1
|
Bhaskar V, Kumar R, Praharaj MR, Gandham S, Maity HK, Sarkar U, Dey B. A bovine pulmosphere model and multiomics reveal early host response signature in tuberculosis. Commun Biol 2025; 8:559. [PMID: 40186000 PMCID: PMC11971429 DOI: 10.1038/s42003-025-07883-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/04/2025] [Indexed: 04/07/2025] Open
Abstract
Early interactions between tubercle bacilli and lung cells are critical in tuberculosis (TB) pathogenesis. Conventional two-dimensional cell cultures fail to replicate the multicellular complexity of lungs. We introduce a three-dimensional pulmosphere model for Mycobacterium tuberculosis infection in bovine systems, demonstrating through comprehensive transcriptome and proteome analyses that these multicellular spheroids closely mimic lung cell diversity, interactions, and extracellular matrix (ECM) composition. Cell viability, hypoxia, and reactive oxygen species assessments over three weeks confirm the model's suitability. To establish infection, we employed M. bovis BCG-an attenuated vaccine strain, and M. tuberculosis H37Rv-a laboratory adapted human clinical strain that is attenuated for cattle infection compared to M. bovis. Both infection upregulated key host pathways; however, M. tuberculosis induced distinct responses, including enhanced ECM receptors expression, neutrophil chemotaxis, interferon signaling, and RIG-1 signaling. A six genes/protein signature- IRF1, CCL5, CXCL8, CXCL10, SERPINE1, and CFB -emerges as an early host response marker to M. tuberculosis infection. Infection with virulent M. bovis and M. orygis revealed a shared upregulated gene signature across Mycobacterium tuberculosis complex species, but with pathogen-specific variations. This study presents a robust ex vivo bovine pulmosphere TB model with implications in biomarkers discovery, high-throughput drug screening, and TB control strategies.
Collapse
Affiliation(s)
- Vinay Bhaskar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
| | - Rishi Kumar
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Manas Ranjan Praharaj
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Sripratyusha Gandham
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India
- Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Hemanta Kumar Maity
- Department of Avian Sciences, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Uttam Sarkar
- Department of Animal Genetics and Breeding, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | - Bappaditya Dey
- National Institute of Animal Biotechnology, Hyderabad, Telangana, India.
- Regional Centre for Biotechnology, Faridabad, Haryana, India.
| |
Collapse
|
2
|
Warrick KA, Vallez CN, Meibers HE, Pasare C. Bidirectional Communication Between the Innate and Adaptive Immune Systems. Annu Rev Immunol 2025; 43:489-514. [PMID: 40279312 DOI: 10.1146/annurev-immunol-083122-040624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2025]
Abstract
Effective bidirectional communication between the innate and adaptive immune systems is crucial for tissue homeostasis and protective immunity against infections. The innate immune system is responsible for the early sensing of and initial response to threats, including microbial ligands, toxins, and tissue damage. Pathogen-related information, detected primarily by the innate immune system via dendritic cells, is relayed to adaptive immune cells, leading to the priming and differentiation of naive T cells into effector and memory lineages. Memory T cells that persist long after pathogen clearance are integral for durable protective immunity. In addition to rapidly responding to reinfections, memory T cells also directly instruct the interacting myeloid cells to induce innate inflammation, which resembles microbial inflammation. As such, memory T cells act as newly emerging activators of the innate immune system and function independently of direct microbial recognition. While T cell-mediated activation of the innate immune system likely evolved as a protective mechanism to combat reinfections by virulent pathogens, the detrimental outcomes of this mechanism manifest in the forms of autoimmunity and other T cell-driven pathologies. Here, we review the complexities and layers of regulation at the interface between the innate and adaptive immune systems to highlight the implications of adaptive instruction of innate immunity in health and disease.
Collapse
Affiliation(s)
- Kathrynne A Warrick
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Charles N Vallez
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Hannah E Meibers
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| | - Chandrashekhar Pasare
- Division of Immunobiology and Center for Inflammation and Tolerance, Cincinnati Children's Hospital Medical Center, Department of Pediatrics, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA ;
| |
Collapse
|
3
|
Kgoadi K, Bajpai P, Ibegbu CC, Dkhar HK, Enriquez AB, Dawa S, Cribbs SK, Rengarajan J. Alveolar macrophages from persons with HIV mount impaired TNF signaling networks to M. tuberculosis infection. Nat Commun 2025; 16:2397. [PMID: 40064940 PMCID: PMC11894076 DOI: 10.1038/s41467-025-57668-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 02/27/2025] [Indexed: 03/14/2025] Open
Abstract
People living with HIV (PLWH) have an increased risk for developing tuberculosis after M. tuberculosis infection, despite anti-retroviral therapy (ART). To delineate the underlying mechanisms, we conducted single cell transcriptomics on bronchoalveolar lavage cells from PLWH on ART and HIV uninfected healthy controls infected with M. tuberculosis ex vivo. We identify an M1-like proinflammatory alveolar macrophage subset that sequentially acquires TNF signaling capacity in controls but not in PLWH. Cell-cell communication analyses reveal interactions between M1-like macrophages and effector memory T cells within TNF superfamily, chemokine, and costimulatory networks in the airways of controls. These interaction networks were lacking in PLWH infected with M. tuberculosis, where anti-inflammatory M2-like alveolar macrophages and T regulatory cells dominated along with dysregulated T cell signatures. Our data support a model in which impaired TNF-TNFR signaling, M2-like alveolar macrophages and aberrant macrophage-T cell crosstalk, lead to ineffective immunity to M. tuberculosis in PLWH on ART.
Collapse
Affiliation(s)
- Khanyisile Kgoadi
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Prashant Bajpai
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Chris C Ibegbu
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | | | - Ana Beatriz Enriquez
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Stanzin Dawa
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA
| | - Sushma K Cribbs
- Division of Pulmonary, Allergy, Critical Care & Sleep, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
- Department of Veterans Affairs, Atlanta, GA, USA.
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory National Primate Center, Emory University, Atlanta, GA, USA.
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
4
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. mSphere 2025; 10:e0086424. [PMID: 39651886 PMCID: PMC11774039 DOI: 10.1128/msphere.00864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/03/2024] [Indexed: 12/18/2024] Open
Abstract
It is unclear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk of progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, the characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (replacement, reduction, and refinement) approach we reanalyzed heterogeneous publicly available transcriptional data sets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3, and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes and have been carefully evaluated across several clinical cohorts. These data suggest that in certain experimental designs and in several tissue types, human COR signatures correlate with disease progression as measured by the bacterial burden in the preclinical TB model pipeline. We observed the best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. IMPORTANCE Understanding the strengths or limitations of back-translating human-derived correlate of risk (COR) RNA signatures into the preclinical pipeline may help streamline down-selection of therapeutic vaccine and drug candidates and better align preclinical models with proposed clinical trial efficacy endpoints.
Collapse
Affiliation(s)
- Hannah Painter
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| | - Hazem F. M. Abdelaal
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Helen A. Fletcher
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Andrew Fiore-Gartland
- Biostatistics, Bioinformatics and Epidemiology Program, Fred Hutch Cancer Center, Seattle, Washington, USA
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
- Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Ssekamatte P, Nabatanzi R, Sitenda D, Nakibuule M, Bagaya BS, Kibirige D, Kyazze AP, Kateete DP, Sande OJ, van Crevel R, Cose S, Biraro IA. Impaired Mycobacterium tuberculosis-specific T-cell memory phenotypes and functional profiles among adults with type 2 diabetes mellitus in Uganda. Front Immunol 2024; 15:1480739. [PMID: 39430752 PMCID: PMC11486641 DOI: 10.3389/fimmu.2024.1480739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 09/18/2024] [Indexed: 10/22/2024] Open
Abstract
Background Efforts to eradicate tuberculosis (TB) are threatened by diabetes mellitus (DM), which confers a 3-fold increase in the risk of TB disease. The changes in the memory phenotypes and functional profiles of Mycobacterium tuberculosis (Mtb)-specific T cells in latent TB infection (LTBI)-DM participants remain poorly characterised. We, therefore, assessed the effect of DM on T-cell phenotype and function in LTBI and DM clinical groups. Methods We compared the memory phenotypes and function profiles of Mtb-specific CD4+ and CD8+ T cells among participants with LTBI-DM (n=21), LTBI-only (n=17) and DM-only (n=16). Peripheral blood mononuclear cells (PBMCs) were stimulated with early secretory antigenic 6 kDa (ESAT-6) and culture filtrate protein 10 (CFP-10) peptide pools or phytohemagglutinin (PHA). The memory phenotypes (CCR7/CD45RA), and functional profiles (HLA-DR, PD-1, CD107a, IFN-γ, IL-2, TNF, IL-13, IL-17A) of Mtb-specific CD4+ and CD8+ T cells were characterised by flow cytometry. Results Naïve CD4+ T cells were significantly decreased in the LTBI-DM compared to the LTBI-only participants [0.47 (0.34-0.69) vs 0.91 (0.59-1.05); (p<0.001)]. Similarly, CD8+ HLA-DR expression was significantly decreased in LTBI-DM compared to LTBI-only participants [0.26 (0.19-0.33) vs 0.52 (0.40-0.64); (p<0.0001)], whereas CD4+ and CD8+ PD-1 expression was significantly upregulated in the LTBI-DM compared to the LTBI-only participants [0.61 (0.53-0.77) vs 0.19 (0.10-0.28); (p<0.0001) and 0.41 (0.37-0.56) vs 0.29 (0.17-0.42); (p=0.007)] respectively. CD4+ and CD8+ IFN-γ production was significantly decreased in the LTBI-DM compared to the LTBI-only participants [0.28 (0.19-0.38) vs 0.39 (0.25-0.53); (p=0.030) and 0.36 (0.27-0.49) vs 0.55 (0.41-0.88); (p=0.016)] respectively. CD4+ TNF and CD8+ IL-17A production were significantly decreased in participants with LTBI-DM compared to those with LTBI-only [0.38 (0.33-0.50) vs 0.62 (0.46-0.87); (p=0.004) and 0.29 (0.16-0.42) vs 0.47 (0.29-0.52); (0.017)] respectively. LTBI-DM participants had significantly lower dual-functional (IFN-γ+IL-2+ and IL-2+TNF+) and mono-functional (IFN-γ+ and TNF+) CD4+ responses than LTBI-only participants. LTBI-DM participants had significantly decreased dual-functional (IFN-γ+IL-2+, IFN-γ+ TNF+ and IL-2+TNF+) and mono-functional (IFN-γ+, IL-2+ and TNF+) central and effector memory CD4+ responses compared to LTBI-only participants. Conclusion Type 2 DM impairs the memory phenotypes and functional profiles of Mtb-specific CD4+ and CD8+ T cells, potentially indicating underlying immunopathology towards increased active TB disease risk.
Collapse
Affiliation(s)
- Phillip Ssekamatte
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Rose Nabatanzi
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Diana Sitenda
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Marjorie Nakibuule
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Bernard Ssentalo Bagaya
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Davis Kibirige
- Department of Medicine, Uganda Martyrs Lubaga Hospital, Kampala, Uganda
| | - Andrew Peter Kyazze
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David Patrick Kateete
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Obondo James Sande
- Department of Immunology and Molecular Biology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Centre for Infectious Diseases, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Stephen Cose
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
| | - Irene Andia Biraro
- Medical Research Council/Uganda Virus Research Institute and London School of Hygiene & Tropical Medicine, Entebbe, Uganda
- Department of Internal Medicine, School of Medicine, College of Health Sciences, Makerere University, Kampala, Uganda
| |
Collapse
|
6
|
Sharan R, Zou Y, Lai Z, Singh B, Shivanna V, Dick E, Hall-Ursone S, Khader S, Mehra S, Alvarez X, Rengarajan J, Kaushal D. Concurrent TB and HIV therapies effectively control clinical reactivation of TB during co-infection but fail to eliminate chronic immune activation. RESEARCH SQUARE 2024:rs.3.rs-4908400. [PMID: 39257997 PMCID: PMC11384027 DOI: 10.21203/rs.3.rs-4908400/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The majority of Human Immunodeficiency Virus (HIV) negative individuals exposed to Mycobacterium tuberculosis (Mtb) control the bacillary infection as latent TB infection (LTBI). Co-infection with HIV, however, drastically increases the risk to progression to tuberculosis (TB) disease. TB is therefore the leading cause of death in people living with HIV (PLWH) globally. Combinatorial antiretroviral therapy (cART) is the cornerstone of HIV care in humans and reduces the risk of reactivation of LTBI. However, the immune control of Mtb infection is not fully restored by cART as indicated by higher incidence of TB in PLWH despite cART. In the macaque model of co-infection, skewed pulmonary CD4+ TEM responses persist, and new TB lesions form despite cART treatment. We hypothesized that regimens that concurrently administer anti-TB therapy and cART would significantly reduce TB in co-infected macaques than cART alone, resulting in superior bacterial control, mitigation of persistent inflammation and lasting protective immunity. We studied components of TB immunity that remain impaired after cART in the lung compartment, versus those that are restored by concurrent 3 months of once weekly isoniazid and rifapentine (3HP) and cART in the rhesus macaque (RM) model of LTBI and Simian Immunodeficiency Virus (SIV) co-infection. Concurrent administration of cART + 3HP did improve clinical and microbiological attributes of Mtb/SIV co-infection compared to cART-naïve or -untreated RMs. While RMs in the cART + 3HP group exhibited significantly lower granuloma volumes after treatment, they, however, continued to harbor caseous granulomas with increased FDG uptake. cART only partially restores the constitution of CD4 + T cells to the lung compartment in co-infected macaques. Concurrent therapy did not further enhance the frequency of reconstituted CD4+ T cells in BAL and lung of Mtb/SIV co-infected RMs compared to cART, and treated animals continued to display incomplete reconstitution to the lung. Furthermore, the reconstituted CD4+ T cells in BAL and lung of cART + 3HP treated RMs exhibited an increased frequencies of activated, exhausted and inflamed phenotype compared to LTBI RMs. cART + 3HP failed to restore the effector memory CD4+ T cell population that was significantly reduced in pulmonary compartment post SIV co-infection. Concurrent therapy was associated with the induction of Type I IFN transcriptional signatures and led to increased Mtb-specific TH1/TH17 responses correlated with protection, but decreased Mtb-specific TNFa responses, which could have a detrimental impact on long term protection. Our results suggest the mechanisms by which Mtb/HIV co-infected individuals remain at risk for progression due to subsequent infections or reactivation due of persisting defects in pulmonary T cell responses. By identifying lung-specific immune components in this model, it is possible to pinpoint the pathways that can be targeted for host-directed adjunctive therapies for TB/HIV co-infection.
Collapse
Affiliation(s)
| | | | - Zhao Lai
- The University of Texas Health San Antonio
| | | | | | | | | | | | | | | | | | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute
| |
Collapse
|
7
|
Painter H, Larsen SE, Williams BD, Abdelaal HFM, Baldwin SL, Fletcher HA, Fiore-Gartland A, Coler RN. Backtranslation of human RNA biosignatures of tuberculosis disease risk into the preclinical pipeline is condition dependent. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.21.600067. [PMID: 38948876 PMCID: PMC11212953 DOI: 10.1101/2024.06.21.600067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
It is not clear whether human progression to active tuberculosis disease (TB) risk signatures are viable endpoint criteria for evaluations of treatments in clinical or preclinical development. TB is the deadliest infectious disease globally and more efficacious vaccines are needed to reduce this mortality. However, the immune correlates of protection for either preventing infection with Mycobacterium tuberculosis or preventing TB disease have yet to be completely defined, making the advancement of candidate vaccines through the pipeline slow, costly, and fraught with risk. Human-derived correlate of risk (COR) gene signatures, which identify an individual's risk to progressing to active TB disease, provide an opportunity for evaluating new therapies for TB with clear and defined endpoints. Though prospective clinical trials with longitudinal sampling are prohibitively expensive, characterization of COR gene signatures is practical with preclinical models. Using a 3Rs (Replacement, Reduction and Refinement) approach we reanalyzed heterogeneous publicly available transcriptional datasets to determine whether a specific set of COR signatures are viable endpoints in the preclinical pipeline. We selected RISK6, Sweeney3 and BATF2 human-derived blood-based RNA biosignatures because they require relatively few genes to assign a score and have been carefully evaluated across several clinical cohorts. Excitingly, these data provide proof-of-concept that human COR signatures seem to have high fidelity across several tissue types in the preclinical TB model pipeline and show best performance when the model most closely reflected human infection or disease conditions. Human-derived COR signatures offer an opportunity for high-throughput preclinical endpoint criteria of vaccine and drug therapy evaluations. One Sentence Summary Human-derived biosignatures of tuberculosis disease progression were evaluated for their predictive fidelity across preclinical species and derived tissues using available public data sets.
Collapse
|
8
|
Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ, White AG, Klein E, Bucsan AN, Darrah PA, Seder RA, Roederer M, Lin PL, Flynn JL, O'Connor SL, Scanga CA. Intravenous Bacille Calmette-Guérin vaccination protects simian immunodeficiency virus-infected macaques from tuberculosis. Nat Microbiol 2023; 8:2080-2092. [PMID: 37814073 PMCID: PMC10627825 DOI: 10.1038/s41564-023-01503-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023]
Abstract
Tuberculosis, caused by Mycobacterium tuberculosis (Mtb), is the most common cause of death in people living with human immunodeficiency virus (HIV). Intra-dermal Bacille Calmette-Guérin (BCG) delivery is the only licensed vaccine against tuberculosis; however, it offers little protection from pulmonary tuberculosis in adults and is contraindicated in people living with HIV. Intravenous BCG confers protection against Mtb infection in rhesus macaques; we hypothesized that it might prevent tuberculosis in simian immunodeficiency virus (SIV)-infected macaques, a model for HIV infection. Here intravenous BCG-elicited robust airway T cell influx and elevated plasma and airway antibody titres in both SIV-infected and naive animals. Following Mtb challenge, all 7 vaccinated SIV-naive and 9 out of 12 vaccinated SIV-infected animals were protected, without any culturable bacteria detected from tissues. Peripheral blood mononuclear cell responses post-challenge indicated early clearance of Mtb in vaccinated animals, regardless of SIV infection. These data support that intravenous BCG is immunogenic and efficacious in SIV-infected animals.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Kara B Kracinovsky
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - H Jake Borish
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin, Madison, WI, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
9
|
Redford SE, Varanasi SK, Sanchez KK, Thorup NR, Ayres JS. CD4+ T cells regulate sickness-induced anorexia and fat wasting during a chronic parasitic infection. Cell Rep 2023; 42:112814. [PMID: 37490905 DOI: 10.1016/j.celrep.2023.112814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 05/14/2023] [Accepted: 06/28/2023] [Indexed: 07/27/2023] Open
Abstract
Infections cause catabolism of fat and muscle stores. Traditionally, studies have focused on understanding how the innate immune system contributes to energy stores wasting, while the role of the adaptive immune system remains elusive. In the present study, we examine the role of the adaptive immune response in adipose tissue wasting and cachexia using a murine model of the chronic parasitic infection Trypanosoma brucei, the causative agent of sleeping sickness. We find that the wasting response occurs in two phases, with the first stage involving fat wasting caused by CD4+ T cell-induced anorexia and a second anorexia-independent cachectic stage that is dependent on CD8+ T cells. Fat wasting has no impact on host antibody-mediated resistance defenses or survival, while later-stage muscle wasting contributes to disease-tolerance defenses. Our work reveals a decoupling of adaptive immune-mediated resistance from the catabolic response during infection.
Collapse
Affiliation(s)
- Samuel E Redford
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; Division of Biological Sciences, University of California, San Diego, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Siva Karthik Varanasi
- NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Karina K Sanchez
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Natalia R Thorup
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA
| | - Janelle S Ayres
- Molecular and Systems Physiology Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA; NOMIS Center for Immunobiology and Microbial Pathogenesis, Salk Institute for Biological Studies, La Jolla, CA, USA; Gene Expression Lab, Salk Institute for Biological Studies, 10010 N. Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
10
|
Corleis B, Bastian M, Hoffmann D, Beer M, Dorhoi A. Animal models for COVID-19 and tuberculosis. Front Immunol 2023; 14:1223260. [PMID: 37638020 PMCID: PMC10451089 DOI: 10.3389/fimmu.2023.1223260] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Respiratory infections cause tremendous morbidity and mortality worldwide. Amongst these diseases, tuberculosis (TB), a bacterial illness caused by Mycobacterium tuberculosis which often affects the lung, and coronavirus disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus type 2 (SARS-CoV-2), stand out as major drivers of epidemics of global concern. Despite their unrelated etiology and distinct pathology, these infections affect the same vital organ and share immunopathogenesis traits and an imperative demand to model the diseases at their various progression stages and localizations. Due to the clinical spectrum and heterogeneity of both diseases experimental infections were pursued in a variety of animal models. We summarize mammalian models employed in TB and COVID-19 experimental investigations, highlighting the diversity of rodent models and species peculiarities for each infection. We discuss the utility of non-human primates for translational research and emphasize on the benefits of non-conventional experimental models such as livestock. We epitomize advances facilitated by animal models with regard to understanding disease pathophysiology and immune responses. Finally, we highlight research areas necessitating optimized models and advocate that research of pulmonary infectious diseases could benefit from cross-fertilization between studies of apparently unrelated diseases, such as TB and COVID-19.
Collapse
Affiliation(s)
- Björn Corleis
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Max Bastian
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Donata Hoffmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald-Insel Riems, Germany
- Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany
| |
Collapse
|
11
|
Larson EC, Ellis AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Menezes YK, Ameel CL, Fillmore DJ, Pergalske SM, Juno JA, Maiello P, White AG, Borish HJ, Godfrey DI, Kent SJ, Ndhlovu LC, O’Connor SL, Scanga CA. Host Immunity to Mycobacterium tuberculosis Infection Is Similar in Simian Immunodeficiency Virus (SIV)-Infected, Antiretroviral Therapy-Treated and SIV-Naïve Juvenile Macaques. Infect Immun 2023; 91:e0055822. [PMID: 37039653 PMCID: PMC10187125 DOI: 10.1128/iai.00558-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/20/2023] [Indexed: 04/12/2023] Open
Abstract
Pre-existing HIV infection increases tuberculosis (TB) risk in children. Antiretroviral therapy (ART) reduces, but does not abolish, this risk in children with HIV. The immunologic mechanisms involved in TB progression in both HIV-naive and HIV-infected children have not been explored. Much of our current understanding is based on human studies in adults and adult animal models. In this study, we sought to model childhood HIV/Mycobacterium tuberculosis (Mtb) coinfection in the setting of ART and characterize T cells during TB progression. Macaques equivalent to 4 to 8 year-old children were intravenously infected with SIVmac239M, treated with ART 3 months later, and coinfected with Mtb 3 months after initiating ART. SIV-naive macaques were similarly infected with Mtb alone. TB pathology and total Mtb burden did not differ between SIV-infected, ART-treated and SIV-naive macaques, although lung Mtb burden was lower in SIV-infected, ART-treated macaques. No major differences in frequencies of CD4+ and CD8+ T cells and unconventional T cell subsets (Vγ9+ γδ T cells, MAIT cells, and NKT cells) in airways were observed between SIV-infected, ART-treated and SIV-naive macaques over the course of Mtb infection, with the exception of CCR5+ CD4+ and CD8+ T cells which were slightly lower. CD4+ and CD8+ T cell frequencies did not differ in the lung granulomas. Immune checkpoint marker levels were similar, although ki-67 levels in CD8+ T cells were elevated. Thus, ART treatment of juvenile macaques, 3 months after SIV infection, resulted in similar progression of Mtb and T cell responses compared to Mtb in SIV-naive macaques.
Collapse
Affiliation(s)
- Erica C. Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy L. Ellis
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Mark A. Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Abigail K. Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Janelle L. Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Ryan V. Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Alexis J. Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
| | - Yonne K. Menezes
- Department of Immunobiology, Federal University of Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Cassaundra L. Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Daniel J. Fillmore
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Skyler M. Pergalske
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jennifer A. Juno
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Alexander G. White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H. Jacob Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Dale I. Godfrey
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Stephen J. Kent
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Melbourne Sexual Health Centre and Department of Infectious Diseases, Alfred Hospital and Centre Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Lishomwa C. Ndhlovu
- Department of Medicine, Division of Infectious Disease, Weill Cornell Medicine, New York, New York, USA
| | - Shelby L. O’Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Wisconsin, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Wisconsin, USA
| | - Charles A. Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
12
|
Larson EC, Ellis-Connell AL, Rodgers MA, Gubernat AK, Gleim JL, Moriarty RV, Balgeman AJ, Ameel CL, Jauro S, Tomko JA, Kracinovsky KB, Maiello P, Borish HJ, White AG, Klein E, Bucsan AN, Darrah PA, Seder RA, Roederer M, Lin PL, Flynn JL, O'Connor SL, Scanga CA. Vaccination with intravenous BCG protects macaques with pre-existing SIV infection from tuberculosis. RESEARCH SQUARE 2023:rs.3.rs-2802306. [PMID: 37090620 PMCID: PMC10120779 DOI: 10.21203/rs.3.rs-2802306/v1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Tuberculosis (TB) is the most common cause of death in people living with HIV. BCG delivered intradermally (ID) is the only licensed vaccine to prevent TB. However, it offers little protection from pulmonary TB in adults. Intravenous (IV) BCG, but not ID BCG, confers striking protection against Mycobacterium tuberculosis (Mtb) infection and disease in rhesus macaques. We investigated whether IV BCG could protect against TB in macaques with a pre-existing SIV infection. There was a robust influx of airway T cells following IV BCG in both SIV-infected and SIV-naïve animals, with elevated antibody titers in plasma and airways. Following Mtb challenge, all 7 SIV-naïve and 9 out of 12 SIV-infected vaccinated animals were completely protected, without any culturable bacilli in their tissues. PBMC responses post-challenge indicated early clearance of Mtb in vaccinated animals regardless of SIV infection. These data support that IV BCG is immunogenic and efficacious in SIV-infected animals.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Amy L Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Abigail K Gubernat
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Janelle L Gleim
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Solomon Jauro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Kara B Kracinovsky
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - H Jake Borish
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Alexander G White
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Edwin Klein
- Division of Laboratory Animal Resources, School of Medicine, University of Pittsburgh, PA, USA
| | - Allison N Bucsan
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Patricia A Darrah
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Robert A Seder
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Mario Roederer
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Philana Ling Lin
- Department of Pediatrics, Children's Hospital of Pittsburgh of the University of Pittsburgh Medical Center, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - JoAnne L Flynn
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin - Madison, Madison, WI, USA
- Wisconsin National Primate Research Center, University of Wisconsin - Madison, Madison, WI, USA
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
- Center for Vaccine Research, University of Pittsburgh, School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
13
|
Immune cell interactions in tuberculosis. Cell 2022; 185:4682-4702. [PMID: 36493751 DOI: 10.1016/j.cell.2022.10.025] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/15/2022] [Accepted: 10/26/2022] [Indexed: 12/13/2022]
Abstract
Despite having been identified as the organism that causes tuberculosis in 1882, Mycobacterium tuberculosis has managed to still evade our understanding of the protective immune response against it, defying the development of an effective vaccine. Technology and novel experimental models have revealed much new knowledge, particularly with respect to the heterogeneity of the bacillus and the host response. This review focuses on certain immunological elements that have recently yielded exciting data and highlights the importance of taking a holistic approach to understanding the interaction of M. tuberculosis with the many host cells that contribute to the development of protective immunity.
Collapse
|
14
|
Nisa A, Kipper FC, Panigrahy D, Tiwari S, Kupz A, Subbian S. Different modalities of host cell death and their impact on Mycobacterium tuberculosis infection. Am J Physiol Cell Physiol 2022; 323:C1444-C1474. [PMID: 36189975 PMCID: PMC9662802 DOI: 10.1152/ajpcell.00246.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 09/16/2022] [Accepted: 09/25/2022] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis (Mtb) is the pathogen that causes tuberculosis (TB), a leading infectious disease of humans worldwide. One of the main histopathological hallmarks of TB is the formation of granulomas comprised of elaborately organized aggregates of immune cells containing the pathogen. Dissemination of Mtb from infected cells in the granulomas due to host and mycobacterial factors induces multiple cell death modalities in infected cells. Based on molecular mechanism, morphological characteristics, and signal dependency, there are two main categories of cell death: programmed and nonprogrammed. Programmed cell death (PCD), such as apoptosis and autophagy, is associated with a protective response to Mtb by keeping the bacteria encased within dead macrophages that can be readily phagocytosed by arriving in uninfected or neighboring cells. In contrast, non-PCD necrotic cell death favors the pathogen, resulting in bacterial release into the extracellular environment. Multiple types of cell death in the PCD category, including pyroptosis, necroptosis, ferroptosis, ETosis, parthanatos, and PANoptosis, may be involved in Mtb infection. Since PCD pathways are essential for host immunity to Mtb, therapeutic compounds targeting cell death signaling pathways have been experimentally tested for TB treatment. This review summarizes different modalities of Mtb-mediated host cell deaths, the molecular mechanisms underpinning host cell death during Mtb infection, and its potential implications for host immunity. In addition, targeting host cell death pathways as potential therapeutic and preventive approaches against Mtb infection is also discussed.
Collapse
Affiliation(s)
- Annuurun Nisa
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| | - Franciele C Kipper
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
- Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Sangeeta Tiwari
- Department of Biological Sciences, Border Biomedical Research Center (BBRC), University of Texas, El Paso, Texas
| | - Andreas Kupz
- Centre for Molecular Therapeutics, Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Townsville, Queensland, Australia
| | - Selvakumar Subbian
- Public Health Research Institute, New Jersey Medical School, Rutgers University, Newark, New Jersey
| |
Collapse
|
15
|
Early life adversity drives sex-specific anhedonia and meningeal immune gene expression through mast cell activation. Brain Behav Immun 2022; 103:73-84. [PMID: 35339629 PMCID: PMC9149134 DOI: 10.1016/j.bbi.2022.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 02/25/2022] [Accepted: 03/16/2022] [Indexed: 01/06/2023] Open
Abstract
Exposure to early life adversity (ELA) in the form of physical and/or psychological abuse or neglect increases the risk of developing psychiatric and inflammatory disorders later in life. It has been hypothesized that exposure to ELA results in persistent, low grade inflammation that leads to increased disease susceptibility by amplifying the crosstalk between stress-processing brain networks and the immune system, but the mechanisms remain largely unexplored. The meninges, a layer of three overlapping membranes that surround the central nervous system (CNS)- dura mater, arachnoid, and piamater - possess unique features that allow them to play a key role in coordinating immune trafficking between the brain and the peripheral immune system. These include a network of lymphatic vessels that carry cerebrospinal fluid from the brain to the deep cervical lymph nodes, fenestrated blood vessels that allow the passage of molecules from blood to the CNS, and a rich population of resident mast cells, master regulators of the immune system. Using a mouse model of ELA consisting of neonatal maternal separation plus early weaning (NMSEW), we sought to explore the effects of ELA on sucrose preference behavior, dura mater expression of inflammatory markers and mast cell histology in adult male and female C57Bl/6 mice. We found that NMSEW alone does not affect sucrose preference behavior in males or females, but it increases the dura mater expression of the genes coding for mast cell protease CMA1 (cma1) and the inflammatory cytokine TNF alpha (tnf alpha) in females. When NMSEW is combined with an adult mild stress (that does not affect behavior or gene expression in NH animals) females show reduced sucrose preference and even greater increases in meningeal cma1 levels. Interestingly, systemic administration of the mast cell stabilizer Ketotifen before exposure to adult stress prevents both, reduction in sucrose preference an increases in cma1 expression in NMSEW females, but facilitates stress-induced sucrose anhedonia in NMSEW males and NH females. Finally, histological analyses showed that, compared to males, females have increased baseline activation levels of mast cells located in the transverse sinus of the dura mater, where the meningeal lymphatics run along, and that, in males and females exposed to adult stress, NMSEW increases the number of mast cells in the interparietal region of the dura mater and the levels of mast cell activation in the sagittal sinus regions of the dura mater. Together, our results indicate that ELA induces long-term meningeal immune gene changes and heightened sensitivity to adult stress-induced behavioral and meningeal immune responses and that these effects could mediated via mast cells.
Collapse
|
16
|
Linge I, Tsareva A, Kondratieva E, Dyatlov A, Hidalgo J, Zvartsev R, Apt A. Pleiotropic Effect of IL-6 Produced by B-Lymphocytes During Early Phases of Adaptive Immune Responses Against TB Infection. Front Immunol 2022; 13:750068. [PMID: 35154093 PMCID: PMC8828505 DOI: 10.3389/fimmu.2022.750068] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 01/10/2022] [Indexed: 12/30/2022] Open
Abstract
The role of B cells migrating to the lung and forming follicles during tuberculosis (TB) inflammation is still the subject of debate. In addition to their antibody production and antigen-presenting functions, B cells secrete different cytokines and chemokines, thus participating in complex networks of innate and adaptive immunity. Importantly, lung B-cells produce high amounts of the pleiotropic gp130 cytokine IL-6. Its role during TB infection remains controversial, partly due to the fact that IL-6 is produced by different cell types. To investigate the impact of IL-6 produced by B cells on TB susceptibility and immune responses, we established a mouse strain with specific IL-6 deficiency in B cells (CD19cre-IL-6fl/fl, B-IL-6KO) on the B6 genetic background. Selective abrogation of IL-6 in B cells resulted in shortening the lifespan of TB-infected B-IL-6KO mice compare to the wild-type controls. We provide evidence that at the initial TB stages B cells serve as a critical source of IL-6. In the lung, the effect of IL-6 deficiency in B cells is associated rather with B and T cell functioning, than with macrophage polarization. TB-infected B-IL-6KO mice displayed diminished sizes of B cells themselves, CD4+IFN-γ+, Th17+, and CD4+CXCR5+ follicular T cell populations. The pleiotropic effect of B-cell-derived IL-6 on T-cells demonstrated in our study bridges two major lymphocyte populations and sheds some light on B- and T-cells interactions during the stage of anti-TB response when the host switches on a plethora of acquired immune reactions.
Collapse
Affiliation(s)
- Irina Linge
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Anastasiya Tsareva
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Elena Kondratieva
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Alexander Dyatlov
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| | - Juan Hidalgo
- Department of Cellular Biology, Physiology and Immunology, Faculty of Biosciences, Institute of Neurosciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ruslan Zvartsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Alexander Apt
- Laboratory for Immunogenetics, Department of Immunology, Central Institute for Tuberculosis, Moscow, Russia
| |
Collapse
|
17
|
Ling Z, Zhao D, Xie X, Yao H, Wang Y, Kong S, Chen X, Pan Z, Jiao X, Yin Y. inlF Enhances Listeria monocytogenes Early-Stage Infection by Inhibiting the Inflammatory Response. Front Cell Infect Microbiol 2022; 11:748461. [PMID: 35223532 PMCID: PMC8866704 DOI: 10.3389/fcimb.2021.748461] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/09/2021] [Indexed: 12/16/2022] Open
Abstract
The internalin family proteins, which carry the leucine repeat region structural motif, play diverse roles in Listeria monocytogenes (Lm) infection and pathogenesis. Although Internalin F, encoded by inlF, was identified more than 20 years ago, its role in the Lm anti-inflammatory response remains unknown. Lm serotype 4b isolates are associated with the majority of listeriosis outbreaks, but the function of InlF in these strains is not fully understood. In this study, we aimed to elucidate the role of inlF in modulating the inflammatory response and pathogenesis of the 4b strain Lm NTSN. Strikingly, although inlF was highly expressed at the transcriptional level during infection of five non-phagocytic cell types, it was not involved in adherence or invasion. Conversely, inlF did contributed to Lm adhesion and invasion of macrophages, and dramatically suppressed the expression of pro-inflammatory cytokines interleukin (IL)-1β and tumor necrosis factor (TNF-α). Consistent with the in vitro results, during Lm infection mice, inlF significantly inhibited the expression of IL-1β and IL-6 in the spleen, as well as IL-1β, IL-6, and TNF-α in the liver. More importantly, inlF contributed to Lm colonization in the spleen, liver, and ileum during the early stage of mouse infection via intragastric administration, inducing severe inflammatory injury and histopathologic changes in the late stage. To our knowledge, this is the first report to demonstrate that inlF mediates the inhibition of the pro-inflammatory response and contributes to the colonization and survival of Lm during the early stage of infection in mice. Our research partly explains the high pathogenicity of serovar 4b strains and will lead to new insights into the pathogenesis and immune evasion of Lm.
Collapse
Affiliation(s)
- Zhiting Ling
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Dan Zhao
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinyu Xie
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Hao Yao
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yuting Wang
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Suwei Kong
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhiming Pan
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xin’an Jiao
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Xin’an Jiao, ; Yuelan Yin,
| | - Yuelan Yin
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Yangzhou University, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
- *Correspondence: Xin’an Jiao, ; Yuelan Yin,
| |
Collapse
|
18
|
Joslyn LR, Linderman JJ, Kirschner DE. A virtual host model of Mycobacterium tuberculosis infection identifies early immune events as predictive of infection outcomes. J Theor Biol 2022; 539:111042. [PMID: 35114195 PMCID: PMC9169921 DOI: 10.1016/j.jtbi.2022.111042] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 01/23/2022] [Indexed: 10/19/2022]
Abstract
Tuberculosis (TB), caused by infection with Mycobacterium tuberculosis (Mtb), is one of the world's deadliest infectious diseases and remains a significant global health burden. TB disease and pathology can present clinically across a spectrum of outcomes, ranging from total sterilization of infection to active disease. Much remains unknown about the biology that drives an individual towards various clinical outcomes as it is challenging to experimentally address specific mechanisms driving clinical outcomes. Furthermore, it is unknown whether numbers of immune cells in the blood accurately reflect ongoing events during infection within human lungs. Herein, we utilize a systems biology approach by developing a whole-host model of the immune response to Mtb across multiple physiologic and time scales. This model, called HostSim, tracks events at the cellular, granuloma, organ, and host scale and represents the first whole-host, multi-scale model of the immune response following Mtb infection. We show that this model can capture various aspects of human and non-human primate TB disease and predict that biomarkers in the blood may only faithfully represent events in the lung at early time points after infection. We posit that HostSim, as a first step toward personalized digital twins in TB research, offers a powerful computational tool that can be used in concert with experimental approaches to understand and predict events about various aspects of TB disease and therapeutics.
Collapse
Affiliation(s)
- Louis R Joslyn
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620; Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136
| | - Jennifer J Linderman
- Department of Chemical Engineering, University of Michigan, G045W NCRC B28, 2800 Plymouth Rd, Ann Arbor, MI 48109-2136.
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, 1150 W Medical Center Drive, 5641 Medical Science II, Ann Arbor, MI 48109-5620.
| |
Collapse
|
19
|
Chun N, Ang RL, Chan M, Fairchild RL, Baldwin WM, Horwitz JK, Gelles JD, Chipuk JE, Kelliher MA, Pavlov VI, Li Y, Homann D, Heeger PS, Ting AT. T cell-derived tumor necrosis factor induces cytotoxicity by activating RIPK1-dependent target cell death. JCI Insight 2021; 6:e148643. [PMID: 34752416 PMCID: PMC8783689 DOI: 10.1172/jci.insight.148643] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 11/03/2021] [Indexed: 12/31/2022] Open
Abstract
TNF ligation of TNF receptor 1 (TNFR1) promotes either inflammation and cell survival by (a) inhibiting RIPK1's death-signaling function and activating NF-κB or (b) causing RIPK1 to associate with the death-inducing signaling complex to initiate apoptosis or necroptosis. The cellular source of TNF that results in RIPK1-dependent cell death remains unclear. To address this, we employed in vitro systems and murine models of T cell-dependent transplant or tumor rejection in which target cell susceptibility to RIPK1-dependent cell death could be genetically altered. We show that TNF released by T cells is necessary and sufficient to activate RIPK1-dependent cell death in target cells and thereby mediate target cell cytolysis independently of T cell frequency. Activation of the RIPK1-dependent cell death program in target cells by T cell-derived TNF accelerates murine cardiac allograft rejection and synergizes with anti-PD1 administration to destroy checkpoint blockade-resistant murine melanoma. Together, the findings uncover a distinct immunological role for TNF released by cytotoxic effector T cells following cognate interactions with their antigenic targets. Manipulating T cell TNF and/or target cell susceptibility to RIPK1-dependent cell death can be exploited to either mitigate or augment T cell-dependent destruction of allografts and malignancies to improve outcomes.
Collapse
Affiliation(s)
- Nicholas Chun
- Department of Medicine and Translational Transplant Research Center and
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Rosalind L. Ang
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mark Chan
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| | - Robert L. Fairchild
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - William M. Baldwin
- Department of Inflammation and Immunity, Cleveland Clinic, Cleveland, Ohio, USA
| | - Julian K. Horwitz
- Department of Medicine and Translational Transplant Research Center and
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jesse D. Gelles
- Graduate School of Biomedical Sciences and
- Tisch Cancer Institute and the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jerry Edward Chipuk
- Tisch Cancer Institute and the Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michelle A. Kelliher
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Vasile I. Pavlov
- Department of Medicine and Translational Transplant Research Center and
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yansui Li
- Department of Medicine and Translational Transplant Research Center and
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Dirk Homann
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Diabetes, Obesity & Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Peter S. Heeger
- Department of Medicine and Translational Transplant Research Center and
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adrian T. Ting
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Immunology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
20
|
Wu Y, Wu M, Ming S, Zhan X, Hu S, Li X, Yin H, Cao C, Liu J, Li J, Wu Z, Zhou J, Liu L, Gong S, He D, Huang X. TREM-2 promotes Th1 responses by interacting with the CD3ζ-ZAP70 complex following Mycobacterium tuberculosis infection. J Clin Invest 2021; 131:137407. [PMID: 34623322 DOI: 10.1172/jci137407] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 07/20/2021] [Indexed: 12/16/2022] Open
Abstract
Triggering receptor expressed on myeloid cells 2 (TREM-2) is a modulator of pattern recognition receptors on innate immune cells that regulates the inflammatory response. However, the role of TREM-2 in in vivo models of infection and inflammation remains controversial. Here, we demonstrated that TREM-2 expression on CD4+ T cells was induced by Mycobacterium tuberculosis infection in both humans and mice and positively associated with T cell activation and an effector memory phenotype. Activation of TREM-2 in CD4+ T cells was dependent on interaction with the putative TREM-2 ligand expressed on DCs. Unlike the observation in myeloid cells that TREM-2 signals through DAP12, in CD4+ T cells, TREM-2 interacted with the CD3ζ-ZAP70 complex as well as with the IFN-γ receptor, leading to STAT1/-4 activation and T-bet transcription. In addition, an infection model using reconstituted Rag2-/- mice (with TREM-2-KO vs. WT cells or TREM-2+ vs. TREM-2-CD4+ T cells) or CD4+ T cell-specific TREM-2 conditional KO mice demonstrated that TREM-2 promoted a Th1-mediated host defense against M. tuberculosis infection. Taken together, these findings reveal a critical role of TREM-2 in evoking proinflammatory Th1 responses that may provide potential therapeutic targets for infectious and inflammatory diseases.
Collapse
Affiliation(s)
- Yongjian Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Minhao Wu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Siqi Ming
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Xiaoxia Zhan
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Shengfeng Hu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China
| | - Xingyu Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Huan Yin
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Can Cao
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jiao Liu
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Jinai Li
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China
| | - Zhilong Wu
- The Fourth People's Hospital of Foshan, Foshan, China
| | - Jie Zhou
- The Fourth People's Hospital of Foshan, Foshan, China
| | - Lei Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Duanman He
- Shantou No. 3 People's Hospital, Shantou, Guangdong Province, China
| | - Xi Huang
- Center for Infection and Immunity, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, Guangdong Province, China.,Guangdong Provincial Engineering Research Center of Molecular Imaging, Guangdong Provincial Key Laboratory of Biomedical Imaging, and Department of Interventional Medicine, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, China.,Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong Province, China.,Department of Gastroenterology, Guangzhou Women and Children's Medical Center, Guangzhou Institute of Pediatrics, Guangzhou Medical University, Guangzhou, Guangdong Province, China.,National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital of the Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
21
|
Park HS, Choi S, Back YW, Lee KI, Choi HG, Kim HJ. Mycobacterium tuberculosis RpfE-Induced Prostaglandin E2 in Dendritic Cells Induces Th1/Th17 Cell Differentiation. Int J Mol Sci 2021; 22:ijms22147535. [PMID: 34299161 PMCID: PMC8304802 DOI: 10.3390/ijms22147535] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/05/2021] [Accepted: 07/11/2021] [Indexed: 01/13/2023] Open
Abstract
Prostaglandin E2 (PGE2) is an important biological mediator involved in the defense against Mycobacterium tuberculosis (Mtb) infection. Currently, there are no reports on the mycobacterial components that regulate PGE2 production. Previously, we have reported that RpfE-treated dendritic cells (DCs) effectively expanded the Th1 and Th17 cell responses simultaneously; however, the mechanism underlying Th1 and Th17 cell differentiation is unclear. Here, we show that PGE2 produced by RpfE-activated DCs via the MAPK and cyclooxygenase 2 signaling pathways induces Th1 and Th17 cell responses mainly via the EP4 receptor. Furthermore, mice administered intranasally with PGE2 displayed RpfE-induced antigen-specific Th1 and Th17 responses with a significant reduction in bacterial load in the lungs. Furthermore, the addition of optimal PGE2 amount to IL-2-IL-6-IL-23p19-IL-1β was essential for promoting differentiation into Th1/Th17 cells with strong bactericidal activity. These results suggest that RpfE-matured DCs produce PGE2 that induces Th1 and Th17 cell differentiation with potent anti-mycobacterial activity.
Collapse
|
22
|
Larson EC, Ellis-Connell A, Rodgers MA, Balgeman AJ, Moriarty RV, Ameel CL, Baranowski TM, Tomko JA, Causgrove CM, Maiello P, O'Connor SL, Scanga CA. Pre-existing Simian Immunodeficiency Virus Infection Increases Expression of T Cell Markers Associated with Activation during Early Mycobacterium tuberculosis Coinfection and Impairs TNF Responses in Granulomas. THE JOURNAL OF IMMUNOLOGY 2021; 207:175-188. [PMID: 34145063 DOI: 10.4049/jimmunol.2100073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/19/2021] [Indexed: 01/01/2023]
Abstract
Tuberculosis (TB) is the leading infectious cause of death among people living with HIV. People living with HIV are more susceptible to contracting Mycobacterium tuberculosis and often have worsened TB disease. Understanding the immunologic defects caused by HIV and the consequences it has on M. tuberculosis coinfection is critical in combating this global health epidemic. We previously showed in a model of SIV and M. tuberculosis coinfection in Mauritian cynomolgus macaques (MCM) that SIV/M. tuberculosis-coinfected MCM had rapidly progressive TB. We hypothesized that pre-existing SIV infection impairs early T cell responses to M. tuberculosis infection. We infected MCM with SIVmac239, followed by coinfection with M. tuberculosis Erdman 6 mo later. Although similar, TB progression was observed in both SIV+ and SIV-naive animals at 6 wk post-M. tuberculosis infection; longitudinal sampling of the blood (PBMC) and airways (bronchoalveolar lavage) revealed a significant reduction in circulating CD4+ T cells and an influx of CD8+ T cells in airways of SIV+ animals. At sites of M. tuberculosis infection (i.e., granulomas), SIV/M. tuberculosis-coinfected animals had a higher proportion of CD4+ and CD8+ T cells expressing PD-1 and TIGIT. In addition, there were fewer TNF-producing CD4+ T cells in granulomas of SIV/M. tuberculosis-coinfected animals. Taken together, we show that concurrent SIV infection alters T cell phenotypes in granulomas during the early stages of TB disease. As it is critical to establish control of M. tuberculosis replication soon postinfection, these phenotypic changes may distinguish the immune dysfunction that arises from pre-existing SIV infection, which promotes TB progression.
Collapse
Affiliation(s)
- Erica C Larson
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA;
| | - Amy Ellis-Connell
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Mark A Rodgers
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Alexis J Balgeman
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Ryan V Moriarty
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI
| | - Cassaundra L Ameel
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Tonilynn M Baranowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Jaime A Tomko
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Chelsea M Causgrove
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Pauline Maiello
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Shelby L O'Connor
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, WI.,Wisconsin National Primate Research Center, University of Wisconsin-Madison, WI; and
| | - Charles A Scanga
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA; .,Center for Vaccine Research, University of Pittsburgh School of Medicine, Pittsburgh, PA
| |
Collapse
|
23
|
Zhang Z, Liu L, Ma C, Cui X, Lam RHW, Chen W. An in silico glioblastoma microenvironment model dissects the immunological mechanisms of resistance to PD-1 checkpoint blockade immunotherapy. SMALL METHODS 2021; 5:2100197. [PMID: 34423116 PMCID: PMC8372235 DOI: 10.1002/smtd.202100197] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Indexed: 05/02/2023]
Abstract
The PD-1 immune checkpoint-based therapy has emerged as a promising therapy strategy for treating the malignant brain tumor glioblastoma (GBM). However, patient response varies in clinical trials due in large to the tumor heterogeneity and immunological resistance in the tumor microenvironment. To further understand how mechanistically the niche interplay and competition drive anti-PD-1 resistance, we established an in-silico model to quantitatively describe the biological rationale of critical GBM-immune interactions, such as tumor growth and apoptosis, T cell activation and cytotoxicity, and tumor-associated macrophage (TAM) mediated immunosuppression. Such an in-silico experimentation and predictive model, based on the in vitro microfluidic chip-measured end-point data and patient-specific immunological characteristics, allowed for a comprehensive and dynamic analysis of multiple TAM-associated immunosuppression mechanisms against the anti-PD-1 immunotherapy. Our computational model demonstrated that the TAM-associated immunosuppression varied in severity across different GBM subtypes, which resulted in distinct tumor responses. Our prediction results indicated that a combination therapy co-targeting of PD-1 checkpoint and TAM-associated CSF-1R signaling could enhance the immune responses of GBM patients, especially those patients with mesenchymal GBM who are irresponsive to the single anti-PD-1 therapy. The development of a patient-specific in silico-in vitro GBM model would help navigate and personalize immunotherapies for GBM patients.
Collapse
Affiliation(s)
- Zhuoyu Zhang
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Lunan Liu
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Chao Ma
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY, 11201, USA
| | - Xin Cui
- Department of Biomedical Engineering, Jinan University, Guangzhou, China
| | - Raymond H W Lam
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, New York University, Brooklyn, NY
| |
Collapse
|
24
|
Keeton R, du Toit JP, Hsu NJ, Dube F, Jacobs M. Immune control of Mycobacterium tuberculosis is dependent on both soluble TNFRp55 and soluble TNFRp75. Immunology 2021; 164:524-540. [PMID: 34129695 DOI: 10.1111/imm.13385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/30/2021] [Accepted: 05/22/2021] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis presents a global health challenge, and tumour necrosis factor (TNF) signalling is required for host immunity against Mycobacterium tuberculosis (Mtb). TNF receptor shedding, however, compromises effective immunity by reducing bioactive TNF through the formation of inactive complexes. In this study, we first compared the effect of total soluble TNF receptors using a transgenic p55ΔNS /p75-/- murine strain on host protection during a low-dose aerosol Mtb H37Rv challenge. We report that the presence of membrane-bound TNFRp55 alone in the absence of TNFRp75 results in superior control of a primary Mtb infection where p55ΔNS /p75-/- hyperactive dendritic cells displayed an increased capacity to induce a hyperactive Mtb-specific CD4+ T-cell response. p55ΔNS /p75-/- dendritic cells expressed a higher frequency of MHCII and increased MFIs for both CD86 and MHCII, while CD4+ T cells had higher expression of CD44 and IFN-γ. Next, the relative contributions of soluble TNFRp55 and soluble TNFRp75 to host protection against either primary Mtb infection or during reactivation of latent tuberculosis were delineated by comparing the experimental outcomes of control C57BL/6 mice to transgenic p55ΔNS /p75-/- , p55ΔNS and p75-/- mouse strains. We found that soluble TNFRp55 is redundant for immune regulation during the chronic stages of a primary Mtb infection. However, TNFRp55 together with soluble TNFRp75 has a crucial role in immune regulation of reactivation of latent tuberculosis.
Collapse
Affiliation(s)
- Roanne Keeton
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Jan Pierre du Toit
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Felix Dube
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,Immunology of Infectious Disease Research Unit, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
25
|
Spilleboudt C, De Wilde V, Lewalle P, Cabanne L, Leclerc M, Beckerich F, Bories D, Cardoso S, Soares MP, Vokaer B, Hougardy JM, Flamand V, Racapé J, Abramowicz M, Maury S, Le Moine A. Donor-Derived Myeloid Heme Oxygenase-1 Controls the Development of Graft-Versus-Host Disease. Front Immunol 2021; 11:579151. [PMID: 33537027 PMCID: PMC7849683 DOI: 10.3389/fimmu.2020.579151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/30/2020] [Indexed: 11/13/2022] Open
Abstract
Graft-versus-host disease (GVHD) remains a major clinical drawback of allogeneic hematopoietic stem cell transplantation (HSCT). Here, we investigated how the stress responsive heme catabolizing enzyme heme oxygenase-1 (HO-1, encoded by HMOX1) regulates GVHD in response to allogeneic hematopoietic stem cell transplantation in mice and humans. We found that deletion of the Hmox1 allele, specifically in the myeloid compartment of mouse donor bone marrow, promotes the development of aggressive GVHD after allogeneic transplantation. The mechanism driving GVHD in mice transplanted with allogeneic bone marrow lacking HO-1 expression in the myeloid compartment involves enhanced T cell alloreactivity. The clinical relevance of these observations was validated in two independent cohorts of HSCT patients. Individuals transplanted with hematopoietic stem cells from donors carrying a long homozygous (GT)n repeat polymorphism (L/L) in the HMOX1 promoter, which is associated with lower HO-1 expression, were at higher risk of developing severe acute GVHD as compared to donors carrying a short (GT)n repeat (S/L or S/S) polymorphism associated with higher HO-1 expression. In this study, we showed the unique importance of donor-derived myeloid HO-1 in the prevention of lethal experimental GVHD and we corroborated this observation by demonstrating the association between human HMOX1 (GT)n microsatellite polymorphisms and the incidence of severe acute GVHD in two independent HSCT patient cohorts. Donor-derived myeloid HO-1 constitutes a potential therapeutic target for HSCT patients and large-scale prospective studies in HSCT patients are necessary to validate the HO-1 L/L genotype as an independent risk factor for developing severe acute GVHD.
Collapse
Affiliation(s)
- Chloé Spilleboudt
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Virginie De Wilde
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- Erasme Hospital, Hematology Department, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe Lewalle
- Jules Bordet Institute, Hematology Department, Université libre de Bruxelles, Brussels, Belgium
| | - Ludovic Cabanne
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Mathieu Leclerc
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Florence Beckerich
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Dominique Bories
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | | | | | - Benoît Vokaer
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Jean-Michel Hougardy
- Erasme Hospital, Nephrology and Internal Medicine Department, Université libre de Bruxelles, Brussels, Belgium
| | - Véronique Flamand
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
| | - Judith Racapé
- Erasme Hospital, Nephrology and Internal Medicine Department, Université libre de Bruxelles, Brussels, Belgium
- Centre de Recherche Épidémiologie, Biostatistique et Recherche clinique, École de Santé Publique, Université libre de Bruxelles, Brussels, Belgium
| | - Marc Abramowicz
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Sébastien Maury
- AP-HP, Hôpital Henri Mondor, Department of Hematology, Créteil, France
- University Paris Est Créteil (UPEC), Créteil, France
| | - Alain Le Moine
- Institute for Medical Immunology, Université Libre de Bruxelles, Gosselies, Belgium
- Erasme Hospital, Nephrology and Internal Medicine Department, Université libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
26
|
Hsu NJ, Jacobs M. The Use of Murine Infection Models to Investigate the Protective Role of TNF in Central Nervous System Tuberculosis. Methods Mol Biol 2021; 2248:211-220. [PMID: 33185878 DOI: 10.1007/978-1-0716-1130-2_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tuberculosis of the central nervous system (CNS-TB) is the most severe form of extra-pulmonary tuberculosis that is often associated with high mortality. Secretion of tumor necrosis factor (TNF) has important protective and immune modulatory functions for immune responses during CNS-TB. Therefore, by combining the approaches of aerosol and intracerebral infection in mice, this chapter describes the methods to investigate the contribution of TNF in protective immunity against CNS-TB infection.
Collapse
Affiliation(s)
- Nai-Jen Hsu
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
- National Health Laboratory Service, Johannesburg, South Africa.
- Immunology of Infectious Disease Research Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
27
|
Meng F, Zhu T, Yao H, Ling Z, Feng Y, Li G, Li J, Sun X, Chen J, Meng C, Jiao X, Yin Y. A Cross-Protective Vaccine Against 4b and 1/2b Listeria monocytogenes. Front Microbiol 2020; 11:569544. [PMID: 33362730 PMCID: PMC7759533 DOI: 10.3389/fmicb.2020.569544] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 10/19/2020] [Indexed: 12/26/2022] Open
Abstract
Listeria monocytogenes (Lm) is a foodborne zoonotic pathogen that causes listeriosis with a mortality rate of 20-30%. Serovar 4b and 1/2b isolates account for most of listeriosis outbreaks, however, no listeriosis vaccine is available for either prophylactic or therapeutic use. Here, we developed a triple-virulence-genes deletion vaccine strain, and evaluated its safety, immunogenicity, and cross-protective efficiency. The virulence of NTSNΔactA/plcB/orfX was reduced 794-folds compared with the parental strain. Additionally, it was completely eliminated in mice at day 7 post infection and no obvious pathological changes were observed in the organs of mice after prime-boost immunization for 23 days. These results proved that the safety of the Lm vaccine strain remarkably increased. More importantly, the NTSNΔactA/plcB/orfX strain stimulated higher anti-Listeriolysin O (LLO) antibodies, induced significantly higher expression of IFN-γ, TNF-α, IL-17, and IL-6 than the control group, and afforded 100% protection against serovar 4b and 1/2b challenges. Taken together, our research demonstrates that the triple-genes-deletion vaccine has high safety, can elicit strong Th1 type immune response, and affords efficient cross-protection against two serovar Lm strains. It is a promising vaccine for prevention of listeriosis.
Collapse
Affiliation(s)
- Fanzeng Meng
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Tengfei Zhu
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Hao Yao
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Zhiting Ling
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Youwei Feng
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Guo Li
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jing Li
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xinyu Sun
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Jiaqi Chen
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Xin'an Jiao
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| | - Yuelan Yin
- Jangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou, China.,Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, The Ministry of Agriculture of China, Yangzhou University, Yangzhou, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, China.,Jiangsu Co-innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou, China
| |
Collapse
|
28
|
Wu B, Liu H, Cai H, Tao W, Wang G, Shi X, Chen H, Li R. Vaccine targeting TNF epitope 1-14 do not suppress host defense against Mycobacterium bovis Bacillus Calmette-Guérin infection. Int J Biol Macromol 2020; 169:371-383. [PMID: 33347929 DOI: 10.1016/j.ijbiomac.2020.12.131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Anti-TNF inhibitors are efficacious in the treatment of chronic inflammatory diseases such as rheumatoid arthritis (RA), Crohn's disease (CD), juvenile idiopathic arthritis (JIA), and ankylosing spondylitis (AS). However, more and more clinical case reports revealed that anti-TNF inhibitors could increase the risk of viral, fungal, and bacterial (especially intracellular) infection. In this study, based on Immune Epitope Database (IEDB) online B cell epitope prediction and the knowledge of TNF three dimensional (3D) structure we developed a novel vaccine (DTNF114-TNF114) that targeting TNF epitope 1-14, which produced antibodies only partially binding to trans-membrane TNF (tmTNF), therefore partially sparing tmTNF-TNFR1/2 interaction. Immunization with DTNF114-TNF114 significantly protected and prolonged the survival rate of mice challenged with lipopolysaccharide (LPS); and in the mCherry expressing Mycobacterium bovis Bacillus Calmette-Guérin (mCherry-BCG) infection model, DTNF114-TNF114 immunization significantly decreased soluble TNF (solTNF) level in serum, meanwhile did not suppress host immunity against infection. Thus, this novel and infection concern-free vaccine provides a potential alternative or supplement to currently clinically used anti-TNF inhibitors.
Collapse
Affiliation(s)
- Bing Wu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Huaman Cai
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Weihong Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China
| | - Gengchong Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Xiaohui Shi
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Haifeng Chen
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| | - Rongxiu Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China; Engineering Research Center of Cell & Therapeutic Antibody, Ministry of Education, No. 800 Dongchuan Road, Minhang District, Shanghai 200240, China.
| |
Collapse
|
29
|
Kruglov A, Drutskaya M, Schlienz D, Gorshkova E, Kurz K, Morawietz L, Nedospasov S. Contrasting contributions of TNF from distinct cellular sources in arthritis. Ann Rheum Dis 2020; 79:1453-1459. [PMID: 32796044 PMCID: PMC7569389 DOI: 10.1136/annrheumdis-2019-216068] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 05/17/2020] [Accepted: 06/24/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Neutralisation of tumour necrosis factor (TNF) is widely used as a therapy for rheumatoid arthritis (RA). However, this therapy is only effective in less than a half of patients and is associated with several side effects. We hypothesised that TNF may possess non-redundant protective and immunomodulatory functions in vivo that cannot be blocked without a cost. The present work aimed to identify cellular sources of protective and pathogenic TNF, and its molecular forms during autoimmune arthritis. METHODS Mice lacking TNF expression by distinct cell types, such as myeloid cells and T or B lymphocytes, were subjected to collagen-induced arthritis (CIA) and collagen antibody-induced arthritis. Mice lacking soluble TNF production were also employed. The severity and incidence of the disease, as well as humoral and cellular responses were assessed. RESULTS Myeloid cell-derived TNF contributes to both induction and pathogenesis of autoimmune arthritis. Conversely, T cell-derived TNF is protective during the induction phase of arthritis via limiting of interleukin-12 production by dendritic cells and by subsequent control of autoreactive memory T cell development, but is dispensable during the effector phase of arthritis. B cell-derived TNF mediates severity of CIA via control of pathogenic autoantibody production. CONCLUSIONS Distinct TNF-producing cell types may modulate disease development through different mechanisms, suggesting that in arthritis TNF ablation from restricted cellular sources, such as myeloid cells, while preserving protective TNF functions from other cell types may be superior to pan-anti-TNF therapy.
Collapse
Affiliation(s)
- Andrey Kruglov
- Chronic inflammation, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Marina Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation
| | - Dirk Schlienz
- Chronic inflammation, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Ekaterina Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
| | - Katharina Kurz
- Chronic inflammation, Deutsches Rheuma-Forschungszentrum, a Leibniz Institute, Berlin, Germany
| | - Lars Morawietz
- Institute of Pathology, Medizinischen Versorgungszentrum im Fürstenberg-Karree Berlin, Berlin, Germany
| | - Sergei Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology RAS, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology and Biological Faculty, Lomonosov Moscow State University, Moscow, Russia
- Institute of Cell Biology and Neurobiology, Charité - Universitätsmedizin Berlin, Berlin, Berlin, Germany
| |
Collapse
|
30
|
Walters A, Keeton R, Labuschagné A, Hsu NJ, Jacobs M. TNFRp75-dependent immune regulation of alveolar macrophages and neutrophils during early Mycobacterium tuberculosis and Mycobacterium bovis BCG infection. Immunology 2020; 162:220-234. [PMID: 33020922 DOI: 10.1111/imm.13277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 09/11/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022] Open
Abstract
TNF signalling through TNFRp55 and TNFRp75, and receptor shedding is important for immune activation and regulation. TNFRp75 deficiency leads to improved control of Mycobacterium tuberculosis (M. tuberculosis) infection, but the effects of early innate immune events in this process are unclear. We investigated the role of TNFRp75 on cell activation and apoptosis of alveolar macrophages and neutrophils during M. tuberculosis and M. bovis BCG infection. We found increased microbicidal activity against M. tuberculosis occurred independently of IFNy and NO generation, and displayed an inverse correlation with alveolar macrophages (AMs) apoptosis. Both M. tuberculosis and M. bovis BCG induced higher expression of MHC-II in TNFRp75-/- AMs; however, M bovis BCG infection did not alter AM apoptosis in the absence of TNFRp75. Pulmonary concentrations of CCL2, CCL3 and IL-1β were increased in TNFRp75-/- mice during M, bovis BCG infection, but had no effect on neutrophil responses. Thus, TNFRp75-dependent regulation of mycobacterial replication is virulence dependent and occurs independently of early alveolar macrophage apoptosis and neutrophil responses.
Collapse
Affiliation(s)
- Avril Walters
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Roanne Keeton
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Antoinette Labuschagné
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Nai-Jen Hsu
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Observatory, South Africa.,National Health Laboratory Service, Johannesburg, South Africa.,Immunology of Infectious Disease Research Unit, University of Cape Town, Observatory, South Africa
| |
Collapse
|
31
|
Ullah I, Bibi S, Ul Haq I, Safia, Ullah K, Ge L, Shi X, Bin M, Niu H, Tian J, Zhu B. The Systematic Review and Meta-Analysis on the Immunogenicity and Safety of the Tuberculosis Subunit Vaccines M72/AS01 E and MVA85A. Front Immunol 2020; 11:1806. [PMID: 33133057 PMCID: PMC7578575 DOI: 10.3389/fimmu.2020.01806] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Background: Tuberculosis (TB) is a severe infectious disease with devastating effects on global public health. No TB vaccine has yet been approved for use on latent TB infections and healthy adults. In this study, we performed a systematic review and meta-analysis to evaluate the immunogenicity and safety of the M72/AS01E and MVA85A subunit vaccines. The M72/AS01E is a novel peptide-based vaccine currently in progress, which may increase the protection level against TB infection. The MVA85A was a viral vector-based TB subunit vaccine being used in the clinical trials. The vaccines mentioned above have been studied in various phase I/II clinical trials. Immunogenicity and safety is the first consideration for TB vaccine development. Methods: The PubMed, Embase, and Cochrane Library databases were searched for published studies (until October 2019) to find out information on the M72/AS01E and MVA85A candidate vaccines. The meta-analysis was conducted by applying the standard methods and processes established by the Cochrane Collaboration. Results: Five eligible randomized clinical trials (RCTs) were selected for the meta-analysis of M72/AS01E candidate vaccines. The analysis revealed that the M72/AS01E subunit vaccine had an abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.37] in the vaccine group versus the control group, the highest seropositivity rate [relative risk (RR) = 5.09]. The M72/AS01E vaccinated group were found to be at high risk of local injection site redness (RR = 2.64), headache (RR = 1.59), malaise (RR = 3.55), myalgia (RR = 2.27), fatigue (RR = 2.16), pain (RR = 3.99), swelling (RR = 5.09), and fever (RR = 2.04) compared to the control groups. The incidences of common adverse events of M72/AS01E were local injection site redness, headache, malaise, myalgia, fatigue, pain, swelling, fever, etc. Six eligible RCTs were selected for the meta-analysis on MVA85A candidate vaccines. The analysis revealed that the subunit vaccine MVA85A had a higher abundance of overall pooled proportion polyfunctional MVA85A-specific CD4+ T cells SMD = 2.41 in the vaccine group vs. the control group, with the highest seropositivity rate [estimation rate (ER) = 0.55]. The MVA85A vaccinated group were found to be at high risk of local injection site redness (ER = 0.55), headache (ER = 0.40), malaise (ER = 0.29), pain (ER = 0.54), myalgia (ER = 0.31), and fever (ER = 0.20). The incidences of common adverse events of MVA85A were local injection site redness, headache, malaise, pain, myalgia, fever, etc. Conclusion: The M72/AS01E and MVA85A vaccines against TB are safe and had immunogenicity in diverse clinical trials. The M72/AS01E and MVA85A vaccines are associated with a mild adverse reaction. The meta-analysis on immunogenicity and safety of M72/AS01E and MVA85A vaccines provides useful information for the evaluation of available subunit vaccines in the clinic.
Collapse
Affiliation(s)
- Inayat Ullah
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Shaheen Bibi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China.,School of Life Science, Northwest Normal University, Lanzhou, China
| | - Ijaz Ul Haq
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, China
| | - Safia
- Pakistan Institute of Community Ophthalmology (PICO), Hayatabad Medical Complex, KMU, Peshawar, Pakistan
| | - Kifayat Ullah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Long Ge
- The First Clinical Medical College of Lanzhou University, Lanzhou, China
| | - Xintong Shi
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Ma Bin
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Hongxia Niu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Jinhui Tian
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Lanzhou Center for Tuberculosis Research and Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.,Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation, Lanzhou University, Lanzhou, China
| |
Collapse
|
32
|
Vasilenko EA, Gorshkova EN, Astrakhantseva IV, Drutskaya MS, Tillib SV, Nedospasov SA, Mokhonov VV. The structure of myeloid cell-specific TNF inhibitors affects their biological properties. FEBS Lett 2020; 594:3542-3550. [PMID: 32865225 DOI: 10.1002/1873-3468.13913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 11/05/2022]
Abstract
Spatial organization and conformational changes of antibodies may significantly affect their biological functions. We assessed the effect of mutual organization of the two VH H domains within bispecific antibodies recognizing human TNF and the surface molecules of murine myeloid cells (F4/80 or CD11b) on TNF retention and inhibition. TNF-neutralizing properties in vitro and in vivo of MYSTI-2 and MYSTI-3 antibodies were compared with new variants with interchanged VH H domains and different linker sequences. The most effective structure of MYSTI-2 and MYSTI-3 proteins required the Ser/Gly-containing 'superflexible' linker. The orientation of the modules was crucial for the activity of the proteins, but not for MYSTI-3 with the Pro/Gln-containing 'semi-rigid' linker. Our results may contribute toward the development of more effective drug prototypes.
Collapse
Affiliation(s)
| | | | - Irina V Astrakhantseva
- Lobachevsky State University, Nizhny Novgorod, Russia.,Sirius University of Science and Technology, Sochi, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei V Tillib
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Sirius University of Science and Technology, Sochi, Russia.,Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Vladislav V Mokhonov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Blokhina Scientific Research Institute of Epidemiology and Microbiology of Nizhny Novgorod, Nizhny Novgorod, Russia
| |
Collapse
|
33
|
Segueni N, Jacobs M, Ryffel B. Innate type 1 immune response, but not IL-17 cells control tuberculosis infection. Biomed J 2020; 44:165-171. [PMID: 32798210 PMCID: PMC8178558 DOI: 10.1016/j.bj.2020.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/16/2020] [Accepted: 06/29/2020] [Indexed: 01/22/2023] Open
Abstract
The role of the innate immune response and host resistance to Mycobacterium tuberculosis infection (TB) is reviewed. Based on our data and the abundant literature, an early type 1 immune response is critical for infection control, while ILC3 and Th17 cells seem to be dispensable. Indeed, in M. tuberculosis infected mice, transcriptomic levels of Il17, Il17ra, Il22 and Il23a were not significantly modified as compared to controls, suggesting a limited role of IL-17 and IL-22 pathways in TB infection control. Neutralization of IL-17A or IL-17F did not affect infection control either. Ongoing clinical studies with IL-17 neutralizing antibodies show high efficacy in patients with psoriasis without increased incidence of TB infection or reactivation. Therefore, both experimental studies in mice and clinical trials in human patients suggest no risk of TB infection or reactivation by therapeutic IL-17 antibodies, unlike by TNF.
Collapse
Affiliation(s)
- Noria Segueni
- Molecular and Experimental Immunology and Neurogenetics, UMR 7355, INEM, CNRS-University of Orleans, Orleans, France
| | - Muazzam Jacobs
- Division of Immunology, Department of Pathology and Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, South Africa; National Health Laboratory Service, Johannesburg, South Africa; Immunology of Infectious Disease Research Unit, University of Cape Town, South Africa
| | - Bernhard Ryffel
- Molecular and Experimental Immunology and Neurogenetics, UMR 7355, INEM, CNRS-University of Orleans, Orleans, France.
| |
Collapse
|
34
|
Antigen-Specific IFN-γ/IL-17-Co-Producing CD4 + T-Cells Are the Determinants for Protective Efficacy of Tuberculosis Subunit Vaccine. Vaccines (Basel) 2020; 8:vaccines8020300. [PMID: 32545304 PMCID: PMC7350228 DOI: 10.3390/vaccines8020300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The antigen-specific Th17 responses in the lungs for improved immunity against Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial phagosomal activity to enhance host control against Mtb infection. The implications of our findings highlight the fundamental rationale for why and how Th17 responses are essential in the control of Mtb, and for the development of novel anti-TB subunit vaccines.
Collapse
|
35
|
Di Federico M, Ancora M, Luciani M, Krasteva I, Sacchini F, Orsini G, Di Febo T, Di Lollo V, Mattioli M, Scacchia M, Marruchella G, Cammà C. Pro-Inflammatory Response of Bovine Polymorphonuclear Cells Induced by Mycoplasma mycoides subsp. mycoides. Front Vet Sci 2020; 7:142. [PMID: 32292794 PMCID: PMC7119222 DOI: 10.3389/fvets.2020.00142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/25/2020] [Indexed: 12/29/2022] Open
Abstract
Mycoplasma mycoides subsp. mycoides (Mmm) is the etiological agent of contagious bovine pleuropneumonia (CBPP), one of the major diseases affecting cattle in sub-Saharan Africa. Some evidences suggest that the immune system of the host (cattle) plays an important role in the pathogenic mechanism of CBPP, but the factors involved in the process remain largely unknown. The present study aimed to investigate the cell response of bovine polymorphonuclear neutrophils (PMNs) after Mmm in vitro exposure using one step RT-qPCR and Western blotting. Data obtained indicate that gene and protein expression levels of some pro-inflammatory factors already change upon 30 min of PMNs exposure to Mmm. Of note, mRNA expression level in Mmm exposed PMNs increased in a time-dependent manner and for all time points investigated; targets expression was also detected by Western blotting in Mmm exposed PMNs only. These data demonstrate that when bovine PMN cells are triggered by Mmm, they undergo molecular changes, upregulating mRNA and protein expression of specific pro-inflammatory factors. These results provide additional information on host-pathogen interaction during CBPP infection.
Collapse
Affiliation(s)
- Marta Di Federico
- Unit of Basic and Applied Biosciences, Faculty of Biosciences and Technology for Food, Agriculture and Environmental, University of Teramo, Teramo, Italy.,Molecular Biology and Genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Massimo Ancora
- Molecular Biology and Genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Mirella Luciani
- Immunology and Serology Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Ivanka Krasteva
- Immunology and Serology Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Flavio Sacchini
- Immunology and Serology Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Gianluca Orsini
- Bacterial Vaccines and Diagnostics Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Tiziana Di Febo
- Immunology and Serology Department, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Valeria Di Lollo
- Unit of Basic and Applied Biosciences, Faculty of Biosciences and Technology for Food, Agriculture and Environmental, University of Teramo, Teramo, Italy.,Molecular Biology and Genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | - Mauro Mattioli
- Unit of Basic and Applied Biosciences, Faculty of Biosciences and Technology for Food, Agriculture and Environmental, University of Teramo, Teramo, Italy
| | - Massimo Scacchia
- Cooperation Office, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| | | | - Cesare Cammà
- Molecular Biology and Genomic Unit, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise "G. Caporale", Teramo, Italy
| |
Collapse
|
36
|
Atretkhany KSN, Gogoleva VS, Drutskaya MS, Nedospasov SA. Distinct modes of TNF signaling through its two receptors in health and disease. J Leukoc Biol 2020; 107:893-905. [PMID: 32083339 DOI: 10.1002/jlb.2mr0120-510r] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 12/14/2022] Open
Abstract
TNF is a key proinflammatory and immunoregulatory cytokine whose deregulation is associated with the development of autoimmune diseases and other pathologies. Recent studies suggest that distinct functions of TNF may be associated with differential engagement of its two receptors: TNFR1 or TNFR2. In this review, we discuss the relative contributions of these receptors to pathogenesis of several diseases, with the focus on autoimmunity and neuroinflammation. In particular, we discuss the role of TNFRs in the development of regulatory T cells during neuroinflammation and recent findings concerning targeting TNFR2 with agonistic and antagonistic reagents in various murine models of autoimmune and neuroinflammatory disorders and cancer.
Collapse
Affiliation(s)
- Kamar-Sulu N Atretkhany
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Violetta S Gogoleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Marina S Drutskaya
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Sergei A Nedospasov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Sirius University of Science and Technology, Sochi, Russia
| |
Collapse
|
37
|
Drutskaya MS, Nosenko MA, Gorshkova EA, Mokhonov VV, Zvartsev RV, Polinova AI, Kruglov AA, Nedospasov SA. Effects of myeloid cell-restricted TNF inhibitors in vitro and in vivo. J Leukoc Biol 2020; 107:933-939. [PMID: 32040234 DOI: 10.1002/jlb.3ab0120-532r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 01/01/2020] [Accepted: 01/18/2020] [Indexed: 12/17/2022] Open
Abstract
Systemic TNF neutralization can be used as a therapy for several autoimmune diseases. To evaluate the effects of cell type-restricted TNF blockade, we previously generated bispecific antibodies that can limit TNF secretion by myeloid cells (myeloid cell-specific TNF inhibitors or MYSTIs). In this study several such variable domain (VH) of a camelid heavy-chain only antibody-based TNF inhibitors were compared in relevant experimental models, both in vitro and in vivo. Pretreatment with MYSTI-2, containing the anti-F4/80 module, can restrict the release of human TNF (hTNF) from LPS-activated bone marrow-derived macrophage (BMDM) cultures of humanized TNF knock-in (mice; hTNFKI) more effectively than MYSTI-3, containing the anti-CD11b module. MYSTI-2 was also superior to MYSTI-3 in providing in vivo protection in acute toxicity model. Finally, MYSTI-2 was at least as effective as Infliximab in preventing collagen antibody-induced arthritis. This study demonstrates that a 33 kDa bispecific mini-antibody that specifically restricts TNF secretion by macrophages is efficient for amelioration of experimental arthritis.
Collapse
Affiliation(s)
- Marina S Drutskaya
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Maxim A Nosenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina A Gorshkova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia
| | - Vladislav V Mokhonov
- Blokhina Scientific Research Institute of Epidemiology and Microbiology of Nizhny Novgorod, Nizhny Novgorod, Russia
| | - Ruslan V Zvartsev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Andrey A Kruglov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,German Rheumatism Research Center (DRFZ), a Leibniz Institute, Berlin, Germany
| | - Sergei A Nedospasov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia.,Lomonosov Moscow State University, Moscow, Russia.,Institute of Cell Biology and Neurobiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
38
|
Pham THM, Brewer SM, Thurston T, Massis LM, Honeycutt J, Lugo K, Jacobson AR, Vilches-Moure JG, Hamblin M, Helaine S, Monack DM. Salmonella-Driven Polarization of Granuloma Macrophages Antagonizes TNF-Mediated Pathogen Restriction during Persistent Infection. Cell Host Microbe 2019; 27:54-67.e5. [PMID: 31883922 PMCID: PMC7065835 DOI: 10.1016/j.chom.2019.11.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/19/2019] [Accepted: 11/20/2019] [Indexed: 12/22/2022]
Abstract
Many intracellular bacteria can establish chronic infection and persist in tissues within granulomas composed of macrophages. Granuloma macrophages exhibit heterogeneous polarization states, or phenotypes, that may be functionally distinct. Here, we elucidate a host-pathogen interaction that controls granuloma macrophage polarization and long-term pathogen persistence during Salmonella Typhimurium (STm) infection. We show that STm persists within splenic granulomas that are densely populated by CD11b+CD11c+Ly6C+ macrophages. STm preferentially persists in granuloma macrophages reprogrammed to an M2 state, in part through the activity of the effector SteE, which contributes to the establishment of persistent infection. We demonstrate that tumor necrosis factor (TNF) signaling limits M2 granuloma macrophage polarization, thereby restricting STm persistence. TNF neutralization shifts granuloma macrophages toward an M2 state and increases bacterial persistence, and these effects are partially dependent on SteE activity. Thus, manipulating granuloma macrophage polarization represents a strategy for intracellular bacteria to overcome host restriction during persistent infection.
Collapse
Affiliation(s)
- Trung H M Pham
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Susan M Brewer
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Teresa Thurston
- MRC Center for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Liliana M Massis
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Jared Honeycutt
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Kyler Lugo
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Amanda R Jacobson
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | | | - Meagan Hamblin
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Sophie Helaine
- MRC Center for Molecular Bacteriology and Infection, Imperial College London, London, UK
| | - Denise M Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
39
|
Modulation of bioavailability of proinflammatory cytokines produced by myeloid cells. Semin Arthritis Rheum 2019; 49:S39-S42. [DOI: 10.1016/j.semarthrit.2019.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/25/2019] [Indexed: 01/01/2023]
|
40
|
Dijkman K, Vervenne RAW, Sombroek CC, Boot C, Hofman SO, van Meijgaarden KE, Ottenhoff THM, Kocken CHM, Haanstra KG, Vierboom MPM, Verreck FAW. Disparate Tuberculosis Disease Development in Macaque Species Is Associated With Innate Immunity. Front Immunol 2019; 10:2479. [PMID: 31736945 PMCID: PMC6838139 DOI: 10.3389/fimmu.2019.02479] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/04/2019] [Indexed: 12/12/2022] Open
Abstract
While tuberculosis continues to afflict mankind, the immunological mechanisms underlying TB disease development are still incompletely understood. Advanced preclinical models for TB research include both rhesus and cynomolgus macaques (Macaca mulatta and Macaca fascicularis, respectively), with rhesus typically being more susceptible to acute progressive TB disease than cynomolgus macaques. To determine which immune mechanisms are responsible for this dissimilar disease development, we profiled a broad range of innate and adaptive responses, both local and peripheral, following experimental pulmonary Mycobacterium tuberculosis (Mtb) infection of both species. While T-cell and antibody responses appeared indistinguishable, we identified anti-inflammatory skewing of peripheral monocytes in rhesus and a more prominent local pro-inflammatory cytokine release profile in cynomolgus macaques associated with divergent TB disease outcome. Importantly, these differences were detectable both before and early after infection. This work shows that inflammatory and innate immune status prior to and at early stages after infection, critically affects outcome of TB infection.
Collapse
Affiliation(s)
- Karin Dijkman
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Richard A W Vervenne
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Claudia C Sombroek
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Charelle Boot
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Sam O Hofman
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | | | - Tom H M Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, Netherlands
| | - Clemens H M Kocken
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Krista G Haanstra
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Michel P M Vierboom
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| | - Frank A W Verreck
- TB Research Group, Department of Parasitology, Biomedical Primate Research Centre, Rijswijk, Netherlands
| |
Collapse
|
41
|
Carvalho Dos Santos C, Rodriguez D, Kanno Issamu A, Cezar De Cerqueira Leite L, Pereira Nascimento I. Recombinant BCG expressing the LTAK63 adjuvant induces increased early and long-term immune responses against Mycobacteria. Hum Vaccin Immunother 2019; 16:673-683. [PMID: 31665996 PMCID: PMC7227645 DOI: 10.1080/21645515.2019.1669414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis has become a world priority. Previously, we have shown that a recombinant BCG expressing the LTAK63 adjuvant (rBCG-LTAK63) displayed higher protection than BCG against tuberculosis challenge in mice. In order to elucidate the immune effector mechanisms induced by rBCG-LTAK63, we evaluated the immune response before and after challenge. The potential to induce an innate immune response was investigated by intraperitoneal immunization with BCG or rBCG-LTAK63: both displayed increased cellular infiltration in the peritoneum with high numbers of neutrophils at 24 h and macrophages at 7 d. The rBCG-LTAK63-immunized mice displayed increased production of Nitric Oxide at 24 h and Hydrogen Peroxide at 7 d. The number of lymphocytes was higher in the rBCG-LTAK63 group when compared to BCG. Immunophenotyping of lymphocytes showed that rBCG-LTAK63 immunization increased CD4+ and CD8+ T cells. An increased long-term Th1/Th17 cytokine profile was observed 90 d after subcutaneous immunization with rBCG-LTAK63. The evaluation of immune responses at 15 d after challenge showed that rBCG-LTAK63-immunized mice displayed increased TNF-α-secreting CD4+ T cells and multifunctional IL-2+ TNF-α+ CD4+ T cells as compared to BCG-immunized mice. Our results suggest that immunization with rBCG-LTAK63 induces enhanced innate and long-term immune responses as compared to BCG. These results can be correlated with the superior protection induced against TB.
Collapse
Affiliation(s)
- Carina Carvalho Dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Alex Kanno Issamu
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luciana Cezar De Cerqueira Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
42
|
Ibironke O, Carranza C, Sarkar S, Torres M, Choi HT, Nwoko J, Black K, Quintana-Belmares R, Osornio-Vargas Á, Ohman-Strickland P, Schwander S. Urban Air Pollution Particulates Suppress Human T-Cell Responses to Mycobacterium Tuberculosis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16214112. [PMID: 31731429 PMCID: PMC6862251 DOI: 10.3390/ijerph16214112] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/22/2019] [Accepted: 10/23/2019] [Indexed: 01/18/2023]
Abstract
Tuberculosis (TB) and air pollution both contribute significantly to the global burden of disease. Epidemiological studies show that exposure to household and urban air pollution increase the risk of new infections with Mycobacterium tuberculosis (M.tb) and the development of TB in persons infected with M.tb and alter treatment outcomes. There is increasing evidence that particulate matter (PM) exposure weakens protective antimycobacterial host immunity. Mechanisms by which exposure to urban PM may adversely affect M.tb-specific human T cell functions have not been studied. We, therefore, explored the effects of urban air pollution PM2.5 (aerodynamic diameters ≤2.5µm) on M.tb-specific T cell functions in human peripheral blood mononuclear cells (PBMC). PM2.5 exposure decreased the capacity of PBMC to control the growth of M.tb and the M.tb-induced expression of CD69, an early surface activation marker expressed on CD3+ T cells. PM2.5 exposure also decreased the production of IFN-γ in CD3+, TNF-α in CD3+ and CD14+ M.tb-infected PBMC, and the M.tb-induced expression of T-box transcription factor TBX21 (T-bet). In contrast, PM2.5 exposure increased the expression of anti-inflammatory cytokine IL-10 in CD3+ and CD14+ PBMC. Taken together, PM2.5 exposure of PBMC prior to infection with M.tb impairs critical antimycobacterial T cell immune functions.
Collapse
Affiliation(s)
| | - Claudia Carranza
- Department of Microbiology, National Institute of Respiratory Diseases (INER), Mexico City 1408, Mexico; (C.C.); (M.T.)
| | - Srijata Sarkar
- Environmental and Occupational Health Sciences Institute, Rutgers, Piscataway, NJ 08854, USA; (S.S.); (H.T.C.); (K.B.)
| | - Martha Torres
- Department of Microbiology, National Institute of Respiratory Diseases (INER), Mexico City 1408, Mexico; (C.C.); (M.T.)
| | - Hyejeong Theresa Choi
- Environmental and Occupational Health Sciences Institute, Rutgers, Piscataway, NJ 08854, USA; (S.S.); (H.T.C.); (K.B.)
| | - Joyce Nwoko
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ 08854, USA;
| | - Kathleen Black
- Environmental and Occupational Health Sciences Institute, Rutgers, Piscataway, NJ 08854, USA; (S.S.); (H.T.C.); (K.B.)
| | | | | | - Pamela Ohman-Strickland
- Department of Biostatistics Rutgers University School of Public Health, Piscataway, NJ 08854, USA;
| | - Stephan Schwander
- Environmental and Occupational Health Sciences Institute, Rutgers, Piscataway, NJ 08854, USA; (S.S.); (H.T.C.); (K.B.)
- Department of Environmental and Occupational Health, Rutgers School of Public Health, Piscataway, NJ 08854, USA;
- Department of Urban-Global Public Health, Rutgers University School of Public Health, Newark, NJ 07102, USA
- Correspondence:
| |
Collapse
|
43
|
Nosenko MA, Ambaryan SG, Drutskaya MS. Proinflammatory Cytokines and Skin Wound Healing in Mice. Mol Biol 2019. [DOI: 10.1134/s0026893319050121] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
44
|
Ji Z, Jian M, Chen T, Luo L, Li L, Dai X, Bai R, Ding Z, Bi Y, Wen S, Zhou G, Abi ME, Liu A, Bao F. Immunogenicity and Safety of the M72/AS01 E Candidate Vaccine Against Tuberculosis: A Meta-Analysis. Front Immunol 2019; 10:2089. [PMID: 31552037 PMCID: PMC6735267 DOI: 10.3389/fimmu.2019.02089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/19/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Currently, there is no tuberculosis (TB) vaccine recommended for use in latent TB infections and healthy adults. M72/AS01E is a new peptide vaccine currently under development, which may improve protection against TB disease. This vaccine has been investigated in several phase I/II clinical trials. We conducted a meta-analysis to clarify the immunogenicity and safety of the M72/AS01E peptide vaccine. Methods: We searched the PubMed, Embase, and Cochrane Library databases for published studies (until December 2018) investigating this candidate vaccine. A meta-analysis was performed using the standard methods and procedures established by the Cochrane Collaboration. Results: Seven eligible studies—involving 4,590 participants—were selected. The analysis revealed a vaccine efficacy was 57.0%, significantly higher abundance of polyfunctional M72-specific CD4+ T cells [standardized mean difference (SMD) = 2.58] in the vaccine group vs. the control group, the highest seropositivity rate [relative risk (RR) = 74.87] at 1 month after the second dose of vaccination (Day 60), and sustained elevated anti-M72 IgG geometric mean concentration at study end (Day 210) (SWD = 4.94). Compared with the control, participants who received vaccination were at increased risk of local injection site redness [relative risk (RR) = 5.99], local swelling (RR = 7.57), malaise (RR = 3.01), and fatigue (RR = 3.17). However, they were not at increased risk of headache (RR = 1.57), myalgia (RR = 0.97), and pain (RR = 3.02). Conclusion: The M72/AS01E vaccine against TB is safe and effective. Although the vaccine is associated with a mild adverse reaction, it is promising for the prevention of TB in healthy adults.
Collapse
Affiliation(s)
- Zhenhua Ji
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Miaomiao Jian
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Taigui Chen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Lisha Luo
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Lianbao Li
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Xiting Dai
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Ruolan Bai
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China
| | - Zhe Ding
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Yunfeng Bi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Shiyuan Wen
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Guozhong Zhou
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Manzama-Esso Abi
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China
| | - Aihua Liu
- Department of Biochemistry and Molecular Biology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| | - Fukai Bao
- Department of Microbiology and Immunology, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Tropical Infectious Diseases in Universities, Kunming Medical University, Kunming, China.,The Institute for Tropical Medicine, Kunming Medical University, Kunming, China.,Yunnan Province Key Laboratory for Major Childhood Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
45
|
Ahmad G, Mackenzie GG, Egan J, Amiji MM. DHA-SBT-1214 Taxoid Nanoemulsion and Anti-PD-L1 Antibody Combination Therapy Enhances Antitumor Efficacy in a Syngeneic Pancreatic Adenocarcinoma Model. Mol Cancer Ther 2019; 18:1961-1972. [PMID: 31439714 DOI: 10.1158/1535-7163.mct-18-1046] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/05/2018] [Accepted: 08/13/2019] [Indexed: 01/05/2023]
Abstract
The goal of this study was to evaluate combination of a novel taxoid, DHA-SBT-1214 chemotherapy, in modulating immune checkpoint marker expression and ultimately in improving antibody-based checkpoint blockade therapy in pancreatic adenocarcinoma (PDAC). DHA-SBT-1214 was encapsulated in an oil-in-water nanoemulsion and administered systemically in Panc02 syngeneic PDAC-bearing C57BL/6 mice. Following treatment with DHA-SBT-1214, expression levels of PD-L1 were measured and anti-PD-L1 antibody was administered in combination. The effects of combination therapy on efficacy and the molecular basis of synergistic effects were evaluated. PD-L1 expression was lower on Panc02 pancreatic tumor cells in vitro, which significantly increased after exposure to different chemotherapy drugs. Administration of DHA-SBT-1214, gemcitabine, and PD-L1 antibody alone failed to increase CD8+ T-cell infiltration inside tumors. However, combination of anti-PD-L1 therapy with a novel chemotherapy drug DHA-SBT-1214 in nanoemulsion (NE-DHA-SBT-1214) significantly enhanced CD8+ T-cell infiltration and the therapeutic effects of the anti-PD-L1 antibody. Furthermore, in the Panc02 syngeneic model, the NE-DHA-SBT-1214 combination therapy group reduced tumor growth to a higher extend than paclitaxel, nab-paclitaxel (Abraxane), gemcitabine, or single anti-PD-L1 antibody therapy groups. Our results indicate that NE-DHA-SBT-1214 stimulated immunogenic potential of PDAC and provided an enhanced therapeutic effect with immune checkpoint blockade therapy, which warrants further evaluation.
Collapse
Affiliation(s)
- Gulzar Ahmad
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts
| | - Gerardo G Mackenzie
- Department of Nutrition, University of California at Davis, Davis, California
| | | | - Mansoor M Amiji
- Department of Pharmaceutical Sciences, School of Pharmacy, Northeastern University, Boston, Massachusetts.
| |
Collapse
|
46
|
Ma J, Lv Z, Wang J, Lu J. Relationship Between IL-10 Gene Polymorphism and Spinal Tuberculosis. Med Sci Monit 2019; 25:4901-4906. [PMID: 31264664 PMCID: PMC6618335 DOI: 10.12659/msm.914039] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Background To investigate the relation between interleukin-10 (IL-10) gene rs1800871 (A/G) polymorphism and spinal tuberculosis. Material/Methods A total of 129 patients with spinal tuberculosis (spinal tuberculosis group) and 106 healthy subjects receiving physical examination (control group) were enrolled in this study. The general data of these subjects were collected, and the C-reactive protein, erythrocyte sedimentation rate (ESR) and baseline hematologic function were examined. The rs1800871 (A/G) polymorphism in IL-10 gene was detected by TaqMan-MGB probe method. Results The C-reactive protein, ESR, white blood cell count, absolute neutrophil count and relative neutrophil count in spinal tuberculosis group were higher than those in control group, while the absolute lymphocyte count and relative lymphocyte count were lower than those in control group (p<0.05). Compared with AA genotype, GG and AG+GG genotypes showed statistically significant difference in distribution frequency (p<0.05), but no significant difference was detected between AG genotype and AA genotype (p>0.05). In spinal tuberculosis group, the frequency of G allele was higher than that of A allele (p<0.01). The C-reactive protein, ESR, white blood cell count and relative neutrophil count in GG genotype were increased compared with those in AG+GG genotype (p<0.05). Conclusions The rs1800871 (A/G) polymorphism in IL-10 gene is related to the susceptibility to spinal tuberculosis. Moreover, carrying G allele increases the risk of spinal tuberculosis.
Collapse
Affiliation(s)
- Jinming Ma
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Zhongzhe Lv
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Jianchuan Wang
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| | - Jianmin Lu
- Department of Orthopedics, Affiliated Zhongshan Hospital of Dalian University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
47
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
48
|
Ernst JD. Mechanisms of M. tuberculosis Immune Evasion as Challenges to TB Vaccine Design. Cell Host Microbe 2019; 24:34-42. [PMID: 30001523 DOI: 10.1016/j.chom.2018.06.004] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB) is a large global health problem, in part because of the long period of coevolution of the pathogen, Mycobacterium tuberculosis, and its human host. A major factor that sustains the global epidemic of TB is the lack of a sufficiently effective vaccine. While basic mechanisms of immunity that protect against TB have been identified, attempts to improve immunity to TB by vaccination have been disappointing. This Review discusses the mechanisms used by M. tuberculosis to evade innate and adaptive immunity and that likely limit the efficacy of vaccines developed to date. Despite multiple mechanisms of immune evasion, recent trials have indicated that effective TB vaccines remain an attainable goal. This Review discusses how knowledge from other systems can inform improvements on current vaccine approaches.
Collapse
Affiliation(s)
- Joel D Ernst
- Division of Experimental Medicine, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
49
|
Naran K, Nundalall T, Chetty S, Barth S. Principles of Immunotherapy: Implications for Treatment Strategies in Cancer and Infectious Diseases. Front Microbiol 2018; 9:3158. [PMID: 30622524 PMCID: PMC6308495 DOI: 10.3389/fmicb.2018.03158] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
The advances in cancer biology and pathogenesis during the past two decades, have resulted in immunotherapeutic strategies that have revolutionized the treatment of malignancies, from relatively non-selective toxic agents to specific, mechanism-based therapies. Despite extensive global efforts, infectious diseases remain a leading cause of morbidity and mortality worldwide, necessitating novel, innovative therapeutics that address the current challenges of increasing antimicrobial resistance. Similar to cancer pathogenesis, infectious pathogens successfully fashion a hospitable environment within the host and modulate host metabolic functions to support their nutritional requirements, while suppressing host defenses by altering regulatory mechanisms. These parallels, and the advances made in targeted therapy in cancer, may inform the rational development of therapeutic interventions for infectious diseases. Although "immunotherapy" is habitually associated with the treatment of cancer, this review accentuates the evolving role of key targeted immune interventions that are approved, as well as those in development, for various cancers and infectious diseases. The general features of adoptive therapies, those that enhance T cell effector function, and ligand-based therapies, that neutralize or eliminate diseased cells, are discussed in the context of specific diseases that, to date, lack appropriate remedial treatment; cancer, HIV, TB, and drug-resistant bacterial and fungal infections. The remarkable diversity and versatility that distinguishes immunotherapy is emphasized, consequently establishing this approach within the armory of curative therapeutics, applicable across the disease spectrum.
Collapse
Affiliation(s)
- Krupa Naran
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Shivan Chetty
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Stefan Barth
- Medical Biotechnology and Immunotherapy Unit, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- South African Research Chair in Cancer Biotechnology, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
50
|
Mawad A, Helmy YA, Shalkami AG, Kathayat D, Rajashekara G. E. coli Nissle microencapsulation in alginate-chitosan nanoparticles and its effect on Campylobacter jejuni in vitro. Appl Microbiol Biotechnol 2018; 102:10675-10690. [DOI: 10.1007/s00253-018-9417-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/26/2018] [Accepted: 09/25/2018] [Indexed: 01/01/2023]
|