1
|
Beaumont RE, Smith EJ, David C, Paterson YZ, Faull E, Guest DJ. Equine adult, fetal and ESC-tenocytes have differential migratory, proliferative and gene expression responses to factors upregulated in the injured tendon. Cells Dev 2025; 181:204003. [PMID: 39929423 DOI: 10.1016/j.cdev.2025.204003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/22/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Tendon injuries are a common problem in humans and horses. There is a high re-injury rate in both species due to the poor regeneration of adult tendon and the resulting formation of scar tissue. In contrast, fetal tendon injuries undergo scarless regeneration, but the mechanisms which underpin this are poorly defined. It is also unclear if tendon cells derived from embryonic stem cells (ESCs) would aid tendon regeneration. In this study we determined the responses of adult, fetal and ESC-derived equine tenocytes to a range of cytokines, chemokines and growth factors that are upregulated following a tendon injury using both 2-dimensional (2D) and 3-dimensional (3D) in vitro wound models. We demonstrated that in 2D proliferation assays, the responses of fetal and adult tenocytes to the factors tested are more similar to each other than to ESC-tenocytes. However, in 2D migration assays, fetal tenocytes have similarities to both adult and ESC-tenocytes. In 3D wound closure assays the response of fetal tenocytes also appears to be intermediary between adult and ESC-tenocytes. We further demonstrated that while TGFβ3 increases 3D gel contraction and wound healing by adult and fetal tenocytes, FGF2 results in a significant inhibition by adult cells. In conclusion, our findings suggest that differential cellular responses to the factors upregulated following a tendon injury may be involved in determining if tendon repair or regeneration subsequently occurs. Understanding the mechanisms behind these responses is required to inform the development of cell-based therapies to improve tendon regeneration.
Collapse
Affiliation(s)
- Ross E Beaumont
- Centre for Vaccinology and Regenerative Medicine, Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK
| | - Emily J Smith
- Centre for Vaccinology and Regenerative Medicine, Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK
| | - Clara David
- Centre for Vaccinology and Regenerative Medicine, Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK; UFR Sciences, Aix-Marseille University, 163 Av. de Luminy, 13009 Marseille, France
| | - Yasmin Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Newmarket, Suffolk CB8 7UU, UK; Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge CB3 0ES, UK
| | - Elena Faull
- Centre for Vaccinology and Regenerative Medicine, Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK
| | - Deborah J Guest
- Centre for Vaccinology and Regenerative Medicine, Department of Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, North Mymms, Hatfield, Herts AL9 7TA, UK.
| |
Collapse
|
2
|
Rajalekshmi R, Agrawal DK. Understanding Fibrous Tissue in the Effective Healing of Rotator Cuff Injury. JOURNAL OF SURGERY AND RESEARCH 2024; 7:215-228. [PMID: 38872898 PMCID: PMC11174978 DOI: 10.26502/jsr.10020363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
The rotator cuff is a crucial group of muscles and tendons in the shoulder complex that plays a significant role in the stabilization of the glenohumeral joint and enabling a wide range of motion. Rotator cuff tendon tears can occur due to sudden injuries or degenerative processes that develop gradually over time, whether they are partial or full thickness. These injuries are common causes of shoulder pain and functional impairment, and their complex nature highlights the essential role of the rotator cuff in shoulder function. Scar formation is a crucial aspect of the healing process initiated following a rotator cuff tendon tear, but excessive fibrous tissue development can potentially lead to stiffness, discomfort, and movement limitations. Age is a critical risk factor, with the prevalence of these tears increasing among older individuals. This comprehensive review aims to delve deeper into the anatomy and injury mechanisms of the rotator cuff. Furthermore, it will inspect the signaling pathways involved in fibrous tissue development, evaluate the various factors affecting the healing environment, and discuss proactive measures aimed at reducing excessive fibrous tissue formation. Lastly, this review identifed gaps within existing knowledge to advance methods for better management of rotator cuff tendon injuries.
Collapse
Affiliation(s)
- Resmi Rajalekshmi
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| | - Devendra K Agrawal
- Department of Translational Research, College of the Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, California USA
| |
Collapse
|
3
|
Oztermeli A, Okyay MF. An immunohistochemical and biomechanical evaluation of the effect of fat graft on tendon healing. J Orthop Surg (Hong Kong) 2023; 31:10225536231220839. [PMID: 38051958 DOI: 10.1177/10225536231220839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
AIM To investigate the efficacy of fat grafting in primary tendon healing through immunohistochemical and biomechanical examinations. MATERIAL AND METHOD The study material comprised a total of 10 male Sprague-Dawley rats, each approximately 10 weeks old. All 10 rats were operated on bilaterally. The right Achilles tendon in all the animals was defined as the study group. The tendon was cut and then repaired, and then fat graft was applied to the repair area. The left Achilles tendon of all the rats constituted the control group. The tendon was cut and repaired with no further application. After 4 weeks, the rats were euthanised and samples were taken from the tendons for immunohistochemical and biomechanical examinations. RESULTS In the biomechanical evaluations, no statistically significant difference was determined between the groups in respect of peak load and stiffness values (p: .068, p: .089, respectively). In the histopathological evaluation, the tenocyte value of the study group was superior to that of the control group (p: .04). No statistically significant differences were determined between the groups in respect of the other histopathological parameters. In the immunohistochemical evaluations, the type I collagen and TGF values of the study group were found to be higher than those of the control group (p: .011, p: .012, respectively). CONCLUSION Compared to stem cell applications, the use of fat grafting is clinically easy to apply, has low costs, and has been shown to contribute to tendon healing at an immunohistochemical level with increased collagen and TGF beta values.
Collapse
|
4
|
Sun H, Pratt RE, Dzau VJ, Hodgkinson CP. Neonatal and adult cardiac fibroblasts exhibit inherent differences in cardiac regenerative capacity. J Biol Chem 2023; 299:104694. [PMID: 37044217 DOI: 10.1016/j.jbc.2023.104694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 04/03/2023] [Accepted: 04/06/2023] [Indexed: 04/14/2023] Open
Abstract
Directly reprogramming fibroblasts into cardiomyocytes improves cardiac function in the infarcted heart. However, the low efficacy of this approach hinders clinical applications. Unlike the adult mammalian heart, the neonatal heart has an intrinsic regenerative capacity. Consequently, we hypothesized that birth imposes fundamental changes on cardiac fibroblasts which limit their regenerative capabilities. In support, we found that reprogramming efficacy in vitro was markedly lower with fibroblasts derived from adult mice versus those derived from neonatal mice. Notably, fibroblasts derived from adult mice expressed significantly higher levels of pro-angiogenic genes. Moreover, under conditions which promote angiogenesis, only fibroblasts derived from adult mice differentiated into tube-like structures. Targeted knockdown screening studies suggested a possible role for the transcription factor Epas1. Epas1 expression was higher in fibroblasts derived from adult mice and Epas1 knockdown improved reprogramming efficacy in cultured adult cardiac fibroblasts. Promoter activity assays indicated that Epas1 functions as both a transcription repressor and activator, inhibiting cardiomyocyte genes while activating angiogenic genes. Finally, the addition of an Epas1 targeting siRNA to the reprogramming cocktail markedly improved reprogramming efficacy in vivo with both the number of reprogramming events as well as cardiac function being markedly improved. Collectively, our results highlight differences between neonatal and adult cardiac fibroblasts and the dual transcriptional activities of Epas1 related to reprogramming efficacy.
Collapse
Affiliation(s)
- Hualing Sun
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710; Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Hubei Province, China
| | - Richard E Pratt
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Victor J Dzau
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710
| | - Conrad P Hodgkinson
- Mandel Center for Heart and Vascular Research, and the Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC 27710.
| |
Collapse
|
5
|
Luo W, Wang Y, Han Q, Wang Z, Jiao J, Gong X, Liu Y, Zhang A, Zhang H, Chen H, Wang J, Wu M. Advanced strategies for constructing interfacial tissues of bone and tendon/ligament. J Tissue Eng 2022; 13:20417314221144714. [PMID: 36582940 PMCID: PMC9793068 DOI: 10.1177/20417314221144714] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/26/2022] [Indexed: 12/25/2022] Open
Abstract
Enthesis, the interfacial tissue between a tendon/ligament and bone, exhibits a complex histological transition from soft to hard tissue, which significantly complicates its repair and regeneration after injury. Because traditional surgical treatments for enthesis injury are not satisfactory, tissue engineering has emerged as a strategy for improving treatment success. Rapid advances in enthesis tissue engineering have led to the development of several strategies for promoting enthesis tissue regeneration, including biological scaffolds, cells, growth factors, and biophysical modulation. In this review, we discuss recent advances in enthesis tissue engineering, particularly the use of biological scaffolds, as well as perspectives on the future directions in enthesis tissue engineering.
Collapse
Affiliation(s)
- Wangwang Luo
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Qing Han
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Zhonghan Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Orthopaedic Research Institute of Jilin
Province, Changchun, China
| | - Jianhang Jiao
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Xuqiang Gong
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Yang Liu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Aobo Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Han Zhang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Hao Chen
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Jincheng Wang
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China
| | - Minfei Wu
- Department of Orthopedics, The Second
Hospital of Jilin University, Changchun, China,Minfei Wu, Department of Orthopedics, The
Second Hospital of Jilin University, 218 Ziqiang Sreet, Changchun 130041, China.
| |
Collapse
|
6
|
Sukparangsi W, Thongphakdee A, Karoon S, Suban Na Ayuthaya N, Hengkhunthod I, Prakongkaew R, Bootsri R, Sikaeo W. Establishment of fishing cat cell biobanking for sustainable conservation. Front Vet Sci 2022; 9:989670. [PMID: 36439340 PMCID: PMC9684188 DOI: 10.3389/fvets.2022.989670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/14/2022] [Indexed: 09/14/2023] Open
Abstract
The fishing cat (Prionailurus viverrinus) is a vulnerable wild felid that is currently under threat from habitat destruction and other human activities. The zoo provides insurance to ensure the survival of the fishing cat population. Creating a biobank of fishing cats is a critical component of recent zoo strategies for securely stocking cell samples for long-term survival. Here, our goal was to compare cell biobanking techniques (tissue collection, primary culture, and reprogramming) and tissue sources (ear skin, abdominal skin, testis) from captive (n = 6)/natural (n = 6) vs. living (n = 8)/postmortem (n = 4) fishing cats. First, we show that dermal fibroblasts from the medial border of the helix of the ear pinna and abdominal tissues of living fishing cats can be obtained, whereas postmortem animals provided far fewer fibroblasts from the ears than from the testes. Furthermore, we can extract putative adult spermatogonial stem cells from the postmortem fishing cat's testes. The main barrier to expanding adult fibroblasts was early senescence, which can be overcome by overexpressing reprogramming factors through felid-specific transfection programs, though we demonstrated that reaching iPSC state from adult fibroblasts of fishing cats was ineffective with current virus-free mammal-based induction approaches. Taken together, the success of isolating and expanding primary cells is dependent on a number of factors, including tissue sources, tissue handling, and nature of limited replicative lifespan of the adult fibroblasts. This study provides recommendations for tissue collection and culture procedures for zoological research to facilitate the preservation of cells from both postmortem and living felids.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Animal Conservation and Research Institute, Zoological Park Organization of Thailand Under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Santhita Karoon
- Wildlife Reproductive Innovation Center, Animal Conservation and Research Institute, Zoological Park Organization of Thailand Under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | | | - Intira Hengkhunthod
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | | | - Rungnapa Bootsri
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Wiewaree Sikaeo
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| |
Collapse
|
7
|
Shen N, Qi X, Bagrov DV, Krechetov SP, Sharapov MG, Durymanov MO. Surface modification of fibroblasts with peroxiredoxin-1-loaded polymeric microparticles increases cell mobility, resistance to oxidative stress and collagen I production. Colloids Surf B Biointerfaces 2022; 219:112834. [PMID: 36152599 DOI: 10.1016/j.colsurfb.2022.112834] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/03/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Modification of the cell surface with artificial nano- and microparticles (also termed "cellular backpacks") containing biologically active payloads usually enables drug targeting via harnessing intrinsic cell tropism to the sites of injury. In some cases, using cells as delivery vehicles leads to improved pharmacokinetics due to extended circulation time of cell-immobilized formulations. Another rationale for particle attachment to cells is augmentation of desirable cellular functions and cell proliferation in response to release of the particle contents. In this study, we conjugated poly(lactic-co-glycolic acid) (PLGA) microparticles loaded with multifunctional antioxidant enzyme peroxiredoxin-1 (Prx1) to the surface of fibroblasts. The obtained microparticles were uniform in size and demonstrated sustained protein release. We found that the released Prx1 maintains its signaling activity resulting in macrophage activation, as indicated by TNFα upregulation and increase in ROS generation. Functionalization of fibroblasts with PLGA/Prx1 microparticles via EDC/sulfo-NHS coupling reaction did not affect cell viability but increased cell migratory properties and collagen I production. Moreover, PLGA/Prx1 backpacks increased resistance of fibroblasts to oxidative stress and attenuated cell senescence. In summary, we have developed a novel approach of fibroblast modification to augment their biological properties, which can be desirable for wound repair, cosmetic dermatology, and tissue engineering.
Collapse
Affiliation(s)
- Ningfei Shen
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Xiaoli Qi
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia
| | - Dmitry V Bagrov
- Faculty of Biology, Moscow State University, Moscow, Russia; Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Sergey P Krechetov
- National Medical Research Center for Obstetrics, Gynecology and Perinatology named after Academician V.I. Kulakov, Moscow, Russia
| | - Mars G Sharapov
- Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino, Russia
| | - Mikhail O Durymanov
- Moscow Institute of Physics and Technology (National Research University), Dolgoprudny, Russia.
| |
Collapse
|
8
|
Tran NT, Park IS, Truong MD, Park DY, Park SH, Min BH. Conditioned media derived from human fetal progenitor cells improves skin regeneration in burn wound healing. Cell Tissue Res 2022; 389:289-308. [PMID: 35624315 DOI: 10.1007/s00441-022-03638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 05/11/2022] [Indexed: 01/06/2023]
Abstract
Stem cells are known to have excellent regenerative ability, which is primarily facilitated by indirect paracrine factors, rather than via direct cell replacement. The regenerative process is mediated by the release of extracellular matrix molecules, cytokines, and growth factors, which are also present in the media during cultivation. Herein, we aimed to demonstrate the functionality of key factors and mechanisms in skin regeneration through the analysis of conditioned media derived from fetal stem cells. A series of processes, including 3D pellet cultures, filtration and lyophilization is developed to fabricate human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) and its useful properties are compared with those of human bone marrow-derived MSCs-conditioned media (hBMSCs-CM) in terms of biochemical characterization, and in vitro studies of fibroblast behavior, macrophage polarization, and burn wound healing. The hFCPCs-CM show to be devoid of cellular components but to contain large amounts of total protein, collagen, glycosaminoglycans, and growth factors, including IGFBP-2, IGFBP-6, HGF, VEGF, TGF β3, and M-CSF, and contain a specific protein, collagen alpha-1(XIV) compare with hBMSCs-CM. The therapeutic potential of hFCPCs-CM observes to be better than that of hBMSCs-CM in the viability, proliferation, and migration of fibroblasts, and M2 macrophage polarization in vitro, and efficient acceleration of wound healing and minimization of scar formation in third-degree burn wounds in a rat model. The current study shows the potential therapeutic effect of hFCPCs and provides a rationale for using the secretome released from fetal progenitor cells to promote the regeneration of skin tissues, both quantitatively and qualitatively. The ready-to-use product of human fetal cartilage-derived progenitor cells-conditioned media (hFCPCs-CM) are fabricated via a series of techniques, including a 3D culture of hFCPCs, filtration using a 3.5 kDa cutoff dialysis membrane, and lyophilization of the CM. hFCPCs-CM contains many ECM molecules and biomolecules that improves wound healing through efficient acceleration of M2 macrophage polarization and reduction of scar formation.
Collapse
Affiliation(s)
- Ngoc-Trinh Tran
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea
| | - In-Su Park
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea
| | | | - Do-Young Park
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea
| | - Sang-Hyug Park
- Advanced Translational Engineering and Medical Science, Seoul, Korea.
- Department of Biomecial Engineering, Pukyong National University, Busan, 48513, Korea.
| | - Byoung-Hyun Min
- Department of Molecular Science and Technology, Ajou University, Suwon, Korea.
- Cell Therapy Center, Ajou Medical Center, Suwon, 16499, Korea.
- Department of Orthopedic Surgery, School of Medicine, Ajou University, Suwon, Korea.
- Advanced Translational Engineering and Medical Science, Seoul, Korea.
| |
Collapse
|
9
|
Rajpar I, Tomlinson RE. Function of peripheral nerves in the development and healing of tendon and bone. Semin Cell Dev Biol 2022; 123:48-56. [PMID: 33994302 PMCID: PMC8589913 DOI: 10.1016/j.semcdb.2021.05.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/30/2021] [Accepted: 05/02/2021] [Indexed: 01/03/2023]
Abstract
Although the functions of the peripheral nervous system in whole body homeostasis and sensation have been understood for many years, recent investigation has uncovered new roles for innervation in the musculoskeletal system. This review centers on advances regarding the function of nerves in the development and repair of two connected tissues: tendon and bone. Innervation in healthy tendons is generally confined to the tendon sheaths, and tendon-bone attachment units are typically aneural. In contrast to tendon, bone is an innervated and vascularized structure. Historically, the function of abundant peripheral nerves in bone has been limited to pain and some non-painful sensory perception in disease and injury. Indeed, much of our understanding of peripheral nerves in tendons, bones, and entheses is limited to the source and type of innervation in healthy and injured tissues. However, more recent studies have made important observations regarding the appearance, type, and innervation patterns of nerves during embryonic and postnatal development and in response to injury, which suggest a more expansive role for peripheral nerves in the formation of musculoskeletal tissues. Indeed, tendons and bones develop in a close spatiotemporal relationship in the embryonic mesoderm. Models of limb denervation have shed light on the importance of sensory innervation in bone and to a lesser extent, tendon development, and more recent work has unraveled key nerve signaling pathways. Furthermore, loss of sensory innervation also impairs healing of bone fractures and may contribute to chronic tendinopathy. However, more study is required to translate our knowledge of peripheral nerves to therapeutic strategies to combat bone and tendon diseases.
Collapse
Affiliation(s)
- Ibtesam Rajpar
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Ryan E Tomlinson
- Department of Orthopedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
10
|
Lee JH, Kim YH, Rhee SM, Han J, Jeong HJ, Park JH, Oh JH, Jeon S. Rotator Cuff Tendon Healing Using Human Dermal Fibroblasts: Histological and Biomechanical Analyses in a Rabbit Model of Chronic Rotator Cuff Tears. Am J Sports Med 2021; 49:3669-3679. [PMID: 34554882 DOI: 10.1177/03635465211041102] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Tenocytes derived from tendons have been reported to be effective in the treatment of rotator cuff tears through the expression of extracellular matrix proteins. Human dermal fibroblasts, known to express collagen types I and III as tenocytes do, may likely be substitutes for tenocytes to enhance healing rotator cuff tears. PURPOSE To demonstrate the capability of human dermal fibroblasts to enhance healing of rotator cuff tears. STUDY DESIGN Controlled laboratory study. METHODS The cellular properties and expression profiles of growth factors were compared between human dermal fibroblasts and tenocytes. In both cell types, a series of extracellular matrix proteins were analyzed along with matrix metalloproteinases and tissue inhibitors of metalloproteinases involved in the collagenolytic system. A total of 35 rabbits were divided into 5 groups: normal (n = 2), saline control (n = 9), fibrin control (n = 9), low dose of human fibroblasts (HF-LD; n = 9), and high dose of human fibroblasts (HF-HD; n = 6). Cells were injected into the sutured lesions at 6 weeks after creation of bilateral rotator cuff tears, followed by histological and biomechanical analyses at 12 weeks. RESULTS Human dermal fibroblasts exhibited a protein expression pattern similar to that of tenocytes. More specifically, the expression levels of collagen types I and III were comparable between fibroblasts and tenocytes. The histological analysis of 30 surviving rabbits showed that collagen fibers were more continuous and better oriented with a more mature interface between the tendon and bone in the sutured lesions in the HF-LD and HF-HD groups. Most importantly, biomechanical strength, measured using the load to failure at the injection site, was 58.8 ± 8.9 N/kg in the HF-HD group, increasing by approximately 2-fold (P = .0003) over the saline control group. CONCLUSION Human dermal fibroblasts, showing cellular properties comparable with tenocytes, effectively enhanced healing of chronic rotator cuff tears in rabbits. CLINICAL RELEVANCE Human dermal fibroblasts can be used in place of tenocytes to enhance healing of rotator cuff tears.
Collapse
Affiliation(s)
- Ji-Hye Lee
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Yun Hee Kim
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Sung-Min Rhee
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Jikhyon Han
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| | - Hyeon Jang Jeong
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Joo Hyun Park
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Joo Han Oh
- Department of Orthopedic Surgery, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Republic of Korea
| | - Saewha Jeon
- Cutigen Research Institute, Tego Science, Seoul, Republic of Korea
| |
Collapse
|
11
|
Zhang S, Ju W, Chen X, Zhao Y, Feng L, Yin Z, Chen X. Hierarchical ultrastructure: An overview of what is known about tendons and future perspective for tendon engineering. Bioact Mater 2021; 8:124-139. [PMID: 34541391 PMCID: PMC8424392 DOI: 10.1016/j.bioactmat.2021.06.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/27/2022] Open
Abstract
Abnormal tendons are rarely ever repaired to the natural structure and morphology of normal tendons. To better guide the repair and regeneration of injured tendons through a tissue engineering method, it is necessary to have insights into the internal morphology, organization, and composition of natural tendons. This review summarized recent researches on the structure and function of the extracellular matrix (ECM) components of tendons and highlight the application of multiple detection methodologies concerning the structure of ECMs. In addition, we look forward to the future of multi-dimensional biomaterial design methods and the potential of structural repair for tendon ECM components. In addition, focus is placed on the macro to micro detection methods for tendons, and current techniques for evaluating the extracellular matrix of tendons at the micro level are introduced in detail. Finally, emphasis is given to future extracellular matrix detection methods, as well as to how future efforts could concentrate on fabricating the biomimetic tendons. Summarize recent research on the structure and function of the extracellular matrix (ECM) components of tendons. Comments on current research methods concerning the structure of ECMs. Perspective on the future of multi-dimensional detection techniques and structural repair of tendon ECM components.
Collapse
Affiliation(s)
- Shichen Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoyi Chen
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China
| | - Yanyan Zhao
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Lingchong Feng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310058, Zhejiang, China
| | - Zi Yin
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Regenerative Medicine and Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiao Chen
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine and Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China.,Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Guangxi Key Laboratory of Regenerative Medicine, Guangxi-ASEAN Collaborative Innovation Center for Major Disease Prevention and Treatment, Guangxi Medical University, Guangxi, 530021, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
12
|
Zhang X, Wang D, Mak KLK, Tuan RS, Ker DFE. Engineering Musculoskeletal Grafts for Multi-Tissue Unit Repair: Lessons From Developmental Biology and Wound Healing. Front Physiol 2021; 12:691954. [PMID: 34504435 PMCID: PMC8421786 DOI: 10.3389/fphys.2021.691954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/22/2021] [Indexed: 12/13/2022] Open
Abstract
In the musculoskeletal system, bone, tendon, and skeletal muscle integrate and act coordinately as a single multi-tissue unit to facilitate body movement. The development, integration, and maturation of these essential components and their response to injury are vital for conferring efficient locomotion. The highly integrated nature of these components is evident under disease conditions, where rotator cuff tears at the bone-tendon interface have been reported to be associated with distal pathological alterations such as skeletal muscle degeneration and bone loss. To successfully treat musculoskeletal injuries and diseases, it is important to gain deep understanding of the development, integration and maturation of these musculoskeletal tissues along with their interfaces as well as the impact of inflammation on musculoskeletal healing and graft integration. This review highlights the current knowledge of developmental biology and wound healing in the bone-tendon-muscle multi-tissue unit and perspectives of what can be learnt from these biological and pathological processes within the context of musculoskeletal tissue engineering and regenerative medicine. Integrating these knowledge and perspectives can serve as guiding principles to inform the development and engineering of musculoskeletal grafts and other tissue engineering strategies to address challenging musculoskeletal injuries and diseases.
Collapse
Affiliation(s)
- Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - King-Lun Kingston Mak
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health-Guangdong Laboratory), Guangzhou, China
| | - Rocky S. Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Shatin, China
- Faculty of Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
- Department of Orthopaedics and Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, China
- Key Laboratory for Regenerative Medicine, Ministry of Education, School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, China
| |
Collapse
|
13
|
Grafting of iPS cell-derived tenocytes promotes motor function recovery after Achilles tendon rupture. Nat Commun 2021; 12:5012. [PMID: 34408142 PMCID: PMC8373964 DOI: 10.1038/s41467-021-25328-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 08/04/2021] [Indexed: 11/09/2022] Open
Abstract
Tendon self-renewal is a rare occurrence because of the poor vascularization of this tissue; therefore, reconstructive surgery using autologous tendon is often performed in severe injury cases. However, the post-surgery re-injury rate is relatively high, and the collection of autologous tendons leads to muscle weakness, resulting in prolonged rehabilitation. Here, we introduce an induced pluripotent stem cell (iPSC)-based technology to develop a therapeutic option for tendon injury. First, we derived tenocytes from human iPSCs by recapitulating the normal progression of step-wise narrowing fate decisions in vertebrate embryos. We used single-cell RNA sequencing to analyze the developmental trajectory of iPSC-derived tenocytes. We demonstrated that iPSC-tenocyte grafting contributed to motor function recovery after Achilles tendon injury in rats via engraftment and paracrine effects. The biomechanical strength of regenerated tendons was comparable to that of healthy tendons. We suggest that iPSC-tenocytes will provide a therapeutic option for tendon injury.
Collapse
|
14
|
Alt E, Rothoerl R, Hoppert M, Frank HG, Wuerfel T, Alt C, Schmitz C. First immunohistochemical evidence of human tendon repair following stem cell injection: A case report and review of literature. World J Stem Cells 2021; 13:944-970. [PMID: 34367486 PMCID: PMC8316863 DOI: 10.4252/wjsc.v13.i7.944] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/29/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Current clinical treatment options for symptomatic, partial-thickness rotator cuff tear (sPTRCT) offer only limited potential for true tissue healing and improvement of clinical results. In animal models, injections of adult stem cells isolated from adipose tissue into tendon injuries evidenced histological regeneration of tendon tissue. However, it is unclear whether such beneficial effects could also be observed in a human tendon treated with fresh, uncultured, autologous, adipose derived regenerative cells (UA-ADRCs). A specific challenge in this regard is that UA-ADRCs cannot be labeled and, thus, not unequivocally identified in the host tissue. Therefore, histological regeneration of injured human tendons after injection of UA-ADRCs must be assessed using comprehensive, immunohistochemical and microscopic analysis of biopsies taken from the treated tendon a few weeks after injection of UA-ADRCs.
CASE SUMMARY A 66-year-old patient suffered from sPTRCT affecting the right supraspinatus and infraspinatus tendon, caused by a bicycle accident. On day 18 post injury [day 16 post magnetic resonance imaging (MRI) examination] approximately 100 g of abdominal adipose tissue was harvested by liposuction, from which approximately 75 × 106 UA-ADRCs were isolated within 2 h. Then, UA-ADRCs were injected (controlled by biplanar X-ray imaging) adjacent to the injured supraspinatus tendon immediately after isolation. Despite fast clinical recovery, a follow-up MRI examination 2.5 mo post treatment indicated the need for open revision of the injured infraspinatus tendon, which had not been treated with UA-ADRCs. During this operation, a biopsy was taken from the supraspinatus tendon at the position of the injury. A comprehensive, immunohistochemical and microscopic analysis of the biopsy (comprising 13 antibodies) was indicative of newly formed tendon tissue.
CONCLUSION Injection of UA-ADRCs can result in regeneration of injured human tendons by formation of new tendon tissue.
Collapse
Affiliation(s)
- Eckhard Alt
- Chairman of the Board, Isarklinikum Munich, Munich 80331, Germany
| | - Ralf Rothoerl
- Department of Spine Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Matthias Hoppert
- Department for Orthopedics and Trauma Surgery, Isarklinikum Munich, Munich 80331, Germany
| | - Hans-Georg Frank
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Tobias Wuerfel
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| | - Christopher Alt
- Director of Science and Research, InGeneron GmbH, Munich 80331, Germany
| | - Christoph Schmitz
- Chair of Neuroanatomy, Institute of Anatomy, Faculty of Medicine, LMU Munich, Munich 80336, Germany
| |
Collapse
|
15
|
Wang D, Zhang X, Huang S, Liu Y, Fu BSC, Mak KKL, Blocki AM, Yung PSH, Tuan RS, Ker DFE. Engineering multi-tissue units for regenerative Medicine: Bone-tendon-muscle units of the rotator cuff. Biomaterials 2021; 272:120789. [PMID: 33845368 DOI: 10.1016/j.biomaterials.2021.120789] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 12/13/2022]
Abstract
Our body systems are comprised of numerous multi-tissue units. For the musculoskeletal system, one of the predominant functional units is comprised of bone, tendon/ligament, and muscle tissues working in tandem to facilitate locomotion. To successfully treat musculoskeletal injuries and diseases, critical consideration and thoughtful integration of clinical, biological, and engineering aspects are necessary to achieve translational bench-to-bedside research. In particular, identifying ideal biomaterial design specifications, understanding prior and recent tissue engineering advances, and judicious application of biomaterial and fabrication technologies will be crucial for addressing current clinical challenges in engineering multi-tissue units. Using rotator cuff tears as an example, insights relevant for engineering a bone-tendon-muscle multi-tissue unit are presented. This review highlights the tissue engineering strategies for musculoskeletal repair and regeneration with implications for other bone-tendon-muscle units, their derivatives, and analogous non-musculoskeletal tissue structures.
Collapse
Affiliation(s)
- Dan Wang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Xu Zhang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Shuting Huang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Yang Liu
- Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Bruma Sai-Chuen Fu
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | | | - Anna Maria Blocki
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Patrick Shu-Hang Yung
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR
| | - Rocky S Tuan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR
| | - Dai Fei Elmer Ker
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR; School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Ministry of Education Key Laboratory for Regenerative Medicine, School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong SAR; Department of Orthopaedics and Traumatology, The Chinese University of Hong Kong, Hong Kong SAR.
| |
Collapse
|
16
|
Citeroni MR, Mauro A, Ciardulli MC, Di Mattia M, El Khatib M, Russo V, Turriani M, Santer M, Della Porta G, Maffulli N, Forsyth NR, Barboni B. Amnion-Derived Teno-Inductive Secretomes: A Novel Approach to Foster Tendon Differentiation and Regeneration in an Ovine Model. Front Bioeng Biotechnol 2021; 9:649288. [PMID: 33777919 PMCID: PMC7991318 DOI: 10.3389/fbioe.2021.649288] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Regenerative medicine has greatly progressed, but tendon regeneration mechanisms and robust in vitro tendon differentiation protocols remain to be elucidated. Recently, tendon explant co-culture (CO) has been proposed as an in vitro model to recapitulate the microenvironment driving tendon development and regeneration. Here, we explored standardized protocols for production and storage of bioactive tendon-derived secretomes with an evaluation of their teno-inductive effects on ovine amniotic epithelial cells (AECs). Teno-inductive soluble factors were released in culture-conditioned media (CM) only in response to active communication between tendon explants and stem cells (CMCO). Unsuccessful tenogenic differentiation in AECs was noted when exposed to CM collected from tendon explants (CMFT) only, whereas CMCO upregulated SCXB, COL I and TNMD transcripts, in AECs, alongside stimulation of the development of mature 3D tendon-like structures enriched in TNMD and COL I extracellular matrix proteins. Furthermore, although the tenogenic effect on AECs was partially inhibited by freezing CMCO, this effect could be recovered by application of an in vivo-like physiological oxygen (2% O2) environment during AECs tenogenesis. Therefore, CMCO can be considered as a waste tissue product with the potential to be used for the development of regenerative bio-inspired devices to innovate tissue engineering application to tendon differentiation and healing.
Collapse
Affiliation(s)
- Maria Rita Citeroni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | | | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| | - Michael Santer
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
| | - Giovanna Della Porta
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- Research Centre for Biomaterials BIONAM, University of Salerno, Fisciano, Italy
| | - Nicola Maffulli
- Department of Medicine, Surgery and Dentistry, University of Salerno, Salerno, Italy
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
- Research Centre for Biomaterials BIONAM, University of Salerno, Fisciano, Italy
- Centre for Sports and Exercise Medicine, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| | - Nicholas R. Forsyth
- School of Pharmacy and Bioengineering, Keele University School of Medicine, Stoke-on-Trent, United Kingdom
| | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, Teramo, Italy
| |
Collapse
|
17
|
Tsai SL, Noedl MT, Galloway JL. Bringing tendon biology to heel: Leveraging mechanisms of tendon development, healing, and regeneration to advance therapeutic strategies. Dev Dyn 2021; 250:393-413. [PMID: 33169466 PMCID: PMC8486356 DOI: 10.1002/dvdy.269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/11/2022] Open
Abstract
Tendons are specialized matrix-rich connective tissues that transmit forces from muscle to bone and are essential for movement. As tissues that frequently transfer large mechanical loads, tendons are commonly injured in patients of all ages. Following injury, mammalian tendons heal poorly through a slow process that forms disorganized fibrotic scar tissue with inferior biomechanical function. Current treatments are limited and patients can be left with a weaker tendon that is likely to rerupture and an increased chance of developing degenerative conditions. More effective, alternative treatments are needed. However, our current understanding of tendon biology remains limited. Here, we emphasize why expanding our knowledge of tendon development, healing, and regeneration is imperative for advancing tendon regenerative medicine. We provide a comprehensive review of the current mechanisms governing tendon development and healing and further highlight recent work in regenerative tendon models including the neonatal mouse and zebrafish. Importantly, we discuss how present and future discoveries can be applied to both augment current treatments and design novel strategies to treat tendon injuries.
Collapse
Affiliation(s)
- Stephanie L. Tsai
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Marie-Therese Noedl
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| | - Jenna L. Galloway
- Center for Regenerative Medicine, Department of Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114
- Harvard Stem Cell Institute, Cambridge, MA 02138
| |
Collapse
|
18
|
Embryonic Environmental Niche Reprograms Somatic Cells to Express Pluripotency Markers and Participate in Adult Chimaeras. Cells 2021; 10:cells10030490. [PMID: 33668852 PMCID: PMC7996319 DOI: 10.3390/cells10030490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 12/31/2022] Open
Abstract
The phenomenon of the reprogramming of terminally differentiated cells can be achieved by various means, like somatic cell nuclear transfer, cell fusion with a pluripotent cell, or the introduction of pluripotency genes. Here, we present the evidence that somatic cells can attain the expression of pluripotency markers after their introduction into early embryos. Mouse embryonic fibroblasts introduced between blastomeres of cleaving embryos, within two days of in vitro culture, express transcription factors specific to blastocyst lineages, including pluripotency factors. Analysis of donor tissue marker DNA has revealed that the progeny of introduced cells are found in somatic tissues of foetuses and adult chimaeras, providing evidence for cell reprogramming. Analysis of ploidy has shown that in the chimaeras, the progeny of introduced cells are either diploid or tetraploid, the latter indicating cell fusion. The presence of donor DNA in diploid cells from chimaeric embryos proved that the non-fused progeny of introduced fibroblasts persisted in chimaeras, which is evidence of reprogramming by embryonic niche. When adult somatic (cumulus) cells were introduced into early cleavage embryos, the extent of integration was limited and only cell fusion-mediated reprogramming was observed. These results show that both cell fusion and cell interactions with the embryonic niche reprogrammed somatic cells towards pluripotency.
Collapse
|
19
|
Zhang Y, Lei T, Tang C, Chen Y, Liao Y, Ju W, Zhang H, Zhou B, Liang R, Zhang T, Fan C, Chen X, Zhao Y, Xie Y, Ye J, Heng BC, Chen X, Hong Y, Shen W, Yin Z. 3D printing of chemical-empowered tendon stem/progenitor cells for functional tissue repair. Biomaterials 2021; 271:120722. [PMID: 33676234 DOI: 10.1016/j.biomaterials.2021.120722] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 12/12/2022]
Abstract
Tendon injuries are the leading cause of chronic debilitation to patients. Tendon stem/progenitor cells (TSPCs) are potential seed cells for tendon tissue engineering and regeneration, but TSPCs are prone to lose their distinct phenotype in vitro and specific differentiation into the tenocyte lineage is challenging. Utilizing small molecules in an ex vivo culture system may be a promising solution and can significantly improve the therapeutic applications of these cells. Here, by using an image-based, high-throughput screening platform on small molecule libraries, this study established an effective stepwise culture strategy for TSPCs application. The study formulated a cocktail of small molecules which effected proliferation, tenogenesis initiation and maturation phases, and significantly upregulated expression of various tendon-related genes and proteins in TSPCs, which were demonstrated by high-throughput PCR, ScxGFP reporter assay and immunocytochemistry. Furthermore, by combining small molecule-based culture system with 3D printing technology, we embedded living, chemical-empowered TSPCs within a biocompatible hydrogel to engineer tendon grafts, and verified their enhanced ability in promoting functional tendon repair and regeneration both in vivo and in situ. The stepwise culture system for TSPCs and construction of engineered tendon grafts can not only serve as a platform for further studies of underlying molecular mechanisms of tenogenic differentiation, but also provide a new strategy for tissue engineering and development of novel therapeutics for clinical applications.
Collapse
Affiliation(s)
- Yanjie Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tingyun Lei
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenqi Tang
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yangwu Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Youguo Liao
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Wei Ju
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Hong Zhang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Bo Zhou
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Renjie Liang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tao Zhang
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chunmei Fan
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiaoyi Chen
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yanyan Zhao
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yuanhao Xie
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jinchun Ye
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China
| | | | - Xiao Chen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Yi Hong
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
| | - Weiliang Shen
- Department of Orthopedic Surgery of the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| | - Zi Yin
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China; Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, School of Medicine, Zhejiang University, Hangzhou, China; China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China.
| |
Collapse
|
20
|
Nakajima T, Ikeya M. Development of pluripotent stem cell-based human tenocytes. Dev Growth Differ 2020; 63:38-46. [PMID: 33270251 DOI: 10.1111/dgd.12702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/12/2022]
Abstract
Human pluripotent stem cells (PSCs) are used as a platform for therapeutic purposes such as cell transplantation therapy and drug discovery. Another motivation for studying PSCs is to understand human embryogenesis and development. All cell types that make up the body tissues develop through defined trajectories during embryogenesis. For example, paraxial mesoderm is considered to differentiate into several cell types including skeletal muscle cells, chondrocytes, osteocytes, dermal fibroblasts, and tenocytes. Tenocytes are fibroblast cells that constitute the tendon. The step-wise narrowing fate decisions of paraxial mesoderm in the embryo have been modeled in vitro using PSCs; however, deriving tenocytes from human-induced PSCs and their application in cell therapy have long been challenging. PSC-derived tenocytes can be used for a source of cell transplantation to treat a damaged or ruptured tendon due to injury, disorder, or aging. In this review, we discuss the latest research findings on the use of PSCs for studying the biology of tenocyte development and their application in therapeutic settings.
Collapse
Affiliation(s)
- Taiki Nakajima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan.,Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Makoto Ikeya
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Wang J, Wang L, Gao Y, Zhang Z, Huang X, Han T, Liu B, Zhang Y, Li Y, Zhang L. Synergistic Therapy of Celecoxib-Loaded Magnetism-Responsive Hydrogel for Tendon Tissue Injuries. Front Bioeng Biotechnol 2020; 8:592068. [PMID: 33330423 PMCID: PMC7729092 DOI: 10.3389/fbioe.2020.592068] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Tendon tissue injury is very common and always associated with pain, tissue swelling and even malformation if not treated on time. Traditional therapeutic strategies, such as cryotherapy, electrical therapy, ultrasound therapy and anti-inflammatory drug, are still unsatisfying. In this work, a synergistic therapy, based on the combination of celecoxib drug and pulsed electromagnetic field (PEMF) regimens, was developed for the treatment of tendon injury. This celecoxib-loaded magnetism-responsive hydrogel dressing (gelatin/Fe3O4/celecoxib) showed good biocompatibility and coordinated drug release behavior under the PEMF, which could effectively reduce the inflammatory reaction of macrophage cells with the incremental proportion of M2 macrophages at the injury site. CatWalk gait analysis further verified this synergistic effect of combination therapy for achieving the outstanding recovery of the injured tendon tissue. Thus, this magnetism-responsive hydrogel may represent a promising alternative strategy in clinics for promoting tendon healing.
Collapse
Affiliation(s)
- Jingxin Wang
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Likang Wang
- Department of Rehabilitation Medicine, The Third Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Yueming Gao
- Department of Rehabilitation Medicine, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Zhao Zhang
- Graduate School, Chinese PLA General Hospital, Beijing, China
| | - Xiaofeng Huang
- Department of Endocrinology, The Second Medical Centre, Chinese PLA General Hospital, Beijing, China
| | - Tong Han
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Biyuan Liu
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Yujie Zhang
- Department of Epidemiology, School of Public Health Southern Medical University, Guangzhou, China
| | - Yilan Li
- Department of Rehabilitation, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Lining Zhang
- Department of Rehabilitation Medicine, The First Medical Centre, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
22
|
Dai G, Li Y, Liu J, Zhang C, Chen M, Lu P, Rui Y. Higher BMP Expression in Tendon Stem/Progenitor Cells Contributes to the Increased Heterotopic Ossification in Achilles Tendon With Aging. Front Cell Dev Biol 2020; 8:570605. [PMID: 33102476 PMCID: PMC7546413 DOI: 10.3389/fcell.2020.570605] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 09/04/2020] [Indexed: 12/18/2022] Open
Abstract
Although the mineralization in tendon tissue has been reported in a series of aging and disease models, the underlying mechanisms remain unknown. This study aimed to describe the appearance of heterotopic ossification in rat Achilles tendon and further verify whether this tissue metaplasia is related to the enhanced osteogenic differentiation of tendon stem/progenitor cells (TSPCs) owing to the higher expression of bone morphogenetic proteins (BMP-2/4/7) with aging. The male SD rats, aged 4, 8, and 20 months (M), were used. The analyses of ossification and BMP expression in tendon were tested by radiological view (X-ray and CT), histological staining [hematoxylin and eosin (HE), Alcian blue, and Alizarin red], immunohistochemistry, and Western blot. The osteogenic differentiation potential and BMP expression of TSPCs were examined by Alizarin red S staining and real-time PCR. TSPCs were treated with BMP-2 or noggin, and the osteogenic differentiation potential was also examined. X-ray and CT showed the appearance of heterotopic ossification in tendon, and the volume and density of ossification was increased with aging. Histological staining showed the appearance of calcified region surrounded by chondrocyte-like cells and the increased osteogenesis-related gene and BMP expression in ossified tendon with aging. Moreover, the osteogenic differentiation potential and BMP expression in TSPCs isolated from ossified tendon were increased with aging. Additionally, BMP-2 increased the calcium nodule formation and osteogenesis-related gene expression in TSPCs. The addition of noggin inhibited BMP-induced enhancement of osteogenic differentiation. Thus, these findings suggested that the enhanced osteogenic differentiation of TSPCs contributes to the increased heterotopic ossification in aged tendon, which might be induced by the higher expression of BMPs with aging.
Collapse
Affiliation(s)
- Guangchun Dai
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yingjuan Li
- Department of Geriatrics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
| | - Junyan Liu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Cheng Zhang
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Minhao Chen
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Panpan Lu
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
| | - Yunfeng Rui
- Department of Orthopaedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, China
- Orthopaedic Trauma Institute (OTI), Southeast University, Nanjing, China
- Trauma Center, Zhongda Hospital, Southeast University, Nanjing, China
- China Orthopedic Regenerative Medicine Group, Hangzhou, China
| |
Collapse
|
23
|
Yuan Y, Khan S, Stewart DJ, Courtman DW. Engineering blood outgrowth endothelial cells to optimize endothelial nitric oxide synthase and extracellular matrix production for coating of blood contacting surfaces. Acta Biomater 2020; 109:109-120. [PMID: 32302726 DOI: 10.1016/j.actbio.2020.04.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/26/2022]
Abstract
Coverage of blood contacting surfaces by a functional endothelial layer is likely required to induce and maintain homeostasis. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source that may represent a reasonable alternative to vascular derived cells. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. We found that BOECs express markedly lower levels of eNOS protein (34% ± 13%, Western blot) and mRNA (29% ± 17%, qRT-PCR), as well as exhibiting reduced activity (49% ± 18%, Nitrite analysis) when compared to human umbilical vein endothelial cells (HUVECs) and human aortic endothelial cells. HUVECs grown on fibronectin, type I collagen, or laminin -coated surfaces exhibited significant reduction of eNOS mRNA and protein expression. However, no decrease in eNOS levels was observed in BOECs. Interestingly BOECs expressed significantly higher Collagen (Col) I compared to HUVECs, and blocking Col I synthesis significantly enhanced eNOS expression in BOECs. Inhibition of β1 integrin, focal adhesion kinase (FAK), or actin polymerization increased eNOS in both BOECs and HUVECs suggesting involvement of a signaling pathway culminating in stabilization of the cytoskeleton. Finally, we demonstrated that a Rho-associated protein kinases (ROCK) inhibitor, as a disruptor of actin stabilization, enhanced both eNOS expression and bioactivity. Taken together, our findings demonstrate that cell-ECM interactions are fundamental to the regulation of eNOS in BOECs and suggest that disruption of key intracellular pathways (such as ROCK) may be necessary to enhance functional activity of an endothelialized surface. STATEMENT OF SIGNIFICANCE: Development of biocompatible blood-contacting biomaterial surfaces has not been possible to date, leading many investigators to believe that a complete autologous endothelial layer will be necessary. Blood outgrowth endothelial cells (BOECs), cultured from human peripheral blood monocytes, are readily available and functional autologous endothelial source. Endothelial nitric oxide synthase (eNOS) produces NO, an important factor that regulates homeostasis at the blood-contacting surface. In this study, we show that eNOS displays limited expression in cultured BOECs. We further demonstrate that a strong negative regulation of eNOS is mediated by collagen substrates and that treatment with ROCK inhibitor could enhance both eNOS expression and activity in BOECs and help to rapidly establish a functional autologous endothelial layer on cardiovascular biomaterials.
Collapse
Affiliation(s)
- Yifan Yuan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Anaesthesiology, Yale University, 10 Amistad Rd, New Haven, CT 06519, United States
| | - Saad Khan
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Duncan J Stewart
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Cellular and Molecular Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada
| | - David W Courtman
- Ottawa Hospital Research Institute, General Campus, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada; Department of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
24
|
Paterson YZ, Cribbs A, Espenel M, Smith EJ, Henson FMD, Guest DJ. Genome-wide transcriptome analysis reveals equine embryonic stem cell-derived tenocytes resemble fetal, not adult tenocytes. Stem Cell Res Ther 2020; 11:184. [PMID: 32430075 PMCID: PMC7238619 DOI: 10.1186/s13287-020-01692-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Tendon injuries occur frequently in human and equine athletes. Treatment options are limited, and the prognosis is often poor with functionally deficient scar tissue resulting. Fetal tendon injuries in contrast are capable of healing without forming scar tissue. Embryonic stem cells (ESCs) may provide a potential cellular therapeutic to improve adult tendon regeneration; however, whether they can mimic the properties of fetal tenocytes is unknown. To this end, understanding the unique expression profile of normal adult and fetal tenocytes is crucial to allow validation of ESC-derived tenocytes as a cellular therapeutic. METHODS Equine adult, fetal and ESC-derived tenocytes were cultured in a three-dimensional environment, with histological, morphological and transcriptomic differences compared. Additionally, the effects on gene expression of culturing adult and fetal tenocytes in either conventional two-dimensional monolayer culture or three-dimensional culture were compared using RNA sequencing. RESULTS No qualitative differences in three-dimensional tendon constructs generated from adult, fetal and ESCs were found using histological and morphological analysis. However, genome-wide transcriptomic analysis using RNA sequencing revealed that ESC-derived tenocytes' transcriptomic profile more closely resembled fetal tenocytes as opposed to adult tenocytes. Furthermore, this study adds to the growing evidence that monolayer cultured cells' gene expression profiles converge, with adult and fetal tenocytes having only 10 significantly different genes when cultured in this manner. In contrast, when adult and fetal tenocytes were cultured in 3D, large distinctions in gene expression between these two developmental stages were found, with 542 genes being differentially expressed. CONCLUSION The information provided in this study makes a significant contribution to the investigation into the differences between adult reparative and fetal regenerative cells and supports the concept of using ESC-derived tenocytes as a cellular therapy. Comparing two- and three-dimensional culture also indicates three-dimensional culture as being a more physiologically relevant culture system for determining transcriptomic difference between the same cell types from different developmental stages.
Collapse
Affiliation(s)
- Y. Z. Paterson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - A. Cribbs
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, OX3 7LD UK
| | - M. Espenel
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - E. J. Smith
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - F. M. D. Henson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES UK
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| | - D. J. Guest
- Centre for Preventive Medicine, Animal Health Trust, Lanwades Park, Kentford, Newmarket, Suffolk, CB8 7UU UK
| |
Collapse
|
25
|
Jackson JE, Kopecki Z, Anderson PJ, Cowin AJ. In vitro analysis of the effect of Flightless I on murine tenocyte cellular functions. J Orthop Surg Res 2020; 15:170. [PMID: 32398080 PMCID: PMC7216515 DOI: 10.1186/s13018-020-01692-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 04/29/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Healing of tendons after injury involves the proliferation of tenocytes and the production of extracellular matrix; however, their capacity to heal is limited by poor cell density and limited growth factor activity. Flightless I (Flii) has previously been identified as an important regulator of cellular proliferation and migration, and the purpose of this study was to evaluate the effect of differential Flii gene expression on tenocyte function in vitro. METHODS The role of Flii on tenocyte proliferation, migration, and contraction was assessed using established assays. Tenocytes from Flii+/-, wild-type, and Flii overexpressing mice were obtained and the effect of differential Flii expression on migration, proliferation, contraction, and collagen synthesis determined in vitro. Statistical differences were determined using unpaired Student's t test and statistical outliers were identified using the Grubbs' test. RESULTS Flii overexpressing tenocytes showed significantly improved migration and proliferation as well as increased collagen I secretion. Explanted tendons from Flii overexpressing mice also showed significantly elevated tenocyte outgrowth compared to Flii+/- mice. In contrast to its role in dermal wound repair, Flii positively affects cellular processes in tendons. CONCLUSIONS These findings suggest that Flii could be a novel target for modulating tenocyte activity and improving tendon repair. This could have significant clinical implications as novel therapeutic targets for improved healing of tendon injuries are urgently needed.
Collapse
Affiliation(s)
- Jessica E Jackson
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Zlatko Kopecki
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia
| | - Peter J Anderson
- Faculty of Medicine and Health, University of Adelaide, Adelaide, South Australia, Australia
| | - Allison J Cowin
- Regenerative Medicine, Future Industries Institute, University of South Australia, Adelaide, South Australia, Australia.
| |
Collapse
|
26
|
Atkinson F, Evans R, Guest JE, Bavin EP, Cacador D, Holland C, Guest DJ. Cyclical strain improves artificial equine tendon constructs in vitro. J Tissue Eng Regen Med 2020; 14:690-700. [PMID: 32181983 DOI: 10.1002/term.3030] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 01/10/2020] [Accepted: 03/05/2020] [Indexed: 01/10/2023]
Abstract
Tendon injuries are a common cause of morbidity in humans. They also occur frequently in horses, and the horse provides a relevant, large animal model in which to test novel therapies. To develop novel cell therapies that can aid tendon regeneration and reduce subsequent reinjury rates, the mechanisms that control tendon tissue regeneration and matrix remodelling need to be better understood. Although a range of chemical cues have been explored (growth factors, media etc.), the influence of the mechanical environment on tendon cell culture has yet to be fully elucidated. To mimic the in vivo environment, in this study, we have utilised a novel and affordable, custom-made bioreactor to apply a cyclical strain to tendon-like constructs generated in three-dimensional (3D) culture by equine tenocytes. Dynamic shear analysis (DSA), dynamic scanning calorimetry (DSC) and Fourier-transform infrared (FTIR) spectroscopy were used to determine the mechanical and chemical properties of the resulting tendon-like constructs. Our results demonstrate that equine tenocytes exposed to a 10% cyclical strain have an increased amount of collagen gel contraction after 7 and 8 days of culture compared with cells cultured in 3D in the absence of external strain. While all the tendon-like constructs have a very similar chemical composition to native tendon, the application of strain improves their mechanical properties. We envisage that these results will contribute towards the development of improved biomimetic artificial tendon models for the development of novel strategies for equine regenerative therapies.
Collapse
Affiliation(s)
- Francesca Atkinson
- Animal Health Trust, Suffolk, UK.,Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | | | | | | | | | - Christopher Holland
- Department of Materials Science and Engineering, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
27
|
McClellan A, Paterson YZ, Paillot R, Guest DJ. Equine Fetal, Adult, and Embryonic Stem Cell-Derived Tenocytes Are All Immune Privileged but Exhibit Different Immune Suppressive Properties In Vitro. Stem Cells Dev 2019; 28:1413-1423. [PMID: 31507234 DOI: 10.1089/scd.2019.0120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In horses and humans, tendon injuries are a significant problem. Not only can they occur in both athletes and nonathletes, they require lengthy periods of recuperation and undergo poor natural regeneration, which leads to high reinjury rates. Embryonic stem cells (ESCs) may provide a renewable source of allogeneic cells to use in clinical applications to aid tissue regeneration. Equine ESCs can undergo tenocyte differentiation in vivo and in vitro, but the immune properties of tenocytes isolated from either ESCs or tissues have not previously been characterized. Here, we demonstrate that equine tenocytes derived from fetal and adult tendon tissue and ESCs express robust levels of major histocompatibility complex (MHC) I but no MHC II in response to inflammatory cytokine interferon gamma (IFNγ). However, MHC expression does not affect their allorecognition by peripheral blood mononuclear cells in vitro. Adult and fetal tenocytes remain immune privileged and strongly immune suppressive in both the presence and absence of exogenously applied IFNγ. In contrast, ESC-derived tenocytes are immune privileged even in the presence of IFNγ, but they are only weakly immune suppressive in the presence but not in the absence of exogenously applied IFNγ. This is despite ESC-tenocytes expressing a number of genes involved in immune modulation at significantly higher levels than those expressed by adult and fetal tenocytes when in standard, nonstimulated monolayer culture. Together, this work suggests that, similar to other fibroblasts, tenocytes have immune modulatory properties, and that culture-expanded tenocytes derived from primary tissues or ESCs may be safe to use in clinical transplantations to injured tendons of unrelated animals.
Collapse
Affiliation(s)
- Alyce McClellan
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| | - Yasmin Z Paterson
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom.,Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Romain Paillot
- LABÉO Frank Duncombe, Caen, France.,Normandie University, UniCaen, Biotargen, Saint-Contest, France
| | - Deborah Jane Guest
- Centre for Preventive Medicine, Animal Health Trust, Newmarket, United Kingdom
| |
Collapse
|
28
|
Barin FR, de Sousa Neto IV, Vieira Ramos G, Szojka A, Ruivo AL, Anflor CTM, Agualimpia JDH, Domingues AC, Franco OL, Adesida AB, Durigan JLQ, Marqueti RDC. Calcaneal Tendon Plasticity Following Gastrocnemius Muscle Injury in Rat. Front Physiol 2019; 10:1098. [PMID: 31551799 PMCID: PMC6733963 DOI: 10.3389/fphys.2019.01098] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 08/08/2019] [Indexed: 01/01/2023] Open
Abstract
Cross-talk between skeletal muscle and tendon is important for tissue homeostasis. Whereas the skeletal muscle response to tendon injury has been well-studied, to the best of our knowledge the tendon response to skeletal muscle injury has been neglected. Thus, we investigated calcaneal tendon extracellular matrix (ECM) remodeling after gastrocnemius muscle injury using a rat model. Wistar rats were randomly divided into four groups: control group (C; animals that were not exposed to muscle injury) and harvested at different time points post gastrocnemius muscle injury (3, 14, and 28 days) for gene expression, morphological, and biomechanical analyses. At 3 days post injury, we observed mRNA-level dysregulation of signaling pathways associated with collagen I accompanied with disrupted biomechanical properties. At 14 days post injury, we found reduced collagen content histologically accompanied by invasion of blood vessels into the tendon proper and an abundance of peritendinous sheath cells. Finally, at 28 days post injury, there were signs of recovery at the gene expression level including upregulation of transcription factors related to ECM synthesis, remodeling, and repair. At this time point, tendons also presented with increased peritendinous sheath cells, decreased adipose cells, higher Young's modulus, and lower strain to failure compared to the uninjured controls and all post injury time points. In summary, we demonstrate that the calcaneal tendon undergoes extensive ECM remodeling in response to gastrocnemius muscle injury leading to altered functional properties in a rat model. Tendon plasticity in response to skeletal muscle injury merits further investigation to understand its physiological relevance and potential clinical implications.
Collapse
Affiliation(s)
| | | | | | - Alexander Szojka
- Division of Orthopaedic Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Surgical Research, University of Alberta, Edmonton, AB, Canada
| | | | | | | | - Allan Corrêa Domingues
- Group of Experimental and Computational Mechanics, Universidade de Brasília, Brasília, Brazil
| | - Octávio Luiz Franco
- S-Inova Biotech, Universidade Catolica Dom Bosco, Campo Grande, Brazil
- Centro de Análises Proteômicas e Bioquímicas, Universidade Católica de Brasília, Brasília, Brazil
| | - Adetola B. Adesida
- Division of Orthopaedic Surgery, University of Alberta, Edmonton, AB, Canada
- Division of Surgical Research, University of Alberta, Edmonton, AB, Canada
| | | | | |
Collapse
|
29
|
Yao X, Ning LJ, He SK, Cui J, Hu RN, Zhang Y, Zhang YJ, Luo JC, Ding W, Qin TW. Stem Cell Extracellular Matrix-Modified Decellularized Tendon Slices Facilitate the Migration of Bone Marrow Mesenchymal Stem Cells. ACS Biomater Sci Eng 2019; 5:4485-4495. [DOI: 10.1021/acsbiomaterials.9b00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
Nichols AEC, Best KT, Loiselle AE. The cellular basis of fibrotic tendon healing: challenges and opportunities. Transl Res 2019; 209:156-168. [PMID: 30776336 PMCID: PMC6545261 DOI: 10.1016/j.trsl.2019.02.002] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/30/2019] [Accepted: 02/04/2019] [Indexed: 12/11/2022]
Abstract
Tendon injuries are common and can dramatically impair patient mobility and productivity, resulting in a significant socioeconomic burden and reduced quality of life. Because the tendon healing process results in the formation of a fibrotic scar, injured tendons never regain the mechanical strength of the uninjured tendon, leading to frequent reinjury. Many tendons are also prone to the development of peritendinous adhesions and excess scar formation, which further reduce tendon function and lead to chronic complications. Despite this, there are currently no treatments that adequately improve the tendon healing process due in part to a lack of information regarding the contributions of various cell types to tendon healing and how their activity may be modulated for therapeutic value. In this review, we summarize recent efforts to identify and characterize the distinct cell populations involved at each stage of tendon healing. In addition, we examine the mechanisms through which different cell populations contribute to the fibrotic response to tendon injury, and how these responses can be affected by systemic factors and comorbidities. We then discuss gaps in our current understanding of tendon fibrosis and highlight how new technologies and research areas are shedding light on this clinically important and intractable challenge. A better understanding of the complex cellular environment during tendon healing is crucial to the development of new therapies to prevent fibrosis and promote tissue regeneration.
Collapse
Affiliation(s)
- Anne E C Nichols
- Department of Orthopedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Katherine T Best
- Department of Orthopedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Alayna E Loiselle
- Department of Orthopedics & Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York.
| |
Collapse
|
31
|
Korntner S, Lehner C, Gehwolf R, Wagner A, Grütz M, Kunkel N, Tempfer H, Traweger A. Limiting angiogenesis to modulate scar formation. Adv Drug Deliv Rev 2019; 146:170-189. [PMID: 29501628 DOI: 10.1016/j.addr.2018.02.010] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 01/22/2018] [Accepted: 02/26/2018] [Indexed: 02/06/2023]
Abstract
Angiogenesis, the process of new blood vessel formation from existing blood vessels, is a key aspect of virtually every repair process. During wound healing an extensive, but immature and leaky vascular plexus forms which is subsequently reduced by regression of non-functional vessels. More recent studies indicate that uncontrolled vessel growth or impaired vessel regression as a consequence of an excessive inflammatory response can impair wound healing, resulting in scarring and dysfunction. However, in order to elucidate targetable factors to promote functional tissue regeneration we need to understand the molecular and cellular underpinnings of physiological angiogenesis, ranging from induction to resolution of blood vessels. Especially for avascular tissues (e.g. cornea, tendon, ligament, cartilage, etc.), limiting rather than boosting vessel growth during wound repair potentially is beneficial to restore full tissue function and may result in favourable long-term healing outcomes.
Collapse
|
32
|
Nakanishi Y, Okada T, Takeuchi N, Kozono N, Senju T, Nakayama K, Nakashima Y. Histological evaluation of tendon formation using a scaffold-free three-dimensional-bioprinted construct of human dermal fibroblasts under in vitro static tensile culture. Regen Ther 2019; 11:47-55. [PMID: 31193148 PMCID: PMC6517794 DOI: 10.1016/j.reth.2019.02.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/11/2019] [Accepted: 02/03/2019] [Indexed: 10/26/2022] Open
Abstract
Introduction Tendon tissue engineering requires scaffold-free techniques for safe and long-term clinical applications and to explore alternative cell sources to tenocytes. Therefore, we histologically assessed tendon formation in a scaffold-free Bio-three-dimensional (3D) construct developed from normal human dermal fibroblasts (NHDFs) using our Bio-3D printer system under tensile culture in vitro. Methods Scaffold-free ring-like tissues were constructed from 120 multicellular spheroids comprising NHDFs using a bio-3D printer. Ring-like tissues were cultured in vitro under static tensile-loading with or without in-house tensile devices (tension-loaded and tension-free groups), with increases in tensile strength applied weekly to the tensile-loaded group. After a 4 or 8-week culture on the device, we evaluated histological findings according to tendon-maturing score and immunohistological findings of the middle portion of the tissues for both groups (n = 4, respectively). Results Histology of the tension-loaded group revealed longitudinally aligned collagen fibers with increased collagen deposition and spindle-shaped cells with prolonged culture. By contrast, the tension-free group showed no organized cell arrangement or collagen fiber structure. Additionally, the tension-loaded group showed a significantly improved tendon-maturing score as compared with that for the tension-free group at week 8. Moreover, immunohistochemistry revealed tenascin C distribution with a parallel arrangement in the tensile-loading direction at week 8 in the tension-loaded group, which exhibited stronger scleraxis-staining intensity than that observed in the tension-free group at weeks 4 and 8. Conclusions The NHDF-generated scaffold-free Bio-3D construct underwent remodeling and formed tendon-like structures under tensile culture in vitro.
Collapse
Affiliation(s)
- Yoshitaka Nakanishi
- Department of Orthopaedic Surgery, School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Takamitsu Okada
- Department of Orthopaedic Surgery, School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Naohide Takeuchi
- Department of Orthopaedic Surgery, School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Naoya Kozono
- Department of Orthopaedic Surgery, School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Takahiro Senju
- Department of Orthopaedic Surgery, School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| | - Koichi Nakayama
- Department of Regenerative Medicine and Biomedical Engineering, Faculty of Medicine, Saga University, Honjyo 1-chome, Honjyo-cho, Saga, 840-8502, Japan
| | - Yasuharu Nakashima
- Department of Orthopaedic Surgery, School of Medicine, Kyushu University, 3-1-1, Maidashi, Higashiku, Fukuoka-shi, Fukuoka, 812-8582, Japan
| |
Collapse
|
33
|
A novel mechanism for the protection of embryonic stem cell derived tenocytes from inflammatory cytokine interleukin 1 beta. Sci Rep 2019; 9:2755. [PMID: 30808942 PMCID: PMC6391488 DOI: 10.1038/s41598-019-39370-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/23/2019] [Indexed: 12/29/2022] Open
Abstract
Interleukin 1β (IL-1β) is upregulated following tendon injury. Here we demonstrate that in adult and fetal tenocytes IL-1β increases the expression of matrix metalloproteinases, tenascin-C and Sox9 and decreases the expression of scleraxis and cartilage oligomeric matrix protein. When cultured in 3-dimensional collagen gels adult and fetal tenocytes exposed to IL-1β have reduced contraction ability and generate tendon-like constructs with a lower storage modulus. In contrast, equine embryonic stem cell (ESC) derived tenocytes exposed to IL-1β exhibit no changes in gene expression and generate identical tendon-like constructs. We propose that ESC-derived tenocytes do not respond to IL-1β due to their low expression of interleukin 1 (IL-1) receptor 1 and high expression of the decoy receptor IL-1 receptor 2 and IL-1 receptor antagonist protein (IL1Ra). This may make ESC-derived tenocytes an advantageous source of cells for tissue regeneration and allow the development of novel pharmaceutical interventions to protect endogenous cells from inflammation.
Collapse
|
34
|
Gaspar D, Ryan CNM, Zeugolis DI. Multifactorial bottom-up bioengineering approaches for the development of living tissue substitutes. FASEB J 2019; 33:5741-5754. [PMID: 30681885 DOI: 10.1096/fj.201802451r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bottom-up bioengineering utilizes the inherent capacity of cells to build highly sophisticated structures with high levels of biomimicry. Despite the significant advancements in the field, monodomain approaches require prolonged culture time to develop an implantable device, usually associated with cell phenotypic drift in culture. Herein, we assessed the simultaneous effect of macromolecular crowding (MMC) and mechanical loading in enhancing extracellular matrix (ECM) deposition while maintaining tenocyte (TC) phenotype and differentiating bone marrow stem cells (BMSCs) or transdifferentiating neonatal and adult dermal fibroblasts toward tenogenic lineage. At d 7, all cell types presented cytoskeleton alignment perpendicular to the applied load independently of the use of MMC. MMC enhanced ECM deposition in all cell types. Gene expression analysis indicated that MMC and mechanical loading maintained TC phenotype, whereas tenogenic differentiation of BMSCs or transdifferentiation of dermal fibroblasts was not achieved. Our data suggest that multifactorial bottom-up bioengineering approaches significantly accelerate the development of biomimetic tissue equivalents.-Gaspar, D., Ryan, C. N. M., Zeugolis, D. I. Multifactorial bottom-up bioengineering approaches for the development of living tissue substitutes.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland-Galway, Galway, Ireland
| | - Christina N M Ryan
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland-Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland-Galway, Galway, Ireland
| |
Collapse
|
35
|
Shi P, Chee A, Liu W, Chou PH, Zhu J, An HS. Therapeutic effects of cell therapy with neonatal human dermal fibroblasts and rabbit dermal fibroblasts on disc degeneration and inflammation. Spine J 2019; 19:171-181. [PMID: 30142460 DOI: 10.1016/j.spinee.2018.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/09/2018] [Accepted: 08/10/2018] [Indexed: 02/08/2023]
Abstract
BACKGROUND CONTEXT Increasing evidence suggests transplanting viable cells into the degenerating intervertebral disc (IVD) may be effective in treating disc degeneration and back pain. Clinical studies utilizing autologous or allogeneic mesenchymal stem cells to treat patients with back pain have reported some encouraging results. Animal studies have shown that cells injected into the disc can survive for months and have regenerative effects. Studies to determine the advantages and disadvantages of cell types and sources for therapy are needed. PURPOSE The objective of this study is to determine the impact of donor source on the therapeutic effects of dermal fibroblast treatment on disc degeneration and inflammation. STUDY DESIGN Using the rabbit disc degeneration model, we compared transplantation of neonatal human dermal fibroblasts (nHDFs) and rabbit dermal fibroblasts (RDFs) into rabbit degenerated discs on host immune response, disc height, and IVD composition. METHODS New Zealand white rabbits received an annular puncture using an 18-guage needle to induce disc degeneration. Four weeks after injury, rabbit IVDs were treated with 5 × 106 nHDFs, RDFs, or saline. At eight weeks post-treatment, animals were sacrificed. X-ray images were obtained. IVDs were isolated for inflammatory and collagen gene expression analysis using real-time polymerase chain reaction and biochemical analysis of proteoglycan contents using dimethylmethylene blue assay. These studies were funded by a research grant from SpinalCyte, LLC ($414,431). RESULTS Eight weeks after treatment, disc height indexes of discs treated with nHDF increased significantly by 7.8% (p<.01), whereas those treated with saline or RDF increased by 1.5% and 2.0%, respectively. Gene expression analysis showed that discs transplanted with nHDFs and RDFs displayed similar inflammatory responses (p=.2 to .8). Compared to intact discs, expression of both collagen types I and II increased significantly in nHDF-treated discs (p<.05), trending to significant in RDF-treated discs, and not significantly in saline treated discs. The ratio of collagen type II/collagen type I was higher in the IVDs treated with nHDFs (1.26) than those treated with RDFs (0.81) or saline (0.59) and intact discs (1.00). Last, proteoglycan contents increased significantly in discs treated with nHDF (p<.05) and were trending toward significance in the RDF-treated discs compared to those treated with saline. CONCLUSIONS This study showed that cell transplantation with nHDF into degenerated IVDs can significantly increase markers of disc regeneration (disc height, collagen type I and II gene expression, and proteoglycan contents). Transplantation with RDFs showed similar regenerative trends, but these trends were not significant. This study also showed that the human cells transplanted into the rabbit discs did not induce a higher immune response than the rabbit cells. These results support that the IVD is immune privileged and would tolerate allogeneic or xenogeneic grafts.
Collapse
Affiliation(s)
- Peng Shi
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Tufts University School of Dental Medicine, 1 Kneeland St, Boston, MA 02111, USA
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA
| | - Weijun Liu
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Department of Orthopedics, Wuhan Pu'Ai Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 473 Hanzheng St, Wuhan 430033, China
| | - Po-Hsin Chou
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; Department of Orthopaedic and Traumatology, Taipei Veterans General Hospital, No.201, Sec. 2, Shipai Rd., Beitou District, Taipei City, Taiwan 11217, ROC; School of Medicine, National Yang-Ming University, No.155, Sec. 2, Linong St., Beitou District, Taipei City, Taiwan 112, ROC
| | - Jun Zhu
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA; The Minimally Invasive Department of Orthopedics, The First People's Hospital of Huaihua, The Research Center of Translational Medicine, Jishou University School of Medicine, 144 South Road Jinxi South Road, Huaihua City, Hunan 418000, China
| | - Howard S An
- Department of Orthopedic Surgery, Rush University Medical Center, 1611 W Harrison St, Suite 300, Chicago, IL 60612, USA.
| |
Collapse
|
36
|
Experimental study of tendon sheath repair via decellularized amnion to prevent tendon adhesion. PLoS One 2018; 13:e0205811. [PMID: 30325952 PMCID: PMC6191119 DOI: 10.1371/journal.pone.0205811] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 10/02/2018] [Indexed: 12/27/2022] Open
Abstract
The adhesion of tendon and surrounding tissue is the most common complication after repairing an injured tendon. The injured flexor tendons in zone II are frequently accompanied by tendon sheath defects, which lead to poor recovery. A variety of biological and non-biological materials have been recently used for repair or as substitute for tendon sheaths to prevent tendon adhesion. However, non-biological materials, such as polyethylene films, have been used to prevent tendon adhesions by mechanical isolation. The possibility of tendon necrosis and permanent foreign body remains due to the lack of permeability and the obstruction of nutrient infiltration. The natural macromolecule amniotic membrane derived from organisms is a semi-permeable membrane with the following characteristics: smooth; without vascular, nerve, and lymphatic; and rich in matrix, cytokines, enzymes, and other active ingredients. The unique structure of this membrane makes it an ideal biomaterial. In the experiment in Henry chicken, the model of tendon sheath defect and the flexor digitorum tendon in zone II was established and randomly divided into control group, medical membrane group, and decellularized amniotic membrane group. Samples were obtained at the 2nd, 4th, 8th, and 12th week after operation. General, histological, and biomechanical tests were performed to investigate the preventive effect of repaired tendon sheath by decallularized amniotic membrane. Experimental results showed the following: the amniotic membrane group and the medical membrane group had mild inflammatory reaction and tissue edema, and nearly no adhesion was observed in the surrounding tissue; the fibroblast-like cells were distributed in layers under the light microscope; the amniotic membrane group was denser than the medical membrane group cells, and numerous fibroblasts were disorganized in the control group. Biomechanical measurements showed that the sliding distance of tendon, the total flexion angle of the toes, and the tendon maximum tensile breaking strength at the early postoperative were significantly better than in the control group. Through this experiment, the amniotic membrane, as a natural biological substitute material in the construction of tendon sheath, can effectively inhibit exogenous healing and promote endogenous healing to prevent tendon adhesion.
Collapse
|
37
|
Cai J, Yang Y, Ai C, Jin W, Sheng D, Chen J, Chen S. Bone Marrow Stem Cells-Seeded Polyethylene Terephthalate Scaffold in Repair and Regeneration of Rabbit Achilles Tendon. Artif Organs 2018; 42:1086-1094. [PMID: 30294929 DOI: 10.1111/aor.13298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/11/2018] [Accepted: 05/25/2018] [Indexed: 12/16/2022]
Abstract
The objective of this study was to evaluate the effect of bone marrow stem cells (BMSCs)-seeded polyethylene terephthalate (PET) scaffold for Achilles tendon repair in a rabbit model. The allogeneic BMSCs were seeded onto the PET scaffold and cultured in vitro for 14 days. Sixteen mature New Zealand rabbits underwent surgery to establish a 2-cm Achilles tendon defect model. The BMSCs-seeded PET scaffold was implanted into the defect of one limb (BMSCs-PET group), while the PET scaffold without BMSCs was implanted into the defect of contralateral limb as the control (PET group). All rabbits were sacrificed at 6 and 12 weeks after surgery. At 12 weeks after surgery, macroscopic and histological results showed formation of tendon-like tissues, and the structure was more mature in the BMSCs-PET group. Immunohistochemical analysis and real-time polymerase chain reaction (RT-PCR) demonstrated that the collagen I and collagen III were significantly higher in the BMSCs-PET group compared with those in the PET group. Mechanically, both the failure load and the average stiffness were significantly higher in the BMSCs-PET group than those in the PET group. In conclusion, BMSCs-seeded PET scaffold could effectively facilitate the healing process after being implanted in a rabbit Achilles tendon defect model.
Collapse
Affiliation(s)
- Jiangyu Cai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Yimeng Yang
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Chengchong Ai
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Wenhe Jin
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Dandan Sheng
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Jun Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| | - Shiyi Chen
- Department of Sports Medicine, Huashan Hospital, Fudan University, Shanghai, P.R. China
| |
Collapse
|
38
|
Mubyana K, Corr DT. Cyclic Uniaxial Tensile Strain Enhances the Mechanical Properties of Engineered, Scaffold-Free Tendon Fibers. Tissue Eng Part A 2018; 24:1808-1817. [PMID: 29916333 DOI: 10.1089/ten.tea.2018.0028] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The treatment of injured tendon is an ever-increasing clinical and financial burden, for which tissue-engineered replacements have shown great promise. Recently, there has been growing interest in a more regenerative approach to tissue engineering, in which the cells' abilities to self-assemble and create matrix are harnessed to create tissue constructs without the use of a scaffold. Herein, utilizing our scaffold-free technique to engineer tendon at the single fiber level, we study how applied mechanical loading, namely cyclic uniaxial strain, influences the mechanical properties and nuclear alignment of developing tendon fiber constructs. Engineered fibers were subjected to 1, 3, and 7 days of intermittent uniaxial loading (0.0-0.7% sinusoidal strain), and then characterized mechanically by constant-rate elongation to failure to obtain tensile properties and histologically to examine cytoskeletal arrangement and nuclear shape, and characterized using real-time polymerase chain reaction to measure the expression of tendon-specific makers, scleraxis and tenomodulin. Fiber peak stress, elastic modulus, toughness, and nuclear aspect ratio increased with the presence and duration of loading, while failure strain, toe-in strain, and nuclear area were unchanged. These biomechanical results suggest that cyclic strain promotes matrix deposition in a manner that increases the fiber resistance to stretch, but preserves fiber extensibility over the 7-day loading period. Over 7 days of loading, the scleraxis and tenomodulin expression increased drastically. Histologically, while there was no immediate difference in nuclear area with the addition of loading, nuclear aspect ratio significantly increased with loading duration, such that nuclei became progressively more elongated to the long axis of the fiber. Together with our biomechanical findings, such nuclear deformation suggests that cyclic strain elicits a mechanotransductive response, particularly one that modulates gene expression to promote matrix deposition during fiber development.
Collapse
Affiliation(s)
- Kuwabo Mubyana
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| | - David T Corr
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, New York
| |
Collapse
|
39
|
Chen J, Zhang W, Kelk P, Backman LJ, Danielson P. Substance P and patterned silk biomaterial stimulate periodontal ligament stem cells to form corneal stroma in a bioengineered three-dimensional model. Stem Cell Res Ther 2017; 8:260. [PMID: 29132420 PMCID: PMC5683543 DOI: 10.1186/s13287-017-0715-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 10/16/2017] [Accepted: 10/26/2017] [Indexed: 12/13/2022] Open
Abstract
Background We aimed to generate a bioengineered multi-lamellar human corneal stroma tissue in vitro by differentiating periodontal ligament stem cells (PDLSCs) towards keratocytes on an aligned silk membrane. Methods Human PDLSCs were isolated and identified. The neuropeptide substance P (SP) was added in keratocyte differentiation medium (KDM) to evaluate its effect on keratocyte differentiation of PDLSCs. PDLSCs were then seeded on patterned silk membrane and cultured with KDM and SP. Cell alignment was evaluated and the expression of extracellular matrix (ECM) components of corneal stroma was detected. Finally, multi-lamellar tissue was constructed in vitro by PDLSCs seeded on patterned silk membranes, which were stacked orthogonally and stimulated by KDM supplemented with SP for 18 days. Sections were prepared and subsequently stained with hematoxylin and eosin or antibodies for immunofluorescence observation of human corneal stroma-related proteins. Results SP promoted the expression of corneal stroma-related collagens (collagen types I, III, V, and VI) during the differentiation induced by KDM. Patterned silk membrane guided cell alignment of PDLSCs, and important ECM components of the corneal stroma were shown to be deposited by the cells. The constructed multi-lamellar tissue was found to support cells growing between every two layers and expressing the main type of collagens (collagen types I and V) and proteoglycans (lumican and keratocan) of normal human corneal stroma. Conclusions Multi-lamellar human corneal stroma-like tissue can be constructed successfully in vitro by PDLSCs seeded on orthogonally aligned, multi-layered silk membranes with SP supplementation, which shows potential for future corneal tissue engineering. Electronic supplementary material The online version of this article (doi:10.1186/s13287-017-0715-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jialin Chen
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Wei Zhang
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Peyman Kelk
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87, Umeå, Sweden. .,Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden.
| |
Collapse
|
40
|
Xu R, Dagnaes-Hansen F, Wogensen L, Axelsen SM, Seliktar D, Chen M. Fibrogenic and angiogenic commitments of human induced pluripotent stem cells derived mesenchymal stem cells in connective tissue growth factor-delivering scaffold in an immune-deficient mice model. J Biomed Mater Res B Appl Biomater 2017; 106:2266-2274. [DOI: 10.1002/jbm.b.34030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/17/2017] [Accepted: 09/24/2017] [Indexed: 01/03/2023]
Affiliation(s)
- Ruodan Xu
- Department of Engineering; Aarhus University; Aarhus C Denmark
| | | | - Lise Wogensen
- Research Laboratory of Biochemical Pathology; The Institute of Clinical Medicine, Health, Aarhus University; Aarhus C Denmark
| | | | - Dror Seliktar
- The Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology; Haifa Israel
| | - Menglin Chen
- Department of Engineering; Aarhus University; Aarhus C Denmark
| |
Collapse
|
41
|
Govoni M, Muscari C, Lovecchio J, Guarnieri C, Giordano E. Mechanical Actuation Systems for the Phenotype Commitment of Stem Cell-Based Tendon and Ligament Tissue Substitutes. Stem Cell Rev Rep 2017; 12:189-201. [PMID: 26661573 DOI: 10.1007/s12015-015-9640-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
High tensile forces transmitted by tendons and ligaments make them susceptible to tearing or complete rupture. The present standard reparative technique is the surgical implantation of auto- or allografts, which often undergo failure.Currently, different cell types and biomaterials are used to design tissue engineered substitutes. Mechanical stimulation driven by dedicated devices can precondition these constructs to a remarkable degree, mimicking the local in vivo environment. A large number of dynamic culture instruments have been developed and many appealing results collected. Of the cells that have been used, tendon stem cells are the most promising for a reliable stretch-induced tenogenesis, but their reduced availability represents a serious limitation to upscaled production. Biomaterials used for scaffold fabrication include both biological molecules and synthetic polymers, the latter being improved by nanotechnologies which reproduce the architecture of native tendons. In addition to cell type and scaffold material, other variables which must be defined in mechanostimulation protocols are the amplitude, frequency, duration and direction of the applied strain. The ideal conditions seem to be those producing intermittent tension rather than continuous loading. In any case, all physical parameters must be adapted to the specific response of the cells used and the tensile properties of the scaffold. Tendon/ligament grafts in animals usually have the advantage of mechanical preconditioning, especially when uniaxial cyclic forces are applied to cells engineered into natural or decellularized scaffolds. However, due to the scarcity of in vivo research, standard protocols still need to be defined for clinical applications.
Collapse
Affiliation(s)
- Marco Govoni
- BioEngLab, Health Science and Technology - Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, BO, Italy.,Prometeo Laboratory - Department of Research, Innovation and Technology (RIT), The Rizzoli Orthopedic Institute, Via di Barbiano 1/10, 40136, Bologna, Italy
| | - Claudio Muscari
- BioEngLab, Health Science and Technology - Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, BO, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, BO, Italy
| | - Joseph Lovecchio
- Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti" - Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Via Venezia, 52, I-47521, Cesena, FC, Italy
| | - Carlo Guarnieri
- BioEngLab, Health Science and Technology - Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, BO, Italy.,Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, Bologna, BO, Italy
| | - Emanuele Giordano
- BioEngLab, Health Science and Technology - Interdepartmental Center for Industrial Research (HST-CIRI), University of Bologna, Ozzano Emilia, BO, Italy. .,Laboratory of Cellular and Molecular Engineering "Silvio Cavalcanti" - Department of Electrical, Electronic and Information Engineering (DEI), University of Bologna, Via Venezia, 52, I-47521, Cesena, FC, Italy.
| |
Collapse
|
42
|
Intratendinous Injection of Hydrogel for Reseeding Decellularized Human Flexor Tendons. Plast Reconstr Surg 2017; 139:1305e-1314e. [PMID: 28538572 DOI: 10.1097/prs.0000000000003359] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Decellularized cadaveric tendons are a potential source for reconstruction. Reseeding to enhance healing is ideal; however, cells placed on the tendon surface result in inadequate delivery. The authors used an injection technique to evaluate intratendinous cell delivery. METHODS Decellularized tendons were reseeded with adipose-derived stem cells in culture, and injected with fetal bovine serum or hydrogel. PKH26-stained cells in cross-section were quantified. To evaluate cell viability, the authors delivered luciferase-labeled cells and performed bioluminescent imaging. To evaluate synthetic ability, the authors performed immunohistochemistry of procollagen. Adipose-derived stem cells' ability to attract tenocytes was assessed using transwell inserts. Cell-to-cell interaction was assessed by co-culturing, measuring proliferation and collagen production, and quantifying synergy. Finally, tensile strength was tested. RESULTS Both fetal bovine serum (p < 0.001) and hydrogel (p < 0.001) injection led to more cells inside the tendon compared with culturing. Hydrogel injection initially demonstrated greater bioluminescence than culturing (p < 0.005) and fetal bovine serum injection (p < 0.05). Injection groups demonstrated intratendinous procollagen staining correlating with the cells' location. Co-culture led to greater tenocyte migration (p < 0.05). Interaction index of proliferation and collagen production assays were greater than 1 for all co-culture ratios, demonstrating synergistic proliferation and collagen production compared with controls (p < 0.05). There were no differences in tensile strength. CONCLUSIONS Hydrogel injection demonstrated the greatest intratendinous seeding efficiency and consistency, without compromising tensile strength. Intratendinous cells demonstrated synthetic capabilities and can potentially attract tenocytes inside the tendon, where synergy would promote intrinsic tendon healing. CLINICAL QUESTION/LEVEL OF EVIDENCE Therapeutic, V.
Collapse
|
43
|
Fibroblasts as maestros orchestrating tissue regeneration. J Tissue Eng Regen Med 2017; 12:240-251. [DOI: 10.1002/term.2405] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/05/2016] [Accepted: 01/09/2017] [Indexed: 12/12/2022]
|
44
|
Chen J, Lan J, Liu D, Backman LJ, Zhang W, Zhou Q, Danielson P. Ascorbic Acid Promotes the Stemness of Corneal Epithelial Stem/Progenitor Cells and Accelerates Epithelial Wound Healing in the Cornea. Stem Cells Transl Med 2017; 6:1356-1365. [PMID: 28276172 PMCID: PMC5442716 DOI: 10.1002/sctm.16-0441] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/20/2016] [Accepted: 01/16/2017] [Indexed: 12/22/2022] Open
Abstract
High concentration of ascorbic acid (vitamin C) has been found in corneal epithelium of various species. However, the specific functions and mechanisms of ascorbic acid in the repair of corneal epithelium are not clear. In this study, it was found that ascorbic acid accelerates corneal epithelial wound healing in vivo in mouse. In addition, ascorbic acid enhanced the stemness of cultured mouse corneal epithelial stem/progenitor cells (TKE2) in vitro, as shown by elevated clone formation ability and increased expression of stemness markers (especially p63 and SOX2). The contribution of ascorbic acid on the stemness enhancement was not dependent on the promotion of Akt phosphorylation, as concluded by using Akt inhibitor, nor was the stemness found to be dependent on the regulation of oxidative stress, as seen by the use of two other antioxidants (GMEE and NAC). However, ascorbic acid was found to promote extracellular matrix (ECM) production, and by using two collagen synthesis inhibitors (AzC and CIS), the increased expression of p63 and SOX2 by ascorbic acid was decreased by around 50%, showing that the increased stemness by ascorbic acid can be attributed to its regulation of ECM components. Moreover, the expression of p63 and SOX2 was elevated when TKE2 cells were cultured on collagen I coated plates, a situation that mimics the in vivo situation as collagen I is the main component in the corneal stroma. This study shows direct therapeutic benefits of ascorbic acid on corneal epithelial wound healing and provides new insights into the mechanisms involved. Stem Cells Translational Medicine2017;6:1356–1365
Collapse
Affiliation(s)
- Jialin Chen
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Jie Lan
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Dongle Liu
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Wei Zhang
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden
| | - Qingjun Zhou
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, People's Republic of China
| | - Patrik Danielson
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, Sweden.,Department of Clinical Sciences, Ophthalmology, Umeå University, Umeå, Sweden
| |
Collapse
|
45
|
Thankam FG, Boosani CS, Dilisio MF, Dietz NE, Agrawal DK. MicroRNAs Associated with Shoulder Tendon Matrisome Disorganization in Glenohumeral Arthritis. PLoS One 2016; 11:e0168077. [PMID: 27992561 PMCID: PMC5161352 DOI: 10.1371/journal.pone.0168077] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 11/27/2016] [Indexed: 12/27/2022] Open
Abstract
The extracellular matrix (ECM) provides core support which is essential for the cell and tissue architectural development. The role of ECM in many pathological conditions has been well established and ECM-related abnormalities leading to serious consequences have been identified. Though much has been explored in regards to the role of ECM in soft tissue associated pathologies, very little is known about its role in inflammatory disorders in tendon. In this study, we performed microRNA (miRNA) expression analysis in the long head of the human shoulder biceps tendon to identify key genes whose expression was altered during inflammation in patients with glenohumeral arthritis. We identified differential regulation of matrix metalloproteinases (MMPs) that could be critical in collagen type replacement during tendinopathy. The miRNA profiling showed consistent results between the groups and revealed significant changes in the expression of seven different miRNAs in the inflamed tendons. Interestingly, all of these seven miRNAs were previously reported to have either a direct or indirect role in regulating the ECM organization in other pathological disorders. In addition, these miRNAs were also found to alter the expression levels of MMPs, which are the key matrix degrading enzymes associated with ECM-related abnormalities and pathologies. To our knowledge, this is the first report which identifies specific miRNAs associated with inflammation and the matrix reorganization in the tendons. Furthermore, the findings also support the potential role of these miRNAs in altering the collagen type ratio in the tendons during inflammation which is accompanied with differential expression of MMPs.
Collapse
Affiliation(s)
- Finosh G. Thankam
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Chandra S. Boosani
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Matthew F. Dilisio
- Department of Orthopedic Surgery, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Nicholas E. Dietz
- Department of Pathology, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| | - Devendra K. Agrawal
- Department of Clinical & Translational Science, Creighton University School of Medicine, Omaha, Nebraska, United States of America
| |
Collapse
|
46
|
Youngstrom DW, LaDow JE, Barrett JG. Tenogenesis of bone marrow-, adipose-, and tendon-derived stem cells in a dynamic bioreactor. Connect Tissue Res 2016; 57:454-465. [PMID: 27028488 DOI: 10.3109/03008207.2015.1117458] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Tendons are frequently damaged and fail to regenerate, leading to pain, loss of function, and reduced quality of life. Mesenchymal stem cells (MSCs) possess clinically useful tissue-regenerative properties and have been exploited for use in tendon tissue engineering and cell therapy. However, MSCs exhibit phenotypic heterogeneity based on the donor tissue used, and the efficacy of cell-based treatment modalities may be improved by optimizing cell source based on relative differentiation capacity. Equine MSCs were isolated from bone marrow (BM), adipose (AD), and tendon (TN), expanded in monolayer prior to seeding on decellularized tendon scaffolds (DTS), and cell-laden constructs were placed in a bioreactor designed to mimic the biophysical environment of the tendon. It was hypothesized that TN MSCs would differentiate toward a tendon cell phenotype better than BM and AD MSCs in response to a conditioning period involving cyclic mechanical stimulation for 1 hour per day at 3% strain and 0.33 Hz. All cell types integrated into DTS adopted an elongated morphology similar to tenocytes, expressed tendon marker genes, and improved tissue mechanical properties after 11 days. TN MSCs expressed the greatest levels of scleraxis, collagen type-I, and cartilage oligomeric matrix protein. Major histocompatibility class-II protein mRNA expression was not detected in any of the MSC types, suggesting low immunogenicity for allogeneic transplantation. The results suggest that TN MSCs are the ideal cell type for regenerative medicine therapies for tendinopathies, exhibiting the most mature tendon-like phenotype in vitro. When TN MSCs are unavailable, BM or AD MSCs may serve as robust alternatives.
Collapse
Affiliation(s)
- Daniel W Youngstrom
- a Program in Biomedical and Veterinary Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| | - Jade E LaDow
- a Program in Biomedical and Veterinary Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| | - Jennifer G Barrett
- b Department of Large Animal Clinical Sciences, Marion duPont Scott Equine Medical Center , Virginia Tech , Leesburg , VA , USA
| |
Collapse
|
47
|
Liu W, Yin L, Yan X, Cui J, Liu W, Rao Y, Sun M, Wei Q, Chen F. Directing the Differentiation of Parthenogenetic Stem Cells into Tenocytes for Tissue-Engineered Tendon Regeneration. Stem Cells Transl Med 2016; 6:196-208. [PMID: 28170171 PMCID: PMC5442735 DOI: 10.5966/sctm.2015-0334] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 06/22/2016] [Indexed: 12/23/2022] Open
Abstract
Uniparental parthenogenesis yields pluripotent stem cells without the political and ethical concerns surrounding the use of embryonic stem cells (ESCs) for biomedical applications. In the current study, we hypothesized that parthenogenetic stem cells (pSCs) could be directed to differentiate into tenocytes and applied for tissue‐engineered tendon. We showed that pSCs displayed fundamental properties similar to those of ESCs, including pluripotency, clonogenicity, and self‐renewal capacity. pSCs spontaneously differentiated into parthenogenetic mesenchymal stem cells (pMSCs), which were positive for mesenchymal stem cell surface markers and possessed osteogenic, chondrogenic, and adipogenic potential. Then, mechanical stretch was applied to improve the tenogenic differentiation of pMSCs, as indicated by the expression of tenogenic‐specific markers and an increasing COL1A1:3A1 ratio. The pSC‐derived tenocytes could proliferate and secrete extracellular matrix on the surface of poly(lactic‐co‐glycolic) acid scaffolds. Finally, engineered tendon‐like tissue was successfully generated after in vivo heterotopic implantation of a tenocyte‐scaffold composite. In conclusion, our experiment introduced an effective and practical strategy for applying pSCs for tendon regeneration. Stem Cells Translational Medicine2017;6:196–208
Collapse
Affiliation(s)
- Wei Liu
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xi'an‐Xianyang New Economic Zone, People's Republic of China
| | - Lu Yin
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Xingrong Yan
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Jihong Cui
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Wenguang Liu
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Yang Rao
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Mei Sun
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Qi Wei
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
| | - Fulin Chen
- Rege Lab of Tissue Engineering, Faculty of Life Science, Northwest University, Xi'an, People's Republic of China
- Provincial Key Laboratory of Biotechnology of Shaanxi, Northwest University, Xi'an, People's Republic of China
| |
Collapse
|
48
|
Chen J, Zhang W, Liu Z, Zhu T, Shen W, Ran J, Tang Q, Gong X, Backman LJ, Chen X, Chen X, Wen F, Ouyang H. Characterization and comparison of post-natal rat Achilles tendon-derived stem cells at different development stages. Sci Rep 2016; 6:22946. [PMID: 26972579 PMCID: PMC4789738 DOI: 10.1038/srep22946] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/24/2016] [Indexed: 12/21/2022] Open
Abstract
Tendon stem/progenitor cells (TSPCs) are a potential cell source for tendon tissue engineering. The striking morphological and structural changes of tendon tissue during development indicate the complexity of TSPCs at different stages. This study aims to characterize and compare post-natal rat Achilles tendon tissue and TSPCs at different stages of development. The tendon tissue showed distinct differences during development: the tissue structure became denser and more regular, the nuclei became spindle-shaped and the cell number decreased with time. TSPCs derived from 7 day Achilles tendon tissue showed the highest self-renewal ability, cell proliferation, and differentiation potential towards mesenchymal lineage, compared to TSPCs derived from 1 day and 56 day tissue. Microarray data showed up-regulation of several groups of genes in TSPCs derived from 7 day Achilles tendon tissue, which may account for the unique cell characteristics during this specific stage of development. Our results indicate that TSPCs derived from 7 day Achilles tendon tissue is a superior cell source as compared to TSPCs derived from 1 day and 56 day tissue, demonstrating the importance of choosing a suitable stem cell source for effective tendon tissue engineering and regeneration.
Collapse
Affiliation(s)
- Jialin Chen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
| | - Wei Zhang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Zeyu Liu
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Ting Zhu
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Weiliang Shen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Jisheng Ran
- Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Qiaomei Tang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Orthopaedics, Second Affiliated Hospital, Zhejiang University, Hangzhou, 310009, China
| | - Xiaonan Gong
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, Umeå, 90187, Sweden
| | - Xiao Chen
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Xiaowen Chen
- Division of haematology and oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Feiqiu Wen
- Division of haematology and oncology, Shenzhen Children's Hospital, Shenzhen, 518038, China
| | - Hongwei Ouyang
- Centre for Stem Cell and Tissue Engineering, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,Zhejiang Provincial Key Lab for tissue engineering and regenerative medicine, 310000, Hangzhou, China.,Department of Sports Medicine, School of Medicine, Zhejiang University, Hangzhou, 310058, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
49
|
Lui PPY. Stem cell technology for tendon regeneration: current status, challenges, and future research directions. STEM CELLS AND CLONING-ADVANCES AND APPLICATIONS 2015; 8:163-74. [PMID: 26715856 PMCID: PMC4685888 DOI: 10.2147/sccaa.s60832] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Tendon injuries are a common cause of physical disability. They present a clinical challenge to orthopedic surgeons because injured tendons respond poorly to current treatments without tissue regeneration and the time required for rehabilitation is long. New treatment options are required. Stem cell-based therapies offer great potential to promote tendon regeneration due to their high proliferative, synthetic, and immunomodulatory activities as well as their potential to differentiate to the target cell types and undergo genetic modification. In this review, I first recapped the challenges of tendon repair by reviewing the anatomy of tendon. Next, I discussed the advantages and limitations of using different types of stem cells compared to terminally differentiated cells for tendon tissue engineering. The safety and efficacy of application of stem cells and their modified counterparts for tendon tissue engineering were then summarized after a systematic literature search in PubMed. The challenges and future research directions to enhance, optimize, and standardize stem cell-based therapies for augmenting tendon repair were then discussed.
Collapse
Affiliation(s)
- Pauline Po Yee Lui
- Headquarter, Hospital Authority, Hong Kong SAR, People's Republic of China
| |
Collapse
|
50
|
Sen CK, Ghatak S. miRNA control of tissue repair and regeneration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 185:2629-40. [PMID: 26056933 DOI: 10.1016/j.ajpath.2015.04.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 03/30/2015] [Accepted: 04/02/2015] [Indexed: 12/21/2022]
Abstract
Tissue repair and regeneration rely on the function of miRNA, molecular silencers that enact post-transcriptional gene silencing of coding genes. Disruption of miRNA homeostasis is developmentally lethal, indicating that fetal tissue development is tightly controlled by miRNAs. Multiple critical facets of adult tissue repair are subject to control by miRNAs, as well. Sources of cell pool for tissue repair and regeneration are diverse and provided by processes including cellular dedifferentiation, transdifferentiation, and reprogramming. Each of these processes is regulated by miRNAs. Furthermore, induced pluripotency may be achieved by miRNA-based strategies independent of transcription factor manipulation. The observation that miRNA does not integrate into the genome makes miRNA-based therapeutic strategies translationally valuable. Tools to manipulate cellular and tissue miRNA levels include mimics and inhibitors that may be specifically targeted to cells of interest at the injury site. Here, we discuss the extraordinary importance of miRNAs in tissue repair and regeneration based on emergent reports and rapid advances in miRNA-based therapeutics.
Collapse
Affiliation(s)
- Chandan K Sen
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio.
| | - Subhadip Ghatak
- Center for Regenerative Medicine and Cell-Based Therapies and the Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|