1
|
Das G, Ptacek J, Campbell J, Li X, Havlinova B, Noonepalle SK, Villagra A, Barinka C, Novakova Z. Targeting prostate cancer by new bispecific monocyte engager directed to prostate-specific membrane antigen. PLoS One 2025; 20:e0307353. [PMID: 40096254 PMCID: PMC11913275 DOI: 10.1371/journal.pone.0307353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 01/28/2025] [Indexed: 03/19/2025] Open
Abstract
Prostate cancer (PCa) ranks as the second leading cause of cancer-related deaths among men in the United States. Prostate-specific membrane antigen (PSMA) represents a well-established biomarker of PCa, and its levels correlate positively with the disease progression, culminating at the stage of metastatic castration-resistant prostate cancer. Due to its tissue-specific expression and cell surface localization, PSMA shows superior potential for precise imaging and therapy of PCa. Antibody-based immunotherapy targeting PSMA offers the promise of selectively engaging the host immune system with minimal off-target effects. Here we report on the design, expression, purification, and characterization of a bispecific engager, termed 5D3-CP33, that efficiently recruits macrophages to the vicinity of PSMA-positive cancer cells mediating PCa death. The engager was engineered by fusing the anti-PSMA 5D3 antibody fragment to a cyclic peptide 33 (CP33), selectively binding the Fc gamma receptor I (FcγRI/CD64) on the surface of phagocytes. Functional parts of the 5D3-CP33 engager revealed a nanomolar affinity for PSMA and FcγRI/CD64 with dissociation constants of KD = 3 nM and KD = 140 nM, respectively. At a concentration as low as 0.3 nM, the engager was found to trigger the production of reactive oxygen species by U937 monocytic cells in the presence of PSMA-positive cells. Moreover, flow cytometry analysis demonstrated antibody-dependent cell-mediated phagocytosis of PSMA-positive cancer cells by U937 monocytes when exposed to 0.15 nM 5D3-CP33. Our findings illustrate that 5D3-CP33 effectively and specifically activates monocytes upon PSMA-positive target engagement, resulting in the elimination of tumor cells. The 5D3-CP33 engager can thus serve as a promising lead for developing new immunotherapy tools for the efficient treatment of PCa.
Collapse
Affiliation(s)
- Gargi Das
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
- Department of Cell Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jakub Ptacek
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Jana Campbell
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Xintang Li
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Barbora Havlinova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Satish kumar Noonepalle
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Alejandro Villagra
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C., United States of America
| | - Cyril Barinka
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| | - Zora Novakova
- Laboratory of Structural Biology, Institute of Biotechnology of the Czech Academy of Sciences, Vestec, Czech Republic
| |
Collapse
|
2
|
Soerensen A, Popovic F, Olesen CH, Mendez BL, Lohse B, Chen Z, Farci P, Purcell RH, Alter HJ, Barfod LK, Bukh J, Prentoe J. Selection and characterization of a broadly neutralizing class of HCV anti-E2 VH1-69 antibodies. PLoS Pathog 2025; 21:e1012428. [PMID: 40153382 PMCID: PMC11999149 DOI: 10.1371/journal.ppat.1012428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 04/15/2025] [Accepted: 02/10/2025] [Indexed: 03/30/2025] Open
Abstract
Identification and characterization of antibody epitope targets on the hepatitis C virus (HCV) envelope proteins remain crucial for developing an effective vaccine. Building on prior research defining E1/E2 antibody epitope clustering, we screened a phage display library derived from a chronic HCV patient against detergent-extracted full-length E1/E2 from both the patient's acute-phase isolate (H77, genotype 1a) and a heterologous isolate (S52, genotype 3a). This approach yielded a panel of VH1-69 derived antibody fragments (Fabs) with similar characteristics. Interestingly, all members of the panel exhibited blocking activity against both antigenic region 2 and 3 (AR2 and AR3) in competition ELISAs, which contrasts with the behavior of most previously identified AR3-targeting antibodies. The VH1-69 derived binders had a high affinity for soluble E2 in both Fab and IgG formats, with dissociation constants in the low picomolar range. These Fab binders were broadly neutralizing against a panel of HCV cell culture viruses of genotype 1-6 with higher potency than the well-characterized reference Fab, AR3A. However, in the IgG format the antibodies had similar potency. These findings expand our understanding of potential targets for vaccine development by characterizing a panel of antibodies targeting an AR3 epitope also involving or occluding the back layer of E2. The broad neutralization and high affinity of these antibodies suggest a benefit to targeting both the back layer and the front layer of E2 in HCV vaccine designs to expand the repertoire of broadly neutralizing antibodies, thereby offering promise for the development of more effective preventive measures against this pervasive human pathogen.
Collapse
Affiliation(s)
- Andreas Soerensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Filip Popovic
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Blanca Lopez Mendez
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Brian Lohse
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Zhaochun Chen
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Patrizia Farci
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Robert H. Purcell
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Harvey J. Alter
- Department of Transfusion Medicine, Warren Grant Magnuson Clinical Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Lea Klingenberg Barfod
- Centre for Translational Medicine and Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Hvidovre and Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Copenhagen University Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
3
|
Wang W, Bunyatov M, Lopez-Barbosa N, DeLisa MP. Engineering affinity-matured variants of an anti-polysialic acid monoclonal antibody with superior cytotoxicity-mediating potency. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637914. [PMID: 40027839 PMCID: PMC11870402 DOI: 10.1101/2025.02.12.637914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Monoclonal antibodies (mAbs) that specifically recognize cell surface glycans associated with cancer and infectious disease hold tremendous value for both basic research and clinical applications. However, high-quality anti-glycan mAbs, especially those with sufficiently high affinity and specificity, remain scarce, highlighting the need for protein engineering approaches based on rational design or directed evolution that enable optimization of antigen-binding properties. To this end, we sought to enhance the affinity of a polysialic acid (polySia)-specific antibody called mAb735, which was raised by animal immunization and possesses only modest affinity, using a combination of rational design and directed evolution. The application of these approaches led to the discovery of affinity-matured IgG variants with up to ∼7-fold stronger affinity for polySia relative to the parental antibody. The higher affinity IgG variants were observed to opsonize polySia- positive cancer cells more avidly, which in turn resulted in significantly greater cytotoxicity as determined by both antibody-dependent cell-mediated cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) assays. Collectively, these results demonstrate the effective application of both rational and random molecular evolution techniques to an important anti-glycan antibody, providing insights into its carbohydrate recognition while at the same time uncovering variants with greater therapeutic promise due to their enhanced affinity and potency.
Collapse
Affiliation(s)
- Weiyao Wang
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Mehman Bunyatov
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Natalia Lopez-Barbosa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
| | - Matthew P. DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Olin Hall, Ithaca, NY 14853 USA
- Cornell Institute of Biotechnology, Cornell University, 130 Biotechnology Building, Ithaca, NY 14853 USA
| |
Collapse
|
4
|
Sangprasat K, Bulaon CJI, Rattanapisit K, Srisangsung T, Jirarojwattana P, Wongwatanasin A, Phoolcharoen W. Production of monoclonal antibodies against botulinum neurotoxin in Nicotiana benthamiana. Hum Vaccin Immunother 2024; 20:2329446. [PMID: 38525945 PMCID: PMC10965107 DOI: 10.1080/21645515.2024.2329446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/08/2024] [Indexed: 03/26/2024] Open
Abstract
Botulism is a fatal neurologic disease caused by the botulinum toxin (BoNT) produced by Clostridium botulinum. It is a rare but highly toxic disease with symptoms, such as cramps, nausea, vomiting, diarrhea, dysphagia, respiratory failure, muscle weakness, and even death. Currently, two types of antitoxin are used: equine-derived heptavalent antitoxin and human-derived immunoglobulin (BabyBIG®). However, heptavalent treatment may result in hypersensitivity, whereas BabyBIG®, has a low yield. The present study focused on the development of three anti-BoNT monoclonal antibodies (mAbs), 1B18, C25, and M2, in Nicotiana benthamiana. The plant-expressed mAbs were purified and examined for size, purity and integrity by SDS-PAGE, western blotting and size-exclusion chromatography. Analysis showed that plant-produced anti-BoNT mAbs can fully assemble in plants, can be purified in a single purification step, and mostly remain as monomeric proteins. The efficiency of anti-BoNT mAbs binding to BoNT/A and B was then tested. Plant-produced 1B18 retained its ability to recognize both mBoNT/A1 and ciBoNT/B1. At the same time, the binding specificities of two other mAbs were determined: C25 for mBoNT/A1 and M2 for ciBoNT/B1. In conclusion, our results confirm the use of plants as an alternative platform for the production of anti-BoNT mAbs. This plant-based technology will serve as a versatile system for the development botulism immunotherapeutics.
Collapse
Affiliation(s)
- Kornchanok Sangprasat
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Program in Research for Enterprise, Chulalongkorn University, Bangkok, Thailand
| | | | - Kaewta Rattanapisit
- Department of Research and Development, Baiya Phytopharm Co. Ltd, Bangkok, Thailand
| | - Theerakarn Srisangsung
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Graduate Program of Program in Research for Enterprise, Chulalongkorn University, Bangkok, Thailand
| | - Perawat Jirarojwattana
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | | | - Waranyoo Phoolcharoen
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok, Thailand
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
5
|
Lyukmanova EN, Pichkur EB, Nolde DE, Kocharovskaya MV, Manuvera VA, Shirokov DA, Kharlampieva DD, Grafskaia EN, Svetlova JI, Lazarev VN, Varizhuk AM, Kirpichnikov MP, Shenkarev ZO. Structure and dynamics of the interaction of Delta and Omicron BA.1 SARS-CoV-2 variants with REGN10987 Fab reveal mechanism of antibody action. Commun Biol 2024; 7:1698. [PMID: 39719448 DOI: 10.1038/s42003-024-07422-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 12/18/2024] [Indexed: 12/26/2024] Open
Abstract
Study of mechanisms by which antibodies recognize different viral strains is necessary for the development of new drugs and vaccines to treat COVID-19 and other infections. Here, we report 2.5 Å cryo-EM structure of the SARS-CoV-2 Delta trimeric S-protein in complex with Fab of the recombinant analog of REGN10987 neutralizing antibody. S-protein adopts "two RBD-down and one RBD-up" conformation. Fab interacts with RBDs in both conformations, blocking the recognition of angiotensin converting enzyme-2. Three-dimensional variability analysis reveals high mobility of the RBD/Fab regions. Interaction of REGN10987 with Wuhan, Delta, Omicron BA.1, and mutated variants of RBDs is analyzed by microscale thermophoresis, molecular dynamics simulations, and ΔG calculations with umbrella sampling and one-dimensional potential of mean force. Variability in molecular dynamics trajectories results in a large scatter of calculated ΔG values, but Boltzmann weighting provides an acceptable correlation with experiment. REGN10987 evasion of the Omicron variant is found to be due to the additive effect of the N440K and G446S mutations located at the RBD/Fab binding interface with a small effect of Q498R mutation. Our study explains the influence of known-to-date SARS-CoV-2 RBD mutations on REGN10987 recognition and highlights the importance of dynamics data beyond the static structure of the RBD/Fab complex.
Collapse
Affiliation(s)
- Ekaterina N Lyukmanova
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China.
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.
| | - Evgeny B Pichkur
- Department of Molecular and Radiation Biophysics, Petersburg Nuclear Physics Institute named by B.P.Konstantinov of National Research Center "Kurchatov Institute", Gatchina, Russia
| | - Dmitry E Nolde
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Milita V Kocharovskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| | - Valentin A Manuvera
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Dmitriy A Shirokov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Daria D Kharlampieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Ekaterina N Grafskaia
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Julia I Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Vassili N Lazarev
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Anna M Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Moscow, Russia
| | - Mikhail P Kirpichnikov
- Department of Biology, Shenzhen MSU-BIT University, Shenzhen, China
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
- Interdisciplinary Scientific and Educational School of Moscow University "Molecular Technologies of the Living Systems and Synthetic Biology", Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Zakhar O Shenkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia.
| |
Collapse
|
6
|
Qing E, Salgado J, Wilcox A, Gallagher T. SARS-CoV-2 Omicron variations reveal mechanisms controlling cell entry dynamics and antibody neutralization. PLoS Pathog 2024; 20:e1012757. [PMID: 39621785 PMCID: PMC11637440 DOI: 10.1371/journal.ppat.1012757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/12/2024] [Accepted: 11/17/2024] [Indexed: 12/14/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is adapting to continuous presence in humans. Transitions to endemic infection patterns are associated with changes in the spike (S) proteins that direct virus-cell entry. These changes generate antigenic drift and thereby allow virus maintenance in the face of prevalent human antiviral antibodies. These changes also fine tune virus-cell entry dynamics in ways that optimize transmission and infection into human cells. Focusing on the latter aspect, we evaluated the effects of several S protein substitutions on virus-cell membrane fusion, an essential final step in enveloped virus-cell entry. Membrane fusion is executed by integral-membrane "S2" domains, yet we found that substitutions in peripheral "S1" domains altered late-stage fusion dynamics, consistent with S1-S2 heterodimers cooperating throughout cell entry. A specific H655Y change in S1 stabilized a fusion-intermediate S protein conformation and thereby delayed membrane fusion. The H655Y change also sensitized viruses to neutralization by S2-targeting fusion-inhibitory peptides and stem-helix antibodies. The antibodies did not interfere with early fusion-activating steps; rather they targeted the latest stages of S2-directed membrane fusion in a novel neutralization mechanism. These findings demonstrate that single amino acid substitutions in the S proteins both reset viral entry-fusion kinetics and increase sensitivity to antibody neutralization. The results exemplify how selective forces driving SARS-CoV-2 fitness and antibody evasion operate together to shape SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Julisa Salgado
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Alexandria Wilcox
- McKelvey School of Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| |
Collapse
|
7
|
Takheaw N, Pamonsupornwichit T, Chaiwut R, Kotemul K, Sornsuwan K, Juntit OA, Yasamut U, Cheyasawan P, Laopajon W, Kasinrerk W, Tayapiwatana C. Exploring the Biological Activity of a Humanized Anti-CD99 ScFv and Antibody for Targeting T Cell Malignancies. Biomolecules 2024; 14:1422. [PMID: 39595598 PMCID: PMC11592157 DOI: 10.3390/biom14111422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/04/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
CD99, a type I transmembrane protein, emerges as a promising therapeutic target due to its heightened expression in T cell acute lymphoblastic leukemia (T-ALL). This characteristic renders it a potential marker for minimal residual disease detection and an appealing target for antibody-based treatments. Previous studies have revealed that a mouse monoclonal antibody, mAb MT99/3, selectively binds to CD99, triggering apoptosis in T-ALL/T-LBL cells while preserving the integrity of healthy cells. By targeting CD99, mAb MT99/3 suppresses antigen presentation and disrupts T cell functions, offering promise for addressing hyperresponsive T cell conditions. To facilitate clinical translation, we developed a humanized ScFv variant of mAb MT99/3, termed HuScFvMT99/3 in "ScFvkh" design. Structural analysis confirms its resemblance to the original antibody, and the immunoreactivity of HuScFvMT99/3 against CD99 is preserved. The fully humanized version of antibody HuMT99/3 was further engineered, exhibiting similar binding affinity at the 10-10 M level and specificity to the CD99 epitope without antigenic shift. HuMT99/3 demonstrates remarkable selectivity, recognizing both malignant and normal T cells but inducing apoptosis only in T-ALL/T-LBL cells, highlighting its potential for safe and targeted therapy.
Collapse
Affiliation(s)
- Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.T.); (K.K.); (U.Y.); (W.L.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Thanathat Pamonsupornwichit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.)
| | - Ratthakorn Chaiwut
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Kamonporn Kotemul
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.T.); (K.K.); (U.Y.); (W.L.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - On-anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.T.); (K.K.); (U.Y.); (W.L.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.)
| | - Passaworn Cheyasawan
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 73170, Thailand;
| | - Witida Laopajon
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.T.); (K.K.); (U.Y.); (W.L.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.T.); (K.K.); (U.Y.); (W.L.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (N.T.); (K.K.); (U.Y.); (W.L.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (K.S.); (O.-a.J.)
| |
Collapse
|
8
|
Augestad EH, Holmboe Olesen C, Grønberg C, Soerensen A, Velázquez-Moctezuma R, Fanalista M, Bukh J, Wang K, Gourdon P, Prentoe J. The hepatitis C virus envelope protein complex is a dimer of heterodimers. Nature 2024; 633:704-709. [PMID: 39232163 DOI: 10.1038/s41586-024-07783-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 07/03/2024] [Indexed: 09/06/2024]
Abstract
Fifty-eight million individuals worldwide are affected by chronic hepatitis C virus (HCV) infection, a primary driver of liver cancer for which no vaccine is available1. The HCV envelope proteins E1 and E2 form a heterodimer (E1/E2), which is the target for neutralizing antibodies2. However, the higher-order organization of these E1/E2 heterodimers, as well as that of any Hepacivirus envelope protein complex, remains unknown. Here we determined the cryo-electron microscopy structure of two E1/E2 heterodimers in a homodimeric arrangement. We reveal how the homodimer is established at the molecular level and provide insights into neutralizing antibody evasion and membrane fusion by HCV, as orchestrated by E2 motifs such as hypervariable region 1 and antigenic site 412, as well as the organization of the transmembrane helices, including two internal to E1. This study addresses long-standing questions on the higher-order oligomeric arrangement of Hepacivirus envelope proteins and provides a critical framework in the design of novel HCV vaccine antigens.
Collapse
Affiliation(s)
- Elias Honerød Augestad
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - Christina Holmboe Olesen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Grønberg
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Soerensen
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rodrigo Velázquez-Moctezuma
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Margherita Fanalista
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Jens Bukh
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kaituo Wang
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| | - Pontus Gourdon
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Department of Experimental Medical Science, Faculty of Medicine, Lund University, Lund, Sweden.
| | - Jannick Prentoe
- Copenhagen Hepatitis C Program (CO-HEP), Department of Infectious Diseases, Copenhagen University Hospital, Hvidovre, Denmark.
- Copenhagen Hepatitis C Program (CO-HEP), Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Fischer K, Lulla A, So TY, Pereyra-Gerber P, Raybould MIJ, Kohler TN, Yam-Puc JC, Kaminski TS, Hughes R, Pyeatt GL, Leiss-Maier F, Brear P, Matheson NJ, Deane CM, Hyvönen M, Thaventhiran JED, Hollfelder F. Rapid discovery of monoclonal antibodies by microfluidics-enabled FACS of single pathogen-specific antibody-secreting cells. Nat Biotechnol 2024:10.1038/s41587-024-02346-5. [PMID: 39143416 DOI: 10.1038/s41587-024-02346-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 06/27/2024] [Indexed: 08/16/2024]
Abstract
Monoclonal antibodies are increasingly used to prevent and treat viral infections and are pivotal in pandemic response efforts. Antibody-secreting cells (ASCs; plasma cells and plasmablasts) are an excellent source of high-affinity antibodies with therapeutic potential. Current methods to study antigen-specific ASCs either have low throughput, require expensive and labor-intensive screening or are technically demanding and therefore not widely accessible. Here we present a straightforward technology for the rapid discovery of monoclonal antibodies from ASCs. Our approach combines microfluidic encapsulation of single cells into an antibody capture hydrogel with antigen bait sorting by conventional flow cytometry. With our technology, we screened millions of mouse and human ASCs and obtained monoclonal antibodies against severe acute respiratory syndrome coronavirus 2 with high affinity (<1 pM) and neutralizing capacity (<100 ng ml-1) in 2 weeks with a high hit rate (>85% of characterized antibodies bound the target). By facilitating access to the underexplored ASC compartment, the approach enables efficient antibody discovery and immunological studies into the generation of protective antibodies.
Collapse
Affiliation(s)
- Katrin Fischer
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Aleksei Lulla
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Tsz Y So
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | - Pehuén Pereyra-Gerber
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
| | - Matthew I J Raybould
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Timo N Kohler
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | - Tomasz S Kaminski
- Department of Biochemistry, University of Cambridge, Cambridge, UK
- Department of Molecular Biology, Institute of Biochemistry, Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Robert Hughes
- MRC Toxicology Unit, Gleeson Building, Cambridge, UK
| | | | | | - Paul Brear
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | - Nicholas J Matheson
- Cambridge Institute for Therapeutic Immunology and Infectious Disease (CITIID), Department of Medicine, University of Cambridge, Cambridge, UK
- NHS Blood and Transplant, Cambridge, UK
| | - Charlotte M Deane
- Oxford Protein Informatics Group, Department of Statistics, University of Oxford, Oxford, UK
| | - Marko Hyvönen
- Department of Biochemistry, University of Cambridge, Cambridge, UK
| | | | | |
Collapse
|
10
|
Nilchan N, Kraivong R, Luangaram P, Phungsom A, Tantiwatcharakunthon M, Traewachiwiphak S, Prommool T, Punyadee N, Avirutnan P, Duangchinda T, Malasit P, Puttikhunt C. An Engineered N-Glycosylated Dengue Envelope Protein Domain III Facilitates Epitope-Directed Selection of Potently Neutralizing and Minimally Enhancing Antibodies. ACS Infect Dis 2024; 10:2690-2704. [PMID: 38943594 PMCID: PMC11320570 DOI: 10.1021/acsinfecdis.4c00058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/01/2024]
Abstract
The envelope protein of dengue virus (DENV) is a primary target of the humoral immune response. The domain III of the DENV envelope protein (EDIII) is known to be the target of multiple potently neutralizing antibodies. One such antibody is 3H5, a mouse antibody that binds strongly to EDIII and potently neutralizes DENV serotype 2 (DENV-2) with unusually minimal antibody-dependent enhancement (ADE). To selectively display the binding epitope of 3H5, we strategically modified DENV-2 EDIII by shielding other known epitopes with engineered N-glycosylation sites. The modifications resulted in a glycosylated EDIII antigen termed "EDIII mutant N". This antigen was successfully used to sift through a dengue-immune scFv-phage library to select for scFv antibodies that bind to or closely surround the 3H5 epitope. The selected scFv antibodies were expressed as full-length human antibodies and showed potent neutralization activity to DENV-2 with low or negligible ADE resembling 3H5. These findings not only demonstrate the capability of the N-glycosylated EDIII mutant N as a tool to drive an epitope-directed antibody selection campaign but also highlight its potential as a dengue immunogen. This glycosylated antigen shows promise in focusing the antibody response toward a potently neutralizing epitope while reducing the risk of antibody-dependent enhancement.
Collapse
Affiliation(s)
- Napon Nilchan
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Romchat Kraivong
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Prasit Luangaram
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Anunyaporn Phungsom
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Mongkhonphan Tantiwatcharakunthon
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Somchoke Traewachiwiphak
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Tanapan Prommool
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
| | - Nuntaya Punyadee
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Panisadee Avirutnan
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Thaneeya Duangchinda
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Prida Malasit
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Siriraj
Center of Research Excellence in Dengue and Emerging Pathogens Mahidol University, Bangkok 10700, Thailand
- Division
of Dengue Hemorrhagic Fever Research, Faculty of Medicine Siriraj
Hospital, Mahidol University, Bangkok 10700, Thailand
| | - Chunya Puttikhunt
- Molecular
Biology of Dengue and Flaviviruses Research Team, Medical Molecular
Biotechnology Research Group National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
- Medical
Biotechnology Research Unit, National Center for Genetic Engineering
and Biotechnology (BIOTEC), National Science
and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
11
|
Pamonsupornwichit T, Sornsuwan K, Juntit OA, Yasamut U, Takheaw N, Kasinrerk W, Wanachantararak P, Kodchakorn K, Nimmanpipug P, Intasai N, Tayapiwatana C. Engineered CD147-Deficient THP-1 Impairs Monocytic Myeloid-Derived Suppressor Cell Differentiation but Maintains Antibody-Dependent Cellular Phagocytosis Function for Jurkat T-ALL Cells with Humanized Anti-CD147 Antibody. Int J Mol Sci 2024; 25:6626. [PMID: 38928332 PMCID: PMC11203531 DOI: 10.3390/ijms25126626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
CD147 is upregulated in cancers, including aggressive T-ALL. Traditional treatments for T-ALL often entail severe side effects and the risk of relapse, highlighting the need for more efficacious therapies. ADCP contributes to the antitumor response by enhancing the ability of phagocytic cells to engulf cancer cells upon antibody binding. We aimed to engineer CD147KO THP-1 cells and evaluated their differentiation properties compared to the wild type. A humanized anti-CD147 antibody, HuM6-1B9, was also constructed for investing the phagocytic function of CD147KO THP-1 cells mediated by HuM6-1B9 in the phagocytosis of Jurkat T cells. The CD147KO THP-1 was generated by CRISPR/Cas9 and maintained polarization profiles. HuM6-1B9 was produced in CHO-K1 cells and effectively bound to CD147 with high binding affinity (KD: 2.05 ± 0.30 × 10-9 M). Additionally, HuM6-1B9 enhanced the phagocytosis of Jurkat T cells by CD147KO THP-1-derived LPS-activated macrophages (M-LPS), without self-ADCP. The formation of THP-1-derived mMDSC was limited in CD147KO THP-1 cells, highlighting the significant impact of CD147 deletion. Maintaining expression markers and phagocytic function in CD147KO THP-1 macrophages supports future engineering and the application of induced pluripotent stem cell-derived macrophages. The combination of HuM6-1B9 and CD147KO monocyte-derived macrophages holds promise as an alternative strategy for T-ALL.
Collapse
Affiliation(s)
- Thanathat Pamonsupornwichit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Kanokporn Sornsuwan
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - On-anong Juntit
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
| | - Nuchjira Takheaw
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Watchara Kasinrerk
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | | | - Kanchanok Kodchakorn
- Office of Research Administration, Chiang Mai University, Chiang Mai 50200, Thailand;
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Nutjeera Intasai
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Division of Clinical Microscopy, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (T.P.); (U.Y.); (N.T.); (W.K.)
- Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand; (K.S.); (O.-a.J.)
- Biomedical Technology Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency at the Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
12
|
Izadi A, Karami Y, Bratanis E, Wrighton S, Khakzad H, Nyblom M, Olofsson B, Happonen L, Tang D, Sundwall M, Godzwon M, Chao Y, Toledo AG, Schmidt T, Ohlin M, Nilges M, Malmström J, Bahnan W, Shannon O, Malmström L, Nordenfelt P. The hinge-engineered IgG1-IgG3 hybrid subclass IgGh 47 potently enhances Fc-mediated function of anti-streptococcal and SARS-CoV-2 antibodies. Nat Commun 2024; 15:3600. [PMID: 38678029 PMCID: PMC11055898 DOI: 10.1038/s41467-024-47928-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
Streptococcus pyogenes can cause invasive disease with high mortality despite adequate antibiotic treatments. To address this unmet need, we have previously generated an opsonic IgG1 monoclonal antibody, Ab25, targeting the bacterial M protein. Here, we engineer the IgG2-4 subclasses of Ab25. Despite having reduced binding, the IgG3 version promotes stronger phagocytosis of bacteria. Using atomic simulations, we show that IgG3's Fc tail has extensive movement in 3D space due to its extended hinge region, possibly facilitating interactions with immune cells. We replaced the hinge of IgG1 with four different IgG3-hinge segment subclasses, IgGhxx. Hinge-engineering does not diminish binding as with IgG3 but enhances opsonic function, where a 47 amino acid hinge is comparable to IgG3 in function. IgGh47 shows improved protection against S. pyogenes in a systemic infection mouse model, suggesting that IgGh47 has promise as a preclinical therapeutic candidate. Importantly, the enhanced opsonic function of IgGh47 is generalizable to diverse S. pyogenes strains from clinical isolates. We generated IgGh47 versions of anti-SARS-CoV-2 mAbs to broaden the biological applicability, and these also exhibit strongly enhanced opsonic function compared to the IgG1 subclass. The improved function of the IgGh47 subclass in two distant biological systems provides new insights into antibody function.
Collapse
Affiliation(s)
- Arman Izadi
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Yasaman Karami
- Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France
- Institut Pasteur, Université Paris cite, CNRS UMR3528, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, F-75015, Paris, France
| | - Eleni Bratanis
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Sebastian Wrighton
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Hamed Khakzad
- Université de Lorraine, CNRS, Inria, LORIA, F-54000, Nancy, France
| | - Maria Nyblom
- Department of Biology & Lund Protein Production Platform (LP3), Lund University, Lund, Sweden
| | - Berit Olofsson
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Lotta Happonen
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Di Tang
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Martin Sundwall
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Magdalena Godzwon
- Department of Immunotechnology and SciLifeLab Drug Discovery and Development Platform, Lund University, Lund, Sweden
| | - Yashuan Chao
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Alejandro Gomez Toledo
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Tobias Schmidt
- Department of Clinical Sciences Lund, Division of Pediatrics, Faculty of Medicine, Lund University, Lund, Sweden
| | - Mats Ohlin
- Department of Immunotechnology and SciLifeLab Drug Discovery and Development Platform, Lund University, Lund, Sweden
| | - Michael Nilges
- Institut Pasteur, Université Paris cite, CNRS UMR3528, Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, F-75015, Paris, France
| | - Johan Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Wael Bahnan
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Oonagh Shannon
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
- Section for Oral Biology and Pathology, Faculty of Odontology, Malmö University, Malmö, Sweden
| | - Lars Malmström
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden
| | - Pontus Nordenfelt
- Department of Clinical Sciences Lund, Infection Medicine, Faculty of Medicine, Lund University, Lund, Sweden.
- Department of Laboratory Medicine, Clinical Microbiology, Skåne University Hospital Lund, Lund University, Lund, Sweden.
| |
Collapse
|
13
|
Özçelik C, Araz CZ, Yılmaz Ö, Gülyüz S, Özdamar P, Salmanlı E, Özkul A, Şeker UÖŞ. Screening Peptide Drug Candidates To Neutralize Whole Viral Agents: A Case Study with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). ACS Pharmacol Transl Sci 2024; 7:1032-1042. [PMID: 38633598 PMCID: PMC11020059 DOI: 10.1021/acsptsci.3c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/03/2024] [Accepted: 03/06/2024] [Indexed: 04/19/2024]
Abstract
The COVID-19 pandemic revealed the need for therapeutic and pharmaceutical molecule development in a short time with different approaches. Although boosting immunological memory by vaccination was the quickest and robust strategy, still medication is required for the immediate treatment of a patient. A popular approach is the mining of new therapeutic molecules. Peptide-based drug candidates are also becoming a popular avenue. To target whole pathogenic viral agents, peptide libraries can be employed. With this motivation, we have used the 12mer M13 phage display library for selecting SARS-CoV-2 targeting peptides as potential neutralizing molecules to prevent viral infections. Panning was applied with four iterative cycles to select SARS-CoV-2 targeting phage particles displaying 12-amino acid-long peptides. Randomly selected peptide sequences were synthesized by a solid-state peptide synthesis method. Later, selected peptides were analyzed by the quartz crystal microbalance method to characterize their molecular interaction with SARS-CoV-2's S protein. Finally, the neutralization activity of the selected peptides was probed with an in-house enzyme-linked immunosorbent assay. The results showed that scpep3, scpep8, and scpep10 peptides have both binding and neutralizing capacity for S1 protein as a candidate for therapeutic molecule. The results of this study have a translational potential with future in vivo and human studies.
Collapse
Affiliation(s)
- Cemile
Elif Özçelik
- UNAM—Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
| | - Cemre Zekiye Araz
- Synbiotik
Biotechnology and Biomedical Technology Bilkent Kümeevler, Çankaya, Ankara 06800, Turkey
| | - Özgür Yılmaz
- Material
Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470, Turkey
| | - Sevgi Gülyüz
- Material
Technologies, Marmara Research Center, TUBITAK, Gebze, Kocaeli 41470, Turkey
| | - Pınar Özdamar
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Ezgi Salmanlı
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Aykut Özkul
- Faculty of Veterinary Medicine, Department of Virology, Graduate School of Health
Sciences, Department of Virology, Ankara
University, Ankara 06110, Turkey
| | - Urartu Özgür Şafak Şeker
- UNAM—Institute
of Materials Science and Nanotechnology, Bilkent University, Ankara 06800, Turkey
- Interdisciplinary
Program in Neuroscience, Bilkent University, Ankara 06800, Turkey
| |
Collapse
|
14
|
Reis-Claro I, Silva MI, Moutinho A, Garcia BC, Pereira-Castro I, Moreira A. Application of the iPLUS non-coding sequence in improving biopharmaceuticals production. Front Bioeng Biotechnol 2024; 12:1355957. [PMID: 38380261 PMCID: PMC10876878 DOI: 10.3389/fbioe.2024.1355957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
The biotechnological landscape has witnessed significant growth in biological therapeutics particularly in the field of recombinant protein production. Here we investigate the function of 3'UTR cis-regulatory elements in increasing mRNA and protein levels in different biological therapeutics and model systems, spanning from monoclonal antibodies to mRNA vaccines. We explore the regulatory function of iPLUS - a universal sequence capable of consistently augmenting recombinant protein levels. By incorporating iPLUS in a vector to express a monoclonal antibody used in immunotherapy, in a mammalian cell line used by the industry (ExpiCHO), trastuzumab production increases by 2-fold. As yeast Pichia pastoris is widely used in the manufacture of industrial enzymes and pharmaceuticals, we then used iPLUS in tandem (3x) and iPLUSv2 (a variant of iPLUS) to provide proof-of-concept data that it increases the production of a reporter protein more than 100-fold. As iPLUS functions by also increasing mRNA levels, we hypothesize that these sequences could be used as an asset in the mRNA vaccine industry. In fact, by including iPLUSv2 downstream of Spike we were able to double its production. Moreover, the same effect was observed when we introduced iPLUSv2 downstream of MAGEC2, a tumor-specific antigen tested for cancer mRNA vaccines. Taken together, our study provides data (TLR4) showing that iPLUS may be used as a valuable asset in a variety of systems used by the biotech and biopharmaceutical industry. Our results underscore the critical role of non-coding sequences in controlling gene expression, offering a promising avenue to accelerate, enhance, and cost-effectively optimize biopharmaceutical production processes.
Collapse
Affiliation(s)
- Inês Reis-Claro
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Maria Inês Silva
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Ana Moutinho
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Beatriz C. Garcia
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Isabel Pereira-Castro
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
| | - Alexandra Moreira
- Gene Regulation, i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| |
Collapse
|
15
|
Ren J, Liao X, Lewis JM, Chang J, Qu R, Carlson KR, Foss F, Girardi M. Generation and optimization of off-the-shelf immunotherapeutics targeting TCR-Vβ2+ T cell malignancy. Nat Commun 2024; 15:519. [PMID: 38225288 PMCID: PMC10789731 DOI: 10.1038/s41467-024-44786-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 01/05/2024] [Indexed: 01/17/2024] Open
Abstract
Current treatments for T cell malignancies encounter issues of disease relapse and off-target toxicity. Using T cell receptor (TCR)Vβ2 as a model, here we demonstrate the rapid generation of an off-the-shelf allogeneic chimeric antigen receptor (CAR)-T platform targeting the clone-specific TCR Vβ chain for malignant T cell killing while limiting normal cell destruction. Healthy donor T cells undergo CRISPR-induced TRAC, B2M and CIITA knockout to eliminate T cell-dependent graft-versus-host and host-versus-graft reactivity. Second generation 4-1BB/CD3zeta CAR containing high affinity humanized anti-Vβ scFv is expressed efficiently on donor T cells via both lentivirus and adeno-associated virus transduction with limited detectable pre-existing immunoreactivity. Our optimized CAR-T cells demonstrate specific and persistent killing of Vβ2+ Jurkat cells and Vβ2+ patient derived malignant T cells, in vitro and in vivo, without affecting normal T cells. In parallel, we generate humanized anti-Vβ2 antibody with enhanced antibody-dependent cellular cytotoxicity (ADCC) by Fc-engineering for NK cell ADCC therapy.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Xiaofeng Liao
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| | - Julia M Lewis
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Jungsoo Chang
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Rihao Qu
- The Computational Biology and Bioinformatics Program, Yale School of Medicine, New Haven, CT, USA
| | - Kacie R Carlson
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Francine Foss
- Department of Internal Medicine, Section of Medical Oncology, Yale School of Medicine, New Haven, CT, USA
| | - Michael Girardi
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
16
|
Slyp B, Darby JM, Flies AS. Conversion of Mouse-Derived Hybridomas to Tasmanian Devil Recombinant IgG Antibodies. Methods Mol Biol 2024; 2826:231-249. [PMID: 39017897 DOI: 10.1007/978-1-0716-3950-4_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
The hybridoma method for production of monoclonal antibodies has been a cornerstone of biomedical research for several decades. Here we convert the monoclonal antibody sequence from mouse-derived hybridomas into a "devilized" recombinant antibody with devil IgG heavy chain and IgK light chain. The chimeric recombinant antibody can be used in functional assays, immunotherapy, and to improve understanding of antibodies and Fc receptors in Tasmanian devils. The process can be readily modified for other species.
Collapse
Affiliation(s)
- Bailey Slyp
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Jocelyn M Darby
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | - Andrew S Flies
- Menzies Institute for Medical Research, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia.
| |
Collapse
|
17
|
Vester SK, Davies AM, Beavil RL, Sandhar BS, Beavil AJ, Gould HJ, Sutton BJ, McDonnell JM. Expanding the Anti-Phl p 7 Antibody Toolkit: An Anti-Idiotype Nanobody Inhibitor. Antibodies (Basel) 2023; 12:75. [PMID: 37987253 PMCID: PMC10660547 DOI: 10.3390/antib12040075] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/08/2023] [Accepted: 11/10/2023] [Indexed: 11/22/2023] Open
Abstract
We have previously produced a toolkit of antibodies, comprising recombinant human antibodies of all but one of the human isotypes, directed against the polcalcin family antigen Phl p 7. In this work, we complete the toolkit of human antibody isotypes with the IgD version of the anti-Phl p 7 monoclonal antibody. We also raised a set of nanobodies against the IgD anti-Phl p 7 antibody and identify and characterize one paratope-specific nanobody. This nanobody also binds to the IgE isotype of this antibody, which shares the same idiotype, and orthosterically inhibits the interaction with Phl p 7. The 2.1 Å resolution X-ray crystal structure of the nanobody in complex with the IgD Fab is described.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, King’s College London, New Hunt’s House, London SE1 1UL, UK; (S.K.V.); (A.M.D.); (R.L.B.); (B.S.S.); (A.J.B.); (H.J.G.); (B.J.S.)
| |
Collapse
|
18
|
Powers JA, Boroughs KL, Mikula S, Goodman CH, Davis EH, Thrasher EM, Hughes HR, Biggerstaff BJ, Calvert AE. Characterization of a monoclonal antibody specific to California serogroup orthobunyaviruses and development as a chimeric immunoglobulin M-positive control in human diagnostics. Microbiol Spectr 2023; 11:e0196623. [PMID: 37668403 PMCID: PMC10581219 DOI: 10.1128/spectrum.01966-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 07/18/2023] [Indexed: 09/06/2023] Open
Abstract
IMPORTANCE Orthobunyaviruses in the California serogroup cause severe neurological disease in children and adults. While these viruses are known to circulate widely in North America, their occurrence is rare. Serological testing for CSGVs is hindered by the limited availability and volumes of human-positive specimens needed as controls in serologic assays. Here, we described the development of a murine monoclonal antibody cross-reactive to CSGVs engineered to contain the variable regions of the murine antibody on the backbone of human IgM. The chimeric IgM produced from the stably expressing HEK293 cell line was evaluated for use as a surrogate human-positive control in a serologic diagnostic test.
Collapse
Affiliation(s)
- Jordan A. Powers
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Karen L. Boroughs
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Sierra Mikula
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Christin H. Goodman
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Emily H. Davis
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Elisa M. Thrasher
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Holly R. Hughes
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Brad J. Biggerstaff
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| | - Amanda E. Calvert
- Division of Vector-Borne Diseases, U.S. Centers for Disease Control and Prevention, Fort Collins, Colorado, USA
| |
Collapse
|
19
|
Keelapang P, Kraivong R, Pulmanausahakul R, Sriburi R, Prompetchara E, Kaewmaneephong J, Charoensri N, Pakchotanon P, Duangchinda T, Suparattanagool P, Luangaram P, Masrinoul P, Mongkolsapaya J, Screaton G, Ruxrungtham K, Auewarakul P, Yoksan S, Malasit P, Puttikhunt C, Ketloy C, Sittisombut N. Blockade-of-Binding Activities toward Envelope-Associated, Type-Specific Epitopes as a Correlative Marker for Dengue Virus-Neutralizing Antibody. Microbiol Spectr 2023; 11:e0091823. [PMID: 37409936 PMCID: PMC10433959 DOI: 10.1128/spectrum.00918-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/20/2023] [Indexed: 07/07/2023] Open
Abstract
Humans infected with dengue virus (DENV) acquire long-term protection against the infecting serotype, whereas cross-protection against other serotypes is short-lived. Long-term protection induced by low levels of type-specific neutralizing antibodies can be assessed using the virus-neutralizing antibody test. However, this test is laborious and time-consuming. In this study, a blockade-of-binding enzyme-linked immunoassay was developed to assess antibody activity by using a set of neutralizing anti-E monoclonal antibodies and blood samples from dengue virus-infected or -immunized macaques. Diluted blood samples were incubated with plate-bound dengue virus particles before the addition of an enzyme-conjugated antibody specific to the epitope of interest. Based on blocking reference curves constructed using autologous purified antibodies, sample blocking activity was determined as the relative concentration of unconjugated antibody that resulted in the same percent signal reduction. In separate DENV-1-, -2-, -3-, and -4-related sets of samples, moderate to strong correlations of the blocking activity with neutralizing antibody titers were found with the four type-specific antibodies 1F4, 3H5, 8A1, and 5H2, respectively. Significant correlations were observed for single samples taken 1 month after infection as well as samples drawn before and at various time points after infection/immunization. Similar testing using a cross-reactive EDE-1 antibody revealed a moderate correlation between the blocking activity and the neutralizing antibody titer only for the DENV-2-related set. The potential usefulness of the blockade-of-binding activity as a correlative marker of neutralizing antibodies against dengue viruses needs to be validated in humans. IMPORTANCE This study describes a blockade-of-binding assay for the determination of antibodies that recognize a selected set of serotype-specific or group-reactive epitopes in the envelope of dengue virus. By employing blood samples collected from dengue virus-infected or -immunized macaques, moderate to strong correlations of the epitope-blocking activities with the virus-neutralizing antibody titers were observed with serotype-specific blocking activities for each of the four dengue serotypes. This simple, rapid, and less laborious method should be useful for the evaluation of antibody responses to dengue virus infection and may serve as, or be a component of, an in vitro correlate of protection against dengue in the future.
Collapse
Affiliation(s)
- Poonsook Keelapang
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Romchat Kraivong
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Rungtawan Sriburi
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| | - Eakachai Prompetchara
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jutamart Kaewmaneephong
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nicha Charoensri
- Center for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Pattarakul Pakchotanon
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Thaneeya Duangchinda
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | | | - Prasit Luangaram
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
| | - Promsin Masrinoul
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Juthathip Mongkolsapaya
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Gavin Screaton
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Chinese Academy of Medical Science (CAMS), Oxford Institute (COI), University of Oxford, Oxford, United Kingdom
| | - Kiat Ruxrungtham
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Prasert Auewarakul
- Department of Microbiology, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutee Yoksan
- Center for Vaccine Development, Institute of Molecular Biosciences, Mahidol University at Salaya, Nakhon Pathom, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
- Molecular Biology of Dengue and Flaviviruses Research Team, Medical Molecular Biotechnology Research Group, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani, Thailand
- Division of Dengue Hemorrhagic Fever Research, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chutitorn Ketloy
- Center of Excellence in Vaccine Research and Development (Chula-VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Laboratory Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Nopporn Sittisombut
- Department of Microbiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
- Medical Biotechnology Research Unit, BIOTEC, NSTDA, Bangkok, Thailand
| |
Collapse
|
20
|
Crescioli S, Correa I, Ng J, Willsmore ZN, Laddach R, Chenoweth A, Chauhan J, Di Meo A, Stewart A, Kalliolia E, Alberts E, Adams R, Harris RJ, Mele S, Pellizzari G, Black ABM, Bax HJ, Cheung A, Nakamura M, Hoffmann RM, Terranova-Barberio M, Ali N, Batruch I, Soosaipillai A, Prassas I, Ulndreaj A, Chatanaka MK, Nuamah R, Kannambath S, Dhami P, Geh JLC, MacKenzie Ross AD, Healy C, Grigoriadis A, Kipling D, Karagiannis P, Dunn-Walters DK, Diamandis EP, Tsoka S, Spicer J, Lacy KE, Fraternali F, Karagiannis SN. B cell profiles, antibody repertoire and reactivity reveal dysregulated responses with autoimmune features in melanoma. Nat Commun 2023; 14:3378. [PMID: 37291228 PMCID: PMC10249578 DOI: 10.1038/s41467-023-39042-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 05/23/2023] [Indexed: 06/10/2023] Open
Abstract
B cells are known to contribute to the anti-tumor immune response, especially in immunogenic tumors such as melanoma, yet humoral immunity has not been characterized in these cancers to detail. Here we show comprehensive phenotyping in samples of circulating and tumor-resident B cells as well as serum antibodies in melanoma patients. Memory B cells are enriched in tumors compared to blood in paired samples and feature distinct antibody repertoires, linked to specific isotypes. Tumor-associated B cells undergo clonal expansion, class switch recombination, somatic hypermutation and receptor revision. Compared with blood, tumor-associated B cells produce antibodies with proportionally higher levels of unproductive sequences and distinct complementarity determining region 3 properties. The observed features are signs of affinity maturation and polyreactivity and suggest an active and aberrant autoimmune-like reaction in the tumor microenvironment. Consistent with this, tumor-derived antibodies are polyreactive and characterized by autoantigen recognition. Serum antibodies show reactivity to antigens attributed to autoimmune diseases and cancer, and their levels are higher in patients with active disease compared to post-resection state. Our findings thus reveal B cell lineage dysregulation with distinct antibody repertoire and specificity, alongside clonally-expanded tumor-infiltrating B cells with autoimmune-like features, shaping the humoral immune response in melanoma.
Collapse
Affiliation(s)
- Silvia Crescioli
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Isabel Correa
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Joseph Ng
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Zena N Willsmore
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Roman Laddach
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - Alicia Chenoweth
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Jitesh Chauhan
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ashley Di Meo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Alexander Stewart
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Eleni Kalliolia
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Elena Alberts
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Rebecca Adams
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Robert J Harris
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Silvia Mele
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Giulia Pellizzari
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anna B M Black
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Heather J Bax
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Anthony Cheung
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Mano Nakamura
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Ricarda M Hoffmann
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Manuela Terranova-Barberio
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Niwa Ali
- Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
- Centre for Gene Therapy and Regenerative Medicine, School of Basic and Medical Biosciences, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Antigona Ulndreaj
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miyo K Chatanaka
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Rosamund Nuamah
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Shichina Kannambath
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
- Genomics Facility, Institute of Cancer Research, London, UK
| | - Pawan Dhami
- Biomedical Research Centre, Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Jenny L C Geh
- St John's Institute of Dermatology, Guy's, King's, and St. Thomas' Hospitals NHS Foundation Trust, London, UK
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | | | - Ciaran Healy
- Department of Plastic Surgery at Guy's and St. Thomas' NHS Foundation Trust, London, UK
| | - Anita Grigoriadis
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - David Kipling
- School of Biosciences and Medicine, University of Surrey, Guildford, UK
| | - Panagiotis Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | | | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, ON, Canada
- Department of Clinical Biochemistry, University Health Network, Toronto, ON, Canada
| | - Sophia Tsoka
- Department of Informatics, Faculty of Natural, Mathematical and Engineering Sciences, King's College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Katie E Lacy
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK
| | - Franca Fraternali
- Randall Centre for Cell and Molecular Biophysics, King's College London, London, UK
- Research Department of Structural and Molecular Biology, University College London, London, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic & Medical Biosciences, King's College London, Guy's Hospital, London, UK.
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK.
| |
Collapse
|
21
|
Davies AM, Beavil RL, Barbolov M, Sandhar BS, Gould HJ, Beavil AJ, Sutton BJ, McDonnell JM. Crystal structures of the human IgD Fab reveal insights into C H1 domain diversity. Mol Immunol 2023; 159:28-37. [PMID: 37267832 DOI: 10.1016/j.molimm.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/17/2023] [Accepted: 05/20/2023] [Indexed: 06/04/2023]
Abstract
Antibodies of the IgD isotype remain the least well characterized of the mammalian immunoglobulin isotypes. Here we report three-dimensional structures for the Fab region of IgD, based on four different crystal structures, at resolutions of 1.45-2.75 Å. These IgD Fab crystals provide the first high-resolution views of the unique Cδ1 domain. Structural comparisons identify regions of conformational diversity within the Cδ1 domain, as well as among the homologous domains of Cα1, Cγ1 and Cμ1. The IgD Fab structure also possesses a unique conformation of the upper hinge region, which may contribute to the overall disposition of the very long linker sequence between the Fab and Fc regions found in human IgD. Structural similarities observed between IgD and IgG, and differences with IgA and IgM, are consistent with predicted evolutionary relationships for the mammalian antibody isotypes.
Collapse
Affiliation(s)
- Anna M Davies
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Rebecca L Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Momchil Barbolov
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Balraj S Sandhar
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Hannah J Gould
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Andrew J Beavil
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - Brian J Sutton
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom
| | - James M McDonnell
- King's College London, Randall Centre for Cell and Molecular Biophysics, New Hunt's House, London SE1 1UL, United Kingdom.
| |
Collapse
|
22
|
Chen X, Gula H, Pius T, Ou C, Gomozkova M, Wang LX, Schneewind O, Missiakas D. Immunoglobulin G subclasses confer protection against Staphylococcus aureus bloodstream dissemination through distinct mechanisms in mouse models. Proc Natl Acad Sci U S A 2023; 120:e2220765120. [PMID: 36972444 PMCID: PMC10083571 DOI: 10.1073/pnas.2220765120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 03/03/2023] [Indexed: 03/29/2023] Open
Abstract
Antibodies bind target molecules with exquisite specificity. The removal of these targets is mediated by the effector functions of antibodies. We reported earlier that the monoclonal antibody (mAb) 3F6 promotes opsonophagocytic killing of Staphylococcus aureus in blood and reduces bacterial replication in animals. Here, we generated mouse immunoglobulin G (mIgG) subclass variants and observed a hierarchy in protective efficacy 3F6-mIgG2a > 3F6-mIgG1 ≥ 3F6-mIgG2b >> 3F6-mIgG3 following bloodstream challenge of C57BL/6J mice. This hierarchy was not observed in BALB/cJ mice: All IgG subclasses conferred similar protection. IgG subclasses differ in their ability to activate complement and interact with Fcγ receptors (FcγR) on immune cells. 3F6-mIgG2a-dependent protection was lost in FcγR-deficient, but not in complement-deficient C57BL/6J animals. Measurements of the relative ratio of FcγRIV over complement receptor 3 (CR3) on neutrophils suggest the preferential expression of FcγRIV in C57BL/6 mice and of CR3 in BALB/cJ mice. To determine the physiological significance of these differing ratios, blocking antibodies against FcγRIV or CR3 were administered to animals before challenge. Correlating with the relative abundance of each receptor, 3F6-mIgG2a-dependent protection in C57BL/6J mice showed a greater reliance for FcγRIV while protection in BALB/cJ mice was only impaired upon neutralization of CR3. Thus, 3F6-based clearance of S. aureus in mice relies on a strain-specific contribution of variable FcγR- and complement-dependent pathways. We surmise that these variabilities are the result of genetic polymorphism(s) that may be encountered in other mammals including humans and may have clinical implications in predicting the efficacy of mAb-based therapies.
Collapse
Affiliation(s)
- Xinhai Chen
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
- Institute of Infectious Diseases, Shenzhen Bay Laboratory, Shenzhen518132, China
| | - Haley Gula
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Tonu Pius
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Chong Ou
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Margaryta Gomozkova
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Lai-Xi Wang
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD20742
| | - Olaf Schneewind
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| | - Dominique Missiakas
- Department of Microbiology, Howard Taylor Ricketts Laboratory, The University of Chicago, Lemont, IL60439
| |
Collapse
|
23
|
Inoue T, Shinnakasu R, Kawai C, Yamamoto H, Sakakibara S, Ono C, Itoh Y, Terooatea T, Yamashita K, Okamoto T, Hashii N, Ishii-Watabe A, Butler NS, Matsuura Y, Matsumoto H, Otsuka S, Hiraoka K, Teshima T, Murakami M, Kurosaki T. Antibody feedback contributes to facilitating the development of Omicron-reactive memory B cells in SARS-CoV-2 mRNA vaccinees. J Exp Med 2023; 220:213745. [PMID: 36512034 PMCID: PMC9750191 DOI: 10.1084/jem.20221786] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 12/14/2022] Open
Abstract
In contrast to a second dose of the SARS-CoV-2 mRNA vaccine, a third dose elicits potent neutralizing activity against the Omicron variant. To address the underlying mechanism for this differential antibody response, we examined spike receptor-binding domain (RBD)-specific memory B cells in vaccinated individuals. Frequency of Omicron-reactive memory B cells increased ∼9 mo after the second vaccine dose. These memory B cells show an altered distribution of epitopes from pre-second memory B cells, presumably due to an antibody feedback mechanism. This hypothesis was tested using mouse models, showing that an addition or a depletion of RBD-induced serum antibodies results in a concomitant increase or decrease, respectively, of Omicron-reactive germinal center (GC) and memory B cells. Our data suggest that pre-generated antibodies modulate the selection of GC and subsequent memory B cells after the second vaccine dose, accumulating more Omicron-reactive memory B cells over time, which contributes to the generation of Omicron-neutralizing antibodies elicited by the third vaccine dose.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Division of Medical Research Support, Advanced Research Support Center, Ehime University, Ehime, Japan.,Translational Research Center, Ehime University Hospital, Ehime, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiromi Yamamoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Yumi Itoh
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | | | | | - Toru Okamoto
- Institute for Advanced Co-Creation Studies, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Akiko Ishii-Watabe
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kanagawa, Japan
| | - Noah S Butler
- Department of Microbiology and Immunology, The University of Iowa, Iowa City, IA, USA
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan.,Laboratory of Virus Control, Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| | - Hisatake Matsumoto
- Department of Traumatology and Acute Critical Medicine, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Shinya Otsuka
- Department of Surgery, National Hospital Organization Hakodate National Hospital, Hokkaido, Japan
| | - Kei Hiraoka
- Department of Surgery, National Hospital Organization Hakodate National Hospital, Hokkaido, Japan
| | - Takanori Teshima
- Division of Laboratory and Transfusion Medicine, Hokkaido University Hospital, Sapporo, Japan.,Department of Hematology, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Sapporo, Japan.,Team of Quantum immunology, Institute for Quantum Life Science, National Institute for Quantum and Radiological Science and Technology, Chiba, Japan.,Division of Molecular Neuroimmunology, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
24
|
Zhu W, Li J, Wu Z, Li H, Zhang Z, Zhu X, Sun M, Dong S. Dual blockages of a broad and potent neutralizing IgM antibody targeting GH loop of EV-As. Immunology 2023. [PMID: 36726218 DOI: 10.1111/imm.13629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
The reported enterovirus A 71 (EVA71) vaccines and immunoglobin G (IgG) antibodies have no cross-antiviral efficacy against other enterovirus A (EV-A) which caused hand, foot and mouth disease (HFMD). Here we constructed an IgM antibody (20-IgM) based on our previous discovery to address the resistance encountered by IgG-based immunotherapy. Although binding to the same conserved neutralizing epitope within the GH loop of EV-As VP1, the antiviral breath and potency of 20-IgM are still higher than its parental 20-IgG1. The 20-IgM blocks the interaction between the EV-As and its receptors, scavenger receptor class B, member 2 (SCARB2) and Kringle-containing transmembrane protein 1(KREMEN1) of the host cell. The 20-IgM also neutralizes the EV-As at the post-attachment stages, including postattachment neutralization, uncoating and RNA release inhibition after internalization. Mechanistically, the dual blockage effect of 20-IgM is dependent on both a conserved site targeting and high affinity binding. Meanwhile, 20-IgM provides cross-antiviral efficacy in EV-As orally infected neonatal ICR mice. Collectively, 20-IgM and its property exhibit excellent antiviral activity with a dual-blockage inhibitory effect at both the pre- and post-attachment stages. The finding enhances our understanding of IgM-mediated immunity and highlights the potential of IgM subtype antibodies against enterovirus infections.
Collapse
Affiliation(s)
- Wenbing Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jun Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhongxiang Wu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hui Li
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Zhixiao Zhang
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xiaoyong Zhu
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Ming Sun
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Shaozhong Dong
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| |
Collapse
|
25
|
Corogeanu D, Zaki K, Beavil AJ, Arnold JN, Diebold SS. Antibody conjugates for targeted delivery of Toll-like receptor 9 agonist to the tumor tissue. PLoS One 2023; 18:e0282831. [PMID: 36913398 PMCID: PMC10010539 DOI: 10.1371/journal.pone.0282831] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 02/23/2023] [Indexed: 03/14/2023] Open
Abstract
Imiquimod, a Toll-like receptor 7 (TLR7) agonist is routinely used for topical administration in basal cell carcinoma and stage zero melanoma. Similarly, the TLR agonist Bacillus Calmette-Guérin is used for the local treatment of bladder cancer and clinical trials showed treatment efficacy of intratumoral injections with TLR9 agonists. However, when administered systemically, endosomal TLR agonists cause adverse responses due to broad immune activation. Hence, strategies for targeted delivery of TLR agonists to the tumor tissue are needed to enable the widespread use of endosomal TLR agonists in the context of tumor immunotherapy. One strategy for targeted delivery of TLR agonist is their conjugation to tumor antigen-specific therapeutic antibodies. Such antibody-TLR agonist conjugates act synergistically by inducing local TLR-mediated innate immune activation which complements the anti-tumor immune mechanisms induced by the therapeutic antibody. In this study, we explored different conjugation strategies for TLR9 agonists to immunoglobulin G (IgG). We evaluated biochemical conjugation of immunostimulatory CpG oligodesoxyribonucleotides (ODN) to the HER2-specific therapeutic antibody Trastuzumab with different cross-linkers comparing stochastic with site-specific conjugation. The physiochemical make-up and biological activities of the generated Trastuzumab-ODN conjugates were characterized in vitro and demonstrated that site-specific conjugation of CpG ODN is crucial for maintaining the antigen-binding capabilities of Trastuzumab. Furthermore, site-specific conjugate was effective in promoting anti-tumor immune responses in vivo in a pseudo-metastasis mouse model with engineered human HER2-transgenic tumor cells. In this in vivo model, co-delivery of Trastuzumab and CpG ODN in form of site-specific conjugates was superior to co-injection of unconjugated Trastuzumab, CpG ODN or stochastic conjugate in promoting T cell activation and expansion. Thereby, this study highlights that site-specific conjugation of CpG ODN to therapeutic antibodies targeting tumor markers is a feasible and more reliable approach for generation of conjugates which retain and combine the functional properties of the adjuvant and the antibody.
Collapse
Affiliation(s)
- Diana Corogeanu
- National Institute for Biological Standards and Control (NIBSC), Biotherapeutics Division, Medicines and Healthcare products Regulatory Agency, Potters Bar, United Kingdom
| | - Kam Zaki
- National Institute for Biological Standards and Control (NIBSC), Advanced Therapies Division, Medicines and Healthcare products Regulatory Agency, Potters Bar, United Kingdom
| | - Andrew J Beavil
- King's College London, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - James N Arnold
- King's College London, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, London, United Kingdom
| | - Sandra S Diebold
- National Institute for Biological Standards and Control (NIBSC), Biotherapeutics Division, Medicines and Healthcare products Regulatory Agency, Potters Bar, United Kingdom
| |
Collapse
|
26
|
Non-viral 2A-like sequences for protein coexpression. J Biotechnol 2022; 358:1-8. [PMID: 35995093 DOI: 10.1016/j.jbiotec.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
Simultaneous coexpression of multiple proteins is essential for biotechnology and synthetic biology. Currently, the most popular polyprotein coexpression system utilizes the foot-and-mouth disease virus (FMDV) 2A peptide that mediates translational ribosome-skipping events. However, due to unfavorable consumer acceptance of transgenic products containing animal-virus sequences, novel non-viral 2A-like peptides from purple sea urchin (Strongylcentrotus purpuratus) and California sea slug (Aplysia californica) were investigated for polyprotein coexpression in this study. We demonstrated that these non-viral 2A sequences functioned similarly to their viral counterpart in polyprotein processing, in both plant and mammalian cells, and were successfully used to express a functional recombinant antibody. The new non-viral 2A-like sequences offer an alternative tool for engineering multigenic traits or production of protein complexes as biomedicine via coexpression of protein subunits.
Collapse
|
27
|
Kraivong R, Traewachiwiphak S, Nilchan N, Tangthawornchaikul N, Pornmun N, Poraha R, Sriruksa K, Limpitikul W, Avirutnan P, Malasit P, Puttikhunt C. Cross-reactive antibodies targeting surface-exposed non-structural protein 1 (NS1) of dengue virus-infected cells recognize epitopes on the spaghetti loop of the β-ladder domain. PLoS One 2022; 17:e0266136. [PMID: 35617160 PMCID: PMC9135231 DOI: 10.1371/journal.pone.0266136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022] Open
Abstract
Non-structural protein 1 (NS1) is a glycoprotein component of dengue virus (DENV) that is essential for viral replication, infection and immune evasion. Immunization with NS1 has been shown to elicit antibody-mediated immune responses which protect mice against DENV infections. Here, we obtained peripheral blood mononuclear cells from human subjects with secondary dengue infections, which were used to construct a dengue immune phage library displaying single-chain variable fragments. Phage selective for DENV NS1 were obtained by biopanning. Twenty-one monoclonal antibodies (mAbs) against DENV NS1 were generated from the selected phage and characterized in detail. We found most anti-NS1 mAbs used IGHV1 heavy chain antibody genes. The mAbs were classified into strongly and weakly-reactive groups based on their binding to NS1 expressed in dengue virus 2 (DENV2)-infected cells. Antibody binding experiments with recombinant NS1 proteins revealed that the mAbs recognize conformational epitopes on the β-ladder domain (amino acid residues 178–273) of DENV NS1. Epitope mapping studies on alanine-substituted NS1 proteins identified distinct but overlapping epitopes. Protruding amino acids distributed around the spaghetti loop are required for the binding of the strongly-reactive mAbs, whereas the recognition residues of the weakly-reactive mAbs are likely to be located in inaccessible sites facing toward the cell membrane. This information could guide the design of an NS1 epitope-based vaccine that targets cross-reactive conserved epitopes on cell surface-associated DENV NS1.
Collapse
Affiliation(s)
- Romchat Kraivong
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
| | - Somchoke Traewachiwiphak
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Napon Nilchan
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
| | - Nattaya Tangthawornchaikul
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
| | - Nuntaya Pornmun
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Ranyikar Poraha
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Kanokwan Sriruksa
- Pediatric Department, Khon Kaen Hospital, Ministry of Public Health, Khon Kaen, Thailand
| | - Wannee Limpitikul
- Pediatric Department, Songkhla Hospital, Ministry of Public Health, Songkhla, Thailand
| | - Panisadee Avirutnan
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Prida Malasit
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Division of Dengue Hemorrhagic Fever Research, Mahidol University, Bangkok, Thailand
| | - Chunya Puttikhunt
- Molecular Biology of Dengue and Flaviviruses Research Team, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
- Medical Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, Siriraj Hospital, Bangkok, Thailand
- Faculty of Medicine Siriraj Hospital, Siriraj Center of Research Excellence in Dengue and Emerging Pathogens, Mahidol University, Bangkok, Thailand
- * E-mail:
| |
Collapse
|
28
|
Qing E, Li P, Cooper L, Schulz S, Jäck HM, Rong L, Perlman S, Gallagher T. Inter-domain communication in SARS-CoV-2 spike proteins controls protease-triggered cell entry. Cell Rep 2022; 39:110786. [PMID: 35477024 PMCID: PMC9015963 DOI: 10.1016/j.celrep.2022.110786] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/11/2022] [Accepted: 04/13/2022] [Indexed: 01/29/2023] Open
Abstract
SARS-CoV-2 continues to evolve into variants of concern (VOC), with greatest variability in the multidomain, entry-facilitating spike proteins. To recognize the significance of adaptive spike protein changes, we compare variant SARS-CoV-2 virus particles in several assays reflecting authentic virus-cell entry. Virus particles with adaptive changes in spike amino-terminal domains (NTDs) are hypersensitive to proteolytic activation of membrane fusion, an essential step in virus-cell entry. Proteolysis is within fusion domains (FDs), at sites over 10 nm from the VOC-specific NTD changes, indicating allosteric inter-domain control of fusion activation. In addition, NTD-specific antibodies block FD cleavage, membrane fusion, and virus-cell entry, suggesting restriction of inter-domain communication as a neutralization mechanism. Finally, using structure-guided mutagenesis, we identify an inter-monomer β sheet structure that facilitates NTD-to-FD transmissions and subsequent fusion activation. This NTD-to-FD axis that sensitizes viruses to infection and to NTD-specific antibody neutralization provides new context for understanding selective forces driving SARS-CoV-2 evolution.
Collapse
Affiliation(s)
- Enya Qing
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA
| | - Pengfei Li
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Laura Cooper
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Sebastian Schulz
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nuremberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Hans-Martin Jäck
- Division of Molecular Immunology, Friedrich-Alexander University Erlangen-Nuremberg and University Hospital Erlangen, 91054 Erlangen, Germany
| | - Lijun Rong
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
| | - Tom Gallagher
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL 60153, USA.
| |
Collapse
|
29
|
Kim M, Lee J, Choi J, Seo Y, Park G, Jeon J, Jeon Y, Lee MG, Kwon MH. A Recombinant Ig Fragment (IgCw-γεκ) Comprising the Cγ 1-Cε 2-4 and C κ Domains Is an Alternative Reagent to Human IgE. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:772-779. [PMID: 35022271 PMCID: PMC8802548 DOI: 10.4049/jimmunol.2100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
Human IgE is useful for immunological assays, such as sensitization of FcεRI-positive cells and IgE measurement. In this study, we report the development of a recombinant Ig fragment, designated IgCw-γεκ, as an alternative reagent to human IgE. IgCw-γεκ (∼130 kDa) comprises two hybrid constant H chain regions (Cγ1-Cε2-4, each ∼53 kDa) and two constant κ L chains (Cκ, each ∼12 kDa) and lacks a V domain. The presence of Cγ1 instead of Cε1 within the H chain increased the production yield and facilitated assembly of the H and L chains. IgCw-γεκ was produced in cultured human embryonic kidney 293F cells, with a yield of ∼27 mg/l. IgCw-γεκ bound to human FcεRIαRs expressed on the surface of rat basophilic leukemia-2H3 cells. A β-hexosaminidase release assay revealed that the biological activity of IgCw-γεκ was comparable with that of IgE. The IgE concentration measured using IgCw-γεκ as a standard was similar to that measured using IgE as a standard. These results suggest that the IgCw-γεκ molecule retains the basic characteristics of IgE, but does not cross-react with Ags, making it an alternative to the IgE isotype references used in a variety of immunological assays.
Collapse
Affiliation(s)
- Minjae Kim
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Jeonghyun Lee
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Juho Choi
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Youngsil Seo
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea
| | - Gyeseo Park
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Jinah Jeon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Yerin Jeon
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| | - Mi-Gi Lee
- Bio-Center, Gyeonggido Business and Science Accelerator, Suwon, South Korea
| | - Myung-Hee Kwon
- Department of Microbiology, Ajou University School of Medicine, Suwon, South Korea;
- Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, South Korea; and
| |
Collapse
|
30
|
Shinnakasu R, Sakakibara S, Yamamoto H, Wang PH, Moriyama S, Sax N, Ono C, Yamanaka A, Adachi Y, Onodera T, Sato T, Shinkai M, Suzuki R, Matsuura Y, Hashii N, Takahashi Y, Inoue T, Yamashita K, Kurosaki T. Glycan engineering of the SARS-CoV-2 receptor-binding domain elicits cross-neutralizing antibodies for SARS-related viruses. J Exp Med 2021; 218:e20211003. [PMID: 34623376 PMCID: PMC8641255 DOI: 10.1084/jem.20211003] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/24/2021] [Accepted: 09/22/2021] [Indexed: 11/21/2022] Open
Abstract
Broadly protective vaccines against SARS-related coronaviruses that may cause future outbreaks are urgently needed. The SARS-CoV-2 spike receptor-binding domain (RBD) comprises two regions, the core-RBD and the receptor-binding motif (RBM); the former is structurally conserved between SARS-CoV-2 and SARS-CoV. Here, in order to elicit humoral responses to the more conserved core-RBD, we introduced N-linked glycans onto RBM surfaces of the SARS-CoV-2 RBD and used them as immunogens in a mouse model. We found that glycan addition elicited higher proportions of the core-RBD-specific germinal center (GC) B cells and antibody responses, thereby manifesting significant neutralizing activity for SARS-CoV, SARS-CoV-2, and the bat WIV1-CoV. These results have implications for the design of SARS-like virus vaccines.
Collapse
Affiliation(s)
- Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Shuhei Sakakibara
- Laboratory of Immune Regulation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Hiromi Yamamoto
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Po-hung Wang
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Saya Moriyama
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | - Chikako Ono
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Atsushi Yamanaka
- Mahidol-Osaka Center for Infectious Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Mahidol-Osaka Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yu Adachi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Taishi Onodera
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | | | | | - Ryosuke Suzuki
- Department of Virology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yoshiharu Matsuura
- Laboratory of Virus Control, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Virus Control, Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| | - Noritaka Hashii
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Kawasaki, Japan
| | - Yoshimasa Takahashi
- Reseach Center for Drug and Vaccine Development, National Institute of Infection Diseases, Tokyo, Japan
| | - Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | | | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
- Laboratory for Lymphocyte Differentiation, Research Center for Allergy and Immunology, RIKEN, Yokohama, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
31
|
Phakham T, Bulaon CJI, Khorattanakulchai N, Shanmugaraj B, Buranapraditkun S, Boonkrai C, Sooksai S, Hirankarn N, Abe Y, Strasser R, Rattanapisit K, Phoolcharoen W. Functional Characterization of Pembrolizumab Produced in Nicotiana benthamiana Using a Rapid Transient Expression System. FRONTIERS IN PLANT SCIENCE 2021; 12:736299. [PMID: 34567049 PMCID: PMC8459022 DOI: 10.3389/fpls.2021.736299] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/18/2021] [Indexed: 05/23/2023]
Abstract
The striking innovation and clinical success of immune checkpoint inhibitors (ICIs) have undoubtedly contributed to a breakthrough in cancer immunotherapy. Generally, ICIs produced in mammalian cells requires high investment, production costs, and involves time consuming procedures. Recently, the plants are considered as an emerging protein production platform due to its cost-effectiveness and rapidity for the production of recombinant biopharmaceuticals. This study explored the potential of plant-based system to produce an anti-human PD-1 monoclonal antibody (mAb), Pembrolizumab, in Nicotiana benthamiana. The transient expression of this mAb in wild-type N. benthamiana accumulated up to 344.12 ± 98.23 μg/g fresh leaf weight after 4 days of agroinfiltration. The physicochemical and functional characteristics of plant-produced Pembrolizumab were compared to mammalian cell-produced commercial Pembrolizumab (Keytruda®). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis results demonstrated that the plant-produced Pembrolizumab has the expected molecular weight and is comparable with the Keytruda®. Structural characterization also confirmed that both antibodies have no protein aggregation and similar secondary and tertiary structures. Furthermore, the plant-produced Pembrolizumab displayed no differences in its binding efficacy to PD-1 protein and inhibitory activity between programmed cell death 1 (PD-1) and programmed cell death ligand 1 (PD-L1) interaction with the Keytruda®. In vitro efficacy for T cell activation demonstrated that the plant-produced Pembrolizumab could induce IL-2 and IFN-γ production. Hence, this proof-of-concept study showed that the plant-production platform can be utilized for the rapid production of functional mAbs for immunotherapy.
Collapse
Affiliation(s)
- Tanapati Phakham
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Christine Joy I. Bulaon
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Narach Khorattanakulchai
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| | | | - Supranee Buranapraditkun
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Vaccine Research and Development (Chula Vaccine Research Center-Chula VRC), Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatikorn Boonkrai
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Systems Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sarintip Sooksai
- The Institute of Biotechnology and Genetic Engineering, Chulalongkorn University, Bangkok, Thailand
| | - Nattiya Hirankarn
- Department of Microbiology, Faculty of Medicine, Center of Excellence in Immunology and Immune-Mediated Diseases, Chulalongkorn University, Bangkok, Thailand
| | - Yoshito Abe
- Department of Pharmaceutical Sciences, School of Pharmacy at Fukuoka, International University of Health and Welfare, Okawa, Japan
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Waranyoo Phoolcharoen
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
- Plant-Produced Pharmaceutical Research Unit, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
32
|
Man F, Koers A, Karagiannis P, Josephs DH, Bax HJ, Gilbert AE, Dodev TS, Mele S, Chiarruttini G, Crescioli S, Chauhan J, Blower JE, Cooper MS, Spicer J, Karagiannis SN, Blower PJ. In vivo trafficking of a tumor-targeting IgE antibody: molecular imaging demonstrates rapid hepatobiliary clearance compared to IgG counterpart. Oncoimmunology 2021; 10:1966970. [PMID: 34513315 PMCID: PMC8425638 DOI: 10.1080/2162402x.2021.1966970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 07/26/2021] [Accepted: 08/08/2021] [Indexed: 11/30/2022] Open
Abstract
IgE antibodies elicit powerful immune responses, recruiting effector cells to tumors more efficiently and with greater cytotoxicity than IgG antibodies. Consequently, IgE antibodies are a promising alternative to conventional IgG-based therapies in oncology (AllergoOncology). As the pharmacokinetics of IgE antibodies are less well understood, we used molecular imaging in mice to compare the distribution and elimination of IgE and IgG antibodies targeting the human tumor-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4). Anti-CSPG4 IgE and IgG1 antibodies with human Fc domains were radiolabeled with 111In. CSPG4-expressing A375 human melanoma xenografts implanted in NOD-scid IL2rg-/- mice were also engrafted with human immune cells by intravenous administration. 111In-anti-CSPG4 antibodies were administered intravenously. Their distribution was determined by single-photon emission computed tomography (SPECT) and ex vivo gamma-counting over 120 h. SPECT imaging was conducted from 0 to 60 min after antibody administration to precisely measure the early phase of IgE distribution. 111In-labeled anti-CSPG4 IgG and IgE showed serum stability in vitro of >92% after 5 days. In A375 xenograft-bearing mice, anti-CSPG4 IgE showed much faster blood clearance and higher accumulation in the liver compared to anti-CSPG4 IgG. However, tumor-to-blood and tumor-to-muscle ratios were similar between the antibody isotypes and higher compared with a non-tumor-targeting isotype control IgE. IgE excretion was much faster than IgG. In non-tumor-bearing animals, early SPECT imaging revealed a blood clearance half-life of 10 min for IgE. Using image-based quantification, we demonstrated that the blood clearance of IgE is much faster than that of IgG while the two isotypes showed comparable tumor-to-blood ratios.
Collapse
Affiliation(s)
- Francis Man
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Institute of Pharmaceutical Science, King’s College London, London, UK
| | - Alexander Koers
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Panagiotis Karagiannis
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Debra H. Josephs
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Heather J. Bax
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Amy E. Gilbert
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Tihomir S. Dodev
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
- School of Basic and Medical Biosciences, Randall Centre for Cell and Molecular Biophysics, King’s College London, London, UK
- Allergic Mechanisms in Asthma, Asthma UK Centre, King’s College London, London, UK
| | - Silvia Mele
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Giulia Chiarruttini
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Silvia Crescioli
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
| | - Jitesh Chauhan
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
| | - Julia E. Blower
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - Margaret S. Cooper
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| | - James Spicer
- School of Cancer & Pharmaceutical Sciences, Guy’s Hospital, King’s College London, London, UK
- Cancer Centre at Guy’s, Guy’s and St Thomas’ NHS Foundation Trust, London, UK
| | - Sophia N. Karagiannis
- School of Basic & Medical Biosciences, St John’s Institute of Dermatology, King’s College London, London, UK
- School of Cancer & Pharmaceutical Sciences, Breast Cancer Now Research Unit, King’s College London, Guy’s Hospital, London, UK
| | - Philip J. Blower
- School of Biomedical Engineering & Imaging Sciences, King’s College London, London, UK
| |
Collapse
|
33
|
Inoue T, Shinnakasu R, Kawai C, Ise W, Kawakami E, Sax N, Oki T, Kitamura T, Yamashita K, Fukuyama H, Kurosaki T. Exit from germinal center to become quiescent memory B cells depends on metabolic reprograming and provision of a survival signal. J Exp Med 2021; 218:211457. [PMID: 33045065 PMCID: PMC7555411 DOI: 10.1084/jem.20200866] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 08/11/2020] [Accepted: 09/03/2020] [Indexed: 12/24/2022] Open
Abstract
A still unanswered question is what drives the small fraction of activated germinal center (GC) B cells to become long-lived quiescent memory B cells. We found here that a small population of GC-derived CD38intBcl6hi/intEfnb1+ cells with lower mTORC1 activity favored the memory B cell fate. Constitutively high mTORC1 activity led to defects in formation of the CD38intBcl6hi/intEfnb1+ cells; conversely, decreasing mTORC1 activity resulted in relative enrichment of this memory-prone population over the recycling-prone one. Furthermore, the CD38intBcl6hi/intEfnb1+ cells had higher levels of Bcl2 and surface BCR that, in turn, contributed to their survival and development. We also found that downregulation of Bcl6 resulted in increased expression of both Bcl2 and BCR. Given the positive correlation between the strength of T cell help and mTORC1 activity, our data suggest a model in which weak help from T cells together with provision of an increased survival signal are key for GC B cells to adopt a memory B cell fate.
Collapse
Affiliation(s)
- Takeshi Inoue
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Ryo Shinnakasu
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Chie Kawai
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Wataru Ise
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Eiryo Kawakami
- Medical Sciences Innovation Hub Program, RIKEN, Kanagawa, Japan.,Artificial Intelligence Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | | | - Toshihiko Oki
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regeneration Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Toshio Kitamura
- Division of Cellular Therapy, Advanced Clinical Research Center, and Division of Stem Cell Signaling, Center for Stem Cell Biology and Regeneration Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| | - Tomohiro Kurosaki
- Laboratory of Lymphocyte Differentiation, WPI Immunology Frontier Research Center, Osaka University, Osaka, Japan.,Laboratory for Lymphocyte Differentiation, RIKEN Center for Integrative Medical Sciences, Kanagawa, Japan
| |
Collapse
|
34
|
Pellizzari G, Martinez O, Crescioli S, Page R, Di Meo A, Mele S, Chiaruttini G, Hoinka J, Batruch I, Prassas I, Grandits M, López-Abente J, Bugallo-Blanco E, Ward M, Bax HJ, French E, Cheung A, Lombardi S, Figini M, Lacy KE, Diamandis EP, Josephs DH, Spicer J, Papa S, Karagiannis SN. Immunotherapy using IgE or CAR T cells for cancers expressing the tumor antigen SLC3A2. J Immunother Cancer 2021; 9:jitc-2020-002140. [PMID: 34112739 PMCID: PMC8194339 DOI: 10.1136/jitc-2020-002140] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2021] [Indexed: 01/21/2023] Open
Abstract
Background Cancer immunotherapy with monoclonal antibodies and chimeric antigen receptor (CAR) T cell therapies can benefit from selection of new targets with high levels of tumor specificity and from early assessments of efficacy and safety to derisk potential therapies. Methods Employing mass spectrometry, bioinformatics, immuno-mass spectrometry and CRISPR/Cas9 we identified the target of the tumor-specific SF-25 antibody. We engineered IgE and CAR T cell immunotherapies derived from the SF-25 clone and evaluated potential for cancer therapy. Results We identified the target of the SF-25 clone as the tumor-associated antigen SLC3A2, a cell surface protein with key roles in cancer metabolism. We generated IgE monoclonal antibody, and CAR T cell immunotherapies each recognizing SLC3A2. In concordance with preclinical and, more recently, clinical findings with the first-in-class IgE antibody MOv18 (recognizing the tumor-associated antigen Folate Receptor alpha), SF-25 IgE potentiated Fc-mediated effector functions against cancer cells in vitro and restricted human tumor xenograft growth in mice engrafted with human effector cells. The antibody did not trigger basophil activation in cancer patient blood ex vivo, suggesting failure to induce type I hypersensitivity, and supporting safe therapeutic administration. SLC3A2-specific CAR T cells demonstrated cytotoxicity against tumor cells, stimulated interferon-γ and interleukin-2 production in vitro. In vivo SLC3A2-specific CAR T cells significantly increased overall survival and reduced growth of subcutaneous PC3-LN3-luciferase xenografts. No weight loss, manifestations of cytokine release syndrome or graft-versus-host disease, were detected. Conclusions These findings identify efficacious and potentially safe tumor-targeting of SLC3A2 with novel immune-activating antibody and genetically modified cell therapies.
Collapse
Affiliation(s)
- Giulia Pellizzari
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Olivier Martinez
- Immunoengineering Group, King's College London, London, England, UK
| | - Silvia Crescioli
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Robert Page
- Immunoengineering Group, King's College London, London, England, UK
| | - Ashley Di Meo
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Silvia Mele
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Giulia Chiaruttini
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Jan Hoinka
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Ihor Batruch
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ioannis Prassas
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Melanie Grandits
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Jacobo López-Abente
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | | | | | - Heather J Bax
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Elise French
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Anthony Cheung
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK.,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, London, England, UK
| | - Sara Lombardi
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK.,School of Cancer and Pharmaceutical Sciences, King's College London, London, England, UK
| | - Mariangela Figini
- Biomarker Unit, Dipartimento di Ricerca Applicata e Sviluppo Tecnologico (DRAST), Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Katie E Lacy
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK
| | - Eleftherios P Diamandis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Department of Clinical Biochemistry, University Health Network, Toronto, Ontario, Canada
| | - Debra H Josephs
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK.,Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, England, UK
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, London, England, UK
| | - Sophie Papa
- Immunoengineering Group, King's College London, London, England, UK .,Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, London, England, UK
| | - Sophia N Karagiannis
- St John's Institute of Dermatology, School of Basic and Medical Biosciences, King's College London, London, England, UK .,Breast Cancer Now Research Unit, School of Cancer and Pharmaceutical Sciences, King's College London, London, England, UK
| |
Collapse
|
35
|
Pranger CL, Fazekas‐Singer J, Köhler VK, Pali‐Schöll I, Fiocchi A, Karagiannis SN, Zenarruzabeitia O, Borrego F, Jensen‐Jarolim E. PIPE-cloned human IgE and IgG4 antibodies: New tools for investigating cow's milk allergy and tolerance. Allergy 2021; 76:1553-1556. [PMID: 32990982 PMCID: PMC8247298 DOI: 10.1111/all.14604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Affiliation(s)
- Christina L. Pranger
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Centre of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Judit Fazekas‐Singer
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Centre of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
- Institute of Science and Technology Austria Klosterneuburg Austria
| | - Verena K. Köhler
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Centre of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | - Isabella Pali‐Schöll
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Centre of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| | | | - Sophia N. Karagiannis
- St. John's Institute of Dermatology School of Basic & Medical Biosciences King's College London Guy's Hospital London UK
- Breast Cancer Now Research Unit School of Cancer & Pharmaceutical Sciences King's College London London UK
| | | | - Francisco Borrego
- Immunopathology Group Biocruces Bizkaia Health Research Institute Barakaldo Spain
- Ikerbasque Basque Foundation for Science Bilbao Spain
| | - Erika Jensen‐Jarolim
- The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna Medical University Vienna and University Vienna Vienna Austria
- Institute of Pathophysiology and Allergy Research Centre of Pathophysiology, Infectiology and Immunology Medical University of Vienna Vienna Austria
| |
Collapse
|
36
|
Di Blasi R, Zouein A, Ellis T, Ceroni F. Genetic Toolkits to Design and Build Mammalian Synthetic Systems. Trends Biotechnol 2021; 39:1004-1018. [PMID: 33526300 DOI: 10.1016/j.tibtech.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Construction of DNA-encoded programs is central to synthetic biology and the chosen method often determines the time required to design and build constructs for testing. Here, we describe and summarise key features of the available toolkits for DNA construction for mammalian cells. We compare the different cloning strategies based on their complexity and the time needed to generate constructs of different sizes, and we reflect on why Golden Gate toolkits now dominate due to their modular design. We look forward to future advances, including accessory packs for cloning toolkits that can facilitate editing, orthogonality, advanced regulation, and integration into synthetic chromosome construction.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Annalise Zouein
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
37
|
Williams IP, Crescioli S, Sow HS, Bax HJ, Hobbs C, Ilieva KM, French E, Pellizzari G, Cox V, Josephs DH, Spicer JF, Karagiannis SN, Mele S. In vivo safety profile of a CSPG4-directed IgE antibody in an immunocompetent rat model. MAbs 2021; 12:1685349. [PMID: 31769737 PMCID: PMC6927758 DOI: 10.1080/19420862.2019.1685349] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
IgE monoclonal antibodies hold great potential for cancer therapy. Preclinical in vivo systems, particularly those in which the antibody recognizes the host species target antigen and binds to cognate Fc receptors, are often the closest approximation to human exposure and represent a key challenge for evaluating the safety of antibody-based therapies. We sought to develop an immunocompetent rat system to assess the safety of a rodent anti-tumor IgE, as a surrogate for the human therapeutic candidate. We generated a rat IgE against the human tumor-associated antigen chondroitin sulfate proteoglycan 4 (CSPG4) and cross-reactive for the rat antigen. We analyzed CSPG4 distribution in normal rat and human tissues and investigated the in vivo safety of the antibody by monitoring clinical signs and molecular biomarkers after systemic administration to immunocompetent rats. Human and rat CSPG4 expression in normal tissues were comparable. Animals receiving antibody exhibited transient mild to moderate adverse events accompanied by mild elevation of serum tryptase, but not of angiotensin II or cytokines implicated in allergic reactions or cytokine storm. In the long term, repeated antibody administration was well tolerated, with no changes in animal body weight, liver and kidney functions or blood cell counts. This model provides preclinical support for the safety profiling of IgE therapeutic antibodies. Due to the comparable antigen tissue distribution in human and rat, this model may also comprise an appropriate tool for proof-of-concept safety evaluations of different treatment approaches targeting CSPG4.
Collapse
Affiliation(s)
- Iwan P Williams
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK
| | - Silvia Crescioli
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK
| | - Heng Sheng Sow
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK.,IGEM Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Heather J Bax
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK.,IGEM Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Carl Hobbs
- Wolfson Centre for Age-Related Diseases, King's College London, London, UK
| | - Kristina M Ilieva
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK.,Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King's College London, Guy's Cancer Centre, London, UK
| | - Elise French
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK
| | - Giulia Pellizzari
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK
| | - Vivienne Cox
- IGEM Therapeutics Ltd, London BioScience Innovation Centre, London, UK
| | - Debra H Josephs
- School of Cancer & Pharmaceutical Sciences, King's College London, Bermondsey Wing, Guy's Hospital, Bermondsey Wing, London, UK.,Department of Medical Oncology, Guy's and St Thomas' NHS Foundation Trust, Guy`s Hospital, London, UK
| | - James F Spicer
- School of Cancer & Pharmaceutical Sciences, King's College London, Bermondsey Wing, Guy's Hospital, Bermondsey Wing, London, UK.,Guy's and St Thomas' NHS Foundation Trust, Department of Oncology, Guy`s Hospital, Bermondsey Wing, London, UK
| | - Sophia N Karagiannis
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK
| | - Silvia Mele
- St John`s Institute of Dermatology, School of Basic and Medical Biosciences, King`s College London, London, UK
| |
Collapse
|
38
|
Purification of murine immunoglobulin E (IgE) by thiophilic interaction chromatography (TIC). J Immunol Methods 2020; 489:112914. [PMID: 33197470 DOI: 10.1016/j.jim.2020.112914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 10/16/2020] [Accepted: 11/10/2020] [Indexed: 11/21/2022]
Abstract
In addition to their known implication in allergy studies, IgE antibodies are becoming an increasingly interesting antibody class in cancer research. However, large-scale purification of IgE antibodies still poses substantial challenges, as they cannot be purified using techniques commonly used for other immunoglobulins such as protein A or protein G chromatography. Here, we have developed and optimised a gentle and simple IgE purification method based on thiophilic interaction chromatography (TIC). IgE binds to the thiophilic resin in presence of 1.2 M ammonium sulfate and is eluted in low salt concentration. Monomericity of purified antibodies ranged between 54 and 73%. Preparative size-exclusion chromatography was thereafter performed to further improve the purity, which reached >95% in the final product. The overall recovery was around 30%. The purification method was tested on both hybridoma-produced and recombinantly produced IgE antibodies with reproducible results. In addition, the antigen binding activity of purified IgE antibodies was preserved, as shown by binding ELISA. Purification by TIC is cheap, gentle in terms of pH to preserve IgE folding and function, and universal as any IgE antibody can be purified irrespective of the species of origin or affinity. Potentially, it could be used for purification of other antibody isotypes as well, when gentle conditions are required.
Collapse
|
39
|
IgE Antibodies against Cancer: Efficacy and Safety. Antibodies (Basel) 2020; 9:antib9040055. [PMID: 33081206 PMCID: PMC7709114 DOI: 10.3390/antib9040055] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 09/25/2020] [Accepted: 10/09/2020] [Indexed: 12/13/2022] Open
Abstract
Immunoglobulin E (IgE) antibodies are well known for their role in allergic diseases and for contributions to antiparasitic immune responses. Properties of this antibody class that mediate powerful effector functions may be redirected for the treatment of solid tumours. This has led to the rise of a new class of therapeutic antibodies to complement the armamentarium of approved tumour targeting antibodies, which to date are all IgG class. The perceived risk of type I hypersensitivity reactions following administration of IgE has necessitated particular consideration in the development of these therapeutic agents. Here, we bring together the properties of IgE antibodies pivotal to the hypothesis for superior antitumour activity compared to IgG, observations of in vitro and in vivo efficacy and mechanisms of action, and a focus on the safety considerations for this novel class of therapeutic agent. These include in vitro studies of potential hypersensitivity, selection of and observations from appropriate in vivo animal models and possible implications of the high degree of glycosylation of IgE. We also discuss the use of ex vivo predictive and monitoring clinical tools, as well as the risk mitigation steps employed in, and the preliminary outcomes from, the first-in-human clinical trial of a candidate anticancer IgE therapeutic.
Collapse
|
40
|
Köhler VK, Crescioli S, Fazekas-Singer J, Bax HJ, Hofer G, Pranger CL, Hufnagl K, Bianchini R, Flicker S, Keller W, Karagiannis SN, Jensen-Jarolim E. Filling the Antibody Pipeline in Allergy: PIPE Cloning of IgE, IgG 1 and IgG 4 against the Major Birch Pollen Allergen Bet v 1. Int J Mol Sci 2020; 21:E5693. [PMID: 32784509 PMCID: PMC7460837 DOI: 10.3390/ijms21165693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/06/2020] [Indexed: 01/13/2023] Open
Abstract
Birch pollen allergy is among the most prevalent pollen allergies in Northern and Central Europe. This IgE-mediated disease can be treated with allergen immunotherapy (AIT), which typically gives rise to IgG antibodies inducing tolerance. Although the main mechanisms of allergen immunotherapy (AIT) are known, questions regarding possible Fc-mediated effects of IgG antibodies remain unanswered. This can mainly be attributed to the unavailability of appropriate tools, i.e., well-characterised recombinant antibodies (rAbs). We hereby aimed at providing human rAbs of several classes for mechanistic studies and as possible candidates for passive immunotherapy. We engineered IgE, IgG1, and IgG4 sharing the same variable region against the major birch pollen allergen Bet v 1 using Polymerase Incomplete Primer Extension (PIPE) cloning. We tested IgE functionality and IgG blocking capabilities using appropriate model cell lines. In vitro studies showed IgE engagement with FcεRI and CD23 and Bet v 1-dependent degranulation. Overall, we hereby present fully functional, human IgE, IgG1, and IgG4 sharing the same variable region against Bet v 1 and showcase possible applications in first mechanistic studies. Furthermore, our IgG antibodies might be useful candidates for passive immunotherapy of birch pollen allergy.
Collapse
Affiliation(s)
- Verena K. Köhler
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
| | - Judit Fazekas-Singer
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Heather J. Bax
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- School of Cancer & Pharmaceutical Sciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK
| | - Gerhard Hofer
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Christina L. Pranger
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Karin Hufnagl
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Sabine Flicker
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| | - Walter Keller
- Institute of Molecular Biosciences, BioTechMed Graz, University of Graz, Humboldtstraße 50, 8010 Graz, Austria; (G.H.); (W.K.)
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, 9th Floor, Tower Wing, Guy’s Hospital, London SE1 9RT, UK; (S.C.); (H.J.B.); (S.N.K.)
- NIHR Biomedical Research Centre at Guy’s and St Thomas’s Hospitals and King’s College London, Guy’s Hospital, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Guy’s Cancer Centre, London SE1 9RT, UK
| | - Erika Jensen-Jarolim
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Veterinärplatz 1, 1210 Vienna, Austria; (V.K.K.); (J.F.-S.); (C.L.P.); (K.H.); (R.B.)
- Institute of Pathophysiology and Allergy Research, Centre of Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Währinger Gürtel 18–20, 1090 Vienna, Austria;
| |
Collapse
|
41
|
Natarajan A, Jaroentomeechai T, Cabrera-Sánchez M, Mohammed JC, Cox EC, Young O, Shajahan A, Vilkhovoy M, Vadhin S, Varner JD, Azadi P, DeLisa MP. Engineering orthogonal human O-linked glycoprotein biosynthesis in bacteria. Nat Chem Biol 2020; 16:1062-1070. [PMID: 32719555 DOI: 10.1038/s41589-020-0595-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/16/2020] [Indexed: 12/19/2022]
Abstract
A major objective of synthetic glycobiology is to re-engineer existing cellular glycosylation pathways from the top down or construct non-natural ones from the bottom up for new and useful purposes. Here, we have developed a set of orthogonal pathways for eukaryotic O-linked protein glycosylation in Escherichia coli that installed the cancer-associated mucin-type glycans Tn, T, sialyl-Tn and sialyl-T onto serine residues in acceptor motifs derived from different human O-glycoproteins. These same glycoengineered bacteria were used to supply crude cell extracts enriched with glycosylation machinery that permitted cell-free construction of O-glycoproteins in a one-pot reaction. In addition, O-glycosylation-competent bacteria were able to generate an antigenically authentic Tn-MUC1 glycoform that exhibited reactivity with antibody 5E5, which specifically recognizes cancer-associated glycoforms of MUC1. We anticipate that the orthogonal glycoprotein biosynthesis pathways developed here will provide facile access to structurally diverse O-glycoforms for a range of important scientific and therapeutic applications.
Collapse
Affiliation(s)
| | - Thapakorn Jaroentomeechai
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jody C Mohammed
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Emily C Cox
- Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA
| | - Olivia Young
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Michael Vilkhovoy
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Sandra Vadhin
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Jeffrey D Varner
- Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, The University of Georgia, Athens, GA, USA
| | - Matthew P DeLisa
- Department of Microbiology, Cornell University, Ithaca, NY, USA. .,Robert F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, USA. .,Biomedical and Biological Sciences, Cornell University College of Veterinary Medicine, Ithaca, NY, USA.
| |
Collapse
|
42
|
A Novel Antibody-Drug Conjugate (ADC) Delivering a DNA Mono-Alkylating Payload to Chondroitin Sulfate Proteoglycan (CSPG4)-Expressing Melanoma. Cancers (Basel) 2020; 12:cancers12041029. [PMID: 32331483 PMCID: PMC7226475 DOI: 10.3390/cancers12041029] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/18/2020] [Indexed: 12/18/2022] Open
Abstract
Despite emerging targeted and immunotherapy treatments, no monoclonal antibodies or antibody-drug conjugates (ADCs) directly targeting tumor cells are currently approved for melanoma therapy. The tumor-associated antigen chondroitin sulphate proteoglycan 4 (CSPG4), a neural crest glycoprotein over-expressed on 70% of melanomas, contributes to proliferative signaling pathways, but despite highly tumor-selective expression it has not yet been targeted using ADCs. We developed a novel ADC comprising an anti-CSPG4 antibody linked to a DNA minor groove-binding agent belonging to the novel pyrridinobenzodiazepine (PDD) class. Unlike conventional DNA-interactive pyrrolobenzodiazepine (PBD) dimer payloads that cross-link DNA, PDD-based payloads are mono-alkylating agents but have similar efficacy and substantially enhanced tolerability profiles compared to PBD-based cross-linkers. We investigated the anti-tumor activity and safety of the anti-CSPG4-(PDD) ADC in vitro and in human melanoma xenografts. Anti-CSPG4-(PDD) inhibited CSPG4-expressing melanoma cell growth and colony formation and triggered apoptosis in vitro at low nanomolar to picomolar concentrations without off-target Fab-mediated or Fc-mediated toxicity. Anti-CSPG4-(PDD) restricted xenograft growth in vivo at 2 mg/kg doses. One 5 mg/kg injection triggered tumor regression in the absence of overt toxic effects or of acquired residual tumor cell resistance. This anti-CSPG4-(PDD) can deliver a highly cytotoxic DNA mono-alkylating payload to CSPG4-expressing tumors at doses tolerated in vivo.
Collapse
|
43
|
Pellizzari G, Bax HJ, Josephs DH, Gotovina J, Jensen-Jarolim E, Spicer JF, Karagiannis SN. Harnessing Therapeutic IgE Antibodies to Re-educate Macrophages against Cancer. Trends Mol Med 2020; 26:615-626. [PMID: 32470387 DOI: 10.1016/j.molmed.2020.03.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 02/06/2023]
Abstract
Currently, IgG is the only class of antibodies employed for cancer therapy. However, harnessing the unique biological properties of a different class ( e.g., IgE) could engender potent effector cell activation, and unleash previously untapped immune mechanisms against cancer. IgE antibodies are best known for pathogenic roles in allergic diseases and for protective effector functions against parasitic infestation, often mediated by IgE Fc receptor-expressing macrophages. Notably, IgE possess a very high affinity for cognate Fc receptors expressed by tumor-associated macrophages (TAMs). This paper reviews pre-clinical studies, which indicate control of cancer growth by tumor antigen-specific IgE that recruit and re-educate TAMs towards activated profiles. The clinical development harnessing the antitumor potential of recombinant IgE antibodies in cancer patients is also discussed.
Collapse
Affiliation(s)
- Giulia Pellizzari
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK
| | - Heather J Bax
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK; School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Debra H Josephs
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK; School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK
| | - Jelena Gotovina
- Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Erika Jensen-Jarolim
- Institute of Pathophysiology and Allergy Research, Medical University Vienna, Vienna, Austria; The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - James F Spicer
- School of Cancer and Pharmaceutical Sciences, King's College London, Guy's Hospital, London, UK.
| | - Sophia N Karagiannis
- St. John's Institute of Dermatology, School of Basic and Medical Biosciences, Guy's Hospital, King's College London, London, UK.
| |
Collapse
|
44
|
Sengupta S, Jaiswal D, Sengupta A, Shah S, Gadagkar S, Wangikar PP. Metabolic engineering of a fast-growing cyanobacterium Synechococcus elongatus PCC 11801 for photoautotrophic production of succinic acid. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:89. [PMID: 32467730 PMCID: PMC7236211 DOI: 10.1186/s13068-020-01727-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/09/2020] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cyanobacteria, a group of photosynthetic prokaryotes, are being increasingly explored for direct conversion of carbon dioxide to useful chemicals. However, efforts to engineer these photoautotrophs have resulted in low product titers. This may be ascribed to the bottlenecks in metabolic pathways, which need to be identified for rational engineering. We engineered the recently reported, fast-growing and robust cyanobacterium, Synechococcus elongatus PCC 11801 to produce succinate, an important platform chemical. Previously, engineering of the model cyanobacterium S. elongatus PCC 7942 has resulted in succinate titer of 0.43 g l-1 in 8 days. RESULTS Building on the previous report, expression of α-ketoglutarate decarboxylase, succinate semialdehyde dehydrogenase and phosphoenolpyruvate carboxylase yielded a succinate titer of 0.6 g l-1 in 5 days suggesting that PCC 11801 is better suited as host for production. Profiling of the engineered strains for 57 intermediate metabolites, a number of enzymes and qualitative analysis of key transcripts revealed potential flux control points. Based on this, we evaluated the effects of overexpression of sedoheptulose-1,7-bisphosphatase, citrate synthase and succinate transporters and knockout of succinate dehydrogenase and glycogen synthase A. The final construct with seven genes overexpressed and two genes knocked out resulted in photoautotrophic production of 0.93 g l-1 succinate in 5 days. CONCLUSION While the fast-growing strain PCC 11801 yielded a much higher titer than the model strain, the efficient photoautotrophy of this novel isolate needs to be harnessed further for the production of desired chemicals. Engineered strains of S. elongatus PCC 11801 showed dramatic alterations in the levels of several metabolites suggesting far reaching effects of pathway engineering. Attempts to overexpress enzymes deemed to be flux controlling led to the emergence of other potential rate-limiting steps. Thus, this process of debottlenecking of the pathway needs to be repeated several times to obtain a significantly superior succinate titer.
Collapse
Affiliation(s)
- Shinjinee Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Damini Jaiswal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Annesha Sengupta
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Shikha Shah
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Shruti Gadagkar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| | - Pramod P. Wangikar
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- DBT-Pan IIT Center for Bioenergy, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
- Wadhwani Research Center for Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076 India
| |
Collapse
|
45
|
Zhang Q, Lu X, Zhang Y, Tang X, Zheng R, Zheng Y. Development of a robust nitrilase by fragment swapping and semi‐rational design for efficient biosynthesis of pregabalin precursor. Biotechnol Bioeng 2019; 117:318-329. [DOI: 10.1002/bit.27203] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/06/2019] [Accepted: 10/13/2019] [Indexed: 01/20/2023]
Affiliation(s)
- Qin Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Xia‐Feng Lu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Yan Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Xiao‐Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Ren‐Chao Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of EducationZhejiang University of TechnologyHangzhou China
| |
Collapse
|
46
|
Schulz O, Hanč P, Böttcher JP, Hoogeboom R, Diebold SS, Tolar P, Reis e Sousa C. Myosin II Synergizes with F-Actin to Promote DNGR-1-Dependent Cross-Presentation of Dead Cell-Associated Antigens. Cell Rep 2019; 24:419-428. [PMID: 29996102 PMCID: PMC6057488 DOI: 10.1016/j.celrep.2018.06.038] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/09/2018] [Accepted: 06/08/2018] [Indexed: 12/30/2022] Open
Abstract
Conventional type 1 DCs (cDC1s) excel at cross-presentation of dead cell-associated antigens partly because they express DNGR-1, a receptor that recognizes exposed actin filaments on dead cells. In vitro polymerized F-actin can be used as a synthetic ligand for DNGR-1. However, cellular F-actin is decorated with actin-binding proteins, which could affect DNGR-1 recognition. Here, we demonstrate that myosin II, an F-actin-associated motor protein, greatly potentiates the binding of DNGR-1 to F-actin. Latex beads coated with F-actin and myosin II are taken up by DNGR-1+ cDC1s, and antigen associated with those beads is efficiently cross-presented to CD8+ T cells. Myosin II-deficient necrotic cells are impaired in their ability to stimulate DNGR-1 or to serve as substrates for cDC1 cross-presentation to CD8+ T cells. These results provide insights into the nature of the DNGR-1 ligand and have implications for understanding immune responses to cell-associated antigens and for vaccine design. Myosin II amplifies the activity of the DNGR-1 ligand F-actin Lack of myosin II in donor cells reduces DNGR-1-dependent cross-presentation Beads with F-actin and myosin II can target antigens to cDC1 for CD8 T cell priming
Collapse
Affiliation(s)
- Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pavel Hanč
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Jan P Böttcher
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Robbert Hoogeboom
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Sandra S Diebold
- Biotherapeutics Division, National Institute for Biological Standards and Control, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Division of Immunology and Inflammation, Imperial College London, Du Cane Road, London SW7 2AZ, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
47
|
Bucaite G, Kang-Pettinger T, Moreira J, Gould HJ, James LK, Sutton BJ, McDonnell JM. Interplay between Affinity and Valency in Effector Cell Degranulation: A Model System with Polcalcin Allergens and Human Patient-Derived IgE Antibodies. THE JOURNAL OF IMMUNOLOGY 2019; 203:1693-1700. [PMID: 31462504 DOI: 10.4049/jimmunol.1900509] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 07/19/2019] [Indexed: 01/10/2023]
Abstract
An allergic reaction is rapidly generated when allergens bind and cross-link IgE bound to its receptor FcεRI on effector cells, resulting in cell degranulation and release of proinflammatory mediators. The extent of effector cell activation is linked to allergen affinity, oligomeric state, valency, and spacing of IgE-binding epitopes on the allergen. Whereas most of these observations come from studies using synthetic allergens, in this study we have used Timothy grass pollen allergen Phl p 7 and birch pollen allergen Bet v 4 to study these effects. Despite the high homology of these polcalcin family allergens, Phl p 7 and Bet v 4 display different binding characteristics toward two human patient-derived polcalcin-specific IgE Abs. We have used native polcalcin dimers and engineered multimeric allergens to test the effects of affinity and oligomeric state on IgE binding and effector cell activation. Our results indicate that polcalcin multimers are required to stimulate high levels of effector cell degranulation when using the humanized RBL-SX38 cell model and that multivalency can overcome the need for high-affinity interactions.
Collapse
Affiliation(s)
- Gintare Bucaite
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.,Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 1UL, United Kingdom
| | - Tara Kang-Pettinger
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.,Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 1UL, United Kingdom.,Department of Molecular and Cell Biology, University of Leicester, Leicester LE1 7RH, United Kingdom; and
| | - Jorge Moreira
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.,Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 1UL, United Kingdom
| | - Hannah J Gould
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.,Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 1UL, United Kingdom
| | - Louisa K James
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.,Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 1UL, United Kingdom.,Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 2AT, United Kingdom
| | - Brian J Sutton
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom.,Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 1UL, United Kingdom
| | - James M McDonnell
- Randall Centre for Cell and Molecular Biophysics, King's College London, London SE1 1UL, United Kingdom; .,Asthma UK Centre in Allergic Mechanisms of Asthma, King's College London, London SE1 1UL, United Kingdom
| |
Collapse
|
48
|
Walker JA, Bohn JJ, Ledesma F, Sorkin MR, Kabaria SR, Thornlow DN, Alabi CA. Substrate Design Enables Heterobifunctional, Dual “Click” Antibody Modification via Microbial Transglutaminase. Bioconjug Chem 2019; 30:2452-2457. [DOI: 10.1021/acs.bioconjchem.9b00522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joshua A. Walker
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - John J. Bohn
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana−Champaign, 600 S Mathews Ave, Urbana, Illinois 61801, United States
| | - Francis Ledesma
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Michelle R. Sorkin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Sneha R. Kabaria
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Dana N. Thornlow
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| | - Christopher A. Alabi
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, 113 Ho Plaza, Ithaca, New York 14850, United States
| |
Collapse
|
49
|
AGR2, a unique tumor-associated antigen, is a promising candidate for antibody targeting. Oncotarget 2019; 10:4276-4289. [PMID: 31303962 PMCID: PMC6611513 DOI: 10.18632/oncotarget.26945] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 04/21/2019] [Indexed: 11/25/2022] Open
Abstract
Anterior gradient 2 (AGR2), a protein disulfide isomerase, shows two subcellular localizations: intracellular (iAGR2) and extracellular (eAGR2). In healthy cells that express AGR2, the predominant form is iAGR2, which resides in the endoplasmic reticulum. In contrast, cancer cells secrete and express eAGR2 on the cell surface. We wanted to test if AGR2 is a cancer-specific tumor-associated antigen. We utilized two AGR2 antibodies, P3A5 and P1G4, for in vivo tumor localization and tumor growth inhibition. The monoclonal antibodies recognized both human AGR2 and mouse Agr2. Biodistribution experiments using a syngeneic mouse model showed high uptake of P3A5 AGR2 antibody in xenografted eAgr2+ pancreatic tumors, with limited uptake in normal tissues. In implanted human patient-derived eAGR2+ pancreatic cancer xenografts, tumor growth inhibition was evaluated with antibodies and Gemcitabine (Gem). Inhibition was more potent by P1G4 + Gem combination than Gem alone or P3A5 + Gem. We converted these two antibodies to human:mouse chimeric forms: the constructed P3A5 and P1G4 chimeric mVLhCκ and mVHhCγ (γ1, γ2, γ4) genes were inserted in a single mammalian expression plasmid vector, and transfected into human 293F cells. Expressed human:mouse chimeric IgG1, IgG2 and IgG4 antibodies retained AGR2 binding. Increase in IgG yield by transfected cells could be obtained with serial transfection of vectors with different drug resistance. These chimeric antibodies, when incubated with human blood, effectively lysed eAGR2+ PC3 prostate cancer cells. We have, thus, produced humanized anti-AGR2 antibodies that, after further testing, might be suitable for treatment against a variety of eAGR2+ solid tumors.
Collapse
|
50
|
Thornlow DN, Cox EC, Walker JA, Sorkin M, Plesset JB, DeLisa MP, Alabi CA. Dual Site-Specific Antibody Conjugates for Sequential and Orthogonal Cargo Release. Bioconjug Chem 2019; 30:1702-1710. [PMID: 31083974 DOI: 10.1021/acs.bioconjchem.9b00244] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Antibody-drug conjugates utilize the antigen specificity of antibodies and the potency of chemotherapeutic and antibiotic drugs for targeted therapy. However, as cancers and bacteria evolve to resist the action of drugs, innovative controlled release methods must be engineered to deliver multidrug cocktails. In this work, we engineer lipoate-acid ligase A (LplA) acceptor peptide (LAP) tags into the constant heavy and light chain of a humanized Her2 targeted antibody, trastuzumab. These engineered LAP tags, along with the glutamine 295 (Q295) residue in the heavy chain, were used to generate orthogonally cleavable site-specific antibody conjugates via a one-pot chemoenzymatic ligation with microbial transglutaminase (mTG) and LplA. We demonstrate orthogonal cargo release from these dual-labeled antibody bioconjugates via matrix metalloproteinase-2 and cathepsin-B-mediated bond cleavage. To the best of our knowledge, this is the first demonstration of temporal control on dual-labeled antibody conjugates, and we believe this platform will allow for sequential release and cooperative drug combinations on a single antibody bioconjugate.
Collapse
Affiliation(s)
- Dana N Thornlow
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Emily C Cox
- Biological and Biomedical Sciences , Cornell University College of Veterinary Medicine , Ithaca , New York 14853 , United States
| | - Joshua A Walker
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Michelle Sorkin
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Jacqueline B Plesset
- Meinig School of Biomedical Engineering , Cornell University , Ithaca , New York 14853 , United States
| | - Matthew P DeLisa
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| | - Christopher A Alabi
- Robert F. Smith School of Chemical and Biomolecular Engineering , Cornell University , 120 Olin Hall, Ithaca , New York 14853 , United States
| |
Collapse
|