1
|
Luo K, Yuan W, Lu Z, Xiong Z, Huang JH, Wang X, Feng X. Riverine songbirds capture high levels of atmospheric mercury pollution from brown food webs in forests by mercury isotopic evidence. JOURNAL OF HAZARDOUS MATERIALS 2025; 488:137347. [PMID: 39869980 DOI: 10.1016/j.jhazmat.2025.137347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 01/29/2025]
Abstract
Elevated methylmercury (MeHg) exposure poses significant risks to bird health, behavior, and reproduction. Still, the risk of MeHg exposure to forest birds, accounting for over 80 % of the world's bird species, is poorly understood. This study combines Hg isotopes and video analysis, aiming to assess MeHg exposure risks to a forest riverine songbird, the spotted forktail (Enicurus maculatus) from a remote subtropical montane forest. Noticeably, 83 % of feather MeHg concentrations of adult forktails exceeded 5000 ng g-1, a threshold level potentially impacting bird reproduction, and 50 % of feather MeHg concentrations in forktail nestlings exceeded the threshold level of 1000 ng g-1, that potentially impacts the nestling growth. Forktail nestlings ingested ∼ 99 % of their MeHg from prey within brown food webs (i.e., from forest floor, aquatic, and emergent aquatic prey). The Hg isotopes reveal that MeHg along the bird food chain is mostly derived from in situ methylation of litterfall deposited atmospheric Hg0, with limited photo-demethylation (i.e., 4-12 %) in shaded forest environments. The risk of MeHg exposure of forest songbirds correlated positively with the proportion of prey consumed from brown food webs. We recommend incorporating resident riverine songbirds in monitoring programs to better evaluate the effectiveness of the Minamata Convention, especially in remote forest ecosystems where in situ MeHg production may be underestimated.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences & Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla 666303, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Jen-How Huang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Liu N, Li X, Chen P, Yuan W, Lin CJ, Feng X, Wang X. Mercury Transport, Transformation and Accumulation Recorded by Stable Isotopes during Retreated Glacier Chronosequence of 250 Years. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:6085-6096. [PMID: 40114396 DOI: 10.1021/acs.est.4c13057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Vegetative development in regions where glaciers retreated due to global warming forces the mercury (Hg) cycle in the cryosphere. This study depicts the fate of Hg in a glacier-retreated chronosequence over the last 250 years recorded by signals of stable Hg isotopes. Results show that the Hg storage in surface soil increases by 3.2 times over 250 years after the glacier retreated. 53 ± 11% of Hg in grass shoots is from the uptake of atmospheric Hg0 and 47 ± 11%, from the uptake of soil Hg. Atmospheric Hg2+ is the primary source of surface soil Hg (54 ± 13%), followed by atmospheric Hg0 (40 ± 10%) and geogenic Hg. The Hg accumulation in soils increased by a factor of 5 at an accelerating rate from the 1870s to 2010s. The Hg release flux from melting glaciers is 3.51 ± 0.01 μg m-2 yr-1. The highly positive Δ199Hg (1.03 ± 0.49‰) in precipitation due to photoreduction of Hg2+ in water droplets causes all samples in ecosystems to have positive Δ199Hg values. Isotopic evidence suggests that photolytic and abiotic dark reduction processes have driven Hg0 re-emission from glacier and underlying soil after melting. The accelerated Hg release from melting glaciers and soil Hg accumulation caused by global warming alter Hg cycling in the cryosphere.
Collapse
Affiliation(s)
- Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Li
- School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, China
| | - Peijia Chen
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
3
|
Acharyya S, Saha S, Ghosh A, Majumder S, Bhattacharya M. Mercury tolerance and bioremediation potential of mountain soil bacteria: Insights from Darjeeling, containing elevated levels of mercury. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 960:178351. [PMID: 39787869 DOI: 10.1016/j.scitotenv.2024.178351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/21/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
More and more research is now being focused on the mercury contamination of remote mountain environments. This study aimed to explore the mountain soil of Tiger Hill, Darjeeling, through the lens of its mercury tolerant bacterial microbiome to characterize regional mercury pollution and isolate strains with mercury bioremediation potential. The soil bacteria isolated from the region displayed an extreme tolerance to mercury at previously unseen levels of up to 7 mg/mL. The mercury removal capacity of the two best isolates, MTD11C and MTD11E, identified as strains of Brevundimonas naejangsanensis and Staphylococcus arlettae, exhibited a mercury removal capacity of 99.74 % and 99.56 %, respectively. As per our research, such extreme tolerance to mercury as demonstrated by the bacterial strains has not been reported thus far. The prevalence of such tolerance in the microbiota of a region may well be an indication of the degree of mercury pollution harbored by it. Their tolerance to other heavy metals and antibiotics, as well as active plant growth promotion traits, were also characterized in this study. The topsoil of this region was estimated to contain elevated levels of mercury at around 0.52-2.39 mg kg-1. Ecological risk assessment further showed the potential for harm to the environment posed by the level of mercury. Collected vegetation samples from tea plantations surrounding Tiger Hill displayed an accumulation of mercury in the leaves and roots of the tea plants as well, suggesting rampant mercury pollution that needs to be addressed.
Collapse
Affiliation(s)
- Sukanya Acharyya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Sumedha Saha
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Arindam Ghosh
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Soumya Majumder
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India
| | - Malay Bhattacharya
- Molecular Biology and Tissue Culture Laboratory, Department of Tea Science, University of North Bengal, Siliguri, West Bengal, India.
| |
Collapse
|
4
|
Liu Y, Liu H, Guo Y, Lu D, Hou X, Shi J, Yin Y, Cai Y, Jiang G. Atmospheric Hg(0) dry deposition over environmental surfaces: Insights from mercury isotope fractionation. ECO-ENVIRONMENT & HEALTH 2024; 3:543-555. [PMID: 39605969 PMCID: PMC11599991 DOI: 10.1016/j.eehl.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 04/10/2024] [Accepted: 04/21/2024] [Indexed: 11/29/2024]
Abstract
Atmospheric Hg(0) dry deposition is a vital process that significantly affects the global distribution and cycling of Hg. However, significant knowledge gaps and challenges remain in understanding atmospheric Hg(0) deposition and its subsequent post-deposition processes. Hg isotope fractionation has emerged as the most powerful tool for evaluating the impact of atmospheric Hg(0) deposition and unraveling key processes associated with it. By focusing on Hg isotope fractionation processes, Hg isotopic compositions, and influencing factors, this review presents current knowledge, recent advances, and new insights into atmospheric Hg(0) deposition and post-deposition processes over vegetation, soil, snow, and water surfaces. This review also points out the knowledge gaps pertaining to atmospheric Hg(0) deposition and highlights the need for further investigation into the associated processes, mechanisms, isotope fractionation, and modeling. Further research into Hg isotope fractionation in atmospheric Hg(0) deposition and post-deposition processes will advance source and process tracing, paleoclimate reconstruction, and the modeling of Hg isotope distribution on regional and global scales.
Collapse
Affiliation(s)
- Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Hongwei Liu
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Dawei Lu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yong Cai
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| |
Collapse
|
5
|
Yin X, Zhou W, Su Y, Tang C, Guo J, Liu Z, Wang Y, Zhang X, Rupakheti D, Kang S. Spatial distribution and risk assessment of mercury in soils over the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176652. [PMID: 39362537 DOI: 10.1016/j.scitotenv.2024.176652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
The Tibetan Plateau is one of the highest and most pristine plateaus in the world, and its ecological environment has a significant impact on global climate and the distribution of water resources. Mercury (Hg), as a toxic metal pollutant, can have a severe impact on the health of living organisms and the ecosystem due to its presence in the environment. This study collected 336 soil samples from 28 sites across four typical surface vegetation landscapes (meadow, grassland, desert, and forest) on the Tibetan Plateau to measure soil THg (Total Hg) concentrations. The research aimed to explore the factors influencing soil THg levels, analyze pollution and environmental risks of THg in the surface soil, and evaluate the associated health risks to the local population. The results indicate that the mean soil THg concentration (31.84 ± 32.58 ng·g-1) of this study is compared to the background value of THg in Tibetan Plateau soils (37.0 ng·g-1), but there are significant differences in THg concentration among soils with different surface vegetation landscapes. The mean THg concentration in soils of forest vegetation types (74.42 ± 41.19 ng·g-1) is approximately twice the background value of Tibetan Plateau soils. In the forested regions of the southeastern, eastern, and southern Tibetan Plateau, soil concentrations of total mercury are relatively high, whereas in the desert areas of the northern, northwestern, and northeastern Tibetan Plateau, the concentrations are lower. Organic matter (soil organic carbon) being an important factor influencing the soil THg. Based on existing surface soil THg data from this and previous research in Tibetan Plateau (n = 477), 34.2 % of the samples show Hg pollution and potential ecological risks. However, the health risks of soil Hg to both adults and children are not significant.
Collapse
Affiliation(s)
- Xiufeng Yin
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Wenting Zhou
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; Lanzhou University of Arts and Science, Lanzhou 730000, China
| | - Yanbin Su
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Cuiwen Tang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Junming Guo
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
| | - Zhiwei Liu
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Wang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Xiaohui Zhang
- School of Environment and Municipal Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China
| | - Dipesh Rupakheti
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Shichang Kang
- Key Laboratory of Cryospheric Science and Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
6
|
Cao Q, Sun G, Liu L, Liang H, Fu X, Feng X. Mercury isotope fractionation and mercury source analysis in coal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176286. [PMID: 39278490 DOI: 10.1016/j.scitotenv.2024.176286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Understanding the sources of mercury (Hg) in coal is crucial for understanding the natural Hg cycle in the Earth's system, as coal is a natural Hg reservoir. We conducted analyses on the mass-dependent fractionation (MDF), reported as δ202Hg, and mass-independent fractionation (MIF), reported as Δ199Hg, of Hg isotopes among individual Hg species and total Hg (THg) in Chinese coal samples. This data, supplemented by a review of prior research, allowed us to discern the varying trend of THg isotope fractionation with coal THg content. The Hg isotopic composition among identified Hg species in coal manifests notable disparities, with species exhibiting higher thermal stability tending to have heavier δ202Hg values, whereas HgS species typically display the most negative Δ199Hg values. The sources of Hg in coal are predominantly attributed to Hg accumulation from the original plant material and subsequent input from hydrothermal activity. Hg infiltrates peat swamps via vegetation debris, thus acquiring a negative Δ199Hg isotopic signature. Large-scale lithospheric Hg recycling via plate tectonics facilitates the transfer of Hg with a positive Δ199Hg from marine reservoirs to the deep crust. The later-stage hydrothermal input of Hg with a positive Δ199Hg enhances coal Hg content. This process has resulted in an upward trend of Δ199Hg values corresponding with the increase in coal THg content, ultimately leading to near-zero Δ199Hg in high-Hg coals. Coal Hg reservoirs are affected by large-scale natural Hg cycling, which involves the exchange of Hg between continents and seas.
Collapse
Affiliation(s)
- Qingyi Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Liyuan Liu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Handong Liang
- State Key Laboratory for Fine Exploration and Intelligent Development of Coal Resources, Beijing 100083, China
| | - Xuewu Fu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
7
|
Aslam MW, Meng B, Ali W, Abrar MM, Abdelhafiz MA, Feng X. Low mercury risks in paddy soils across the Pakistan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 943:173879. [PMID: 38857798 DOI: 10.1016/j.scitotenv.2024.173879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/12/2024]
Abstract
Mercury (Hg) is a globally distributed heavy metal. Here, we study Hg concentration and isotopic composition to understand the status of Hg pollution and its sources in Pakistan's paddy soil. The collected paddy soils (n = 500) across the country have an average THg concentration of 22.30 ± 21.74 ng/g. This low mean concentration suggests Hg pollution in Pakistan was not as severe as previously thought. Meanwhile, samples collected near brick kilns and industrial areas were significantly higher in THg than others, suggesting the influence of Hg emitted from point sources in certain areas. Soil physicochemical properties showed typical characteristic of mineral soils due to the study area's arid to semi-arid climate. Hg stable isotopes analysis, depicted mean Δ199Hg of -0.05 ± 0.12‰ and mean δ202Hg -0.45 ± 0.35‰, respectively, for contaminated sites, depicting Hg was primarily sourced from coal combustion by local anthropogenic sources. While uncontaminated sites show mean Δ199Hg of 0.15 ± 0.08‰, mean Δ200Hg of 0.06 ± 0.07‰ and mean δ202Hg of -0.32 ± 0.28‰, implying long-range transboundry Hg transport through wet Hg(II) deposition as a dominant Hg source. This study fills a significant knowledge gap regarding the Hg pollution status in Pakistan and suggests that the Hg risk in Pakistan paddies is generally low.
Collapse
Affiliation(s)
- Muhammad Wajahat Aslam
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China.
| | - Waqar Ali
- Department of Ecological Sciences and Engineering, College of Environment and Ecology, Chongqing University, Chongqing 400045, PR China
| | - Muhammad Mohsin Abrar
- College of Resources and Environment, Zhongkai University of Agriculture and Engineering, 510225 Guangzhou, China; Engineering and Technology Research Center for Agricultural Land Pollution and Integrated Prevention, Guangzhou, China
| | - Mahmoud A Abdelhafiz
- Geology Department, Faculty of Science, Al-Azhar University, Assiut 71524, Egypt
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
8
|
Chang C, Wang R, Xu L, Zhao Z, Cheng W, Hao J, Huang F. Historical co-enrichment, source attribution, and risk assessment of critical nutrients and heavy metal/metalloids in lake sediments: insights from Chaohu Lake, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:390. [PMID: 39172153 DOI: 10.1007/s10653-024-02168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/11/2024] [Indexed: 08/23/2024]
Abstract
In Chinese freshwater lakes, eutrophication often coincides with heavy metal/metalloids (HM/Ms) pollution, yet the coevolution of critical nutrients (P, S, Se) and HM/Ms (Cd, Hg, etc.) remains understudied. To address this gap, we conducted a sedimentary chemistry analysis on a 30 cm-deep core, dating back approximately 200 years, retrieved from Chaohu Lake, China. The age-depth model revealed a gradual increase in deposition rates over time. Notably, the concentrations and enrichment factors (EFs) of most target elements surged in the uppermost ~ 15 cm layer, covering the period from 1953 to 2013, while both the concentrations and EFs in deeper layers remained relatively stable, except for Hg. This trend indicates a significant co-enrichment and near-synchronous increase in the levels and EFs of both nutrients and HM/Ms in the upper sediment layers since the mid-twentieth century. Anthropogenic factors were identified as the primary drivers of the enrichment of P, Se, Cd, Hg, Zn, and Te in the upper core, with their contributions also showing a coupled evolutionary trend over time. Conversely, geological activities governed the enrichment of elements in the lower half of the core. The gradual accumulation of anthropogenic Hg between the - 30 to - 15 cm layers might be attributed to global Hg deposition resulting from the industrial revolution. The ecological risk index (RI) associated with HM/Ms loading has escalated rapidly over the past 50 years, with Cd and Hg posing the greatest threats. Furthermore, the PMF model was applied to specifically quantify source contributions of these elements in the core, with anthropogenic and geogenic factors accounting for ~ 60 and ~ 40%, respectively. A good correlation (r2 = 0.87, p < 0.01) between the PMF and Ti-normalized method was observed, indicating their feasibility and cross-validation in source apportionment. Finally, we highlighted environment impact and health implications of the co-enrichment of nutrients and HM/Ms. This knowledge is crucial for developing strategies to protect freshwater ecosystems from the combined impacts of eutrophication and HM/Ms pollution, thereby promoting water environment and human health.
Collapse
Affiliation(s)
- Chuanyu Chang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China.
| | - Ruirui Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Liqiang Xu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Wenhan Cheng
- College of Resources and Environment, Anhui Agriculture University, Hefei, 230036, Anhui, China
| | - Jihua Hao
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Fang Huang
- State Key Laboratory of Lithospheric and Environmental Coevolution, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
9
|
Cai N, Wang X, Zhu H, Hu Y, Zhang X, Wang L. Isotopic insights and integrated analysis for heavy metal levels, ecological risks, and source apportionment in river sediments of the Qinghai-Tibet Plateau. ENVIRONMENTAL RESEARCH 2024; 251:118626. [PMID: 38467358 DOI: 10.1016/j.envres.2024.118626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The research was carried out to examine the pollution characteristics, ecological risk, and origins of seven heavy metals (Hg, As, Pb, Cu, Cd, Zn, and Ni) in 51 sediment samples gathered from 8 rivers located on the Qinghai-Tibet Plateau (QTP) in China. The contents of Hg and Cd were 5.0 and 1.1 times higher than their background values, respectively. The mean levels of other measured heavy metals were below those found naturally in the local soil. The enrichment factor showed that the study area exhibited significantly enriched Hg with 70.6% sampling sites. The Cd contents at 19.6% of sampling sites were moderately enriched. The other sampling sites were at a less enriched level. The sediments of all the rivers had a medium level of potential ecological risk. Hg was the major ecological risk factor in all sampling sites, followed by Cd. The findings from the positive matrix factorization (PMF) analysis shown agricultural activities, industrial activities, traffic emissions, and parent material were the major sources. The upper, middle, and low reaches of the Quanji river had different Hg isotope compositions, while sediments near the middle reaches were similar to the δ202Hg of the industrial source. At the upstream sampling sites, the Hg isotope content was very close to the background level. The results of this research can establish a strong scientific sound to improve the safety of the natural circumstances of rivers on the QTP.
Collapse
Affiliation(s)
- Na Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Haixia Zhu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Hu
- Qaidam Comprehensive Geological and Mineral Exploration Institute of Qinghai Province, Golmud, 816099, China; Qinghai Provincial Key Laboratory of Exploration and Research of Salt Lake Resources in Qaidam Basin, Golmud, 816099, China
| | - Xiying Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China.
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
10
|
Chen Y, Lu Y, Qi B, Ma Q, Zang K, Lin Y, Liu S, Pan F, Li S, Guo P, Chen L, Lan W, Fang S. Atmospheric CO 2 in the megacity Hangzhou, China: Urban-suburban differences, sources and impact factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171635. [PMID: 38490430 DOI: 10.1016/j.scitotenv.2024.171635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 02/15/2024] [Accepted: 03/08/2024] [Indexed: 03/17/2024]
Abstract
Limited observation sites and insufficient monitoring of atmospheric CO2 in urban areas restrict our comprehension of urban-suburban disparities. This research endeavored to shed light on the urban-suburban differences of atmospheric CO2 in levels, diurnal and seasonal variations as well as the potential sources and impact factors in the megacity of Hangzhou, China, where the economically most developed region in China is. The observations derived from the existing Hangzhou Atmospheric Composition Monitoring Center Station (HZ) and Lin'an Regional Atmospheric Background Station (LAN) and the newly established high-altitude Daming Mountain Atmospheric Observation Station (DMS), were utilized. From November 2020 to October 2021, the annual averages of HZ, LAN and DMS were 446.52 ± 17.01 ppm, 441.56 ± 15.42 ppm, and 422.02 ± 10.67 ppm. The difference in atmospheric CO2 mole fraction between HZ and LAN was lower compared to the urban-suburban differences observed in other major cities in China, such as Shanghai, Nanjing, and Beijing. Simultaneous CO2 enhancements were observed at HZ and LAN, when using DMS observations as background references. The seasonal variations of CO2 at LAN and DMS exhibited a high negative correlation with the normalized difference vegetation index (NDVI) values, indicating the strong regulatory of vegetation canopy. The variations in boundary layer height had a larger influence on the low-altitude HZ and LAN stations than DMS. Compared to HZ and LAN, the atmospheric CO2 at DMS was influenced by emissions and transmissions over a wider range. The potential source area of DMS in autumn covered most areas of the urban agglomeration in eastern China. DMS measurements could provide a reliable representation of the background level of CO2 emissions in the Yangtze River Delta and a broader region. Conventional understanding of regional CO2 level in the Yangtze River Delta through LAN measurements may overestimate background concentration by approximately 10.92 ppm.
Collapse
Affiliation(s)
- Yuanyuan Chen
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yanran Lu
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Bing Qi
- Hangzhou Meteorological Bureau, Hangzhou 310051, China
| | - Qianli Ma
- Lin'an Regional Background Station, China Meteorological Administration, Zhejiang 314016, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yi Lin
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuo Liu
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Fengmei Pan
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shan Li
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peng Guo
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lihan Chen
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wengang Lan
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Shuangxi Fang
- Zhejiang Carbon Neutral Innovation Institute & Zhejiang International Cooperation Base for Science and Technology on Carbon Emission Reduction and Monitoring, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters(CIC-FEMD), Nanjing University of Information Science & Technology, Nanjing 210044, China.
| |
Collapse
|
11
|
Li X, Hu D, Du J, He L. Understanding mercury accumulation in mosses of two subalpine forests in China. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134266. [PMID: 38626682 DOI: 10.1016/j.jhazmat.2024.134266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 04/08/2024] [Indexed: 04/18/2024]
Abstract
The role of forest ecosystems in the global mercury (Hg) biogeochemical cycle is widely recognized; however, using litterfall as a surrogate to assess the Hg sink function of forests encounters limitations. We investigated the accumulation characteristics and influencing factors of Hg in mosses from two remote subalpine forests in southwestern China. The results indicated that there was high Hg accumulation in subalpine forest mosses, with average concentrations of 82 ± 49 ng g-1 for total mercury (THg) and 1.3 ± 0.8 ng g-1 for methylmercury (MeHg). We demonstrated that the accumulation capacity of Hg in mosses was significantly dependent on species and substrates (micro-habitats), the mosses on tree trunks exhibited significantly elevated Hg accumulation levels (THg 132 ± 56 ng g-1, MeHg 1.6 ± 0.2 ng g-1) compared to mosses in other substrates. The surface morphologies and biochemical components of leaf (phyllidia), such as cation exchange capacity (CEC), pectin, uronic acid, and metallothionein, play a crucial role in the accumulation of Hg by mosses. These findings provide valuable insights into Hg accumulation in forest mosses. Suggesting that the contribution of mosses Hg accumulation should be considered when assessing atmospheric Hg sinks of forests.
Collapse
Affiliation(s)
- Xiaohui Li
- College of Life Science, Sichuan Normal University, No. 1819, Chenglong Road, Chengdu, Sichuan 610101, China.
| | - Dan Hu
- College of Life Science, Sichuan Normal University, No. 1819, Chenglong Road, Chengdu, Sichuan 610101, China.
| | - Jie Du
- Jiuzhaigou Scenic Area Administration, Zhangzha, Jiuzhaigou, Sichuan 623402, China.
| | - Lei He
- College of Life Science, Sichuan Normal University, No. 1819, Chenglong Road, Chengdu, Sichuan 610101, China.
| |
Collapse
|
12
|
Jung S, Besnard L, Li ML, R Reinfelder J, Kim E, Kwon SY, Kim JH. Interspecific Variations in the Internal Mercury Isotope Dynamics of Antarctic Penguins: Implications for Biomonitoring. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6349-6358. [PMID: 38531013 DOI: 10.1021/acs.est.3c09452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Mercury (Hg) biomonitoring requires a precise understanding of the internal processes contributing to disparities between the Hg sources in the environment and the Hg measured in the biota. In this study, we investigated the use of Hg stable isotopes to trace Hg accumulation in Adélie and emperor penguin chicks from four breeding colonies in Antarctica. Interspecific variation of Δ199Hg in penguin chicks reflects the distinct foraging habitats and Hg exposures in adults. Chicks at breeding sites where adult penguins predominantly consumed mesopelagic prey showed relatively lower Δ199Hg values than chicks that were primarily fed epipelagic krill. Substantial δ202Hg variations in chick tissues were observed in both species (Adélie: -0.11 to 1.13‰, emperor: -0.27 to 1.15‰), whereas only emperor penguins exhibited the lowest δ202Hg in the liver and the highest in the feathers. Our results indicate that tissue-specific δ202Hg variations and their positive correlations with % MeHg resulted from MeHg demethylation in the liver and kidneys of emperor penguin chicks, whereas Adélie penguin chicks showed different internal responses depending on their exposure to dietary MeHg. This study highlights the importance of considering intra- and interspecific variations in adult foraging ecology and MeHg demethylation when selecting penguin chicks for Hg biomonitoring.
Collapse
Affiliation(s)
- Saebom Jung
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Lucien Besnard
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
| | - Mi-Ling Li
- School of Marine Science and Policy, University of Delaware, Newark, Delaware 19716, United States
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Eunhee Kim
- Citizens' Institute for Environmental Studies (CIES), Seoul 03039, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology, Yonsei University, 85 Songdogwahak-ro, Incheon 21983, South Korea
| | - Jeong-Hoon Kim
- Korea Polar Research Institute (KOPRI), 26 Songdomirae-ro, Incheon 21990, South Korea
| |
Collapse
|
13
|
Luo K, Yuan W, Lu Z, Xiong Z, Lin CJ, Wang X, Feng X. Unveiling the Sources and Transfer of Mercury in Forest Bird Food Chains Using Techniques of Vivo-Nest Video Recording and Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6007-6018. [PMID: 38513264 DOI: 10.1021/acs.est.3c10972] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Knowledge gaps in mercury (Hg) biomagnification in forest birds, especially in the most species-rich tropical and subtropical forests, limit our understanding of the ecological risks of Hg deposition to forest birds. This study aimed to quantify Hg bioaccumulation and transfer in the food chains of forest birds in a subtropical montane forest using a bird diet recorded by video and stable Hg isotope signals of biological and environmental samples. Results show that inorganic mercury (IHg) does not biomagnify along food chains, whereas methylmercury (MeHg) has trophic magnification factors of 7.4-8.1 for the basal resource-invertebrate-bird food chain. The video observations and MeHg mass balance model suggest that Niltava (Niltava sundara) nestlings ingest 78% of their MeHg from forest floor invertebrates, while Flycatcher (Eumyias thalassinus) nestlings ingest 59% from emergent aquatic invertebrates (which fly onto the canopy) and 40% from canopy invertebrates. The diet of Niltava nestlings contains 40% more MeHg than that of Flycatcher nestlings, resulting in a 60% higher MeHg concentration in their feather. Hg isotopic model shows that atmospheric Hg0 is the main Hg source in the forest bird food chains and contributes >68% in most organisms. However, three categories of canopy invertebrates receive ∼50% Hg from atmospheric Hg2+. Overall, we highlight the ecological risk of MeHg exposure for understory insectivorous birds caused by atmospheric Hg0 deposition and methylation on the forest floor.
Collapse
Affiliation(s)
- Kang Luo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Zichun Xiong
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan 676200, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
14
|
Yang YH, Kim MS, Park J, Kwon SY. Atmospheric mercury uptake and accumulation in forests dependent on climatic factors. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:519-529. [PMID: 38344926 DOI: 10.1039/d3em00454f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/21/2024]
Abstract
The environmental and climatic factors dictating atmospheric mercury (Hg) uptake by foliage and accumulation within the forest floor are evaluated across six mountain sites, South Korea, using Hg concentration and Hg stable isotope analyses. The isotope ratios of total gaseous Hg (TGM) at six mountains are explained by local anthropogenic Hg emission influence and partly by mountain elevation and wind speed. The extent to which TGM is taken up by foliage is not dependent on the site-specific TGM concentration, but by the local wind speed, which facilitates TGM passage through dense deciduous canopies in the Korean forests. This is depicted by the significant positive relationship between wind speed and foliage Hg concentration (r2 = 0.92, p < 0.05) and the magnitude of δ202Hg shift from TGM to foliage (r2 = 0.37, p > 0.05), associated with TGM uptake and oxidation by foliar tissues. The litter and topsoil Hg concentrations and isotope ratios reveal relationships with a wide range of factors, revealing lower Hg level and greater isotopic fractionation at sites with low elevation, high wind speed, and high mean warmest temperature. We attribute this phenomenon to active TGM re-emission from the forest floor at sites with high wind speed and high temperature, caused by turnover of labile organic matter and decomposition. In contrast to prior studies, we observe no significant effect of precipitation on forest Hg accumulation but precipitation appears to reduce foliage-level Hg uptake by scavenging atmospheric Hg species available for stomata uptake. The results of this study would enable better prediction of future atmospheric and forest Hg influence under climate change.
Collapse
Affiliation(s)
- Yo Han Yang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.
| | - Min-Seob Kim
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Jaeseon Park
- Environmental Measurement & Analysis Center, National Institute of Environmental Research, 42 Hwangyong-Ro, Seo-Gu, Incheon 22689, South Korea
| | - Sae Yun Kwon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-Gu, Pohang 37673, South Korea.
| |
Collapse
|
15
|
Liu H, Zheng W, Gao Y, Yang L, Yue F, Huang T, Xie Z. Increased Contribution of Circumpolar Deep Water Upwelling to Methylmercury in the Upper Ocean around Antarctica: Evidence from Mercury Isotopes in the Ornithogenic Sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:2762-2773. [PMID: 38294849 DOI: 10.1021/acs.est.3c06923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Upwelling plays a pivotal role in supplying methylmercury (MeHg) to the upper oceans, contributing to the bioaccumulation of MeHg in the marine food web. However, the influence of the upwelling of Circumpolar Deep Water (CDW), the most voluminous water mass in the Southern Ocean, on the MeHg cycle in the surrounding oceans and marine biota of Antarctica remains unclear. Here, we study the mercury (Hg) isotopes in an ornithogenic sedimentary profile strongly influenced by penguin activity on Ross Island, Antarctica. Results indicate that penguin guano is the primary source of Hg in the sediments, and the mass-independent isotope fractionation of Hg (represented by Δ199Hg) can provide insights on the source of marine MeHg accumulated by penguin. The Δ199Hg in the sediments shows a significant decrease at ∼1550 CE, which is primarily attributed to the enhanced upwelling of CDW that brought more MeHg with lower Δ199Hg from the deeper seawater to the upper ocean. We estimate that the contribution of MeHg from the deeper seawater may reach more than 38% in order to explain the decline in Δ199Hg at ∼1550 CE. Moreover, we found that the intensified upwelling may have increased the MeHg exposure for marine organisms, highlighting the importance of CDW upwelling on the MeHg cycle in Antarctic coastal ecosystems.
Collapse
Affiliation(s)
- Hongwei Liu
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Wang Zheng
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin 300072, China
- School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287, United States
| | - Yuesong Gao
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Lianjiao Yang
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fange Yue
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Huang
- School of Resources and Environmental Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Zhouqing Xie
- Department of Environmental Science and Engineering, Anhui Key Laboratory of Polar Environment and Global Change, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Richter L, Amouroux D, Tessier E, Fostier AH. Impact of forest fire on the mercury stable isotope composition in litter and soil in the Amazon. CHEMOSPHERE 2023; 339:139779. [PMID: 37567261 DOI: 10.1016/j.chemosphere.2023.139779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 07/12/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Mercury (Hg) emissions from forest fires, especially tropical forests such as the Amazonian forest, were shown to contribute significantly to the atmospheric mercury budget, but new methods are still necessary to improve the traceability and to reduce the great uncertainties related to this emission source. Recent studies have shown that the combustion process can result in Hg stable isotope fractionation that allows tracking coal combustion Hg emissions, as influenced by different factors such as combustion temperature. The main goal of the present study was, therefore, to investigate for the first time the potential of Hg stable isotopes to trace forest fire Hg emissions and pathways. More specifically, small-scale and a large scale prescribed forest fire experiments were conducted in the Brazilian Amazonian forest to study the impact of fire severity on Hg isotopic composition of litter, soil, and ash samples and associated Hg isotope fractionation pathways. In the small-scale experiment, no difference was found in the mercury isotopic composition of the samples collected before and after burning. In contrast, the larger-scale experiment resulted in significant mass dependent fractionation (MDF δ202Hg) in soils and ash suggesting that higher combustion temperature influence Hg isotopic fractionation with the emission of lighter Hg isotopes to the atmosphere and enrichment with heavier Hg in ashes. As for coal combustion, mass independent fractionation was not observed. To our knowledge, these results are the first to highlight the potential of forest fires to cause Hg isotopic fractionation, depending on the fire severity. The results also allowed to establish an isotopic fingerprint for tropical forest fire Hg emissions that corresponds to a mixture of litter and soil Hg isotopic composition (resulting atmospheric δ202Hg, Δ200Hg and Δ199Hg were -1.79 ± 0.24‰, -0.05 ± 0.04‰ and -0.45 ± 0.12‰, respectively).
Collapse
Affiliation(s)
- Larissa Richter
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil
| | - David Amouroux
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France.
| | - Emmanuel Tessier
- Université de Pau et des Pays de L'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour L'Environnement et Les Matériaux, Pau, France
| | - Anne Hélène Fostier
- Institute of Chemistry, University of Campinas (UNICAMP), 13083-970, Campinas, São Paulo, Brazil.
| |
Collapse
|
17
|
Jin X, Yan J, Ali MU, Li Q, Li P. Mercury Biogeochemical Cycle in Yanwuping Hg Mine and Source Apportionment by Hg Isotopes. TOXICS 2023; 11:toxics11050456. [PMID: 37235270 DOI: 10.3390/toxics11050456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Although mercury (Hg) mining activities in the Wanshan area have ceased, mine wastes remain the primary source of Hg pollution in the local environment. To prevent and control Hg pollution, it is crucial to estimate the contribution of Hg contamination from mine wastes. This study aimed to investigate Hg pollution in the mine wastes, river water, air, and paddy fields around the Yanwuping Mine and to quantify the pollution sources using the Hg isotopes approach. The Hg contamination at the study site was still severe, and the total Hg concentrations in the mine wastes ranged from 1.60 to 358 mg/kg. The binary mixing model showed that, concerning the relative contributions of the mine wastes to the river water, dissolved Hg and particulate Hg were 48.6% and 90.5%, respectively. The mine wastes directly contributed 89.3% to the river water Hg contamination, which was the main Hg pollution source in the surface water. The ternary mixing model showed that the contribution was highest from the river water to paddy soil and that the mean contribution was 46.3%. In addition to mine wastes, paddy soil is also impacted by domestic sources, with a boundary of 5.5 km to the river source. This study demonstrated that Hg isotopes can be used as an effective tool for tracing environmental Hg contamination in typical Hg-polluted areas.
Collapse
Affiliation(s)
- Xingang Jin
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
18
|
Liu N, Cai X, Jia L, Wang X, Yuan W, Lin CJ, Wang D, Feng X. Quantifying Mercury Distribution and Source Contribution in Surface Soil of Qinghai-Tibetan Plateau Using Mercury Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5903-5912. [PMID: 36976750 DOI: 10.1021/acs.est.2c09610] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Long-range transport and atmospheric deposition of gaseous mercury (Hg0) result in significant accumulation of Hg in the Qinghai-Tibetan Plateau (QTP). However, there are significant knowledge gaps in understanding the spatial distribution and source contribution of Hg in the surface soil of the QTP and factors influencing Hg accumulation. In this study, we comprehensively investigated Hg concentrations and isotopic signatures in the QTP to address these knowledge gaps. Results show that the average Hg concentration in the surface soil ranks as follows: forest (53.9 ± 36.9 ng g-1) > meadow (30.7 ± 14.3 ng g-1) > steppe (24.5 ± 16.1 ng g-1) > shrub (21.0 ± 11.6 ng g-1). Hg isotopic mass mixing and structural equation models demonstrate that vegetation-mediated atmospheric Hg0 deposition dominates the Hg source in the surface soil, with an average contribution of 62 ± 12% in forests, followed by 51 ± 10% in shrub, 50 ± 13% in steppe, and 45 ± 11% in meadow. Additionally, geogenic sources contribute 28-37% of surface soil Hg accumulation, and atmospheric Hg2+ inputs contribute 10-18% among the four types of biomes. The Hg pool in 0-10 cm surface soil over the QTP is estimated as 8200 ± 3292 Mg. Global warming, permafrost degradation, and anthropogenic influences have likely perturbed Hg accumulation in the soil of QTP.
Collapse
Affiliation(s)
- Nantao Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinyuan Cai
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Longyu Jia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality, Lamar University, Beaumont, Texas 77710, United States
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
19
|
Casagrande GCR, Dambros J, de Andrade EA, Martello F, Sobral-Souza T, Moreno MIC, Battirola LD, de Andrade RLT. Atmospheric mercury in forests: accumulation analysis in a gold mining area in the southern Amazon, Brazil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:477. [PMID: 36928432 DOI: 10.1007/s10661-023-11063-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
The spatial distribution and dispersion of mercury (Hg) is associated with the structural conditions of the environment, primarily land use and vegetation cover. Man-made emissions of the metal from activities such as artisanal and small-scale gold mining (ASGM) can influence this distribution. Forest ecosystems are of particular importance as they constitute one of the most active environments in the biogeochemical cycle of Hg, and understanding these dynamics is essential to better understand its global cycle. In this study, we determined the content of Hg present in different forest strata (soil, leaf litter, herbaceous, underwood/bush, and arboreal), as well as the relationship between the presence of Hg and the landscape heterogeneity, percentage of gold mines, and ground slope. This study was carried out in tropical forest areas of the southern Brazilian Amazon. Accumulation and transport of Hg between forest strata was assessed in order to understand the influence of these forest environments on Hg accumulation in areas where ASGM occurs. We verified that there is a difference in Hg content between forest strata, indicating that atmospheric Hg is accumulated onto the arboreal stratum and transported vertically to strata below the canopy, i.e., underwood/bush and herbaceous, and subsequently accumulated in the leaf litter and transferred to the soil. Leaf litter was the stratum with the highest Hg content, characterized as a receptor for most of the Hg load from the upper strata in the forest. Therefore, it was confirmed that Hg accumulation dynamics are at play between the areas analyzed due to the proximity of ASGMs in the region. This indicates that the conservation of forest areas plays an important role in the process of atmospheric Hg deposition and accumulation, acting as a mercury sink in areas close to man-made emissions.
Collapse
Affiliation(s)
- Gabriela Cristina Rabello Casagrande
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Juliane Dambros
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Ednaldo Antônio de Andrade
- Institute of Agricultural and Environmental Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| | - Felipe Martello
- Vale Institute of Technology-Sustainable Development, Rua Boaventura da Silva, 955, Nazaré, CEP 66055-090, Belém, Pará, Brazil
| | - Thadeu Sobral-Souza
- Department of Botany and Ecology, Federal University of Mato Grosso, Av. Fernando Corrêa da Costa 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
| | - Maria Inês Cruzeiro Moreno
- Departament of Biological Science, Institute of Biotechnology, Federal University of Catalão, Campus I, Av. Dr. Lamartine Pinto de Avelar, 1120 Setor Universitário, CEP 75704-020, Catalão, Goiás, Brazil
| | - Leandro Dênis Battirola
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil.
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil.
| | - Ricardo Lopes Tortorela de Andrade
- Postgraduate Program in Biotechnology and Biodiversity-Rede Pró-Centro-Oeste, Federal University of Mato Grosso, Cuiabá Campus, Av. Fernando Corrêa da Costa, 2367, Bairro Boa Esperança, CEP 78060-900, Cuiabá, Mato Grosso, Brazil
- Postgraduate Program in Environmental Science, Institute of Natural, Human and Social Sciences, Federal University of Mato Grosso, Sinop Campus, Av. Alexandre Ferronato, 1200, Setor Industrial, CEP 78557-267, Sinop, Mato Grosso, Brazil
| |
Collapse
|
20
|
Qin X, Dong X, Tao Z, Wei R, Zhang H, Guo Q. Tracing the transboundary transport of atmospheric Particulate Bound Mercury driven by the East Asian monsoon. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130678. [PMID: 36608578 DOI: 10.1016/j.jhazmat.2022.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/13/2022] [Accepted: 12/24/2022] [Indexed: 06/17/2023]
Abstract
Taking Beijing-Tianjin-Hebei (BTH) with severe atmospheric mercury (Hg) and PM2.5 pollution as a typical region, this study clarified the characteristics and transboundary transport of atmospheric Particulate Bound Mercury (PBM2.5) affected by the East Asian monsoon. Five sampling sites were conducted in rural, suburban, urban, industrial, and coastal areas of BTH from northwest to southeast along the East Asian monsoon direction. PBM2.5 showed increasing concentrations from northwest to southeast and negative δ202Hg values, indicating significant contributions from anthropogenic sources. However, the mean Δ199Hg values of PBM2.5 at the five sites were significantly positive, probably triggered by the photoreduction of Hg(II) during long-range transport driven by the East Asian monsoon. Apart from local anthropogenic emissions as the primary sources, the transboundary transport of PBM2.5, driven by west and northwest air masses originating in Central Asia and Russia, contributed significantly to the PBM2.5 pollution of BTH. Moreover, these air masses reaching BTH would carry elevated PBM2.5 concentrations further transported to the ocean by the East Asian monsoon. In contrast, the southeast air masses transported from the ocean by the East Asian monsoon in summer diluted inland PBM2.5 pollution. This study provides insight into the atmospheric Hg circulation affected by the East Asian monsoon.
Collapse
Affiliation(s)
- Xuechao Qin
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Department of Health, Ethics and Society, Care and Public Health Research Institute, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht 6229 HA, the Netherlands
| | - Xinyuan Dong
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenghua Tao
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rongfei Wei
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qingjun Guo
- Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
21
|
Peng H, Rong Y, Chen D, Sun R, Huang J, Ding H, Olid C, Yan H. Anthropogenic activity and millennial climate variability affect Holocene mercury deposition of an alpine wetland near the largest mercury mine in China. CHEMOSPHERE 2023; 316:137855. [PMID: 36642145 DOI: 10.1016/j.chemosphere.2023.137855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) is a potentially toxic element that can be transported globally through the atmosphere, once deposited in the environment, has strong bioaccumulation and extreme toxicity in food webs, especially in wetland ecosystems. Anthropogenic Hg emissions have enhanced Hg deposition by 3-5 times since the industrial revolution, and the mining and smelting of Hg ore are important emission sources. However, the dynamics in Hg deposition around the largest Hg mine in China before the industrial revolution and their driving forces remain poorly explored. Here we reconstruct the atmospheric Hg depositional fluxes (named here Hg influx (Hginflux)) during the Holocene using a 450-cm alpine wetland sediment core taken from the Jiulongchi wetland, which is only 65 km to the Wanshan Mercury Mine. Our record shows an abrupt rapid increase in Hg concentration since 2500 cal yr BP, suggesting that Hg mining in southwest China may have started before the establishment of the Qin dynasty. Two major Hginflux peaks were found during the periods 10,000-6000 and 6000 - 3800 cal yr BP, with an increase in Hg deposition by a factor of 4-8. These two peaks are also found in other terrestrial archives from several sites across the Northern Hemisphere. We speculate that critical millennial-scale climate changes, i.e., the Holocene Climatic Optimum (HCO) and the Mid-Holocene Transition (MHT), were the potential triggers of these two Hginflux peaks. This study highlights the importance of climatic variability and local Hg mining in controlling atmospheric Hg deposition during the Holocene.
Collapse
Affiliation(s)
- Haijun Peng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, 710061, China.
| | - Yimeng Rong
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Di Chen
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ruiyang Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Huang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hanwei Ding
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Carolina Olid
- UB-Geomodels Research Institute, Departament de Dinàmica de la Terra i l'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, Barcelona, 08028, Spain
| | - Haiyu Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| |
Collapse
|
22
|
Song X, Ning Y, Yang S, Ye J, Liu J. Spatial Distribution, Pollution, and Ecological Risk Assessment of Metal(loid)s in Multiple Spheres of the Shennongjia Alpine Critical Zone, Central China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1126. [PMID: 36673881 PMCID: PMC9858996 DOI: 10.3390/ijerph20021126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/01/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The development of Earth's critical zone concept has strengthened the capacity of environmental science to better solve real-world problems, such as metal(loid) pollution in the remote alpine areas. The selected metal(loid) contents in soil, moss, and water were investigated to explore the geochemical distribution patterns, pollution levels, and potential ecological risks of metal(loid)s in the Shennongjia (SNJ) alpine critical zone of central China. The distribution of metal(loid)s in different spheres had horizontal and vertical differences. The maximum V, Ni, and Zn contents in water occurred at the sampling sites close to the Hohhot-Beihai Highway, while Dajiuhu Lake had the maximum Cu, Cr, and Mn contents. Most metal(loid) contents in the mosses showed an increasing trend from the northeast low-altitude area to the southwest high-altitude area, while As, Co, V, Ni, Cr, and Zn in soil decreased significantly with altitude and were enriched near the service areas and the highway. The contents of water Co and Ni, soil Cu and Mn, and moss As were evenly distributed and showed no significant differences with altitude. The enrichment factors, pollution index, Nemerow integrated pollution index, geo-accumulation index, heavy metal pollution index, contamination factor, and potential ecological risk index (PERI) were used to assess the pollution levels and ecological risks of SNJ soil, water, and atmosphere. The overall pollution levels of SNJ soil, moss, and water were low to moderate, low, and low, respectively. Soil V, Cu, Zn, moss As, Co, V, and Dajiuhu Lake water Mn were the main pollution factors. The ecological risks in the three spheres of the SNJ alpine critical zone were low to moderate, and As, Co, and V were the most critical potential ecological risk factors. The metal(loid)s pollution problem caused by the continuous development of tourism needs further attention.
Collapse
Affiliation(s)
- Xiannong Song
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Yongqiang Ning
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Shaochen Yang
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jiaxin Ye
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
| | - Jinling Liu
- Hubei Key Laboratory of Critical Zone Evolution, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
23
|
Zeng S, Wang X, Yuan W, Luo J, Wang D. Mercury accumulation and dynamics in montane forests along an elevation gradient in Southwest China. J Environ Sci (China) 2022; 119:1-10. [PMID: 35934454 DOI: 10.1016/j.jes.2021.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 06/15/2023]
Abstract
Understanding atmospheric mercury (Hg) accumulation in remote montane forests is critical to assess the Hg ecological risk to wildlife and human health. To quantify impacts of vegetation, climatic and topographic factors on Hg accumulation in montane forests, we assessed the Hg distribution and stoichiometric relations among Hg, carbon (C), and nitrogen (N) in four forest types along the elevation of Mt. Gongga. Our results show that Hg concentration in plant tissues follows the descending order of litter > leaf, bark > root > branch > bole wood, indicating the importance of atmospheric Hg uptake by foliage for Hg accumulation in plants. The foliar Hg/C (from 237.0 ± 171.4 to 56.8 ± 27.7 µg/kg) and Hg/N (from 7.5 ± 3.9 to 2.5 ± 1.2 mg/kg) both decrease along the elevation. These elevation gradients are caused by the heterogeneity of vegetation uptake of atmospheric Hg and the variation of atmospheric Hg° concentrations at different altitudes. Organic soil Hg accumulation is controlled by forest types, topographic and climatic factors, with the highest concentration in the mixed forest (244.9 ± 55.7 µg/kg) and the lowest value in the alpine forest (151.9 ± 44.5 µg/kg). Further analysis suggests that soil Hg is positively correlated to C (r2 = 0.66) and N (r2 = 0.57), and Hg/C and Hg/N both increase with the soil depth. These stoichiometric relations highlight the combined effects from environmental and climatic factors which mediating legacy Hg accumulation and selective Hg absorption during processes of organic soil mineralization.
Collapse
Affiliation(s)
- Shufang Zeng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Luo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu 610041, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
24
|
Huang S, Jiang R, Song Q, Zhao Y, Lv S, Zhang Y, Huo Y, Chen Y. The Hg behaviors in mangrove ecosystems revealed by Hg stable isotopes: a case study of Maowei mangrove. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25349-25359. [PMID: 34843054 DOI: 10.1007/s11356-021-17744-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/21/2021] [Indexed: 06/13/2023]
Abstract
As one of the most productive marine ecosystems in the tropics and subtropics, mangroves are an important part of the global mercury (Hg) cycling. The environmental processes and effects of Hg in mangroves are complex and affect human Hg exposure, and it is crucial to understand Hg behaviors in the mangrove ecosystem. However, clarifying Hg behaviors in the mangrove ecosystem remains difficult because of an insufficient understanding of the dominant pathways. In this study, measurements of mercury (Hg) concentration and isotope ratios in sediment and plant tissues from a mangrove wetland were used to investigate Hg isotope fractionation in mangrove plants and sediments. Spatial patterns in Hg concentration and isotope signatures indicate that Hg re-emission in the sediment was suppressed by mangrove plants. The ratio of Δ199Hg/Δ201Hg was 0.93 for all sediments, indicating that Hg mass-independent fractionation in the mangrove ecosystem was primarily affected by photoreduction, while the ratios of Δ199Hg/Δ201Hg and Δ199Hg/δ202Hg for plant tissues suggested that natural organic matter reduction of Hg(II) was occurred in the plants. The distinct positive Δ199Hg values found in mangrove plants were supposed to be the results of the unique physiological characteristics of mangroves. The exterior Hg sources from atmosphere and seawater emphasize the role of mangrove ecosystems in the global Hg biogeochemistry. Our study highlights the distinct Hg isotope signatures in the mangrove from that in forests and indicates unique Hg behaviors in the mangrove ecosystem.
Collapse
Affiliation(s)
- Shuyuan Huang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Ronggen Jiang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Qingyong Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| | - Yuhan Zhao
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
- College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Supeng Lv
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Yuanbiao Zhang
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China.
| | - Yunlong Huo
- Ministry of Natural Resources, Third Institute of Oceanography, Xiamen, 361005, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
25
|
Wu Y, Wang S, Zang F, Nan Z, Zhao C, Li Y, Yang Q. Composition, environmental implication and source identification of elements in soil and moss from a pristine spruce forest ecosystem, Northwest China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2022; 44:829-845. [PMID: 34061304 DOI: 10.1007/s10653-021-00984-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 05/19/2021] [Indexed: 06/12/2023]
Abstract
The environmental quality of remote alpine ecosystem has been drawn increasing attention owing to the increasingly severe atmospheric pollution. This study investigated the composition and sources of elements in the soil and moss collected from a pristine spruce forest in the Qilian Mountains, Northwest China. The order of mean concentrations of elements investigated in soil was Fe > K > Na > Mg > Ca > Mn > Cr > Zn > Pb > Ni > Cu > As > Cd > Hg, and that of moss was Ca > Fe > Mg > K > Na > Mn > Cr > Zn > Pb > Ni > Cu > As > Cd > Hg. The concentrations of trace metals (except for As) in soil were greater than the soil background values, with Pb contamination more serious than the other elements. The Nemerow integrated pollution index (NIPI) values indicated that the soils were heavily polluted by Pb, Cd and Ni. The potential ecological risk index (PERI) suggested that the soils were at moderate risk. In particular, Hg and Cd were the most critically potential factors for ecological risk. According to the bioaccumulation factors (BAF), the accumulated concentrations of Ca, Hg, Cd, Pb, Ni, Mg, Cr and Zn in moss were higher than those in soil. By performing the multivariate analyses, natural sources (airborne soil particles) were identified to be the major contributors for all elements, whereas anthropogenic sources also contributed to the accumulations of Pb and Cd in the soil and moss in this region.
Collapse
Affiliation(s)
- Yi Wu
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, Gansu, China
| | - Shengli Wang
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, Gansu, China.
| | - Fei Zang
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Zhongren Nan
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, Gansu, China.
| | - Chuanyan Zhao
- State Key Laboratory of Grassland Agro-Ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Engineering Research Center of Grassland Industry, Ministry of Education, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yueyue Li
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, Gansu, China
| | - Qianfang Yang
- College of Earth and Environmental Sciences, Lanzhou University, Tianshui South Road 222, Lanzhou, 730000, Gansu, China
| |
Collapse
|
26
|
Drummond LDO, Meire RO, Braga C, Rezende CED, Malm O, Cerqueira R. Trophic position, altitudinal distribution, and water dependence as determining factors for mercury concentrations in tropical montane anurans. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:151356. [PMID: 34728193 DOI: 10.1016/j.scitotenv.2021.151356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a widespread and toxic contaminant with potential for long-range atmospheric transport. Previous work has shown that temperate and subtropical montane ecosystems have great potential for deposition of this element. However, little information exists regarding Hg dynamics in tropical mountains. In present study, we evaluated the influence of altitudinal distribution, size, trophic position, and degree of water dependence on Hg concentration in amphibians. For this purpose, we determined the mercury concentration in topsoil and amphibian samples collected at 32 points distributed between 327 and 2181 m above sea level in Serra dos Órgãos, a mountainous complex located in southeastern Brazil. We analyzed the concentration of mercury in whole body samples of 200 individuals of 30 amphibian species. Trophic position of the specimens was estimated by nitrogen stable isotope (δ15N) composition in muscle tissues. We observed a positive relationship between elevation and Hg concentration in topsoil samples from rainforest sites. However, in samples from nebular forest and campos de altitude (highland grasslands) sites, the concentration of Hg was considered lower than expected by the trend in rainforest points, indicating that the vegetation structure plays an important role in the deposition of atmospheric mercury. Mercury concentration in amphibians varies according to the functional characteristics of the species and the environment in which the individual is inserted. Elevation, trophic level and water dependence explained at least some degree of variation in Hg concentration in amphibian tissues. Thus, this community-level analysis suggests that mountainous areas in the tropical region, as recorded for temperate and subtropical mountains, act as regional convergence and deposition sites for atmospheric mercury.
Collapse
Affiliation(s)
- Leandro de Oliveira Drummond
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, RJ CEP: 28013-602, Brazil; Laboratório de Vertebrados, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, C.P. 68020, CEP: 21941-902 Rio de Janeiro, RJ, Brazil.
| | - Rodrigo Ornellas Meire
- Laboratório de Radioisótopos Eduardo Penna-Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP: 21941-900 Rio de Janeiro, RJ, Brazil.
| | - Caryne Braga
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, RJ CEP: 28013-602, Brazil.
| | - Carlos Eduardo de Rezende
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, RJ CEP: 28013-602, Brazil.
| | - Olaf Malm
- Laboratório de Radioisótopos Eduardo Penna-Franca, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, CEP: 21941-900 Rio de Janeiro, RJ, Brazil.
| | - Rui Cerqueira
- Laboratório de Vertebrados, Departamento de Ecologia, Universidade Federal do Rio de Janeiro, C.P. 68020, CEP: 21941-902 Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
27
|
Hao M, Zuo Q, Li J, Shi S, Li B, Zhao X. A comprehensive exploration on distribution, risk assessment, and source quantification of heavy metals in the multi-media environment from Shaying River Basin, China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 231:113190. [PMID: 35032730 DOI: 10.1016/j.ecoenv.2022.113190] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/22/2021] [Accepted: 01/09/2022] [Indexed: 06/14/2023]
Abstract
Comprehensively understand the distribution of pollutants in the multi-media environment at basin scale is of major importance to the ecological risk assessment and pollution control. In this study, multi-media contamination characteristics of eight heavy metals in the water, soil, and sediment from the Shaying River Basin of China have been analyzed to probe their ecological risks and potential sources. Results revealed that heavy metal concentrations in pore water were higher than those in surface water. While the mean concentrations of most heavy metals increased follow the order of bankside soil (BS)<water-level-fluctuating zone soil (WLFZS)<sediment. The WLFZ was an important transition zone between the BS and sediment for pollutant exchange. The mean heavy metal concentrations in surface water were all below their corresponding water quality standards except Hg. Whereas the mean concentrations of Cr, Ni, Zn, Cd, and Hg in BS, WLFZS, and sediment exceeded their corresponding background values. The assessment results of pollution and risks indicated that Hg and Cd posed the highest potential risks in each medium. Furthermore, according to the factor analysis and PMF model, six potential sources were identified, in which agricultural, fuel combustion, and industrial sources were the dominant anthropogenic sources, accounting for 23.84%, 17.43%, and 14.25% of the total contribution.
Collapse
Affiliation(s)
- Minghui Hao
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China
| | - Qiting Zuo
- School of Water Conservancy Engineering, Zhengzhou University, Zhengzhou 450001, China; Henan International Joint Laboratory of Water Cycle Simulation and Environmental Protection, Zhengzhou 450001, China.
| | - Jialu Li
- School of Water Conservancy and Engineering, Yellow River Conservancy Technical Institute, Kaifeng 475000, China
| | - Shujuan Shi
- Henan Ecological Environmental Monitoring Center, Zhengzhou 450003, China
| | - Bei Li
- Henan Ecological Environmental Monitoring Center, Zhengzhou 450003, China
| | - Xinna Zhao
- Henan Ecological Environmental Monitoring Center, Zhengzhou 450003, China
| |
Collapse
|
28
|
Li X, Wang X, Yuan W, Lu Z, Wang D. Increase of litterfall mercury input and sequestration during decomposition with a montane elevation in Southwest China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 292:118449. [PMID: 34740733 DOI: 10.1016/j.envpol.2021.118449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
Litterfall mercury (Hg) input has been regarded as the dominant Hg source in montane forest floor. To depict combining effects of vegetation, climate and topography on accumulation of Hg in montane forests, we comprehensively quantified litterfall Hg deposition and decomposition in a serial of subtropical forests along an elevation gradient on both leeward and windward slopes of Mt. Ailao, Southwest China. Results showed that the average litterfall Hg deposition increased from 12.0 ± 4.2 μg m-2 yr-1 in dry-hot valley shrub at 850-1000 m, 14.9 ± 6.8 μg m-2 yr-1 in mixed conifer-broadleaf forest at 1250-2400 m, to 23.1 ± 8.3 μg m-2 yr-1 in evergreen broadleaf forest at 2500-2650 m. Additionally, the windward slope forests had a significantly higher litterfall Hg depositions at the same altitude because the larger precipitation promoted the greater litterfall biomass production. The one-year litter Hg decomposition showed that the Hg mass of litter in dry-hot valley shrub decreased by 29%, while in mixed conifer-broadleaf and evergreen broadleaf forests increased by 22-48%. The dynamics of Hg in decomposing litter was controlled by the temperature mediated litter decomposition rate and the additional adsorption of environmental Hg during decomposition. Overall, our study highlights the litterfall mediated atmospheric mercury inputs and sequestration increase with the montane elevation, thus driving a Hg enhanced accumulation in the high montane forest.
Collapse
Affiliation(s)
- Xianming Li
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhiyun Lu
- Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
29
|
Ma Y, Shang L, Hu H, Zhang W, Chen L, Zhou Z, Singh PB, Hu Y. Mercury distribution in the East Himalayas: Elevational patterns in soils and non-volant small mammals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117752. [PMID: 34284209 DOI: 10.1016/j.envpol.2021.117752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg), as a global pollutant, its contamination has been documented in environmental compartments of the Himalayan region. However, little research exists regarding to Hg accumulation in terrestrial wildlife, as well as its driving factors. In this study, surface soil and small mammals were collected in the Lebu Valley, East Himalayas of China, in order to measure the uptake of the long-distance transported Hg along an elevational gradient approximately from 2300 to 5000 m a.s.l. The soil Hg concentrations were measured and predicted mostly by vegetation type as well as soil organic matter, while the Hg in hair of small mammals (Muridae and Cricetidae) showed deeply influenced by soil Hg. Notably, combined with the field survey data, soil and hair Hg were both enhanced in low and mid-elevations, which overlapped the distribution ranges of a majority of mammals. Overall, this indicates that Hg contamination in low- and mid-elevations poses a potential threat to the top predators that consuming small mammals directly or indirectly. Furthermore, our data advances the understanding of Hg dynamics in remote, high mountain ecosystems and provides baseline data for biomonitoring for reduction of Hg emission globally.
Collapse
Affiliation(s)
- Yanju Ma
- School of Environmental Science & Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518005, China; School of Economics and Management, Southeast University, Nanjing, Jiangsu, 210088, China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Huijian Hu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| | - Wei Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianghua Chen
- School of Economics and Management, Southeast University, Nanjing, Jiangsu, 210088, China
| | - Zhixin Zhou
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| | - Paras Bikram Singh
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China
| | - Yiming Hu
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, China.
| |
Collapse
|
30
|
Zhong Z, Bing H, Xiang Z, Wu Y, Zhou J, Ding S. Terrain-modulated deposition of atmospheric lead in the soils of alpine forest, central China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 790:148106. [PMID: 34098279 DOI: 10.1016/j.scitotenv.2021.148106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/07/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Alpine ecosystem has a potential to intercept the transport of atmospheric metals, while the regulation mechanisms with variations in altitude and slope direction remain unclear. In this study, the soil and moss samples on the northern and southern slopes of Shennongjia Mountain were collected with altitude to quantitatively identify the sources of lead (Pb) and to decipher the regulation mechanisms of altitude and slope on the Pb distribution. The results showed that the concentrations of Pb decreased evidently with soil depth, and in the O (organic soils) and A (surface mineral soils) horizons they increased with altitude. The Pb isotopes and moss biomonitoring revealed that Pb was mainly from atmospheric deposition, and the sources included fossil fuel combustion, ore mining and smelting. Based on a binary mixing model of Pb isotopes, the percentage of atmospheric Pb in the O and A horizons and mosses averaged 58.8%, 43.7% and 71.0%, respectively. Atmospheric wet deposition strikingly controlled the distribution of soil Pb along the altitude. Canopy filtering and leaching also impacted the accumulation of Pb in the forest floor. The significant difference in the atmospheric Pb accumulation in the soils between the two slopes was not observed as expected, since atmospheric dry deposition from northwestern China contributed to the Pb accumulation on the northern slope according to the Pb isotopic ratios and air mass trajectories. The results of this study indicate that altitude determines the distribution pattern of atmospheric Pb, while slope direction screens the source region of Pb in alpine ecosystems.
Collapse
Affiliation(s)
- Zhilin Zhong
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Haijian Bing
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Zhongxiang Xiang
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yanhong Wu
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China.
| | - Jun Zhou
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610041, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
31
|
Ballová ZK, Janiga M, Holub M, Chovancová G. Temporal and seasonal changes in mercury accumulation in Tatra chamois from West Carpathians. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:52133-52146. [PMID: 34002309 DOI: 10.1007/s11356-021-14380-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
The main aim of this study was to determine the concentration of total mercury (T-Hg) in different tissues, hair, and faeces from a long-lived animal that actively lives in the subalpine and alpine zone within temperate climate zone throughout the year. Levels of T-Hg in samples from naturally deceased Tatra chamois (n = 72) from the Tatra Mountains (Slovakia) were determined using direct mercury analyses on the basis of dry weight. The mercury concentrations in hair samples were compared over the last three decades. Seasonal changes in mercury concentration and differences in the amounts of mercury in various tissues, hairs, and faeces between age and sex groups were also studied. The highest mercury concentrations in organs were found in the kidneys of Tatra chamois, with mean values of 0.45 ± 0.07 μg/g (dry weight) for adults (n = 18) and 0.39 ± 0.12 μg/g (dry weight) for juveniles (n = 6). These values are considerably high compared to expected Hg levels in wild ungulates from foothill and mountain areas in the temperate zone. Juveniles had higher levels of T-Hg in their muscles (0.011 ± 0.001 μg/g dry weight, n = 10) and faeces (0.189 ± 0.025 μg/g dry weight, n = 7) when compared to adults that had 0.007 ± 0.001 μg/g dry weight of T-Hg in muscles (n = 29) and 0.113 ± 0.015 μg/g dry of T-Hg weight in faeces (n = 19). T-Hg concentrations in individual tissues (heart, kidney, liver, lungs, spleen, tongue, muscle, bone), hairs, and faeces were not significantly different between males and females. Mercury levels in the hair of Tatra chamois have increased significantly since the 1990s (median value of T-Hg: 0.025 μg/g dry weight) with the highest values presenting during the 2000s (0.029 μg/g dry weight). Since 2010 (0.016 μg/g dry weight), levels have declined when compared to those observed during the 1990s and 2000s. Therefore, we can conclude that T-Hg deposition in alpine areas of the Tatra Mountains shows a declining trend since the 2010s. T-Hg concentrations in the heart, muscle, and hair were higher in summer compared to winter. Seasonal changes in mercury concentrations are likely most related to the seasonal availability of food, but may also be related to moulting periods, and this correlation must be explored further.
Collapse
Affiliation(s)
- Zuzana Kompišová Ballová
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 05956, Tatranská Javorina, Slovakia.
| | - Marián Janiga
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 05956, Tatranská Javorina, Slovakia
| | - Marek Holub
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 05956, Tatranská Javorina, Slovakia
| | | |
Collapse
|
32
|
Hina N, Riaz R, Ali U, Rafique U, Malik RN. A Quantitative Assessment and Biomagnification of Mercury and Its Associated Health Risks from Fish Consumption in Freshwater Lakes of Azad Kashmir, Pakistan. Biol Trace Elem Res 2021; 199:3510-3526. [PMID: 33409920 DOI: 10.1007/s12011-020-02479-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/06/2020] [Indexed: 10/22/2022]
Abstract
Issues regarding biomagnification of mercury (Hg) due to its persistence, bioaccumulation, and toxicity in freshwater lakes have gained much attention in the last two decades especially in remote regions of the world where anthropogenic inputs are considered as negligible. In this study, spatial distribution of total mercury (THg), interspecific accumulation patterns, trophic transfer, and associated health risks in fish of freshwater lakes (357-3107 masl) in Azad Kashmir, Pakistan, were investigated. THg concentrations in the regions were 0.20 ± 0.08 μg g-1 in glacial, 0.54 ± 0.21 μg g-1 in rural, and 1.35 ± 0.46 μg g-1 in urban region. Omnivorous, herbivorous, and carnivorous fish showed THg concentrations of 0.94, 0.85, and 0.49 μg g-1. Regional, lake, trophic level, and specie-specific differences of THg accumulation were found significant in the study. Among growth parameters, length and age varied significantly among species, trophic levels, and lakes, whereas weight showed significant variation among lakes as well. Condition factor (K) showed significant differences within species, lakes, and trophic levels. Biomagnification was observed in all lakes with the trophic magnification slopes (TMS) ranging from 0.03 to 0.20 with an average of 0.094 ± 0.07. Isotopic values of nitrogen (δ15N) and condition factor were found to dominate THg accumulation trends; however, no significant health risks were found in the study.
Collapse
Affiliation(s)
- Nikhat Hina
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, PO 45320, Pakistan.
| | - Rahat Riaz
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, PO 45320, Pakistan
| | - Usman Ali
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, PO 45320, Pakistan
| | - Uzaira Rafique
- Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpidi, 46000, Pakistan
| | - Riffat Naseem Malik
- Environmental Biology and Ecotoxicology Laboratory, Department of Environmental Sciences, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad, Islamabad, PO 45320, Pakistan
| |
Collapse
|
33
|
Ballabio C, Jiskra M, Osterwalder S, Borrelli P, Montanarella L, Panagos P. A spatial assessment of mercury content in the European Union topsoil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 769:144755. [PMID: 33736262 PMCID: PMC8024745 DOI: 10.1016/j.scitotenv.2020.144755] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 05/29/2023]
Abstract
Mapping of surface soil Hg concentrations, a priority pollutant, at continental scale is important in order to identify hotspots of soil Hg distribution (e.g. mining or industrial pollution) and identify factors that influence soil Hg concentrations (e.g. climate, soil properties, vegetation). Here we present soil Hg concentrations from the LUCAS topsoil (0-20 cm) survey including 21,591 samples from 26 European Union countries (one sample every ~200 km2). Deep Neural Network (DNN) learning models were used to map the European soil Hg distribution. DNN estimated a median Hg concentration of 38.3 μg kg-1 (2.6 to 84.7 μg kg-1) excluding contaminated sites. At continental scale, we found that soil Hg concentrations increased with latitude from south to north and with altitude. A GLMM revealed a correlation (R2 = 0.35) of soil Hg concentrations with vegetation activity, normalized difference vegetation index (NDVI), and soil organic carbon content. This observation corroborates the importance of atmospheric Hg0 uptake by plants and the build-up of the soil Hg pool by litterfall over continental scales. The correlation of Hg concentrations with NDVI was amplified by higher soil organic matter content, known to stabilize Hg in soils through thiol bonds. We find a statistically significant relation between soil Hg levels and coal use in large power plants, proving that emissions from power plants are associated with higher mercury deposition in their proximity. In total 209 hotspots were identified, defined as the top percentile in Hg concentration (>422 μg kg-1). 87 sites (42% of all hotspots) were associated with known mining areas. The sources of the other hotspots could not be identified and may relate to unmined geogenic Hg or industrial pollution. The mapping effort in the framework of LUCAS can serve as a starting point to guide local and regional authorities in identifying Hg contamination hotspots in soils.
Collapse
Affiliation(s)
| | - Martin Jiskra
- Environmental Geosciences, University of Basel, Basel, Switzerland.
| | - Stefan Osterwalder
- Université Grenoble Alpes, CNRS, IRD, Grenoble INP, IGE, Grenoble, France.
| | - Pasquale Borrelli
- Università degli Studi di Pavia, Dipartimento di Scienze della Terra e dell'Ambiente, Pavia, Italy.
| | | | - Panos Panagos
- European Commission, Joint Research Centre (JRC), Ispra, Italy.
| |
Collapse
|
34
|
Gruba P, Kania M, Kupka D, Pietrzykowski M. Sequestration of Mercury in Soils under Scots Pine and Silver Fir Stands Located in the Proximity to a Roadway. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18094569. [PMID: 33925789 PMCID: PMC8123428 DOI: 10.3390/ijerph18094569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 04/20/2021] [Accepted: 04/23/2021] [Indexed: 11/29/2022]
Abstract
Forest soils are the main source of mercury (Hg) in stream water. Stocks of Hg in forest soils are related to several factors, including forest species composition. In this study, the potential source of Hg pollution was a relatively new roadway traversing forested areas. We compared Hg accumulation in soils of two coniferous species: Scots pine (Pinus sylvestris L.) and silver fir (Abies alba Mill.). The experimental plots were located near the S7 expressway in Central Poland. The stands differed in the length of time they had been exposed to Hg, because different parts of the roadway were built and opened to traffic at different times. We analyzed 480 soil samples from organic horizons (O) and the top 10 cm of mineral soil (A) sampled from six plots. The overall average Hg concentrations (irrespective of forest stand, n = 240) was 0.225 mg kg−1 in the O horizons and 0.075 mg kg−1 in the mineral horizons. The Hg concentration in the O horizons was more than three times greater in fir stands than that in pine stands. The average Hg:C ratios in the O and A horizons were 1.0 and 2.3 mg Hg kg−1 C, respectively. Our data does not clearly show the effect of road on Hg accumulation near the road. The concentrations of Hg in investigated soils adjacent to the roadway were only slightly higher than ranges reported for unpolluted areas, and no clearly affected by the vicinity of roadway. In contrast to the other reports, our data indicate a significant impact of tree species on Hg concentrations in both the O and A horizons. Moreover, the average Hg:C ratio was strongly dependent on the tree species.
Collapse
|
35
|
Lu Z, Yuan W, Luo K, Wang X. Litterfall mercury reduction on a subtropical evergreen broadleaf forest floor revealed by multi-element isotopes. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115867. [PMID: 33160734 DOI: 10.1016/j.envpol.2020.115867] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
Litterfall mercury (Hg) deposition is the dominant source of soil Hg in forests. Identifying reduction processes and tracking the fate of legacy Hg on forest floor are challenging tasks. Interplays between isotopes of carbon (C) and nitrogen (N) may shed some lights on Hg biogeochemical processes because their biogeochemical cycling closely links with organic matters. Isotope measurements at the evergreen broadleaf forest floor at Mt. Ailao (Mountain Ailao) display that δ202Hg and Δ199Hg both significantly correlate with δ13C and δ15N in soil profiles. Data analysis results show that microbial reduction is the dominant process for the distinct δ202Hg shift (up to ∼1.0‰) between Oi and 0-10 cm surface mineral soil, and dark abiotic organic matter reduction is the main cause for the Δ199Hg shift (∼-0.18‰). Higher N in foliage leads to greater Hg concentration, and Hg0 re-emission via microbial reduction on forest floor is likely linked to N release and immobilization on forest floor. We thus suggest that the enhanced N deposition in global forest ecosystems can potentially influence Hg uptake by vegetation and litter Hg sequestration on forest floor.
Collapse
Affiliation(s)
- Zhiyun Lu
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Kang Luo
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Xishuangbanna, Yunnan, 666303, China; Ailaoshan Station for Subtropical Forest Ecosystem Studies, Chinese Academy of Sciences, Jingdong, Yunnan, 676200, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
36
|
Gu J, Pang Q, Ding J, Yin R, Yang Y, Zhang Y. The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115079. [PMID: 32806461 DOI: 10.1016/j.envpol.2020.115079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 06/19/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Soils, especially permafrost in the Arctic and the Tibetan Plateau, are one of the largest reservoirs of mercury (Hg) in the global environment. The Hg concentration in the grassland soils over the Tibetan Plateau and its driving factors have been less studied. This study analyzes soil total mercury (STHg) concentrations and its vertical distribution in grassland soil samples collected from the Tibetan Plateau. We adopt a nested-grid high-resolution GEOS-Chem model to simulate atmospheric Hg deposition. The relationship between STHg and soil organic carbon (SOC), as well as atmospheric deposition, are explored. Our results show that the STHg concentrations in the Tibetan Plateau are 19.8 ± 12.2 ng/g. The concentrations are higher in the south and lower in the north in the Tibetan Plateau, consistent with the previous results. Our model shows that the average deposition flux of Hg is 3.3 μg m-2 yr-1, with 57% contributed by dry deposition of elemental mercury (Hg0), followed by dry (19%) and wet (24%) deposition of divalent mercury. We calculate the Hg to carbon ratio (RHg:C) as 5.6 ± 6.5 μg Hg/g C, and the estimated STHg is 86.6 ± 101.2 Gg in alpine grasslands in the Tibetan Plateau. We find a positive relationship between STHg and SOC in the Tibetan Plateau (r2 = 0.36) and a similar positive relationship between STHg and atmospheric total Hg deposition (r2 = 0.24). A multiple linear regression involving both variables better model the observed STHg (r2 = 0.42). We conclude that SOC and atmospheric deposition influence STHg simultaneously in this region. The data provides information to quantify the size of the soil Hg pool in the Tibetan Plateau further, which has important implications for the Hg cycles in the permafrost regions as well as on the global scale.
Collapse
Affiliation(s)
- Jing Gu
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Qiaotong Pang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinzhi Ding
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100085, China
| | - Runsheng Yin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environment Change, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Yanxu Zhang
- School of Atmospheric Sciences, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
37
|
Kurz AY, Blum JD, Gratz LE, Jaffe DA. Contrasting Controls on the Diel Isotopic Variation of Hg 0 at Two High Elevation Sites in the Western United States. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:10502-10513. [PMID: 32786593 DOI: 10.1021/acs.est.0c01918] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The atmosphere is a significant global reservoir for mercury (Hg) and its isotopic characterization is important to understand sources, distribution, and deposition of Hg to the Earth's surface. To better understand Hg isotope variability in the remote background atmosphere, we collected continuous 12-h Hg0 samples for 1 week from two high elevation sites, Camp Davis, Wyoming (valley), and Mount Bachelor, Oregon (mountaintop). The samples collected at Camp Davis displayed strong diel variation in δ202Hg values of Hg0, but not in Δ199Hg or Δ200Hg values. We attribute this pattern to nightly atmospheric inversions trapping Hg in the valley and the subsequent nighttime uptake of Hg by vegetation, which depletes Hg from the atmosphere. At Mount Bachelor, the samples displayed diel variation in both δ202Hg and Δ199Hg, but not Δ200Hg. We attribute this pattern to differences in the vertical distribution of Hg in the atmosphere as Mount Bachelor received free tropospheric air masses on certain nights during the sampling period. Near the end of the sampling period at Mount Bachelor, the observed diel pattern dissipated due to the influence of a nearby forest fire. The processes governing the Hg isotopic fractionation differ across sites depending on mixing, topography, and vegetation cover.
Collapse
Affiliation(s)
- Aaron Y Kurz
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joel D Blum
- Department of Earth and Environmental Sciences, University of Michigan, 1100 N University Avenue, Ann Arbor, Michigan 48109, United States
| | - Lynne E Gratz
- Environmental Studies Program, Colorado College, Colorado Springs, Colorado 80903, United States
| | - Daniel A Jaffe
- School of Science, Technology, Engineering & Mathematics, University of Washington Bothell, Bothell, Washington 98011, United States
| |
Collapse
|
38
|
Sun X, Yin R, Hu L, Guo Z, Hurley JP, Lepak RF, Li X. Isotopic tracing of mercury sources in estuarine-inner shelf sediments of the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 262:114356. [PMID: 32443195 DOI: 10.1016/j.envpol.2020.114356] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/16/2020] [Accepted: 03/09/2020] [Indexed: 06/11/2023]
Abstract
Large river estuarine-inner shelf systems play an important role in the coastal biogeochemical cycling of heavy metals; however, the source-to-sink of mercury (Hg) in these environments remain poorly understood. In this study, the Hg isotopic composition of surface sediments in the Yangtze River Estuary (YRE) and inner shelf of the East China Sea (ECS) were examined to quantitatively track Hg sources in this region. We detected large spatial variation in δ202Hg (-1.88 to -0.29‰) and Δ199Hg (-0.22 to 0.13‰) in sediments of the YRE-ECS inner shelf. The impact of sediment resuspension and transport from the YRE to the inner shelf of the ECS could have little effect on Hg isotopic composition, and the two regions shared similar Hg isotopic composition. An isotope-based triple mixing model further revealed major contributors to sediment Hg from industrial Hg discharge into water (51.8 ± 24.5%), soil Hg from surface runoff (29.2 ± 17.0%), and precipitation-derived atmospheric deposition Hg (19.1 ± 17.5%). The Hg isotopic compositions of the YRE sediments and other local river estuaries were similar to those of direct industrial Hg discharge, indicating that contaminated riverine discharge was the dominant Hg source for estuarine and adjacent shelf areas. Soil Hg delivered through surface runoff was the primary source of Hg to the coastal areas not near large river estuaries, whereas precipitation-derived atmospheric deposition had a greater influence on offshore sediment Hg content. Industrial Hg discharged to rivers had the highest mean depositional flux (35.0 ± 27.3 ng cm-2 yr-1) and mass inventory (25.6 t yr-1), accounting for 77.4% of the total Hg variance. The findings of this study demonstrate that large rivers such as the Yangtze River can supply substantial amounts of industrial Hg to the estuary and adjacent shelf.
Collapse
Affiliation(s)
- Xiang Sun
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Limin Hu
- Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China; Key Laboratory of Marine Sedimentology and Environmental Geology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Zhigang Guo
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Laboratory for Marine Geology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, China.
| | - James P Hurley
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA; Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Ryan F Lepak
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Xiangdong Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
39
|
Moreno F, Moreno J, Fatela F, Guise L, Vieira C, Leira M. Bromine biogeodynamics in the NE Atlantic: A perspective from natural wetlands of western Portugal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137649. [PMID: 32208235 DOI: 10.1016/j.scitotenv.2020.137649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
Bromine (Br) cycling in natural wetlands is highly complex, including abiotic/biotic processes and multiphase inorganic/organic Br-species. Wetland ecosystems receive Br primarily from the ocean, functioning as either sinks or sources of Br, with the overall imbalance largely decided by the prevailing climate. Aiming to trace the present-day transport of oceanogenic Br (i.e., derived from salt-water spray-droplets) and its uptake and storage in brackish and freshwater wetlands, we surveyed waters, autochthonous plants, and soils/sediments from coastal marshes and mountain peatlands in the westernmost fringe of northern Portugal. The calculated enrichment factors of bromide (Br-) relative to chloride in rainfall (EFsea = 16.8-75.3), rivers (EFsea = 1.3-13.9) and wetland waters, superficial (EFsea = 5.8-13.1) and interstitial (EFsea = 2.1-8.9), increased towards the inland highlands. We hypothesized that these values derived mostly from a known Br autocatalytic (heterogeneous) chemical cycle, starting at the seawater-aqueous interface and progressing in altitude. Br-bearing air masses are carried far from the Atlantic Ocean by moist westerlies, with Br- rainout from the atmosphere supplying the neighbouring mountain peatlands. Average [Br] in sampled wetland soils/sediments (111-253 mg/kg) agreed with values from other coastal regions, and they were directly correlated with the abundance of organic matter, varying irrespective the [Br-] of interstitial waters (129 μg/L-79 mg/L). According to the computed bioconcentration factors, the aqueous component was the major source of Br for all plant species investigated (BFplant/water = 2.1-508.0), as described elsewhere. However, Br contents in plants (14-173 mg/kg) evidenced interspecific differences, also suggesting a divergence from the acknowledged halophytic-glycophytic "model". As plants are recognized producers of Br volatile molecules (e.g., methyl bromide, CH3Br), we interpreted translocation factors less than one in vascular species as explanatory of phytovolatilization rather than restriction of Br- upward movement in plants. Further investigation is needed, since considerable intrinsic plant variations in CH3Br emissions are mentioned in the literature.
Collapse
Affiliation(s)
- F Moreno
- Instituto de Ciências da Terra (ICT), Pólo da Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - J Moreno
- Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal.
| | - F Fatela
- Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal; Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - L Guise
- Departamento de Ciências da Terra (DCT), Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - C Vieira
- Museu de História Natural e Ciência da Universidade do Porto (MHNC-UP)/UPorto/Infra-estrutura de Colecções Científicas Portuguesas - (PRIS-POCI-01-0145FEDER-022168), Praça Gomes Teixeira, 4099-002 Porto, Portugal
| | - M Leira
- Departamento de Bioloxía, Universidade da Coruña, Campus da Zapateira, 15071A Coruña, Spain
| |
Collapse
|
40
|
Yin R, Pan X, Deng C, Sun G, Kwon SY, Lepak RF, Hurley JP. Consistent trace element distribution and mercury isotopic signature between a shallow buried volcanic-hosted epithermal gold deposit and its weathered horizon. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 259:113954. [PMID: 31952102 DOI: 10.1016/j.envpol.2020.113954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/30/2019] [Accepted: 01/08/2020] [Indexed: 06/10/2023]
Abstract
Trace elements and Hg isotopic composition were investigated in mineralized rocks, barren rocks, and mineral soils in the Xianfeng prospect, a shallow buried epithermal gold deposit in northeastern China, to understand whether this deposit has left a diagnostic geochemical fingerprint to its weathered horizon. All the rocks and soils display congruent patterns for immobile elements (large ion lithophile elements, high field strength elements, and rare earth elements), which reflect the subduction-related tectonic setting. Both mineralized rocks and soils showed common enrichment of elemental suite As-Ag-Sb-Hg, suggesting that the Xianfeng gold deposit has released these elements into its weathered horizon. Similar mercury isotopic composition was observed between mineralized rocks (δ202Hg: -0.21 ± 0.70‰; Δ199Hg: -0.02 ± 0.12‰; 2SD) and barren rocks (δ202Hg: -0.46 ± 0.48‰; Δ199Hg: 0.00 ± 0.10‰; 2SD), suggesting that mercury in the Xianfeng deposit is mainly derived from the magmatic rocks. Mineralized soils (δ202Hg: -0.44 ± 0.60‰; -0.03 ± 0.14‰; 2SD) and barren soils (δ202Hg: -0.54 ± 0.68‰; Δ199Hg: -0.05 ± 0.14‰; 2SD) displayed congruent Hg isotopic signals to the underlying rocks, suggesting limited Hg isotope fractionation during the release of Hg from ore deposit to soils via weathering. This study reveals evidence of a simple and direct geochemical link between this shallow buried hydrothermal deposit and its weathered horizon, and highlights that the weathering of shallow-buried hydrothermal gold deposits can release a substantial amount of heavy metals (e.g. Hg, As and Sb) to surface soil.
Collapse
Affiliation(s)
- Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Xin Pan
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changzhou Deng
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Guangyi Sun
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Sae Yun Kwon
- Division of Environmental Science & Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam Gu, Pohang, 37673 South Korea
| | - Ryan F Lepak
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - James P Hurley
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| |
Collapse
|
41
|
Zhang Y, Chen J, Zheng W, Sun R, Yuan S, Cai H, Yang DA, Yuan W, Meng M, Wang Z, Liu Y, Liu J. Mercury isotope compositions in large anthropogenically impacted Pearl River, South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110229. [PMID: 31986456 DOI: 10.1016/j.ecoenv.2020.110229] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Rivers integrate natural and anthropogenic mercury (Hg), and are important vectors of terrestrial Hg to the oceans. Here, we report the total Hg concentration and Hg isotope compositions of dissolved load in the Pearl River, the second largest river in China, in order to understand the processes and sources affecting Hg systematics in large anthropogenically-impacted river water. The dissolved Hg showed a concentration varying from 0.45 to 2.44 ng/L, within the range reported for natural background lake and river waters. All river water samples showed significantly negative δ202Hg (-2.89‰ to -0.57‰), slightly positive Δ200Hg (-0.05‰ to 0.52‰), and mostly positive Δ199Hg (0.10‰ to 0.57‰), except for three extremely negative values (-2.25‰ to -0.76‰). Combined with other geochemical parameters, we suggest that the influence of in-river processes, such as sorption and reduction, on the Hg isotope compositions is very limited, and the dissolved Hg in the Pearl River mainly comes from atmospheric precipitation and surface soil weathering. Although the whole river basin is largely affected by urban, industrial and mining activities, unlike other heavy metals, their direct contributions to dissolved Hg seem limited. It is worth noting that the three samples with very negative Δ199Hg values (down to -2.25‰) are derived from special source which attribute to the input of Hg released from the local incineration of electronic wastes. This study demonstrates that isotope approach is a powerful tool for tracing sources and pathways of Hg in large complex river systems.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiubin Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China; Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China.
| | - Wang Zheng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Ruoyu Sun
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Shengliu Yuan
- Chemistry Department, Trent University, Peterborough, Ontario, K9J7B8, Canada
| | - Hongming Cai
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - David Au Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Yuan
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Mei Meng
- Institute of Surface-Earth System Science, Tianjin University, Tianjin, 300072, China
| | - Zhongwei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yulong Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianfeng Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, Guizhou, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
42
|
Huang S, Jiang R, Song Q, Zhang Y, Huang Q, Su B, Chen Y, Huo Y, Lin H. Study of mercury transport and transformation in mangrove forests using stable mercury isotopes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135928. [PMID: 31838299 DOI: 10.1016/j.scitotenv.2019.135928] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 12/02/2019] [Accepted: 12/02/2019] [Indexed: 06/10/2023]
Abstract
Mangrove forests are important wetland ecosystems that are a sink for mercury from tides, rivers and precipitation, and can also be sources of mercury production and export. Natural abundance mercury stable isotope ratios have been proven to be a useful tool to investigate mercury behavior in various ecosystems. In this study, mercury isotopic data were collected from seawater, sediments, air, and plant tissues in two mangrove forests in Guangxi and Fujian provinces, China, to study the transport and transformation of mercury in mangrove sediments. The mangroves were primarily subject to mercury inputs from external sources, such as anthropogenic activities, atmospheric deposition, and the surrounding seawater. An isotope mixing model based on mass independent fractionation (MIF) estimated that the mangrove wetland ecosystems accounted for <40% of the mercury in the surrounding seawater. The mercury in plant root tissues was derived mainly from sediments and enriched with light mercury isotopes. The exogenous mercury inputs from the fallen leaves were diluted by seawater, leading to a positive Δ199Hg offset between the fallen leaves and sediments. Unlike river and lake ecosystems, mangrove ecosystems are affected by tidal action, and the δ202Hg and Δ199Hg values of sediments were more negative than that of the surrounding seawater. The isotopic signature differences between these environmental samples were partially due to isotope fractionation driven by various physical and chemical processes (e.g., sorption, photoreduction, deposition, and absorption). These results contribute to a better understanding of the biogeochemical cycling of mercury in mangrove wetland ecosystems.
Collapse
Affiliation(s)
- Shuyuan Huang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Ronggen Jiang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Qingyong Song
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Yuanbiao Zhang
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China.
| | - Qi Huang
- Guangxi Shankou Mangrove Nature Reserve, Beihai 536000, China
| | - Binghuan Su
- Guangxi Shankou Mangrove Nature Reserve, Beihai 536000, China
| | - Yaojin Chen
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Yunlong Huo
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| | - Hui Lin
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China
| |
Collapse
|
43
|
Sousa M, Benson B, Welty C, Price D, Thirkill R, Erickson W, Cummings M, Dunnivant FM. Atmospheric Deposition of Coal-Related Pollutants in the Pacific Northwest of the United States from 1950 to 2016. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2020; 39:335-342. [PMID: 31743941 DOI: 10.1002/etc.4635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/12/2019] [Accepted: 11/14/2019] [Indexed: 06/10/2023]
Abstract
Coal-related elements are toxic and persistent pollutants that have spread globally since the industrial revolution, mainly from point-source emissions. A sediment core was collected from Deep Lake in northeastern Washington State (USA) by the Washington State Department of Ecology, with the aim of assessing recent changes in atmospheric deposition in the US Pacific Northwest. The core was divided into depth intervals and dated by lead-210. A sample from each cross section was digested and analyzed for toxic metals and metalloids using inductively coupled plasma-mass spectrometry. Data show recent increases in the concentrations of arsenic, barium, selenium, and mercury. Comparison with 1993 US Geological Survey ice core data from the Upper Fremont Glacier in Wyoming (USA), Asian coal consumption data, and weather patterns suggests that pollutant inputs to Deep Lake sediments are the result of coal-burning activities in the Asia-Pacific region. Most notably, mercury deposition in Deep Lake has increased from approximately 20 ppb in 1996 to 9470 ppb in 2014 (an ~400-fold increase), and since 1993 when the ice core was analyzed. Environ Toxicol Chem 2020;39:335-342. © 2019 SETAC.
Collapse
Affiliation(s)
- Matthew Sousa
- Chemistry Department, Whitman College, Walla Walla, Washington, USA
| | - Bryce Benson
- Chemistry Department, Whitman College, Walla Walla, Washington, USA
| | - Connor Welty
- Chemistry Department, Whitman College, Walla Walla, Washington, USA
| | - Dylan Price
- Chemistry Department, Whitman College, Walla Walla, Washington, USA
| | - Ruth Thirkill
- Chemistry Department, Whitman College, Walla Walla, Washington, USA
| | - William Erickson
- Chemistry Department, Whitman College, Walla Walla, Washington, USA
| | | | | |
Collapse
|
44
|
Global warming accelerates uptake of atmospheric mercury in regions experiencing glacier retreat. Proc Natl Acad Sci U S A 2020; 117:2049-2055. [PMID: 31932430 DOI: 10.1073/pnas.1906930117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
As global climate continues to warm, melting of glaciers releases a large quantity of mercury (Hg) originally locked in ice into the atmosphere and downstream ecosystems. Here, we show an opposite process that captures atmospheric Hg through glacier-to-vegetation succession. Our study using stable isotope techniques at 3 succession sites on the Tibetan Plateau reveals that evolving vegetation serves as an active "pump" to take up gaseous elemental mercury (Hg0) from the atmosphere. The accelerated uptake enriches the Hg pool size in glacier-retreated areas by a factor of ∼10 compared with the original pool size in the glacier. Through an assessment of Hg source-sink relationship observed in documented glacier-retreated areas in the world (7 sites of tundra/steppe succession and 5 sites of forest succession), we estimate that 400 to 600 Mg of Hg has been accumulated in glacier-retreated areas (5‰ of the global land surface) since the Little Ice Age (∼1850). By 2100, an additional ∼300 Mg of Hg will be sequestered from the atmosphere in glacier-retreated regions globally, which is ∼3 times the total Hg mass loss by meltwater efflux (∼95 Mg) in alpine and subpolar glacier regions. The recapturing of atmospheric Hg by vegetation in glacier-retreated areas is not accounted for in current global Hg models. Similar processes are likely to occur in other regions that experience increased vegetation due to climate or land use changes, which need to be considered in the assessment of global Hg cycling.
Collapse
|
45
|
Huang J, Kang S, Yin R, Guo J, Lepak R, Mika S, Tripathee L, Sun S. Mercury isotopes in frozen soils reveal transboundary atmospheric mercury deposition over the Himalayas and Tibetan Plateau. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113432. [PMID: 31662270 DOI: 10.1016/j.envpol.2019.113432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 10/12/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
The concentration and isotopic composition of mercury (Hg) were studied in frozen soils along a southwest-northeast transect over the Himalaya-Tibet. Soil total Hg (HgT) concentrations were significantly higher in the southern slopes (72 ± 54 ng g-1, 2SD, n = 21) than those in the northern slopes (43 ± 26 ng g-1, 2SD, n = 10) of Himalaya-Tibet. No significant relationship was observed between HgT concentrations and soil organic carbon (SOC), indicating that the HgT variation was not governed by SOC. Soil from the southern slopes showed significantly negative mean δ202Hg (-0.53 ± 0.50‰, 2SD, n = 21) relative to those from the northern slopes (-0.12 ± 0.40‰, 2SD, n = 10). The δ202Hg values of the southern slopes are more similar to South Asian anthropogenic Hg emissions. A significant correlation between 1/HgT and δ202Hg was observed in all the soil samples, further suggesting a mixing of Hg from South Asian anthropogenic emissions and natural geochemical background. Large ranges of Δ199Hg (-0.45 and 0.24‰) were observed in frozen soils. Most of soil samples displayed negative Δ199Hg values, implying they mainly received Hg from gaseous Hg(0) deposition. A few samples had slightly positive odd-MIF, indicating precipitation-sourced Hg was more prevalent than gaseous Hg(0) in certain areas. The spatial distribution patterns of HgT concentrations and Hg isotopes indicated that Himalaya-Tibet, even its northern part, may have been influenced by transboundary atmospheric Hg pollution from South Asia.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Shichang Kang
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; CAS Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, 100101, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | - Junming Guo
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Ryan Lepak
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Sillanpää Mika
- Laboratory of Green Chemistry, School of Engineering Science, Lappeenranta University of Technology, Mikkeli, FI-50130, Finland
| | - Lekhendra Tripathee
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Shiwei Sun
- State Key Laboratory of Cryospheric Science, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
46
|
Mu M, Zhao H, Wang Y, Liu J, Fei D, Xing M. Arsenic trioxide or/and copper sulfate co-exposure induce glandular stomach of chicken injury via destruction of the mitochondrial dynamics and activation of apoptosis as well as autophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109678. [PMID: 31557571 DOI: 10.1016/j.ecoenv.2019.109678] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/27/2019] [Accepted: 09/12/2019] [Indexed: 06/10/2023]
Abstract
Arsenic and copper are naturally occurring element. Contamination from natural processes and anthropogenic activities can be discovered all over the world and their unique interactions with the environment lead to widespread toxicity. When the content was excessive, the organism would be hurt seriously. The glandular stomach is an important organ of the poultry gastrointestinal tract. This study was aimed to investigate the toxicity of arsenic trioxide or/and copper sulfate (As or/and Cu) on chicken glandular stomach. Seventy-two 1-day-old Hy-Line chickens were randomly divided into control (C) group, arsenic trioxide (As) group, copper sulfate (Cu) group and arsenic trioxide and copper sulfate (AsCu) group, and exposed to 30 mg/kg arsenic trioxide or/and 300 mg/kg copper sulphates for 12 weeks. The indicators of mitochondrial dynamics, apoptosis and autophagy were tested in the glandular stomach. The results showed that exposure to As or/and Cu caused mitochondrial dynamic imbalance. Additionally, the levels of pro-apoptosis and autophagy indicators were increased and the levels of anti-apoptosis indicators were decreased in the treatment groups. Beyond that, in the treatment groups, we could clearly see karyopyknosis and chromatin condensation were associated with increased apoptosis rate, as well as the disappearance of the nuclear membrane, the swelling of mitochondria and the accumulation of autophagosomes were involved in the death of cells. It was worth noting that the glandular stomach lesions were time-dependent, and the combination of As and Cu were worse than the As and Cu alone. Collectively, our results suggest that As or/and Cu aggravate mitochondrial dysfunction, apoptosis and autophagy in a time-dependent manner, and the combined toxicity of As and Cu was higher.
Collapse
Affiliation(s)
- Mengyao Mu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Yu Wang
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China
| | - Mingwei Xing
- College of Wildlife and Protected Area, Northeast Forestry University, Harbin, 150040, Heilongjiang, PR China.
| |
Collapse
|
47
|
Luo X, Bing H, Luo Z, Wang Y, Jin L. Impacts of atmospheric particulate matter pollution on environmental biogeochemistry of trace metals in soil-plant system: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113138. [PMID: 31542662 DOI: 10.1016/j.envpol.2019.113138] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/21/2019] [Accepted: 08/29/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric particulate matter (PM) pollution and soil trace metal (TM) contamination are binary environmental issues harming ecosystems and human health, especially in the developing China with rapid urbanization and industrialization. Since PMs contain TMs, the air-soil nexus should be investigated synthetically. Although the PMs and airborne TMs are mainly emitted from urban or industrial areas, they can reach the rural and remote mountain areas owing to the ability of long-range transport. After dry or wet deposition, they will participate in the terrestrial biogeochemical cycles of TMs in various soil-plant systems, including urban soil-greening trees, agricultural soil-food crops, and mountain soil-natural forest systems. Besides the well-known root uptake, the pathway of leaf deposition and foliar absorption contribute significantly to the plant TM accumulation. Moreover, the aerosols can also exert climatic effects by absorption and scattering of solar radiation and by the cloud condensation nuclei activity, thereby indirectly impact plant growth and probably crop TM accumulation through photosynthesis, and then threat health. In particular, this systematic review summarizes the interactions of PMs-TMs in soil-plant systems including the deposition, transfer, accumulation, toxicity, and mechanisms among them. Finally, current knowledge gaps and prospective are proposed for future research agendas. These analyses would be conducive to improving urban air quality and managing the agricultural and ecological risks of airborne metals.
Collapse
Affiliation(s)
- Xiaosan Luo
- Department of Agricultural Resources and Environment, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (AEET), School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Haijian Bing
- The Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu, 610041, China.
| | - Zhuanxi Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
48
|
Wang X, Yuan W, Feng X, Wang D, Luo J. Moss facilitating mercury, lead and cadmium enhanced accumulation in organic soils over glacial erratic at Mt. Gongga, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:112974. [PMID: 31376600 DOI: 10.1016/j.envpol.2019.112974] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
Moss is usually as an initial colonizer in alpine glacier retreated regions. We hypothesized that moss can significantly facilitate the toxic metals accumulation in alpine ecosystems based on its strong ability of absorption and the role in soil development. Hence, we investigated the trace element pool sizes and enrichment factors, especially for mercury (Hg) by using the Hg isotopic compositions to determine the source contributions in a moss-dominated ecosystem over glacial erratic in Eastern Tibetan Plateau. Results show that Hg, lead (Pb) and cadmium (Cd) are highly enriched in organic soils. Specifically, Cd concentration is 5-20 times higher than the safety limit of the acid soil (pH ≤ 5.5) in China. Atmospheric depositions dominantly contribute to the Pb and Cd sources in organic soils, and followed by the moraine particles influences. The lowering pH in organic soils increasing with glacial retreated time results in the desorption of Cd in organic soils. Atmospheric Hg0 uptake by moss predominantly contributes to the Hg sources in organic soils. The average Pb accumulation rate over last 125-year is about 5.6 ± 1.0 mg m-2 yr-1, and for Cd is 0.4 ± 0.1 mg m-2 yr-1, and for Hg0 is 27.6 ± 3.2 μg m-2 yr-1. These elevated accumulation rates are caused by the high moss biomass and elevated atmospheric Hg, Pb and Cd pollution levels in China and neighbouring regions. Our study indicates that the moss not only as the bioindicator, but also plays an important role in the hazardous metal biogeochemical cycling in alpine regions.
Collapse
Affiliation(s)
- Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ji Luo
- Key Laboratory of Mountain Surface Processes and Ecological Regulation, Institute of Mountain Hazards and Environment, Chinese Academy of Sciences & Ministry of Water Conservancy, Chengdu, 610041, China
| |
Collapse
|
49
|
Sun T, Ma M, Wang X, Wang Y, Du H, Xiang Y, Xu Q, Xie Q, Wang D. Mercury transport, transformation and mass balance on a perspective of hydrological processes in a subtropical forest of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113065. [PMID: 31465902 DOI: 10.1016/j.envpol.2019.113065] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/15/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
Forest ecosystem has long been suggested as a vital component in the global mercury (Hg) biogeochemical cycling. However, there remains large uncertainties in understanding total Hg (THg) and methylmercury (MeHg) variations and their controlling factors during the whole hydrological processes in forest ecosystems. Here, we quantified Hg mass flow along hydrological processes of wet deposition, throughfall, stemflow, litter leachate, soil leachate, surface runoff, and stream, and litterfall Hg deposition, and air-forest floor elemental Hg (Hg0) exchange flux to set up a Hg mass balance in a subtropical forest of China. Results showed that THg concentration in stream was lower than that in wet deposition, while an opposite characteristic for MeHg concentration, and both THg and MeHg fluxes of stream were lower than those of wet deposition. Variations of THg and MeHg in throughfall and litter leachate had strong direct and indirect effects on controlling variations of THg and MeHg in surface runoff, soil leachate and stream, respectively. Especially, the net Hg methylation was suggested in the forest canopy and forest floor layers, and significant particulate bound Hg (PBM) filtration was observed in soil layers. The Hg mass balance showed that the litterfall Hg deposition was the main Hg input for forest floor Hg, and the elemental Hg vapor (Hg0) re-emission from forest floor was the dominant Hg output. Overall, we estimated the net THg input flux of 13.8 μg m-2 yr-1 and net MeHg input flux of 0.6 μg m-2 yr-1 within the forest ecosystem. Our results highlighted the important roles of forest canopy and forest floor to shape Hg in output flow, and the forest floor is a distinct sink of MeHg.
Collapse
Affiliation(s)
- Tao Sun
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Ming Ma
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Xun Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Hongxia Du
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Qinqin Xu
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Qing Xie
- College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing, 400715, China; Chongqing Key Laboratory of Agricultural Resources and Environment, Chongqing, 400715, China.
| |
Collapse
|
50
|
Wang X, Yuan W, Lin CJ, Zhang L, Zhang H, Feng X. Climate and Vegetation As Primary Drivers for Global Mercury Storage in Surface Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10665-10675. [PMID: 31434480 DOI: 10.1021/acs.est.9b02386] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soil is the largest Hg reservoir globally. Data of Hg concentration in surface soil are fundamental to understanding environmental Hg cycling. However, present knowledge on the quantity and global distribution of Hg in soil remains deficient. Using stable Hg isotopic analyses and geospatial data, the concentration and global spatial distribution of Hg in surface soil of 0-20 cm depth have been developed. It is estimated that 1088 ± 379 Gg of Hg is stored in surface soil globally. Thirty-two percent of the surface Hg storage resides in tropical/subtropical forest regions, 23% in temperate/boreal forest regions, 28% in grassland and steppe and shrubland, 7% in tundra, and 10% in desert and xeric shrubland. Evidence from Hg isotopic signatures points to atmospheric Hg0 dry deposition through vegetation uptake as the primary source of Hg in surface soil. Given the influence of changing climate on vegetative development, global climate change can act as an important forcing factor for shaping spatial distribution of Hg in surface soil. This active forcing cycle significantly dilutes the impacts caused by Hg release from anthropogenic sources, and needs to be considered in assessing the effectiveness of reducing Hg use and emissions as specified in Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Environmental Geochemistry , Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081 , China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry , Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Che-Jen Lin
- Center for Advances in Water and Air Quality , Lamar University , Beaumont , Texas 77705 , United States
- Department of Civil and Environmental Engineering , Lamar University , Beaumont , Texas 77705 , United States
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch , Environment and Climate Change Canada , Toronto , Ontario M3H 5T4 , Canada
| | - Hui Zhang
- State Key Laboratory of Environmental Geochemistry , Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081 , China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry , Institute of Geochemistry, Chinese Academy of Sciences , Guiyang 550081 , China
- Center for Excellence in Quaternary Science and Global Change , Chinese Academy of Sciences , Xian 710061 , China
| |
Collapse
|