1
|
Assmus F, Adehin A, Hoglund RM, Fortes Francisco A, Lewis MD, Kelly JM, Charman SA, White KL, Shackleford DM, Escudié F, Chatelain E, Scandale I, Tarning J. Pharmacokinetic-pharmacodynamic modeling of benznidazole and its antitrypanosomal activity in a murine model of chronic Chagas disease. PLoS Negl Trop Dis 2025; 19:e0012968. [PMID: 40359193 PMCID: PMC12074391 DOI: 10.1371/journal.pntd.0012968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/07/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND There is an urgent need for improved treatments for Chagas disease, a neglected tropical infection caused by the protozoan parasite Trypanosoma cruzi. Benznidazole, the first line therapy, has severe limitations such as poor tolerability and variable efficacy in the chronic stage of infection. To optimize dosing regimens, a better understanding of the pharmacokinetic/pharmacodynamic (PK/PD) relationship for benznidazole is crucial. This study aimed to characterize the population pharmacokinetic properties of benznidazole in mice and investigate the relationship between exposure and antitrypanosomal activity in T. cruzi infected mice. METHODOLOGY/PRINCIPAL FINDINGS Antitrypanosomal activity was assessed in 118 BALB/c mice with chronic-stage T. cruzi infection, utilizing highly sensitive in vivo bioluminescence imaging (BLI). Benznidazole was administered at doses ranging from 10 to 100 mg/kg for 5-20 days. The pharmacokinetic properties of benznidazole were evaluated in 52 uninfected BALB/c mice using nonlinear mixed-effects modeling. The relationship between simulated benznidazole exposure and sterile parasitological cure in the BLI experiments was evaluated by logistic regression and partial least squares - discriminant analysis. Benznidazole pharmacokinetics in mice were well described by a one-compartment disposition model with first-order absorption, with higher doses associated with slower absorption. Univariate logistic regression revealed a significant correlation between drug exposure and the probability of parasitological cure. Total plasma exposure, time above IC90 and peak plasma concentration were all strongly associated with efficacy, provided that benznidazole was administered for at least 5 days. CONCLUSIONS/SIGNIFICANCE This is the first study to successfully quantify the dose-response relationship for benznidazole in T. cruzi-infected mice using preclinical BLI data. Our results underscore the complexity of distinguishing PK/PD drivers of efficacy due to high collinearity between PK/PD index parameters, and we propose dose-fractionation studies for future research. Studying the PK/PD relationship using the BLI model provides valuable insights, aiding hypothesis generation through endpoint assessment of parasite infection.
Collapse
Affiliation(s)
- Frauke Assmus
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Ayorinde Adehin
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Richard M. Hoglund
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Amanda Fortes Francisco
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Michael D. Lewis
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Susan A. Charman
- Centre for Drug Candidate Optimisation, Monash University, Melbourne, Australia
| | - Karen L. White
- Centre for Drug Candidate Optimisation, Monash University, Melbourne, Australia
| | | | - Fanny Escudié
- Drugs for Neglected Disease initiative, Geneva, Switzerland
| | - Eric Chatelain
- Drugs for Neglected Disease initiative, Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Disease initiative, Geneva, Switzerland
| | - Joel Tarning
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
de Oliveira R, Cruz LR, Dessoy MA, Koovits PJ, dos Santos DA, de Oliveira LFN, Ferreira RA, Mollo MC, Lee E, Duarte SM, Krogh R, Ferreira LLG, Chelucci RC, Dichiara M, Simpson QJ, Feltrin C, da Silva AC, dos Santos BM, Broering MF, Pollastri MP, Ferrins L, Moraes CB, Andricopulo AD, Kratz JM, Sjö P, Mowbray CE, Dias LC. Discovery and Early Optimization of 1 H-Indole-2-carboxamides with Anti- Trypanosoma cruzi Activity. J Med Chem 2025; 68:7313-7340. [PMID: 40163677 PMCID: PMC11998015 DOI: 10.1021/acs.jmedchem.4c02942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/08/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Chagas disease (CD), caused by the flagellate protozoan Trypanosoma cruzi, is a neglected tropical disease endemic in 21 countries. The only two antiparasitic drugs approved for its treatment, benznidazole and nifurtimox, have significant drawbacks. We present herein the optimization of a series of substituted indoles that were identified through phenotypic screening against T. cruzi. Early lead compounds with balanced potency and physicochemical properties were advanced to animal studies but showed limited plasma exposure. Medicinal chemistry strategies were used to improve metabolic stability and solubility, but unfortunately, this effort failed to yield compounds with improvements in both exposure and potency. Still, the best compound was progressed for a proof-of-concept efficacy study using acute and chronic mice models of Chagas disease. Despite showing antiparasitic activity in these in vivo studies, the optimization work with this series was stopped due to unfavorable drug metabolism and pharmacokinetic (DMPK) properties and a deprioritized mechanism of action (CYP51 inhibition).
Collapse
Affiliation(s)
- Ramon
G. de Oliveira
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
| | - Luiza R. Cruz
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
- Drugs
for Neglected Diseases initiative, Rio de Janeiro 20010-020, Brazil
| | - Marco A. Dessoy
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
| | - Paul J. Koovits
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
| | | | | | - Rafael A. Ferreira
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
| | - María C. Mollo
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
| | - Eun Lee
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
| | - Simone M. Duarte
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos 13563-120, Brazil
| | - Renata Krogh
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos 13563-120, Brazil
| | | | - Rafael C. Chelucci
- São
Carlos Institute of Physics, University
of São Paulo, São
Carlos 13563-120, Brazil
| | - Maria Dichiara
- Chemistry and Chemical Biology and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Quillon J. Simpson
- Chemistry and Chemical Biology and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Clarissa Feltrin
- Institute of Biomedical Sciences and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Adriana C. da Silva
- Institute of Biomedical Sciences and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Benedito M. dos Santos
- Institute of Biomedical Sciences and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Milena F. Broering
- Institute of Biomedical Sciences and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | - Michael P. Pollastri
- Chemistry and Chemical Biology and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Lori Ferrins
- Chemistry and Chemical Biology and Pharmaceutical
Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Carolina B. Moraes
- Institute of Biomedical Sciences and School of Pharmaceutical Sciences, University of São Paulo, São Paulo 05508-000, Brazil
| | | | - Jadel M. Kratz
- Drugs
for Neglected Diseases initiative, Rio de Janeiro 20010-020, Brazil
| | - Peter Sjö
- Drugs
for Neglected Diseases initiative, Geneva 1202, Switzerland
| | | | - Luiz C. Dias
- Institute
of Chemistry, State University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
3
|
Ernst L, Macedo GC, McCall LI. System-based insights into parasitological and clinical treatment failure in Chagas disease. mSystems 2025; 10:e0003824. [PMID: 39772644 PMCID: PMC11834445 DOI: 10.1128/msystems.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Infectious disease treatment success requires symptom resolution (clinical treatment success), which often but not always involves pathogen clearance. Both of these treatment goals face disease-specific and general challenges. In this review, we summarize the current state of knowledge in mechanisms of clinical and parasitological treatment failure in the context of Chagas disease, a neglected tropical disease causing cardiac and gastrointestinal symptoms. Parasite drug resistance and persistence, drug pharmacokinetics and dynamics, as well as persistently altered host immune responses and tissue damage are the most common reasons for Chagas disease treatment failure. We discuss the therapeutics that failed before regulatory approval, limitations of current therapeutic options and new treatment strategies to overcome persistent parasites, inflammatory responses, and metabolic alterations. Large-scale omics analyses were critical in generating these insights and will continue to play a prominent role in addressing the challenges still facing Chagas disease drug treatment.
Collapse
Affiliation(s)
- Luis Ernst
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Giovana C. Macedo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
4
|
Ochoa-Martínez P, López-Monteon A, López-Domínguez J, Manning-Cela RG, Ramos-Ligonio A. Expression Analysis of Thirteen Genes in Response to Nifurtimox and Benznidazole in Mexican Isolates of Trypanosoma cruzi by Digital PCR. Acta Parasitol 2025; 70:15. [PMID: 39775310 DOI: 10.1007/s11686-024-00986-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/07/2024] [Indexed: 01/11/2025]
Abstract
Despite being the most relevant and critical option for managing Chagas disease, pharmacological therapy is currently limited by the availability of only two drugs, benznidazole and nifurtimox. Their effectiveness is further restricted in the chronic phase of the infection, as they induce severe side effects and require prolonged treatment. Additionally, the use of these drugs can lead to the emergence of substantial resistance problems, compounded by the potential natural resistance of some parasite isolates. This study analyzes the expression of 13 genes by digital PCR in four Mexican T. cruzi isolates treated with NFX and BZN. Each isolate exhibited a unique combination of enzyme expression in response to the oxidative stress induced by the antichagasic agents. Notably, we observed the overexpression of cruzipain (CZP), L-threonine dehydrogenase (TDH), and detoxification-related enzymes such as Glutathionyl spermidine synthetase (GST) and Superoxide dismutase-A (SOD). These findings highlight the need for further studies to elucidate the molecular mechanisms underlying this resistance, which pose both unexpected challenges for Chagas disease therapy and a biological barrier to the action of these drugs. These findings highlight the need for further studies to understand how these resistance mechanisms contribute to treatment failure and constitute a biological barrier to drug action.
Collapse
Affiliation(s)
- Paulina Ochoa-Martínez
- Doctorado en Ciencias Biomédicas, Centro de Investigaciones Biomédicas, Universidad Veracruzana, Xalapa, Veracruz, Mexico
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México
| | - Aracely López-Monteon
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México
- Asociacion Chagas con Ciencia y Conocimiento A.C, Orizaba, Veracruz, México
| | - Jaime López-Domínguez
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México
- Laboratorio de Biotecnología, Universidad Politécnica de Huatusco, Huatusco de Chicuellar, Veracruz, México
| | - Rebeca Georgina Manning-Cela
- Asociacion Chagas con Ciencia y Conocimiento A.C, Orizaba, Veracruz, México
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Zacatenco. CDMX, México
| | - Angel Ramos-Ligonio
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad Veracruzana, Orizaba, Veracruz, México.
- Asociacion Chagas con Ciencia y Conocimiento A.C, Orizaba, Veracruz, México.
- Edificio D, Facultad de Ciencias Químicas, LADISER Inmunología y Biología Molecular, Universidad, Prolongación de Oriente 6 #1009; Colonia Rafael Alvarado, Orizaba, C.P. 94340; 86039, México.
| |
Collapse
|
5
|
Bisio MMC, Jurado Medina LS, García-Bournissen F, Gulin JEN. Listen to what the animals say: a systematic review and meta-analysis of sterol 14-demethylase inhibitor efficacy for in vivo models of Trypanosoma cruzi infection. Parasitol Res 2024; 123:248. [PMID: 38904688 DOI: 10.1007/s00436-024-08257-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 05/30/2024] [Indexed: 06/22/2024]
Abstract
Sterol 14-demethylase (CYP51) inhibitors, encompassing new chemical entities and repurposed drugs, have emerged as promising candidates for Chagas disease treatment, based on preclinical studies reporting anti-Trypanosoma cruzi activity. Triazoles like ravuconazole (RAV) and posaconazole (POS) progressed to clinical trials. Unexpectedly, their efficacy was transient in chronic Chagas disease patients, and their activity was not superior to benznidazole (BZ) treatment. This paper aims to summarize evidence on the global activity of CYP51 inhibitors against T. cruzi by applying systematic review strategies, risk of bias assessment, and meta-analysis from in vivo studies. PubMed and Embase databases were searched for original articles, obtaining fifty-six relevant papers meeting inclusion criteria. Characteristics of animal models, parasite strain, treatment schemes, and cure rates were extracted. Primary outcomes such as maximum parasitaemia values, survival, and parasitological cure were recorded for meta-analysis, when possible. The risk of bias was uncertain in most studies. Animals treated with itraconazole, RAV, or POS survived significantly longer than the infected non-treated groups (RR = 4.85 [3.62, 6.49], P < 0.00001), and they showed no differences with animals treated with positive control drugs (RR = 1.01 [0.98, 1.04], P = 0.54). Furthermore, the overall analysis showed that RAV or POS was not likely to achieve parasitological cure when compared with BZ or NFX treatment (OD = 0.49 [0.31, 0.77], P = 0.002). This systematic review contributes to understanding why the azoles had failed in clinical trials and, more importantly, how to improve the animal models of T. cruzi infection by filling the gaps between basic, translational, and clinical research.
Collapse
Affiliation(s)
- Margarita María Catalina Bisio
- Instituto Nacional de Parasitología (INP) 'Dr. Mario Fatala Chaben'-ANLIS 'Dr. Carlos G. Malbrán', Buenos Aires, Argentina. Av. Paseo Colón 568, C1097, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Laura Smeldy Jurado Medina
- Dipartimento Di Scienze Mediche E Chirurgiche, Alma Mater Studiorum, Università Di Bologna, Via San Giacomo 12, 2 Floor, 55. 40126, BO. Bologna, Italy
| | - Facundo García-Bournissen
- Division of Paediatric Clinical Pharmacology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, 800 Commissioners Rd. E., Rm. B1-437., London, ON, Canada
| | - Julián Ernesto Nicolás Gulin
- Instituto de Biología y Medicina Experimental (IBYME), CONICET, Vuelta de Obligado 2490 (C1428ADN), Buenos Aires, Argentina.
- Instituto de Investigaciones Biomédicas (INBIOMED), UBA-CONICET, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina.
| |
Collapse
|
6
|
Torchelsen FKVDS, Mazzeti AL, Mosqueira VCF. Drugs in preclinical and early clinical development for the treatment of Chagas´s disease: the current status. Expert Opin Investig Drugs 2024; 33:575-590. [PMID: 38686546 DOI: 10.1080/13543784.2024.2349289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/25/2024] [Indexed: 05/02/2024]
Abstract
INTRODUCTION Chagas disease is spreading faster than expected in different countries, and little progress has been reported in the discovery of new drugs to combat Trypanosoma cruzi infection in humans. Recent clinical trials have ended with small hope. The pathophysiology of this neglected disease and the genetic diversity of parasites are exceptionally complex. The only two drugs available to treat patients are far from being safe, and their efficacy in the chronic phase is still unsatisfactory. AREAS COVERED This review offers a comprehensive examination and critical review of data reported in the last 10 years, and it is focused on findings of clinical trials and data acquired in vivo in preclinical studies. EXPERT OPINION The in vivo investigations classically in mice and dog models are also challenging and time-consuming to attest cure for infection. Poorly standardized protocols, availability of diagnosis methods and disease progression markers, the use of different T. cruzi strains with variable benznidazole sensitivities, and animals in different acute and chronic phases of infection contribute to it. More synchronized efforts between research groups in this field are required to put in evidence new promising substances, drug combinations, repurposing strategies, and new pharmaceutical formulations to impact the therapy.
Collapse
Affiliation(s)
- Fernanda Karoline Vieira da Silva Torchelsen
- School of Pharmacy, Federal University of Ouro Preto, Ouro Preto, Brazil
- Post-Graduation Program in Pharmaceutical Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ana Lia Mazzeti
- Department of Biomedical Sciences and Health, Academic Unit of Passos, University of Minas Gerais State, Passos, Brazil
| | | |
Collapse
|
7
|
Silvestrini MMA, Alessio GD, Frias BED, Sales Júnior PA, Araújo MSS, Silvestrini CMA, Brito Alvim de Melo GE, Martins-Filho OA, Teixeira-Carvalho A, Martins HR. New insights into Trypanosoma cruzi genetic diversity, and its influence on parasite biology and clinical outcomes. Front Immunol 2024; 15:1342431. [PMID: 38655255 PMCID: PMC11035809 DOI: 10.3389/fimmu.2024.1342431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/26/2024] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, remains a serious public health problem worldwide. The parasite was subdivided into six distinct genetic groups, called "discrete typing units" (DTUs), from TcI to TcVI. Several studies have indicated that the heterogeneity of T. cruzi species directly affects the diversity of clinical manifestations of Chagas disease, control, diagnosis performance, and susceptibility to treatment. Thus, this review aims to describe how T. cruzi genetic diversity influences the biology of the parasite and/or clinical parameters in humans. Regarding the geographic dispersion of T. cruzi, evident differences were observed in the distribution of DTUs in distinct areas. For example, TcII is the main DTU detected in Brazilian patients from the central and southeastern regions, where there are also registers of TcVI as a secondary T. cruzi DTU. An important aspect observed in previous studies is that the genetic variability of T. cruzi can impact parasite infectivity, reproduction, and differentiation in the vectors. It has been proposed that T. cruzi DTU influences the host immune response and affects disease progression. Genetic aspects of the parasite play an important role in determining which host tissues will be infected, thus heavily influencing Chagas disease's pathogenesis. Several teams have investigated the correlation between T. cruzi DTU and the reactivation of Chagas disease. In agreement with these data, it is reasonable to suppose that the immunological condition of the patient, whether or not associated with the reactivation of the T. cruzi infection and the parasite strain, may have an important role in the pathogenesis of Chagas disease. In this context, understanding the genetics of T. cruzi and its biological and clinical implications will provide new knowledge that may contribute to additional strategies in the diagnosis and clinical outcome follow-up of patients with Chagas disease, in addition to the reactivation of immunocompromised patients infected with T. cruzi.
Collapse
Affiliation(s)
| | - Glaucia Diniz Alessio
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Bruna Estefânia Diniz Frias
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Policarpo Ademar Sales Júnior
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Márcio Sobreira Silva Araújo
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Olindo Assis Martins-Filho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Integrated Biomarker Research Group, René Rachou Institute, Fiocruz Minas, Oswaldo Cruz Foundation, Belo Horizonte, Minas Gerais, Brazil
| | - Helen Rodrigues Martins
- Department of Pharmacy, Federal University of the Jequitinhonha and Mucuri Valleys, Diamantina, Minas Gerais, Brazil
| |
Collapse
|
8
|
Bosch-Nicolau P, Fernández ML, Sulleiro E, Villar JC, Perez-Molina JA, Correa-Oliveira R, Sosa-Estani S, Sánchez-Montalvá A, Del Carmen Bangher M, Moreira OC, Salvador F, Mota Ferreira A, Eloi-Santos SM, Serre-Delcor N, Ramírez JC, Silgado A, Oliveira I, Martín O, Aznar ML, Ribeiro ALP, Almeida PEC, Chamorro-Tojeiro S, Espinosa-Pereiro J, de Paula AMB, Váquiro-Herrera E, Tur C, Molina I. Efficacy of three benznidazole dosing strategies for adults living with chronic Chagas disease (MULTIBENZ): an international, randomised, double-blind, phase 2b trial. THE LANCET. INFECTIOUS DISEASES 2024; 24:386-394. [PMID: 38218195 DOI: 10.1016/s1473-3099(23)00629-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/30/2023] [Accepted: 10/02/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Treatment with benznidazole for chronic Chagas disease is associated with low cure rates and substantial toxicity. We aimed to compare the parasitological efficacy and safety of 3 different benznidazole regimens in adult patients with chronic Chagas disease. METHODS The MULTIBENZ trial was an international, randomised, double-blind, phase 2b trial performed in Argentina, Brazil, Colombia, and Spain. We included participants aged 18 years and older diagnosed with Chagas disease with two different serological tests and detectable T cruzi DNA by qPCR in blood. Previously treated people, pregnant women, and people with severe cardiac forms were excluded. Participants were randomly assigned 1:1:1, using a balanced block randomisation scheme stratified by country, to receive benznidazole at three different doses: 300 mg/day for 60 days (control group), 150 mg/day for 60 days (low dose group), or 400 mg/day for 15 days (short treatment group). The primary outcome was the proportion of patients with a sustained parasitological negativity by qPCR during a follow-up period of 12 months. The primary safety outcome was the proportion of people who permanently discontinued the treatment. Both primary efficacy analysis and primary safety analysis were done in the intention-to-treat population. The trial is registered with EudraCT, 2016-003789-21, and ClinicalTrials.gov, NCT03191162, and is completed. FINDINGS From April 20, 2017, to Sept 20, 2020, 245 people were enrolled, and 234 were randomly assigned: 78 to the control group, 77 to the low dose group, and 79 to the short treatment group. Sustained parasitological negativity was observed in 42 (54%) of 78 participants in the control group, 47 (61%) of 77 in the low dose group, and 46 (58%) of 79 in the short treatment group. Odds ratios were 1·41 (95% CI 0·69-2·88; p=0·34) when comparing the low dose and control groups and 1·23 (0·61-2·50; p=0·55) when comparing short treatment and control groups. 177 participants (76%) had an adverse event: 62 (79%) in the control group, 56 (73%) in the low dose group, and 59 (77%) in the short treatment group. However, discontinuations were less frequent in the short treatment group compared with the control group (2 [2%] vs 11 [14%]; OR 0·20, 95% CI 0·04-0·95; p=0·044). INTERPRETATION Participants had a similar parasitological responses. However, reducing the usual treatment from 8 weeks to 2 weeks might maintain the same response while facilitating adherence and increasing treatment coverage. These findings should be confirmed in a phase 3 clinical trial. FUNDING European Community's 7th Framework Programme.
Collapse
Affiliation(s)
- Pau Bosch-Nicolau
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Marisa L Fernández
- Instituto Nacional de Parasitología Dr M Fatala Chaben, ANLIS Dr C Malbran, Ministerio de Salud, Buenos Aires, Argentina
| | - Elena Sulleiro
- Department of Microbiology, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Villar
- Departamento de Investigaciones, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
| | - José A Perez-Molina
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal IRYCIS, Madrid, Spain
| | | | - Sergio Sosa-Estani
- Instituto Nacional de Parasitología Dr M Fatala Chaben, ANLIS Dr C Malbran, Ministerio de Salud, Buenos Aires, Argentina; Centro de Investigaciones Epidemiológicas y Salud Pública (CIESP-EICS), Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Adrián Sánchez-Montalvá
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Maria Del Carmen Bangher
- Instituto de Cardiología de Corrientes Juana Francisca Cabral (Argentina), Corrientes, Argentina
| | - Otacilio C Moreira
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Fernando Salvador
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Ariela Mota Ferreira
- Graduate Program in Health Sciences, Universidade Estadual de Montes Claros (Unimontes), Montes Claros, Brazil
| | | | - Núria Serre-Delcor
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan Carlos Ramírez
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas, CONICET-GCBA, Buenos Aires, Argentina
| | - Aroa Silgado
- Department of Microbiology, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Inés Oliveira
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Oihane Martín
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal IRYCIS, Madrid, Spain
| | - Maria Luisa Aznar
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Luiz P Ribeiro
- Hospital das Clínicas and Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Sandra Chamorro-Tojeiro
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain; National Referral Centre for Tropical Diseases, Infectious Diseases Department, Hospital Universitario Ramón y Cajal IRYCIS, Madrid, Spain
| | - Juan Espinosa-Pereiro
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Eliana Váquiro-Herrera
- Departamento de Investigaciones, Fundación Cardioinfantil, Instituto de Cardiología, Bogotá, Colombia
| | - Carmen Tur
- Multiple Sclerosis Centre of Catalonia (Cemcat), Neurology Department. Vall d'Hebron University Hospital, Universitat Autònoma de Barcelona, Barcelona, Spain; Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, University College London, London, UK
| | - Israel Molina
- Department of Infectious Diseases, Vall d'Hebron University Hospital, PROSICS Barcelona, Medicine Department Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
9
|
Morilla MJ, Ghosal K, Romero EL. Nanomedicines against Chagas disease: a critical review. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:333-349. [PMID: 38590427 PMCID: PMC11000002 DOI: 10.3762/bjnano.15.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024]
Abstract
Chagas disease (CD) is the most important endemic parasitosis in South America and represents a great socioeconomic burden for the chronically ill and their families. The only currently available treatment against CD is based on the oral administration of benznidazole, an agent, developed in 1971, of controversial effectiveness on chronically ill patients and toxic to adults. So far, conventional pharmacological approaches have failed to offer more effective and less toxic alternatives to benznidazole. Nanomedicines reduce toxicity and increase the effectiveness of current oncological therapies. Could nanomedicines improve the treatment of the neglected CD? This question will be addressed in this review, first by critically discussing selected reports on the performance of benznidazole and other molecules formulated as nanomedicines in in vitro and in vivo CD models. Taking into consideration the developmental barriers for nanomedicines and the degree of current technical preclinical efforts, a prospect of developing nanomedicines against CD will be provided. Not surprisingly, we conclude that structurally simpler formulations with minimal production cost, such as oral nanocrystals and/or parenteral nano-immunostimulants, have the highest chances of making it to the market to treat CD. Nonetheless, substantive political and economic decisions, key to facing technological challenges, are still required regarding a realistic use of nanomedicines effective against CD.
Collapse
Affiliation(s)
- Maria Jose Morilla
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| | - Kajal Ghosal
- Department of Pharmaceutical Technology, Jadavpur University, 188, Raja Subodh Chandra Mallick Rd., Jadavpur, Kolkata 700032, West Bengal, India
| | - Eder Lilia Romero
- Nanomedicine Research and Development Centre (NARD), Science and Technology Department, National University of Quilmes, Roque Sáenz Peña 352, Bernal, Buenos Aires, Argentina
| |
Collapse
|
10
|
Pelizaro BI, Batista JCZ, Portapilla GB, das Neves AR, Silva F, Carvalho DB, Shiguemoto CYK, Pessatto LR, Paredes-Gamero EJ, Cardoso IA, Luccas PH, Nonato MC, Lopes NP, Galvão F, Oliveira KMP, Cassemiro NS, Silva DB, Piranda EM, Arruda CCP, de Albuquerque S, Baroni ACM. Design and Synthesis of Novel 3-Nitro-1 H-1,2,4-triazole-1,2,3-triazole-1,4-disubstituted Analogs as Promising Antitrypanosomatid Agents: Evaluation of In Vitro Activity against Chagas Disease and Leishmaniasis. J Med Chem 2024; 67:2584-2601. [PMID: 38305199 DOI: 10.1021/acs.jmedchem.3c01745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A series of 28 compounds, 3-nitro-1H-1,2,4-triazole, were synthesized by click-chemistry with diverse substitution patterns using medicinal chemistry approaches, such as bioisosterism, Craig-plot, and the Topliss set with excellent yields. Overall, the analogs demonstrated relevant in vitro antitrypanosomatid activity. Analog 15g (R1 = 4-OCF3-Ph, IC50 = 0.09 μM, SI = >555.5) exhibited an outstanding antichagasic activity (Trypanosoma cruzi, Tulahuen LacZ strain) 68-fold more active than benznidazole (BZN, IC50 = 6.15 μM, SI = >8.13) with relevant selectivity index, and suitable LipE = 5.31. 15g was considered an appropriate substrate for the type I nitro reductases (TcNTR I), contributing to a likely potential mechanism of action for antichagasic activity. Finally, 15g showed nonmutagenic potential against Salmonella typhimurium strains (TA98, TA100, and TA102). Therefore, 3-nitro-1H-1,2,4-triazole 15g is a promising antitrypanosomatid candidate for in vivo studies.
Collapse
Affiliation(s)
- Bruno I Pelizaro
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Jaqueline C Z Batista
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Gisele B Portapilla
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-900, Brazil
| | - Amarith R das Neves
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Fernanda Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Diego B Carvalho
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Cristiane Y K Shiguemoto
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| | - Lucas R Pessatto
- Laboratório de Biologia Molecular (BioMol) e Cultivos Celulares, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande,Mato Grosso do Sul CEP 79070-900 ,Brazil
| | - Edgar J Paredes-Gamero
- Laboratório de Biologia Molecular (BioMol) e Cultivos Celulares, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal do Mato Grosso do Sul, Campo Grande,Mato Grosso do Sul CEP 79070-900 ,Brazil
| | - Iara A Cardoso
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903 ,Brazil
| | - Pedro H Luccas
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903 ,Brazil
| | - M Cristina Nonato
- Laboratório de Cristalografia de Proteínas, Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903 ,Brazil
| | - Norberto P Lopes
- Núcleo de Pesquisas em Produtos Naturais e Sintéticos, Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Avenida do Café s/n Monte Alegre, Ribeirão Preto, São Paulo CEP 14040-903, Brazil
| | - Fernanda Galvão
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul CEP 79804-970, Brazil
| | - Kelly M P Oliveira
- Faculdade de Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Mato Grosso do Sul CEP 79804-970, Brazil
| | - Nadla S Cassemiro
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande ,Mato Grosso do SulCEP 79070-900, Brazil
| | - Denise B Silva
- Laboratório de Produtos Naturais e Espectrometria de Massas (LAPNEM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande ,Mato Grosso do SulCEP 79070-900, Brazil
| | - Eliane M Piranda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Carla C P Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900,Brazil
| | - Sergio de Albuquerque
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo CEP 14040-900, Brazil
| | - Adriano C M Baroni
- Laboratório de Síntese e Química Medicinal (LASQUIM), Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grossso do Sul- UFMS, Campo Grande, Mato Grosso do Sul CEP 79070-900, Brazil
| |
Collapse
|
11
|
Zingales B, Macedo AM. Fifteen Years after the Definition of Trypanosoma cruzi DTUs: What Have We Learned? Life (Basel) 2023; 13:2339. [PMID: 38137940 PMCID: PMC10744745 DOI: 10.3390/life13122339] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Trypanosoma cruzi, the protozoan causative of Chagas disease (ChD), exhibits striking genetic and phenotypic intraspecific diversity, along with ecoepidemiological complexity. Human-pathogen interactions lead to distinct clinical presentations of ChD. In 2009, an international consensus classified T. cruzi strains into six discrete typing units (DTUs), TcI to TcVI, later including TcBat, and proposed reproducible genotyping schemes for DTU identification. This article aims to review the impact of classifying T. cruzi strains into DTUs on our understanding of biological, ecoepidemiological, and pathogenic aspects of T. cruzi. We will explore the likely origin of DTUs and the intrinsic characteristics of each group of strains concerning genome organization, genomics, and susceptibility to drugs used in ChD treatment. We will also provide an overview of the association of DTUs with mammalian reservoirs, and summarize the geographic distribution, and the clinical implications, of prevalent specific DTUs in ChD patients. Throughout this review, we will emphasize the crucial roles of both parasite and human genetics in defining ChD pathogenesis and chemotherapy outcome.
Collapse
Affiliation(s)
- Bianca Zingales
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo 05508-900, São Paulo, Brazil
| | - Andréa M. Macedo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Minas Gerais, Brazil;
| |
Collapse
|
12
|
González S, Wall RJ, Thomas J, Braillard S, Brunori G, Díaz IC, Cantizani J, Carvalho S, Castañeda Casado P, Chatelain E, Cotillo I, Fiandor JM, Francisco AF, Grimsditch D, Keenan M, Kelly JM, Kessler A, Luise C, Lyon JJ, MacLean L, Marco M, Martin JJ, Martinez MS, Paterson C, Read KD, Santos-Villarejo A, Zuccotto F, Wyllie S, Miles TJ, De Rycker M. Short-course combination treatment for experimental chronic Chagas disease. Sci Transl Med 2023; 15:eadg8105. [PMID: 38091410 PMCID: PMC7615676 DOI: 10.1126/scitranslmed.adg8105] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Chagas disease, caused by the protozoan parasite Trypanosoma cruzi, affects millions of people in the Americas and across the world, leading to considerable morbidity and mortality. Current treatment options, benznidazole (BNZ) and nifurtimox, offer limited efficacy and often lead to adverse side effects because of long treatment durations. Better treatment options are therefore urgently required. Here, we describe a pyrrolopyrimidine series, identified through phenotypic screening, that offers an opportunity to improve on current treatments. In vitro cell-based washout assays demonstrate that compounds in the series are incapable of killing all parasites; however, combining these pyrrolopyrimidines with a subefficacious dose of BNZ can clear all parasites in vitro after 5 days. These findings were replicated in a clinically predictive in vivo model of chronic Chagas disease, where 5 days of treatment with the combination was sufficient to prevent parasite relapse. Comprehensive mechanism of action studies, supported by ligand-structure modeling, show that compounds from this pyrrolopyrimidine series inhibit the Qi active site of T. cruzi cytochrome b, part of the cytochrome bc1 complex of the electron transport chain. Knowledge of the molecular target enabled a cascade of assays to be assembled to evaluate selectivity over the human cytochrome b homolog. As a result, a highly selective and efficacious lead compound was identified. The combination of our lead compound with BNZ rapidly clears T. cruzi parasites, both in vitro and in vivo, and shows great potential to overcome key issues associated with currently available treatments.
Collapse
Affiliation(s)
- Silvia González
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Richard J. Wall
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - John Thomas
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | | | - Juan Cantizani
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Sandra Carvalho
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | | | - Ignacio Cotillo
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Jose M. Fiandor
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | | | | | - John M. Kelly
- London School for Hygiene and Tropical Medicine, London, UK
| | - Albane Kessler
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Chiara Luise
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Lorna MacLean
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Maria Marco
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - J. Julio Martin
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | | | - Christy Paterson
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Kevin D. Read
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | | | - Fabio Zuccotto
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| | - Tim J. Miles
- Global Health Medicines R&D, GSK, Tres Cantos, Madrid, Spain
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, UK
| |
Collapse
|
13
|
Linciano P, Quotadamo A, Luciani R, Santucci M, Zorn KM, Foil DH, Lane TR, Cordeiro da Silva A, Santarem N, B Moraes C, Freitas-Junior L, Wittig U, Mueller W, Tonelli M, Ferrari S, Venturelli A, Gul S, Kuzikov M, Ellinger B, Reinshagen J, Ekins S, Costi MP. High-Throughput Phenotypic Screening and Machine Learning Methods Enabled the Selection of Broad-Spectrum Low-Toxicity Antitrypanosomatidic Agents. J Med Chem 2023; 66:15230-15255. [PMID: 37921561 PMCID: PMC10683024 DOI: 10.1021/acs.jmedchem.3c01322] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/14/2023] [Accepted: 10/18/2023] [Indexed: 11/04/2023]
Abstract
Broad-spectrum anti-infective chemotherapy agents with activity against Trypanosomes, Leishmania, and Mycobacterium tuberculosis species were identified from a high-throughput phenotypic screening program of the 456 compounds belonging to the Ty-Box, an in-house industry database. Compound characterization using machine learning approaches enabled the identification and synthesis of 44 compounds with broad-spectrum antiparasitic activity and minimal toxicity against Trypanosoma brucei, Leishmania Infantum, and Trypanosoma cruzi. In vitro studies confirmed the predictive models identified in compound 40 which emerged as a new lead, featured by an innovative N-(5-pyrimidinyl)benzenesulfonamide scaffold and promising low micromolar activity against two parasites and low toxicity. Given the volume and complexity of data generated by the diverse high-throughput screening assays performed on the compounds of the Ty-Box library, the chemoinformatic and machine learning tools enabled the selection of compounds eligible for further evaluation of their biological and toxicological activities and aided in the decision-making process toward the design and optimization of the identified lead.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Antonio Quotadamo
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Rosaria Luciani
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Matteo Santucci
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Kimberley M. Zorn
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Daniel H. Foil
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Thomas R. Lane
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Anabela Cordeiro da Silva
- Institute
for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto
de Investigaçao e Inovaçao em Saúde, Universidade do Porto and Institute for Molecular
and Cell Biology, 4150-180 Porto, Portugal
| | - Nuno Santarem
- Institute
for Molecular and Cell Biology, 4150-180 Porto, Portugal
- Instituto
de Investigaçao e Inovaçao em Saúde, Universidade do Porto and Institute for Molecular
and Cell Biology, 4150-180 Porto, Portugal
| | - Carolina B Moraes
- Brazilian
Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Lucio Freitas-Junior
- Brazilian
Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), 13083-970 Campinas, São Paulo, Brazil
| | - Ulrike Wittig
- Scientific
Databases and Visualization Group and Molecular and Cellular Modelling
Group, Heidelberg Institute for Theoretical
Studies (HITS), D-69118 Heidelberg, Germany
| | - Wolfgang Mueller
- Scientific
Databases and Visualization Group and Molecular and Cellular Modelling
Group, Heidelberg Institute for Theoretical
Studies (HITS), D-69118 Heidelberg, Germany
| | - Michele Tonelli
- Department
of Pharmacy, University of Genoa, Viale Benedetto XV n.3, 16132 Genoa, Italy
| | - Stefania Ferrari
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| | - Alberto Venturelli
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
- TYDOCK
PHARMA S.r.l., Strada
Gherbella 294/b, 41126 Modena, Italy
| | - Sheraz Gul
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Maria Kuzikov
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Bernhard Ellinger
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Jeanette Reinshagen
- Fraunhofer
Translational Medicine and Pharmacology, Schnackenburgallee 114, D-22525 Hamburg, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases
CIMD, Schnackenburgallee
114, D-22525 Hamburg, Germany
| | - Sean Ekins
- Collaborations
Pharmaceuticals, Inc., 840 Main Campus Drive, Lab 3510, Raleigh, North Carolina 27606, United States
| | - Maria Paola Costi
- Department
of Life Sciences, University of Modena and
Reggio Emilia, Via Campi 103, 41125 Modena, Italy
| |
Collapse
|
14
|
Schijman AG. Unveiling challenges in real-time PCR strategies for detecting treatment failure: observations from clinical trials on chronic Chagas disease. FRONTIERS IN PARASITOLOGY 2023; 2:1260224. [PMID: 39816840 PMCID: PMC11732123 DOI: 10.3389/fpara.2023.1260224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 09/04/2023] [Indexed: 01/18/2025]
Abstract
Chagas disease (CD) caused by Trypanosoma cruzi remains a Neglected Tropical Disease with limited access to diagnosis and treatment, particularly for chronically infected patients. Clinical trials are underway to improve treatment using new drugs or different regimens, and Real-Time PCR is used to assess the parasitological response as a surrogate biomarker. However, PCR-based strategies have limitations due to the complex nature of T. cruzi infection. The parasite exhibits asynchronous replication, different strains and clones, and diverse tissue tropism, making it challenging to determine optimal timeline points for monitoring treatment response. This mini-review explores factors that affect PCR-based monitoring and summarizes the endpoints used in clinical trials for detecting treatment failure. Serial sampling and cumulative PCR results may improve sensitivity in detecting parasitemia and treatment failure in these trials.
Collapse
Affiliation(s)
- Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Investigaciones en Ingeniería Genética y Biología Molecular Dr Héctor N. Torres (INGEBI), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Marcelino TDP, Fala AM, da Silva MM, Souza-Melo N, Malvezzi AM, Klippel AH, Zoltner M, Padilla-Mejia N, Kosto S, Field MC, Burle-Caldas GDA, Teixeira SMR, Couñago RM, Massirer KB, Schenkman S. Identification of inhibitors for the transmembrane Trypanosoma cruzi eIF2α kinase relevant for parasite proliferation. J Biol Chem 2023; 299:104857. [PMID: 37230387 PMCID: PMC10300260 DOI: 10.1016/j.jbc.2023.104857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/02/2023] [Accepted: 05/05/2023] [Indexed: 05/27/2023] Open
Abstract
The TcK2 protein kinase of Trypanosoma cruzi, the causative agent of Chagas disease, is structurally similar to the human kinase PERK, which phosphorylates the initiation factor eIF2α and, in turn, inhibits translation initiation. We have previously shown that absence of TcK2 kinase impairs parasite proliferation within mammalian cells, positioning it as a potential target for treatment of Chagas disease. To better understand its role in the parasite, here we initially confirmed the importance of TcK2 in parasite proliferation by generating CRISPR/Cas9 TcK2-null cells, albeit they more efficiently differentiate into infective forms. Proteomics indicates that the TcK2 knockout of proliferative forms expresses proteins including trans-sialidases, normally restricted to infective and nonproliferative trypomastigotes explaining decreased proliferation and better differentiation. TcK2 knockout cells lost phosphorylation of eukaryotic initiation factor 3 and cyclic AMP responsive-like element, recognized to promote growth, likely explaining both decreased proliferation and augmented differentiation. To identify specific inhibitors, a library of 379 kinase inhibitors was screened by differential scanning fluorimetry using a recombinant TcK2 encompassing the kinase domain and selected molecules were tested for kinase inhibition. Only Dasatinib and PF-477736, inhibitors of Src/Abl and ChK1 kinases, showed inhibitory activity with IC50 of 0.2 ± 0.02 mM and 0.8 ± 0.1, respectively. In infected cells Dasatinib inhibited growth of parental amastigotes (IC50 = 0.6 ± 0.2 mM) but not TcK2 of depleted parasites (IC50 > 34 mM) identifying Dasatinib as a potential lead for development of therapeutics for Chagas disease targeting TcK2.
Collapse
Affiliation(s)
- Tiago de Paula Marcelino
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Angela Maria Fala
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Matheus Monteiro da Silva
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Normanda Souza-Melo
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Amaranta Muniz Malvezzi
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Angélica Hollunder Klippel
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil; Departamento de Ciências Biológicas da Faculdade de Ciências Farmacêuticas da Universidade Estadual Paulista "Júlio de Mesquita Filho"-Unesp, Araraquara, SP, Brazil
| | - Martin Zoltner
- Drug Discovery and Evaluation Unit, Department of Parasitology, Faculty of Science, Charles University in Prague, BIOCEV, Vestec, Czech Republic
| | | | - Samantha Kosto
- School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark C Field
- School of Life Sciences, University of Dundee, Dundee, UK; Biology Centre, Institute of Parasitology, Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | | | - Rafael Miguez Couñago
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil
| | - Katlin Brauer Massirer
- Center for Molecular Biology and Genetic Engineering - CBMEG, Center of Medicinal Chemistry - CQMED, Structural Genomics Consortium - SGC, University of Campinas - UNICAMP, Campinas, SP, Brazil.
| | - Sergio Schenkman
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
16
|
Santos VC, Leite PG, Santos LH, Pascutti PG, Kolb P, Machado FS, Ferreira RS. Structure-based discovery of novel cruzain inhibitors with distinct trypanocidal activity profiles. Eur J Med Chem 2023; 257:115498. [PMID: 37290182 DOI: 10.1016/j.ejmech.2023.115498] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/10/2023] [Accepted: 05/15/2023] [Indexed: 06/10/2023]
Abstract
Over 110 years after the first formal description of Chagas disease, the trypanocidal drugs thus far available have limited efficacy and several side effects. This encourages the search for novel treatments that inhibit T. cruzi targets. One of the most studied anti-T. cruzi targets is the cysteine protease cruzain; it is associated with metacyclogenesis, replication, and invasion of the host cells. We used computational techniques to identify novel molecular scaffolds that act as cruzain inhibitors. First, with a docking-based virtual screening, we identified compound 8, a competitive cruzain inhibitor with a Ki of 4.6 μM. Then, aided by molecular dynamics simulations, cheminformatics, and docking, we identified the analog compound 22 with a Ki of 27 μM. Surprisingly, despite sharing the same isoquinoline scaffold, compound 8 presented higher trypanocidal activity against the epimastigote forms, while compound 22, against the trypomastigotes and amastigotes. Taken together, compounds 8 and 22 represent a promising scaffold for further development of trypanocidal compounds as drug candidates for treating Chagas disease.
Collapse
Affiliation(s)
- Viviane Corrêa Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Paulo Gaio Leite
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Lucianna Helene Santos
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Pedro Geraldo Pascutti
- Laboratório de Modelagem e Dinâmica Molecular, Instituto de Biofísica, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Rio de Janeiro, RJ, CEP 21944-970, Brazil
| | - Peter Kolb
- Pharmaceutical Chemistry, Philipps-University Marburg, Marbacher Weg 6, 35037, Marburg, Germany
| | - Fabiana Simão Machado
- Departamento de Bioquímica e Imunologia, Universidade Federal de Minas Gerais, Avenida Antonio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Rafaela Salgado Ferreira
- Laboratório de Modelagem Molecular e Planejamento de Fármacos, Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
17
|
García-Estrada C, Pérez-Pertejo Y, Domínguez-Asenjo B, Holanda VN, Murugesan S, Martínez-Valladares M, Balaña-Fouce R, Reguera RM. Further Investigations of Nitroheterocyclic Compounds as Potential Antikinetoplastid Drug Candidates. Biomolecules 2023; 13:biom13040637. [PMID: 37189384 DOI: 10.3390/biom13040637] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Due to the lack of specific vaccines, management of the trypanosomatid-caused neglected tropical diseases (sleeping sickness, Chagas disease and leishmaniasis) relies exclusively on pharmacological treatments. Current drugs against them are scarce, old and exhibit disadvantages, such as adverse effects, parenteral administration, chemical instability and high costs which are often unaffordable for endemic low-income countries. Discoveries of new pharmacological entities for the treatment of these diseases are scarce, since most of the big pharmaceutical companies find this market unattractive. In order to fill the pipeline of compounds and replace existing ones, highly translatable drug screening platforms have been developed in the last two decades. Thousands of molecules have been tested, including nitroheterocyclic compounds, such as benznidazole and nifurtimox, which had already provided potent and effective effects against Chagas disease. More recently, fexinidazole has been added as a new drug against African trypanosomiasis. Despite the success of nitroheterocycles, they had been discarded from drug discovery campaigns due to their mutagenic potential, but now they represent a promising source of inspiration for oral drugs that can replace those currently on the market. The examples provided by the trypanocidal activity of fexinidazole and the promising efficacy of the derivative DNDi-0690 against leishmaniasis seem to open a new window of opportunity for these compounds that were discovered in the 1960s. In this review, we show the current uses of nitroheterocycles and the novel derived molecules that are being synthesized against these neglected diseases.
Collapse
Affiliation(s)
- Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Bárbara Domínguez-Asenjo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Vanderlan Nogueira Holanda
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, India
| | - María Martínez-Valladares
- Instituto de Ganadería de Montaña (IGM), Consejo Superior de Investigaciones Científicas-Universidad de León, Carretera León-Vega de Infanzones, Vega de Infanzones, 24346 León, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|
18
|
Lopes MEASA, Ribeiro JM, Teixeira-Carvalho A, Murta SMF, Souza-Fagundes EM. A functional assay using human whole blood and flow cytometry analysis to evaluate cytotoxicity and immunomodulatory effect of anti-Trypanosoma cruzi drugs. Exp Parasitol 2023; 247:108490. [PMID: 36809831 DOI: 10.1016/j.exppara.2023.108490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 02/07/2023] [Accepted: 02/17/2023] [Indexed: 02/21/2023]
Abstract
The discovery and development of new drugs for the treatment of Chagas disease is urgent due to the high toxicity and low cure efficacy, mainly during the chronic phase of this disease. Other chemotherapeutic approaches for Chagas disease treatment are being researched and require screening assays suitable for evaluating the effectivity of new biologically active compounds. This study aims to evaluate a functional assay using the internalization of epimastigotes forms of Trypanosoma cruzi by human peripheral blood leukocytes from healthy volunteers and analyses by flow cytometry of cytotoxicity, anti-T. cruzi activity, and immunomodulatory effect of benznidazole, ravuconazole, and posaconazole. The culture supernatant was used to measure cytokines (IL-1-β, IL-6, INF-γ, TNF and IL-10) and chemokines (MCP-1/CCL2, CCL5/RANTES and CXCL8/IL-8). The data showed a reduction in the internalization of T. cruzi epimastigote forms treated with ravuconazole, demonstrating its potential anti-T. cruzi activity. In addition, an increased amount of IL-10 and TNF cytokines was observed in the supernatant of cultures upon the addition of the drug, mainly IL-10 in the presence of benznidazole, ravuconazole and posaconazole, and TNF in the presence of ravuconazole and posaconazole. Moreover, the results revealed a decrease in the MCP-1/CCL2 index in cultures in the presence of benznidazole, ravuconazole, and posaconazole. A decrease in the CCL5/RANTES and CXCL8/IL-8 index in cultures with BZ, when compared to the culture without drugs, was also observed. In conclusion, the innovative functional test proposed in this study may be a valuable tool as a confirmatory test for selecting promising compounds identified in prospecting programs for new drugs for Chagas disease treatment.
Collapse
Affiliation(s)
- Mariana Eduarda A S A Lopes
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana M Ribeiro
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil
| | - Andréa Teixeira-Carvalho
- Grupo Integrado de Pesquisas em Biomarcadores, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-001, Belo Horizonte, Minas Gerais, Brazil
| | - Silvane M F Murta
- Grupo de Genômica Funcional de Parasitos, Instituto René Rachou, Fundação Oswaldo Cruz-FIOCRUZ, 30190-002, Belo Horizonte, Minas Gerais, Brazil.
| | - Elaine M Souza-Fagundes
- Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, 31270-901, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
19
|
Muñoz-Calderón A, Ramírez JL, Díaz-Bello Z, Alarcón de Noya B, Noya O, Schijman AG. Genetic Characterization of Trypanosoma cruzi I Populations from an Oral Chagas Disease Outbreak in Venezuela: Natural Resistance to Nitroheterocyclic Drugs. ACS Infect Dis 2023; 9:582-592. [PMID: 36780430 DOI: 10.1021/acsinfecdis.2c00569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The oral transmission of Chagas disease (oCD) in Venezuela announced its appearance in 2007. Different from other populations affected by oCD and despite close supervision during treatment with nitroheterocyclic drugs, the result was treatment failure. We studied genetic features of natural bloodstream parasite populations and populations after treatment of nine patients of this outbreak. In total, we studied six hemoculture isolates, eight Pre-Tx blood samples, and 17 samples collected at two or three Post-Tx time-points between 2007 and 2015. Parasitic loads were determined by quantitative polymerase chain reaction (qPCR), and discrete typing units (DTU), minicircle signatures, and Tcntr-1 gene sequences were searched from blood samples and hemocultures. Half-maximal inhibitory concentration (IC50) values were measured from the hemocultures. All patients were infected by TcI. Significant decrease in parasitic loads was observed between Pre-Tx and Post-Tx samples, suggesting the evolution from acute to chronic phase of Chagas disease. 60% of intra-DTU-I variability was observed between Pre-Tx and Post-Tx minicircle signatures in the general population, and 43 single-nucleotide polymorphisms (SNPs) were detected in a total of 12 Tcntr-1 gene sequences, indicative of a polyclonal source of infection. SNPs in three post-Tx samples produced stop codons giving rise to putative truncated proteins or displaced open reading frames, which would render resistance genes. IC50 values varied from 5.301 ± 1.973 to 104.731 ± 4.556 μM, demonstrating a wide range of susceptibility. The poor drug response in the Pre-Tx parasite populations may be associated with the presence of naturally resistant parasite clones. Therefore, any information that can be obtained on drug susceptibility from in vitro assays, in vivo assays, or molecular characterization of natural populations of Trypanosoma cruzi becomes essential when therapeutic guidelines are designed in a given geographical area.
Collapse
Affiliation(s)
- Arturo Muñoz-Calderón
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires CP1428ADN, Argentina
| | - José Luis Ramírez
- Centro de Biotecnología, Fundación Instituto de Estudios Avanzados, Caracas CP1080, Venezuela
| | - Zoraida Díaz-Bello
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela
| | - Belkisyolé Alarcón de Noya
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela
| | - Oscar Noya
- Instituto de Medicina Tropical "Dr. Félix Pifano", Facultad de Medicina, Universidad Central de Venezuela, Caracas CP1050, Venezuela.,Centro de Estudios sobre Malaria, Instituto de Altos Estudios, Ministerio del Poder Popular para la Salud, Caracas CP1050, Venezuela
| | - Alejandro G Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas, Instituto de Ingeniería Genética y Biología Molecular "Dr. Héctor Torres", Buenos Aires CP1428ADN, Argentina
| |
Collapse
|
20
|
Tayama Y, Mizukami S, Toume K, Komatsu K, Yanagi T, Nara T, Tieu P, Huy NT, Hamano S, Hirayama K. Anti-Trypanosoma cruzi activity of Coptis rhizome extract and its constituents. Trop Med Health 2023; 51:12. [PMID: 36859380 PMCID: PMC9976467 DOI: 10.1186/s41182-023-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Current therapeutic agents, including nifurtimox and benznidazole, are not sufficiently effective in the chronic phase of Trypanosoma cruzi infection and are accompanied by various side effects. In this study, 120 kinds of extracts from medicinal herbs used for Kampo formulations and 94 kinds of compounds isolated from medicinal herbs for Kampo formulations were screened for anti-T. cruzi activity in vitro and in vivo. METHODS As an experimental method, a recombinant protozoan cloned strain expressing luciferase, namely Luc2-Tulahuen, was used in the experiments. The in vitro anti-T. cruzi activity on epimastigote, trypomastigote, and amastigote forms was assessed by measuring luminescence intensity after treatment with the Kampo extracts or compounds. In addition, the cytotoxicity of compounds was tested using mouse and human feeder cell lines. The in vivo anti-T. cruzi activity was measured by a murine acute infection model using intraperitoneal injection of trypomastigotes followed by live bioluminescence imaging. RESULTS As a result, three protoberberine-type alkaloids, namely coptisine chloride, dehydrocorydaline nitrate, and palmatine chloride, showed strong anti-T. cruzi activities with low cytotoxicity. The IC50 values of these compounds differed depending on the side chain, and the most effective compound, coptisine chloride, showed a significant effect in the acute infection model. CONCLUSIONS For these reasons, coptisine chloride is a hit compound that can be a potential candidate for anti-Chagas disease drugs. In addition, it was expected that there would be room for further improvement by modifying the side chains of the basic skeleton.
Collapse
Affiliation(s)
- Yuki Tayama
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Shusaku Mizukami
- grid.174567.60000 0000 8902 2273Department of Immune Regulation, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kazufumi Toume
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tetsuo Yanagi
- grid.174567.60000 0000 8902 2273NEKKEN Bio-Resource Center (NBRC), Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Takeshi Nara
- grid.411789.20000 0004 0371 1051Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima Japan
| | - Paul Tieu
- grid.25073.330000 0004 1936 8227Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,Online Research Club, Nagasaki, Japan
| | - Nguyen Tien Huy
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,Online Research Club, Nagasaki, Japan
| | - Shinjiro Hamano
- grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
21
|
Impact of Laboratory-Adapted Intracellular Trypanosoma cruzi Strains on the Activity Profiles of Compounds with Anti- T. cruzi Activity. Microorganisms 2023; 11:microorganisms11020476. [PMID: 36838441 PMCID: PMC9967867 DOI: 10.3390/microorganisms11020476] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/16/2023] Open
Abstract
Chagas disease is caused by infection with the protozoan parasite, Trypanosoma cruzi. The disease causes ~12,000 deaths annually and is one of the world's 20 neglected tropical diseases, as defined by the World Health Organisation. The drug discovery pipeline for Chagas disease currently has few new clinical candidates, with high attrition rates an ongoing issue. To determine if the Trypanosoma cruzi strain utilised to assess in vitro compound activity impacts activity, a comparison of laboratory-adapted T. cruzi strains from differing geographical locations was undertaken for a selection of compounds with anti-T. cruzi activity. To minimise the possible effect of differences in experimental methodology, the same host cell and multiplicity of infection were utilised. To determine whether the compound exposure time influenced results, activity was determined following exposure for 48 and 72 h of incubation. To ascertain whether replication rates affected outcomes, comparative rates of replication of the T. cruzi strains were investigated, using the nucleoside analogue, 5-ethynyl-2'-deoxyuridine. Minimal differences in the in vitro activity of compounds between strains were observed following 48 h incubation, whereas significant differences were observed following 72 h incubation, in particular for the cytochrome P450 inhibitors tested and the cell cycle inhibitor, camptothecin. Thus, the use of panels of laboratory adapted strains in vitro may be dependent on the speed of action that is prioritised. For the identification of fast-acting compounds, an initial shorter duration assay using a single strain may be used. A longer incubation to identify compound activity may alternatively require profiling of compounds against multiple T. cruzi strains.
Collapse
|
22
|
Nath SK, Pankajakshan P, Sharma T, Kumari P, Shinde S, Garg N, Mathur K, Arambam N, Harjani D, Raj M, Kwatra G, Venkatesh S, Choudhoury A, Bano S, Tayal P, Sharan M, Arora R, Strych U, Hotez PJ, Bottazzi ME, Rawal K. A Data-Driven Approach to Construct a Molecular Map of Trypanosoma cruzi to Identify Drugs and Vaccine Targets. Vaccines (Basel) 2023; 11:vaccines11020267. [PMID: 36851145 PMCID: PMC9963959 DOI: 10.3390/vaccines11020267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 01/10/2023] [Accepted: 01/12/2023] [Indexed: 01/28/2023] Open
Abstract
Chagas disease (CD) is endemic in large parts of Central and South America, as well as in Texas and the southern regions of the United States. Successful parasites, such as the causative agent of CD, Trypanosoma cruzi have adapted to specific hosts during their phylogenesis. In this work, we have assembled an interactive network of the complex relations that occur between molecules within T. cruzi. An expert curation strategy was combined with a text-mining approach to screen 10,234 full-length research articles and over 200,000 abstracts relevant to T. cruzi. We obtained a scale-free network consisting of 1055 nodes and 874 edges, and composed of 838 proteins, 43 genes, 20 complexes, 9 RNAs, 36 simple molecules, 81 phenotypes, and 37 known pharmaceuticals. Further, we deployed an automated docking pipeline to conduct large-scale docking studies involving several thousand drugs and potential targets to identify network-based binding propensities. These experiments have revealed that the existing FDA-approved drugs benznidazole (Bz) and nifurtimox (Nf) show comparatively high binding energies to the T. cruzi network proteins (e.g., PIF1 helicase-like protein, trans-sialidase), when compared with control datasets consisting of proteins from other pathogens. We envisage this work to be of value to those interested in finding new vaccines for CD, as well as drugs against the T. cruzi parasite.
Collapse
Affiliation(s)
- Swarsat Kaushik Nath
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Preeti Pankajakshan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Trapti Sharma
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Priya Kumari
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sweety Shinde
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Nikita Garg
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Kartavya Mathur
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Nevidita Arambam
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Divyank Harjani
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Manpriya Raj
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Garwit Kwatra
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Sayantan Venkatesh
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Alakto Choudhoury
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Saima Bano
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Prashansa Tayal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Mahek Sharan
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ruchika Arora
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
| | - Ulrich Strych
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Peter J. Hotez
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Maria Elena Bottazzi
- Texas Children’s Hospital Center for Vaccine Development, Departments of Pediatrics and Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- National School of Tropical Medicine, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biology, Baylor University, Waco, TX 76798, USA
| | - Kamal Rawal
- Centre for Computational Biology and Bioinformatics, Amity Institute of Biotechnology, Amity University, Noida 201303, Uttar Pradesh, India
- Correspondence:
| |
Collapse
|
23
|
Montalvo-Ocotoxtle IG, Rojas-Velasco G, Rodríguez-Morales O, Arce-Fonseca M, Baeza-Herrera LA, Arzate-Ramírez A, Meléndez-Ramírez G, Manzur-Sandoval D, Lara-Romero ML, Reyes-Ortega A, Espinosa-González P, Palacios-Rosas E. Chagas Heart Disease: Beyond a Single Complication, from Asymptomatic Disease to Heart Failure. J Clin Med 2022; 11:7262. [PMID: 36555880 PMCID: PMC9784121 DOI: 10.3390/jcm11247262] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Chagas cardiomyopathy (CC), caused by the protozoan Trypanosoma cruzi, is an important cause of cardiovascular morbidity and mortality in developing countries. It is estimated that 6 to 7 million people worldwide are infected, and it is predicted that it will be responsible for 200,000 deaths by 2025. The World Health Organization (WHO) considers Chagas disease (CD) as a Neglected Tropical Disease (NTD), which must be acknowledged and detected in time, as it remains a clinical and diagnostic challenge in both endemic and non-endemic regions and at different levels of care. The literature on CC was analyzed by searching different databases (Medline, Cochrane Central, EMBASE, PubMed, Google Scholar, EBSCO) from 1968 until October 2022. Multicenter and bioinformatics trials, systematic and bibliographic reviews, international guidelines, and clinical cases were included. The reference lists of the included papers were checked. No linguistic restrictions or study designs were applied. This review is intended to address the current incidence and prevalence of CD and to identify the main pathogenic mechanisms, clinical presentation, and diagnosis of CC.
Collapse
Affiliation(s)
- Isis G. Montalvo-Ocotoxtle
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Gustavo Rojas-Velasco
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Olivia Rodríguez-Morales
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Minerva Arce-Fonseca
- Department of Molecular Biology, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Luis A. Baeza-Herrera
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Arturo Arzate-Ramírez
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Gabriela Meléndez-Ramírez
- Magnetic Resonance Imaging Department, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Daniel Manzur-Sandoval
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Mayra L. Lara-Romero
- Academic Department of Health Sciences, School of Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N. San Andrés Cholula, Puebla 72810, Mexico
| | - Antonio Reyes-Ortega
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Patricia Espinosa-González
- Cardiovascular Critical Care Unit, National Institute of Cardiology “Ignacio Chávez”, Juan Badiano No. 1, Col. Sección XVI, Tlalpan, Mexico City 14080, Mexico
| | - Erika Palacios-Rosas
- Academic Department of Health Sciences, School of Sciences, Universidad de las Américas Puebla, Ex Hacienda Sta. Catarina Mártir S/N. San Andrés Cholula, Puebla 72810, Mexico
| |
Collapse
|
24
|
Pandey RP, Nascimento MS, Franco CH, Bortoluci K, Silva MN, Zingales B, Gibaldi D, Castaño Barrios L, Lannes-Vieira J, Cariste LM, Vasconcelos JR, Moraes CB, Freitas-Junior LH, Kalil J, Alcântara L, Cunha-Neto E. Drug Repurposing in Chagas Disease: Chloroquine Potentiates Benznidazole Activity against Trypanosoma cruzi In Vitro and In Vivo. Antimicrob Agents Chemother 2022; 66:e0028422. [PMID: 36314800 PMCID: PMC9664849 DOI: 10.1128/aac.00284-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 09/16/2022] [Indexed: 11/20/2022] Open
Abstract
Drug combinations and drug repurposing have emerged as promising strategies to develop novel treatments for infectious diseases, including Chagas disease. In this study, we aimed to investigate whether the repurposed drugs chloroquine (CQ) and colchicine (COL), known to inhibit Trypanosoma cruzi infection in host cells, could boost the anti-T. cruzi effect of the trypanocidal drug benznidazole (BZN), increasing its therapeutic efficacy while reducing the dose needed to eradicate the parasite. The combination of BZN and COL exhibited cytotoxicity to infected cells and low antiparasitic activity. Conversely, a combination of BZN and CQ significantly reduced T. cruzi infection in vitro, with no apparent cytotoxicity. This effect seemed to be consistent across different cell lines and against both the partially BZN-resistant Y and the highly BZN-resistant Colombiana strains. In vivo experiments in an acute murine model showed that the BZN+CQ combination was eight times more effective in reducing T. cruzi infection in the acute phase than BZN monotherapy. In summary, our results demonstrate that the concomitant administration of CQ and BZN potentiates the trypanocidal activity of BZN, leading to a reduction in the dose needed to achieve an effective response. In a translational context, it could represent a higher efficacy of treatment while also mitigating the adverse effects of high doses of BZN. Our study also reinforces the relevance of drug combination and repurposing approaches in the field of Chagas disease drug discovery.
Collapse
Affiliation(s)
- Ramendra P. Pandey
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Marilda Savoia Nascimento
- School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
| | - Caio Haddad Franco
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Karina Bortoluci
- Department of Pharmacology, Federal University of São Paulo, São Paulo, Brazil
| | - Marcelo Nunes Silva
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | - Bianca Zingales
- Department of Biochemistry, Institute of Chemistry, University of São Paulo, São Paulo, Brazil
| | | | | | | | - Leonardo Moro Cariste
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
| | - Jose Ronnie Vasconcelos
- Recombinant Vaccines Laboratory, Department of Biosciences, Federal University of São Paulo, São Paulo, Brazil
- Department of Microbiology, Immunology, and Parasitology, Federal University of São Paulo (UNIFESP), São Paulo, Brazil
| | - Carolina Borsoi Moraes
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lucio H. Freitas-Junior
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Jorge Kalil
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Laura Alcântara
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
- Institute of Tropical Medicine of São Paulo, São Paulo, Brazil
| | - Edecio Cunha-Neto
- Laboratory of Immunology, Heart Institute, School of Medicine, University of São Paulo, São Paulo, Brazil
- School of Medicine, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
25
|
Santana Nogueira S, Cardoso Santos E, Oliveira Silva R, Vilela Gonçalves R, Lima GDA, Dias Novaes R. Monotherapy and combination chemotherapy for Chagas disease treatment: a systematic review of clinical efficacy and safety based on randomized controlled trials. Parasitology 2022; 149:1679-1694. [PMID: 35957576 PMCID: PMC11010555 DOI: 10.1017/s0031182022001081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 12/14/2022]
Abstract
From a systematic review framework, we analysed the clinical evidence on the effectiveness and safety of monotherapy and combination chemotherapy for Chagas disease (ChD) treatment. The research protocol was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses and patient, intervention, comparison and outcome strategy. Only randomized controlled trials (RCT) were retrieved from Embase, Medline, Scopus and Web of Science databases. Diagnostic tools, treatment protocols, seroconversion rates and adverse events were investigated. Fifteen RCT mainly concentrated in endemic countries were identified. ChD diagnosis was mainly based on haemagglutination, immunofluorescence, enzyme-linked immunosorbent assay and polymerase chain reaction. Benznidazole (BNZ), nifurtimox, fosravuconazole, posaconazole, allopurinol and thioctic acid were the identified drugs. The best negative seroconversion results (100, 96, 94 and 91.3%) were, respectively, based on BNZ (5 mg kg day−1, 200 mg day−1, 150 mg day−1 and 2.5 mg kg−1) administration for 60 days. Negative seroconversion was not achieved with allopurinol (300 mg day−1 for 60 days). Adverse reactions ranged from 5 to 73% in patients receiving antiparasitic chemotherapy. Treatment discontinuation (1.5–57%) was mainly associated with gastrointestinal, cutaneous and neurological manifestations. Current RCT-based evidence indicates that BNZ is the most viable option for ChD treatment. However, new protocols need to be developed to mitigate side effects and increase patient adherence to antiparasitic chemotherapy. Therefore, shorter regimens, lower concentrations and treatments combining BNZ with posaconazole, fosravuconazole or ravuconazole may be viable to ensure comparable efficacy to BZN-based monotherapy, contributing to reduce dose- and time-dependent toxicity reactions.
Collapse
Affiliation(s)
- Silas Santana Nogueira
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil
- Instituto Federal do Sul de Minas Gerais, Pouso Alegre, Minas Gerais, Brazil
| | - Eliziária Cardoso Santos
- Faculdade de Medicina, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Roberta Oliveira Silva
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil
| | - Reggiani Vilela Gonçalves
- Departamento de Biologia Animal, Universidade Federal de Viçosa, Viçosa, 36570-900, Minas Gerais, Brazil
| | - Graziela Domingues Almeida Lima
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil
| | - Rômulo Dias Novaes
- Programa de Pós-Graduação em Biociências Aplicadas à Saúde, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil
- Departamento de Biologia Estrutural, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, 37130-000, Minas Gerais, Brazil
| |
Collapse
|
26
|
Ang CW, Lee BM, Jackson CJ, Wang Y, Franzblau SG, Francisco AF, Kelly JM, Bernhardt PV, Tan L, West NP, Sykes ML, Hinton AO, Bolisetti R, Avery VM, Cooper MA, Blaskovich MA. Nitroimidazopyrazinones with Oral Activity against Tuberculosis and Chagas Disease in Mouse Models of Infection. J Med Chem 2022; 65:13125-13142. [DOI: 10.1021/acs.jmedchem.2c00972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Chee Wei Ang
- Center for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
- School of Science, Monash University Malaysia, Subang Jaya, 47500 Selangor, Malaysia
| | - Brendon M. Lee
- Research School of Chemistry, Australian National University, Sullivans Creek Road, Acton ACT 2601, Australia
- Division of Infectious Diseases, Department of Medicine, Weill Cornell Medical College, New York, New York 10021, United States
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Sullivans Creek Road, Acton ACT 2601, Australia
| | - Yuehong Wang
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Scott G. Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Amanda F. Francisco
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - John M. Kelly
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, United Kingdom
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Lendl Tan
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Nicholas P. West
- School of Chemistry and Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Melissa L. Sykes
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Alexandra O. Hinton
- Center for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Raghu Bolisetti
- Center for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Vicky M. Avery
- Discovery Biology, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
- School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| | - Matthew A. Cooper
- Center for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Mark A.T. Blaskovich
- Center for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland 4072, Australia
| |
Collapse
|
27
|
Temporal and Wash-Out Studies Identify Medicines for Malaria Venture Pathogen Box Compounds with Fast-Acting Activity against Both Trypanosoma cruzi and Trypanosoma brucei. Microorganisms 2022; 10:microorganisms10071287. [PMID: 35889006 PMCID: PMC9317670 DOI: 10.3390/microorganisms10071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease caused by the protozoan Trypanosoma cruzi is endemic to 21 countries in the Americas, effects approximately 6 million people and on average results in 12,000 deaths annually. Human African Trypanosomiasis (HAT) is caused by the Trypanosoma brucei sub-species, endemic to 36 countries within sub-Saharan Africa. Treatment regimens for these parasitic diseases are complicated and not effective against all disease stages; thus, there is a need to find improved treatments. To identify new molecules for the drug discovery pipelines for these diseases, we have utilised in vitro assays to identify compounds with selective activity against both T. cruzi and T.b. brucei from the Medicines for Malaria Venture (MMV) Pathogen Box compound collection. To prioritise these molecules for further investigation, temporal and wash off assays were utilised to identify the speed of action and cidality of compounds. For translational relevance, compounds were tested against clinically relevant T.b. brucei subspecies. Compounds with activity against T. cruzi cytochrome P450 (TcCYP51) have not previously been successful in clinical trials for chronic Chagas disease; thus, to deprioritise compounds with this activity, they were tested against recombinant TcCYP51. Compounds with biological profiles warranting progression offer important tools for drug and target development against kinetoplastids.
Collapse
|
28
|
Kratz JM, Gonçalves KR, Romera LM, Moraes CB, Bittencourt-Cunha P, Schenkman S, Chatelain E, Sosa-Estani S. The translational challenge in Chagas disease drug development. Mem Inst Oswaldo Cruz 2022; 117:e200501. [PMID: 35613156 PMCID: PMC9128742 DOI: 10.1590/0074-02760200501] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 01/13/2021] [Indexed: 12/20/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan parasite Trypanosoma cruzi. There is an urgent need for safe, effective, and accessible new treatments since the currently approved drugs have serious limitations. Drug development for Chagas disease has historically been hampered by the complexity of the disease, critical knowledge gaps, and lack of coordinated R&D efforts. This review covers some of the translational challenges associated with the progression of new chemical entities from preclinical to clinical phases of development, and discusses how recent technological advances might allow the research community to answer key questions relevant to the disease and to overcome hurdles in R&D for Chagas disease.
Collapse
Affiliation(s)
- Jadel M Kratz
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Karolina R Gonçalves
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil
| | - Lavínia Md Romera
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil
| | - Carolina Borsoi Moraes
- Universidade Federal de São Paulo, Departamento de Ciências Farmacêuticas, Diadema, SP, Brasil
| | - Paula Bittencourt-Cunha
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brasil.,Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | - Sergio Schenkman
- Universidade Federal de São Paulo, Departamento de Microbiologia, Imunologia e Parasitologia, São Paulo, SP, Brasil
| | - Eric Chatelain
- Drugs for Neglected Diseases initiative, Geneva, Switzerland
| | - Sergio Sosa-Estani
- Drugs for Neglected Diseases initiative, Geneva, Switzerland.,Epidemiology and Public Health Research Centre, CIESP-CONICET, Buenos Aires, Argentina
| |
Collapse
|
29
|
Dantas RF, Torres-Santos EC, Silva FP. Past and future of trypanosomatids high-throughput phenotypic screening. Mem Inst Oswaldo Cruz 2022; 117:e210402. [PMID: 35293482 PMCID: PMC8920514 DOI: 10.1590/0074-02760210402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022] Open
Abstract
Diseases caused by trypanosomatid parasites affect millions of people mainly living in developing countries. Novel drugs are highly needed since there are no vaccines and available treatment has several limitations, such as resistance, low efficacy, and high toxicity. The drug discovery process is often analogous to finding a needle in the haystack. In the last decades a so-called rational drug design paradigm, heavily dependent on computational approaches, has promised to deliver new drugs in a more cost-effective way. Paradoxically however, the mainstay of these computational methods is data-driven, meaning they need activity data for new compounds to be generated and available in databases. Therefore, high-throughput screening (HTS) of compounds still is a much-needed exercise in drug discovery to fuel other rational approaches. In trypanosomatids, due to the scarcity of validated molecular targets and biological complexity of these parasites, phenotypic screening has become an essential tool for the discovery of new bioactive compounds. In this article we discuss the perspectives of phenotypic HTS for trypanosomatid drug discovery with emphasis on the role of image-based, high-content methods. We also propose an ideal cascade of assays for the identification of new drug candidates for clinical development using leishmaniasis as an example.
Collapse
Affiliation(s)
- Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Eduardo Caio Torres-Santos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica de Tripanosomatídeos, Rio de Janeiro, RJ, Brasil
| | - Floriano Paes Silva
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental de Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
30
|
Silveira GO, Coelho HS, Amaral MS, Verjovski-Almeida S. Long non-coding RNAs as possible therapeutic targets in protozoa, and in Schistosoma and other helminths. Parasitol Res 2021; 121:1091-1115. [PMID: 34859292 DOI: 10.1007/s00436-021-07384-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 11/14/2021] [Indexed: 12/26/2022]
Abstract
Long non-coding RNAs (lncRNAs) emerged in the past 20 years due to massive amounts of scientific data regarding transcriptomic analyses. They have been implicated in a plethora of cellular processes in higher eukaryotes. However, little is known about lncRNA possible involvement in parasitic diseases, with most studies only detecting their presence in parasites of human medical importance. Here, we review the progress on lncRNA studies and their functions in protozoans and helminths. In addition, we show an example of knockdown of one lncRNA in Schistosoma mansoni, SmLINC156349, which led to in vitro parasite adhesion, motility, and pairing impairment, with a 20% decrease in parasite viability and 33% reduction in female oviposition. Other observed phenotypes were a decrease in the proliferation rate of both male and female worms and their gonads, and reduced female lipid and vitelline droplets that are markers for well-developed vitellaria. Impairment of female worms' vitellaria in SmLINC156349-silenced worms led to egg development deficiency. All those results demonstrate the great potential of the tools and methods to characterize lncRNAs as potential new therapeutic targets. Further, we discuss the challenges and limitations of current methods for studying lncRNAs in parasites and possible solutions to overcome them, and we highlight the future directions of this exciting field.
Collapse
Affiliation(s)
- Gilbert O Silveira
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil
| | - Helena S Coelho
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil
| | - Murilo S Amaral
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil.
| | - Sergio Verjovski-Almeida
- Laboratório de Parasitologia, Instituto Butantan, São Paulo, SP, 05503-900, Brazil. .,Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, 05508-900, Brazil.
| |
Collapse
|
31
|
Strauss M, Lo Presti MS, Ramírez JC, Bazán PC, Velázquez López DA, Báez AL, Paglini PA, Schijman AG, Rivarola HW. Differential tissue distribution of discrete typing units after drug combination therapy in experimental Trypanosoma cruzi mixed infection. Parasitology 2021; 148:1595-1601. [PMID: 35060468 PMCID: PMC11010057 DOI: 10.1017/s0031182021001281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/15/2021] [Accepted: 07/12/2021] [Indexed: 11/06/2022]
Abstract
The aim of the present work was to evaluate the distribution of the different clones of the parasite prevailing after treatment with benznidazole (BZ) and clomipramine (CLO), in mice infected with Trypanosoma cruzi, Casibla isolate which consists of a mixture of two discrete typing units (DTUs). Albino Swiss mice were infected and treated with high and low concentrations of BZ (100 or 6.25 mg/kg), CLO (5 or 1.25 mg/kg), or the combination of both low doses (BZ6.25 + CLO1.25), during the acute phase of experimental infection. Treatment efficacy was evaluated by comparing parasitaemia, survival and tissular parasite presence. For DTUs genotyping, blood, skeletal and cardiac muscle samples were analysed by multiplex quantitative polymerase chain reaction. The combined treatment had similar outcomes to BZ6.25; BZ100 was the most effective treatment, but it failed to reach parasite clearance and produced greater histological alterations. Non-treated mice and the ones treated with monotherapies showed both DTUs while BZ6.25 + CLO1.25 treated mice showed only TcVI parasites in all the tissues studied. These findings suggest that the treatment may modify the distribution of infecting DTUs in host tissues. Coinfection with T. cruzi clones belonging to different DTUs reveals a complex scenario for the treatment of Chagas disease and search for new therapies.
Collapse
Affiliation(s)
- Mariana Strauss
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU-Córdoba, Argentina
| | - M. Silvina Lo Presti
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU-Córdoba, Argentina
| | - Juan C. Ramírez
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LaBMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - P. Carolina Bazán
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU-Córdoba, Argentina
| | - Daniela A. Velázquez López
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU-Córdoba, Argentina
| | - Alejandra L. Báez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU-Córdoba, Argentina
| | - Patricia A. Paglini
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU-Córdoba, Argentina
| | - Alejandro G. Schijman
- Laboratorio de Biología Molecular de la Enfermedad de Chagas (LaBMECh), Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | - Héctor W. Rivarola
- Instituto de Investigaciones en Ciencias de la Salud (INICSA) UNC-CONICET, Centro de Estudios e Investigación de la Enfermedad de Chagas y Leishmaniasis, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Santa Rosa 1085, X5000ESU-Córdoba, Argentina
| |
Collapse
|
32
|
Pereira CG, Moraes CB, Franco CH, Feltrin C, Grougnet R, Barbosa EG, Panciera M, Correia CRD, Rodrigues MJ, Custódio L. In Vitro Anti- Trypanosoma cruzi Activity of Halophytes from Southern Portugal Reloaded: A Special Focus on Sea Fennel ( Crithmum maritimum L.). PLANTS (BASEL, SWITZERLAND) 2021; 10:2235. [PMID: 34834598 PMCID: PMC8625203 DOI: 10.3390/plants10112235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/16/2022]
Abstract
Marine halophytes are an outstanding reservoir of natural products and several species have anti-infectious traditional uses. However, reports about their potential use against neglected tropical ailments, such as Chagas disease, are scarce. This work evaluated for the first time the in vitro anti-Trypanosoma cruzi activity of extracts from the aromatic and medicinal species Helichrysum italicum subsp. picardii (Boiss. & Reut.) Franco (Asteraceae, everlasting) and Crithmum maritimum L. (Apiaceae, sea fennel). For that purpose, decoctions, tinctures, and essential oils from everlasting's flowers and sea fennel's stems, leaves, and flowers were tested against intracellular amastigotes of two T. cruzi strains. The extract from the sea fennel flower decoction displayed significant anti-trypanosomal activity and no toxicity towards the host cell (EC50 = 17.7 µg/mL, selectivity index > 5.65). Subsequent fractionation of this extract afforded 5 fractions that were re-tested in the same model of anti-parasitic activity. Fraction 1 was the most active and selective (EC50 = 0.47 μg/mL, selectivity index = 59.6) and was submitted to preparative thin-layer chromatography. One major compound was identified, falcarindiol, which was likely the one responsible for the observed anti-trypanosomal activity. This was confirmed using a commercially sourced molecule. Target-fishing studies showed falcarindiol as a ligand of T. cruzi spermidine synthase, pointing to a potential enzyme-inhibiting anti-trypanosomal mechanism of action. Overall, this work shows that sea fennel can provide effective anti-parasitic molecule(s) with potential pharmacological applications in the treatment of CD.
Collapse
Affiliation(s)
- Catarina G. Pereira
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (M.J.R.)
| | - Carolina Borsoi Moraes
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil; (C.B.M.); (C.H.F.); (C.F.)
- Department of Pharmaceutical Sciences, Federal University of Sao Paulo, Diadema 09913-030, SP, Brazil
| | - Caio H. Franco
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil; (C.B.M.); (C.H.F.); (C.F.)
| | - Clarissa Feltrin
- Department of Microbiology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, SP, Brazil; (C.B.M.); (C.H.F.); (C.F.)
| | - Raphaël Grougnet
- Natural Products, Analysis, Synthesis, UMR CNRS 8038, Faculty of Pharmacy, University of Paris, 4 Avenue de l’Observatoire, 75006 Paris, France;
| | | | - Michele Panciera
- Institute of Chemistry, State University of Campinas, Josue de Castro St., Campinas 13083-970, SP, Brazil; (M.P.); (C.R.D.C.)
| | - Carlos Roque D. Correia
- Institute of Chemistry, State University of Campinas, Josue de Castro St., Campinas 13083-970, SP, Brazil; (M.P.); (C.R.D.C.)
| | - Maria João Rodrigues
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (M.J.R.)
| | - Luísa Custódio
- Centre of Marine Sciences CCMAR, Faculty of Sciences and Technology, Ed. 7, Campus of Gambelas, University of Algarve, 8005-139 Faro, Portugal; (C.G.P.); (M.J.R.)
| |
Collapse
|
33
|
Svensen N, Wyllie S, Gray DW, De Rycker M. Live-imaging rate-of-kill compound profiling for Chagas disease drug discovery with a new automated high-content assay. PLoS Negl Trop Dis 2021; 15:e0009870. [PMID: 34634052 PMCID: PMC8530327 DOI: 10.1371/journal.pntd.0009870] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 10/21/2021] [Accepted: 10/04/2021] [Indexed: 11/19/2022] Open
Abstract
Chagas disease, caused by the protozoan intracellular parasite Trypanosoma cruzi, is a highly neglected tropical disease, causing significant morbidity and mortality in central and south America. Current treatments are inadequate, and recent clinical trials of drugs inhibiting CYP51 have failed, exposing a lack of understanding of how to translate laboratory findings to the clinic. Following these failures many new model systems have been developed, both in vitro and in vivo, that provide improved understanding of the causes for clinical trial failures. Amongst these are in vitro rate-of-kill (RoK) assays that reveal how fast compounds kill intracellular parasites. Such assays have shown clear distinctions between the compounds that failed in clinical trials and the standard of care. However, the published RoK assays have some key drawbacks, including low time-resolution and inability to track the same cell population over time. Here, we present a new, live-imaging RoK assay for intracellular T. cruzi that overcomes these issues. We show that the assay is highly reproducible and report high time-resolution RoK data for key clinical compounds as well as new chemical entities. The data generated by this assay allow fast acting compounds to be prioritised for progression, the fate of individual parasites to be tracked, shifts of mode-of-action within series to be monitored, better PKPD modelling and selection of suitable partners for combination therapy. Chagas disease is caused by the single cell protozoan parasite Trypanosoma cruzi. Millions of people suffer from this disease in central and south America, which frequently causes heart disease and can result in death. Chagas disease is classified as a neglected tropical disease due to the lack of investment in development of new medicines. The currently available medicines are inadequate as they require long treatments, often with severe side-effects. To develop new medicines, it is critical to build laboratory assays and tools that help predict the ability of new compounds to cure patients. Rate-of-kill assays measure how quickly compounds can kill parasites, providing a route to differentiate promising compounds from poor ones. Here, we describe development of an advanced rate-of-kill assay that, unlike existing assays, can monitor the same cell population over the duration of compound treatment. Using live-cell microscopy, parasite-infected host cells and their response to compound treatment can be continuously monitored. This enables better defined rate-of-kill profiles to be produced, in turn allowing better informed decisions on subsequent compound progression. Here, we report the live-imaging rate-of-kill profiles for several key compounds, including current drugs and compounds in clinical development.
Collapse
Affiliation(s)
- Nina Svensen
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Susan Wyllie
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David W Gray
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Manu De Rycker
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
34
|
da Silveira-Lemos D, Alessio GD, Batista MA, de Azevedo PO, Reis-Cunha JL, Mendes TADO, Lourdes RDA, de Lana M, Fujiwara RT, Filho OAM, Bartholomeu DC. Phenotypic, functional and serological aspects of genotypic-specific immune response of experimental T. cruzi infection. Acta Trop 2021; 222:106021. [PMID: 34161815 DOI: 10.1016/j.actatropica.2021.106021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
The complexity and multifactorial characteristics of Chagas disease pathogenesis hampers the establishment of appropriate experimental/epidemiological sets, and therefore, still represents one of the most challenging fields for novel insights and discovery. In this context, we used a set of attributes including phenotypic, functional and serological markers of immune response as candidates to decode the genotype-specific immune response of experimental T. cruzi infection. In this investigation, we have characterized in C57BL/6 J mice, the early (parasitemia peak) and late (post-parasitemia peak) aspects of the immune response elicited by T. cruzi strains representative of TcI, TcII or TcVI. The results demonstrated earlier parasitemia peak for TcII/Y strain followed by TcVI/CL-Brener and TcI/Colombiana strains. A panoramic overview of phenotypic and functional features of the TCD4+, TCD8+ and B-cells from splenocytes demonstrated that mice infected with TcI/Colombiana strain exhibited at early stages of infection low levels of most cytokine+ cells with a slight increase at late stages of infection. Conversely, mice infected with TcII/Y strain presented an early massive increase of cytokine+ cells, which decreases at late stages. The TcVI/CL-Brener strain showed an intermediate profile at early stages of infection with a slight increase later on at post-peak of parasitemia. The panoramic analysis of immunological connectivity demonstrated that early after infection, the TcI/Colombiana strain trigger immunological network characterized by a small number of connectivity, selectively amongst cytokines that further shade towards the late stages of infection. In contrast, the TcII/Y strain elicited in more imbricate networks early after infection, comprising a robust number of interactions between pro-inflammatory mediators, regulatory cytokines and activation markers that also decrease at late infection. On the other hand, the infection with TcVI/CL-Brener strain demonstrated an intermediate profile with connectivity axes more stable at early and late stages of infection. The analysis of IgG2a reactivity to AMA, TRYPO and EPI antigens revealed that at early stages of infection, the genotype-specific reactivity to AMA, TRYPO and EPI to distinguish was higher for TcI/Colombiana as compared to TcII/Y and TcVI/CL while, at late stages of infection, higher reactivity to AMA was observed in mice infected with TcVI/CL and TcII/Y strains. The novel systems biology approaches and the use of a flow cytometry platform demonstrated that distinct T. cruzi genotypes influenced in the phenotypic and functional features of the host immune response and the genotype-specific serological reactivity during early and late stages of experimental T. cruzi infection.
Collapse
Affiliation(s)
- Denise da Silveira-Lemos
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil; Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil.
| | - Glaucia Diniz Alessio
- Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil; Campus Centro-Oeste Dona Lindu, Universidade Federal de São João Del-Rei, Divinópolis, Minas Gerais, Brasil.
| | - Maurício Azevedo Batista
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Patrick Orestes de Azevedo
- Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil
| | - João Luís Reis-Cunha
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Tiago Antônio de Oliveira Mendes
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Rodrigo de Almeida Lourdes
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Marta de Lana
- Departamento de Análises Clínicas, Escola de Farmácia, Universidade Federal de Ouro Preto, Minas Gerais, Brasil
| | - Ricardo Toshio Fujiwara
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| | - Olindo Assis Martins Filho
- Grupo Integrado de Pesquisas em Biomarcadores - Instituto René Rachou/Fiocruz-MINAS, Minas Gerais, Brasil
| | - Daniella Castanheira Bartholomeu
- Laboratório de Imunologia e Genômica de Parasitos - Departamento de Parasitologia, Instituto de Ciências Biológicas/ICB, Universidade Federal de Minas Gerais, Minas Gerais, Brasil
| |
Collapse
|
35
|
Cysteine proteases as potential targets for anti-trypanosomatid drug discovery. Bioorg Med Chem 2021; 46:116365. [PMID: 34419821 DOI: 10.1016/j.bmc.2021.116365] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 08/02/2021] [Accepted: 08/04/2021] [Indexed: 11/20/2022]
Abstract
Leishmaniasis and trypanosomiasis are endemic neglected disease in South America and Africa and considered a significant public health problem, mainly in poor communities. The limitations of the current available therapeutic options, including the lack of specificity, relatively high toxicity, and the drug resistance acquiring, drive the constant search for new targets and therapeutic options. Advances in knowledge of parasite biology have revealed essential enzymes involved in the replication, survival, and pathogenicity of Leishmania and Trypanosoma species. In this scenario, cysteine proteases have drawn the attention of researchers and they are being proposed as promising targets for drug discovery of antiprotozoal drugs. In this systematic review, we will provide an update on drug discovery strategies targeting the cysteine proteases as potential targets for chemotherapy against protozoal neglected diseases.
Collapse
|
36
|
Moreira FF, Portes JDA, Barros Azeredo NF, Fernandes C, Horn A, Santiago CP, Segat BB, Caramori GF, Madureira LMP, Candela DRS, Marques MM, Lamounier Camargos Resende JA, de Souza W, DaMatta RA, Seabra SH. Development of new dinuclear Fe(III) coordination compounds with in vitro nanomolar antitrypanosomal activity. Dalton Trans 2021; 50:12242-12264. [PMID: 34519725 DOI: 10.1039/d1dt01048d] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan pathogen Trypanosoma cruzi. The disease is a major public health problem affecting about 6 to 7 million people worldwide, mostly in Latin America. The available therapy for this disease is based on two drugs, nifurtimox and benznidazole, which exhibit severe side effects, including resistance, severe cytotoxicity, variable efficacy and inefficiency in the chronic phase. Therefore, new drugs are urgently needed. Coordination compounds may be an interesting alternative for antiparasite therapy against Leishmania spp., Toxoplasma gondii and T. cruzi. Herein, we tested the in vitro effect on T. cruzi epimastigotes (Y strain) of two new μ-oxo Fe(III) dinuclear complexes: [(HL1)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·(CH3CH2OH)2·H2O (1) and [(HL2)(Cl)Fe(μ-O)Fe(Cl)(HL2)](Cl)2·H2O (2) where HL1 and HL2 are ligands which contain two pyridines, amine and alcohol moieties with a naphthyl pendant unit yielding a N3O coordination environment. Complexes (1) and (2), which are isomers, were completely characterized, including X-ray diffraction studies for complex (1). Parasites were treated with the complexes and the outcome was analyzed. Complex (1) exhibited the lowest IC50 values, which were 99 ± 3, 97 ± 2 and 110 ± 39 nM, after 48, 72 and 120 h of treatment, respectively. Complex (2) showed IC50 values of 118 ± 5, 122 ± 6 and 104 ± 29 nM for the same treatment times. Low cytotoxicity to the host cell LLC-MK2 was found for both complexes, resulting in impressive selectivity indexes of 106 for complex (1) and 178 for (2), after 120 h of treatment. Treatment with both complexes reduced the mitochondrial membrane potential of the parasite. Ultrastructural analysis of the parasite after treatment with complexes showed that the mitochondria outer membrane presented swelling and abnormal disposition around the kinetoplast; in addition, reservosomes presented anomalous spicules and rupture. The complexes showed low nanomolar IC50 values affecting mitochondria and reservosomes, essential organelles for the survival of the parasite. The low IC50 and the high selectivity index show that both complexes act as a new prototype of drugs against T. cruzi and may be used for further development in drug discovery to treat Chagas disease.
Collapse
Affiliation(s)
- Felipe Figueirôa Moreira
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Juliana de Araujo Portes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Nathália Florência Barros Azeredo
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Christiane Fernandes
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Adolfo Horn
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Cristina Pinheiro Santiago
- Laboratório de Ciências Químicas, Centro de Ciência e Tecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil.
| | - Bruna Barriquel Segat
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Giovanni Finoto Caramori
- Departamento de Química, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | | | | | | | | | - Wanderley de Souza
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro (UFRJ), RJ, Brazil
| | - Renato Augusto DaMatta
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| | - Sergio Henrique Seabra
- Laboratório de Tecnologia em Bioquímica e Microscopia, Centro Universitário Estadual da Zona Oeste (UEZO), Rio de Janeiro, RJ, Brazil. .,Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Campos dos Goytacazes, RJ, Brazil
| |
Collapse
|
37
|
Mazzeti AL, Gonçalves KR, Mota SLA, Pereira DE, Diniz LDF, Bahia MT. Combination therapy using nitro compounds improves the efficacy of experimental Chagas disease treatment. Parasitology 2021; 148:1320-1327. [PMID: 34247670 PMCID: PMC11010181 DOI: 10.1017/s0031182021001001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022]
Abstract
Drug combinations have been evaluated for Chagas disease in an attempt to improve efficacy and safety. In this line, the objective of this work is to assess the effects of treatment with nitro drugs combinations using benznidazole (BZ) or nifurtimox (NFX) plus the sulfone metabolite of fexinidazole (fex-SFN) in vitro and in vivo on Trypanosoma cruzi infection. The in vitro interaction of fex-SFN and BZ or NFX against infected H9c2 cells by the Y strain was classified as an additive (0.5⩾ΣFIC<4), suggesting the possibility of a dose reduction in the in vivo T. cruzi infection. Next, the effect of combining suboptimal doses was assessed in an acute model of murine T. cruzi infection. Drug combinations led to a faster suppression of parasitemia than monotherapies. Also, the associations led to higher cure levels than those in the reference treatment BZ 100 mg day−1 (57.1%) (i.e. 83.3% with BZ/fex-SFN and 75% with NFX/fex-SFN). Importantly, toxic effects resulting from the associations were not observed, according to weight gain and hepatic enzyme levels in the serum of experimental animals. Taken together, this study is a starting point to explore the potential effects of nitro drugs combinations in preclinical models of kinetoplastid-related infections.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG35400-000, Brazil
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ21040-360, Brazil
| | - Karolina R. Gonçalves
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG35400-000, Brazil
| | - Suianne L. A. Mota
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG35400-000, Brazil
| | - Dário Elias Pereira
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG35400-000, Brazil
| | - Lívia de F. Diniz
- Laboratório de Parasitologia Básica, Departamento de Patologia e Parasitologia, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG37130-001, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Campus Universitário Morro do Cruzeiro, Ouro Preto, MG35400-000, Brazil
| |
Collapse
|
38
|
García-Huertas P, Cardona-Castro N. Advances in the treatment of Chagas disease: Promising new drugs, plants and targets. Biomed Pharmacother 2021; 142:112020. [PMID: 34392087 DOI: 10.1016/j.biopha.2021.112020] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/22/2021] [Accepted: 08/07/2021] [Indexed: 10/20/2022] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi, is treated with only two drugs; benznidazole and nifurtimox. These drugs have some disadvantages, including their efficacy only in the acute or early infection phases, adverse effects during their use, and the resistance that the parasite has developed to their activity. Therefore, it is necessary to identify new, safe and effective therapeutic alternatives to treat Chagas disease, though governments and the pharmaceutical industry have shown a lack of interest in contributing to this solution. Institutions and research groups on the other hand have worked on some strategies that can help to address the problem. Some of these include the modification of conventional drug dosages, drug repurposing, and combined therapy. Plants and derived compounds with antiparasitic effects have also been studied, taking advantage of traditional medicinal knowledge. Others have studied the parasite to identify essential genes that can be used as therapeutic targets to design new, targeted drugs. Some of these studies have generated promising results, but few reach clinical phase studies. Institutions and research groups should be encouraged to unify efforts and cover all aspects of drug development according to resources and knowledge availability. In the end, this exchange of knowledge would lead to the development of new therapeutic alternatives to treat Chagas disease and benefit the populations it affects.
Collapse
Affiliation(s)
| | - Nora Cardona-Castro
- Instituto Colombiano de Medicina Tropical, Universidad CES, Sabaneta, Colombia.
| |
Collapse
|
39
|
Higher oral efficacy of ravuconazole in self-nanoemulsifying systems in shorter treatment in experimental chagas disease. Exp Parasitol 2021; 228:108142. [PMID: 34375652 DOI: 10.1016/j.exppara.2021.108142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 06/24/2021] [Accepted: 08/06/2021] [Indexed: 11/23/2022]
Abstract
We investigated the in vitro activity and selectivity, and in vivo efficacy of ravuconazole (RAV) in self-nanoemulsifying delivery system (SNEDDS) against Trypanosoma cruzi. Novel formulations of this poorly soluble C14-α-demethylase inhibitor may improve its efficacy in the experimental treatment. In vitro activity was determined in infected cardiomyocytes and efficacy in vivo evaluated in terms of parasitological cure induced in Y and Colombian strains of T. cruzi-infected mice. In vitro RAV-SNEDDS exhibited significantly higher potency of 1.9-fold at the IC50 level and 2-fold at IC90 level than free-RAV. No difference in activity with Colombian strain was observed in vitro. Oral treatment with a daily dose of 20 mg/kg for 30 days resulted in 70% of cure for RAV-SNEDDS versus 40% for free-RAV and 50% for 100 mg/kg benznidazole in acute infection (T. cruzi Y strain). Long-term treatment efficacy (40 days) was able to cure 100% of Y strain-infected animals with both RAV preparations. Longer treatment time was also efficient to increase the cure rate with benznidazole (Y and Colombian strains). RAV-SNEDDS shows greater efficacy in a shorter time treatment regimen, it is safe and could be a promising formulation to be evaluated in other pre-clinical models to treat T. cruzi and fungi infections.
Collapse
|
40
|
Cantizani J, Gamallo P, Cotillo I, Alvarez-Velilla R, Martin J. Rate-of-Kill (RoK) assays to triage large compound sets for Chagas disease drug discovery: Application to GSK Chagas Box. PLoS Negl Trop Dis 2021; 15:e0009602. [PMID: 34270544 PMCID: PMC8318231 DOI: 10.1371/journal.pntd.0009602] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/28/2021] [Accepted: 06/28/2021] [Indexed: 11/18/2022] Open
Abstract
Chagas disease (CD) is a human disease caused by Trypanosoma cruzi. Whilst endemic in Latin America, the disease is spread around the world due to migration flows, being estimated that 8 million people are infected worldwide and over 10,000 people die yearly of complications linked to CD. Current chemotherapeutics is restricted to only two drugs, i.e. benznidazole (BNZ) and nifurtimox (NIF), both being nitroaromatic compounds sharing mechanism of action and exerting suboptimal efficacy and serious adverse effects. Recent clinical trials conducted to reposition antifungal azoles have turned out disappointing due to poor efficacy outcomes despite their promising preclinical profile. This apparent lack of translation from bench models to the clinic raises the question of whether we are using the right in vitro tools for compound selection. We propose that speed of action and cidality, rather than potency, are properties that can differentiate those compounds with better prospect of success to show efficacy in animal models of CD. Here we investigate the use of in vitro assays looking at the kinetics of parasite kill as a valuable surrogate to tell apart slow- (i.e. azoles targeting CYP51) and fast-acting (i.e. nitroaromatic) compounds. Data analysis and experimental design have been optimised to make it amenable for high-throughput compound profiling. Automated data reduction of experimental kinetic points to tabulated curve descriptors in conjunction with PCA, k-means and hierarchical clustering provide drug discoverers with a roadmap to guide navigation from hit qualification of a screening campaign to compound optimisation programs and assessment of combo therapy potential. As an example, we have studied compounds belonging to the GSK Chagas Box stemmed from the HTS campaign run against the full GSK 1.8 million compounds collection [1]. One of the challenges in early drug discovery of small molecules is the improvement of the poor success rate in the translation from in vitro biological profile into efficacy in disease models, and ultimately in the clinic. Reductionist in vitro models on the bench may not properly recapitulate disease biology, thus overlooking critical properties of candidate compounds. Chagas Disease is a neglected tropical disease caused by Trypanosoma cruzi, a protozoan parasite with a complex life cycle. Despite the promising prospect based on in vitro and in vivo preclinical studies, efforts to reposition antifungal azoles turned out to be disappointing in clinical trials, with treatment failure in Chagas patients. This raises the question of whether we are using the right preclinical tools for decision-making about moving compounds forward for the treatment of this disease. We hypothesise that in vitro potency and efficacy values alone might be distorting the translational power of preclinical compounds, and we propose the use of rate-of-kill (RoK) assays in high-throughput mode. Herewith we disclose a simple, systematic, and automated methodology of analysis of the otherwise complex kinetic patterns, which provides drug discoverers with a navigation guide along a compound optimisation program or prioritisation of best exemplars across different chemical series.
Collapse
Affiliation(s)
- Juan Cantizani
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
| | - Pablo Gamallo
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
| | - Ignacio Cotillo
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
| | | | - Julio Martin
- Kinetoplastid DPU, Global Health R&D, GSK, Tres Cantos, Madrid, Spain
- * E-mail:
| |
Collapse
|
41
|
Gulin JEN, Rocco DM, Alonso V, Cribb P, Altcheh J, García-Bournissen F. Optimization and biological validation of an in vitro assay using the transfected Dm28c/pLacZ Trypanosoma cruzi strain. Biol Methods Protoc 2021; 6:bpab004. [PMID: 34386588 PMCID: PMC8355463 DOI: 10.1093/biomethods/bpab004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 03/15/2021] [Accepted: 07/01/2021] [Indexed: 12/03/2022] Open
Abstract
There is an urgent need to develop safer and more effective drugs for Chagas disease, as the current treatment relies on benznidazole (BZ) and nifurtimox (NFX). Using the Trypanosoma cruzi Dm28c strain genetically engineered to express the Escherichia coli β-galactosidase gene, lacZ, we have adapted and validated an easy, quick and reliable in vitro assay suitable for high-throughput screening for candidate compounds with anti-T. cruzi activity. In vitro studies were conducted to determine trypomastigotes sensitivity to BZ and NFX from Dm28c/pLacZ strain by comparing the conventional labour-intensive microscopy counting method with the colourimetric assay. Drug concentrations producing the lysis of 50% of trypomastigotes (lytic concentration 50%) were 41.36 and 17.99 µM for BZ and NFX, respectively, when measured by microscopy and 44.74 and 38.94 µM, for the colourimetric method, respectively. The optimal conditions for the amastigote development inhibitory assay were established considering the parasite–host relationship (i.e. multiplicity of infection) and interaction time, the time for colourimetric readout and the incubation time with the β-galactosidase substrate. The drug concentrations resulting in 50% amastigote development inhibition obtained with the colourimetric assay were 2.31 µM for BZ and 0.97 µM for NFX, similar to the reported values for the Dm28c wild strain (2.80 and 1.5 µM, respectively). In summary, a colourimetric assay using the Dm28c/pLacZ strain of T. cruzi has been set up, obtaining biologically meaningful sensibility values with the reference compounds on both trypomastigotes and amastigotes forms. This development could be applied to high-throughput screening programmes aiming to identify compounds with anti-T. cruzi in vitro activity.
Collapse
Affiliation(s)
- Julián Ernesto Nicolás Gulin
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas (INBIOMED), Universidad de Buenos Aires (UBA) Facultad de Medicina-CONICET, Paraguay 2155 (C1121ABG), Buenos Aires, Argentina
| | - Daniela Marisa Rocco
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina
| | - Victoria Alonso
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (IBR-CONICET-UNR), Suipacha 531 (2000), Rosario, Argentina
| | - Pamela Cribb
- Instituto de Biología Molecular y Celular de Rosario, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario (IBR-CONICET-UNR), Suipacha 531 (2000), Rosario, Argentina
| | - Jaime Altcheh
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina
| | - Facundo García-Bournissen
- Instituto Multidisciplinario de Investigaciones en Patologías Pediátricas (IMIPP), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Gobierno de la Ciudad de Buenos Aires (GCBA), Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Servicio de Parasitología y Enfermedad de Chagas, Hospital de Niños "Dr. Ricardo Gutiérrez", Gallo 1330 (C1425EFD), Buenos Aires, Argentina.,Division of Paediatric Clinical Pharmacology, Department of Paediatrics, Schulich School of Medicine & Dentistry, University of Western Ontario, 800 Commissioners Rd. E., Rm. B1-437, London, Canada
| |
Collapse
|
42
|
Yasuo N, Ishida T, Sekijima M. Computer aided drug discovery review for infectious diseases with case study of anti-Chagas project. Parasitol Int 2021; 83:102366. [PMID: 33915269 DOI: 10.1016/j.parint.2021.102366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 01/09/2023]
Abstract
Neglected tropical diseases (NTDs) are parasitic and bacterial infections that are widespread, especially in the tropics, and cause health problems for about one billion people over 149 countries worldwide. However, in terms of therapeutic agents, for example, nifurtimox and benznidazole were developed in the 1960s to treat Chagas disease, but new drugs are desirable because of their side effects. Drug discovery takes 12 to 14 years and costs $2.6 billon dollars, and hence, computer aided drug discovery (CADD) technology is expected to reduce the time and cost. This paper describes our methods and results based on CADD, mainly for NTDs. An overview of databases, molecular simulation and pharmacophore modeling, contest-based drug discovery, and machine learning and their results are presented herein.
Collapse
Affiliation(s)
- Nobuaki Yasuo
- Academy for Convergence of Materials and Informatics (TAC-MI), Tokyo Institute of Technology, S6-23, 2-12-1, Ookayama, Meguro-ku, Tokyo, Japan.
| | - Takashi Ishida
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, W8-85, 2-12-1, Ookayama, Meguro-ku, Tokyo, Japan.
| | - Masakazu Sekijima
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 4259-J3-23, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Japan.
| |
Collapse
|
43
|
Mazzeti AL, Capelari-Oliveira P, Bahia MT, Mosqueira VCF. Review on Experimental Treatment Strategies Against Trypanosoma cruzi. J Exp Pharmacol 2021; 13:409-432. [PMID: 33833592 PMCID: PMC8020333 DOI: 10.2147/jep.s267378] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/03/2021] [Indexed: 12/11/2022] Open
Abstract
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi. Currently, only nitroheterocyclic nifurtimox (NFX) and benznidazole (BNZ) are available for the treatment of Chagas disease, with limitations such as variable efficacy, long treatment regimens and toxicity. Different strategies have been used to discover new active molecules for the treatment of Chagas disease. Target-based and phenotypic screening led to thousands of compounds with anti-T. cruzi activity, notably the nitroheterocyclic compounds, fexinidazole and its metabolites. In addition, drug repurposing, drug combinations, re-dosing regimens and the development of new formulations have been evaluated. The CYP51 antifungal azoles, as posaconazole, ravuconazole and its prodrug fosravuconazole presented promising results in experimental Chagas disease. Drug combinations of nitroheterocyclic and azoles were able to induce cure in murine infection. New treatment schemes using BNZ showed efficacy in the experimental chronic stage, including against dormant forms of T. cruzi. And finally, sesquiterpene lactone formulated in nanocarriers displayed outstanding efficacy against different strains of T. cruzi, susceptible or resistant to BNZ, the reference drug. These pre-clinical results are encouraging and provide interesting evidence to improve the treatment of patients with Chagas disease.
Collapse
Affiliation(s)
- Ana Lia Mazzeti
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.,Laboratório de Biologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, 21040-360, Brazil.,Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Patricia Capelari-Oliveira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Maria Terezinha Bahia
- Laboratório de Doenças Parasitárias, Escola de Medicina & Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | - Vanessa Carla Furtado Mosqueira
- Laboratório de Desenvolvimento Galênico e Nanotecnologia, Escola de Farmácia, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| |
Collapse
|
44
|
Rocha-Hasler M, de Oliveira GM, da Gama AN, Fiuza LFDA, Fesser AF, Cal M, Rocchetti R, Peres RB, Guan XL, Kaiser M, Soeiro MDNC, Mäser P. Combination With Tomatidine Improves the Potency of Posaconazole Against Trypanosoma cruzi. Front Cell Infect Microbiol 2021; 11:617917. [PMID: 33747979 PMCID: PMC7970121 DOI: 10.3389/fcimb.2021.617917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/15/2021] [Indexed: 11/23/2022] Open
Abstract
Azoles such as posaconazole (Posa) are highly potent against Trypanosoma cruzi. However, when tested in chronic Chagas disease patients, a high rate of relapse after Posa treatment was observed. It appears that inhibition of T. cruzi cytochrome CYP51, the target of azoles, does not deliver sterile cure in monotherapy. Looking for suitable combination partners of azoles, we have selected a set of inhibitors of sterol and sphingolipid biosynthetic enzymes. A small-scale phenotypic screening was conducted in vitro against the proliferative forms of T. cruzi, extracellular epimastigotes and intracellular amastigotes. Against the intracellular, clinically relevant forms, four out of 15 tested compounds presented higher or equal activity as benznidazole (Bz), with EC50 values ≤2.2 μM. Ro48-8071, an inhibitor of lanosterol synthase (ERG7), and the steroidal alkaloid tomatidine (TH), an inhibitor of C-24 sterol methyltransferase (ERG6), exhibited the highest potency and selectivity indices (SI = 12 and 115, respectively). Both were directed to combinatory assays using fixed-ratio protocols with Posa, Bz, and fexinidazole. The combination of TH with Posa displayed a synergistic profile against amastigotes, with a mean ΣFICI value of 0.2. In vivo assays using an acute mouse model of T. cruzi infection demonstrated lack of antiparasitic activity of TH alone in doses ranging from 0.5 to 5 mg/kg. As observed in vitro, the best combo proportion in vivo was the ratio 3 TH:1 Posa. The combination of Posa at 1.25 mpk plus TH at 3.75 mpk displayed suppression of peak parasitemia of 80% and a survival rate of 60% in the acute infection model, as compared to 20% survival for Posa at 1.25 mpk alone and 40% for Posa at 10 mpk alone. These initial results indicate a potential for the combination of posaconazole with tomatidine against T. cruzi.
Collapse
Affiliation(s)
- Marianne Rocha-Hasler
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil.,Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Gabriel Melo de Oliveira
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Aline Nefertiti da Gama
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | | | - Anna Frieda Fesser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Monica Cal
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Romina Rocchetti
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | - Raiza Brandão Peres
- Laboratório de Biologia Celular, Instituto Oswaldo Cruz (IOC/Fiocruz), Pavilhão Cardoso Fontes, Rio de Janeiro, Brazil
| | - Xue Li Guan
- Systems Biology of Lipid Metabolism in Human Health and Diseases Laboratory, Lee Kong Chian School of Medicine, Singapore, Singapore
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Pascal Mäser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, Medical Parasitology and Infection Biology, Basel, Switzerland.,University of Basel, Basel, Switzerland
| |
Collapse
|
45
|
Serological Approaches for Trypanosoma cruzi Strain Typing. Trends Parasitol 2021; 37:214-225. [PMID: 33436314 DOI: 10.1016/j.pt.2020.12.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/04/2020] [Accepted: 12/08/2020] [Indexed: 12/23/2022]
Abstract
Trypanosoma cruzi, the protozoan agent of Chagas' disease, displays a complex population structure made up of multiple strains showing a diverse ecoepidemiological distribution. Parasite genetic variability may be associated with disease outcome, hence stressing the need to develop methods for T. cruzi typing in vivo. Serological typing methods that exploit the presence of host antibodies raised against polymorphic parasite antigens emerge as an appealing approach to address this issue. These techniques are robust, simple, cost-effective, and are not curtailed by methodological/biological limitations intrinsic to available genotyping methods. Here, we critically assess the progress towards T. cruzi serotyping and discuss the opportunity provided by high-throughput immunomics to improve this field.
Collapse
|
46
|
Sensibilidad in vitro a benznidazol, nifurtimox y posaconazol de cepas de Trypanosoma cruzi de Paraguay. BIOMÉDICA 2020; 40:749-763. [PMID: 33275352 PMCID: PMC7808768 DOI: 10.7705/biomedica.5187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Indexed: 11/21/2022]
Abstract
Introducción. Trypanosoma cruzi, agente causal de la enfermedad de Chagas, exhibe una sustancial heterogeneidad fenotípica y genotípica que puede influir en las variaciones epidemiológicas y clínicas de la enfermedad, así como en la sensibilidad a los fármacos utilizados en el tratamiento. Objetivo. Evaluar la sensibilidad in vitro al benznidazol, el nifurtimox y el posaconazol de 40 cepas clonadas de T. cruzi de Paraguay, con distintos genotipos, huéspedes y localidades de origen. Materiales y métodos. En su estado epimastigote, los parásitos se incubaron en medio de cultivo LIT (Liver Infusion Tryptose) con diferentes concentraciones de cada fármaco en ensayos por triplicado. El grado de sensibilidad se estimó a partir de las concentraciones inhibitorias del 50 y el 90% (IC50 e IC90) y se obtuvieron los valores promedio y la desviación estándar de cada cepa y fármaco. La significación estadística entre grupos se determinó mediante análisis de varianzas con el test no paramétrico de Wilcoxon/Kruskal-Wallis y valores de p<0,05. Resultados. Se observó un amplio rango de respuesta a los fármacos. Se identificaron dos grupos de parásitos (A y B) con diferencias significativas en la sensibilidad al benznidazol (p<0,0001), y tres grupos (A, B, C) en cuanto a la sensibilidad al nifurtimox y el posaconazol (p<0,0001). Conclusiones. En general, las cepas fueron más sensibles al nifurtimox que al benznidazol y el posaconazol. Estas diferencias evidencian la heterogeneidad de las poblaciones de T cruzi que circulan en Paraguay, lo que debe considerarse en el tratamiento y el seguimiento de las personas afectadas.
Collapse
|
47
|
Mansoldo FRP, Carta F, Angeli A, Cardoso VDS, Supuran CT, Vermelho AB. Chagas Disease: Perspectives on the Past and Present and Challenges in Drug Discovery. Molecules 2020; 25:E5483. [PMID: 33238613 PMCID: PMC7700143 DOI: 10.3390/molecules25225483] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022] Open
Abstract
Chagas disease still has no effective treatment option for all of its phases despite being discovered more than 100 years ago. The development of commercial drugs has been stagnating since the 1960s, a fact that sheds light on the question of how drug discovery research has progressed and taken advantage of technological advances. Could it be that technological advances have not yet been sufficient to resolve this issue or is there a lack of protocol, validation and standardization of the data generated by different research teams? This work presents an overview of commercial drugs and those that have been evaluated in studies and clinical trials so far. A brief review is made of recent target-based and phenotypic studies based on the search for molecules with anti-Trypanosoma cruzi action. It also discusses how proteochemometric (PCM) modeling and microcrystal electron diffraction (MicroED) can help in the case of the lack of a 3D protein structure; more specifically, Trypanosoma cruzi carbonic anhydrase.
Collapse
Affiliation(s)
- Felipe Raposo Passos Mansoldo
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Fabrizio Carta
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Andrea Angeli
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
- Centre of Advanced Research in Bionanoconjugates and Biopolymers Department, “Petru Poni” Institute of Macromolecular Chemistry, 700487 Iasi, Romania
| | - Veronica da Silva Cardoso
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| | - Claudiu T. Supuran
- Neurofarba Department, Università degli Studi di Firenze, Sezione di Scienze Farmaceutiche, Via Ugo Schiff 6, 50019 Sesto Fiorentino (Florence), Italy; (F.C.); (A.A.)
| | - Alane Beatriz Vermelho
- BIOINOVAR-Biocatalysis, Bioproducts and Bioenergy, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, Brazil; (F.R.P.M.); (V.d.S.C.)
| |
Collapse
|
48
|
Martín-Escolano J, Medina-Carmona E, Martín-Escolano R. Chagas Disease: Current View of an Ancient and Global Chemotherapy Challenge. ACS Infect Dis 2020; 6:2830-2843. [PMID: 33034192 DOI: 10.1021/acsinfecdis.0c00353] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Chagas disease is a neglected tropical disease and a global public health issue. In terms of treatment, no progress has been made since the 1960s, when benznidazole and nifurtimox, two obsolete drugs still prescribed, were used to treat this disease. Hence, currently, there are no effective treatments available to tackle Chagas disease. Over the past 20 years, there has been an increasing interest in the disease. However, parasite genetic diversity, drug resistance, tropism, and complex life cycle, along with the limited understanding of the disease and inadequate methodologies and strategies, have resulted in the absence of new insights in drugs development and disappointing outcomes in clinical trials so far. In summary, new drugs are urgently needed. This Review considers the relevant aspects related to the lack of drugs for Chagas disease, resumes the advances in tools for drug discovery, and discusses the main features to be taken into account to develop new effective drugs.
Collapse
Affiliation(s)
- Javier Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| | | | - Rubén Martín-Escolano
- Department of Parasitology, Instituto de Investigación Biosanitaria (ibs.Granada), Hospitales Universitarios De Granada/University of Granada, Severo Ochoa s/n, 18071 Granada, Spain
| |
Collapse
|
49
|
Quilles JC, Shamim A, Tezuka DY, Batista PHJ, Lopes CD, de Albuquerque S, Montanari CA, Leitão A. Dipeptidyl nitrile derivatives suppress the Trypanosoma cruzi in vitro infection. Exp Parasitol 2020; 219:108032. [PMID: 33137308 DOI: 10.1016/j.exppara.2020.108032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Revised: 10/25/2020] [Accepted: 10/27/2020] [Indexed: 12/11/2022]
Abstract
Chagas disease affects several countries around the world with health and sanitation problems. Cysteine proteases are essential for the virulence and replication of the Trypanosoma cruzi, being modulated by dipeptidyl nitriles and derivatives. Here, four dipeptidyl nitrile derivatives were assayed in three T. cruzi morphologies and two strains (Tulahuen and Y) using a set of assays: (i) analysis of the inhibitory activity against cysteine proteases; (ii) determination of the cytotoxic activity and selectivity index; (iii) verification of the inhibition of the trypomastigote invasion in the host cell. These compounds could inhibit the activity of cysteine proteases using the selective substrate Z-FR-MCA for the trypomastigote lysate and extracellular amastigotes. Interestingly, these compounds did not present relevant enzymatic inhibition for the epimastigote lysate. Most of the substances were also cytotoxic and selective against the trypomastigotes and intracellular amastigotes. The best compound of the series (Neq0662) could reduce the enzymatic activity of the cysteine proteases for the trypomastigotes and amastigotes. It was equipotent to the benznidazole drug in the cytotoxic studies using these two parasite forms. Neq0662 was also selective for the parasite, and it inhibited the invasion of the mammalian host cell in all conditions tested at 10 μM. The stereochemistry of the trifluoromethyl group was an important factor for the bioactivity when the two diastereomers (Neq0662 and Neq0663) were compared. All-in-all, these results indicate that these compounds could move further in the drug development stage because of its promising bioactive profile.
Collapse
Affiliation(s)
- José C Quilles
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil.
| | - Anwar Shamim
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil.
| | - Daiane Y Tezuka
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Bioengenharia - PPGIB-USP, Brazil.
| | - Pedro H J Batista
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil.
| | - Carla D Lopes
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Bioengenharia - PPGIB-USP, Brazil.
| | - Sérgio de Albuquerque
- Faculty of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo (USP), Ribeirão Preto, São Paulo, Brazil.
| | - Carlos A Montanari
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil.
| | - Andrei Leitão
- Medicinal & Biological Chemistry Group (NEQUIMED), São Carlos Institute of Chemistry (IQSC), University of São Paulo (USP), São Carlos, São Paulo, Brazil.
| |
Collapse
|
50
|
Gulin JEN, Eagleson MA, López-Muñoz RA, Solana ME, Altcheh J, García-Bournissen F. In vitro and in vivo activity of voriconazole and benznidazole combination on trypanosoma cruzi infection models. Acta Trop 2020; 211:105606. [PMID: 32598923 DOI: 10.1016/j.actatropica.2020.105606] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 01/09/2023]
Abstract
Combination therapy has been proposed as an ideal strategy to reduce drug toxicity and improve treatment efficacy in Chagas disease. Previously, we demonstrated potent in vivo anti-Trypanosoma cruzi activity of voriconazole. In this work, we aimed to study the synergistic effect of voriconazole (VCZ) and benznidazole (BZ) both in vitro and in vivo models of T. cruzi infection using the Tulahuen strain. Combining VCZ and BZ at fixed concentrations, the inhibitory concentration 50% (IC50) on amastigotes was lower than the obtained IC50 for BZ alone and the Fractional Inhibitory Concentration Index (∑FIC) suggested an in vitro additive effect on T. cruzi amastigotes inhibition at concentrations devoid of cytotoxic effects. Treatment response in the in vivo model was evaluated by comparing behavior and physical aspects, parasitemia and mortality of mice infected with Tulahuen strain. VCZ and BZ treatments alone or in combination were well tolerated. All treated animals displayed significantly lower mean peak parasitemia and mortality compared to infected non-treated controls (p< 0.05). However, VCZ + BZ combination elicited no additional benefits over BZ monotherapy. VCZ efficacy was not enhanced by combination therapy with BZ at the doses studied, requiring further and astringent non-clinical studies to establish the VCZ efficacy and eventually moving forward to clinical trials.
Collapse
|