molecular signaling pathways activated by novel FDA-approved MTAs such as eribulin is important for future therapeutic applications. In contrast to several reports, we show here that regardless of the presence of caspase-3, clinically relevant concentrations of eribulin and the classical MTA paclitaxel predominantly induce caspase-independent cell death in MCF-7 breast carcinoma cells. On the molecular level, several key proteins involved in apoptosis such as p53, Plk1, caspase-2, and Bim as well as the two MAPKs ERK and JNK were activated by both compounds to a similar extent. However, none of them proved to be important for eribulin- and paclitaxel-induced cytotoxicity, as their siRNA-mediated knockdown or inactivation by small molecule inhibitors did not alter cell death rates. In contrast, knockdown of the anti-apoptotic Bcl-2 protein, which becomes heavily phosphorylated at Ser70 during MTA treatment, resulted surprisingly in a reduction of MTA-mediated cell death. This phenomenon can be most likely explained by our observation that the absence of Bcl-2 slowed down cell cycle progression resulting in fewer cells entering mitosis, thereby delaying the mitotic capability of these MTAs to induce cell death. Taken together, although eribulin and paclitaxel disturb the mitotic spindle differently, they exhibit no functional differences in downstream molecular cell death signaling in MCF-7 breast cancer cells.
Collapse
Affiliation(s)
- Lisa C Hüsemann
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany.,Institute of Synthetic Biology, Heinrich-Heine-University, Düsseldorf, Germany
| | - Alina Reese
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Claudia Radine
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Roland P Piekorz
- Institute for Biochemistry and Molecular Biology II, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Wilfried Budach
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Dennis Sohn
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| | - Reiner U Jänicke
- Laboratory of Molecular Radiooncology, Clinic and Policlinic for Radiation Therapy and Radiooncology, Medical Faculty of the Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
19
|
Leon-Martinez D, Robinson JF, Zdravkovic T, Genbacev O, Gormley M, Mcmaster M, Fisher SJ, Bianco K. Trisomy 21 is Associated with Caspase-2 Upregulation in Cytotrophoblasts at the Maternal-Fetal Interface. Reprod Sci 2020; 27:100-109. [PMID: 32046398 DOI: 10.1007/s43032-019-00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 02/28/2019] [Indexed: 11/26/2022]
Abstract
Impaired placentation is implicated in poor perinatal outcomes associated with Trisomy 21. Earlier studies revealed abnormal cytotrophoblast differentiation along the invasive pathway as a contributing mechanism. To further elucidate the causes, we evaluated Caspase-2 expression at the protein level (immunolocalization and immunoblot) in samples from Trisomy 21 (n = 9) and euploid (n = 4) age-matched placentas. Apoptosis was investigated via the TUNEL assay. An immunolocalization approach was used to characterize Caspase-3, Fas (CD95), and Fas ligand in the same samples. Caspase-2 was significantly overexpressed in Trisomy 21 placentas, with the highest expression in villous cores and invasive cytotrophoblasts. Immunolocalization showed that Caspase-3 had a similar expression pattern as Caspase-2. Using the TUNEL approach, we observed high variability in the number of apoptotic cells in biopsies from different regions of the same placenta and among different placentas. However, Trisomy 21 placentas had more apoptotic cells, specifically in cell columns and basal plates. Furthermore, Caspase-2 co-immunolocalized with Fas (CD95) and FasL in TUNEL-positive extravillous cytotrophoblasts, but not in villous cores. These results help explain the higher levels of apoptosis among placental cells of Trisomy 21 pregnancies in molecular terms. Specifically, the co-expression of Caspase-2 and Caspase-3 with other regulators of the apoptotic process in TUNEL-positive cells suggests these molecules may cooperate in launching the observed apoptosis. Among trophoblasts, only the invasive subpopulation showed this pattern, which could help explain the higher rates of adverse outcomes in these pregnancies. In future experiments, this relationship will be further examined at a functional level in cultured human trophoblasts.
Collapse
Affiliation(s)
- Daisy Leon-Martinez
- Department of Obstetrics and Gynecology, Yale University, New Haven, CT, USA
| | - Joshua F Robinson
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Tamara Zdravkovic
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Olga Genbacev
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Matthew Gormley
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Michael Mcmaster
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Susan J Fisher
- Center for Reproductive Sciences, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California, San Francisco, San Francisco, CA, 94143, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Katherine Bianco
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Stanford University, 300 Pasteur Dr. HH333 MC 5317, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Inhibition of Caspase-2 Translation by the mRNA Binding Protein HuR: A Novel Path of Therapy Resistance in Colon Carcinoma Cells? Cells 2019; 8:cells8080797. [PMID: 31366165 PMCID: PMC6721497 DOI: 10.3390/cells8080797] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 07/26/2019] [Accepted: 07/29/2019] [Indexed: 12/28/2022] Open
Abstract
An increased expression and cytoplasmic abundance of the ubiquitous RNA binding protein human antigen R (HuR) is critically implicated in the dysregulated control of post- transcriptional gene expression during colorectal cancer development and is frequently associated with a high grade of malignancy and therapy resistance. Regardless of the fact that HuR elicits a broad cell survival program by increasing the stability of mRNAs coding for prominent anti-apoptotic factors, recent data suggest that HuR is critically involved in the regulation of translation, particularly, in the internal ribosome entry site (IRES) controlled translation of cell death regulatory proteins. Accordingly, data from human colon carcinoma cells revealed that HuR maintains constitutively reduced protein and activity levels of caspase-2 through negative interference with IRES-mediated translation. This review covers recent advances in the understanding of mechanisms underlying HuR's modulatory activity on IRES-triggered translation. With respect to the unique regulatory features of caspase-2 and its multiple roles (e.g., in DNA-damage-induced apoptosis, cell cycle regulation and maintenance of genomic stability), the pathophysiological consequences of negative caspase-2 regulation by HuR and its impact on therapy resistance of colorectal cancers will be discussed in detail. The negative HuR-caspase-2 axis may offer a novel target for tumor sensitizing therapies.
Collapse
|
21
|
Diverse Action of Selected Statins on Skeletal Muscle Cells-An Attempt to Explain the Protective Effect of Geranylgeraniol (GGOH) in Statin-Associated Myopathy (SAM). J Clin Med 2019; 8:jcm8050694. [PMID: 31100888 PMCID: PMC6572681 DOI: 10.3390/jcm8050694] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/30/2019] [Accepted: 05/14/2019] [Indexed: 01/22/2023] Open
Abstract
The present study is centered on molecular mechanisms of the cytoprotective effect of geranylgeraniol (GGOH) in skeletal muscle harmed by statin-associated myopathy (SAM). GGOH via autophagy induction was purportedly assumed to prevent skeletal muscle viability impaired by statins, atorvastatin (ATR) or simvastatin (SIM). The C2C12 cell line was used as the ‘in vitro’ model of muscle cells at different stages of muscle formation, and the effect of ATR or SIM on the cell viability, protein expression and mitochondrial respiration were tested. Autophagy seems to be important for the differentiation of muscle cells; however, it did not participate in the observed GGOH cytoprotective effects. We showed that ATR- and SIM-dependent loss in cell viability was reversed by GGOH co-treatment, although GGOH did not reverse the ATR-induced drop in the cytochrome c oxidase protein expression level. It has been unambiguously revealed that the mitochondria of C2C12 cells are not sensitive to SIM, although ATR effectively inhibits mitochondrial respiration. GGOH restored proper mitochondria functioning. Apoptosis might, to some extent, explain the lower viability of statin-treated myotubes as the pan-caspase inhibitor, N-Benzyloxycarbonyl-Val-Ala-Asp(O-Me) fluoromethyl ketone (Z-VAD-FMK), partly reversed ATR- or SIM-induced cytotoxic effects; however, it does not do so in conjunction with caspase-3. It appears that the calpain inhibitor, N-Acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLM), restored the viability that was reduced by ATR and SIM (p< 0.001). GGOH prevents SAM, in part, as a consequence of a caspase-3 independent pathway, probably by calpain system inactivation.
Collapse
|
22
|
Thomas CN, Thompson AM, McCance E, Berry M, Logan A, Blanch RJ, Ahmed Z. Caspase-2 Mediates Site-Specific Retinal Ganglion Cell Death After Blunt Ocular Injury. Invest Ophthalmol Vis Sci 2019; 59:4453-4462. [PMID: 30193318 DOI: 10.1167/iovs.18-24045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Ocular trauma is common in civilian and military populations. Among other injuries, closed globe blunt ocular trauma causes acute disruption of photoreceptor outer segments (commotio retinae) and retinal ganglion cell (RGC) death (traumatic optic neuropathy [TON]), both of which permanently impair vision. Caspase-2-dependent cell death is important and evidenced in models of RGC degeneration. We assessed the role of caspase-2 as a mediator of RGC and photoreceptor death in a rat blunt ocular trauma model. Methods Bilateral ballistic closed globe blunt ocular trauma was induced in female Lister-hooded rats and caspase-2 cleavage and localization assessed by Western blotting and immunohistochemistry. Retinal caspase-2 was knocked down by intravitreal injection of caspase-2 small interfering RNA (siCASP2). In retinal sections, RGC survival was assessed by BRN3A-positive cell counts and photoreceptor survival by outer nuclear layer (ONL) thickness, respectively. Retinal function was assessed by electroretinography (ERG). Results Raised levels of cleaved caspase-2 were detected in the retina at 5, 24, and 48 hours after injury and localized to RGC but not photoreceptors. Small interfering RNA-mediated caspase-2 knockdown neuroprotected RGC around but not in the center of the injury site. In addition, caspase-2 knockdown increased the amplitude of the ERG photopic negative response (PhNR) at 2 weeks after injury. However, siCASP2 was not protective for photoreceptors, suggesting that photoreceptor degeneration in this model is not mediated by caspase-2. Conclusions Caspase-2 mediates death in a proportion of RGC but not photoreceptors at the site of blunt ocular trauma. Thus, intravitreally delivered siCASP2 is a possible therapeutic for the effective treatment of RGC death to prevent TON.
Collapse
Affiliation(s)
- Chloe N Thomas
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Adam M Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Eleanor McCance
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.,Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, United Kingdom
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
23
|
Mitotic Catastrophe Induced in HeLa Tumor Cells by Photodynamic Therapy with Methyl-aminolevulinate. Int J Mol Sci 2019; 20:ijms20051229. [PMID: 30862116 PMCID: PMC6429057 DOI: 10.3390/ijms20051229] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/01/2019] [Accepted: 03/07/2019] [Indexed: 12/12/2022] Open
Abstract
Photodynamic therapy (PDT) constitutes a cancer treatment modality based on the administration of a photosensitizer, which accumulates in tumor cells. The subsequent irradiation of the tumoral area triggers the formation of reactive oxygen species responsible for cancer cell death. One of the compounds approved in clinical practice is methyl-aminolevulinate (MAL), a protoporphyrin IX (PpIX) precursor intermediate of heme synthesis. We have identified the mitotic catastrophe (MC) process after MAL-PDT in HeLa human carcinoma cells. The fluorescence microscopy revealed that PpIX was located mainly at plasma membrane and lysosomes of HeLa cells, although some fluorescence was also detected at endoplasmic reticulum and Golgi apparatus. Cell blockage at metaphase-anaphase transition was observed 24 h after PDT by phase contrast microscopy and flow cytometry. Mitotic apparatus components evaluation by immunofluorescence and Western blot indicated: multipolar spindles and disorganized chromosomes in the equatorial plate accompanied with dispersion of centromeres and alterations in aurora kinase proteins. The mitotic blockage induced by MAL-PDT resembled that induced by two compounds used in chemotherapy, taxol and nocodazole, both targeting microtubules. The alterations in tumoral cells provided evidence of MC induced by MAL-PDT, resolving mainly by apoptosis, directly or through the formation of multinucleate cells.
Collapse
|
24
|
Robeson AC, Lindblom KR, Wojton J, Kornbluth S, Matsuura K. Dimer-specific immunoprecipitation of active caspase-2 identifies TRAF proteins as novel activators. EMBO J 2018; 37:e97072. [PMID: 29875129 PMCID: PMC6043850 DOI: 10.15252/embj.201797072] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 04/30/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022] Open
Abstract
Caspase-2 has been shown to initiate apoptotic cell death in response to specific intracellular stressors such as DNA damage. However, the molecular mechanisms immediately upstream of its activation are still poorly understood. We combined a caspase-2 bimolecular fluorescence complementation (BiFC) system with fluorophore-specific immunoprecipitation to isolate and study the active caspase-2 dimer and its interactome. Using this technique, we found that tumor necrosis factor receptor-associated factor 2 (TRAF2), as well as TRAF1 and 3, directly binds to the active caspase-2 dimer. TRAF2 in particular is necessary for caspase-2 activation in response to apoptotic cell death stimuli. Furthermore, we found that dimerized caspase-2 is ubiquitylated in a TRAF2-dependent manner at K15, K152, and K153, which in turn stabilizes the active caspase-2 dimer complex, promotes its association with an insoluble cellular fraction, and enhances its activity to fully commit the cell to apoptosis. Together, these data indicate that TRAF2 positively regulates caspase-2 activation and consequent cell death by driving its activation through dimer-stabilizing ubiquitylation.
Collapse
Affiliation(s)
- Alexander C Robeson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Kelly R Lindblom
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey Wojton
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Sally Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - Kenkyo Matsuura
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
25
|
Saei A, Palafox M, Benoukraf T, Kumari N, Jaynes PW, Iyengar PV, Muñoz-Couselo E, Nuciforo P, Cortés J, Nötzel C, Kumarakulasinghe NB, Richard JLC, Bin Adam Isa ZF, Pang B, Guzman M, Siqin Z, Yang H, Tam WL, Serra V, Eichhorn PJA. Loss of USP28-mediated BRAF degradation drives resistance to RAF cancer therapies. J Exp Med 2018; 215:1913-1928. [PMID: 29880484 PMCID: PMC6028519 DOI: 10.1084/jem.20171960] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2017] [Revised: 03/09/2018] [Accepted: 05/09/2018] [Indexed: 11/04/2022] Open
Abstract
RAF kinase inhibitors are clinically active in patients with BRAF (V600E) mutant melanoma. However, rarely do tumors regress completely, with the majority of responses being short-lived. This is partially mediated through the loss of negative feedback loops after MAPK inhibition and reactivation of upstream signaling. Here, we demonstrate that the deubiquitinating enzyme USP28 functions through a feedback loop to destabilize RAF family members. Loss of USP28 stabilizes BRAF enhancing downstream MAPK activation and promotes resistance to RAF inhibitor therapy in culture and in vivo models. Importantly, we demonstrate that USP28 is deleted in a proportion of melanoma patients and may act as a biomarker for response to BRAF inhibitor therapy in patients. Furthermore, we identify Rigosertib as a possible therapeutic strategy for USP28-depleted tumors. Our results show that loss of USP28 enhances MAPK activity through the stabilization of RAF family members and is a key factor in BRAF inhibitor resistance.
Collapse
Affiliation(s)
- Azad Saei
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Marta Palafox
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Touati Benoukraf
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Nishi Kumari
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | | | | | | | - Paolo Nuciforo
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Javier Cortés
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
- Cancer Ramon y Cajal University Hospital, Madrid, Spain
- IOB Institute of Oncology, Quironsalud group, Madrid & Barcelona, Spain
| | - Christopher Nötzel
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Nesaretnam Barr Kumarakulasinghe
- Department of Hematology-Oncology, National University Cancer Institute, Singapore, National University Health System, Singapore, Singapore
| | | | | | - Brendan Pang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Marta Guzman
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Zhou Siqin
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wai Leong Tam
- Genome Institute of Singapore, A*STAR, Singapore, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Violeta Serra
- Vall d'Hebron Institute of Oncology (VHIO), Barcelona, Spain
| | - Pieter Johan Adam Eichhorn
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Australia
| |
Collapse
|
26
|
Badawi A, Biyanee A, Nasrullah U, Winslow S, Schmid T, Pfeilschifter J, Eberhardt W. Inhibition of IRES-dependent translation of caspase-2 by HuR confers chemotherapeutic drug resistance in colon carcinoma cells. Oncotarget 2018; 9:18367-18385. [PMID: 29719611 PMCID: PMC5915078 DOI: 10.18632/oncotarget.24840] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 02/23/2018] [Indexed: 12/31/2022] Open
Abstract
HuR plays an important role in tumor cell survival mainly through posttranscriptional upregulation of prominent anti-apoptotic genes. In addition, HuR can inhibit the translation of pro-apoptotic factors as we could previously report for caspase-2. Here, we investigated the mechanisms of caspase-2 suppression by HuR and its contribution to chemotherapeutic drug resistance of colon carcinoma cells. In accordance with the significant drug-induced increase in cytoplasmic HuR abundance, doxorubicin and paclitaxel increased the interaction of cytoplasmic HuR with the 5ʹuntranslated region (5ʹUTR) of caspase-2 as shown by RNA pull down assay. Experiments with bicistronic reporter genes furthermore indicate the presence of an internal ribosome entry site (IRES) within the caspase-2-5ʹUTR. Luciferase activity was suppressed either by chemotherapeutic drugs or ectopic expression of HuR. IRES-driven luciferase activity was significantly increased upon siRNA-mediated knockdown of HuR implicating an inhibitory effect of HuR on caspase-2 translation which is further reinforced by chemotherapeutic drugs. Comparison of RNA-binding affinities of recombinant HuR to two fragments of the caspase-2-5ʹUTR by EMSA revealed a critical HuR-binding site residing between nucleotides 111 and 241 of caspase-2-5ʹUTR. Mapping of critical RNA binding domains within HuR revealed that a fusion of RNA recognition motif 2 (RRM2) plus the hinge region confers a full caspase-2-5ʹUTR-binding. Functionally, knockdown of HuR significantly increased the sensitivity of colon cancer cells to drug-induced apoptosis. Importantly, the apoptosis sensitizing effects by HuR knockdown were rescued after silencing of caspase-2. The negative caspase-2 regulation by HuR offers a novel therapeutic target for sensitizing colon carcinoma cells to drug-induced apoptosis.
Collapse
Affiliation(s)
- Amel Badawi
- Pharmazentrum Frankfurt/ZAFES, Medical School, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Abhiruchi Biyanee
- Pharmazentrum Frankfurt/ZAFES, Medical School, Goethe-University Frankfurt, Frankfurt/Main, Germany.,Present address: Institut für Biochemie, Westfälische Wilhelms-Universität Münster, Münster, Germany
| | - Usman Nasrullah
- Pharmazentrum Frankfurt/ZAFES, Medical School, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Sofia Winslow
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Tobias Schmid
- Institute of Biochemistry I, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Medical School, Goethe-University Frankfurt, Frankfurt/Main, Germany
| | - Wolfgang Eberhardt
- Pharmazentrum Frankfurt/ZAFES, Medical School, Goethe-University Frankfurt, Frankfurt/Main, Germany
| |
Collapse
|
27
|
Sladky V, Schuler F, Fava LL, Villunger A. The resurrection of the PIDDosome - emerging roles in the DNA-damage response and centrosome surveillance. J Cell Sci 2018; 130:3779-3787. [PMID: 29142064 DOI: 10.1242/jcs.203448] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The PIDDosome is often used as the alias for a multi-protein complex that includes the p53-induced death domain protein 1 (PIDD1), the bipartite linker protein CRADD (also known as RAIDD) and the pro-form of an endopeptidase belonging to the caspase family, i.e. caspase-2. Yet, PIDD1 variants can also interact with a number of other proteins that include RIPK1 (also known as RIP1) and IKBKG (also known as NEMO), PCNA and RFC5, as well as nucleolar components such as NPM1 or NCL. This promiscuity in protein binding is facilitated mainly by autoprocessing of the full-length protein into various fragments that contain different structural domains. As a result, multiple responses can be mediated by protein complexes that contain a PIDD1 domain. This suggests that PIDD1 acts as an integrator for multiple types of stress that need instant attention. Examples are various types of DNA lesion but also the presence of extra centrosomes that can foster aneuploidy and, ultimately, promote DNA damage. Here, we review the role of PIDD1 in response to DNA damage and also highlight novel functions of PIDD1, such as in centrosome surveillance and scheduled polyploidisation as part of a cellular differentiation program during organogenesis.
Collapse
Affiliation(s)
- Valentina Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| | - Luca L Fava
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria.,Center for Integrative Biology (CIBIO), University of Trento, Via Sommarive 9, 38123 Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innrain 80, 6020 Innsbruck, Austria
| |
Collapse
|
28
|
Haschka M, Karbon G, Fava LL, Villunger A. Perturbing mitosis for anti-cancer therapy: is cell death the only answer? EMBO Rep 2018; 19:e45440. [PMID: 29459486 PMCID: PMC5836099 DOI: 10.15252/embr.201745440] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 12/15/2017] [Accepted: 01/29/2018] [Indexed: 12/12/2022] Open
Abstract
Interfering with mitosis for cancer treatment is an old concept that has proven highly successful in the clinics. Microtubule poisons are used to treat patients with different types of blood or solid cancer since more than 20 years, but how these drugs achieve clinical response is still unclear. Arresting cells in mitosis can promote their demise, at least in a petri dish. Yet, at the molecular level, this type of cell death is poorly defined and cancer cells often find ways to escape. The signaling pathways activated can lead to mitotic slippage, cell death, or senescence. Therefore, any attempt to unravel the mechanistic action of microtubule poisons will have to investigate aspects of cell cycle control, cell death initiation in mitosis and after slippage, at single-cell resolution. Here, we discuss possible mechanisms and signaling pathways controlling cell death in mitosis or after escape from mitotic arrest, as well as secondary consequences of mitotic errors, particularly sterile inflammation, and finally address the question how clinical efficacy of anti-mitotic drugs may come about and could be improved.
Collapse
Affiliation(s)
- Manuel Haschka
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerlinde Karbon
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Luca L Fava
- Centre for Integrative Biology (CIBIO), University of Trento, Povo, Italy
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Taxane-mediated radiosensitization derives from chromosomal missegregation on tripolar mitotic spindles orchestrated by AURKA and TPX2. Oncogene 2017; 37:52-62. [DOI: 10.1038/onc.2017.304] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 06/29/2017] [Accepted: 07/20/2017] [Indexed: 12/13/2022]
|
30
|
Fava LL, Schuler F, Sladky V, Haschka MD, Soratroi C, Eiterer L, Demetz E, Weiss G, Geley S, Nigg EA, Villunger A. The PIDDosome activates p53 in response to supernumerary centrosomes. Genes Dev 2017; 31:34-45. [PMID: 28130345 PMCID: PMC5287111 DOI: 10.1101/gad.289728.116] [Citation(s) in RCA: 156] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023]
Abstract
In this study, Fava et al. show that an increase in the number of mature centrosomes (the main microtubule-organizing centers in animal cells), generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. Centrosomes, the main microtubule-organizing centers in animal cells, are replicated exactly once during the cell division cycle to form the poles of the mitotic spindle. Supernumerary centrosomes can lead to aberrant cell division and have been causally linked to chromosomal instability and cancer. Here, we report that an increase in the number of mature centrosomes, generated by disrupting cytokinesis or forcing centrosome overduplication, triggers the activation of the PIDDosome multiprotein complex, leading to Caspase-2-mediated MDM2 cleavage, p53 stabilization, and p21-dependent cell cycle arrest. This pathway also restrains the extent of developmentally scheduled polyploidization by regulating p53 levels in hepatocytes during liver organogenesis. Taken together, the PIDDosome acts as a first barrier, engaging p53 to halt the proliferation of cells carrying more than one mature centrosome to maintain genome integrity.
Collapse
Affiliation(s)
- Luca L Fava
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Fabian Schuler
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Valentina Sladky
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Manuel D Haschka
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Claudia Soratroi
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Lisa Eiterer
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Stephan Geley
- Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Erich A Nigg
- Biozentrum, University of Basel, 4056 Basel, Switzerland
| | - Andreas Villunger
- Division of Developmental Immunology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria.,Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| |
Collapse
|
31
|
Thomas CN, Berry M, Logan A, Blanch RJ, Ahmed Z. Caspases in retinal ganglion cell death and axon regeneration. Cell Death Discov 2017; 3:17032. [PMID: 29675270 PMCID: PMC5903394 DOI: 10.1038/cddiscovery.2017.32] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 03/31/2017] [Accepted: 04/23/2017] [Indexed: 02/07/2023] Open
Abstract
Retinal ganglion cells (RGC) are terminally differentiated CNS neurons that possess limited endogenous regenerative capacity after injury and thus RGC death causes permanent visual loss. RGC die by caspase-dependent mechanisms, including apoptosis, during development, after ocular injury and in progressive degenerative diseases of the eye and optic nerve, such as glaucoma, anterior ischemic optic neuropathy, diabetic retinopathy and multiple sclerosis. Inhibition of caspases through genetic or pharmacological approaches can arrest the apoptotic cascade and protect a proportion of RGC. Novel findings have also highlighted a pyroptotic role of inflammatory caspases in RGC death. In this review, we discuss the molecular signalling mechanisms of apoptotic and inflammatory caspase responses in RGC specifically, their involvement in RGC degeneration and explore their potential as therapeutic targets.
Collapse
Affiliation(s)
- Chloe N Thomas
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Richard J Blanch
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,Academic Department of Military Surgery and Trauma, Royal Centre for Defence Medicine, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
32
|
Forsberg J, Zhivotovsky B, Olsson M. Caspase-2: an orphan enzyme out of the shadows. Oncogene 2017; 36:5441-5444. [PMID: 28581521 DOI: 10.1038/onc.2017.169] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 04/18/2017] [Accepted: 04/25/2017] [Indexed: 12/20/2022]
Abstract
Caspase-2 has been embodied as an initiator or executioner protease in diverse apoptotic scenarios. However, accumulating evidence is challenging this view, pertaining to its true role. The enzyme's catalytic activity is currently implicated in various functions required for correct cell proliferation, such as counteracting genomic instability, as well as suppressing tumorigenesis. Here, apart from summarizing the latest observations in caspase-2-related research, we make an attempt to reconcile these findings and discuss their implications for future directions.
Collapse
Affiliation(s)
- J Forsberg
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - B Zhivotovsky
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.,Faculty of Fundamental Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - M Olsson
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Tsapras P, Nezis IP. Caspase involvement in autophagy. Cell Death Differ 2017; 24:1369-1379. [PMID: 28574508 DOI: 10.1038/cdd.2017.43] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 02/24/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
Caspases are a family of cysteine proteases widely known as the principal mediators of the apoptotic cell death response, but considerably less so as the contributors to the regulation of pathways outside cellular demise. In regards to autophagy, the modulatory roles of caspases have only recently begun to be adequately described. In contrast to apoptosis, autophagy promotes cell survival by providing energy and nutrients through the lysosomal degradation of cytoplasmic constituents. Under basal conditions autophagy and apoptosis cross-regulate each other through an elaborate network of interconnections which also includes the interplay between autophagy-related proteins (ATGs) and caspases. In this review we focus on the effects of this crosstalk at the cellular level, as we aim to concentrate the main observations from research conducted so far on the fine-tuning of autophagy by caspases. Several members of this protease-family have been found to directly interact with key ATGs involved in different tiers across the autophagic cascade. Therefore, we firstly outline the core mechanism of macroautophagy in brief. In an effort to emphasize the importance of the intricate cross-regulation of ATGs and caspases, we also present examples of autophagy's contribution to apoptotic cell death during development.
Collapse
Affiliation(s)
| | - Ioannis P Nezis
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| |
Collapse
|
34
|
Majumder P, Roy K, Singh BK, Jana NR, Mukhopadhyay D. Cellular levels of Grb2 and cytoskeleton stability are correlated in a neurodegenerative scenario. Dis Model Mech 2017; 10:655-669. [PMID: 28360125 PMCID: PMC5451165 DOI: 10.1242/dmm.027748] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/28/2017] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) manifests as neuronal loss. On the premise of Grb2 overexpression in AD mouse brain and brain tissues of AD patients, our study primarily focuses on the stability of cytoskeletal proteins in the context of degenerative AD-like conditions. Two predominant molecular features of AD, extracellular accumulation of β-amyloid oligomers and intracellular elevation of amyloid precursor protein intracellular domain levels, have been used to closely inspect the series of signalling events. In their presence, multiple signalling pathways involving ROCK and PAK1 proteins lead to disassembly of the cytoskeleton, and Grb2 partially counterbalances the cytoskeletal loss. Increased Grb2-NOX4 interactions play a preventive role against cytoskeletal disassembly, in turn blocking the activity of nitrogen oxides and decreasing the expression of slingshot homolog 1 (SSH-1) protein, a potent inducer of cytoskeleton disassembly. This study unravels a unique role of Grb2 in protecting the cytoskeletal architecture in AD-like conditions and presents a potential new strategy for controlling neurodegeneration.
Collapse
Affiliation(s)
- Piyali Majumder
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Kasturi Roy
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhannagar, Kolkata, West Bengal 700064, India
| | - Brijesh Kumar Singh
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | - Nihar Ranjan Jana
- Cellular and Molecular Neuroscience Laboratory, National Brain Research Centre, Manesar, Gurgaon 122 050, India
| | - Debashis Mukhopadhyay
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, Block-AF, Sector-1, Bidhannagar, Kolkata, West Bengal 700064, India
| |
Collapse
|
35
|
Vitale I, Manic G, Castedo M, Kroemer G. Caspase 2 in mitotic catastrophe: The terminator of aneuploid and tetraploid cells. Mol Cell Oncol 2017; 4:e1299274. [PMID: 28616577 DOI: 10.1080/23723556.2017.1299274] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 02/20/2017] [Accepted: 02/20/2017] [Indexed: 01/18/2023]
Abstract
Mitotic catastrophe is an oncosuppressive mechanism that targets cells experiencing defective mitoses via the activation of specific cell cycle checkpoints, regulated cell death pathways and/or cell senescence. This prevents the accumulation of karyotypic aberrations, which otherwise may drive oncogenesis and tumor progression. Here, we summarize experimental evidence confirming the role of caspase 2 (CASP2) as the main executor of mitotic catastrophe, and we discuss the signals that activate CASP2 in the presence of mitotic aberrations. In addition, we summarize the main p53-dependent and -independent effector pathways through which CASP2 limits chromosomal instability and non-diploidy, hence mediating robust oncosuppressive functions.
Collapse
Affiliation(s)
- Ilio Vitale
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy.,Regina Elena National Cancer Institute, Rome, Italy
| | - Gwenola Manic
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Maria Castedo
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France
| | - Guido Kroemer
- Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, U1138, Paris, France.,Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Miles M, Kitevska-Ilioski T, Hawkins C. Old and Novel Functions of Caspase-2. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 332:155-212. [DOI: 10.1016/bs.ircmb.2016.12.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Dawar S, Lim Y, Puccini J, White M, Thomas P, Bouchier-Hayes L, Green DR, Dorstyn L, Kumar S. Caspase-2-mediated cell death is required for deleting aneuploid cells. Oncogene 2016; 36:2704-2714. [PMID: 27991927 PMCID: PMC5442422 DOI: 10.1038/onc.2016.423] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 09/06/2016] [Accepted: 10/03/2016] [Indexed: 12/22/2022]
Abstract
Caspase-2, one of the most evolutionarily conserved of the caspase family, has been implicated in maintenance of chromosomal stability and tumour suppression. Caspase-2 deficient (Casp2−/−) mice develop normally but show premature ageing-related traits and when challenged by certain stressors, succumb to enhanced tumour development and aneuploidy. To test how caspase-2 protects against chromosomal instability, we utilized an ex vivo system for aneuploidy where primary splenocytes from Casp2−/− mice were exposed to anti-mitotic drugs and followed up by live cell imaging. Our data show that caspase-2 is required for deleting mitotically aberrant cells. Acute silencing of caspase-2 in cultured human cells recapitulated these results. We further generated Casp2C320S mutant mice to demonstrate that caspase-2 catalytic activity is essential for its function in limiting aneuploidy. Our results provide direct evidence that the apoptotic activity of caspase-2 is necessary for deleting cells with mitotic aberrations to limit aneuploidy.
Collapse
Affiliation(s)
- S Dawar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - Y Lim
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia.,Departments of Biochemistry and Molecular Pharmacology and Medicine, New York University, New York City, NY, USA
| | - M White
- SA Genome Editing Facility, School of Biological Sciences and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - P Thomas
- SA Genome Editing Facility, School of Biological Sciences and Robinson Research Institute, University of Adelaide, Adelaide, SA, Australia
| | - L Bouchier-Hayes
- Department of Pediatrics-Hematology, Baylor College of Medicine, Houston, TX, USA
| | - D R Green
- Immunology Department, St Jude Children's Research Hospital, Memphis, TN, USA
| | - L Dorstyn
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| | - S Kumar
- Centre for Cancer Biology, University of South Australia, Adelaide, SA, Australia
| |
Collapse
|
38
|
Ahmed K, Tabuchi Y, Kondo T. Hyperthermia: an effective strategy to induce apoptosis in cancer cells. Apoptosis 2016; 20:1411-9. [PMID: 26354715 DOI: 10.1007/s10495-015-1168-3] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Heat has been used as a medicinal and healing modality throughout human history. The combination of hyperthermia (HT) with radiation and anticancer agents has been used clinically and has shown positive results to a certain extent. However, the clinical results of HT treatment alone have been only partially satisfactory. Cell death following HT treatment is a function of both temperature and treatment duration. HT induces cancer cell death through apoptosis; the degree of apoptosis and the apoptotic pathway vary in different cancer cell types. HT-induced reactive oxygen species production are responsible for apoptosis in various cell types. However, the underlying mechanism of signal transduction and the genes related to this process still need to be elucidated. In this review, we summarize the molecular mechanism of apoptosis induced by HT, enhancement of heat-induced apoptosis, and the genetic network involved in HT-induced apoptosis.
Collapse
Affiliation(s)
- Kanwal Ahmed
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan
| | - Yoshiaki Tabuchi
- Division of Molecular Genetic Research, Life Science Research Center, University of Toyama, Toyama, 930-0194, Japan
| | - Takashi Kondo
- Department of Radiological Sciences, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930-0194, Japan.
| |
Collapse
|
39
|
Reduced BCL2 and CCND1 mRNA expression in human cervical cancer HeLa cells treated with a combination of everolimus and paclitaxel. Contemp Oncol (Pozn) 2016; 20:28-32. [PMID: 27095936 PMCID: PMC4829746 DOI: 10.5114/wo.2016.58498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 01/23/2015] [Indexed: 11/25/2022] Open
Abstract
Aim of the study Cervical cancer is the second most common malignancy in women worldwide. Everolimus displays direct effects on growth and proliferation of cancer cells via inhibition of mammalian target of rapamycin (mTOR) protein, which is known to be associated with drug resistance. In this study, we aimed to investigate the effects of everolimus, gemcitabine, and paclitaxel in terms of cell viability and mRNA expression levels of GRP78, CCND1, CASP2, and BCL2 genes. Material and methods HeLa cells were treated with different doses of everolimus, gemcitabine, and paclitaxel. Cell viability was assessed using MTT assay, and obtained dose response curves were used for the calculations of inhibitory concentration (IC) values. At the end of the treatment times with selected doses, RNA isolation and cDNA synthesis were performed. Finally, GRP78, CCND1, CASP2, and BCL2 genes mRNA expression levels were analysed using quantitative PCR. Results The IC50 value of everolimus was 0.9 µM for 24-hour treatment. Moreover, the IC50 value of gemcitabine and paclitaxel was found to be around 18.1 µM and 7.08 µM, respectively. Everolimus, gemcitabine, and paclitaxel treatments alone did not change the GRP78, CCND1, BCL2 and CASP2 mRNA expression levels significantly. However, combined treatment of everolimus and paclitaxel significantly reduced BCL2 and CCND1 mRNA expression (p < 0.05). In contrast, this combination did not change GRP78 and CASP2 mRNA expression levels (p > 0.05). Conclusions Down-regulation of CCND1 and BCL2 expression may be an important mechanism by which everolimus increases the therapeutic window of paclitaxel in cervical cancers.
Collapse
|
40
|
Lopez-Cruzan M, Sharma R, Tiwari M, Karbach S, Holstein D, Martin CR, Lechleiter JD, Herman B. Caspase-2 resides in the mitochondria and mediates apoptosis directly from the mitochondrial compartment. Cell Death Discov 2016; 2:16005-. [PMID: 27019748 PMCID: PMC4806400 DOI: 10.1038/cddiscovery.2016.5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 11/22/2022] Open
Abstract
Caspase-2 plays an important role in apoptosis induced by several stimuli, including oxidative stress. However, the subcellular localization of caspase-2, particularly its presence in the mitochondria, is unclear. It is also not known if cytosolic caspase-2 translocates to the mitochondria to trigger the intrinsic pathway of apoptosis or if caspase-2 is constitutively present in the mitochondria that then selectively mediates this apoptotic effect. Here, we demonstrate the presence of caspase-2 in purified mitochondrial fractions from in vitro-cultured cells and in liver hepatocytes using immunoblots and confocal microscopy. We show that mitochondrial caspase-2 is functionally active by performing fluorescence resonance energy transfer analyses using a mitochondrially targeted substrate flanked by donor and acceptor fluorophores. Cell-free apoptotic assays involving recombination of nuclear, cytosolic and mitochondrial fractions from the livers of wild type and Casp2-/- mice clearly point to a direct functional role for mitochondrial caspase-2 in apoptosis. Furthermore, cytochrome c release from Casp2-/- cells is decreased as compared with controls upon treatment with agents inducing mitochondrial dysfunction. Finally, we show that Casp2-/- primary skin fibroblasts are protected from oxidants that target the mitochondrial electron transport chain. Taken together, our results demonstrate that caspase-2 exists in the mitochondria and that it is essential for mitochondrial oxidative stress-induced apoptosis.
Collapse
Affiliation(s)
- M Lopez-Cruzan
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
| | - R Sharma
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
| | - M Tiwari
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
| | - S Karbach
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
| | - D Holstein
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
| | - C R Martin
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
| | - J D Lechleiter
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
- Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - B Herman
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio , 7703 Floyd Curl Drive, MED 238D.2 , San Antonio, TX 78229-3900, USA
| |
Collapse
|
41
|
Králová V, Hanušová V, Rudolf E, Čáňová K, Skálová L. Flubendazole induces mitotic catastrophe and senescence in colon cancer cells in vitro. J Pharm Pharmacol 2016; 68:208-18. [DOI: 10.1111/jphp.12503] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 10/28/2015] [Indexed: 12/31/2022]
Abstract
Abstract
Objectives
Flubendazole (FLU), a member of benzimidazole family of anthelmintic drugs, is able to inhibit proliferation of various cancer cells. The aim of present study was to elucidate the mechanisms of antiproliferative effect of FLU on colorectal cancer cells in vitro.
Methods
The effect of FLU on proliferation, microtubular network, DNA content, caspase activation and senescence induction was studied in SW480 and SW620 cell lines.
Key findings
Flubendazole significantly affected cell proliferation in a pattern typical for mitotic inhibitor. This was accompanied by decrease in cyclin D1 levels, increase in cyclin B1 levels, activation of caspase 2 and caspase 3/7 and PARP cleavage. Morphological observations revealed disruption of microtubular network, irregular mitotic spindles, formation of giant multinucleated cells and increase in nuclear area and DNA content. In SW620 cell line, 37.5% giant multinucleated cells induced by FLU treatment showed positivity for SA-β-galactosidase staining. Cell lines were able to recover from the treatment and this process was faster in SW480 cells.
Conclusion
Flubendazole in low concentration temporarily inhibits cell proliferation and induces mitotic catastrophe and premature senescence in human colon cancer cells in vitro.
Collapse
Affiliation(s)
- Věra Králová
- Department of Medical Biology and Genetics, Charles University in Prague, Hradec Králové, Czech Republic
| | - Veronika Hanušová
- Department of Medical Biology and Genetics, Charles University in Prague, Hradec Králové, Czech Republic
| | - Emil Rudolf
- Department of Medical Biology and Genetics, Charles University in Prague, Hradec Králové, Czech Republic
| | - Kristýna Čáňová
- Department of Medical Biology and Genetics, Charles University in Prague, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Hradec Králové, Czech Republic
| |
Collapse
|
42
|
Detection of Initiator Caspase Induced Proximity in Single Cells by Caspase Bimolecular Fluorescence Complementation. Methods Mol Biol 2016; 1419:41-56. [PMID: 27108430 DOI: 10.1007/978-1-4939-3581-9_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The caspase family of proteases includes key regulators of apoptosis and inflammation. The caspases can be divided into two groups, the initiator caspases and the executioner caspases. Initiator caspases include caspase-2, caspase-8, and caspase-9 and are activated by proximity-induced dimerization upon recruitment to large molecular weight protein complexes called activation platforms. This protocol describes an imaging-based technique called caspase Bimolecular Fluorescence Complementation (BiFC) that measures induced proximity of initiator caspases. This method uses nonfluorescent fragments of the fluorescent protein Venus fused to initiator caspase monomers. When the caspase is recruited to its activation platform, the resulting induced proximity of the caspase monomers facilitates refolding of the Venus fragments into the full molecule, reconstituting its fluorescence. Thus, the assembly of initiator caspase activation platforms can be followed in single cells in real time. Induced proximity is the most apical step in the activation of initiator caspases, and therefore, caspase BiFC is a robust and specific method to measure initiator caspase activation.
Collapse
|
43
|
Kwon HK, Lee JH, Shin HJ, Kim JH, Choi S. Structural and functional analysis of cell adhesion and nuclear envelope nano-topography in cell death. Sci Rep 2015; 5:15623. [PMID: 26490051 PMCID: PMC4614995 DOI: 10.1038/srep15623] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/28/2015] [Indexed: 01/19/2023] Open
Abstract
The cell death mechanisms of necrosis and apoptosis generate biochemical and morphological changes in different manners. However, the changes that occur in cell adhesion and nuclear envelope (NE) topography, during necrosis and apoptosis, are not yet fully understood. Here, we show the different alterations in cell adhesion function, as well as the topographical changes occurring to the NE, during the necrotic and apoptotic cell death process, using the xCELLigence system and atomic force microscopy (AFM). Studies using xCELLigence technology and AFM have shown that necrotic cell death induced the expansion of the cell adhesion area, but did not affect the speed of cell adhesion. Necrotic nuclei showed a round shape and presence of nuclear pore complexes (NPCs). Moreover, we found that the process of necrosis in combination with apoptosis (termed nepoptosis here) resulted in the reduction of the cell adhesion area and cell adhesion speed through the activation of caspases. Our findings showed, for the first time, a successful characterization of NE topography and cell adhesion during necrosis and apoptosis, which may be of importance for the understanding of cell death and might aid the design of future drug delivery methods for anti-cancer therapies.
Collapse
Affiliation(s)
- Hyuk-Kwon Kwon
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Hyeok Lee
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - Hyeon-Jun Shin
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| | - Sangdun Choi
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
44
|
Jelínek M, Balušíková K, Schmiedlová M, Němcová-Fürstová V, Šrámek J, Stančíková J, Zanardi I, Ojima I, Kovář J. The role of individual caspases in cell death induction by taxanes in breast cancer cells. Cancer Cell Int 2015; 15:8. [PMID: 25685064 PMCID: PMC4329194 DOI: 10.1186/s12935-015-0155-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 12/31/2014] [Indexed: 12/04/2022] Open
Abstract
Background In previous study we showed that caspase-2 plays the role of an apical caspase in cell death induction by taxanes in breast cancer cells. This study deals with the role of other caspases. We tested breast cancer cell lines SK-BR-3 (functional caspase-3) and MCF-7 (nonfunctional caspase-3). Methods and results Using western blot analysis we demonstrated the activation of initiator caspase-8 and -9 as well as executioner caspase-6 and -7 in both tested cell lines after application of taxanes (paclitaxel, SB-T-1216) at death-inducing concentrations. Caspase-3 activation was also found in SK-BR-3 cells. Employing specific siRNAs after taxane application, suppression of caspase-3 expression significantly increased the number of surviving SK-BR-3 cells. Inhibition of caspase-7 expression also increased the number of surviving SK-BR-3 and MCF-7 cells. On the other hand, suppression of caspase-8 and caspase-9 expression had no significant effect on cell survival. However, caspase-9 seemed to be involved in the activation of caspase-3 and caspase-7. Caspase-3 and caspase-7 appeared to activate mutually. Furthermore, we observed a significant decrease in mitochondrial membrane potential (flow cytometric analysis) and cytochrome c release (confocal microscopy, western blot after cell fractionation) from mitochondria in SK-BR-3 cells. No such changes were observed in MCF-7 cells after taxane treatment. Conclusion We conclude that the activation of apical caspase-2 results in the activation of caspase-3 and -7 without the involvement of mitochondria. Caspase-9 can be activated directly via caspase-2 or alternatively after cytochrome c release from mitochondria. Subsequently, caspase-9 activation can also lead to caspase-3 and -7 activations. Caspase-3 and caspase-7 activate mutually. It seems that there is also a parallel pathway involving mitochondria that can cooperate in taxane-induced cell death in breast cancer cells.
Collapse
Affiliation(s)
- Michael Jelínek
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Kamila Balušíková
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Martina Schmiedlová
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Vlasta Němcová-Fürstová
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jan Šrámek
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jitka Stančíková
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Ilaria Zanardi
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY USA
| | - Iwao Ojima
- Institute of Chemical Biology and Drug Discovery, State University of New York at Stony Brook, Stony Brook, NY USA
| | - Jan Kovář
- Department of Cell and Molecular Biology, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| |
Collapse
|
45
|
Caspase-2 protects against oxidative stress in vivo. Oncogene 2014; 34:4995-5002. [PMID: 25531319 DOI: 10.1038/onc.2014.413] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/22/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022]
Abstract
Caspase-2 belongs to the caspase family of cysteine proteases with established roles in apoptosis. Recently, caspase-2 has been implicated in nonapoptotic functions including maintenance of genomic stability and tumor suppression. Our previous studies demonstrated that caspase-2 also regulates cellular redox status and delays the onset of several ageing-related traits. In the current study, we tested stress tolerance ability in caspase-2-deficient (Casp2(-/-)) mice by challenging both young and old mice with a low dose of the potent reactive oxygen species (ROS) generator, PQ that primarily affects lungs. In both groups of mice, PQ induced pulmonary damage. However, the lesions in caspase-2 knockout mice were consistently and reproducibly more severe than those in wild-type (WT) mice. Furthermore, serum interleukin (IL)-1β and IL-6 levels were higher in PQ-exposed aged Casp2(-/-) mice indicating increased inflammation. Interestingly, livers from Casp2(-/-) mice displayed karyomegaly, a feature commonly associated with ageing and aneuploidy. Given that Casp2(-/-) mice show impaired antioxidant defense, we tested oxidative damage in these mice. Protein oxidation significantly increased in PQ-injected old Casp2(-/-) mice. Moreover, FoxO1, SOD2 and Nrf2 expression levels were reduced and induction of superoxide dismutase (SOD) and glutathione peroxidase activity was not observed in PQ-treated Casp2(-/-) mice. Strong c-Jun amino-terminal kinase (JNK) activation was observed in Casp2(-/-) mice, indicative of increased stress. Together, our data strongly suggest that caspase-2 deficiency leads to increased cellular stress largely because these mice fail to respond to oxidative stress by upregulating their antioxidant defense mechanism. This makes the mice more vulnerable to exogenous challenges and may partly explain the shorter lifespan of Casp2(-/-) mice.
Collapse
|
46
|
Wu H, Che X, Zheng Q, Wu A, Pan K, Shao A, Wu Q, Zhang J, Hong Y. Caspases: a molecular switch node in the crosstalk between autophagy and apoptosis. Int J Biol Sci 2014; 10:1072-83. [PMID: 25285039 PMCID: PMC4183927 DOI: 10.7150/ijbs.9719] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 08/20/2014] [Indexed: 12/16/2022] Open
Abstract
Autophagy and apoptosis are two important catabolic processes contributing to the maintenance of cellular and tissue homeostasis. Autophagy controls the turnover of protein aggregates and damaged organelles within cells, while apoptosis is the principal mechanism by which unwanted cells are dismantled and eliminated from organisms. Despite marked differences between these two pathways, they are highly interconnected in determining the fate of cells. Intriguingly, caspases, the primary drivers of apoptotic cell death, play a critical role in mediating the complex crosstalk between autophagy and apoptosis. Pro-apoptotic signals can converge to activate caspases to execute apoptotic cell death. In addition, activated caspases can degrade autophagy proteins (i.e., Beclin-1, Atg5, and Atg7) to shut down the autophagic response. Moreover, caspases can convert pro-autophagic proteins into pro-apoptotic proteints to trigger apoptotic cell death instead. It is clear that caspases are important in both apoptosis and autophagy, thus a detailed deciphering of the role of caspases in these two processes is still required to clarify the functional relationship between them. In this article, we provide a current overview of caspases in its interplay between autophagy and apoptosis. We emphasized that defining the role of caspases in autophagy-apoptosis crosstalk will provide a framework for more precise manipulation of these two processes during cell death.
Collapse
Affiliation(s)
- Haijian Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoru Che
- 2. Department of Cardiology, Zhejiang Provincial People's Hospital, Hangzhou, China
| | - Qiaoli Zheng
- 3. Clinical Research Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - An Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Kun Pan
- 4. Department of Neurological Surgery, Weill Cornell Medical College, New York, New York, USA
| | - Anwen Shao
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qun Wu
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jianmin Zhang
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuan Hong
- 1. Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
47
|
Lee JM, Lee MS, Koh D, Lee YH, Lim Y, Shin SY. A new synthetic 2'-hydroxy-2,4,6-trimethoxy-5',6'-naphthochalcone induces G2/M cell cycle arrest and apoptosis by disrupting the microtubular network of human colon cancer cells. Cancer Lett 2014; 354:348-54. [PMID: 25193463 DOI: 10.1016/j.canlet.2014.08.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/24/2014] [Accepted: 08/26/2014] [Indexed: 12/15/2022]
Abstract
Methoxylated chalcones exert antitumor activities. In the present study, we characterized the cytotoxicity of methylated chalcone derivatives against human colon cancer cells. We synthesized a group of methoxychalcones and explored the molecular mechanisms underlying inhibition of tumor growth by these materials. A new synthetic methoxychalcone, 2'-hydroxy-2,4,6-trimethoxy-5',6'-naphthochalcone (named HMNC-74), most effectively inhibited the clonogenicity of SW620 colon cancer cells. Mechanistically, HMNC-74 triggered cell cycle arrest at G2/M phase, followed by an increase in apoptotic cell death. Our results indicate that the cytotoxicity of the novel compound HMNC-74 involves the disruption of microtubular networks.
Collapse
Affiliation(s)
- Jong Min Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Cancer and Metabolism Institute, Konkuk University, Seoul 143-701, Republic of Korea
| | - Mi So Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Cancer and Metabolism Institute, Konkuk University, Seoul 143-701, Republic of Korea
| | - Dongsoo Koh
- Department of Applied Chemistry, Dongduk Women's University, Seoul 136-714, Republic of Korea
| | - Young Han Lee
- Department of Biological Sciences, College of Biological Science and Biotechnology, Cancer and Metabolism Institute, Konkuk University, Seoul 143-701, Republic of Korea
| | - Yoongho Lim
- Division of Bioscience and Biotechnology, BMIC, Konkuk University, Seoul 143-701, Republic of Korea.
| | - Soon Young Shin
- Department of Biological Sciences, College of Biological Science and Biotechnology, Cancer and Metabolism Institute, Konkuk University, Seoul 143-701, Republic of Korea.
| |
Collapse
|
48
|
Yang CS, Matsuura K, Huang NJ, Robeson AC, Huang B, Zhang L, Kornbluth S. Fatty acid synthase inhibition engages a novel caspase-2 regulatory mechanism to induce ovarian cancer cell death. Oncogene 2014; 34:3264-72. [PMID: 25151963 PMCID: PMC4340825 DOI: 10.1038/onc.2014.271] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 07/11/2014] [Accepted: 07/19/2014] [Indexed: 12/22/2022]
Abstract
Blockade of fatty acid synthase (FASN), a key enzyme involved in de novo lipogenesis, results in robust death of ovarian cancer cells. However, known FASN inhibitors have proven to be poor therapeutic agents due to their ability to induce cachexia. Therefore, we sought to identify additional targets in the pathway linking FASN inhibition and cell death whose modulation might kill ovarian cancer cells without the attendant side effects. Here, we show that the initiator caspase-2 is required for robust death of ovarian cancer cells induced by FASN inhibitors. REDD1 (also known as Rtp801 or DDIT4), a known mTOR inhibitor previously implicated in the response to FASN inhibition, is a novel caspase-2 regulator in this pathway. REDD1 induction is compromised in ovarian cancer cells that do not respond to FASN inhibition. Inhibition of FASN induced an ATF4-dependent transcriptional induction of REDD1; downregulation of REDD1 prevented orlistat-induced activation of caspase-2, as monitored by its cleavage, proteolytic activity, and dimerization. Abrogation of REDD1-mediated suppression of mTOR by TSC2 RNAi protected FASN inhibitor-sensitive ovarian cancer cells (OVCA 420 cells) from orlistat-induced death. Conversely, suppression of mTOR with the chemical inhibitors PP242 or rapamycin sensitized DOV13, an ovarian cancer cell line incapable of inducing REDD1, to orlistat-induced cell death through caspase-2. These findings indicate that REDD1 positively controls caspase-2-dependent cell death of ovarian cancer cells by inhibiting mTOR, placing mTOR as a novel upstream regulator of caspase-2 and supporting the possibility of manipulating mTOR to enhance caspase-2 activation in ovarian cancer.
Collapse
Affiliation(s)
- C-S Yang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - K Matsuura
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - N-J Huang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - A C Robeson
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - B Huang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - L Zhang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| | - S Kornbluth
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
49
|
Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD, Haber M, Kumar S. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis 2014; 5:e1383. [PMID: 25144718 PMCID: PMC4454317 DOI: 10.1038/cddis.2014.342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Caspase-2 has been implicated in various cellular functions, including cell death by apoptosis, oxidative stress response, maintenance of genomic stability and tumor suppression. The loss of the caspase-2 gene (Casp2) enhances oncogene-mediated tumorigenesis induced by E1A/Ras in athymic nude mice, and also in the Eμ-Myc lymphoma and MMTV/c-neu mammary tumor mouse models. To further investigate the function of caspase-2 in oncogene-mediated tumorigenesis, we extended our studies in the TH-MYCN transgenic mouse model of neuroblastoma. Surprisingly, we found that loss of caspase-2 delayed tumorigenesis in the TH-MYCN neuroblastoma model. In addition, tumors from TH-MYCN/Casp2−/− mice were predominantly thoracic paraspinal tumors and were less vascularized compared with tumors from their TH-MYCN/Casp2+/+ counterparts. We did not detect any differences in the expression of neuroblastoma-associated genes in TH-MYCN/Casp2−/− tumors, or in the activation of Ras/MAPK signaling pathway that is involved in neuroblastoma progression. Analysis of expression array data from human neuroblastoma samples showed a correlation between low caspase-2 levels and increased survival. However, caspase-2 levels correlated with clinical outcome only in the subset of MYCN-non-amplified human neuroblastoma. These observations indicate that caspase-2 is not a suppressor in MYCN-induced neuroblastoma and suggest a tissue and context-specific role for caspase-2 in tumorigenesis.
Collapse
Affiliation(s)
- L Dorstyn
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - A Nikolic
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - C H Wilson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - M D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - M Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - S Kumar
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
50
|
Olsson M, Forsberg J, Zhivotovsky B. Caspase-2: the reinvented enzyme. Oncogene 2014; 34:1877-82. [DOI: 10.1038/onc.2014.139] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Revised: 04/16/2014] [Accepted: 04/16/2014] [Indexed: 12/11/2022]
|