1
|
Le AD, Fu M, Carper A, Zegarowicz E, Kumar R, Zacharias G, Garcia ADR. Astrocyte Modulation of Synaptic Plasticity Mediated by Activity-Dependent Sonic Hedgehog Signaling. J Neurosci 2025; 45:e1336242025. [PMID: 39900499 PMCID: PMC11905353 DOI: 10.1523/jneurosci.1336-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 01/17/2025] [Accepted: 01/22/2025] [Indexed: 02/05/2025] Open
Abstract
The influence of neural activity on astrocytes and their reciprocal interactions with neurons has emerged as an important modulator of synapse function. Astrocytes exhibit activity-dependent changes in gene expression, yet the molecular mechanisms by which neural activity is coupled to gene expression are not well understood. The molecular signaling pathway, Sonic hedgehog (Shh), mediates neuron-astrocyte communication and regulates the organization of cortical synapses. Here, we demonstrate that neural activity stimulates Shh signaling in cortical astrocytes and upregulates expression of Hevin and SPARC, astrocyte-derived molecules that modify synapses. Whisker stimulation in both male and female mice promotes activity-dependent Shh signaling selectively in the somatosensory, but not in the visual cortex, whereas sensory deprivation reduces Shh activity, demonstrating bidirectional regulation of the pathway by sensory experience. Selective loss of Shh signaling in astrocytes reduces expression of Hevin and SPARC and occludes activity-dependent synaptic plasticity. Taken together, these data identify Shh signaling as an activity-dependent, molecular signaling pathway that regulates astrocyte gene expression and promotes astrocyte modulation of synaptic plasticity.
Collapse
Affiliation(s)
- Anh Duc Le
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Marissa Fu
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Ashley Carper
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | | | - Riya Kumar
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - Gloria Zacharias
- Departments of Biology, Drexel University, Philadelphia, Pennsylvania 19104
| | - A Denise R Garcia
- Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, Pennsylvania 19129
| |
Collapse
|
2
|
Cerrotti G, Buratta S, Latella R, Calzoni E, Cusumano G, Bertoldi A, Porcellati S, Emiliani C, Urbanelli L. Hitting the target: cell signaling pathways modulation by extracellular vesicles. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2024; 5:527-552. [PMID: 39697631 PMCID: PMC11648414 DOI: 10.20517/evcna.2024.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/10/2024] [Accepted: 09/18/2024] [Indexed: 12/20/2024]
Abstract
Extracellular vesicles (EVs) are lipid bilayer-enclosed nanoparticles released outside the cell. EVs have drawn attention not only for their role in cell waste disposal, but also as additional tools for cell-to-cell communication. Their complex contents include not only lipids, but also proteins, nucleic acids (RNA, DNA), and metabolites. A large part of these molecules are involved in mediating or influencing signal transduction in target cells. In multicellular organisms, EVs have been suggested to modulate signals in cells localized either in the neighboring tissue or in distant regions of the body by interacting with the cell surface or by entering the cells via endocytosis or membrane fusion. Most of the EV-modulated cell signaling pathways have drawn considerable attention because they affect morphogenetic signaling pathways, as well as pathways activated by cytokines and growth factors. Therefore, they are implicated in relevant biological processes, such as embryonic development, cancer initiation and spreading, tissue differentiation and repair, and immune response. Furthermore, it has recently emerged that multicellular organisms interact with and receive signals through EVs released by their microbiota as well as by edible plants. This review reports studies investigating EV-mediated signaling in target mammalian cells, with a focus on key pathways for organism development, organ homeostasis, cell differentiation and immune response.
Collapse
Affiliation(s)
- Giada Cerrotti
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Sandra Buratta
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Raffaella Latella
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Eleonora Calzoni
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Gaia Cusumano
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Agnese Bertoldi
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Serena Porcellati
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
| | - Carla Emiliani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia 06123, Italy
| | - Lorena Urbanelli
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia 06123, Italy
- Centro di Eccellenza sui Materiali Innovativi Nanostrutturati (CEMIN), University of Perugia, Perugia 06123, Italy
| |
Collapse
|
3
|
Ehring K, Ehlers SF, Froese J, Gude F, Puschmann J, Grobe K. Two-way Dispatched function in Sonic hedgehog shedding and transfer to high-density lipoproteins. eLife 2024; 12:RP86920. [PMID: 39297609 PMCID: PMC11412720 DOI: 10.7554/elife.86920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
The Sonic hedgehog (Shh) signaling pathway controls embryonic development and tissue homeostasis after birth. This requires regulated solubilization of dual-lipidated, firmly plasma membrane-associated Shh precursors from producing cells. Although it is firmly established that the resistance-nodulation-division transporter Dispatched (Disp) drives this process, it is less clear how lipidated Shh solubilization from the plasma membrane is achieved. We have previously shown that Disp promotes proteolytic solubilization of Shh from its lipidated terminal peptide anchors. This process, termed shedding, converts tightly membrane-associated hydrophobic Shh precursors into delipidated soluble proteins. We show here that Disp-mediated Shh shedding is modulated by a serum factor that we identify as high-density lipoprotein (HDL). In addition to serving as a soluble sink for free membrane cholesterol, HDLs also accept the cholesterol-modified Shh peptide from Disp. The cholesteroylated Shh peptide is necessary and sufficient for Disp-mediated transfer because artificially cholesteroylated mCherry associates with HDL in a Disp-dependent manner, whereas an N-palmitoylated Shh variant lacking C-cholesterol does not. Disp-mediated Shh transfer to HDL is completed by proteolytic processing of the palmitoylated N-terminal membrane anchor. In contrast to dual-processed soluble Shh with moderate bioactivity, HDL-associated N-processed Shh is highly bioactive. We propose that the purpose of generating different soluble forms of Shh from the dual-lipidated precursor is to tune cellular responses in a tissue-type and time-specific manner.
Collapse
Affiliation(s)
- Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | | | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Janna Puschmann
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of MünsterMünsterGermany
| |
Collapse
|
4
|
Le AD, Fu M, Kumar R, Zacharias G, Garcia ADR. Astrocyte modulation of synaptic plasticity mediated by activity-dependent Sonic hedgehog signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588352. [PMID: 38915525 PMCID: PMC11195099 DOI: 10.1101/2024.04.05.588352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The influence of neural activity on astrocytes and their reciprocal interactions with neurons has emerged as an important modulator of synapse function. Astrocytes exhibit activity-dependent changes in gene expression, yet the molecular mechanisms by which they accomplish this have remained largely unknown. The molecular signaling pathway, Sonic hedgehog (Shh), mediates neuron-astrocyte communication and regulates the organization of cortical synapses. Here, we demonstrate that neural activity stimulates Shh signaling in cortical astrocytes and upregulates expression of Hevin and SPARC, astrocyte derived molecules that modify synapses. Whisker stimulation and chemogenetic activation both increase Shh activity in deep layers of the somatosensory cortex, where neuron-astrocyte Shh signaling is predominantly found. Experience-dependent Hevin and SPARC require intact Shh signaling and selective loss of pathway activity in astrocytes occludes experience-dependent structural plasticity. Taken together, these data identify Shh signaling as an activity-dependent, neuronal derived cue that stimulates astrocyte interactions with synapses and promotes synaptic plasticity.
Collapse
Affiliation(s)
- Anh Duc Le
- Department of Biology, Drexel University
| | - Marissa Fu
- Department of Biology, Drexel University
| | - Riya Kumar
- Department of Biology, Drexel University
| | | | - A Denise R Garcia
- Department of Neurobiology and Anatomy, Drexel University College of Medicine
| |
Collapse
|
5
|
Ma R, Chen L, Hu N, Caplan S, Hu G. Cilia and Extracellular Vesicles in Brain Development and Disease. Biol Psychiatry 2024; 95:1020-1029. [PMID: 37956781 PMCID: PMC11087377 DOI: 10.1016/j.biopsych.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/05/2023] [Indexed: 11/15/2023]
Abstract
Primary and motile cilia are thin, hair-like cellular projections from the cell surface involved in movement, sensing, and communication between cells. Extracellular vesicles (EVs) are small membrane-bound vesicles secreted by cells and contain various proteins, lipids, and nucleic acids that are delivered to and influence the behavior of other cells. Both cilia and EVs are essential for the normal functioning of brain cells, and their malfunction can lead to several neurological diseases. Cilia and EVs can interact with each other in several ways, and this interplay plays a crucial role in facilitating various biological processes, including cell-to-cell communication, tissue homeostasis, and pathogen defense. Cilia and EV crosstalk in the brain is an emerging area of research. Herein, we summarize the detailed molecular mechanisms of cilia and EV interplay and address the ciliary molecules that are involved in signaling and cellular dysfunction in brain development and diseases. Finally, we discuss the potential clinical use of cilia and EVs in brain diseases.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong, China
| | - Ningyun Hu
- Millard West High School, Omaha, Nebraska
| | - Steve Caplan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, Nebraska; Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska.
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, Nebraska.
| |
Collapse
|
6
|
Rust R, Holm MM, Egger M, Weinmann O, van Rossum D, Walter FR, Santa-Maria AR, Grönnert L, Maurer MA, Kraler S, Akhmedov A, Cideciyan R, Lüscher TF, Deli MA, Herrmann IK, Schwab ME. Nogo-A is secreted in extracellular vesicles, occurs in blood and can influence vascular permeability. J Cereb Blood Flow Metab 2024; 44:938-954. [PMID: 38000040 PMCID: PMC11318402 DOI: 10.1177/0271678x231216270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Nogo-A is a transmembrane protein with multiple functions in the central nervous system (CNS), including restriction of neurite growth and synaptic plasticity. Thus far, Nogo-A has been predominantly considered a cell contact-dependent ligand signaling via cell surface receptors. Here, we show that Nogo-A can be secreted by cultured cells of neuronal and glial origin in association with extracellular vesicles (EVs). Neuron- and oligodendrocyte-derived Nogo-A containing EVs inhibited fibroblast spreading, and this effect was partially reversed by Nogo-A receptor S1PR2 blockage. EVs purified from HEK cells only inhibited fibroblast spreading upon Nogo-A over-expression. Nogo-A-containing EVs were found in vivo in the blood of healthy mice and rats, as well as in human plasma. Blood Nogo-A concentrations were elevated after acute stroke lesions in mice and rats. Nogo-A active peptides decreased barrier integrity in an in vitro blood-brain barrier model. Stroked mice showed increased dye permeability in peripheral organs when tested 2 weeks after injury. In the Miles assay, an in vivo test to assess leakage of the skin vasculature, a Nogo-A active peptide increased dye permeability. These findings suggest that blood borne, possibly EV-associated Nogo-A could exert long-range regulatory actions on vascular permeability.
Collapse
Affiliation(s)
- Ruslan Rust
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Switzerland
| | - Mea M Holm
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | - Matteo Egger
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | | | | | - Fruzsina R Walter
- Biological Barriers Research Group, ELKH Biological Research Centre, Szeged, Hungary
| | | | - Lisa Grönnert
- Brain Research Institute, University of Zürich, Switzerland
| | | | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | | | - Rose Cideciyan
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Maria A Deli
- Biological Barriers Research Group, ELKH Biological Research Centre, Szeged, Hungary
| | - Inge K Herrmann
- Particles Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Switzerland
| |
Collapse
|
7
|
Kahane N, Dahan-Barda Y, Kalcheim C. A Spatio-Temporal-Dependent Requirement of Sonic Hedgehog in the Early Development of Sclerotome-Derived Vertebrae and Ribs. Int J Mol Sci 2024; 25:5602. [PMID: 38891790 PMCID: PMC11171667 DOI: 10.3390/ijms25115602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/13/2024] [Accepted: 05/19/2024] [Indexed: 06/21/2024] Open
Abstract
Derived from axial structures, Sonic Hedgehog (Shh) is secreted into the paraxial mesoderm, where it plays crucial roles in sclerotome induction and myotome differentiation. Through conditional loss-of-function in quail embryos, we investigate the timing and impact of Shh activity during early formation of sclerotome-derived vertebrae and ribs, and of lateral mesoderm-derived sternum. To this end, Hedgehog interacting protein (Hhip) was electroporated at various times between days 2 and 5. While the vertebral body and rib primordium showed consistent size reduction, rib expansion into the somatopleura remained unaffected, and the sternal bud developed normally. Additionally, we compared these effects with those of locally inhibiting BMP activity. Transfection of Noggin in the lateral mesoderm hindered sternal bud formation. Unlike Hhip, BMP inhibition via Noggin or Smad6 induced myogenic differentiation of the lateral dermomyotome lip, while impeding the growth of the myotome/rib complex into the somatic mesoderm, thus affirming the role of the lateral dermomyotome epithelium in rib guidance. Overall, these findings underscore the continuous requirement for opposing gradients of Shh and BMP activity in the morphogenesis of proximal and distal flank skeletal structures, respectively. Future research should address the implications of these early interactions to the later morphogenesis and function of the musculo-skeletal system and of possible associated malformations.
Collapse
Affiliation(s)
| | | | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, P.O. Box 12272, Jerusalem 9112102, Israel; (N.K.); (Y.D.-B.)
| |
Collapse
|
8
|
Tran THN, Takada R, Krayukhina E, Maruno T, Mii Y, Uchiyama S, Takada S. Soluble Frizzled-related proteins promote exosome-mediated Wnt re-secretion. Commun Biol 2024; 7:254. [PMID: 38429359 PMCID: PMC10907715 DOI: 10.1038/s42003-024-05881-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024] Open
Abstract
Wnt proteins are thought to be transported in several ways in the extracellular space. For instance, they are known to be carried by exosomes and by Wnt-carrier proteins, such as sFRP proteins. However, little is known about whether and/or how these two transport systems are related. Here, we show that adding sFRP1 or sFRP2, but not sFRP3 or sFRP4, to culture medium containing Wnt3a or Wnt5a increases re-secretion of exosome-loaded Wnt proteins from cells. This effect of sFRP2 is counteracted by heparinase, which removes sugar chains on heparan sulfate proteoglycans (HSPGs), but is independent of LRP5/6, Wnt co-receptors essential for Wnt signaling. Wnt3a and Wnt5a specifically dimerize with sFRP2 in culture supernatant. Furthermore, a Wnt3a mutant defective in heterodimerization with sFRP2 impairs the ability to increase exosome-mediated Wnt3a re-secretion. Based on these results, we propose that Wnt heterodimerization with its carrier protein, sFRP2, enhances Wnt accumulation at sugar chains on HSPGs on the cell surface, leading to increased endocytosis and exosome-mediated Wnt re-secretion. Our results suggest that the range of action of Wnt ligands is controlled by coordination of different transport systems.
Collapse
Affiliation(s)
- Thi Hong Nguyen Tran
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
| | - Ritsuko Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
| | - Elena Krayukhina
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Analytical Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Takahiro Maruno
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Yusuke Mii
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan
- PREST, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, 332-0012, Japan
| | - Susumu Uchiyama
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan
- U-Medico Inc., 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinji Takada
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi, 444-8787, Japan.
- The Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8787, Japan.
| |
Collapse
|
9
|
Jiménez-Jiménez C, Grobe K, Guerrero I. Hedgehog on the Move: Glypican-Regulated Transport and Gradient Formation in Drosophila. Cells 2024; 13:418. [PMID: 38474382 PMCID: PMC10930589 DOI: 10.3390/cells13050418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/14/2024] Open
Abstract
Glypicans (Glps) are a family of heparan sulphate proteoglycans that are attached to the outer plasma membrane leaflet of the producing cell by a glycosylphosphatidylinositol anchor. Glps are involved in the regulation of many signalling pathways, including those that regulate the activities of Wnts, Hedgehog (Hh), Fibroblast Growth Factors (FGFs), and Bone Morphogenetic Proteins (BMPs), among others. In the Hh-signalling pathway, Glps have been shown to be essential for ligand transport and the formation of Hh gradients over long distances, for the maintenance of Hh levels in the extracellular matrix, and for unimpaired ligand reception in distant recipient cells. Recently, two mechanistic models have been proposed to explain how Hh can form the signalling gradient and how Glps may contribute to it. In this review, we describe the structure, biochemistry, and metabolism of Glps and their interactions with different components of the Hh-signalling pathway that are important for the release, transport, and reception of Hh.
Collapse
Affiliation(s)
- Carlos Jiménez-Jiménez
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Waldeyerstrasse 15, 48149 Münster, Germany
| | - Isabel Guerrero
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Nicolás Cabrera 1, E-28049 Madrid, Spain;
| |
Collapse
|
10
|
Li Y, Zhang H, Zhu D, Yang F, Wang Z, Wei Z, Yang Z, Jia J, Kang X. Notochordal cells: A potential therapeutic option for intervertebral disc degeneration. Cell Prolif 2024; 57:e13541. [PMID: 37697480 PMCID: PMC10849793 DOI: 10.1111/cpr.13541] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/08/2023] [Accepted: 08/21/2023] [Indexed: 09/13/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is a prevalent musculoskeletal degenerative disorder worldwide, and ~40% of chronic low back pain cases are associated with IDD. Although the pathogenesis of IDD remains unclear, the reduction in nucleus pulposus cells (NPCs) and degradation of the extracellular matrix (ECM) are critical factors contributing to IDD. Notochordal cells (NCs), derived from the notochord, which rapidly degrades after birth and is eventually replaced by NPCs, play a crucial role in maintaining ECM homeostasis and preventing NPCs apoptosis. Current treatments for IDD only provide symptomatic relief, while lacking the ability to inhibit or reverse its progression. However, NCs and their secretions possess anti-inflammatory properties and promote NPCs proliferation, leading to ECM formation. Therefore, in recent years, NCs therapy targeting the underlying cause of IDD has emerged as a novel treatment strategy. This article provides a comprehensive review of the latest research progress on NCs for IDD, covering their biological characteristics, specific markers, possible mechanisms involved in IDD and therapeutic effects. It also highlights significant future directions in this field to facilitate further exploration of the pathogenesis of IDD and the development of new therapies based on NCs strategies.
Collapse
Affiliation(s)
- Yanhu Li
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Haijun Zhang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
- The Second People's Hospital of Gansu ProvinceLanzhouPeople's Republic of China
| | - Daxue Zhu
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Fengguang Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhaoheng Wang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Ziyan Wei
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Zhili Yang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Jingwen Jia
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| | - Xuewen Kang
- Lanzhou University Second HospitalLanzhouPeople's Republic of China
- Orthopaedics Key Laboratory of Gansu ProvinceLanzhouPeople's Republic of China
| |
Collapse
|
11
|
Hall ET, Dillard ME, Cleverdon ER, Zhang Y, Daly CA, Ansari SS, Wakefield R, Stewart DP, Pruett-Miller SM, Lavado A, Carisey AF, Johnson A, Wang YD, Selner E, Tanes M, Ryu YS, Robinson CG, Steinberg J, Ogden SK. Cytoneme signaling provides essential contributions to mammalian tissue patterning. Cell 2024; 187:276-293.e23. [PMID: 38171360 PMCID: PMC10842732 DOI: 10.1016/j.cell.2023.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/06/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024]
Abstract
During development, morphogens pattern tissues by instructing cell fate across long distances. Directly visualizing morphogen transport in situ has been inaccessible, so the molecular mechanisms ensuring successful morphogen delivery remain unclear. To tackle this longstanding problem, we developed a mouse model for compromised sonic hedgehog (SHH) morphogen delivery and discovered that endocytic recycling promotes SHH loading into signaling filopodia called cytonemes. We optimized methods to preserve in vivo cytonemes for advanced microscopy and show endogenous SHH localized to cytonemes in developing mouse neural tubes. Depletion of SHH from neural tube cytonemes alters neuronal cell fates and compromises neurodevelopment. Mutation of the filopodial motor myosin 10 (MYO10) reduces cytoneme length and density, which corrupts neuronal signaling activity of both SHH and WNT. Combined, these results demonstrate that cytoneme-based signal transport provides essential contributions to morphogen dispersion during mammalian tissue development and suggest MYO10 is a key regulator of cytoneme function.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Miriam E Dillard
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Elizabeth R Cleverdon
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Christina A Daly
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shariq S Ansari
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Randall Wakefield
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Daniel P Stewart
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alfonso Lavado
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Center for Pediatric Neurological Disease Research, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alex F Carisey
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Amanda Johnson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Emma Selner
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Michael Tanes
- Center for In Vivo Imaging and Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Young Sang Ryu
- Center for In Vivo Imaging and Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Camenzind G Robinson
- Cellular Imaging Shared Resource, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapy, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
12
|
Liu LL, Shannahan J, Zheng W. Choroid Plexus Modulates Subventricular Zone Adult Neurogenesis and Olfaction Through Secretion of Small Extracellular Vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532966. [PMID: 36993578 PMCID: PMC10055063 DOI: 10.1101/2023.03.16.532966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
UNLABELLED The choroid plexus (CP) in brain ventricles secrete cerebrospinal fluid (CSF) that bathes the adjacent subventricular zone (SVZ); the latter is the largest neurogenic region in adult brain harboring neural stem/progenitor cells (NSPCs) and supplies newborn neurons to the olfactory bulb (OB) for normal olfaction. We discovered the presence of a CP-SVZ regulatory (CSR) axis in which the CP, by secreting small extracellular vesicles (sEVs), regulated adult neurogenesis in the SVZ and maintained olfaction. The proposed CSR axis was supported by 1) differential neurogenesis outcomes in the OB when animals treated with intracerebroventricular (ICV) infusion of sEVs collected from the CP of normal or manganese (Mn)-poisoned mice, 2) progressively diminished SVZ adult neurogenesis in mice following CP-targeted knockdown of SMPD3 to suppress CP sEV secretion, and 3) compromised olfactory performance in these CP-SMPD3-knockdown mice. Collectively, our findings demonstrate the biological and physiological presence of this sEV-dependent CSR axis in adult brains. HIGHLIGHTS CP-secreted sEVs regulate adult neurogenesis in the SVZ.CP-secreted sEVs modulate newborn neurons in the OB.Suppression of sEV secretion from the CP deteriorates olfactory performance.
Collapse
|
13
|
Extracellular vesicles throughout development: A potential roadmap for emerging glioblastoma therapies. Semin Cell Dev Biol 2023; 133:32-41. [PMID: 35697594 DOI: 10.1016/j.semcdb.2022.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/20/2022] [Accepted: 05/25/2022] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are membrane-delimited vesicular bodies carrying different molecules, classified according to their size, density, cargo, and origin. Research on this topic has been actively growing through the years, as EVs are associated with critical pathological processes such as neurodegenerative diseases and cancer. Despite that, studies exploring the physiological functions of EVs are sparse, with particular emphasis on their role in organismal development, initial cell differentiation, and morphogenesis. In this review, we explore the topic of EVs from a developmental perspective, discussing their role in the earliest cell-fate decisions and neural tissue morphogenesis. We focus on the function of EVs through development to highlight possible conserved or novel processes that can impact disease progression. Specifically, we take advantage of what was learned about their role in development so far to discuss EVs impact on glioblastoma, a particular brain tumor of stem-cell origin and poor prognosis, and how their function can be hijacked to improve current therapies.
Collapse
|
14
|
Douceau S, Deutsch Guerrero T, Ferent J. Establishing Hedgehog Gradients during Neural Development. Cells 2023; 12:225. [PMID: 36672161 PMCID: PMC9856818 DOI: 10.3390/cells12020225] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/23/2022] [Accepted: 12/25/2022] [Indexed: 01/07/2023] Open
Abstract
A morphogen is a signaling molecule that induces specific cellular responses depending on its local concentration. The concept of morphogenic gradients has been a central paradigm of developmental biology for decades. Sonic Hedgehog (Shh) is one of the most important morphogens that displays pleiotropic functions during embryonic development, ranging from neuronal patterning to axon guidance. It is commonly accepted that Shh is distributed in a gradient in several tissues from different origins during development; however, how these gradients are formed and maintained at the cellular and molecular levels is still the center of a great deal of research. In this review, we first explored all of the different sources of Shh during the development of the nervous system. Then, we detailed how these sources can distribute Shh in the surrounding tissues via a variety of mechanisms. Finally, we addressed how disrupting Shh distribution and gradients can induce severe neurodevelopmental disorders and cancers. Although the concept of gradient has been central in the field of neurodevelopment since the fifties, we also describe how contemporary leading-edge techniques, such as organoids, can revisit this classical model.
Collapse
Affiliation(s)
- Sara Douceau
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Tanya Deutsch Guerrero
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| | - Julien Ferent
- INSERM UMR-S 1270, F-75005 Paris, France
- Institut du Fer à Moulin, INSERM, Sorbonne Univeristy, F-75005 Paris, France
| |
Collapse
|
15
|
Sandoval L, Labarca M, Retamal C, Sánchez P, Larraín J, González A. Sonic hedgehog is basolaterally sorted from the TGN and transcytosed to the apical domain involving Dispatched-1 at Rab11-ARE. Front Cell Dev Biol 2022; 10:833175. [PMID: 36568977 PMCID: PMC9768590 DOI: 10.3389/fcell.2022.833175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 11/04/2022] [Indexed: 12/12/2022] Open
Abstract
Hedgehog proteins (Hhs) secretion from apical and/or basolateral domains occurs in different epithelial cells impacting development and tissue homeostasis. Palmitoylation and cholesteroylation attach Hhs to membranes, and Dispatched-1 (Disp-1) promotes their release. How these lipidated proteins are handled by the complex secretory and endocytic pathways of polarized epithelial cells remains unknown. We show that polarized Madin-Darby canine kidney cells address newly synthesized sonic hedgehog (Shh) from the TGN to the basolateral cell surface and then to the apical domain through a transcytosis pathway that includes Rab11-apical recycling endosomes (Rab11-ARE). Both palmitoylation and cholesteroylation contribute to this sorting behavior, otherwise Shh lacking these lipid modifications is secreted unpolarized. Disp-1 mediates first basolateral secretion from the TGN and then transcytosis from Rab11-ARE. At the steady state, Shh predominates apically and can be basolaterally transcytosed. This Shh trafficking provides several steps for regulation and variation in different epithelia, subordinating the apical to the basolateral secretion.
Collapse
Affiliation(s)
- Lisette Sandoval
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Mariana Labarca
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Claudio Retamal
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile
| | - Paula Sánchez
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Juan Larraín
- Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alfonso González
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile,Centro Ciencia y Vida, Fundación Ciencia para la Vida, Santiago, Chile,Centro de Envejecimiento y Regeneración (CARE), Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile,*Correspondence: Alfonso González,
| |
Collapse
|
16
|
de Almeida Fuzeta M, Gonçalves PP, Fernandes-Platzgummer A, Cabral JMS, Bernardes N, da Silva CL. From Promise to Reality: Bioengineering Strategies to Enhance the Therapeutic Potential of Extracellular Vesicles. Bioengineering (Basel) 2022; 9:675. [PMID: 36354586 PMCID: PMC9687169 DOI: 10.3390/bioengineering9110675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/13/2022] Open
Abstract
Extracellular vesicles (EVs) have been the focus of great attention over the last decade, considering their promising application as next-generation therapeutics. EVs have emerged as relevant mediators of intercellular communication, being associated with multiple physiological processes, but also in the pathogenesis of several diseases. Given their natural ability to shuttle messages between cells, EVs have been explored both as inherent therapeutics in regenerative medicine and as drug delivery vehicles targeting multiple diseases. However, bioengineering strategies are required to harness the full potential of EVs for therapeutic use. For that purpose, a good understanding of EV biology, from their biogenesis to the way they are able to shuttle messages and establish interactions with recipient cells, is needed. Here, we review the current state-of-the-art on EV biology, complemented by representative examples of EVs roles in several pathophysiological processes, as well as the intrinsic therapeutic properties of EVs and paradigmatic strategies to produce and develop engineered EVs as next-generation drug delivery systems.
Collapse
Affiliation(s)
- Miguel de Almeida Fuzeta
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Pedro P. Gonçalves
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Fernandes-Platzgummer
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M. S. Cabral
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Nuno Bernardes
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Cláudia L. da Silva
- iBB–Institute for Bioengineering and Biosciences and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Associate Laboratory i4HB–Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
17
|
Gustafson CM, Gammill LS. Extracellular Vesicles and Membrane Protrusions in Developmental Signaling. J Dev Biol 2022; 10:39. [PMID: 36278544 PMCID: PMC9589955 DOI: 10.3390/jdb10040039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, cells communicate with each other to determine cell fate, guide migration, and shape morphogenesis. While the relevant secreted factors and their downstream target genes have been characterized extensively, how these signals travel between embryonic cells is still emerging. Evidence is accumulating that extracellular vesicles (EVs), which are well defined in cell culture and cancer, offer a crucial means of communication in embryos. Moreover, the release and/or reception of EVs is often facilitated by fine cellular protrusions, which have a history of study in development. However, due in part to the complexities of identifying fragile nanometer-scale extracellular structures within the three-dimensional embryonic environment, the nomenclature of developmental EVs and protrusions can be ambiguous, confounding progress. In this review, we provide a robust guide to categorizing these structures in order to enable comparisons between developmental systems and stages. Then, we discuss existing evidence supporting a role for EVs and fine cellular protrusions throughout development.
Collapse
Affiliation(s)
- Callie M. Gustafson
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| | - Laura S. Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
- Developmental Biology Center, University of Minnesota, 6-160 Jackson Hall, 321 Church St SE, Minneapolis, MN 55455, USA
| |
Collapse
|
18
|
Nguyen TD, Truong ME, Reiter JF. The Intimate Connection Between Lipids and Hedgehog Signaling. Front Cell Dev Biol 2022; 10:876815. [PMID: 35757007 PMCID: PMC9222137 DOI: 10.3389/fcell.2022.876815] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/13/2022] [Indexed: 01/19/2023] Open
Abstract
Hedgehog (HH) signaling is an intercellular communication pathway involved in directing the development and homeostasis of metazoans. HH signaling depends on lipids that covalently modify HH proteins and participate in signal transduction downstream. In many animals, the HH pathway requires the primary cilium, an organelle with a specialized protein and lipid composition. Here, we review the intimate connection between HH signaling and lipids. We highlight how lipids in the primary cilium can create a specialized microenvironment to facilitate signaling, and how HH and components of the HH signal transduction pathway use lipids to communicate between cells.
Collapse
Affiliation(s)
- Thi D. Nguyen
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Melissa E. Truong
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
19
|
Kaushal JB, Batra SK, Rachagani S. Hedgehog signaling and its molecular perspective with cholesterol: a comprehensive review. Cell Mol Life Sci 2022; 79:266. [PMID: 35486193 PMCID: PMC9990174 DOI: 10.1007/s00018-022-04233-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 03/07/2022] [Indexed: 02/08/2023]
Abstract
Hedgehog (Hh) signaling is evolutionarily conserved and plays an instructional role in embryonic morphogenesis, organogenesis in various animals, and the central nervous system organization. Multiple feedback mechanisms dynamically regulate this pathway in a spatiotemporal and context-dependent manner to confer differential patterns in cell fate determination. Hh signaling is complex due to canonical and non-canonical mechanisms coordinating cell-cell communication. In addition, studies have demonstrated a regulatory framework of Hh signaling and shown that cholesterol is vital for Hh ligand biogenesis, signal generation, and transduction from the cell surface to intracellular space. Studies have shown the importance of a specific cholesterol pool, termed accessible cholesterol, which serves as a second messenger, conveying signals between smoothened (Smo) and patched 1 (Ptch1) across the plasma and ciliary membranes. Remarkably, recent high-resolution structural and molecular studies shed new light on the interplay between Hh signaling and cholesterol in membrane biology. These studies elucidated novel mechanistic insight into the release and dispersal of cholesterol-anchored Hh and the basis of Hh recognition by Ptch1. Additionally, the putative model of Smo activation by cholesterol binding and/or modification and Ptch1 antagonization of Smo has been explicated. However, the coupling mechanism of Hh signaling and cholesterol offered a new regulatory principle in cell biology: how effector molecules of the Hh signal network react to and remodel cholesterol accessibility in the membrane and selectively activate Hh signaling proteins thereof. Recognizing the biological importance of cholesterol in Hh signaling activation and transduction opens the door for translational research to develop novel therapeutic strategies. This review looks in-depth at canonical and non-canonical Hh signaling and the distinct proposed model of cholesterol-mediated regulation of Hh signaling components, facilitating a more sophisticated understanding of the Hh signal network and cholesterol biology.
Collapse
Affiliation(s)
- Jyoti B Kaushal
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| | - Satyanarayana Rachagani
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
- Fred and Pamela Buffet Cancer Center, Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA.
| |
Collapse
|
20
|
Bach FC, Poramba-Liyanage DW, Riemers FM, Guicheux J, Camus A, Iatridis JC, Chan D, Ito K, Le Maitre CL, Tryfonidou MA. Notochordal Cell-Based Treatment Strategies and Their Potential in Intervertebral Disc Regeneration. Front Cell Dev Biol 2022; 9:780749. [PMID: 35359916 PMCID: PMC8963872 DOI: 10.3389/fcell.2021.780749] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/15/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic low back pain is the number one cause of years lived with disability. In about 40% of patients, chronic lower back pain is related to intervertebral disc (IVD) degeneration. The standard-of-care focuses on symptomatic relief, while surgery is the last resort. Emerging therapeutic strategies target the underlying cause of IVD degeneration and increasingly focus on the relatively overlooked notochordal cells (NCs). NCs are derived from the notochord and once the notochord regresses they remain in the core of the developing IVD, the nucleus pulposus. The large vacuolated NCs rapidly decline after birth and are replaced by the smaller nucleus pulposus cells with maturation, ageing, and degeneration. Here, we provide an update on the journey of NCs and discuss the cell markers and tools that can be used to study their fate and regenerative capacity. We review the therapeutic potential of NCs for the treatment of IVD-related lower back pain and outline important future directions in this area. Promising studies indicate that NCs and their secretome exerts regenerative effects, via increased proliferation, extracellular matrix production, and anti-inflammatory effects. Reports on NC-like cells derived from embryonic- or induced pluripotent-stem cells claim to have successfully generated NC-like cells but did not compare them with native NCs for phenotypic markers or in terms of their regenerative capacity. Altogether, this is an emerging and active field of research with exciting possibilities. NC-based studies demonstrate that cues from developmental biology can pave the path for future clinical therapies focused on regenerating the diseased IVD.
Collapse
Affiliation(s)
- Frances C. Bach
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | | | - Frank M. Riemers
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Jerome Guicheux
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
- UFR Odontologie, Université de Nantes, Nantes, France
- PHU4 OTONN, CHU Nantes, Nantes, France
| | - Anne Camus
- UMR 1229-RMeS, Regenerative Medicine and Skeleton, Université de Nantes, ONIRIS, Nantes, France
| | - James C. Iatridis
- Leni and Peter W. May Department of Orthopaedics, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Danny Chan
- School of Biomedical Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Keita Ito
- Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Department of Orthopedics, University Medical Centre Utrecht, Utrecht, Netherlands
| | - Christine L. Le Maitre
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Sheffield, United Kingdom
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
- *Correspondence: Marianna A. Tryfonidou,
| |
Collapse
|
21
|
Ma R, Kutchy NA, Chen L, Meigs DD, Hu G. Primary cilia and ciliary signaling pathways in aging and age-related brain disorders. Neurobiol Dis 2022; 163:105607. [PMID: 34979259 PMCID: PMC9280856 DOI: 10.1016/j.nbd.2021.105607] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 12/08/2021] [Accepted: 12/30/2021] [Indexed: 12/12/2022] Open
Abstract
Brain disorders are characterized by the progressive loss of structure and function of the brain as a consequence of progressive degeneration and/or death of nerve cells. Aging is a major risk factor for brain disorders such as Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and stroke. Various cellular and molecular events have been shown to play a role in the progress of neurodegenerative diseases. Emerging studies suggest that primary cilia could be a key regulator in brain diseases. The primary cilium is a singular cellular organelle expressed on the surface of many cell types, such as astrocytes and neurons in the mature brain. Primary cilia detect extracellular cues, such as Sonic Hedgehog (SHH) protein, and transduce these signals into cells to regulate various signaling pathways. Abnormalities in ciliary length and frequency (ratio of ciliated cells) have been implicated in various human diseases, including brain disorders. This review summarizes current findings and thoughts on the role of primary cilia and ciliary signaling pathways in aging and age-related brain disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Anatomy, Physiology and Pharmacology, School of Veterinary Medicine, St. George's University, Grenada
| | - Liang Chen
- Department of Computer Science, College of Engineering, Shantou University, Shantou, Guangdong 515063, China; Key Laboratory of Intelligent Manufacturing Technology, Ministry of Education, Shantou University, Shantou, Guangdong 515063, China
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
22
|
Yates AG, Pink RC, Erdbrügger U, Siljander PR, Dellar ER, Pantazi P, Akbar N, Cooke WR, Vatish M, Dias‐Neto E, Anthony DC, Couch Y. In sickness and in health: The functional role of extracellular vesicles in physiology and pathology in vivo: Part I: Health and Normal Physiology: Part I: Health and Normal Physiology. J Extracell Vesicles 2022; 11:e12151. [PMID: 35041249 PMCID: PMC8765331 DOI: 10.1002/jev2.12151] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022] Open
Abstract
Previously thought to be nothing more than cellular debris, extracellular vesicles (EVs) are now known to mediate physiological and pathological functions throughout the body. We now understand more about their capacity to transfer nucleic acids and proteins between distant organs, the interaction of their surface proteins with target cells, and the role of vesicle-bound lipids in health and disease. To date, most observations have been made in reductionist cell culture systems, or as snapshots from patient cohorts. The heterogenous population of vesicles produced in vivo likely act in concert to mediate both beneficial and detrimental effects. EVs play crucial roles in both the pathogenesis of diseases, from cancer to neurodegenerative disease, as well as in the maintenance of system and organ homeostasis. This two-part review draws on the expertise of researchers working in the field of EV biology and aims to cover the functional role of EVs in physiology and pathology. Part I will outline the role of EVs in normal physiology.
Collapse
Affiliation(s)
- Abi G. Yates
- Department of PharmacologyUniversity of OxfordOxfordUK
- School of Biomedical SciencesFaculty of MedicineUniversity of QueenslandSt LuciaAustralia
| | - Ryan C. Pink
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Uta Erdbrügger
- Department of Medicine, Division of NephrologyUniversity of VirginiaCharlottesvilleVirginiaUSA
| | - Pia R‐M. Siljander
- Molecular and Integrative Biosciences Research ProgrammeFaculty of Biological and Environmental SciencesUniversity of HelsinkiHelsinkiFinland
| | - Elizabeth R. Dellar
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Paschalia Pantazi
- Department of Biological and Medical SciencesFaculty of Health and Life SciencesOxford Brookes UniversityHeadington CampusOxfordUK
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - William R. Cooke
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Manu Vatish
- Nuffield Department of Women's and Reproductive HealthUniversity of OxfordOxfordUK
| | - Emmanuel Dias‐Neto
- Laboratory of Medical Genomics. A.C. Camargo Cancer CentreSão PauloBrazil
- Laboratory of Neurosciences (LIM‐27) Institute of PsychiatrySão Paulo Medical SchoolSão PauloBrazil
| | | | - Yvonne Couch
- Acute Stroke Programme ‐ Radcliffe Department of MedicineUniversity of OxfordJohn Radcliffe Hospital, HeadingtonOxfordUK
| |
Collapse
|
23
|
Hurbain I, Macé AS, Romao M, Prince E, Sengmanivong L, Ruel L, Basto R, Thérond PP, Raposo G, D'Angelo G. Microvilli-derived extracellular vesicles carry Hedgehog morphogenic signals for Drosophila wing imaginal disc development. Curr Biol 2021; 32:361-373.e6. [PMID: 34890558 DOI: 10.1016/j.cub.2021.11.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 08/12/2021] [Accepted: 11/10/2021] [Indexed: 12/20/2022]
Abstract
Morphogens are secreted molecules that regulate and coordinate major developmental processes, such as cell differentiation and tissue morphogenesis. Depending on the mechanisms of secretion and the nature of their carriers, morphogens act at short and long range. We investigated the paradigmatic long-range activity of Hedgehog (Hh), a well-known morphogen, and its contribution to the growth and patterning of the Drosophila wing imaginal disc. Extracellular vesicles (EVs) contribute to Hh long-range activity; however, the nature, the site, and the mechanisms underlying the biogenesis of these vesicular carriers remain unknown. Here, through the analysis of mutants and a series of Drosophila RNAi-depleted wing imaginal discs using fluorescence and live-imaging electron microscopy, including tomography and 3D reconstruction, we demonstrate that microvilli of the wing imaginal disc epithelium are the site of generation of small EVs that transport Hh across the tissue. Further, we show that the Prominin-like (PromL) protein is critical for microvilli integrity. Together with actin cytoskeleton and membrane phospholipids, PromL maintains microvilli architecture that is essential to promote its secretory function. Importantly, the distribution of Hh to microvilli and its release via these EVs contribute to the proper morphogenesis of the wing imaginal disc. Our results demonstrate that microvilli-derived EVs are carriers for Hh long-range signaling in vivo. By establishing that members of the Prominin protein family are key determinants of microvilli formation and integrity, our findings support the view that microvilli-derived EVs conveying Hh may provide a means for exchanging signaling cues of high significance in tissue development and cancer.
Collapse
Affiliation(s)
- Ilse Hurbain
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Anne-Sophie Macé
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Maryse Romao
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Elodie Prince
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Lucie Sengmanivong
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Laurent Ruel
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Renata Basto
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm U1091, Institute of Biology Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Graça Raposo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France
| | - Gisela D'Angelo
- Institut Curie, PSL Research University, CNRS, UMR144, 26 rue d'Ulm, 75248 Paris Cedex 05, France; Institut Curie, PSL Research University, CNRS, UMR144, Cell and Tissue Imaging Facility (PICT-IBiSA), 26, rue d'Ulm, 75248 Paris Cedex 05, France.
| |
Collapse
|
24
|
Li L, Zhao J, Zhang Q, Tao Y, Shen C, Li R, Ma Z, Li J, Wang Z. Cancer Cell-Derived Exosomes Promote HCC Tumorigenesis Through Hedgehog Pathway. Front Oncol 2021; 11:756205. [PMID: 34692546 PMCID: PMC8529041 DOI: 10.3389/fonc.2021.756205] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 09/16/2021] [Indexed: 12/12/2022] Open
Abstract
Purpose Hepatocellular carcinoma (HCC) accounts for more than 80% of primary liver cancers and is one of the leading causes of cancer-related death in many countries. Cancer cell-derived exosomes are shown to mediate communications between cancer cells and the microenvironment, promoting tumorigenesis. Hedgehog signaling pathway plays important roles in cancer development of HCC. Methods Exosomes were isolated from culture medium of HCC cell lines PLC/PRF/5 and MHCC-97H and were found to promote cancer cell growth measured with cell proliferation and colony formation assay. HCC cells cultured with cancer cell-derived exosome had increased cancer stem cell (CSC) population demonstrated by increased cell sphere formation CSC marker expressions. Hedgehog protein Shh was found to be highly expressed in these two HCC cell lines and preferably carried by exosomes. When Shh was knocked down with shRNA, the resulting exosomes had a reduced effect on promoting cancer cell growth or CSC population increase compared to normal cell-derived exosomes. Results The ability of PLC/PRF/5 cells to form tumor in a xenograft model was increased by the addition of the exosomes from control cancer cells but not the exosomes from Shh knocked down cancer cells. Finally, the higher plasma Exo-Shh levels were associated with later tumor stages, higher histological grades, multiple tumors, and higher recurrence rates. Conclusion This study demonstrated that HCC cells secreted Shh via exosome and promote tumorigenesis through the activated Hedgehog pathway.
Collapse
Affiliation(s)
- Li Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jing Zhao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Quanbao Zhang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Yifeng Tao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Conghuan Shen
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Ruidong Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Zhengyu Ma
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Jianhua Li
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| | - Zhengxin Wang
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai, China.,Institute of Organ Transplantation, Fudan University, Shanghai, China
| |
Collapse
|
25
|
Astrocyte-Derived Extracellular Vesicle-Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biol Psychiatry 2021; 90:575-585. [PMID: 34417054 DOI: 10.1016/j.biopsych.2021.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Morphine is used extensively in the clinical setting owing to its beneficial effects, such as pain relief; its therapeutic utility is limited because the prolonged use of morphine often results in tolerance and addiction. Astrocytes in the brain are a direct target of morphine action and play an essential role in the development of morphine tolerance. Primary cilia and the cilia-mediated sonic hedgehog (SHH) signaling pathways have been shown to play a role in drug resistance and morphine tolerance, respectively. Extracellular vesicles (EVs) play important roles as cargo-carrying vesicles mediating communication among cells and tissues. METHODS C57BL/6N mice were administered morphine for 8 days to develop tolerance, which was determined using the tail-flick and hot plate assays. EVs were separated from astrocyte-conditioned media using either size exclusion chromatography or ultracentrifugation approaches, followed by characterization of EVs using nanoparticle tracking analysis for EV size distribution and number, Western blotting for EV markers, and electron microscopy for EV morphology. Astrocytes were treated with EVs for 24 hours, followed by assessing primary cilia by fluorescent immunostaining for primary cilia markers (ARL13B and acetylated tubulin). RESULTS Morphine-tolerant mice exhibited an increase in primary cilia length and percentage of ciliated astrocytes. The levels of SHH protein were upregulated in morphine-stimulated astrocyte-derived EVs. SHH on morphine-stimulated astrocyte-derived EVs activated SHH signaling in astrocytes through primary cilia. Our in vivo study demonstrated that inhibition of either EV release or primary cilia prevents morphine tolerance in mice. CONCLUSIONS EV-mediated primary ciliogenesis contributes to the development of morphine tolerance.
Collapse
|
26
|
Manikowski D, Ehring K, Gude F, Jakobs P, Froese J, Grobe K. Hedgehog lipids: Promotors of alternative morphogen release and signaling?: Conflicting findings on lipidated Hedgehog transport and signaling can be explained by alternative regulated mechanisms to release the morphogen. Bioessays 2021; 43:e2100133. [PMID: 34611914 DOI: 10.1002/bies.202100133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/19/2022]
Abstract
Two posttranslational lipid modifications present on all Hedgehog (Hh) morphogens-an N-terminal palmitate and a C-terminal cholesterol-are established and essential regulators of Hh biofunction. Yet, for several decades, the question of exactly how both lipids contribute to Hh signaling remained obscure. Recently, cryogenic electron microscopy revealed different modes by which one or both lipids may contribute directly to Hh binding and signaling to its receptor Patched1 (Ptc). Some of these modes demand that the established release factor Dispatched1 (Disp) extracts dual-lipidated Hh from the cell surface, and that another known upstream signaling modulator called Scube2 chaperones the dual-lipidated morphogen to Ptc. By mechanistically and biochemically aligning this concept with established in vivo and recent in vitro findings, this reflection identifies remaining questions in lipidated Hh transport and evaluates additional mechanisms of Disp- and Scube2-regulated release of a second bioactive Hh fraction that has one or both lipids removed.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Fabian Gude
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Jurij Froese
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry, University of Münster, Münster, North Rhine-Westphalia, Germany
| |
Collapse
|
27
|
Pivoriūnas A, Verkhratsky A. Astrocyte-Endotheliocyte Axis in the Regulation of the Blood-Brain Barrier. Neurochem Res 2021; 46:2538-2550. [PMID: 33961207 DOI: 10.1007/s11064-021-03338-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022]
Abstract
The evolution of blood-brain barrier paralleled centralisation of the nervous system: emergence of neuronal masses required control over composition of the interstitial fluids. The barriers were initially created by glial cells, which employed septate junctions to restrict paracellular diffusion in the invertebrates and tight junctions in some early vertebrates. The endothelial barrier, secured by tight and adherent junctions emerged in vertebrates and is common in mammals. Astrocytes form the parenchymal part of the blood-brain barrier and commutate with endothelial cells through secretion of growth factors, morphogens and extracellular vesicles. These secreted factors control the integrity of the blood-brain barrier through regulation of expression of tight junction proteins. The astrocyte-endotheliocyte communications are particularly important in various neurological diseases associated with impairments to the blood-brain barrier. Molecular mechanisms supporting astrocyte-endotheliocyte axis in health and disease are in need of detailed characterisation.
Collapse
Affiliation(s)
- Augustas Pivoriūnas
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
| | - Alexei Verkhratsky
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, 01102, Vilnius, Lithuania.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, 48011, Bilbao, Spain.
| |
Collapse
|
28
|
Loo CKC, Pearen MA, Ramm GA. The Role of Sonic Hedgehog in Human Holoprosencephaly and Short-Rib Polydactyly Syndromes. Int J Mol Sci 2021; 22:ijms22189854. [PMID: 34576017 PMCID: PMC8468456 DOI: 10.3390/ijms22189854] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/03/2021] [Accepted: 09/09/2021] [Indexed: 12/18/2022] Open
Abstract
The Hedgehog (HH) signalling pathway is one of the major pathways controlling cell differentiation and proliferation during human development. This pathway is complex, with HH function influenced by inhibitors, promotors, interactions with other signalling pathways, and non-genetic and cellular factors. Many aspects of this pathway are not yet clarified. The main features of Sonic Hedgehog (SHH) signalling are discussed in relation to its function in human development. The possible role of SHH will be considered using examples of holoprosencephaly and short-rib polydactyly (SRP) syndromes. In these syndromes, there is wide variability in phenotype even with the same genetic mutation, so that other factors must influence the outcome. SHH mutations were the first identified genetic causes of holoprosencephaly, but many other genes and environmental factors can cause malformations in the holoprosencephaly spectrum. Many patients with SRP have genetic defects affecting primary cilia, structures found on most mammalian cells which are thought to be necessary for canonical HH signal transduction. Although SHH signalling is affected in both these genetic conditions, there is little overlap in phenotype. Possible explanations will be canvassed, using data from published human and animal studies. Implications for the understanding of SHH signalling in humans will be discussed.
Collapse
Affiliation(s)
- Christine K. C. Loo
- South Eastern Area Laboratory Services, Department of Anatomical Pathology, NSW Health Pathology, Prince of Wales Hospital, Sydney, NSW 2031, Australia
- Correspondence: ; Tel.: +61-2-93829015
| | - Michael A. Pearen
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
| | - Grant A. Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (M.A.P.); (G.A.R.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
29
|
Das Gupta A, Krawczynska N, Nelson ER. Extracellular Vesicles-The Next Frontier in Endocrinology. Endocrinology 2021; 162:6310412. [PMID: 34180968 PMCID: PMC8294678 DOI: 10.1210/endocr/bqab133] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Indexed: 12/19/2022]
Abstract
Extracellular vesicles (EVs), including exosomes, are emerging as important carriers of signals in normal and pathological physiology. As EVs are a long-range communication or signaling modality-just like hormones are-the field of endocrinology is uniquely poised to offer insight into their functional biology and regulation. EVs are membrane-bound particles secreted by many different cell types and can have local or systemic effects, being transported in body fluids. They express transmembrane proteins, some of which are shared between EVs and some being specific to the tissue of origin, that can interact with target cells directly (much like hormones can). They also contain cargo within them that includes DNA, RNA, miRNA, and various metabolites. They can fuse with target cells to empty their cargo and alter their target cell physiology in this way also. Similar to the endocrine system, the EV system is likely to be under homeostatic control, making the regulation of their biogenesis and secretion important aspects to study. In this review, we briefly highlight select examples of how EVs are implicated in normal physiology and disease states. We also discuss what is known about their biogenesis and regulation of secretion. We hope that this paper inspires the endocrinology field to use our collective expertise to explore these new multimodal "hormones."
Collapse
Affiliation(s)
- Anasuya Das Gupta
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Natalia Krawczynska
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Erik R Nelson
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, Anticancer Discovery from Pets to People Theme, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Erik R. Nelson, Ph.D., University of Illinois at Urbana-Champaign. 407 S Goodwin Ave (MC-114), Urbana, IL, 61801, USA.
| |
Collapse
|
30
|
From Bipotent Neuromesodermal Progenitors to Neural-Mesodermal Interactions during Embryonic Development. Int J Mol Sci 2021; 22:ijms22179141. [PMID: 34502050 PMCID: PMC8431582 DOI: 10.3390/ijms22179141] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 08/22/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
To ensure the formation of a properly patterned embryo, multiple processes must operate harmoniously at sequential phases of development. This is implemented by mutual interactions between cells and tissues that together regulate the segregation and specification of cells, their growth and morphogenesis. The formation of the spinal cord and paraxial mesoderm derivatives exquisitely illustrate these processes. Following early gastrulation, while the vertebrate body elongates, a population of bipotent neuromesodermal progenitors resident in the posterior region of the embryo generate both neural and mesodermal lineages. At later stages, the somitic mesoderm regulates aspects of neural patterning and differentiation of both central and peripheral neural progenitors. Reciprocally, neural precursors influence the paraxial mesoderm to regulate somite-derived myogenesis and additional processes by distinct mechanisms. Central to this crosstalk is the activity of the axial notochord, which, via sonic hedgehog signaling, plays pivotal roles in neural, skeletal muscle and cartilage ontogeny. Here, we discuss the cellular and molecular basis underlying this complex developmental plan, with a focus on the logic of sonic hedgehog activities in the coordination of the neural-mesodermal axis.
Collapse
|
31
|
Liu H, Liu W, Jin G. Detection of Exosomes Using Total Internal Reflected Imaging Ellipsometry. BIOSENSORS 2021; 11:164. [PMID: 34065240 PMCID: PMC8160712 DOI: 10.3390/bios11050164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/11/2021] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
Exosomes are a kind of membrane-bound phospholipid nanovesicle that are secreted extensively in a variety of biological fluids. Accumulating evidence has indicated that exosomes not only communicate with cells, but also perform functional roles in physiology and pathology. In addition, exosomes have also elicited a great deal of excitement due to their potential as disease biomarkers. Therefore, requirements for sensitive methods capable of precisely and specifically determining exosomes were needed. Herein, we not only develop a sensing surface to capture exosomes but also compare two surface proteins on exosomes, which are appropriate for detecting exosome surface markers by total internal reflected imaging ellipsometry (TIRIE). Protein G and antibody were immobilized on a thin layer of golden substrate to form the biosensing surface. The bio-interaction between antibodies and exosomes was recorded by the TIRIE in real time. The distance between exosomes adhered on a surface was 44 nm ± 0.5 nm. The KD of anti-CD9 and exosome was lower than anti-CD63 and exosome by introducing pseudo-first-order interaction kinetics, which suggested that CD9 is more suitable for exosome surface markers than CD63. The limit of detection (LOD) of TIRIE was 0.4 μg/mL. In conclusion, we have proposed a surface for the detection of exosomes based on TIRIE, which can make the detection of exosomes convenient and efficient.
Collapse
Affiliation(s)
- Haoyu Liu
- NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-Si-Huan West Road, Beijing 100190, China; (H.L.); (W.L.)
- School of Engineering Sciences, University of Chinese Academy of Sciences, 19 Yu-Quan Road, Beijing 100049, China
| | - Wei Liu
- NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-Si-Huan West Road, Beijing 100190, China; (H.L.); (W.L.)
| | - Gang Jin
- NML, Institute of Mechanics, Chinese Academy of Sciences, 15 Bei-Si-Huan West Road, Beijing 100190, China; (H.L.); (W.L.)
- School of Engineering Sciences, University of Chinese Academy of Sciences, 19 Yu-Quan Road, Beijing 100049, China
| |
Collapse
|
32
|
Ullah S, Shah SWA, Qureshi MT, Hussain Z, Ullah I, Kalsoom UE, Rahim F, Rahman SSU, Sultana N, Khan MK. Antidiabetic and Hypolipidemic Potential of Green AgNPs against Diabetic Mice. ACS APPLIED BIO MATERIALS 2021; 4:3433-3442. [PMID: 35014427 DOI: 10.1021/acsabm.1c00005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Green nanotechnology-based approaches have been acquired as environmentally friendly and cost effective with many biomedical applications. The present study reports the synthesis of silver nanoparticles (AgNPs) from the leaves of Emblica phyllanthus, characterized by UV-Vis spectroscopy, EDX, SEM, AFM, and XRD. The acute and chronic antidiabetic and hypolipidemic potential of AgNPs was studied in alloxan-induced diabetic mice. A total of 11 groups (G1-G11, n = 6) of mice were treated with different concentrations (150 and 300 mM) and sizes of AgNPs and compared with those treated with standard glibenclamide. A significant decrease (P > 0.05) in the glucose level was achieved for 30, 45, and 65 nm after 15 days of treatment compared to the diabetic control. The oral administration of optimal AgNPs reduced the glucose level from 280.83 ± 4.17 to 151.17 ± 3.54 mg/dL, while the standard drug glibenclamide showed the reduction in glucose from 265.5 ± 1.43 to 192 ± 3.4 mg/dL. Histopathological studies were performed in dissected kidney and liver tissues of the treated mice, which revealed significant recovery in the liver and kidney after AgNP treatment. Acute toxicity study revealed that AgNPs were safe up to a size of 400 nm and the raw leaf extract of Emblica phyllanthus was safe up to 2500 mg/kg b.w. This study may help provide more effective and safe treatment options for diabetes compared to traditionally prescribed antidiabetic drugs.
Collapse
Affiliation(s)
- Salim Ullah
- Department of Biochemistry, Hazara University, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan.,University of Science and Technology China (USTC), Hefei 230026, China
| | - Syed Wadud Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara 23051, Khyber Pakhtunkhwa, Pakistan
| | | | - Zahid Hussain
- University of Science and Technology China (USTC), Hefei 230026, China
| | - Ismat Ullah
- CAS Key Laboratory of Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, CAS, Suzhou 215123, China
| | - Umm-E Kalsoom
- Department of Biochemistry, Hazara University, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan
| | - Fazal Rahim
- University of Science and Technology China (USTC), Hefei 230026, China
| | | | - Nighat Sultana
- Department of Biochemistry, Hazara University, Mansehra 21120, Khyber Pakhtunkhwa, Pakistan
| | - Muhammad Kamran Khan
- Oxford Suzhou Centre for Advanced Research (OSCAR), University of Oxford, Suzhou 215123, China
| |
Collapse
|
33
|
Davis J, Mire E. Maternal obesity and developmental programming of neuropsychiatric disorders: An inflammatory hypothesis. Brain Neurosci Adv 2021; 5:23982128211003484. [PMID: 33889757 PMCID: PMC8040564 DOI: 10.1177/23982128211003484] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 02/09/2021] [Indexed: 12/19/2022] Open
Abstract
Maternal obesity is associated with the development of a variety of neuropsychiatric disorders; however, the mechanisms behind this association are not fully understood. Comparison between maternal immune activation and maternal obesity reveals similarities in associated impairments and maternal cytokine profile. Here, we present a summary of recent evidence describing how inflammatory processes contribute towards the development of neuropsychiatric disorders in the offspring of obese mothers. This includes discussion on how maternal cytokine levels, fatty acids and placental inflammation may interact with foetal neurodevelopment through changes to microglial behaviour and epigenetic modification. We also propose an exosome-mediated mechanism for the disruption of brain development under maternal obesity and discuss potential intervention strategies.
Collapse
Affiliation(s)
- Jonathan Davis
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| | - Erik Mire
- Hodge Centre for Neuropsychiatric Immunology, Neuroscience and Mental Health Research Institute, Division of Psychological Medicine and Clinical Neurosciences, School of Medicine, Cardiff University, Cardiff, UK
| |
Collapse
|
34
|
Anusha, Dalal H, Subramanian S, V P S, Gowda DA, H K, Damodar S, Vyas N. Exovesicular-Shh confers Imatinib resistance by upregulating Bcl2 expression in chronic myeloid leukemia with variant chromosomes. Cell Death Dis 2021; 12:259. [PMID: 33707419 PMCID: PMC7952724 DOI: 10.1038/s41419-021-03542-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/10/2021] [Accepted: 02/12/2021] [Indexed: 01/29/2023]
Abstract
Chronic myeloid leukemia (CML) patients with complex chromosomal translocations as well as non-compliant CML patients often demonstrate short-lived responses and poor outcomes on the current therapeutic regimes using Imatinib and its variants. It has been derived so far that leukemic stem cells (LSCs) are responsible for Imatinib resistance and CML progression. Sonic hedgehog (Shh) signaling has been implicated in proliferation of this Imatinib-resistant CD34(+) LSCs. Our work here identifies the molecular mechanism of Shh-mediated mutation-independent Imatinib resistance that is most relevant for treating CML-variants and non-compliant patients. Our results elucidate that while Shh can impart stemness, it also upregulates expression of anti-apoptotic protein—Bcl2. It is the upregulation of Bcl2 that is involved in conferring Imatinib resistance to the CD34(+) LSCs. Sub-toxic doses of Bcl2 inhibitor or Shh inhibitor (<<IC50), when used as adjuvants along with Imatinib, can re-sensitize Shh signaling cells to Imatinib. Our work here highlights the need to molecularly stratify CML patients and implement combinatorial therapy to overcome the current limitations and improve outcomes in CML.
Collapse
Affiliation(s)
- Anusha
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, India.,St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Hamza Dalal
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India
| | - Sitalakshmi Subramanian
- St. John's Medical College and Hosptial, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Snijesh V P
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India
| | - Divya A Gowda
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Krishnamurthy H
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, UAS-GKVK Campus, Bellary Road, Bangalore, 560065, India
| | - Sharat Damodar
- Mazumdar Shaw Medical Center, Narayana Health City, Bangalore, 560099, India.
| | - Neha Vyas
- St. John's Research Institute, St. John's Academy of Health Sciences, Bangalore, 560034, India.
| |
Collapse
|
35
|
Gore T, Matusek T, D'Angelo G, Giordano C, Tognacci T, Lavenant-Staccini L, Rabouille C, Thérond PP. The GTPase Rab8 differentially controls the long- and short-range activity of the Hedgehog morphogen gradient by regulating Hedgehog apico-basal distribution. Development 2021; 148:dev.191791. [PMID: 33547132 DOI: 10.1242/dev.191791] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 01/19/2021] [Indexed: 01/02/2023]
Abstract
The Hedgehog (Hh) morphogen gradient is required for patterning during metazoan development, yet the mechanisms involved in Hh apical and basolateral release and how this influences short- and long-range target induction are poorly understood. We found that depletion of the GTPase Rab8 in Hh-producing cells induces an imbalance between the level of apically and laterally released Hh. This leads to non-cell-autonomous differential effects on the expression of Hh target genes, namely an increase in its short-range targets and a concomitant decrease in long-range targets. We further found that Rab8 regulates the endocytosis and apico-basal distribution of Ihog, a transmembrane protein known to bind to Hh and to be crucial for establishment of the Hh gradient. Our data provide new insights into morphogen gradient formation, whereby morphogen activity is functionally distributed between apically and basolaterally secreted pools.
Collapse
Affiliation(s)
- Tanvi Gore
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Tamás Matusek
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Gisela D'Angelo
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Cécile Giordano
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France.,Institut Curie, UMR144 CNRS, 12 Rue Lhomond, 75005 Paris, France
| | - Thomas Tognacci
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Laurence Lavenant-Staccini
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| | - Catherine Rabouille
- Department of Cell Biology, Hubrecht Institute of the Royal Netherlands Academy of Arts and Sciences & University Medical Center Utrecht, 3584 CT Utrecht, Netherlands.,Department of Biomedical Science of Cells and Systems, University Medical Center Groningen, 9700 AD Groningen, Netherlands
| | - Pascal P Thérond
- Université Côte d'Azur, UMR7277 CNRS, Inserm 1091, Institut de Biologie de Valrose (iBV), Parc Valrose, 06108 Nice cedex2, France
| |
Collapse
|
36
|
Derrick DJA, Wolton K, Currie RA, Tindall MJ. A mathematical model of the role of aggregation in sonic hedgehog signalling. PLoS Comput Biol 2021; 17:e1008562. [PMID: 33617524 PMCID: PMC7932509 DOI: 10.1371/journal.pcbi.1008562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 03/04/2021] [Accepted: 11/23/2020] [Indexed: 11/25/2022] Open
Abstract
Effective regulation of the sonic hedgehog (Shh) signalling pathway is essential for normal development in a wide variety of species. Correct Shh signalling requires the formation of Shh aggregates on the surface of producing cells. Shh aggregates subsequently diffuse away and are recognised in receiving cells located elsewhere in the developing embryo. Various mechanisms have been postulated regarding how these aggregates form and what their precise role is in the overall signalling process. To understand the role of these mechanisms in the overall signalling process, we formulate and analyse a mathematical model of Shh aggregation using nonlinear ordinary differential equations. We consider Shh aggregate formation to comprise of multimerisation, association with heparan sulfate proteoglycans (HSPG) and binding with lipoproteins. We show that the size distribution of the Shh aggregates formed on the producing cell surface resembles an exponential distribution, a result in agreement with experimental data. A detailed sensitivity analysis of our model reveals that this exponential distribution is robust to parameter changes, and subsequently, also to variations in the processes by which Shh is recruited by HSPGs and lipoproteins. The work demonstrates the time taken for different sized Shh aggregates to form and the important role this likely plays in Shh diffusion. The sonic hedgehog (Shh) pathway is vital for normal development in a wide variety of species and its activity is strictly regulated to ensure correct spatiotemporal patterning of numerous developing tissues. Shh signalling requires the formation of Shh aggregates, formed on producing cells via a range of different mechanisms, that then diffuse to receiving cells. We formulate and analyse a mathematical model of the most well described mechanisms, namely monomer multimerisation, and recruitment of Shh by heparan sulfate proteoglycans and lipoproteins. Our results illustrate a distribution of the size and quantities of aggregates formed by these mechanisms. We found that as a consequence of competition between the mechanisms for Shh monomers the shape distribution of Shh aggregates resembles an exponential distribution. We also found the distribution to be robust to both parameter changes and variations to the processes by which mechanisms recruit Shh. We report that our approach and subsequent results demonstrate that these mechanisms act in synergy allowing Shh to aggregate in various quantities with diverse diffusive abilities. We postulate that this regulation contributes significantly to aid precision in signalling for Shh in areas of development.
Collapse
Affiliation(s)
- Daniel J. A. Derrick
- Department of Mathematics and Statistics, University of Reading, Whiteknights, Reading, United Kingdom
| | - Kathryn Wolton
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Richard A. Currie
- Syngenta, Jealott’s Hill International Research Centre, Bracknell, Berkshire, United Kingdom
| | - Marcus John Tindall
- Department of Mathematics and Statistics, University of Reading, Whiteknights, Reading, United Kingdom
- Institute of Cardiovascular and Metabolic Research, University of Reading, Whiteknights, Reading, United Kingdom
- * E-mail:
| |
Collapse
|
37
|
Manikowski D, Kastl P, Schürmann S, Ehring K, Steffes G, Jakobs P, Grobe K. C-Terminal Peptide Modifications Reveal Direct and Indirect Roles of Hedgehog Morphogen Cholesteroylation. Front Cell Dev Biol 2021; 8:615698. [PMID: 33511123 PMCID: PMC7835520 DOI: 10.3389/fcell.2020.615698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 12/03/2020] [Indexed: 01/20/2023] Open
Abstract
Hedgehog (Hh) morphogens are involved in embryonic development and stem cell biology and, if misregulated, can contribute to cancer. One important post-translational modification with profound impact on Hh biofunction is its C-terminal cholesteroylation during biosynthesis. The current hypothesis is that the cholesterol moiety is a decisive factor in Hh association with the outer plasma membrane leaflet of producing cells, cell-surface Hh multimerization, and its transport and signaling. Yet, it is not decided whether the cholesterol moiety is directly involved in all of these processes, because their functional interdependency raises the alternative possibility that the cholesterol initiates early processes directly and that these processes can then steer later stages of Hh signaling independent of the lipid. We generated variants of the C-terminal Hh peptide and observed that these cholesteroylated peptides variably impaired several post-translational processes in producing cells and Hh biofunction in Drosophila melanogaster eye and wing development. We also found that substantial Hh amounts separated from cholesteroylated peptide tags in vitro and in vivo and that tagged and untagged Hh variants lacking their C-cholesterol moieties remained bioactive. Our approach thus confirms that Hh cholesteroylation is essential during the early steps of Hh production and maturation but also suggests that it is dispensable for Hh signal reception at receiving cells.
Collapse
Affiliation(s)
- Dominique Manikowski
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Philipp Kastl
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Sabine Schürmann
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Kristina Ehring
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Georg Steffes
- Institute of Neuro- and Behavioral Biology, University of Münster, Münster, Germany
| | - Petra Jakobs
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| | - Kay Grobe
- Institute of Physiological Chemistry and Pathobiochemistry and the Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Münster, Germany
| |
Collapse
|
38
|
Mateska I, Nanda K, Dye NA, Alexaki VI, Eaton S. Range of SHH signaling in adrenal gland is limited by membrane contact to cells with primary cilia. J Biophys Biochem Cytol 2020; 219:211483. [PMID: 33090184 PMCID: PMC7588141 DOI: 10.1083/jcb.201910087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 07/27/2020] [Accepted: 09/15/2020] [Indexed: 01/04/2023] Open
Abstract
The signaling protein Sonic Hedgehog (SHH) is crucial for the development and function of many vertebrate tissues. It remains largely unclear, however, what defines the range and specificity of pathway activation. The adrenal gland represents a useful model to address this question, where the SHH pathway is activated in a very specific subset of cells lying near the SHH-producing cells, even though there is an abundance of lipoproteins that would allow SHH to travel and signal long-range. We determine that, whereas adrenal cells can secrete SHH on lipoproteins, this form of SHH is inactive due to the presence of cosecreted inhibitors, potentially explaining the absence of long-range signaling. Instead, we find that SHH-producing cells signal at short range via membrane-bound SHH, only to receiving cells with primary cilia. Finally, our data from NCI-H295R adrenocortical carcinoma cells suggest that adrenocortical tumors may evade these regulatory control mechanisms by acquiring the ability to activate SHH target genes in response to TGF-β.
Collapse
Affiliation(s)
- Ivona Mateska
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany,Correspondence to Ivona Mateska:
| | - Kareena Nanda
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Natalie A. Dye
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Vasileia Ismini Alexaki
- Institute of Clinical Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany
| | - Suzanne Eaton
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany,Biotechnologisches Zentrum, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
39
|
Roefs MT, Sluijter JPG, Vader P. Extracellular Vesicle-Associated Proteins in Tissue Repair. Trends Cell Biol 2020; 30:990-1013. [PMID: 33069512 DOI: 10.1016/j.tcb.2020.09.009] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/14/2020] [Accepted: 09/16/2020] [Indexed: 02/07/2023]
Abstract
The administration of (stem) cell-derived extracellular vesicles (EVs) promotes tissue repair through management of different inflammatory, proliferative and remodeling processes in the body. Despite the widely observed biological and therapeutic roles of EVs in wound healing and tissue repair, knowledge on how EVs activate recipient cells and which EV cargo is responsible for the subsequent functional effects is limited. Recent studies hint toward an important role for proteins as functional EV cargo. Here, we provide an overview of how EV-associated proteins promote tissue repair processes and discuss current challenges in evaluating their contribution to EV function and future directions for translating fundamental insights into clinically relevant EV therapies.
Collapse
Affiliation(s)
- Marieke T Roefs
- Department of Cardiology, Experimental Cardiology Laboratory, University Utrecht, University Medical Center Utrecht, The Netherlands
| | - Joost P G Sluijter
- Department of Cardiology, Experimental Cardiology Laboratory, University Utrecht, University Medical Center Utrecht, The Netherlands.
| | - Pieter Vader
- Department of Cardiology, Experimental Cardiology Laboratory, University Utrecht, University Medical Center Utrecht, The Netherlands; CDL Research, University Medical Center Utrecht, The Netherlands.
| |
Collapse
|
40
|
Matusek T, Marcetteau J, Thérond PP. Functions of Wnt and Hedgehog-containing extracellular vesicles in development and disease. J Cell Sci 2020; 133:133/18/jcs209742. [PMID: 32989011 DOI: 10.1242/jcs.209742] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Secreted morphogens play a major role in the intercellular communication necessary for animal development. It was initially thought that, in order to organize tissue morphogenesis and control cell fate and proliferation, morphogens diffused freely in the extracellular space. This view has since changed following the discovery that morphogens of the Wnt and Hedgehog (Hh) families are modified by various lipid adducts during their biosynthesis, providing them with high affinity for the membrane bilayer. Recent work performed in model organisms suggests that Wnt and Hh proteins are carried on extracellular vesicles. In this Review, we provide our perspectives on the mechanisms of formation of Wnt- and Hh-containing extracellular vesicles, and discuss their functions during animal development, as well as in various human physiopathologies.
Collapse
Affiliation(s)
- Tamás Matusek
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Julien Marcetteau
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| | - Pascal P Thérond
- Université Côte d'Azur, CNRS, INSERM, Institut de Biologie Valrose (iBV), Parc Valrose, 06108 Nice Cedex 2, France
| |
Collapse
|
41
|
González‐Méndez L, Gradilla A, Sánchez‐Hernández D, González E, Aguirre‐Tamaral A, Jiménez‐Jiménez C, Guerra M, Aguilar G, Andrés G, Falcón‐Pérez JM, Guerrero I. Polarized sorting of Patched enables cytoneme-mediated Hedgehog reception in the Drosophila wing disc. EMBO J 2020; 39:e103629. [PMID: 32311148 PMCID: PMC7265244 DOI: 10.15252/embj.2019103629] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 03/04/2020] [Accepted: 03/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (Hh) signal molecules play a fundamental role in development, adult stem cell maintenance and cancer. Hh can signal at a distance, and we have proposed that its graded distribution across Drosophila epithelia is mediated by filopodia-like structures called cytonemes. Hh reception by Patched (Ptc) happens at discrete sites along presenting and receiving cytonemes, reminiscent of synaptic processes. Here, we show that a vesicle fusion mechanism mediated by SNARE proteins is required for Ptc placement at contact sites. Transport of Ptc to these sites requires multivesicular bodies (MVBs) formation via ESCRT machinery, in a manner different to that regulating Ptc/Hh lysosomal degradation after reception. These MVBs include extracellular vesicle (EV) markers and, accordingly, Ptc is detected in the purified exosomal fraction from cultured cells. Blockage of Ptc trafficking and fusion to basolateral membranes result in low levels of Ptc presentation for reception, causing an extended and flattened Hh gradient.
Collapse
Affiliation(s)
- Laura González‐Méndez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Ana‐Citlali Gradilla
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - David Sánchez‐Hernández
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Esperanza González
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
| | - Adrián Aguirre‐Tamaral
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Carlos Jiménez‐Jiménez
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| | - Milagros Guerra
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Gustavo Aguilar
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
- Growth and DevelopmentBiozentrumUniversity of BaselBaselSwitzerland
| | - Germán Andrés
- Electron Microscopy UnitCentro de Biología Molecular Severo Ochoa(CSIC‐UAM)Nicolás Cabrera 1Universidad Autonoma de MadridMadridSpain
| | - Juan M Falcón‐Pérez
- Exosomes Lab. Center for Cooperative Research in Biosciences (CIC bioGUNE)Basque Research and Technology Alliance (BRTA)DerioSpain
- IKERBASQUEBasque Foundation for ScienceBilbaoSpain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)DerioSpain
| | - Isabel Guerrero
- Tissue and Organ HomeostasisCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM), Nicolás Cabrera 1Universidad Autónoma de MadridMadridSpain
| |
Collapse
|
42
|
Kahane N, Kalcheim C. Neural tube development depends on notochord-derived sonic hedgehog released into the sclerotome. Development 2020; 147:dev183996. [PMID: 32345743 PMCID: PMC7272346 DOI: 10.1242/dev.183996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 04/06/2020] [Indexed: 12/18/2022]
Abstract
Sonic hedgehog (Shh), produced in the notochord and floor plate, is necessary for both neural and mesodermal development. To reach the myotome, Shh has to traverse the sclerotome and a reduction of sclerotomal Shh affects myotome differentiation. By investigating loss and gain of Shh function, and floor-plate deletions, we report that sclerotomal Shh is also necessary for neural tube development. Reducing the amount of Shh in the sclerotome using a membrane-tethered hedgehog-interacting protein or Patched1, but not dominant active Patched, decreased the number of Olig2+ motoneuron progenitors and Hb9+ motoneurons without a significant effect on cell survival or proliferation. These effects were a specific and direct consequence of Shh reduction in the mesoderm. In addition, grafting notochords in a basal but not apical location, vis-à-vis the tube, profoundly affected motoneuron development, suggesting that initial ligand presentation occurs at the basal side of epithelia corresponding to the sclerotome-neural tube interface. Collectively, our results reveal that the sclerotome is a potential site of a Shh gradient that coordinates the development of mesodermal and neural progenitors.
Collapse
Affiliation(s)
- Nitza Kahane
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem 9112102, P.O. Box 12272, Israel
| |
Collapse
|
43
|
Zhao G, Li H, Guo Q, Zhou A, Wang X, Li P, Zhang S. Exosomal Sonic Hedgehog derived from cancer-associated fibroblasts promotes proliferation and migration of esophageal squamous cell carcinoma. Cancer Med 2020; 9:2500-2513. [PMID: 32030915 PMCID: PMC7131837 DOI: 10.1002/cam4.2873] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/24/2019] [Accepted: 01/06/2020] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most common and aggressive malignancies in China. Cancer-associated fibroblasts (CAFs) can actively communicate with and stimulate tumor cells, thereby contributing to the development and progression of tumors. Yet, whether CAFs-derived exosomes have a role in the progression of ESCC is largely unknown. Here, we find that Sonic Hedgehog (SHH) is highly expressed in CAFs lysis solution, conditioned medium of cultured CAFs (CAF-CM) and CAFs-derived exosomes, and esophageal cancer cell lines educated by CAF-CM and CAFs-derived exosomes can improve their growth and migration abilities in vitro and in vivo. Besides, those effects can be partly neutralized by cyclopamine, inhibitor of the Hedgehog signaling pathway. Thus, our research elucidates the crucial role of CAFs-derived exosomes in the growth and progression of ESCC, and may open up new avenues in the treatment of ESCC.
Collapse
Affiliation(s)
- Guiping Zhao
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Hengcun Li
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Qingdong Guo
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Anni Zhou
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Xingyu Wang
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Peng Li
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| | - Shutian Zhang
- Department of Gastroenterology, National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, Beijing Key Laboratory for Precancerous Lesion of Digestive Disease, Beijing Friendship Hospital, Capital Medical University, Beijing, P. R. China
| |
Collapse
|
44
|
Coulter ME, Dorobantu CM, Lodewijk GA, Delalande F, Cianferani S, Ganesh VS, Smith RS, Lim ET, Xu CS, Pang S, Wong ET, Lidov HGW, Calicchio ML, Yang E, Gonzalez DM, Schlaeger TM, Mochida GH, Hess H, Lee WCA, Lehtinen MK, Kirchhausen T, Haussler D, Jacobs FMJ, Gaudin R, Walsh CA. The ESCRT-III Protein CHMP1A Mediates Secretion of Sonic Hedgehog on a Distinctive Subtype of Extracellular Vesicles. Cell Rep 2020; 24:973-986.e8. [PMID: 30044992 PMCID: PMC6178983 DOI: 10.1016/j.celrep.2018.06.100] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 04/18/2018] [Accepted: 06/24/2018] [Indexed: 01/23/2023] Open
Abstract
Endosomal sorting complex required for transport (ESCRT) complex proteins regulate biogenesis and release of extracellular vesicles (EVs), which enable cell-to-cell communication in the nervous system essential for development and adult function. We recently showed human loss-of-function (LOF) mutations in ESCRT-III member CHMP1A cause autosomal recessive microcephaly with pontocerebellar hypoplasia, but its mechanism was unclear. Here, we show Chmp1a is required for progenitor proliferation in mouse cortex and cerebellum and progenitor maintenance in human cerebral organoids. In Chmp1a null mice, this defect is associated with impaired sonic hedgehog (Shh) secretion and intraluminal vesicle (ILV) formation in multivesicular bodies (MVBs). Furthermore, we show CHMP1A is important for release of an EV subtype that contains AXL, RAB18, and TMED10 (ART) and SHH. Our findings show CHMP1A loss impairs secretion of SHH on ART-EVs, providing molecular mechanistic insights into the role of ESCRT proteins and EVs in the brain. Extracellular vesicles (EVs) are essential for cell-to-cell communication in developing brain. Coulter et al. show that the human microcephaly gene CHMP1A is required for neuroprogenitor proliferation through regulation of vesicular secretion of the growth factor sonic hedgehog (SHH). CHMP1A specifically impairs SHH secretion on a distinctive EV subtype, ART-EV.
Collapse
Affiliation(s)
- Michael E Coulter
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience and Harvard/MIT MD-PHD Program, Harvard Medical School, Boston, MA 02115, USA
| | - Cristina M Dorobantu
- Inserm U1110, Université de Strasbourg, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France
| | - Gerrald A Lodewijk
- University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, the Netherlands
| | - François Delalande
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087 Strasbourg, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse Bio-Organique, IPHC, UMR 7178, CNRS-Université de Strasbourg, ECPM, 67087 Strasbourg, France
| | - Vijay S Ganesh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Richard S Smith
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Elaine T Lim
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - C Shan Xu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Song Pang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Eric T Wong
- Brain Tumor Center and Neuro-Oncology Unit, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Hart G W Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Monica L Calicchio
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Edward Yang
- Department of Radiology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Dilenny M Gonzalez
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten M Schlaeger
- Division of Hematology and Oncology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ganeshwaran H Mochida
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA; Department of Neurology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Harald Hess
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Wei-Chung Allen Lee
- F.M. Kirby Neurobiology Center, Boston Children's Hospital and Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria K Lehtinen
- Department of Pathology, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tomas Kirchhausen
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - David Haussler
- Center for Biomolecular Science and Engineering, University of California and Howard Hughes Medical Institute, Santa Cruz, CA 95064, USA
| | - Frank M J Jacobs
- University of Amsterdam, Swammerdam Institute for Life Sciences, 1098 XH Amsterdam, the Netherlands.
| | - Raphael Gaudin
- Inserm U1110, Université de Strasbourg, Institut de Recherche sur les Maladies Virales et Hépatiques, 67000 Strasbourg, France; Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA.
| | - Christopher A Walsh
- Division of Genetics and Genomics and Howard Hughes Medical Institute, Boston Children's Hospital, Departments of Pediatrics and Neurology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
45
|
The Role of Vesicle Trafficking and Release in Oligodendrocyte Biology. Neurochem Res 2019; 45:620-629. [PMID: 31782103 DOI: 10.1007/s11064-019-02913-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/11/2019] [Accepted: 11/16/2019] [Indexed: 12/11/2022]
Abstract
Oligodendrocytes are a subtype of glial cells found within the central nervous system (CNS), responsible for the formation and maintenance of specialized myelin membranes which wrap neuronal axons. The development of myelin requires tight coordination for the cell to deliver lipid and protein building blocks to specific myelin segments at the right time. Both internal and external cues control myelination, thus the reception of these signals also requires precise regulation. In late years, a growing body of evidence indicates that oligodendrocytes, like many other cell types, may use extracellular vesicles (EVs) as a medium for transferring information. The field of EV research has expanded rapidly over the past decade, with new contributions that suggest EVs might have direct involvement in communications with neurons and other glial cells to fine tune oligodendroglial function. This functional role of EVs might also be maladaptive, as it has likewise been implicated in the spreading of toxic molecules within the brain during disease. In this review we will discuss the field's current understanding of extracellular vesicle biology within oligodendrocytes, and their contribution to physiologic and pathologic conditions.
Collapse
|
46
|
Lee SS, Won JH, Lim GJ, Han J, Lee JY, Cho KO, Bae YK. A novel population of extracellular vesicles smaller than exosomes promotes cell proliferation. Cell Commun Signal 2019; 17:95. [PMID: 31416445 PMCID: PMC6694590 DOI: 10.1186/s12964-019-0401-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023] Open
Abstract
Background Extracellular vesicles (EVs) play important roles in intercellular communication by delivering RNA, lipid, and proteins to neighboring or distant cells. Identification and classification of EVs secreted from diverse cell types are essential for understanding their signaling properties. Methods In this study, EVs from the culture media were isolated by ultracentrifugation and analyzed by electron microscopy (EM) and nanoparticle tracking analyses. Conditioned media (CM) from HEK293 cells culture grown either in serum-free (SF) or 10% fetal bovine serum (FBS) containing media were centrifuged at 100,000×g to separate the SNΔ supernatant and the P100 pellet in which exosomes are enriched. Then, the SNΔ fraction was centrifuged at 200,000×g to yield the P200 pellet fraction containing novel EVs smaller than exosomes. The exosomal markers in the EV subgroups were examined by western blotting and immune-EM, and the functional analyses of EVs were conducted on HEK293 and THP-1 cell culture. Results We identified a new group of EVs in the P200 fraction that was smaller than exosomes in size. Typical exosome markers such as Hsp70, TSG101, and CD63 were found in both P100 exosomes and the P200 vesicles, but CD81 was highly enriched in exosomes but not in the P200 vesicles. Furthermore, chemicals that inhibit the major exosome production pathway did not decrease the level of P200 vesicles. Therefore, these small EVs indeed belong to a distinguished group of EVs. Exosomes and the P200 vesicles were found in CM of human cell lines as well as FBS. Addition of the exosomes and the P200 vesicles to human cell cultures enhanced exosome production and cell proliferation, respectively. Conclusions Our study identifies a novel population of EVs present in the P200 fraction. This EV population is distinguished from exosomes in size, protein contents, and biogenesis pathway. Furthermore, exosomes promote their own production whereas the P200 vesicles support cell proliferation. In sum, we report a new group of EVs that are distinct physically, biologically and functionally from exosomes. Electronic supplementary material The online version of this article (10.1186/s12964-019-0401-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sang-Soo Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.,Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Gippeum J Lim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.,Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Jeongran Han
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.,Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Ji Youn Lee
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| | - Young-Kyung Bae
- Center for Bioanalysis, Korea Research Institute of Standards and Science, 267 Gajeong-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
47
|
Functional Analysis of ESCRT-Positive Extracellular Vesicles in the Drosophila Wing Imaginal Disc. Methods Mol Biol 2019; 1998:31-47. [PMID: 31250292 DOI: 10.1007/978-1-4939-9492-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2023]
Abstract
A large number of studies have shown that proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) can trigger the biogenesis of different types of Extracellular Vesicles (EV). The functions that these vesicular carriers exert in vivo remain, however, poorly understood. In this chapter, we describe a series of experimental approaches that we established in the Drosophila wing imaginal disc to study the importance of ESCRT-positive EVs for the extracellular transport of signaling molecules, as exemplified by a functional analysis of the mechanism of secretion and propagation of the major developmental morphogen Hedgehog (Hh).Through the combined use of genetic, cell biological, and imaging approaches, we investigate four important aspects of exovesicle biology: (1) The genetic identification of ESCRT proteins that are specifically required for Hh secretion. (2) The imaging of ESCRT and Hh-positive EVs in the lumenal space of both living and fixed wing imaginal discs. (3) The receptor-mediated capture of Hh-containing EVs on the surface of Hh-receiving cells. (4) The effect of manipulations of ESCRT function on the extracellular pool of Hh ligands.
Collapse
|
48
|
González-Méndez L, Gradilla AC, Guerrero I. The cytoneme connection: direct long-distance signal transfer during development. Development 2019; 146:146/9/dev174607. [PMID: 31068374 DOI: 10.1242/dev.174607] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
During development, specialized cells produce signals that distribute among receiving cells to induce a variety of cellular behaviors and organize tissues. Recent studies have highlighted cytonemes, a type of specialized signaling filopodia that carry ligands and/or receptor complexes, as having a role in signal dispersion. In this Primer, we discuss how the dynamic regulation of cytonemes facilitates signal transfer in complex environments. We assess recent evidence for the mechanisms for cytoneme formation, function and regulation, and postulate that contact between cytoneme membranes promotes signal transfer as a new type of synapse (morphogenetic synapsis). Finally, we reflect on the fundamental unanswered questions related to understanding cytoneme biology.
Collapse
Affiliation(s)
- Laura González-Méndez
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Ana-Citlali Gradilla
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| | - Isabel Guerrero
- Centro de Biología Molecular 'Severo Ochoa' (CSIC-UAM), Nicolás Cabrera 1, Universidad Autónoma de Madrid, Cantoblanco, E-28049 Madrid, Spain
| |
Collapse
|
49
|
Hall ET, Cleverdon ER, Ogden SK. Dispatching Sonic Hedgehog: Molecular Mechanisms Controlling Deployment. Trends Cell Biol 2019; 29:385-395. [PMID: 30852081 DOI: 10.1016/j.tcb.2019.02.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 02/07/2019] [Accepted: 02/08/2019] [Indexed: 11/26/2022]
Abstract
The Hedgehog (Hh) family of morphogens direct cell fate decisions during embryogenesis and signal to maintain tissue homeostasis after birth. Hh ligands harbor dual lipid modifications that anchor the proteins into producing cell membranes, effectively preventing ligand release. The transporter-like protein Dispatched (Disp) functions to release these membrane tethers and mobilize Hh ligands to travel toward distant cellular targets. The molecular mechanisms by which Disp achieves Hh deployment are not yet fully understood, but a number of recent publications provide insight into the complex process of Hh release. Herein we review this literature, integrate key discoveries, and discuss some of the open questions that will drive future studies aimed at understanding Disp-mediated Hh ligand deployment.
Collapse
Affiliation(s)
- Eric T Hall
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | - Elizabeth R Cleverdon
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA
| | - Stacey K Ogden
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, MS 340, Memphis, TN 38105, USA.
| |
Collapse
|
50
|
Kruglikov IL, Zhang Z, Scherer PE. The Role of Immature and Mature Adipocytes in Hair Cycling. Trends Endocrinol Metab 2019; 30:93-105. [PMID: 30558832 PMCID: PMC6348020 DOI: 10.1016/j.tem.2018.11.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/29/2018] [Accepted: 11/20/2018] [Indexed: 02/06/2023]
Abstract
Hair follicles (HFs) strongly interact with adipocytes within the dermal white adipose tissue (dWAT), suggesting a strong physiological dependence on the content of immature and mature adipocytes in this layer. This content is regulated by the proliferation and differentiation of adipocyte precursors, as well as by dedifferentiation of mature existing adipocytes. Spatially, long-range interactions between HFs and dWAT involve the exchange of extracellular vesicles which are differentially released by precursors, preadipocytes, and mature adipocytes. Different exogenous factors, including light irradiation, are likely to modify the release of adipocyte-derived exosomes in dWAT, which can lead to aberrations of the HF cycle. Consequently, dWAT should be considered as a potential target for the modulation of hair growth.
Collapse
Affiliation(s)
| | - Zhuzhen Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390-8549, USA.
| |
Collapse
|