1
|
Lyu JH, Liou GG, Wang M, Kan MC. The genetic, biophysical and immunological studies of a self-adjuvanted protein nanoparticle. Vaccine 2025; 56:127087. [PMID: 40262373 DOI: 10.1016/j.vaccine.2025.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/16/2025] [Accepted: 03/29/2025] [Indexed: 04/24/2025]
Abstract
Adjuvant is required for boosting the immune responses for subunit vaccine. An emerging category of vaccine adjuvant is the self-assembling peptide that forms fibril and stimulates both humoral and cellular immunities. Based on our previous finding that a stabilized self-assembled protein nanoparticle (PNP), also called Vaccine Delivery system X (VADEX), assembled from a fusion protein composed of an amphipathic helical peptide and a superfolder green fluorescent protein can stimulate long lasting immune responses to an inserted peptide. In this report, we further introduced split-GFP technology into VADEX and evaluated the role of the amphipathic helical peptide integrity, thermal stability of PNP and the effect of self-adjuvant in antibody affinity maturation of this new platform, VADEX-pro. Our result shows the significance of amphipathic helical peptide sequence integrity in PNP assembly and the thermal stability. The immunological results provide the first evidence that the VADEX-pro PNP possess a self-adjuvant activity that is superior to a clinical stage adjuvant when evaluating the antibody binding affinity. Application of VADEX-pro based protein nanoparticle in vaccine and therapeutic antibody development will likely improve the quality of humoral immune responses.
Collapse
Affiliation(s)
| | - Gunn-Guang Liou
- Office of Research and Development, College of Medicine, National Taiwan University, Taipei 100233, Taiwan, ROC
| | - May Wang
- Vaxsia Biomedical Inc., 11503 Taipei, Taiwan
| | | |
Collapse
|
2
|
Olszakier S, Hussein W, Heinrich R, Andreyanov M, Blau A, Otor Y, Schiller J, Kellner S, Berlin S. Split genetically encoded calcium indicators for interorganellar junctions. Proc Natl Acad Sci U S A 2025; 122:e2415268122. [PMID: 40359047 DOI: 10.1073/pnas.2415268122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 04/04/2025] [Indexed: 05/15/2025] Open
Abstract
Genetically encoded calcium indicators (GECIs) have revolutionized the study of cellular calcium signaling, offering powerful tools for real-time optical monitoring of calcium dynamics. Although contemporary GECIs can be targeted to various organelles, there are no means to obtain active and functional GECIs exclusively at interorganellar junctions. To address this gap, we have developed a toolbox of split versions of green and red GECIs designed to reassemble only when the two "halves" come into proximity. We developed split probes to investigate interorganellar connectivity and activity between mitochondria and the ER (via split-MEGIC) or between the plasma membrane and the ER (via split-sf-MEMBER). We employ the various split-sensors to image neural Ca2+ activity in vitro and in vivo and, in the process, identify Mito-ER junctions and calcium activity within individual dendritic spines by use of split-MEGIC.
Collapse
Affiliation(s)
- Shunit Olszakier
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Wessal Hussein
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Michael Andreyanov
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Achinoam Blau
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Yara Otor
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Jackie Schiller
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Kellner
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
3
|
Saito A, Taniguchi H, Matsumoto T, Yamada R, Ogino H. Sortase A-Mediated Ligation Facilitates Metabolic Channeling in Saccharomyces cerevisiae. ACS Synth Biol 2025; 14:1567-1571. [PMID: 40254838 DOI: 10.1021/acssynbio.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Although the yeast Saccharomyces cerevisiae has been utilized for the bioproduction of various valuable substances, improving product concentration and production rate remains a challenge in its practical application. In this respect, metabolic channeling represents a potential strategy for addressing this issue. In the metabolic pathway for synthesizing a target product, closing enzymes induce substrate channeling, in which intermediates are transferred to the following enzyme to facilitate processing. To close enzymes in proximity, protein ligation is one of the solutions. However, genetic fusion often causes the generation of inactive complexes, and few techniques exist for ligating enzymes in yeast without loss of enzyme activity. Herein, we focused on sortase A, which links a short peptide tag between two target proteins. First, we demonstrated sortase A-mediated ligation in yeast using split-green fluorescent protein. Then, sortase A-mediated ligation was applied to ligate metabolic enzymes related to 3-hydroxypropionic acid, which improved 3-HP production by 2.42-fold. This strategy represents a novel approach for improving yeast bioproduction.
Collapse
Affiliation(s)
- Akira Saito
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hikaru Taniguchi
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| |
Collapse
|
4
|
Xing L, Xu J, Gong M, Liu Y, Li X, Meng L, Du R, Zhou Y, Ouyang Z, Liu X, Tao S, Cao Y, Liu C, Gao F, Han R, Shen H, Dong Y, Xu Y, Li T, Chen H, Zhao Y, Fan B, Sui L, Feng S, Liu J, Liu D, Wu X. Targeted disruption of PRC1.1 complex enhances bone remodeling. Nat Commun 2025; 16:4294. [PMID: 40341537 PMCID: PMC12062457 DOI: 10.1038/s41467-025-59638-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 04/29/2025] [Indexed: 05/10/2025] Open
Abstract
Polycomb repressive complexes (PRCs) are pivotal epigenetic regulators that preserve cell identity by restricting transcription responses to sub-threshold extracellular signals. Their roles in osteoblast function and bone formation remain unclear. Here in aging osteoblasts, we found marked activation of PRC1.1 complex, with KDM2B acting as a chromatin-binding factor and BCOR and PCGF1 enabling histone H2A monoubiquitylation (H2AK119ub1). Osteoblast-specific Kdm2b inactivation significantly enhances bone remodeling under steady-state conditions and in scenarios of bone loss. This enhancement is attributed to H2AK119ub1 downregulation and subsequent Wnt signaling derepression. Furthermore, we developed a small molecule termed iBP, that specifically inhibits the interaction between BCOR and PCGF1, thereby suppressing PRC1.1 activity. Notably, iBP administration promotes bone formation in mouse models of bone loss. Therefore, our findings identify PRC1.1 as a critical epigenetic brake on bone formation and demonstrate that therapeutic targeting of this complex enhances Wnt pathway activation, offering a promising strategy against skeletal deterioration.
Collapse
Affiliation(s)
- Liangyu Xing
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Jinxin Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Meihan Gong
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Yunzhi Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Xuanyuan Li
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
| | - Lingyu Meng
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ruyue Du
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Ying Zhou
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Zhaoguang Ouyang
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Xu Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Shaofei Tao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Yuxin Cao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Chunyi Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Feng Gao
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Ruohui Han
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Hui Shen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yan Dong
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Yong Xu
- China-New Zealand Joint Laboratory on Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- Institute of Drug Discovery, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
| | - Tao Li
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - He Chen
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Yingying Zhao
- Department of Cell Biology, Tianjin Medical University, Tianjin, China
- Department of Medicinal Chemistry, Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Baoyou Fan
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Lei Sui
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China
| | - Shiqing Feng
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Jinsong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
| | - Dayong Liu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration & Tongji Research Institute of Stomatology & Department of Endodontics, Shanghai Tongji Stomatological Hospital and Dental School, Tongji University, Shanghai, China.
| | - Xudong Wu
- State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Department of Endodontics, Tianjin Medical University School and Hospital of Stomatology & Tianjin Key Laboratory of Oral Soft and Hard Tissues Restoration and Regeneration, Tianjin Medical University, Tianjin, China.
- Department of Cell Biology, Tianjin Medical University, Tianjin, China.
- International Science and Technology Cooperation Base of Spinal Cord Injury, Department of Orthopedic Surgery, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
5
|
Barthe L, Balestrino D, Azizi B, Dessaux D, Soldan V, Esque J, Schiex T, Barbe S, Garcia-Alles LF. Promiscuous structural cross-compatibilities between major shell components of Klebsiella pneumoniae bacterial microcompartments. PLoS One 2025; 20:e0322518. [PMID: 40334006 PMCID: PMC12058022 DOI: 10.1371/journal.pone.0322518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 03/24/2025] [Indexed: 05/09/2025] Open
Abstract
Bacterial microcompartments (BMC) are submicrometric reactors that encapsulate dedicated metabolic activities. BMC-H hexamers, the most abundant components of BMC shells, play major roles for shell plasticity and permeability. In part, chemical exchanges between the BMC lumen and the cellular cytosol will be defined by the disposition of amino acids lining the central BMC-H pores. Current models attribute to BMC-H a homo-oligomeric nature. The hexagonal symmetry of corresponding pores, however, would break down if hetero-hexamers formed, a possibility suggested by the frequent presence of multiple paralogs within BMC operons. Here, we gauged the degree of structural promiscuity between the 11 BMC-H paralogs from Klebsiella pneumoniae, a potential human pathogen endowed with the capacity to express three different BMC types. Concomitant activation of transcription of several BMC operons was first shown to be possible. By leveraging an adapted tripartite GFP technology, all possible BMC-H pair combinations were screened in E. coli. Multiple structural cross-compatibilities were pinpointed between homologs arising not only from the same BMC operon, but also from different BMC types, results supported by Alphafold and ESMFold predictions. The structural stability and assembly propensity of selected hetero-associations was established by biochemical means. In light of these results, we reinterpreted published lysine cross-linking mass spectrometry data to demonstrate that one of these hetero-hexamers, involving PduA and PduJ, was already detected to form in the shell of a recombinantly-expressed 1,2-propanediol utilization compartment from Salmonella enterica. Altogether, this study points to the need to embrace an augmented structural complexity in BMC shells.
Collapse
Affiliation(s)
- Lucie Barthe
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | | - Bessam Azizi
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
- MIAT, Université Fédérale de Toulouse, INRAE, ANITI, Toulouse, France
| | - Delphine Dessaux
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Vanessa Soldan
- Plateforme de microscopie électronique intégrative METi, Centre de Biologie Intégrative, CNRS, Toulouse, France
| | - Jeremy Esque
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | - Thomas Schiex
- MIAT, Université Fédérale de Toulouse, INRAE, ANITI, Toulouse, France
| | - Sophie Barbe
- TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France
| | | |
Collapse
|
6
|
Sescil J, Fiel H, Havens SM, Fu E, Li X, Kroning KE, Solowiej I, Li P, Wang W. Functionalization of a versatile fluorescent sensor for detecting protease activity and temporally gated opioid sensing. RSC Chem Biol 2025; 6:555-562. [PMID: 39975583 PMCID: PMC11835013 DOI: 10.1039/d4cb00276h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 02/10/2025] [Indexed: 02/21/2025] Open
Abstract
Genetically encoded fluorescent sensors have been widely applied to detect cell signaling molecules and events. We previously designed a fluorescent sensor motif suitable for detecting protease activity and opioids. In this manuscript, we demonstrated the motif's first use for reporting on protease activity in animal models, demonstrating a high signal-to-background ratio of 29. We further functionalized this sensor motif to detect the activity of the coronavirus main protease, Mpro, and demonstrated its utility in characterizing an Mpro inhibitor. The Mpro sensor will facilitate the study of coronaviral activity in cell cultures and potentially in animal models. Additionally, we developed an innovative method for engineering a protease-based time-gating mechanism using this versatile sensor motif, allowing the temporally controlled detection of opioids. This time-gating strategy for detecting opioids can be generalized to other similar sensors, enabling detection of G protein-coupled receptor ligands with improved temporal resolution.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Hailey Fiel
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Steven M Havens
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Emma Fu
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Xingyu Li
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan Ann Arbor MI 48109 USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor MI 48109 USA
| | - Kayla E Kroning
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Isabel Solowiej
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
| | - Peng Li
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Department of Biologic and Materials Sciences & Prosthodontics, University of Michigan Ann Arbor MI 48109 USA
- Department of Molecular and Integrative Physiology, University of Michigan Ann Arbor MI 48109 USA
| | - Wenjing Wang
- Department of Chemistry, University of Michigan Ann Arbor MI 48109 USA
- Life Sciences Institute, University of Michigan Ann Arbor MI 48109 USA
- Neuroscience Graduate Program, University of Michigan Ann Arbor MI 48109 USA
- Program in Chemical Biology, University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
7
|
Sescil J, Havens SM, Wang W. Principles and Design of Molecular Tools for Sensing and Perturbing Cell Surface Receptor Activity. Chem Rev 2025; 125:2665-2702. [PMID: 39999110 PMCID: PMC11934152 DOI: 10.1021/acs.chemrev.4c00582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Cell-surface receptors are vital for controlling numerous cellular processes with their dysregulation being linked to disease states. Therefore, it is necessary to develop tools to study receptors and the signaling pathways they control. This Review broadly describes molecular approaches that enable 1) the visualization of receptors to determine their localization and distribution; 2) sensing receptor activation with permanent readouts as well as readouts in real time; and 3) perturbing receptor activity and mimicking receptor-controlled processes to learn more about these processes. Together, these tools have provided valuable insight into fundamental receptor biology and helped to characterize therapeutics that target receptors.
Collapse
Affiliation(s)
- Jennifer Sescil
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Steven M. Havens
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
| | - Wenjing Wang
- Department of Chemistry, University of Michigan, Ann Arbor,
MI, 48109
- Life Sciences Institute, University of Michigan, Ann Arbor,
MI, 48109
- Neuroscience Graduate Program, University of Michigan, Ann
Arbor, MI, 48109
- Program in Chemical Biology, University of Michigan, Ann
Arbor, MI, 48109
| |
Collapse
|
8
|
Zhao LW, Nardone C, Paulo JA, Elledge SJ, Kennedy S. An RNA Splicing System that Excises Transposons from Animal mRNAs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638102. [PMID: 40027818 PMCID: PMC11870413 DOI: 10.1101/2025.02.14.638102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
All genomes harbor mobile genetic parasites called transposable elements (TEs). Here we describe a system, which we term SOS splicing, that protects C. elegans and human genes from DNA transposon-mediated disruption by excising these TEs from host mRNAs. SOS splicing, which operates independently of the spliceosome, is a pattern recognition system triggered by base-pairing of inverted terminal repeat elements, which are a defining feature of the DNA transposons. We identify three factors required for SOS splicing in both C. elegans and human cells; AKAP17A, which binds TE-containing mRNAs; the RNA ligase RTCB; and CAAP1, which bridges RTCB and AKAP17A, allowing RTCB to ligate mRNA fragments generated by TE excision. We propose that SOS splicing is a novel, conserved, and RNA structure-directed mode of mRNA splicing and that one function of SOS splicing is to genetically buffer animals from the deleterious effects of TE-mediated gene perturbation.
Collapse
Affiliation(s)
- Long-Wen Zhao
- Department of Genetics, Harvard Medical School, Boston MA, 02115
| | - Christopher Nardone
- Department of Genetics, Harvard Medical School, Boston MA, 02115
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston MA, 02115
- Howard Hughes Medical Institute, Boston MA, 02115
- Department of Cell Biology, Harvard Medical School, Boston MA, 02115
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston MA, 02115
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School, Boston MA, 02115
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Boston MA, 02115
- Howard Hughes Medical Institute, Boston MA, 02115
| | - Scott Kennedy
- Department of Genetics, Harvard Medical School, Boston MA, 02115
| |
Collapse
|
9
|
Salgueiro-Toledo VC, Bertol J, Gutierrez C, Serrano-Mestre JL, Ferrer-Luzon N, Vázquez-Iniesta L, Palacios A, Pasquina-Lemonche L, Espaillat A, Lerma L, Weinrick B, Lavin JL, Elortza F, Azkargorta M, Prieto A, Buendía-Nacarino P, Luque-García JL, Neyrolles O, Cava F, Hobbs JK, Sanz J, Prados-Rosales R. Maintenance of cell wall remodeling and vesicle production are connected in Mycobacterium tuberculosis. eLife 2025; 13:RP94982. [PMID: 39960848 PMCID: PMC11832169 DOI: 10.7554/elife.94982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2025] Open
Abstract
Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis (Mtb) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR (virRmut) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb. We employ genetic, transcriptional, proteomics, ultrastructural, and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virRmut. Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.
Collapse
Affiliation(s)
- Vivian C Salgueiro-Toledo
- Department of Preventive Medicine and Public Health and Microbiology, Universidad Autónoma de MadridMadridSpain
| | - Jorge Bertol
- Institute for Bio-computation and Physics of Complex Systems BIFI, Department of Theoretical Physics, University of ZaragozaZaragozaSpain
| | - Claude Gutierrez
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPSToulouseSpain
| | - Jose L Serrano-Mestre
- Department of Preventive Medicine and Public Health and Microbiology, Universidad Autónoma de MadridMadridSpain
| | - Noelia Ferrer-Luzon
- Institute for Bio-computation and Physics of Complex Systems BIFI, Department of Theoretical Physics, University of ZaragozaZaragozaSpain
| | - Lucia Vázquez-Iniesta
- Department of Preventive Medicine and Public Health and Microbiology, Universidad Autónoma de MadridMadridSpain
| | - Ainhoa Palacios
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology ParkDerioSpain
| | | | - Akbar Espaillat
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå UniversityUmeåSweden
| | - Laura Lerma
- Department of Preventive Medicine and Public Health and Microbiology, Universidad Autónoma de MadridMadridSpain
| | | | | | - Felix Elortza
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology ParkDerioSpain
| | - Mikel Azkargorta
- CIC bioGUNE, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology ParkDerioSpain
| | - Alicia Prieto
- Department of Microbial & Plan Biotechnology, Centro de Investigaciones Biológicas Margarita Salas, Spanish National Research Council (CSIC)MadridSpain
| | | | - Jose L Luque-García
- Department of Analytical Chemistry, Universidad Complutense de MadridMadridSpain
| | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPSToulouseSpain
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå UniversityUmeåSweden
| | - Jamie K Hobbs
- Department of Physics and Astronomy, University of SheffieldSheffieldUnited Kingdom
| | - Joaquín Sanz
- Institute for Bio-computation and Physics of Complex Systems BIFI, Department of Theoretical Physics, University of ZaragozaZaragozaSpain
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
10
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. Science 2025; 387:74-81. [PMID: 39745956 DOI: 10.1126/science.adm8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression. We engineered cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach that allows the design of signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jason W Rocks
- Department of Physics, Boston University, Boston, MA, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Andrew J Walters
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Graduate Program in Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kshitij Rai
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jing Liu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
11
|
Ma Y, Winegar PH, Figg CA, Ramani N, Anderson AJ, Ngo K, Ahrens JF, Chellam NS, Kim YJ, Mirkin CA. DNA-Regulated Multi-Protein Complement Control. J Am Chem Soc 2024; 146:32912-32918. [PMID: 39569872 PMCID: PMC11755408 DOI: 10.1021/jacs.4c11315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
In nature, the interactions between proteins and their complements/substrates can dictate complex functions. Herein, we explore how DNA on nucleic acid modified proteins can be used as scaffolds to deliberately control interactions with a peptide complement (by adjusting length, sequence, and rigidity). As model systems, split GFPs were covalently connected through DNA scaffolds (36-58 bp). Increasing the length or decreasing the rigidity of the DNA scaffold (through removal of the duplex) increases the extent of intramolecular protein binding (up to 7.5-fold) between these GFP fragments. Independent and dynamic control over functional outputs can also be regulated by DNA hybridization; a multi-protein (split CFP and YFP) architecture was synthesized and characterized by fluorescence. This ternary construct shows that DNA displacement strands in different stoichiometric ratios can be used deliberately to regulate competitive binding between two unique sets of proteins. These studies establish a foundation for creating new classes of biological machinery based upon the concept of DNA-regulated multi-protein complement control.
Collapse
Affiliation(s)
- Yinglun Ma
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Peter H. Winegar
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - C. Adrian Figg
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Namrata Ramani
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Alex J. Anderson
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Kathleen Ngo
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - John F. Ahrens
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Nikhil S. Chellam
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Young Jun Kim
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| | - Chad. A. Mirkin
- Department of Chemistry, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, 60208, United States
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, Evanston, Illinois, 60208, United States
- International Institute for Nanotechnology, Northwestern University, Evanston, Illinois, 60208, United States
| |
Collapse
|
12
|
Pradanas-González F, Cortés MG, Glahn-Martínez B, Del Barrio M, Purohit P, Benito-Peña E, Orellana G. Biosensing strategies using recombinant luminescent proteins and their use for food and environmental analysis. Anal Bioanal Chem 2024; 416:7205-7224. [PMID: 39325139 DOI: 10.1007/s00216-024-05552-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Progress in synthetic biology and nanotechnology plays at present a major role in the fabrication of sophisticated and miniaturized analytical devices that provide the means to tackle the need for new tools and methods for environmental and food safety. Significant research efforts have led to biosensing experiments experiencing a remarkable growth with the development and application of recombinant luminescent proteins (RLPs) being at the core of this boost. Integrating RLPs into biosensors has resulted in highly versatile detection platforms. These platforms include luminescent enzyme-linked immunosorbent assays (ELISAs), bioluminescence resonance energy transfer (BRET)-based sensors, and genetically encoded luminescent biosensors. Increased signal-to-noise ratios, rapid response times, and the ability to monitor dynamic biological processes in live cells are advantages inherent to the approaches mentioned above. Furthermore, novel fusion proteins and optimized expression systems to improve their stability, brightness, and spectral properties have enhanced the performance and pertinence of luminescent biosensors in diverse fields. This review highlights recent progress in RLP-based biosensing, showcasing their implementation for monitoring different contaminants commonly found in food and environmental samples. Future perspectives and potential challenges in these two areas of interest are also addressed, providing a comprehensive overview of the current state and a forecast of the biosensing strategies using recombinant luminescent proteins to come.
Collapse
Affiliation(s)
- Fernando Pradanas-González
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Marta García Cortés
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Bettina Glahn-Martínez
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Melisa Del Barrio
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| | - Pablo Purohit
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Elena Benito-Peña
- Department of Analytical Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain.
| | - Guillermo Orellana
- Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid, Plaza Ciencias 2, 28040, Madrid, Spain
| |
Collapse
|
13
|
Salgueiro V, Bertol J, Gutierrez C, Serrano-Mestre JL, Ferrer-Luzon N, Vázquez-Iniesta L, Palacios A, Pasquina-Lemonche L, Espaillat A, Lerma L, Weinrick B, Lavin JL, Elortza F, Azkalgorta M, Prieto A, Buendía-Nacarino P, Luque-García JL, Neyrolles O, Cava F, Hobbs JK, Sanz J, Prados-Rosales R. Maintenance of cell wall remodeling and vesicle production are connected in Mycobacterium tuberculosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.19.567727. [PMID: 38187572 PMCID: PMC10769192 DOI: 10.1101/2023.11.19.567727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Pathogenic and nonpathogenic mycobacteria secrete extracellular vesicles (EVs) under various conditions. EVs produced by Mycobacterium tuberculosis ( Mtb ) have raised significant interest for their potential in cell communication, nutrient acquisition, and immune evasion. However, the relevance of vesicle secretion during tuberculosis infection remains unknown due to the limited understanding of mycobacterial vesicle biogenesis. We have previously shown that a transposon mutant in the LCP-related gene virR ( virR mut ) manifested a strong attenuated phenotype during experimental macrophage and murine infections, concomitant to enhanced vesicle release. In this study, we aimed to understand the role of VirR in the vesicle production process in Mtb . We employ genetic, transcriptional, proteomics, ultrastructural and biochemical methods to investigate the underlying processes explaining the enhanced vesiculogenesis phenomenon observed in the virR mut . Our results establish that VirR is critical to sustain proper cell permeability via regulation of cell envelope remodeling possibly through the interaction with similar cell envelope proteins, which control the link between peptidoglycan and arabinogalactan. These findings advance our understanding of mycobacterial extracellular vesicle biogenesis and suggest that these set of proteins could be attractive targets for therapeutic intervention.
Collapse
|
14
|
Gest AM, Sahan AZ, Zhong Y, Lin W, Mehta S, Zhang J. Molecular Spies in Action: Genetically Encoded Fluorescent Biosensors Light up Cellular Signals. Chem Rev 2024; 124:12573-12660. [PMID: 39535501 PMCID: PMC11613326 DOI: 10.1021/acs.chemrev.4c00293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/07/2024] [Accepted: 09/20/2024] [Indexed: 11/16/2024]
Abstract
Cellular function is controlled through intricate networks of signals, which lead to the myriad pathways governing cell fate. Fluorescent biosensors have enabled the study of these signaling pathways in living systems across temporal and spatial scales. Over the years there has been an explosion in the number of fluorescent biosensors, as they have become available for numerous targets, utilized across spectral space, and suited for various imaging techniques. To guide users through this extensive biosensor landscape, we discuss critical aspects of fluorescent proteins for consideration in biosensor development, smart tagging strategies, and the historical and recent biosensors of various types, grouped by target, and with a focus on the design and recent applications of these sensors in living systems.
Collapse
Affiliation(s)
- Anneliese
M. M. Gest
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Ayse Z. Sahan
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Biomedical
Sciences Graduate Program, University of
California, San Diego, La Jolla, California 92093, United States
| | - Yanghao Zhong
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Wei Lin
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Sohum Mehta
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
| | - Jin Zhang
- Department
of Pharmacology, University of California,
San Diego, La Jolla, California 92093, United States
- Shu
Chien-Gene Lay Department of Bioengineering, University of California, San Diego, La Jolla, California 92093, United States
- Department
of Chemistry and Biochemistry, University
of California, San Diego, La Jolla, California 92093, United States
| |
Collapse
|
15
|
Lévrier A, Capin J, Mayonove P, Karpathakis II, Voyvodic P, DeVisch A, Zuniga A, Cohen-Gonsaud M, Cabantous S, Noireaux V, Bonnet J. Split Reporters Facilitate Monitoring of Gene Expression and Peptide Production in Linear Cell-Free Transcription-Translation Systems. ACS Synth Biol 2024; 13:3119-3127. [PMID: 39292739 DOI: 10.1021/acssynbio.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cell-free transcription-translation (TXTL) systems expressing genes from linear dsDNA enable the rapid prototyping of genetic devices while avoiding cloning steps. However, repetitive inclusion of a reporter gene is an incompressible cost and sometimes accounts for most of the synthesized DNA length. Here we present reporter systems based on split-GFP systems that reassemble into functional fluorescent proteins and can be used to monitor gene expression in E. coli TXTL. The 135 bp GFP10-11 fragment produces a fluorescent signal comparable to its full-length GFP counterpart when reassembling with its complementary protein synthesized from the 535 bp fragment expressed in TXTL. We show that split reporters can be used to characterize promoter libraries, with data qualitatively comparable to full-length GFP and matching in vivo expression measurements. We also use split reporters as small fusion tags to measure the TXTL protein and peptide production yield. Finally, we generalize our concept by providing a luminescent split reporter based on split-nanoluciferase. The ∼80% gene sequence length reduction afforded by split reporters lowers synthesis costs and liberates space for testing larger devices while producing a reliable output. In the peptide production context, the small size of split reporters compared with full-length GFP is less likely to bias peptide solubility assays. We anticipate that split reporters will facilitate rapid and cost-efficient genetic device prototyping, protein production, and interaction assays.
Collapse
Affiliation(s)
- Antoine Lévrier
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Université Paris Cité, INSERM U1284, Center for Research and Interdisciplinarity, F-75006 Paris, France
| | - Julien Capin
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Pauline Mayonove
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Ioannis-Ilie Karpathakis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter Voyvodic
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Angelique DeVisch
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Ana Zuniga
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Martin Cohen-Gonsaud
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse (CRCT), Inserm, Université de Toulouse, UPS, CNRS, Toulouse 31037, France
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| |
Collapse
|
16
|
Kamiya H. Split MutT prevents the mutator phenotype of mutT-deficient Escherichia coli. Genes Environ 2024; 46:19. [PMID: 39380056 PMCID: PMC11460165 DOI: 10.1186/s41021-024-00314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 09/22/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND The Escherichia coli MutT (NudA) protein catalyzes the hydrolysis of an oxidized form of dGTP, 8-oxo-7,8-dihydro-dGTP (8-hydroxy-dGTP), and the spontaneous mutation frequency is elevated in E. coli cells deficient in the mutT gene. RESULTS A split MutT, comprising the N-terminal (residues 1-95) and C-terminal (residues 96-129) peptides, was designed based on the known tertiary structure and linker insertion mutagenesis experiments. The mutator phenotype was complemented when the two peptides were separately expressed in mutT E. coli cells. CONCLUSIONS These results indicated that this split MutT functions as a nucleotide pool sanitization enzyme in vivo.
Collapse
Affiliation(s)
- Hiroyuki Kamiya
- Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8553, Japan.
| |
Collapse
|
17
|
Jing X, Zhang N, Zhou X, Chen P, Gong J, Zhang K, Wu X, Cai W, Ye BC, Hao P, Zhao GP, Yang S, Li X. Creating a bacterium that forms eukaryotic nucleosome core particles. Nat Commun 2024; 15:8283. [PMID: 39333491 PMCID: PMC11436726 DOI: 10.1038/s41467-024-52484-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
The nucleosome is one of the hallmarks of eukaryotes, a dynamic platform that supports many critical functions in eukaryotic cells. Here, we engineer the in vivo assembly of the nucleosome core in the model bacterium Escherichia coli. We show that bacterial chromosome DNA and eukaryotic histones can assemble in vivo to form nucleosome complexes with many features resembling those found in eukaryotes. The formation of nucleosomes in E. coli was visualized with atomic force microscopy and using tripartite split green fluorescent protein. Under a condition that moderate histones expression was induced at 1 µM IPTG, the nucleosome-forming bacterium is viable and has sustained growth for at least 110 divisions in longer-term growth experiments. It exhibits stable nucleosome formation, a consistent transcriptome across passages, and reduced growth fitness under stress conditions. In particular, the nucleosome arrays in E. coli genic regions have profiles resembling those in eukaryotic cells. The observed compatibility between the eukaryotic nucleosome and the bacterial chromosome machinery may reflect a prerequisite for bacteria-archaea union, providing insight into eukaryogenesis and the origin of the nucleosome.
Collapse
Grants
- This work was supported in part by the National Natural Science Foundation of China (32393971 awarded to X.J., 92451303 and 32270719 awarded to X.L., 32200093 awarded to P.C.), the National Key R&D Program of China (2023ZD04073 awarded to X.L.), the National Science and Technology Major Projects (2018YFA0903700 awarded to X.J., 2019YFA0904600 awarded to Yan Zhu), and the Strategic Projects of the Chinese Academy of Sciences (XDA24010403 awarded to X.L.). We thank Fan Gong at the National Facility for Protein Science in Shanghai (NFPS), Shanghai Advanced Research Institute, CAS, for technical support with AFM experiments, and Yuan Yuan Gao, Shanshan Wang, Lianyan Jing, and Xiaoyan Xu at the core facility of the Center for Excellence in Molecular Plant Sciences (CEMPS) for assistance with LC-MS/MS experiments.
Collapse
Affiliation(s)
- Xinyun Jing
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Jie Gong
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kaixiang Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xueting Wu
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjuan Cai
- Core Facility Center, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Pei Hao
- University of Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Molecular Virology and Immunology, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, China
| | - Guo-Ping Zhao
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
18
|
Xu S, Lee I, Kwon SJ, Kim E, Nevo L, Straight L, Murata H, Matyjaszewski K, Dordick JS. Split fluorescent protein-mediated multimerization of cell wall binding domain for highly sensitive and selective bacterial detection. N Biotechnol 2024; 82:54-64. [PMID: 38750815 DOI: 10.1016/j.nbt.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/22/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Cell wall peptidoglycan binding domains (CBDs) of cell lytic enzymes, including bacteriocins, autolysins and bacteriophage endolysins, enable highly selective bacterial binding, and thus, have potential as biorecognition molecules for nondestructive bacterial detection. Here, a novel design for a self-complementing split fluorescent protein (FP) complex is proposed, where a multimeric FP chain fused with specific CBDs ((FP-CBD)n) is assembled inside the cell, to improve sensitivity by enhancing the signal generated upon Staphylococcus aureus or Bacillus anthracis binding. Flow cytometry shows enhanced fluorescence on the cell surface with increasing FP stoichiometry and surface plasmon resonance reveals nanomolar binding affinity to isolated peptidoglycan. The breadth of function of these complexes is demonstrated through the use of CBD modularity and the ability to attach enzymatic detection modalities. Horseradish peroxidase-coupled (FP-CBD)n complexes generate a catalytic amplification, with the degree of amplification increasing as a function of FP length, reaching a limit of detection (LOD) of 103 cells/droplet (approximately 0.1 ng S. aureus or B. anthracis) within 15 min on a polystyrene surface. These fusion proteins can be multiplexed for simultaneous detection. Multimeric split FP-CBD fusions enable use as a biorecognition molecule with enhanced signal for use in bacterial biosensing platforms.
Collapse
Affiliation(s)
- Shirley Xu
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Inseon Lee
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Seok-Joon Kwon
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Eunsol Kim
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Liv Nevo
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Lorelli Straight
- Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA
| | - Hironobu Murata
- Department of Chemistry, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh, PA, USA
| | | | - Jonathan S Dordick
- Department of Chemical and Biological Engineering, and Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA; Department of Biology, Rensselaer Polytechnic Institute, 110 8th Street, Troy, NY, USA.
| |
Collapse
|
19
|
Durans ADM, Napoleão-Pêgo P, Reis FCG, Dias ER, Machado LESF, Lechuga GC, Junqueira ACV, De-Simone SG, Provance DW. Chagas Disease Diagnosis with Trypanosoma cruzi-Exclusive Epitopes in GFP. Vaccines (Basel) 2024; 12:1029. [PMID: 39340059 PMCID: PMC11435546 DOI: 10.3390/vaccines12091029] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 09/30/2024] Open
Abstract
Serological tests are critical tools in the fight against infectious disease. They detect antibodies produced during an adaptive immune response against a pathogen with an immunological reagent, whose antibody binding characteristics define the specificity and sensitivity of the assay. While pathogen proteins have conveniently served as reagents, their performance is limited by the natural grouping of specific and non-specific antibody binding sites, epitopes. An attractive solution is to build synthetic proteins that only contains pathogen-specific epitopes, which could theoretically reach 100% specificity. However, the genesis of de novo proteins remains a challenge. To address the uncertainty of producing a synthetic protein, we have repurposed the beta barrel of fluorescent proteins into a receptacle that can receive several epitope sequences without compromising its ability to be expressed. Here, two versions of a multiepitope protein were built using the receptacle that differ by their grouping of epitopes specific to the parasite Trypanosoma cruzi, the causative agent for Chagas disease. An evaluation of their performance as the capture reagent in ELISAs showed near-complete agreement with recommended diagnostic protocols. The results suggest that a single assay could be developed for the diagnosis of Chagas disease and that this approach could be applied to other diseases.
Collapse
Affiliation(s)
- Andressa da M Durans
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Interdisciplinary Laboratory of Medical Researchers, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Paloma Napoleão-Pêgo
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Flavia C G Reis
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Evandro R Dias
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Laboratory on Parasitic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Luciana E S F Machado
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Department of Genetics and Biology Evolution, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Guilherme C Lechuga
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Angela C V Junqueira
- Laboratory on Parasitic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| | - Salvatore G De-Simone
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Program of Post-Graduation on Science and Biotechnology, Department of Molecular and Cellular Biology, Biology Institute, Federal Fluminense University, Niterói 22040-036, Brazil
| | - David W Provance
- Center for Technological Development in Health, National Institute of Science and Technology for Innovation in Neglected Population Diseases, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
- Epidemiology and Molecular Systematics Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro 21040-900, Brazil
| |
Collapse
|
20
|
Park KS, Cha H, Niu J, Soh HT, Lee JH, Pack SP. DNA-controlled protein fluorescence: Design of aptamer-split peptide hetero-modulator for GFP to respond to intracellular ATP levels. Nucleic Acids Res 2024; 52:8063-8071. [PMID: 38917331 DOI: 10.1093/nar/gkae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Enabling the precise control of protein functions with artificially programmed reaction patterns is beneficial for investigating biological processes. Although several strategies have been established that employ the programmability of nucleic acid, they have been limited to DNA hybridization without external stimuli or target binding. Here, we report an approach for the DNA-mediated control of the tripartite split-GFP assembly via aptamers with responsiveness to intracellular small molecules as stimuli. We designed a novel structure-switching aptamer-peptide conjugate as a hetero modulator for split GFP in response to ATP. By conjugating two peptides (S10/11) derived from the tripartite split-GFP to ATP aptamer, we achieved GFP reassembly using only ATP as a trigger molecule. The response to ATP at ≥4 mM concentrations indicated that it can be applied to respond to intracellular ATP in live cells. Furthermore, our hetero-modulator exhibited high and long-term stability, with a half-life of approximately four days in a serum stability assay, demonstrating resistance to nuclease degradation. We validated that our aptamer-modulator split GFP was successfully reconstituted in the cell in response to intracellular ATP levels. Our aptamer-modulated split GFP platform can be utilized to monitor a wide range of intracellular metabolites by replacing the aptamer sequence.
Collapse
Affiliation(s)
- Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
| | - Hanvit Cha
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyup Lee
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
21
|
Batistatou N, Kritzer JA. Recent advances in methods for quantifying the cell penetration of macromolecules. Curr Opin Chem Biol 2024; 81:102501. [PMID: 39024686 PMCID: PMC11323051 DOI: 10.1016/j.cbpa.2024.102501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/17/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
As the landscape of macromolecule therapeutics advances, drug developers are continuing to aim at intracellular targets. To activate, inhibit, or degrade these targets, the macromolecule must be delivered efficiently to intracellular compartments. Quite often, there is a discrepancy between binding affinity in biochemical assays and activity in cell-based assays. Identifying the bottleneck for cell-based activity requires robust assays that quantify total cellular uptake and/or cytosolic delivery. Recognizing this need, chemical biologists have designed a plethora of assays to make this measurement, each with distinct advantages and disadvantages. In this review, we describe the latest and most promising developments in the last 3 to 4 years.
Collapse
Affiliation(s)
| | - Joshua A Kritzer
- Department of Chemistry, Tufts University, Medford MA 02155, USA.
| |
Collapse
|
22
|
Ren H, Ou Q, Pu Q, Lou Y, Yang X, Han Y, Liu S. Comprehensive Review on Bimolecular Fluorescence Complementation and Its Application in Deciphering Protein-Protein Interactions in Cell Signaling Pathways. Biomolecules 2024; 14:859. [PMID: 39062573 PMCID: PMC11274695 DOI: 10.3390/biom14070859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Signaling pathways are responsible for transmitting information between cells and regulating cell growth, differentiation, and death. Proteins in cells form complexes by interacting with each other through specific structural domains, playing a crucial role in various biological functions and cell signaling pathways. Protein-protein interactions (PPIs) within cell signaling pathways are essential for signal transmission and regulation. The spatiotemporal features of PPIs in signaling pathways are crucial for comprehending the regulatory mechanisms of signal transduction. Bimolecular fluorescence complementation (BiFC) is one kind of imaging tool for the direct visualization of PPIs in living cells and has been widely utilized to uncover novel PPIs in various organisms. BiFC demonstrates significant potential for application in various areas of biological research, drug development, disease diagnosis and treatment, and other related fields. This review systematically summarizes and analyzes the technical advancement of BiFC and its utilization in elucidating PPIs within established cell signaling pathways, including TOR, PI3K/Akt, Wnt/β-catenin, NF-κB, and MAPK. Additionally, it explores the application of this technology in revealing PPIs within the plant hormone signaling pathways of ethylene, auxin, Gibberellin, and abscisic acid. Using BiFC in conjunction with CRISPR-Cas9, live-cell imaging, and ultra-high-resolution microscopy will enhance our comprehension of PPIs in cell signaling pathways.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shiping Liu
- State Key Laboratory of Resource Insects, Southwest University, Chongqing 400716, China; (H.R.); (Q.O.); (Q.P.); (Y.L.); (X.Y.); (Y.H.)
| |
Collapse
|
23
|
Wu Y, Jensen N, Rossner MJ, Wehr MC. Exploiting Cell-Based Assays to Accelerate Drug Development for G Protein-Coupled Receptors. Int J Mol Sci 2024; 25:5474. [PMID: 38791511 PMCID: PMC11121687 DOI: 10.3390/ijms25105474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
G protein-coupled receptors (GPCRs) are relevant targets for health and disease as they regulate various aspects of metabolism, proliferation, differentiation, and immune pathways. They are implicated in several disease areas, including cancer, diabetes, cardiovascular diseases, and mental disorders. It is worth noting that about a third of all marketed drugs target GPCRs, making them prime pharmacological targets for drug discovery. Numerous functional assays have been developed to assess GPCR activity and GPCR signaling in living cells. Here, we review the current literature of genetically encoded cell-based assays to measure GPCR activation and downstream signaling at different hierarchical levels of signaling, from the receptor to transcription, via transducers, effectors, and second messengers. Singleplex assay formats provide one data point per experimental condition. Typical examples are bioluminescence resonance energy transfer (BRET) assays and protease cleavage assays (e.g., Tango or split TEV). By contrast, multiplex assay formats allow for the parallel measurement of multiple receptors and pathways and typically use molecular barcodes as transcriptional reporters in barcoded assays. This enables the efficient identification of desired on-target and on-pathway effects as well as detrimental off-target and off-pathway effects. Multiplex assays are anticipated to accelerate drug discovery for GPCRs as they provide a comprehensive and broad identification of compound effects.
Collapse
Affiliation(s)
- Yuxin Wu
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| | - Niels Jensen
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Moritz J. Rossner
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
- Section of Molecular Neurobiology, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
| | - Michael C. Wehr
- Research Group Cell Signalling, Department of Psychiatry and Psychotherapy, LMU University Hospital, LMU Munich, Nussbaumstr. 7, 80336 Munich, Germany
- Systasy Bioscience GmbH, Balanstr. 6, 81669 Munich, Germany
| |
Collapse
|
24
|
Bae J, Kim J, Choi J, Lee H, Koh M. Split Proteins and Reassembly Modules for Biological Applications. Chembiochem 2024; 25:e202400123. [PMID: 38530024 DOI: 10.1002/cbic.202400123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 03/27/2024]
Abstract
Split systems, modular entities enabling controlled biological processes, have become instrumental in biological research. This review highlights their utility across applications like gene regulation, protein interaction identification, and biosensor development. Covering significant progress over the last decade, it revisits traditional split proteins such as GFP, luciferase, and inteins, and explores advancements in technologies like Cas proteins and base editors. We also examine reassembly modules and their applications in diverse fields, from gene regulation to therapeutic innovation. This review offers a comprehensive perspective on the recent evolution of split systems in biological research.
Collapse
Affiliation(s)
- Jieun Bae
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Jonghoon Kim
- Department of Chemistry and Integrative Institute of Basic Science, Soongsil University, Seoul, 06978, Republic of Korea
| | - Jongdoo Choi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Hwiyeong Lee
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
25
|
Li L, Liu X, Yang S, Li M, Wu Y, Hu S, Wang W, Jiang A, Zhang Q, Zhang J, Ma X, Hu J, Zhao Q, Liu Y, Li D, Hu J, Yang C, Feng W, Wang X. The HEAT repeat protein HPO-27 is a lysosome fission factor. Nature 2024; 628:630-638. [PMID: 38538795 DOI: 10.1038/s41586-024-07249-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/28/2024] [Indexed: 04/06/2024]
Abstract
Lysosomes are degradation and signalling centres crucial for homeostasis, development and ageing1. To meet diverse cellular demands, lysosomes remodel their morphology and function through constant fusion and fission2,3. Little is known about the molecular basis of fission. Here we identify HPO-27, a conserved HEAT repeat protein, as a lysosome scission factor in Caenorhabditis elegans. Loss of HPO-27 impairs lysosome fission and leads to an excessive tubular network that ultimately collapses. HPO-27 and its human homologue MROH1 are recruited to lysosomes by RAB-7 and enriched at scission sites. Super-resolution imaging, negative-staining electron microscopy and in vitro reconstitution assays reveal that HPO-27 and MROH1 self-assemble to mediate the constriction and scission of lysosomal tubules in worms and mammalian cells, respectively, and assemble to sever supported membrane tubes in vitro. Loss of HPO-27 affects lysosomal morphology, integrity and degradation activity, which impairs animal development and longevity. Thus, HPO-27 and MROH1 act as self-assembling scission factors to maintain lysosomal homeostasis and function.
Collapse
Affiliation(s)
- Letao Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Xilu Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shanshan Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Meijiao Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Yanwei Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Siqi Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wenjuan Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Amin Jiang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qianqian Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junbing Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaoli Ma
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Junyan Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Qiaohong Zhao
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
| | - Yubing Liu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Junjie Hu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Chonglin Yang
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, and Center for Life Sciences, School of Life Sciences, Yunnan University, Kunming, China
- Southwest United Graduate School, Kunming, China
| | - Wei Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Xiaochen Wang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
- Southwest United Graduate School, Kunming, China.
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|
26
|
Polge C, Cabantous S, Taillandier D. Tripartite Split-GFP for High Throughput Screening of Small Molecules: A Powerful Strategy for Targeting Transient/Labile Interactors like E2-E3 Ubiquitination Enzymes. Chembiochem 2024; 25:e202300723. [PMID: 38088048 DOI: 10.1002/cbic.202300723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Indexed: 01/13/2024]
Abstract
The search for inhibitors of the Ubiquitin Proteasome System (UPS) is an expanding area, due to the crucial role of UPS enzymes in several diseases. The complexity of the UPS and the multiple protein-protein interactions (PPIs) involved, either between UPS proteins themselves or between UPS components and theirs targets, offer an incredibly wide field for the development of chemical compounds for specifically modulating or inhibiting metabolic pathways. However, numerous UPS PPIs are transient/labile, due the processivity of the system (Ubiquitin [Ub] chain elongation, Ub transfer, etc.). Among the different strategies that can be used either for deciphering UPS PPI or for identifying/characterizing small compounds inhibitors, the split-GFP approach offers several advantages notably for high throughput screening of drugs. Split-GFP is based on the principle of protein-fragment complementation assay (PCA). PCA allows addressing PPIs by coupling each protein of interest (POI) to fragments of a reporter protein whose reconstitution is linked to the interaction of the POI. Here, we review the evolution of the split-GFP approach from bipartite to tripartite Split-GFP and its recent applicability for screening chemical compounds targeting the UPS.
Collapse
Affiliation(s)
- Cécile Polge
- Université Clermont Auvergne INRAE, UNH, Unité de Nutrition Humaine, F-63000, Clermont-Ferrand, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse INSERM UMR 1037, Université de Toulouse, F-31037, Toulouse, France
| | - Daniel Taillandier
- Université Clermont Auvergne INRAE, UNH, Unité de Nutrition Humaine, F-63000, Clermont-Ferrand, France
| |
Collapse
|
27
|
Chakrabarti S, Klich JD, Khallaf MA, Hulme AJ, Sánchez-Carranza O, Baran ZM, Rossi A, Huang ATL, Pohl T, Fleischer R, Fürst C, Hammes A, Bégay V, Hörnberg H, Finol-Urdaneta RK, Poole K, Dottori M, Lewin GR. Touch sensation requires the mechanically gated ion channel ELKIN1. Science 2024; 383:992-998. [PMID: 38422143 DOI: 10.1126/science.adl0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Touch perception is enabled by mechanically activated ion channels, the opening of which excites cutaneous sensory endings to initiate sensation. In this study, we identify ELKIN1 as an ion channel likely gated by mechanical force, necessary for normal touch sensitivity in mice. Touch insensitivity in Elkin1-/- mice was caused by a loss of mechanically activated currents (MA currents) in around half of all sensory neurons activated by light touch (low-threshold mechanoreceptors). Reintroduction of Elkin1 into sensory neurons from Elkin1-/- mice restored MA currents. Additionally, small interfering RNA-mediated knockdown of ELKIN1 from induced human sensory neurons substantially reduced indentation-induced MA currents, supporting a conserved role for ELKIN1 in human touch. Our data identify ELKIN1 as a core component of touch transduction in mice and potentially in humans.
Collapse
Affiliation(s)
- Sampurna Chakrabarti
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Jasmin D Klich
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Mohammed A Khallaf
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
- Department of Zoology and Entomology, Faculty of Science, Assiut University, Assiut 71516, Egypt
| | - Amy J Hulme
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Oscar Sánchez-Carranza
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Zuzanna M Baran
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
- Molecular and Cellular Basis of Behavior, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Alice Rossi
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Angela Tzu-Lun Huang
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Tobias Pohl
- Molecular and Cellular Basis of Behavior, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Raluca Fleischer
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Carina Fürst
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
- Molecular Pathways in Cortical Development, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Annette Hammes
- Molecular Pathways in Cortical Development, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Valérie Bégay
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
| | - Hanna Hörnberg
- Molecular and Cellular Basis of Behavior, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
- NeuroCure Cluster of Excellence, Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Rocio K Finol-Urdaneta
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Kate Poole
- School of Biomedical Sciences, Faculty of Medicine & Health, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mirella Dottori
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gary R Lewin
- Molecular Physiology of Somatic Sensation Laboratory, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), 13125 Berlin-Buch, Germany
- Charité-Universitätsmedizin Berlin, 10117 Berlin, Germany
- German Center for Mental Health (DZPG), partner site Berlin, 10117 Berlin, Germany
| |
Collapse
|
28
|
Duarte-Silva S, Da Silva JD, Monteiro-Fernandes D, Costa MD, Neves-Carvalho A, Raposo M, Soares-Cunha C, Correia JS, Nogueira-Goncalves G, Fernandes HS, Oliveira S, Ferreira-Fernandes AR, Rodrigues F, Pereira-Sousa J, Vilasboas-Campos D, Guerreiro S, Campos J, Meireles-Costa L, Rodrigues CM, Cabantous S, Sousa SF, Lima M, Teixeira-Castro A, Maciel P. Glucocorticoid receptor-dependent therapeutic efficacy of tauroursodeoxycholic acid in preclinical models of spinocerebellar ataxia type 3. J Clin Invest 2024; 134:e162246. [PMID: 38227368 PMCID: PMC10904051 DOI: 10.1172/jci162246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 01/09/2024] [Indexed: 01/17/2024] Open
Abstract
Spinocerebellar ataxia type 3 (SCA3) is an adult-onset neurodegenerative disease caused by a polyglutamine expansion in the ataxin-3 (ATXN3) gene. No effective treatment is available for this disorder, other than symptom-directed approaches. Bile acids have shown therapeutic efficacy in neurodegenerative disease models. Here, we pinpointed tauroursodeoxycholic acid (TUDCA) as an efficient therapeutic, improving the motor and neuropathological phenotype of SCA3 nematode and mouse models. Surprisingly, transcriptomic and functional in vivo data showed that TUDCA acts in neuronal tissue through the glucocorticoid receptor (GR), but independently of its canonical receptor, the farnesoid X receptor (FXR). TUDCA was predicted to bind to the GR, in a similar fashion to corticosteroid molecules. GR levels were decreased in disease-affected brain regions, likely due to increased protein degradation as a consequence of ATXN3 dysfunction being restored by TUDCA treatment. Analysis of a SCA3 clinical cohort showed intriguing correlations between the peripheral expression of GR and the predicted age at disease onset in presymptomatic subjects and FKBP5 expression with disease progression, suggesting this pathway as a potential source of biomarkers for future study. We have established a novel in vivo mechanism for the neuroprotective effects of TUDCA in SCA3 and propose this readily available drug for clinical trials in SCA3 patients.
Collapse
Affiliation(s)
- Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Diogo Da Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Medical Genetics Center Dr. Jacinto de Magalhães, Santo António University Hospital Center, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Marta Daniela Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Andreia Neves-Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mafalda Raposo
- Instituto de Biologia Molecular e Celular (IBMC), Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana S. Correia
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Gonçalo Nogueira-Goncalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Henrique S. Fernandes
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina and
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Stephanie Oliveira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Ana Rita Ferreira-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joana Pereira-Sousa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Daniela Vilasboas-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Sara Guerreiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Liliana Meireles-Costa
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Stephanie Cabantous
- Cancer Research Center of Toulouse (CRCT), Inserm, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Sergio F. Sousa
- UCIBIO – Applied Molecular Biosciences Unit, BioSIM – Departamento de Biomedicina and
- Associate Laboratory i4HB – Institute for Health and Bioeconomy, Faculdade de Medicina, Universidade do Porto, Porto, Portugal
| | - Manuela Lima
- Faculdade de Ciências e Tecnologia, Universidade dos Açores, Ponta Delgada, Portugal
| | - Andreia Teixeira-Castro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patricia Maciel
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
| |
Collapse
|
29
|
Gercke D, Lenz F, Jose J. Split-GFP complementation at the bacterial cell surface for antibody-free labeling and quantification of heterologous protein display. Enzyme Microb Technol 2024; 174:110391. [PMID: 38176324 DOI: 10.1016/j.enzmictec.2023.110391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
The split-GFP system is a versatile tool with numerous applications, but it has been underutilized for the labeling of heterologous surface-displayed proteins. By inserting the 16 amino acid sequence of the GFP11-tag between a protein of interest and an autotransporter protein, it is possible to present a protein at the outer membrane of gram-negative bacteria and to fluorescently label it by complementation with externally added GFP1-10. The labeled cells could be clearly discerned from cells without the protein of interest using flow cytometry and the insertion of the GFP11-tag caused no significant alteration of the catalytic activity for the tested model enzyme CsBglA. Furthermore, the amount of the protein of interest on the cells could be quantified by comparing the green fluorescence resulting from the complementation to that of standards with known concentrations. This allows a precise characterization of whole-cell biocatalysts, which is difficult with existing methods. The split-GFP complementation approach was shown to be specific, in a similar manner as commercial antibodies. It is cost-efficient, minimizes the possibility of adverse effects on protein expression or solubility, and can be performed at high throughput.
Collapse
Affiliation(s)
- David Gercke
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstrasse 48, 48149 Münster, Germany
| | - Florian Lenz
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstrasse 48, 48149 Münster, Germany
| | - Joachim Jose
- Universität Münster, Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Corrensstrasse 48, 48149 Münster, Germany.
| |
Collapse
|
30
|
Zhao S, Makarova KS, Zheng W, Zhan L, Wan Q, Liu Y, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread photosynthesis reaction centre barrel proteins are necessary for haloarchaeal cell division. Nat Microbiol 2024; 9:712-726. [PMID: 38443574 DOI: 10.1038/s41564-024-01615-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 01/19/2024] [Indexed: 03/07/2024]
Abstract
Cell division is fundamental to all cellular life. Most archaea depend on either the prokaryotic tubulin homologue FtsZ or the endosomal sorting complex required for transport for division but neither system has been robustly characterized. Here, we show that three of the four photosynthesis reaction centre barrel domain proteins of Haloferax volcanii (renamed cell division proteins B1/2/3 (CdpB1/2/3)) play important roles in cell division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for cell division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologues of CdpB proteins are also involved in cell division in other haloarchaea, indicating a conserved function of these proteins. Phylogenetic analysis shows that photosynthetic reaction centre barrel proteins are widely distributed among archaea and appear to be central to cell division in most if not all archaea.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, Archaeal Virology Unit, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, KS, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
31
|
Hung L, Terwilliger TC, Waldo GS, Nguyen HB. Engineering highly stable variants of Corynactis californica green fluorescent proteins. Protein Sci 2024; 33:e4886. [PMID: 38151801 PMCID: PMC10804665 DOI: 10.1002/pro.4886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/30/2023] [Accepted: 12/21/2023] [Indexed: 12/29/2023]
Abstract
Fluorescent proteins (FPs) are versatile biomarkers that facilitate effective detection and tracking of macromolecules of interest in real time. Engineered FPs such as superfolder green fluorescent protein (sfGFP) and superfolder Cherry (sfCherry) have exceptional refolding capability capable of delivering fluorescent readout in harsh environments where most proteins lose their native functions. Our recent work on the development of a split FP from a species of strawberry anemone, Corynactis californica, delivered pairs of fragments with up to threefold faster complementation than split GFP. We present the biophysical, biochemical, and structural characteristics of five full-length variants derived from these split C. californica GFP (ccGFP). These ccGFP variants are more tolerant under chemical denaturation with up to 8 kcal/mol lower unfolding free energy than that of the sfGFP. It is likely that some of these ccGFP variants could be suitable as biomarkers under more adverse environments where sfGFP fails to survive. A structural analysis suggests explanations of the variations in stabilities among the ccGFP variants.
Collapse
Affiliation(s)
- Li‐Wei Hung
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Thomas C. Terwilliger
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
- New Mexico ConsortiumLos AlamosNew MexicoUSA
| | - Geoffrey S. Waldo
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| | - Hau B. Nguyen
- Bioscience DivisionMS M888, Los Alamos National LaboratoryLos AlamosNew MexicoUSA
| |
Collapse
|
32
|
Zanon A, Guida M, Lavdas AA, Corti C, Castelo Rueda MP, Negro A, Pramstaller PP, Domingues FS, Hicks AA, Pichler I. Intracellular delivery of Parkin-RING0-based fragments corrects Parkin-induced mitochondrial dysfunction through interaction with SLP-2. J Transl Med 2024; 22:59. [PMID: 38229174 PMCID: PMC10790385 DOI: 10.1186/s12967-024-04850-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/02/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Loss-of-function mutations in the PRKN gene, encoding Parkin, are the most common cause of autosomal recessive Parkinson's disease (PD). We have previously identified mitoch ondrial Stomatin-like protein 2 (SLP-2), which functions in the assembly of respiratory chain proteins, as a Parkin-binding protein. Selective knockdown of either Parkin or SLP-2 led to reduced mitochondrial and neuronal function in neuronal cells and Drosophila, where a double knockdown led to a further worsening of Parkin-deficiency phenotypes. Here, we investigated the minimal Parkin region involved in the Parkin-SLP-2 interaction and explored the ability of Parkin-fragments and peptides from this minimal region to restore mitochondrial function. METHODS In fibroblasts, human induced pluripotent stem cell (hiPSC)-derived neurons, and neuroblastoma cells the interaction between Parkin and SLP-2 was investigated, and the Parkin domain responsible for the binding to SLP-2 was mapped. High resolution respirometry, immunofluorescence analysis and live imaging were used to analyze mitochondrial function. RESULTS Using a proximity ligation assay, we quantitatively assessed the Parkin-SLP-2 interaction in skin fibroblasts and hiPSC-derived neurons. When PD-associated PRKN mutations were present, we detected a significantly reduced interaction between the two proteins. We found a preferential binding of SLP-2 to the N-terminal part of Parkin, with a highest affinity for the RING0 domain. Computational modeling based on the crystal structure of Parkin protein predicted several potential binding sites for SLP-2 within the Parkin RING0 domain. Amongst these, three binding sites were observed to overlap with natural PD-causing missense mutations, which we demonstrated interfere substantially with the binding of Parkin to SLP-2. Finally, delivery of the isolated Parkin RING0 domain and a Parkin mini-peptide, conjugated to cell-permeant and mitochondrial transporters, rescued compromised mitochondrial function in Parkin-deficient neuroblastoma cells and hiPSC-derived neurons with endogenous, disease causing PRKN mutations. CONCLUSIONS These findings place further emphasis on the importance of the protein-protein interaction between Parkin and SLP-2 for the maintenance of optimal mitochondrial function. The possibility of restoring an abolished binding to SLP-2 by delivering the Parkin RING0 domain or the Parkin mini-peptide involved in this specific protein-protein interaction into cells might represent a novel organelle-specific therapeutic approach for correcting mitochondrial dysfunction in Parkin-linked PD.
Collapse
Affiliation(s)
- Alessandra Zanon
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Marianna Guida
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Alexandros A Lavdas
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Corrado Corti
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | | | - Alessandro Negro
- Department of Biomedical Sciences, University of Padova, Padua, Italy
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
- Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Francisco S Domingues
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Andrew A Hicks
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| |
Collapse
|
33
|
Zeke A, Alexa A, Reményi A. Discovery and Characterization of Linear Motif Mediated Protein-Protein Complexes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:59-71. [PMID: 38507200 DOI: 10.1007/978-3-031-52193-5_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
There are myriads of protein-protein complexes that form within the cell. In addition to classical binding events between globular domains, many protein-protein interactions involve short disordered protein regions. The latter contain so-called linear motifs binding specifically to ordered protein domain surfaces. Linear binding motifs are classified based on their consensus sequence, where only a few amino acids are conserved. In this chapter we will review experimental and in silico techniques that can be used for the discovery and characterization of linear motif mediated protein-protein complexes involved in cellular signaling, protein level and gene expression regulation.
Collapse
Affiliation(s)
- András Zeke
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Anita Alexa
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary
| | - Attila Reményi
- Institute of Organic Chemistry, HUN-REN Research Center for Natural Sciences, Budapest, Hungary.
| |
Collapse
|
34
|
Chan W, Cao YM, Zhao X, Schrom EC, Jia D, Song J, Sibener LV, Dong S, Fernandes RA, Bradfield CJ, Smelkinson M, Kabat J, Hor JL, Altan-Bonnet G, Garcia KC, Germain RN. TCR ligand potency differentially impacts PD-1 inhibitory effects on diverse signaling pathways. J Exp Med 2023; 220:e20231242. [PMID: 37796477 PMCID: PMC10555889 DOI: 10.1084/jem.20231242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/10/2023] [Accepted: 09/12/2023] [Indexed: 10/06/2023] Open
Abstract
Checkpoint blockade revolutionized cancer therapy, but we still lack a quantitative, mechanistic understanding of how inhibitory receptors affect diverse signaling pathways. To address this issue, we developed and applied a fluorescent intracellular live multiplex signal transduction activity reporter (FILMSTAR) system to analyze PD-1-induced suppressive effects. These studies identified pathways triggered solely by TCR or requiring both TCR and CD28 inputs. Using presenting cells differing in PD-L1 and CD80 expression while displaying TCR ligands of distinct potency, we found that PD-1-mediated inhibition primarily targets TCR-linked signals in a manner highly sensitive to peptide ligand quality. These findings help resolve discrepancies in existing data about the site(s) of PD-1 inhibition in T cells while emphasizing the importance of neoantigen potency in controlling the effects of checkpoint therapy.
Collapse
Affiliation(s)
- Waipan Chan
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Yuqi M. Cao
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Xiang Zhao
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Edward C. Schrom
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Dongya Jia
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jian Song
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Leah V. Sibener
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Shen Dong
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ricardo A. Fernandes
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Clinton J. Bradfield
- Signaling Systems Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Margery Smelkinson
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jyh Liang Hor
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Grégoire Altan-Bonnet
- Immunodynamics Group, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - K. Christopher Garcia
- Department of Molecular and Cellular Physiology and Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
35
|
Castillo S, Gence R, Pagan D, Koraïchi F, Bouchenot C, Pons BJ, Boëlle B, Olichon A, Lajoie-Mazenc I, Favre G, Pédelacq JD, Cabantous S. Visualizing the subcellular localization of RHOB-GTP and GTPase-Effector complexes using a split-GFP/nanobody labelling assay. Eur J Cell Biol 2023; 102:151355. [PMID: 37639782 DOI: 10.1016/j.ejcb.2023.151355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/04/2023] [Accepted: 08/20/2023] [Indexed: 08/31/2023] Open
Abstract
Small GTPases are highly regulated proteins that control essential signaling pathways through the activity of their effector proteins. Among the RHOA subfamily, RHOB regulates peculiar functions that could be associated with the control of the endocytic trafficking of signaling proteins. Here, we used an optimized assay based on tripartite split-GFP complementation to localize GTPase-effector complexes with high-resolution. The detection of RHOB interaction with the Rhotekin Rho binding domain (RBD) that specifically recognizes the active GTP-bound GTPase, is performed in vitro by the concomitant addition of recombinant GFP1-9 and a GFP nanobody. Analysis of RHOB-RBD complexes localization profiles combined with immunostaining and live cell imaging indicated a serum-dependent reorganization of the endosomal and membrane pool of active RHOB. We further applied this technology to the detection of RHO-effector complexes that highlighted their subcellular localization with high resolution among the different cellular compartments.
Collapse
Affiliation(s)
- Sebastian Castillo
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Rémi Gence
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Delphine Pagan
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Faten Koraïchi
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | | | - Benoit J Pons
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn TR10 9FE, United Kingdom
| | - Betty Boëlle
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Aurélien Olichon
- Université de la Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97410 Saint-Pierre, La Réunion, France
| | - Isabelle Lajoie-Mazenc
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Gilles Favre
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France
| | - Jean-Denis Pédelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III - Paul Sabatier (UPS), Toulouse, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, 31037 Toulouse, France.
| |
Collapse
|
36
|
Barthe L, Soldan V, Garcia-Alles LF. Assessment of oligomerization of bacterial micro-compartment shell components with the tripartite GFP reporter technology. PLoS One 2023; 18:e0294760. [PMID: 38011088 PMCID: PMC10681173 DOI: 10.1371/journal.pone.0294760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/08/2023] [Indexed: 11/29/2023] Open
Abstract
Bacterial micro-compartments (BMC) are complex macromolecular assemblies that participate in varied metabolic processes in about 20% of bacterial species. Most of these organisms carry BMC genetic information organized in operons that often include several paralog genes coding for components of the compartment shell. BMC shell constituents can be classified depending on their oligomerization state as hexamers (BMC-H), pentamers (BMC-P) or trimers (BMC-T). Formation of hetero-oligomers combining different protein homologs is theoretically feasible, something that could ultimately modify BMC shell rigidity or permeability, for instance. Despite that, it remains largely unknown whether hetero-oligomerization is a widespread phenomenon. Here, we demonstrated that the tripartite GFP (tGFP) reporter technology is an appropriate tool that might be exploited for such purposes. Thus, after optimizing parameters such as the size of linkers connecting investigated proteins to GFP10 or GFP11 peptides, the type and strength of promoters, or the impact of placing coding cassettes in the same or different plasmids, homo-oligomerization processes could be successfully monitored for any of the three BMC shell classes. Moreover, the screen perfectly reproduced published data on hetero-association between couples of CcmK homologues from Syn. sp. PCC6803, which were obtained following a different approach. This study paves the way for mid/high throughput screens to characterize the extent of hetero-oligomerization occurrence in BMC-possessing bacteria, and most especially in organisms endowed with several BMC types and carrying numerous shell paralogs. On the other hand, our study also unveiled technology limitations deriving from the low solubility of one of the components of this modified split-GFP approach, the GFP1-9.
Collapse
Affiliation(s)
- Lucie Barthe
- Toulouse Biotechnology Institute, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | - Vanessa Soldan
- Plateforme de Microscopie Electronique Intégrative METi, CNRS, Centre de Biologie Intégrative, Toulouse, France
| | - Luis F. Garcia-Alles
- Toulouse Biotechnology Institute, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| |
Collapse
|
37
|
Cossard A, Stam K, Smets A, Jossin Y. MKL/SRF and Bcl6 mutual transcriptional repression safeguards the fate and positioning of neocortical progenitor cells mediated by RhoA. SCIENCE ADVANCES 2023; 9:eadd0676. [PMID: 37967194 PMCID: PMC10651131 DOI: 10.1126/sciadv.add0676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 10/16/2023] [Indexed: 11/17/2023]
Abstract
During embryogenesis, multiple intricate and intertwined cellular signaling pathways coordinate cell behavior. Their slightest alterations can have dramatic consequences for the cells and the organs they form. The transcriptional repressor Bcl6 was recently found as important for brain development. However, its regulation and integration with other signals is unknown. Using in vivo functional approaches combined with molecular mechanistic analysis, we identified a reciprocal regulatory loop between B cell lymphoma 6 (Bcl6) and the RhoA-regulated transcriptional complex megakaryoblastic leukemia/serum response factor (MKL/SRF). We show that Bcl6 physically interacts with MKL/SRF, resulting in a down-regulation of the transcriptional activity of both Bcl6 and MKL/SRF. This molecular cross-talk is essential for the control of proliferation, neurogenesis, and spatial positioning of neural progenitors. Overall, our data highlight a regulatory mechanism that controls neuronal production and neocortical development and reveal an MKL/SRF and Bcl6 interaction that may have broader implications in other physiological functions and in diseases.
Collapse
Affiliation(s)
- Alexia Cossard
- Laboratory of Mammalian Development and Cell Biology, Institute of Neuroscience, Université Catholique de Louvain, Brussels 1200, Belgium
| | | | | | | |
Collapse
|
38
|
To TL, Li X, Shu X. Spying on SARS-CoV-2 with Fluorescent Tags and Protease Reporters. Viruses 2023; 15:2005. [PMID: 37896782 PMCID: PMC10612051 DOI: 10.3390/v15102005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The SARS-CoV-2 coronavirus has caused worldwide disruption through the COVID-19 pandemic, providing a sobering reminder of the profound impact viruses can have on human well-being. Understanding virus life cycles and interactions with host cells lays the groundwork for exploring therapeutic strategies against virus-related diseases. Fluorescence microscopy plays a vital role in virus imaging, offering high spatiotemporal resolution, sensitivity, and spectroscopic versatility. In this opinion piece, we first highlight two recent techniques, SunTag and StayGold, for the in situ imaging of viral RNA translation and viral assembly. Next, we discuss a new class of genetically encoded fluorogenic protease reporters, such as FlipGFP, which can be customized to monitor SARS-CoV-2's main (Mpro) or papain-like (PLpro) protease activity. These assays have proven effective in identifying potential antivirals through high-throughput screening, making fluorogenic viral protease reporters a promising platform for viral disease diagnostics and therapeutics.
Collapse
Affiliation(s)
| | - Xiaoquan Li
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, UC San Francisco, San Francisco, CA 94158, USA
| | - Xiaokun Shu
- Department of Pharmaceutical Chemistry, Cardiovascular Research Institute, UC San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
39
|
Satapathy S, Walker H, Brown J, Gambin Y, Wilson MR. The N-end rule pathway regulates ER stress-induced clusterin release to the cytosol where it directs misfolded proteins for degradation. Cell Rep 2023; 42:113059. [PMID: 37660295 DOI: 10.1016/j.celrep.2023.113059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023] Open
Abstract
Previous work suggests that cell stress induces release of the normally secreted chaperone clusterin (CLU) into the cytosol. We analyzed the localization of CLU in healthy and stressed cells, the mechanism of its cytosolic release, and its interactions with cytosolic misfolded proteins. Key results of this study are the following: (1) full-length CLU is released to the cytosol during stress, (2) the CLU N-terminal D1 residue is recognized by the N-end rule pathway and together with the enzyme ATE1 is essential for cytosolic release, (3) CLU can form stable complexes with cytosolic misfolded proteins and direct them to the proteasome and autophagosomes, and (4) cytosolic CLU protects cells from hypoxic stress and the cytosolic overexpression of an aggregation-prone protein. Collectively, the results suggest that enhanced cytosolic release of CLU is a stress response that can inhibit the toxicity of misfolded proteins and facilitate their targeted degradation via both autophagy and the proteasome.
Collapse
Affiliation(s)
- Sandeep Satapathy
- The Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA; School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Holly Walker
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - James Brown
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Yann Gambin
- EMBL Australia Node in Single Molecule Science, and School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Mark R Wilson
- School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia; Molecular Horizons Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
40
|
Chen X, Lu Q, Zhou H, Liu J, Nadorp B, Lasry A, Sun Z, Lai B, Rona G, Zhang J, Cammer M, Wang K, Al-Santli W, Ciantra Z, Guo Q, You J, Sengupta D, Boukhris A, Zhang H, Liu C, Cresswell P, Dahia PLM, Pagano M, Aifantis I, Wang J. A membrane-associated MHC-I inhibitory axis for cancer immune evasion. Cell 2023; 186:3903-3920.e21. [PMID: 37557169 PMCID: PMC10961051 DOI: 10.1016/j.cell.2023.07.016] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 05/30/2023] [Accepted: 07/11/2023] [Indexed: 08/11/2023]
Abstract
Immune-checkpoint blockade has revolutionized cancer treatment, but some cancers, such as acute myeloid leukemia (AML), do not respond or develop resistance. A potential mode of resistance is immune evasion of T cell immunity involving aberrant major histocompatibility complex class I (MHC-I) antigen presentation (AP). To map such mechanisms of resistance, we identified key MHC-I regulators using specific peptide-MHC-I-guided CRISPR-Cas9 screens in AML. The top-ranked negative regulators were surface protein sushi domain containing 6 (SUSD6), transmembrane protein 127 (TMEM127), and the E3 ubiquitin ligase WWP2. SUSD6 is abundantly expressed in AML and multiple solid cancers, and its ablation enhanced MHC-I AP and reduced tumor growth in a CD8+ T cell-dependent manner. Mechanistically, SUSD6 forms a trimolecular complex with TMEM127 and MHC-I, which recruits WWP2 for MHC-I ubiquitination and lysosomal degradation. Together with the SUSD6/TMEM127/WWP2 gene signature, which negatively correlates with cancer survival, our findings define a membrane-associated MHC-I inhibitory axis as a potential therapeutic target for both leukemia and solid cancers.
Collapse
Affiliation(s)
- Xufeng Chen
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Qiao Lu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Hua Zhou
- Applied Bioinformatics Laboratories, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jia Liu
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Bettina Nadorp
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Audrey Lasry
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zhengxi Sun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Baoling Lai
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Gergely Rona
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Jiangyan Zhang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Michael Cammer
- Microscopy Core, Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Kun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Wafa Al-Santli
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Zoe Ciantra
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Qianjin Guo
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Jia You
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | - Debrup Sengupta
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Ahmad Boukhris
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA
| | | | - Cheng Liu
- Eureka Therapeutics Inc., Emeryville, CA 94608, USA
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Patricia L M Dahia
- Department of Medicine, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Michele Pagano
- The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA; Department of Biochemistry and Molecular Pharmacology, New York University Grossman School of Medicine, New York, NY 10016, USA; Howard Hughes Medical Institute, New York University Grossman School of Medicine, New York, NY 10016, USA
| | - Iannis Aifantis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| | - Jun Wang
- Department of Pathology, New York University Grossman School of Medicine, New York, NY 10016, USA; The Laura and Isaac Perlmutter Cancer Center, New York University Langone Health, New York, NY 10016, USA.
| |
Collapse
|
41
|
Sola M, Rendon-Angel A, Rojo Martinez V, Sgrignani J, Magrin C, Piovesana E, Cavalli A, Paganetti P, Papin S. Tau protein binds to the P53 E3 ubiquitin ligase MDM2. Sci Rep 2023; 13:10208. [PMID: 37353565 PMCID: PMC10290082 DOI: 10.1038/s41598-023-37046-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/14/2023] [Indexed: 06/25/2023] Open
Abstract
Tau gene mutations cause a progressive dementia and neurotoxic Tau forms deposited in neurofibrillary tangles are hallmarks of neurodegenerative tauopathies. Loss of non-canonical Tau functions may contribute to disease. In fact, Tau depletion affects the cellular response to DNA damage and tauopathies exhibit the accumulation of DNA lesions. Moreover, Tau modulates P53 activity and cell fate. Considering that MDM2 is the main antagonist of P53, we investigated, using orthogonal assays, if Tau interacts with MDM2. We report the existence in cells and brain of a Tau-MDM2 complex that, in vitro, exhibits reduced P53 ubiquitination activity in a manner sensitive to a Tau mutation. The Tau-MDM2 interaction involves the microtubule-binding domain of Tau and the acidic domain of MDM2, reminiscent of the binding of Tau to negatively charged microtubules. Notably, MDM2 accumulates aberrantly in neurofibrillary tangles. Aging-associated insults may expose a novel loss-of-function of Tau in neurodegeneration and cancer.
Collapse
Affiliation(s)
- Martina Sola
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Room 102a, Via Chiesa 5, 6500, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Azucena Rendon-Angel
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Room 102a, Via Chiesa 5, 6500, Bellinzona, Switzerland
| | - Viviana Rojo Martinez
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Room 102a, Via Chiesa 5, 6500, Bellinzona, Switzerland
| | - Jacopo Sgrignani
- Computational Structural Biology, Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland
| | - Claudia Magrin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Room 102a, Via Chiesa 5, 6500, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Ester Piovesana
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Room 102a, Via Chiesa 5, 6500, Bellinzona, Switzerland
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland
| | - Andrea Cavalli
- Computational Structural Biology, Institute for Research in Biomedicine, Università Della Svizzera Italiana, Bellinzona, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Paolo Paganetti
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Room 102a, Via Chiesa 5, 6500, Bellinzona, Switzerland.
- PhD Program in Neurosciences, Faculty of Biomedical Sciences, Università Della Svizzera Italiana, Lugano, Switzerland.
- Neurocentro Della Svizzera Italiana, Ente Ospedaliero Cantonale, Lugano, Switzerland.
| | - Stéphanie Papin
- Laboratory for Aging Disorders, Laboratories for Translational Research, Ente Ospedaliero Cantonale, Room 102a, Via Chiesa 5, 6500, Bellinzona, Switzerland
| |
Collapse
|
42
|
Chen G, Obal D. Detecting and measuring of GPCR signaling - comparison of human induced pluripotent stem cells and immortal cell lines. Front Endocrinol (Lausanne) 2023; 14:1179600. [PMID: 37293485 PMCID: PMC10244570 DOI: 10.3389/fendo.2023.1179600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/12/2023] [Indexed: 06/10/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large family of transmembrane proteins that play a major role in many physiological processes, and thus GPCR-targeted drug development has been widely promoted. Although research findings generated in immortal cell lines have contributed to the advancement of the GPCR field, the homogenous genetic backgrounds, and the overexpression of GPCRs in these cell lines make it difficult to correlate the results with clinical patients. Human induced pluripotent stem cells (hiPSCs) have the potential to overcome these limitations, because they contain patient specific genetic information and can differentiate into numerous cell types. To detect GPCRs in hiPSCs, highly selective labeling and sensitive imaging techniques are required. This review summarizes existing resonance energy transfer and protein complementation assay technologies, as well as existing and new labeling methods. The difficulties of extending existing detection methods to hiPSCs are discussed, as well as the potential of hiPSCs to expand GPCR research towards personalized medicine.
Collapse
Affiliation(s)
- Gaoxian Chen
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Detlef Obal
- Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, CA, United States
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| |
Collapse
|
43
|
Thai TD, Lim W, Na D. Synthetic bacteria for the detection and bioremediation of heavy metals. Front Bioeng Biotechnol 2023; 11:1178680. [PMID: 37122866 PMCID: PMC10133563 DOI: 10.3389/fbioe.2023.1178680] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/04/2023] [Indexed: 05/02/2023] Open
Abstract
Toxic heavy metal accumulation is one of anthropogenic environmental pollutions, which poses risks to human health and ecological systems. Conventional heavy metal remediation approaches rely on expensive chemical and physical processes leading to the formation and release of other toxic waste products. Instead, microbial bioremediation has gained interest as a promising and cost-effective alternative to conventional methods, but the genetic complexity of microorganisms and the lack of appropriate genetic engineering technologies have impeded the development of bioremediating microorganisms. Recently, the emerging synthetic biology opened a new avenue for microbial bioremediation research and development by addressing the challenges and providing novel tools for constructing bacteria with enhanced capabilities: rapid detection and degradation of heavy metals while enhanced tolerance to toxic heavy metals. Moreover, synthetic biology also offers new technologies to meet biosafety regulations since genetically modified microorganisms may disrupt natural ecosystems. In this review, we introduce the use of microorganisms developed based on synthetic biology technologies for the detection and detoxification of heavy metals. Additionally, this review explores the technical strategies developed to overcome the biosafety requirements associated with the use of genetically modified microorganisms.
Collapse
Affiliation(s)
| | | | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
44
|
Lauzon D, Vallée-Bélisle A. Functional advantages of building nanosystems using multiple molecular components. Nat Chem 2023; 15:458-467. [PMID: 36759713 DOI: 10.1038/s41557-022-01127-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 12/15/2022] [Indexed: 02/11/2023]
Abstract
Over half of all the natural nanomachines in living organisms are multimeric and likely exploit the self-assembly of their components to provide functional benefits. However, the advantages and disadvantages of building nanosystems using multiple molecular components remain relatively unexplored at the thermodynamic, kinetic and functional levels. In this study we used theory and a simple DNA-based model that forms the same nanostructures with different numbers of components to advance our knowledge in this area. Despite its lower assembly rate, we found that a system built with three components may undergo a more cooperative assembly transition from less preorganized components, which facilitates the emergence of functionalities. Using simple variations of its components, we also found that trimeric nanosystems display a much higher level of programmability than their dimeric counterparts because they can assemble with various levels of cooperativity, self-inhibition and time-dependent properties. We show here how two simple strategies (for example, cutting and adding components) can be employed to efficiently programme the regulatory function of a more complex, artificially selected, RNA-cleaving catalytic nanosystem.
Collapse
Affiliation(s)
- D Lauzon
- Laboratoire de Biosenseurs & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec, Canada
| | - A Vallée-Bélisle
- Laboratoire de Biosenseurs & Nanomachines, Département de Chimie, Université de Montréal, Montréal, Québec, Canada.
| |
Collapse
|
45
|
Zhao S, Makarova KS, Zheng W, Liu Y, Zhan L, Wan Q, Gong H, Krupovic M, Lutkenhaus J, Chen X, Koonin EV, Du S. Widespread PRC barrel proteins play critical roles in archaeal cell division. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.28.534520. [PMID: 37090588 PMCID: PMC10120694 DOI: 10.1101/2023.03.28.534520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Cell division is fundamental to all cellular life. Most of the archaea employ one of two alternative division machineries, one centered around the prokaryotic tubulin homolog FtsZ and the other around the endosomal sorting complex required for transport (ESCRT). However, neither of these mechanisms has been thoroughly characterized in archaea. Here, we show that three of the four PRC (Photosynthetic Reaction Center) barrel domain proteins of Haloferax volcanii (renamed Cell division proteins B1/2/3 (CdpB1/2/3)), play important roles in division. CdpB1 interacts directly with the FtsZ membrane anchor SepF and is essential for division, whereas deletion of cdpB2 and cdpB3 causes a major and a minor division defect, respectively. Orthologs of CdpB proteins are also involved in cell division in other haloarchaea. Phylogenetic analysis shows that PRC barrel proteins are widely distributed among archaea, including the highly conserved CdvA protein of the crenarchaeal ESCRT-based division system. Thus, diverse PRC barrel proteins appear to be central to cell division in most if not all archaea. Further study of these proteins is expected to elucidate the division mechanisms in archaea and their evolution.
Collapse
Affiliation(s)
- Shan Zhao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Wenchao Zheng
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Yafei Liu
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Le Zhan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Qianqian Wan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Han Gong
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Mart Krupovic
- Institut Pasteur, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Paris, France
| | - Joe Lutkenhaus
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Xiangdong Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, USA
| | - Shishen Du
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
46
|
Martins CS, Taveneau C, Castro-Linares G, Baibakov M, Buzhinsky N, Eroles M, Milanović V, Omi S, Pedelacq JD, Iv F, Bouillard L, Llewellyn A, Gomes M, Belhabib M, Kuzmić M, Verdier-Pinard P, Lee S, Badache A, Kumar S, Chandre C, Brasselet S, Rico F, Rossier O, Koenderink GH, Wenger J, Cabantous S, Mavrakis M. Human septins organize as octamer-based filaments and mediate actin-membrane anchoring in cells. J Cell Biol 2023; 222:213778. [PMID: 36562751 PMCID: PMC9802686 DOI: 10.1083/jcb.202203016] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 10/20/2022] [Accepted: 12/01/2022] [Indexed: 12/24/2022] Open
Abstract
Septins are cytoskeletal proteins conserved from algae and protists to mammals. A unique feature of septins is their presence as heteromeric complexes that polymerize into filaments in solution and on lipid membranes. Although animal septins associate extensively with actin-based structures in cells, whether septins organize as filaments in cells and if septin organization impacts septin function is not known. Customizing a tripartite split-GFP complementation assay, we show that all septins decorating actin stress fibers are octamer-containing filaments. Depleting octamers or preventing septins from polymerizing leads to a loss of stress fibers and reduced cell stiffness. Super-resolution microscopy revealed septin fibers with widths compatible with their organization as paired septin filaments. Nanometer-resolved distance measurements and single-protein tracking further showed that septin filaments are membrane bound and largely immobilized. Finally, reconstitution assays showed that septin filaments mediate actin-membrane anchoring. We propose that septin organization as octamer-based filaments is essential for septin function in anchoring and stabilizing actin filaments at the plasma membrane.
Collapse
Affiliation(s)
- Carla Silva Martins
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France.,Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Cyntia Taveneau
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | - Gerard Castro-Linares
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Mikhail Baibakov
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Nicolas Buzhinsky
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Mar Eroles
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Violeta Milanović
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Shizue Omi
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Jean-Denis Pedelacq
- Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, Université Toulouse III-Paul Sabatier (UPS), Toulouse, France
| | - Francois Iv
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Léa Bouillard
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Alexander Llewellyn
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Maxime Gomes
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mayssa Belhabib
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Mira Kuzmić
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Pascal Verdier-Pinard
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Stacey Lee
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), INSERM, Institut Paoli-Calmettes, Aix Marseille Univ, CNRS, Marseille, France
| | - Sanjay Kumar
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | | | - Sophie Brasselet
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Felix Rico
- CNRS, INSERM, LAI, Turing Centre for Living Systems, Aix-Marseille Univ, Marseille, France>
| | - Olivier Rossier
- University Bordeaux, CNRS, Interdisciplinary Institute for Neuroscience, IINS, UMR, Bordeaux, France
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Jerome Wenger
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| | - Stéphanie Cabantous
- Centre de Recherche en Cancérologie de Toulouse (CRCT), INSERM, Université de Toulouse, UPS, CNRS, Toulouse, France
| | - Manos Mavrakis
- Institut Fresnel, CNRS UMR7249, Aix Marseille Univ, Centrale Marseille, Marseille, France
| |
Collapse
|
47
|
Mao C, Mao Y, Zhu X, Chen G, Feng C. Synthetic biology-based bioreactor and its application in biochemical analysis. Crit Rev Anal Chem 2023; 54:2467-2484. [PMID: 36803337 DOI: 10.1080/10408347.2023.2180319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
In the past few years, synthetic biologists have established some biological elements and bioreactors composed of nucleotides under the guidance of engineering methods. Following the concept of engineering, the common bioreactor components in recent years are introduced and compared. At present, biosensors based on synthetic biology have been applied to water pollution monitoring, disease diagnosis, epidemiological monitoring, biochemical analysis and other detection fields. In this paper, the biosensor components based on synthetic bioreactors and reporters are reviewed. In addition, the applications of biosensors based on cell system and cell-free system in the detection of heavy metal ions, nucleic acid, antibiotics and other substances are presented. Finally, the bottlenecks faced by biosensors and the direction of optimization are also discussed.
Collapse
Affiliation(s)
- Changqing Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Yichun Mao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| | - Xiaoli Zhu
- Department of Clinical Laboratory Medicine, Shanghai Tenth People's Hospital of Tongji University, Shanghai, P. R. China
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
- Shanghai Engineering Research Center of Organ Repair, Shanghai University, Shanghai, P. R. China
| | - Chang Feng
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai, P. R. China
| |
Collapse
|
48
|
Bignon C, Longhi S. In Vivo Protein-Protein Binding Competition Assay Based on Split-GFP Reassembly: Proof of Concept. Biomolecules 2023; 13:biom13020354. [PMID: 36830723 PMCID: PMC9952896 DOI: 10.3390/biom13020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The split-green fluorescent protein (GFP) reassembly assay is a well-established approach to study protein-protein interactions (PPIs). In this assay, when two interacting proteins X and Y, respectively fused to residues 1-157 and to residues 158-237 of GFP, are co-expressed in E. coli, the two GFP halves are brought to sufficient proximity to reassociate and fold to recreate the functional GFP. At constant protein expression level, the intensity of fluorescence produced by the bacteria is proportional to the binding affinity of X to Y. We hypothesized that adding a third partner (Z) endowed with an affinity for either X or Y would lead to an in vivo competition assay. We report here the different steps of the set-up of this competition assay, and define the experimental conditions required to obtained reliable results. Results show that this competition assay is a potentially interesting tool for screening libraries of binding inhibitors, Z being either a protein or a chemical reagent.
Collapse
|
49
|
Li F, Liu R, Negi V, Yang P, Lee J, Jagannathan R, Moulik M, Yechoor VK. VGLL4 and MENIN function as TEAD1 corepressors to block pancreatic β cell proliferation. Cell Rep 2023; 42:111904. [PMID: 36662616 PMCID: PMC9970006 DOI: 10.1016/j.celrep.2022.111904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 07/18/2022] [Accepted: 12/09/2022] [Indexed: 01/20/2023] Open
Abstract
TEAD1 and the mammalian Hippo pathway regulate cellular proliferation and function, though their regulatory function in β cells remains poorly characterized. In this study, we demonstrate that while β cell-specific TEAD1 deletion results in a cell-autonomous increase of β cell proliferation, β cell-specific deletion of its canonical coactivators, YAP and TAZ, does not affect proliferation, suggesting the involvement of other cofactors. Using an improved split-GFP system and yeast two-hybrid platform, we identify VGLL4 and MENIN as TEAD1 corepressors in β cells. We show that VGLL4 and MENIN bind to TEAD1 and repress the expression of target genes, including FZD7 and CCN2, which leads to an inhibition of β cell proliferation. In conclusion, we demonstrate that TEAD1 plays a critical role in β cell proliferation and identify VGLL4 and MENIN as TEAD1 corepressors in β cells. We propose that these could be targeted to augment proliferation in β cells for reversing diabetes.
Collapse
Affiliation(s)
- Feng Li
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ruya Liu
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vinny Negi
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ping Yang
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeongkyung Lee
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mousumi Moulik
- Division of Cardiology, Department of Pediatrics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Vijay K. Yechoor
- Division of Diabetes, Endocrinology, and Metabolism, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA,Lead contact,Correspondence: (F.L.), (V.K.Y.)
| |
Collapse
|
50
|
Zhou G, Wan WW, Wang W. Modular Peroxidase-Based Reporters for Detecting Protease Activity and Protein Interactions with Temporal Gating. J Am Chem Soc 2022; 144:22933-22940. [PMID: 36511757 PMCID: PMC10026560 DOI: 10.1021/jacs.2c08280] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Enzymatic reporters have been widely applied to study various biological processes because they can amplify signal through enzymatic reactions and provide good sensitivity. However, there is still a need for modular motifs for designing a series of enzymatic reporters. Here, we report a modular peroxidase-based motif, named CLAPon, that features acid-base coil-caged enhanced ascorbate peroxidase (APEX). We demonstrate the modularity of CLAPon by designing a series of reporters for detecting protease activity and protein-protein interactions (PPIs). CLAPon for protease activity showed a 390-fold fluorescent signal increase upon tobacco etch virus protease cleavage. CLAPon for PPI detection (PPI-CLAPon) has two variants, PPI-CLAPon1.0 and 1.1. PPI-CLAPon1.0 showed a signal-to-noise ratio (SNR) of up to 107 for high-affinity PPI pairs and enabled imaging with sub-cellular spatial resolution. However, the more sensitive PPI-CLAPon1.1 is required for detecting low-affinity PPI pairs. PPI-CLAPon1.0 was further engineered to a reporter with light-dependent temporal gating, called LiPPI-CLAPon1.0, which can detect a 3-min calcium-dependent PPI with an SNR of 17. LiPPI-CLAPon enables PPI detection within a specific time window with rapid APEX activation and diverse readout. Lastly, PPI-CLAPon1.0 was designed to have chemical gating, providing more versatility to complement the LiPPI-CLAPon. These CLAPon-based reporter designs can be broadly applied to study various signaling processes that involve protease activity and PPIs and provide a versatile platform to design various genetically encoded reporters.
Collapse
Affiliation(s)
- Guanwei Zhou
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wei Wei Wan
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Wenjing Wang
- Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
- Corresponding Author: Wenjing Wang,
| |
Collapse
|