1
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Bottacini F, Friess L, Carlson HK, Wong DPGH, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good BH, DeFelice B, Cava F, Scaria J, Sonnenburg JL, Van Sinderen D, Deutschbauer AM, Huang KC. Genome-scale resources in the infant gut symbiont Bifidobacterium breve reveal genetic determinants of colonization and host-microbe interactions. Cell 2025; 188:2003-2021.e19. [PMID: 40068681 DOI: 10.1016/j.cell.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 08/08/2024] [Accepted: 02/13/2025] [Indexed: 03/27/2025]
Abstract
Bifidobacteria represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest in bifidobacteria as a live biotic therapy, our understanding of colonization, host-microbe interactions, and the health-promoting effects of bifidobacteria is limited. To address these major knowledge gaps, we used a large-scale genetic approach to create a mutant fitness compendium in Bifidobacterium breve. First, we generated a high-density randomly barcoded transposon insertion pool and used it to determine fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. Second, to enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1,462 genes. We leveraged these tools to reveal community- and diet-specific requirements for colonization and to connect the production of immunomodulatory molecules to growth benefits. These resources will catalyze future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Char Wynter
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; College of Mathematics and Science, The University of Tennessee Southern, Pulaski, TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA; Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN 55905, USA
| | - Francesca Bottacini
- School of Microbiology, University College Cork, Cork, Ireland; Department of Biological Sciences, Munster Technological University, Cork, Ireland
| | - Lisa Friess
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Hans K Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel P G H Wong
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, CA 94305, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Benjamin D Knapp
- Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Chemistry and Biochemistry, Middlebury College, Middlebury, VT 05753, USA
| | - Juan Sanchez
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Paulo A Garcia
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Cullen R Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Benjamin H Good
- Department of Applied Physics, Stanford University, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Science for Life Laboratory (SciLifeLab), Umeå University, Umeå 90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD 57007, USA; Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK 74074, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Adam M Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
2
|
Alamán-Zárate MG, Rady BJ, Ledermann R, Shephard N, Evans CA, Dickman MJ, Turner RD, Rifflet A, Patel AV, Gomperts Boneca I, Poole PS, Bern M, Mesnage S. A software tool and strategy for peptidoglycomics, the high-resolution analysis of bacterial peptidoglycans via LC-MS/MS. Commun Chem 2025; 8:91. [PMID: 40133660 PMCID: PMC11937551 DOI: 10.1038/s42004-025-01490-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 03/10/2025] [Indexed: 03/27/2025] Open
Abstract
Peptidoglycan is an essential component of the bacterial cell envelope-a mesh-like macromolecule that protects the bacterium from osmotic stress and its internal turgor pressure. The composition and architecture of peptidoglycan is heterogeneous and changes as bacteria grow, divide, and respond to their environment. Though peptidoglycan has long been studied via LC-MS/MS, the analysis of this data remains challenging as peptidoglycan's unusual composition and branching can't be handled by proteomics software. Here we describe user-friendly open-source tools and a web interface for building peptidoglycan databases, performing MS searches, and predicting the MS/MS fragmentation of muropeptides. We then use Rhizobium leguminosarum to describe a step-by-step strategy for the high-resolution analysis of peptidoglycan. The unprecedented detail of R. leguminosarum's peptidoglycan composition (>250 muropeptides) reveals even the subtlest remodelling between growth conditions. These new and easier to use tools enable more systematic analyses of peptidoglycan dynamics.
Collapse
Affiliation(s)
| | - Brooks J Rady
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | | | - Neil Shephard
- Research Software Engineer team, University of Sheffield, Sheffield, UK
| | - Caroline A Evans
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Mark J Dickman
- Department of Chemical and Biological Engineering, ChELSI Institute, University of Sheffield, Sheffield, UK
| | - Robert D Turner
- Research Software Engineer team, University of Sheffield, Sheffield, UK
| | - Aline Rifflet
- Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Biology and genetics of the bacterial cell wall Unit, Paris, France
| | - Ankur V Patel
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Ivo Gomperts Boneca
- Institut Pasteur, Université Paris Cité, INSERM U1306, CNRS UMR6047, Biology and genetics of the bacterial cell wall Unit, Paris, France
| | | | | | - Stéphane Mesnage
- Molecular Microbiology, School of Biosciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
3
|
Boudrioua A, Baëtz B, Desmadril S, Goulard C, Groo AC, Lombard C, Gueulle S, Marugan M, Malzert-Fréon A, Hartke A, Li Y, Giraud C. Lasso peptides sviceucin and siamycin I exhibit anti-virulence activity and restore vancomycin effectiveness in vancomycin-resistant pathogens. iScience 2025; 28:111922. [PMID: 40034853 PMCID: PMC11872507 DOI: 10.1016/j.isci.2025.111922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/06/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Antibiotic resistance is a major threat to human health and new drugs are urgently needed. Ideally, these drugs should have several cellular targets in pathogens, decreasing the risk of resistance development. We show here that two natural ribosomally synthesized lasso peptides (LPs), sviceucin and siamycin I, (1) abolish bacterial virulence of pathogenic enterococci, (2) restore vancomycin clinical susceptibility of vancomycin-resistant (VR) enterococci in vitro and in a surrogate animal model, and (3) re-sensitize VR Staphylococcus aureus. Mode of action (MoA) analyses showed that they do so by inhibiting the histidine kinases (HKs) FsrC and VanS controlling these phenotypes. Strains resistant to the vancomycin/LP combination were difficult to obtain, and were still fully susceptible to the anti-virulence effect of the LPs, highlighting the advantage of multiple targets. Together with the highly sought-after MoA as HK inhibitors, such properties make these lasso peptides promising candidates for the development of next generation antibiotics.
Collapse
Affiliation(s)
| | - Benjamin Baëtz
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| | | | - Christophe Goulard
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | | | - Carine Lombard
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | - Sabrina Gueulle
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| | - Marie Marugan
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | | | - Axel Hartke
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| | - Yanyan Li
- Unit Molecules of Communication and Adaptation of Microorganisms (MCAM), UMR 7245 CNRS-Muséum National d’Histoire Naturelle (MNHN), 75005 Paris, France
| | - Caroline Giraud
- Université de Caen Normandie, CBSA UR4312, F-14000 Caen, France
| |
Collapse
|
4
|
Mariano G, Deme JC, Readshaw JJ, Grobbelaar MJ, Keenan M, El-Masri Y, Bamford L, Songra S, Blower TR, Palmer T, Lea SM. Modularity of Zorya defense systems during phage inhibition. Nat Commun 2025; 16:2344. [PMID: 40057510 PMCID: PMC11890865 DOI: 10.1038/s41467-025-57397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 05/13/2025] Open
Abstract
Bacteria have evolved an extraordinary diversity of defense systems against bacteriophage (phage) predation. However, the molecular mechanisms underlying these anti-phage systems often remain elusive. Here, we provide mechanistic and structural insights into Zorya phage defense systems. Using cryo-EM structural analyses, we show that the Zorya type I and II core components, ZorA and ZorB, assemble in a 5:2 complex that is similar to inner-membrane ion-driven, rotary motors that power flagellar rotation, type 9 secretion, gliding and the Ton nutrient uptake systems. The ZorAB complex has an elongated cytoplasmic tail assembled by bundling the C-termini of the five ZorA subunits. Mutagenesis demonstrates that peptidoglycan binding by the periplasmic domains of ZorB, the structured cytoplasmic tail of ZorA, and ion flow through the motor is important for function in both type I and II systems. Furthermore, we identify ZorE as the effector module of the Zorya II system, possessing nickase activity. Our work reveals the molecular basis of the activity of Zorya systems and highlights the ZorE nickase as crucial for population-wide immunity in the type II system.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK.
- School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Justin C Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
| | | | | | - Mackenzie Keenan
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Yasmin El-Masri
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Lindsay Bamford
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Suraj Songra
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
| |
Collapse
|
5
|
Sen BC, Mavi PS, Irazoki O, Datta S, Kaiser S, Cava F, Flärdh K. A dispensable SepIVA orthologue in Streptomyces venezuelae is associated with polar growth and not cell division. BMC Microbiol 2024; 24:481. [PMID: 39558276 PMCID: PMC11571769 DOI: 10.1186/s12866-024-03625-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 11/04/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND SepIVA has been reported to be an essential septation factor in Mycolicibacterium smegmatis and Mycobacterium tuberculosis. It is a coiled-coil protein with similarity to DivIVA, a protein necessary for polar growth in members of the phylum Actinomycetota. Orthologues of SepIVA are broadly distributed among actinomycetes, including in Streptomyces spp. RESULTS To clarify the role of SepIVA and its potential involvement in cell division in streptomycetes, we generated sepIVA deletion mutants in Streptomyces venezuelae and found that sepIVA is dispensable for growth, cell division and sporulation. Further, mNeonGreen-SepIVA fusion protein did not localize at division septa, and we found no evidence of involvement of SepIVA in cell division. Instead, mNeonGreen-SepIVA was accumulated at the tips of growing vegetative hyphae in ways reminiscent of the apical localization of polarisome components like DivIVA. Bacterial two-hybrid system analyses revealed an interaction between SepIVA and DivIVA. The results indicate that SepIVA is associated with polar growth. However, no phenotypic effects of sepIVA deletion could be detected, and no evidence was observed of redundancy with the other DivIVA-like coiled-coil proteins Scy and FilP that are also associated with apical growth in streptomycetes. CONCLUSIONS We conclude that S. venezuelae SepIVA, in contrast to the situation in mycobacteria, is dispensable for growth and viability. The results suggest that it is associated with polar growth rather than septum formation.
Collapse
Affiliation(s)
- Beer Chakra Sen
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | | | - Oihane Irazoki
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Susmita Datta
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Sebastian Kaiser
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, SciLifeLab, Umeå University, Umeå, Sweden
| | - Klas Flärdh
- Department of Biology, Lund University, Kontaktvägen 13, Lund, 223 62, Sweden.
| |
Collapse
|
6
|
Antenucci L, Virtanen S, Thapa C, Jartti M, Pitkänen I, Tossavainen H, Permi P. Reassessing the substrate specificities of the major Staphylococcus aureus peptidoglycan hydrolases lysostaphin and LytM. eLife 2024; 13:RP93673. [PMID: 39495121 PMCID: PMC11534333 DOI: 10.7554/elife.93673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024] Open
Abstract
Orchestrated action of peptidoglycan (PG) synthetases and hydrolases is vital for bacterial growth and viability. Although the function of several PG synthetases and hydrolases is well understood, the function, regulation, and mechanism of action of PG hydrolases characterised as lysostaphin-like endopeptidases have remained elusive. Many of these M23 family members can hydrolyse glycyl-glycine peptide bonds and show lytic activity against Staphylococcus aureus whose PG contains a pentaglycine bridge, but their exact substrate specificity and hydrolysed bonds are still vaguely determined. In this work, we have employed NMR spectroscopy to study both the substrate specificity and the bond cleavage of the bactericide lysostaphin and the S. aureus PG hydrolase LytM. Yet, we provide substrate-level evidence for the functional role of these enzymes. Indeed, our results show that the substrate specificities of these structurally highly homologous enzymes are similar, but unlike observed earlier both LytM and lysostaphin prefer the D-Ala-Gly cross-linked part of mature peptidoglycan. However, we show that while lysostaphin is genuinely a glycyl-glycine hydrolase, LytM can also act as a D-alanyl-glycine endopeptidase.
Collapse
Affiliation(s)
- Lina Antenucci
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Salla Virtanen
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
| | - Chandan Thapa
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Minne Jartti
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Ilona Pitkänen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Helena Tossavainen
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| | - Perttu Permi
- Department of Biological and Environmental Science, Nanoscience Center, University of JyvaskylaJyväskyläFinland
- Institute of Biotechnology, Helsinki Institute of Life Science, University of HelsinkiHelsinkiFinland
- Department of Chemistry, Nanoscience Center, University of JyvaskylaJyväskyläFinland
| |
Collapse
|
7
|
Panda S, Jayasinghe YP, Shinde DD, Bueno E, Stastny A, Bertrand BP, Chaudhari SS, Kielian T, Cava F, Ronning DR, Thomas VC. Staphylococcus aureus counters organic acid anion-mediated inhibition of peptidoglycan cross-linking through robust alanine racemase activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.15.575639. [PMID: 38293037 PMCID: PMC10827132 DOI: 10.1101/2024.01.15.575639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Weak organic acids are commonly found in host niches colonized by bacteria, and they can inhibit bacterial growth as the environment becomes acidic. This inhibition is often attributed to the toxicity resulting from the accumulation of high concentrations of organic anions in the cytosol, which disrupts cellular homeostasis. However, the precise cellular targets that organic anions poison and the mechanisms used to counter organic anion intoxication in bacteria have not been elucidated. Here, we utilize acetic acid, a weak organic acid abundantly found in the gut to investigate its impact on the growth of Staphylococcus aureus. We demonstrate that acetate anions bind to and inhibit d-alanyl-d-alanine ligase (Ddl) activity in S. aureus. Ddl inhibition reduces intracellular d-alanyl-d-alanine (d-Ala-d-Ala) levels, compromising staphylococcal peptidoglycan cross-linking and cell wall integrity. To overcome the effects of acetate-mediated Ddl inhibition, S. aureus maintains a substantial intracellular d-Ala pool through alanine racemase (Alr1) activity and additionally limits the flux of d-Ala to d-glutamate by controlling d-alanine aminotransferase (Dat) activity. Surprisingly, the modus operandi of acetate intoxication in S. aureus is common to multiple biologically relevant weak organic acids indicating that Ddl is a conserved target of small organic anions. These findings suggest that S. aureus may have evolved to maintain high intracellular d-Ala concentrations, partly to counter organic anion intoxication.
Collapse
Affiliation(s)
- Sasmita Panda
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Yahani P. Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dhananjay D. Shinde
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Emilio Bueno
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Amanda Stastny
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Blake P. Bertrand
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Sujata S. Chaudhari
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Tammy Kielian
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Center for Microbial Research (UCMR), Department of Molecular Biology, Umeå University, Umea SE-90187, Sweden
| | - Donald R. Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Vinai C. Thomas
- Center for Staphylococcal Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, USA
| |
Collapse
|
8
|
Williams C, Carnahan BR, Hyland SN, Grimes CL. Bioorthogonal labeling of chitin in pathogenic Candida species reveals biochemical mechanisms of hyphal growth and homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.27.609898. [PMID: 39253419 PMCID: PMC11383299 DOI: 10.1101/2024.08.27.609898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Pathogenic fungi rely on the cell wall component, chitin, for critical structural and immunological functions. Here a chitin labeling method to visualize the hyphal pathogenic response was developed. The data show that filamentous fungi, Candida albicans , transport N -acetylglucosamine (NAG) bio-orthogonal probes and incorporate them into the cell wall, indicating the probes utility for in vivo study of the morphological, pathogenic switch. As yeast reside in complex microenvironments, The data show that the opportunistic microbe C. albicans , has developed processes to utilize surrounding bacterial cell wall fragments to initiate the morphogenic switch. The probes are utilized for visualization of growth patterns of pathogenic fungi, providing insights into novel mechanisms for the development of antifungals. Remodeling chitin in fungi using NAG derivatives will advance yeast pathogenic studies.
Collapse
|
9
|
Kaneko K, Mieda M, Jiang Y, Takahashi N, Kakeya H. Tumescenamide C, a cyclic lipodepsipeptide from Streptomyces sp. KUSC_F05, exerts antimicrobial activity against the scab-forming actinomycete Streptomyces scabiei. J Antibiot (Tokyo) 2024; 77:353-364. [PMID: 38523145 DOI: 10.1038/s41429-024-00716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/08/2024] [Accepted: 03/04/2024] [Indexed: 03/26/2024]
Abstract
The antimicrobial activity of tumescenamide C against the scab-forming S. scabiei NBRC13768 was confirmed with a potent IC50 value (1.5 μg/mL). Three tumescenamide C-resistant S. scabiei strains were generated to compare their gene variants. All three resistant strains contained nonsynonymous variants in genes related to cellobiose/cellotriose transport system components; cebF1, cebF2, and cebG2, which are responsible for the production of the phytotoxin thaxtomin A. Decrease in thaxtomin A production and the virulence of the three resistant strains were revealed by the LC/MS analysis and necrosis assay, respectively. Although the nonsynonymous variants were insufficient for identifying the molecular target of tumescenamide C, the cell wall component wall teichoic acid (WTA) was observed to bind significantly to tumescenamide C. Moreover, changes in the WTA contents were detected in the tumescenamide C-resistant strains. These results imply that tumescenamide C targets the cell wall system to exert antimicrobial effects on S. scabiei.
Collapse
Affiliation(s)
- Kensuke Kaneko
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
- Hachinohe College of Technology, Aomori, 039-1192, Japan
| | - Marika Mieda
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Yulu Jiang
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Nobuaki Takahashi
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences, Division of Medicinal Frontier Sciences, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, 606-8501, Japan.
| |
Collapse
|
10
|
Islam MM, Agake SI, Ito T, Habibi S, Yasuda M, Yamada T, Stacey G, Ohkama-Ohtsu N. Involvement of Peptidoglycan Receptor Proteins in Mediating the Growth-Promoting Effects of Bacillus pumilus TUAT1 in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2024; 65:748-761. [PMID: 38372612 PMCID: PMC11138354 DOI: 10.1093/pcp/pcae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 02/20/2024]
Abstract
Bacillus pumilus TUAT1 acts as plant growth-promoting rhizobacteria for various plants like rice and Arabidopsis. Under stress conditions, B. pumilus TUAT1 forms spores with a thick peptidoglycan (PGN) cell wall. Previous research showed that spores were significantly more effective than vegetative cells in enhancing plant growth. In Arabidopsis, lysin motif proteins, LYM1, LYM3 and CERK1, are required for recognizing bacterial PGNs to mediate immunity. Here, we examined the involvement of PGN receptor proteins in the plant growth promotion (PGP) effects of B. pumilus TUAT1 using Arabidopsis mutants defective in PGN receptors. Root growth of wild-type (WT), cerk1-1, lym1-1 and lym1-2 mutant plants was significantly increased by TUAT1 inoculation, but this was not the case for lym3-1 and lym3-2 mutant plants. RNA-seq analysis revealed that the expression of a number of defense-related genes was upregulated in lym3 mutant plants. These results suggested that B. pumilus TUAT1 may act to reduce the defense response, which is dependent on a functional LYM3. The expression of the defense-responsive gene, WRKY29, was significantly induced by the elicitor flg-22, in both WT and lym3 mutant plants, while this induction was significantly reduced by treatment with B. pumilus TUAT1 and PGNs in WT, but not in lym3 mutant plants. These findings suggest that the PGNs of B. pumilus TUAT1 may be recognized by the LYM3 receptor protein, suppressing the defense response, which results in plant growth promotion in a trade-off between defense and growth.
Collapse
Affiliation(s)
- Md. Monirul Islam
- Plant Biotechnology and Genetic Engineering Division, Institute of Food and Radiation Biology, Bangladesh Atomic Energy Commission, Dhaka 1207, Bangladesh
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo, 183-8509 Japan
| | - Shin-ichiro Agake
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo, 183-8538 Japan
| | - Takehiro Ito
- United Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo, 183-8509 Japan
| | - Safiullah Habibi
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo, 183-8509 Japan
| | - Michiko Yasuda
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo, 183-8538 Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo, 183-8509 Japan
| | - Tetsuya Yamada
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo, 183-8538 Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo, 183-8509 Japan
| | - Gary Stacey
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo, 183-8538 Japan
- Division of Plant Science and Technology, University of Missouri-Columbia—Bond Life Science Center, 1201 Rollins St., Columbia, MO 65201-4231, USA
| | - Naoko Ohkama-Ohtsu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-8-1 Harumicho, Fuchu-shi, Tokyo, 183-8538 Japan
- Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwaicho, Fuchu-shi, Tokyo, 183-8509 Japan
| |
Collapse
|
11
|
Tian D, Cui M, Han M. Bacterial muropeptides promote OXPHOS and suppress mitochondrial stress in mammals. Cell Rep 2024; 43:114067. [PMID: 38583150 PMCID: PMC11107371 DOI: 10.1016/j.celrep.2024.114067] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
Mitochondrial dysfunction critically contributes to many major human diseases. The impact of specific gut microbial metabolites on mitochondrial functions of animals and the underlying mechanisms remain to be uncovered. Here, we report a profound role of bacterial peptidoglycan muropeptides in promoting mitochondrial functions in multiple mammalian models. Muropeptide addition to human intestinal epithelial cells (IECs) leads to increased oxidative respiration and ATP production and decreased oxidative stress. Strikingly, muropeptide treatment recovers mitochondrial structure and functions and inhibits several pathological phenotypes of fibroblast cells derived from patients with mitochondrial disease. In mice, muropeptides accumulate in mitochondria of IECs and promote small intestinal homeostasis and nutrient absorption by modulating energy metabolism. Muropeptides directly bind to ATP synthase, stabilize the complex, and promote its enzymatic activity in vitro, supporting the hypothesis that muropeptides promote mitochondria homeostasis at least in part by acting as ATP synthase agonists. This study reveals a potential treatment for human mitochondrial diseases.
Collapse
Affiliation(s)
- Dong Tian
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Mingxue Cui
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
12
|
Park SW, Choi YH, Gho JY, Kang GA, Kang SS. Synergistic Inhibitory Effect of Lactobacillus Cell Lysates and Butyrate on Poly I:C-Induced IL-8 Production in Human Intestinal Epithelial Cells. Probiotics Antimicrob Proteins 2024; 16:1-12. [PMID: 36720771 DOI: 10.1007/s12602-023-10042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 02/02/2023]
Abstract
Postbiotics include cell lysates (CLs), enzymes, cell wall fragments, and heat-killed bacteria derived from probiotics. Although postbiotics are increasingly being considered for their potential health-promoting properties, the effects of postbiotics on virus-mediated inflammatory responses in the intestine have not been elucidated. Hence, the present study aimed to examine whether CLs of Lactipantibacillus plantarum (LP CL) and Lacticaseibacillus rhamnosus GG (LR CL) could inhibit virus-mediated inflammatory responses in the human intestinal epithelial cell line HT-29 in vitro. Pretreatment with LP CL and LR CL significantly inhibited interleukin (IL)-8 production, which was induced by poly I:C, a synthetic analog of double-stranded RNA (dsRNA) viruses, at the mRNA and protein levels in HT-29 cells. However, peptidoglycans and heat-killed L. plantarum and L. rhamnosus GG did not effectively inhibit IL-8 production. LP CL and LR CL attenuated the poly I:C-induced phosphorylation of ERK and JNK and the activation of NF-κB, suggesting that these CLs could inhibit poly I:C-induced IL-8 production by regulating intracellular signaling pathways in HT-29 cells. Furthermore, among the short-chain fatty acids, butyrate enhanced the inhibitory effect of CLs on poly I:C-induced IL-8 production at the mRNA and protein levels in HT-29 cells, while acetate and propionate did not. Taken together, these results suggest that both LP CL and LR CL could act as potent effector molecules that can inhibit virus-mediated inflammatory responses and confer synergistic inhibitory effects with butyrate in human intestinal epithelial cells.
Collapse
Affiliation(s)
- Sun Woo Park
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Young Hyeon Choi
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Ju Young Gho
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Gweon Ah Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea
| | - Seok-Seong Kang
- Department of Food Science and Biotechnology, College of Life Science and Biotechnology, Dongguk University-Seoul, 32 Dongguk-ro, Ilsandong-gu, Goyang-si, 10326, Republic of Korea.
| |
Collapse
|
13
|
Kwan JMC, Liang Y, Ng EWL, Sviriaeva E, Li C, Zhao Y, Zhang XL, Liu XW, Wong SH, Qiao Y. In silico MS/MS prediction for peptidoglycan profiling uncovers novel anti-inflammatory peptidoglycan fragments of the gut microbiota. Chem Sci 2024; 15:1846-1859. [PMID: 38303944 PMCID: PMC10829024 DOI: 10.1039/d3sc05819k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/19/2023] [Indexed: 02/03/2024] Open
Abstract
Peptidoglycan is an essential exoskeletal polymer across all bacteria. Gut microbiota-derived peptidoglycan fragments (PGNs) are increasingly recognized as key effector molecules that impact host biology. However, the current peptidoglycan analysis workflow relies on laborious manual identification from tandem mass spectrometry (MS/MS) data, impeding the discovery of novel bioactive PGNs in the gut microbiota. In this work, we built a computational tool PGN_MS2 that reliably simulates MS/MS spectra of PGNs and integrated it into the user-defined MS library of in silico PGN search space, facilitating automated PGN identification. Empowered by PGN_MS2, we comprehensively profiled gut bacterial peptidoglycan composition. Strikingly, the probiotic Bifidobacterium spp. manifests an abundant amount of the 1,6-anhydro-MurNAc moiety that is distinct from Gram-positive bacteria. In addition to biochemical characterization of three putative lytic transglycosylases (LTs) that are responsible for anhydro-PGN production in Bifidobacterium, we established that these 1,6-anhydro-PGNs exhibit potent anti-inflammatory activity in vitro, offering novel insights into Bifidobacterium-derived PGNs as molecular signals in gut microbiota-host crosstalk.
Collapse
Affiliation(s)
- Jeric Mun Chung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Evan Wei Long Ng
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Ekaterina Sviriaeva
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Chenyu Li
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xiao-Lin Zhang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Xue-Wei Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| | - Sunny H Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University 11 Mandalay Road 308232 Singapore
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University 21 Nanyang Link 637371 Singapore
| |
Collapse
|
14
|
Razew A, Laguri C, Vallet A, Bougault C, Kaus-Drobek M, Sabala I, Simorre JP. Staphylococcus aureus sacculus mediates activities of M23 hydrolases. Nat Commun 2023; 14:6706. [PMID: 37872144 PMCID: PMC10593780 DOI: 10.1038/s41467-023-42506-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
Peptidoglycan, a gigadalton polymer, functions as the scaffold for bacterial cell walls and provides cell integrity. Peptidoglycan is remodelled by a large and diverse group of peptidoglycan hydrolases, which control bacterial cell growth and division. Over the years, many studies have focused on these enzymes, but knowledge on their action within peptidoglycan mesh from a molecular basis is scarce. Here, we provide structural insights into the interaction between short peptidoglycan fragments and the entire sacculus with two evolutionarily related peptidases of the M23 family, lysostaphin and LytM. Through nuclear magnetic resonance, mass spectrometry, information-driven modelling, site-directed mutagenesis and biochemical approaches, we propose a model in which peptidoglycan cross-linking affects the activity, selectivity and specificity of these two structurally related enzymes differently.
Collapse
Affiliation(s)
- Alicja Razew
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Cedric Laguri
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Alicia Vallet
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Catherine Bougault
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France
| | - Magdalena Kaus-Drobek
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland
| | - Izabela Sabala
- International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109, Warsaw, Poland.
- Laboratory of Protein Engineering, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 Pawinskiego Street, 02-106, Warsaw, Poland.
| | - Jean-Pierre Simorre
- Universite Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 71 avenue des Martyrs-CS10090, Grenoble cedex 9, 38044, France.
| |
Collapse
|
15
|
Ago R, Tahara YO, Yamaguchi H, Saito M, Ito W, Yamasaki K, Kasai T, Okamoto S, Chikada T, Oshima T, Osaka I, Miyata M, Niki H, Shiomi D. Relationship between the Rod complex and peptidoglycan structure in Escherichia coli. Microbiologyopen 2023; 12:e1385. [PMID: 37877652 PMCID: PMC10561026 DOI: 10.1002/mbo3.1385] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023] Open
Abstract
Peptidoglycan for elongation in Escherichia coli is synthesized by the Rod complex, which includes RodZ. Although various mutant strains of the Rod complex have been isolated, the relationship between the activity of the Rod complex and the overall physical and chemical structures of the peptidoglycan have not been reported. We constructed a RodZ mutant, termed RMR, and analyzed the growth rate, morphology, and other characteristics of cells producing the Rod complexes containing RMR. The growth and morphology of RMR cells were abnormal, and we isolated suppressor mutants from RMR cells. Most of the suppressor mutations were found in components of the Rod complex, suggesting that these suppressor mutations increase the integrity and/or the activity of the Rod complex. We purified peptidoglycan from wild-type, RMR, and suppressor mutant cells and observed their structures in detail. We found that the peptidoglycan purified from RMR cells had many large holes and different compositions of muropeptides from those of WT cells. The Rod complex may be a determinant not only for the whole shape of peptidoglycan but also for its highly dense structure to support the mechanical strength of the cell wall.
Collapse
Affiliation(s)
- Risa Ago
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Yuhei O. Tahara
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Honoka Yamaguchi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Motoya Saito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Wakana Ito
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Kaito Yamasaki
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Taishi Kasai
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Sho Okamoto
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
| | - Taiki Chikada
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| | - Taku Oshima
- Department of Biotechnology, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Issey Osaka
- Department of Pharmaceutical Engineering, Faculty of EngineeringToyama Prefectural UniversityImizuToyamaJapan
| | - Makoto Miyata
- Graduate School of ScienceOsaka Metropolitan UniversityOsakaJapan
- The OMU Advanced Research Center for Natural Science and TechnologyOsaka Metropolitan UniversityOsakaJapan
| | - Hironori Niki
- Microbial Physiology Laboratory, Department of Gene Function and PhenomicsNational Institute of GeneticsMishimaShizuokaJapan
- Department of GeneticsThe Graduate University for Advanced Studies, SOKENDAIMishimaShizuokaJapan
| | - Daisuke Shiomi
- Department of Life Science, College of ScienceRikkyo UniversityTokyoJapan
| |
Collapse
|
16
|
Arias-Rojas A, Frahm D, Hurwitz R, Brinkmann V, Iatsenko I. Resistance to host antimicrobial peptides mediates resilience of gut commensals during infection and aging in Drosophila. Proc Natl Acad Sci U S A 2023; 120:e2305649120. [PMID: 37639605 PMCID: PMC10483595 DOI: 10.1073/pnas.2305649120] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023] Open
Abstract
Resilience to short-term perturbations, like inflammation, is a fundamental feature of microbiota, yet the underlying mechanisms of microbiota resilience are incompletely understood. Here, we show that Lactiplantibacillus plantarum, a major Drosophila commensal, stably colonizes the fruit fly gut during infection and is resistant to Drosophila antimicrobial peptides (AMPs). By transposon screening, we identified L. plantarum mutants sensitive to AMPs. These mutants were impaired in peptidoglycan O-acetylation or teichoic acid D-alanylation, resulting in increased negative cell surface charge and higher affinity to cationic AMPs. AMP-sensitive mutants were cleared from the gut after infection and aging-induced gut inflammation in wild-type, but not in AMP-deficient flies, suggesting that resistance to host AMPs is essential for commensal resilience in an inflamed gut environment. Thus, our work reveals that in addition to the host immune tolerance to the microbiota, commensal-encoded resilience mechanisms are necessary to maintain the stable association between host and microbiota during inflammation.
Collapse
Affiliation(s)
- Aranzazu Arias-Rojas
- Research group Genetics of host–microbe interactions, Max Planck Institute for Infection Biology, Berlin10117, Germany
- Department of Biology, Chemistry, and Pharmacy, Freie Universität Berlin, Berlin14195, Germany
| | - Dagmar Frahm
- Research group Genetics of host–microbe interactions, Max Planck Institute for Infection Biology, Berlin10117, Germany
| | - Robert Hurwitz
- Protein Purification Core Facility, Max Planck Institute for Infection Biology, Berlin10117, Germany
| | - Volker Brinkmann
- Microscopy Core Facility, Max Planck Institute for Infection Biology, Berlin10117, Germany
| | - Igor Iatsenko
- Research group Genetics of host–microbe interactions, Max Planck Institute for Infection Biology, Berlin10117, Germany
| |
Collapse
|
17
|
Gómez-Arrebola C, Hernandez SB, Culp EJ, Wright GD, Solano C, Cava F, Lasa I. Staphylococcus aureus susceptibility to complestatin and corbomycin depends on the VraSR two-component system. Microbiol Spectr 2023; 11:e0037023. [PMID: 37646518 PMCID: PMC10581084 DOI: 10.1128/spectrum.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 09/01/2023] Open
Abstract
The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb. IMPORTANCE Although Staphylococcus aureus is a common colonizer of the skin and digestive tract of humans and many animals, it is also a versatile pathogen responsible for causing a wide variety and number of infections. Treatment of these infections requires the bacteria to be constantly exposed to antibiotic treatment, which facilitates the selection of antibiotic-resistant strains. The development of new antibiotics is, therefore, urgently needed. In this paper, we investigated the role of the sensory system of S. aureus in susceptibility to two new antibiotics: corbomycin and complestatin. The results shed light on the cell-wall synthesis processes that are affected by the presence of the antibiotic and the sensory system responsible for coordinating their activity.
Collapse
Affiliation(s)
- Carmen Gómez-Arrebola
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Sara B. Hernandez
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Elizabeth J. Culp
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D. Wright
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| |
Collapse
|
18
|
Shiver AL, Sun J, Culver R, Violette A, Wynter C, Nieckarz M, Mattiello SP, Sekhon PK, Friess L, Carlson HK, Wong D, Higginbottom S, Weglarz M, Wang W, Knapp BD, Guiberson E, Sanchez J, Huang PH, Garcia PA, Buie CR, Good B, DeFelice B, Cava F, Scaria J, Sonnenburg J, Sinderen DV, Deutschbauer AM, Huang KC. A mutant fitness compendium in Bifidobacteria reveals molecular determinants of colonization and host-microbe interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.29.555234. [PMID: 37693407 PMCID: PMC10491234 DOI: 10.1101/2023.08.29.555234] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bifidobacteria commonly represent a dominant constituent of human gut microbiomes during infancy, influencing nutrition, immune development, and resistance to infection. Despite interest as a probiotic therapy, predicting the nutritional requirements and health-promoting effects of Bifidobacteria is challenging due to major knowledge gaps. To overcome these deficiencies, we used large-scale genetics to create a compendium of mutant fitness in Bifidobacterium breve (Bb). We generated a high density, randomly barcoded transposon insertion pool in Bb, and used this pool to determine Bb fitness requirements during colonization of germ-free mice and chickens with multiple diets and in response to hundreds of in vitro perturbations. To enable mechanistic investigation, we constructed an ordered collection of insertion strains covering 1462 genes. We leveraged these tools to improve models of metabolic pathways, reveal unexpected host- and diet-specific requirements for colonization, and connect the production of immunomodulatory molecules to growth benefits. These resources will greatly reduce the barrier to future investigations of this important beneficial microbe.
Collapse
Affiliation(s)
- Anthony L. Shiver
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Jiawei Sun
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Rebecca Culver
- Department of Genetics, Stanford University, Stanford CA 94305, USA
| | - Arvie Violette
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Charles Wynter
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
| | - Marta Nieckarz
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Samara Paula Mattiello
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- College of Mathematics and Science, The University of Tennessee Southern, Pulaski TN 38478, USA
| | - Prabhjot Kaur Sekhon
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Lisa Friess
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Hans K. Carlson
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Daniel Wong
- Department of Applied Physics, Stanford University, Stanford CA 94305, USA
| | - Steven Higginbottom
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Meredith Weglarz
- Stanford Shared FACS Facility, Center for Molecular and Genetic Medicine, Stanford University, Stanford, California, USA
| | - Weigao Wang
- Department of Chemical Engineering, Stanford University, Stanford CA 94305, USA
| | | | - Emma Guiberson
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Po-Hsun Huang
- Department of Mechanical Engineering, Laboratory for Energy and Microsystems Innovation, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Paulo A. Garcia
- Department of Mechanical Engineering, Laboratory for Energy and Microsystems Innovation, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Cullen R. Buie
- Department of Mechanical Engineering, Laboratory for Energy and Microsystems Innovation, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, 02139, MA, USA
| | - Benjamin Good
- Department of Applied Physics, Stanford University, Stanford CA 94305, USA
| | | | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, SE-90187, Sweden
| | - Joy Scaria
- Department of Veterinary and Biomedical Sciences, South Dakota State University, Brookings, SD, 57007, USA
- Department of Veterinary Pathobiology, Oklahoma State University, Stillwater, OK, 74074, USA
| | - Justin Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Douwe Van Sinderen
- School of Microbiology, University College Cork, Ireland
- APC Microbiome Ireland, University College Cork, Ireland
| | - Adam M. Deutschbauer
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Kerwyn Casey Huang
- Department of Bioengineering, Stanford University, Stanford CA 94305, USA
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan-Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
19
|
Kim W, Kim M, Park W. Unlocking the mystery of lysine toxicity on Microcystis aeruginosa. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130932. [PMID: 36860069 DOI: 10.1016/j.jhazmat.2023.130932] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/19/2023] [Accepted: 01/31/2023] [Indexed: 06/18/2023]
Abstract
Lysine toxicity on certain groups of bacterial cells has been recognized for many years, but the detailed molecular mechanisms that drive this phenomenon have not been elucidated. Many cyanobacteria including Microcystis aeruginosa cannot efficiently export and degrade lysine, although they have evolved to maintain a single copy of the lysine uptake system through which arginine or ornithine can also be transported into the cytoplasm. Autoradiographic analysis using 14C-l-lysine confirmed that lysine was competitively uptaken into cells with arginine or ornithine, which explained the arginine or ornithine-mediated alleviation of lysine toxicity in M. aeruginosa. A relatively non-specific MurE amino acid ligase could incorporate l-lysine into the 3rd position of UDP-N-acetylmuramyl-tripeptide by replacing meso-diaminopimelic acid during the stepwise addition of amino acids on peptidoglycan (PG) biosynthesis. However, further transpeptidation was blocked because lysine substitution at the pentapeptide of the cell wall inhibited the activity of transpeptidases. The leaky PG structure caused irreversible damage to the photosynthetic system and membrane integrity. Collectively, our results suggest that a lysine-mediated coarse-grained PG network and the absence of concrete septal PG lead to the death of slow-growing cyanobacteria.
Collapse
Affiliation(s)
- Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
20
|
Liang Y, Zhao Y, Kwan J, Wang Y, Qiao Y. Escherichia coli has robust regulatory mechanisms against elevated peptidoglycan cleavage by lytic transglycosylases. J Biol Chem 2023; 299:104615. [PMID: 36931392 PMCID: PMC10139938 DOI: 10.1016/j.jbc.2023.104615] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/25/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
Peptidoglycan (PG) is an essential and conserved exoskeletal component in all bacteria that protects cells from lysis. Gram-negative bacteria such as Escherichia coli encode multiple redundant lytic transglycosylases (LTs) that engage in PG cleavage, a potentially lethal activity requiring proper regulation to prevent autolysis. To elucidate the potential effects and cellular regulatory mechanisms of elevated LT activity, we individually cloned the periplasmic domains of two membrane-bound LTs, MltA and MltB under the control of the arabinose-inducible system for overexpression in the periplasmic space in E. coli. Interestingly, upon induction, the culture undergoes an initial period of cell lysis followed by robust growth restoration. The LT-overexpressing E. coli exhibits altered morphology with larger spherical cells, which is in line with the weakening of the PG layer due to aberrant LT activity. On the other hand, the restored cells display a similar rod shape and peptidoglycan profile that is indistinguishable from the uninduced control. Quantitative proteomics analysis of the restored cells identified significant protein enrichment in the regulator of capsule synthesis (Rcs) regulon, a two-component stress response known to be specifically activated by PG damage. We showed that LT-overexpressing E. coli with an inactivated Rcs system partially impairs the growth restoration process, supporting the involvement of the Rcs system in countering aberrant PG cleavage. Furthermore, we demonstrated that the elevated LT activity specifically potentiates β-lactam antibiotics against E. coli with a defective Rcs regulon, suggesting the dual effects of augmented PG cleavage and blocked PG synthesis as a potential antimicrobial strategy.
Collapse
Affiliation(s)
- Yaquan Liang
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yilin Zhao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - JericMunChung Kwan
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371
| | - Yue Wang
- A*STAR Infectious Disease Labs, Singapore 138648
| | - Yuan Qiao
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technical University, Singapore 637371.
| |
Collapse
|
21
|
Kieninger AK, Tokarz P, Janović A, Pilhofer M, Weiss GL, Maldener I. SepN is a septal junction component required for gated cell-cell communication in the filamentous cyanobacterium Nostoc. Nat Commun 2022; 13:7486. [PMID: 36470860 PMCID: PMC9722847 DOI: 10.1038/s41467-022-34946-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 11/11/2022] [Indexed: 12/09/2022] Open
Abstract
Multicellular organisms require controlled intercellular communication for their survival. Strains of the filamentous cyanobacterium Nostoc regulate cell-cell communication between sister cells via a conformational change in septal junctions. These multi-protein cell junctions consist of a septum spanning tube with a membrane-embedded plug at both ends, and a cap covering the plug on the cytoplasmic side. The identities of septal junction components are unknown, with exception of the protein FraD. Here, we identify and characterize a FraD-interacting protein, SepN, as the second component of septal junctions in Nostoc. We use cryo-electron tomography of cryo-focused ion beam-thinned cyanobacterial filaments to show that septal junctions in a sepN mutant lack a plug module and display an aberrant cap. The sepN mutant exhibits highly reduced cell-cell communication rates, as shown by fluorescence recovery after photobleaching experiments. Furthermore, the mutant is unable to gate molecule exchange through septal junctions and displays reduced filament survival after stress. Our data demonstrate the importance of controlling molecular diffusion between cells to ensure the survival of a multicellular organism.
Collapse
Affiliation(s)
- Ann-Katrin Kieninger
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Piotr Tokarz
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Ana Janović
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| | - Martin Pilhofer
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Gregor L. Weiss
- grid.5801.c0000 0001 2156 2780Department of Biology, Institute of Molecular Biology & Biophysics, Eidgenössische Technische Hochschule Zürich, Otto-Stern-Weg 5, 8093 Zürich, Switzerland
| | - Iris Maldener
- grid.10392.390000 0001 2190 1447Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Organismic Interactions, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany
| |
Collapse
|
22
|
Chen X, Li Y, Bai K, Gu M, Xu X, Jiang N, Chen Y, Li J, Luo L. Class A Penicillin-Binding Protein C Is Responsible for Stress Response by Regulation of Peptidoglycan Assembly in Clavibacter michiganensis. Microbiol Spectr 2022; 10:e0181622. [PMID: 36040162 PMCID: PMC9603630 DOI: 10.1128/spectrum.01816-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/12/2022] [Indexed: 12/31/2022] Open
Abstract
The cell wall peptidoglycan of bacteria is essential for their survival and shape development. The penicillin-binding proteins (PBPs) are responsible for the terminal stage of peptidoglycan assembly. It has been shown that PBPC, a member of class A high-molecular-weight PBP, played an important role in morphology maintenance and stress response in Clavibacter michiganensis. Here, we reported the stress response strategies under viable but nonculturable (VBNC) state and revealed the regulation of peptidoglycan assembly by PBPC in C. michiganensis cells. Using atomic force microscopy imaging, we found that peptidoglycan of C. michiganensis cells displayed a relatively smooth and dense surface, whereas ΔpbpC was characterized by a "ridge-and-groove" surface, which was more distinctive after Cu2+ treatment. The peptidoglycan layer of wild type cells exhibited a significant increase in thickness and slight increase in cross-linkage following Cu2+ treatment. Compared with wild type, the thickness and cross-linkage of peptidoglycan decreased during log phase in ΔpbpC cells, but the peptidoglycan cross-linkage increased significantly under Cu2+ stress, while the thickness did not change. It is noteworthy that the above changes in the peptidoglycan layer resulted in a significant increase in the accumulation of amylase and exopolysaccharide in ΔpbpC. This study elucidates the role of PBPC in Gram-positive rod-shaped plant pathogenic bacterium in response to environmental stimuli by regulating the assembling of cell wall peptidoglycan, which is significant in understanding the survival of C. michiganensis under stress and the field epidemiology of tomato bacterial canker disease. IMPORTANCE Peptidoglycan of cell walls in bacteria is a cross-linked and meshlike scaffold that provides strength to withstand the external pressure. The increased cross-linkage in peptidoglycan and altered structure in VBNC cells endowed the cell wall more resistant to adversities. Here we systematically evaluated the stress response strategies in Gram-positive rod-shaped bacterium C. michiganensis log phase cells and revealed a significant increase of peptidoglycan thickness and slight increase of cross-linkage after Cu2+ treatment. Most strikingly, knocking-out of PBPC leads to a significant increase in cross-linking of peptidoglycan in response to Cu2+ treatment. Understanding the stress resistance mechanism and survival strategy of phytopathogenic bacteria is the basis of exploring bacterial physiology and disease epidemiology.
Collapse
Affiliation(s)
- Xing Chen
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Yao Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Kaihong Bai
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Meng Gu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Xiaoli Xu
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Na Jiang
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Yu Chen
- Key Laboratory of Integrated Crop Pest Management of Anhui Province, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, School of Plant Protection, Anhui Agricultural University, Hefei, People’s Republic of China
| | - Jianqiang Li
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| | - Laixin Luo
- Department of Plant Pathology and MOA Key Laboratory of Pest Monitoring and Green Management, College of Plant Protection, Beijing Key Laboratory of Seed Disease Testing and Control, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|
23
|
Inhibitory Effect of Bacterial Lysates Extracted from Pediococcus acidilactici on the Differentiation of 3T3-L1 Pre-Adipocytes. Int J Mol Sci 2022; 23:ijms231911614. [PMID: 36232912 PMCID: PMC9570163 DOI: 10.3390/ijms231911614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/17/2022] Open
Abstract
Postbiotics, including bacterial lysates, are considered alternatives to probiotics. The aim of the current study was to investigate the effect of bacterial lysates (BLs) extracted from Pediococcus acidilactici K10 (K10 BL) and P. acidilactici HW01 (HW01 BL) on the differentiation of 3T3-L1 pre-adipocytes. Both K10 and HW01 BLs significantly reduced the accumulation of lipid droplets and the amounts of cellular glycerides in 3T3-L1 cells (p < 0.05). However, another postbiotic molecule, peptidoglycan of P. acidilactici K10 and P. acidilactici HW01, moderately inhibited the accumulation of lipid droplets, whereas heat-killed P. acidilactici did not effectively inhibit the lipid accumulation. The mRNA and protein levels of the transcription factors, peroxisome proliferator-activated receptor γ and CCAAT/enhancer-binding protein α, responsible for the differentiation of 3T3-L1 cells, were significantly inhibited by K10 BL and HW01 BL (p < 0.05). Both K10 and HW01 BLs decreased adipocyte-related molecules, adipocyte fatty acid-binding protein and lipoprotein lipase, at the mRNA and protein levels. Furthermore, both K10 and HW01 BLs also downregulated the mRNA expression of leptin, but not resistin. Taken together, these results suggest that P. acidilactici BLs mediate anti-adipogenic effects by inhibiting adipogenic-related transcription factors and their target molecules.
Collapse
|
24
|
Wysocka A, Łężniak Ł, Jagielska E, Sabała I. Electrostatic Interaction with the Bacterial Cell Envelope Tunes the Lytic Activity of Two Novel Peptidoglycan Hydrolases. Microbiol Spectr 2022; 10:e0045522. [PMID: 35467396 PMCID: PMC9241647 DOI: 10.1128/spectrum.00455-22] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/04/2022] [Indexed: 12/14/2022] Open
Abstract
Peptidoglycan (PG) hydrolases, due to their crucial role in the metabolism of the bacterial cell wall (CW), are increasingly being considered suitable targets for therapies, and a potent alternative to conventional antibiotics. In the light of contradictory data reported, detailed mechanism of regulation of enzymes activity based on electrostatic interactions between hydrolase molecule and bacterial CW surface remains unknown. Here, we report a comprehensive study on this phenomenon using as a model two novel PG hydrolases, SpM23_A, and SpM23_B, which although share the same bacterial host, similarities in sequence conservation, domain architecture, and structure, display surprisingly distinct net charges (in 2D electrophoresis, pI 6.8, and pI 9.7, respectively). We demonstrate a strong correlation between hydrolases surface net charge and the enzymes activity by modulating the charge of both, enzyme molecule and bacterial cell surface. Teichoic acids, anionic polymers present in the bacterial CW, are shown to be involved in the mechanism of enzymes activity regulation by the electrostatics-based interplay between charged bacterial envelope and PG hydrolases. These data serve as a hint for the future development of chimeric PG hydrolases of desired antimicrobial specificity. IMPORTANCE This study shows direct relationship between the surface charge of two recently described enzymes, SpM23_A and SpM23_B, and bacterial cell walls. We demonstrate that by (i) surface charge probing of bacterial strains collection, (ii) reduction of the net charge of the positively charged enzyme, and (iii) altering the net charge of the bacterial surface by modifying the content and composition of teichoic acids. In all cases, we observed that lytic activity and binding strength of SpM23 enzymes, are regulated by electrostatic interactions with the bacterial cell envelope and that this interaction contributes to the determination of the spectrum of susceptible bacterial species. Moreover, we revealed the regulatory role of charged cell wall components, namely, teichoic and lipoteichoic acids, over the SpM23 enzymes. We believe that our findings make an important contribution to understand the means of hydrolases activity regulation in the complex environment of the bacterial cell wall.
Collapse
Affiliation(s)
- Alicja Wysocka
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Łukasz Łężniak
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Elżbieta Jagielska
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| | - Izabela Sabała
- International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Mossakowski Medical Research Institute Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
25
|
Weidenbacher PAB, Rodriguez-Rivera FP, Sanyal M, Visser JA, Do J, Bertozzi CR, Kim PS. Chemically Modified Bacterial Sacculi as a Vaccine Microparticle Scaffold. ACS Chem Biol 2022; 17:1184-1196. [PMID: 35412807 PMCID: PMC9127789 DOI: 10.1021/acschembio.2c00140] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
![]()
Vaccine scaffolds
and carrier proteins increase the immunogenicity
of subunit vaccines. Here, we developed, characterized, and demonstrated
the efficacy of a novel microparticle vaccine scaffold comprised of
bacterial peptidoglycan (PGN), isolated as an entire sacculi. The
PGN microparticles contain bio-orthogonal chemical handles allowing
for site-specific attachment of immunogens. We first evaluated the
purification, integrity, and immunogenicity of PGN microparticles
derived from a variety of bacterial species. We then optimized PGN
microparticle modification conditions; Staphylococcus
aureus PGN microparticles containing azido-d-alanine yielded robust conjugation to immunogens. We then demonstrated
that this vaccine scaffold elicits comparable immunostimulation to
the conventional carrier protein, keyhole limpet hemocyanin (KLH).
We further modified the S. aureus PGN
microparticle to contain the SARS-CoV-2 receptor-binding domain (RBD)—this
conjugate vaccine elicited neutralizing antibody titers comparable
to those elicited by the KLH-conjugated RBD. Collectively, these findings
suggest that chemically modified bacterial PGN microparticles are
a conjugatable and biodegradable microparticle scaffold capable of
eliciting a robust immune response toward an antigen of interest.
Collapse
Affiliation(s)
- Payton A.-B. Weidenbacher
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Frances P. Rodriguez-Rivera
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mrinmoy Sanyal
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Joshua A. Visser
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jonathan Do
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Carolyn R. Bertozzi
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Peter S. Kim
- Stanford ChEM-H, Stanford University, Stanford, California 94305, United States
- Department of Biochemistry, School of Medicine, Stanford University, Stanford, California 94305, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
26
|
Tian D, Han M. Bacterial peptidoglycan muropeptides benefit mitochondrial homeostasis and animal physiology by acting as ATP synthase agonists. Dev Cell 2022; 57:361-372.e5. [PMID: 35045336 PMCID: PMC8825754 DOI: 10.1016/j.devcel.2021.12.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 11/24/2022]
Abstract
The symbiotic relationship between commensal microbes and host animals predicts unidentified beneficial impacts of individual bacterial metabolites on animal physiology. Peptidoglycan fragments (muropeptides) from the bacterial cell wall are known for their roles in pathogenicity and for inducing host immune responses. However, the potential beneficial usage of muropeptides from commensal bacteria by the host needs exploration. We identified a striking role for muropeptides in supporting mitochondrial homeostasis, development, and behaviors in Caenorhabditis elegans. We determined that the beneficial molecules are disaccharide muropeptides containing a short AA chain, and they enter intestinal-cell mitochondria to repress oxidative stress. Further analyses indicate that muropeptides execute this role by binding to and promoting the activity of ATP synthase. Therefore, given the exceptional structural conservation of ATP synthase, the role of muropeptides as a rare agonist of the ATP synthase presents a major conceptual modification regarding the impact of bacterial cell metabolites on animal physiology.
Collapse
Affiliation(s)
- Dong Tian
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA
| | - Min Han
- Department of MCDB, University of Colorado at Boulder, Boulder, CO 80309, USA.
| |
Collapse
|
27
|
Arenas T, Osorio A, Ginez LD, Camarena L, Poggio S. Bacterial cell-wall quantification by a modified low volume Nelson-Somogyi method and its use with different sugars. Can J Microbiol 2022; 68:295-302. [PMID: 35100051 DOI: 10.1139/cjm-2021-0238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The study of peptidoglycan binding proteins frequently requires in vitro binding assays in which the isolated peptidoglycan used as substrate has to be carefully quantified. Here we describe an easy and sensitive assay for the quantification of peptidoglycan based on a modified Nelson-Somogyi reducing sugar assay. We report the response of this assay to different common sugars and adapt its use to peptidoglycan samples that have been subjected to acid hydrolysis. This method showed a better sensitivity than the peptidoglycan quantification method based on the acid detection of diaminopimelic acid. The method described in this work besides being valuable in the characterization of peptidoglycan binding proteins, is also useful for quantification of reducing monosaccharides or of polysaccharides after acid or hydrolysis.
Collapse
Affiliation(s)
- Thelma Arenas
- Universidad Nacional Autónoma de México, 7180, Depto. Biología Molecular y Biotecnología, Ciudad de Mexico, Mexico;
| | - Aurora Osorio
- Universidad Nacional Autónoma de México, 7180, Depto. Biología Molecular y Biotecnología, Ciudad de Mexico, Mexico;
| | - Luis David Ginez
- National Autonomous University of Mexico, 7180, Molecular Biology and Biotechnology, Ciudad de Mexico, Mexico, 04510;
| | - Laura Camarena
- Universidad Nacional Autonoma de Mexico, 7180, Instituto de Investigaciones Biomédicas, Ciudad de Mexico, Ciudad de México, Mexico;
| | - Sebastian Poggio
- Universidad Nacional Autonoma de Mexico Instituto de Investigaciones Biomedicas, 61738, Biologia Molecular y Biotecnologia, Ciudad de Mexico, Ciudad de Mexico, Mexico;
| |
Collapse
|
28
|
Hort M, Bertsche U, Nozinovic S, Dietrich A, Schrötter AS, Mildenberger L, Axtmann K, Berscheid A, Bierbaum G. The Role of β-Glycosylated Wall Teichoic Acids in the Reduction of Vancomycin Susceptibility in Vancomycin-Intermediate Staphylococcus aureus. Microbiol Spectr 2021; 9:e0052821. [PMID: 34668723 PMCID: PMC8528128 DOI: 10.1128/spectrum.00528-21] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 09/12/2021] [Indexed: 11/20/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen that causes a wide range of infections. Due to the rapid evolution of antibiotic resistance that leads to treatment failure, it is important to understand the underlying mechanisms. Here, the cell wall structures of several laboratory vancomycin-intermediate S. aureus (VISA) strains were analyzed. Among the VISA strains were S. aureus VC40, which accumulated 79 mutations, including most importantly 2 exchanges in the histidine-kinase VraS, and developed full resistance against vancomycin (MIC, 64 μg/ml); a revertant S. aureus VC40R, which has an additional mutation in vraR (MIC, 4 μg/ml); and S. aureus VraS(VC40), in which the 2 vraS mutations were reconstituted into a susceptible background (MIC, 4 μg/ml). A ultraperformance liquid chromatography (UPLC) analysis showed that S. aureus VC40 had a significantly decreased cross-linking of the peptidoglycan. Both S. aureus VC40 and S. aureus VraS(VC40) displayed reduced autolysis and an altered autolysin profile in a zymogram. Most striking was the significant increase in d-alanine and N-acetyl-d-glucosamine (GlcNAc) substitution of the wall teichoic acids (WTAs) in S. aureus VC40. Nuclear magnetic resonance (NMR) analysis revealed that this strain had mostly β-glycosylated WTAs in contrast to the other strains, which showed only the α-glycosylation peak. Salt stress induced the incorporation of β-GlcNAc anomers and drastically increased the vancomycin MIC for S. aureus VC40R. In addition, β-glycosylated WTAs decreased the binding affinity of AtlA, the major autolysin of S. aureus, to the cell wall, compared with α-glycosylated WTAs. In conclusion, there is a novel connection between wall teichoic acids, autolysis, and vancomycin susceptibility in S. aureus. IMPORTANCE Infections with methicillin-resistant Staphylococcus aureus are commonly treated with vancomycin. This antibiotic inhibits cell wall biosynthesis by binding to the cell wall building block lipid II. We set out to characterize the mechanisms leading to decreased vancomycin susceptibility in a laboratory-generated strain, S. aureus VC40. This strain has an altered cell wall architecture with a thick cell wall with low cross-linking, which provides decoy binding sites for vancomycin. The low cross-linking, necessary for this resistance mechanism, decreases the stability of the cell wall against lytic enzymes, which separate the daughter cells. Protection against these enzymes is provided by another cell wall polymer, the teichoic acids, which contain an unusually high substitution with sugars in the β-conformation. By experimentally increasing the proportion of β-N-acetyl-d-glucosamine in a closely related isolate through the induction of salt stress, we could show that the β-conformation of the sugars plays a vital role in the resistance of S. aureus VC40.
Collapse
Affiliation(s)
- Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, Tuebingen, Germany
| | | | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Sophie Schrötter
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Laura Mildenberger
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Katharina Axtmann
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Anne Berscheid
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Clinics of Bonn, Bonn, Germany
| |
Collapse
|
29
|
Xie F, Pei S, Zhang Y, Tian Y, Zhang G. Nesterenkonia sedimenti sp. nov., isolated from marine sediment. Arch Microbiol 2021; 203:6287-6293. [PMID: 34609528 DOI: 10.1007/s00203-021-02596-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 09/23/2021] [Accepted: 09/24/2021] [Indexed: 10/20/2022]
Abstract
A Gram-staining-positive actinobacteria strain, designated MY13T, was isolated from deep-sea sediment of the western Pacific Ocean and subjected to a taxonomic polyphasic investigation. Based on the results, cells were aerobic, irregular short rod, non-motile and non-spore-forming. Colonies were cream, circular, smooth, convex, opaque and 1.0-2.0 mm in diameter after growth on MZ2 medium at 40 °C for 72 h. Strain MY13T grew at 4-50 °C (optimum, 40 °C), pH 7-12 (pH 9) and 0.5-15% (w/v) NaCl (3.5%). The 16S rRNA gene sequence analysis revealed that strain MY13T is affiliated with the genus Nesterenkonia and closely related to Nesterenkonia populi GP10-3T (96.6%). Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) differentiated it from its closest relatives, with values ranging from 19.8% to 22.4% and 72.6% to 78.0%, respectively. Chemotaxonomic analysis showed that the major menaquinone of strain MY13T was MK-7; major cellular fatty acids were anteiso-C17:0, anteiso-C15:0 and iso-C16:0; whole-cell sugars were galactose and xylose; the peptidoglycan type was L-Lys-Gly-D-Asp; and polar lipids were diphosphatidylglycerol, phosphatidylglycerol, two unknown glycolipids, one unknown polar lipid and two unknown lipids. The G+C content of genomic DNA was 63.1 mol%. Based on the physiological, chemotaxonomic and phylogenetic data, strain MY13T is a novel species of the genus Nesterenkonia, for which the name Nesterenkonia sedimenti sp. nov. is proposed. The type strain is MY13T (= LMG 28111T = MCCC 1A09979T = JCM 19767T = CGMCC 1.12784T).
Collapse
Affiliation(s)
- Fuquan Xie
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, People's Republic of China.,Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Shengxiang Pei
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, People's Republic of China
| | - Yubian Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, People's Republic of China
| | - Yun Tian
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, School of Life Sciences, Xiamen University, Xiamen, 361102, Fujian, People's Republic of China
| | - Gaiyun Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005, Fujian, People's Republic of China.
| |
Collapse
|
30
|
Patel AV, Turner RD, Rifflet A, Acosta-Martin AE, Nichols A, Awad MM, Lyras D, Gomperts Boneca I, Bern M, Collins MO, Mesnage S. PGFinder, a novel analysis pipeline for the consistent, reproducible, and high-resolution structural analysis of bacterial peptidoglycans. eLife 2021; 10:e70597. [PMID: 34579805 PMCID: PMC8478412 DOI: 10.7554/elife.70597] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 08/08/2021] [Indexed: 12/12/2022] Open
Abstract
Many software solutions are available for proteomics and glycomics studies, but none are ideal for the structural analysis of peptidoglycan (PG), the essential and major component of bacterial cell envelopes. It icomprises glycan chains and peptide stems, both containing unusual amino acids and sugars. This has forced the field to rely on manual analysis approaches, which are time-consuming, labour-intensive, and prone to error. The lack of automated tools has hampered the ability to perform high-throughput analyses and prevented the adoption of a standard methodology. Here, we describe a novel tool called PGFinder for the analysis of PG structure and demonstrate that it represents a powerful tool to quantify PG fragments and discover novel structural features. Our analysis workflow, which relies on open-access tools, is a breakthrough towards a consistent and reproducible analysis of bacterial PGs. It represents a significant advance towards peptidoglycomics as a full-fledged discipline.
Collapse
Affiliation(s)
- Ankur V Patel
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| | - Robert D Turner
- Department of Computer Science, University of SheffieldSheffieldUnited Kingdom
| | - Aline Rifflet
- Institut Pasteur, Unité Biologie et Génétique de la Paroi BactérienneParisFrance
- INSERM, Équipe AvenirParisFrance
- CNRS, UMR 2001 "Microbiologie intégrative et moléculaire"ParisFrance
| | - Adelina E Acosta-Martin
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of SheffieldSheffieldUnited Kingdom
| | | | - Milena M Awad
- Infection and Immunity Program, Monash Biomedicine Discovery InstituteClaytonAustralia
| | - Dena Lyras
- Infection and Immunity Program, Monash Biomedicine Discovery InstituteClaytonAustralia
- Department of Microbiology, Monash UniversityClaytonAustralia
| | - Ivo Gomperts Boneca
- Institut Pasteur, Unité Biologie et Génétique de la Paroi BactérienneParisFrance
- INSERM, Équipe AvenirParisFrance
- CNRS, UMR 2001 "Microbiologie intégrative et moléculaire"ParisFrance
| | | | - Mark O Collins
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of SheffieldSheffieldUnited Kingdom
| | - Stéphane Mesnage
- School of Biosciences, University of SheffieldSheffieldUnited Kingdom
| |
Collapse
|
31
|
Biochemical reconstitution defines new functions for membrane-bound glycosidases in assembly of the bacterial cell wall. Proc Natl Acad Sci U S A 2021; 118:2103740118. [PMID: 34475211 DOI: 10.1073/pnas.2103740118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 07/30/2021] [Indexed: 01/25/2023] Open
Abstract
The peptidoglycan cell wall is a macromolecular structure that encases bacteria and is essential for their survival. Proper assembly of the cell wall requires peptidoglycan synthases as well as membrane-bound cleavage enzymes that control where new peptidoglycan is made and inserted. Previous studies have shown that two membrane-bound proteins in Streptococcus pneumoniae, here named MpgA and MpgB, are important in maintaining cell wall integrity. MpgA was predicted to be a lytic transglycosylase based on its homology to Escherichia coli MltG, while the enzymatic activity of MpgB was unclear. Using nascent peptidoglycan substrates synthesized in vitro from the peptidoglycan precursor Lipid II, we report that both MpgA and MpgB are muramidases. We show that replacing a single amino acid in E. coli MltG with the corresponding amino acid from MpgA results in muramidase activity, allowing us to predict from the presence of this amino acid that other putative lytic transglycosylases actually function as muramidases. Strikingly, we report that MpgA and MpgB cut nascent peptidoglycan at different positions along the sugar backbone relative to the reducing end, with MpgA producing much longer peptidoglycan oligomers. We show that the cleavage site selectivity of MpgA is controlled by the LysM-like subdomain, which is required for its full functionality in cells. We propose that MltG's ability to complement the loss of MpgA in S. pneumoniae despite performing different cleavage chemistry is because it can cleave nascent peptidoglycan at the same distance from the lipid anchor.
Collapse
|
32
|
Accumulation of Succinyl Coenzyme A Perturbs the Methicillin-Resistant Staphylococcus aureus (MRSA) Succinylome and Is Associated with Increased Susceptibility to Beta-Lactam Antibiotics. mBio 2021; 12:e0053021. [PMID: 34182779 PMCID: PMC8437408 DOI: 10.1128/mbio.00530-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Penicillin binding protein 2a (PBP2a)-dependent resistance to β-lactam antibiotics in methicillin-resistant Staphylococcus aureus (MRSA) is regulated by the activity of the tricarboxylic acid (TCA) cycle via a poorly understood mechanism. We report that mutations in sucC and sucD, but not other TCA cycle enzymes, negatively impact β-lactam resistance without changing PBP2a expression. Increased intracellular levels of succinyl coenzyme A (succinyl-CoA) in the sucC mutant significantly perturbed lysine succinylation in the MRSA proteome. Suppressor mutations in sucA or sucB, responsible for succinyl-CoA biosynthesis, reversed sucC mutant phenotypes. The major autolysin (Atl) was the most succinylated protein in the proteome, and increased Atl succinylation in the sucC mutant was associated with loss of autolytic activity. Although PBP2a and PBP2 were also among the most succinylated proteins in the MRSA proteome, peptidoglycan architecture and cross-linking were unchanged in the sucC mutant. These data reveal that perturbation of the MRSA succinylome impacts two interconnected cell wall phenotypes, leading to repression of autolytic activity and increased susceptibility to β-lactam antibiotics.
Collapse
|
33
|
Taylor JA, Santiago CC, Gray J, Wodzanowski KA, DeMeester KE, Biboy J, Vollmer W, Grimes CL, Salama NR. Localizing Peptidoglycan Synthesis in Helicobacter pylori using Clickable Metabolic Probes. Curr Protoc 2021; 1:e80. [PMID: 33844460 DOI: 10.1002/cpz1.80] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The bacterial cell wall, composed of peptidoglycan (PG), provides structural integrity for the cell and is responsible for cell shape in most bacteria. Here we present tools to study the cell wall using a clickable PG-specific sugar, 2-alkyne muramic acid (MurNAc-alk), as a metabolic probe. Here we present a new reaction pathway for generating MurNAc-alk. We also include protocols for labeling PG synthesis in Helicobacter pylori, determining the identity of the labeled muropeptides using LC-MS/MS, sample preparation of cells labeled for a short fraction of the doubling time, and visualization using 3D structured illumination microscopy. © 2021 Wiley Periodicals LLC. Basic Protocol 1: Alternative synthesis of MurNAc-alk (direct coupling) Support Protocol 1: Growing Helicobacter pylori in liquid culture Support Protocol 2: Fosfomycin rescue assay Basic Protocol 2: Mass spectrometry (MS) analysis to determine incorporation of MurNAc-alk within the peptidoglycan of H. pylori Support Protocol 3: Hayashi test to determine if SDS is present in the supernatant of peptidoglycan preparations Support Protocol 4: Creating custom cytocentrifuge units for use in a swinging-bucket tabletop centrifuge Basic Protocol 3: Labeling H. pylori with MurNAc-alk or D-Ala-alk Basic Protocol 4: Structured illumination microscopy (SIM) imaging on the DeltaVision OMX.
Collapse
Affiliation(s)
- Jennifer A Taylor
- Department of Microbiology, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cintia C Santiago
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - Joe Gray
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | | | - Kristen E DeMeester
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware
| | - Jacob Biboy
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- Centre for Bacterial Cell Biology, Biosciences Institute, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware.,Department of Biological Sciences, University of Delaware, Newark, Delaware
| | - Nina R Salama
- Department of Microbiology, University of Washington, Seattle, Washington.,Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
34
|
Helicobacter pylori outer membrane vesicles induce expression and secretion of oncostatin M in AGS gastric cancer cells. Braz J Microbiol 2021; 52:1057-1066. [PMID: 33851342 DOI: 10.1007/s42770-021-00490-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 04/06/2021] [Indexed: 01/01/2023] Open
Abstract
Helicobacter pylori, a human pathogen that colonizes the stomach of 50% of the world's population, is associated with gastritis, gastric adenocarcinoma, and mucosa-associated lymphoid tissue (MALT) lymphoma. Diseases are characterized by severe inflammatory responses in the stomach that are induced by various chemokines and cytokines. Recently, oncostatin M (OSM), an IL-6 family cytokine, was detected in early gastric cancer biopsies. In this study, we showed that Helicobacter pylori induced secretion of OSM and overexpression of its type II receptor OSMRβ (OSM/OSMRβ) in a human gastric adenocarcinoma cell line (AGS) over 24 h of infection. Furthermore, we showed that the induction of OSM and OSMRβ was carried out by heat-sensitive Helicobacter pylori outer membrane vesicle (OMV) protein. Collectively, our results established, for the first time, a direct relation between Helicobacter pylori OMVs and the OSM/OSMRβ signaling axis.
Collapse
|
35
|
Abstract
Almost all bacteria are surrounded by a cell wall, which protects cells from environmental harm. Formation of the cell wall requires the precursor molecule lipid II, which in bacteria is universally synthesized by the conserved and essential lipid II synthase MurG. The cell wall is a stress-bearing structure and a unifying trait in bacteria. Without exception, synthesis of the cell wall involves formation of the precursor molecule lipid II by the activity of the essential biosynthetic enzyme MurG, which is encoded in the division and cell wall synthesis (dcw) gene cluster. Here, we present the discovery of a cell wall enzyme that can substitute for MurG. A mutant of Kitasatospora viridifaciens lacking a significant part of the dcw cluster, including murG, surprisingly produced lipid II and wild-type peptidoglycan. Genomic analysis identified a distant murG homologue, which encodes a putative enzyme that shares only around 31% amino acid sequence identity with MurG. We show that this enzyme can replace the canonical MurG, and we therefore designated it MglA. Orthologues of mglA are present in 38% of all genomes of Kitasatospora and members of the sister genus Streptomyces. CRISPR interference experiments showed that K. viridifaciens mglA can also functionally replace murG in Streptomyces coelicolor, thus validating its bioactivity and demonstrating that it is active in multiple genera. All together, these results identify MglA as a bona fide lipid II synthase, thus demonstrating plasticity in cell wall synthesis.
Collapse
|
36
|
Gilmore MC, Ritzl-Rinkenberger B, Cava F. An updated toolkit for exploring bacterial cell wall structure and dynamics. Fac Rev 2021; 10:14. [PMID: 33659932 PMCID: PMC7894271 DOI: 10.12703/r/10-14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The bacterial cell wall is made primarily from peptidoglycan, a complex biomolecule which forms a bag-like exoskeleton that envelops the cell. As it is unique to bacteria and typically essential for their growth and survival, it represents one of the most successful targets for antibiotics. Although peptidoglycan has been studied intensively for over 50 years, the past decade has seen major steps in our understanding of this molecule because of the advent of new analytical and imaging methods. Here, we outline the most recent developments in tools that have helped to elucidate peptidoglycan structure and dynamics.
Collapse
Affiliation(s)
- Michael C Gilmore
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Barbara Ritzl-Rinkenberger
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden (MIMS), Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
37
|
Paulsson M, Kragh KN, Su YC, Sandblad L, Singh B, Bjarnsholt T, Riesbeck K. Peptidoglycan-Binding Anchor Is a Pseudomonas aeruginosa OmpA Family Lipoprotein With Importance for Outer Membrane Vesicles, Biofilms, and the Periplasmic Shape. Front Microbiol 2021; 12:639582. [PMID: 33717034 PMCID: PMC7947798 DOI: 10.3389/fmicb.2021.639582] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 01/28/2021] [Indexed: 01/02/2023] Open
Abstract
The outer membrane protein A (OmpA) family contains an evolutionary conserved domain that links the outer membrane in Gram-negative bacteria to the semi-rigid peptidoglycan (PG) layer. The clinically significant pathogen Pseudomonas aeruginosa carries several OmpA family proteins (OprF, OprL, PA0833, and PA1048) that share the PG-binding domain. These proteins are important for cell morphology, membrane stability, and biofilm and outer membrane vesicle (OMV) formation. In addition to other OmpAs, in silico analysis revealed that the putative outer membrane protein (OMP) with gene locus PA1041 is a lipoprotein with an OmpA domain and, hence, is a potential virulence factor. This study aimed to evaluate PA1041 as a PG-binding protein and describe its effect on the phenotype. Clinical strains were confirmed to contain the lipoprotein resulting from PA1041 expression with Western blot, and PG binding was verified in enzyme-linked immunosorbent assay (ELISA). By using a Sepharose bead-based ELISA, we found that the lipoprotein binds to meso-diaminopimelic acid (mDAP), an amino acid in the pentapeptide portion of PGs. The reference strain PAO1 and the corresponding transposon mutant PW2884 devoid of the lipoprotein were examined for phenotypic changes. Transmission electron microscopy revealed enlarged periplasm spaces near the cellular poles in the mutant. In addition, we observed an increased release of OMV, which could be confirmed by nanoparticle tracking analysis. Importantly, mutants without the lipoprotein produced a thick, but loose and unorganized, biofilm in flow cells. In conclusion, the lipoprotein from gene locus PA1041 tethers the outer membrane to the PG layer, and mutants are viable, but display severe phenotypic changes including disordered biofilm formation. Based upon the phenotype of the P. aeruginosa PW2884 mutant and the function of the protein, we designate the lipoprotein with locus tag PA1041 as “peptidoglycan-binding anchor” (Pba).
Collapse
Affiliation(s)
- Magnus Paulsson
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden.,Division for Infectious Diseases, Skåne University Hospital, Lund, Sweden
| | - Kasper Nørskov Kragh
- Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Yu-Ching Su
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Linda Sandblad
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Birendra Singh
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| | - Thomas Bjarnsholt
- Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kristian Riesbeck
- Clinical Microbiology, Department of Translational Medicine, Faculty of Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
38
|
New approaches and techniques for bacterial cell wall analysis. Curr Opin Microbiol 2021; 60:88-95. [PMID: 33631455 DOI: 10.1016/j.mib.2021.01.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/22/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Peptidoglycan (PG) has remained for decades in the spotlight of the never-ending battle against pathogenic bacteria as this essential bacterial structure is one of the most successful targets for antibiotics. Most of our current understanding about the composition, architecture, and dynamics of the PG relies on techniques which have experienced great technological and methodological improvements in the past years. Here we summarize recent advances in these methods with the intention to furnish a valuable resource for both PG experts and newcomers.
Collapse
|
39
|
Agrobacterium tumefaciens Deploys a Versatile Antibacterial Strategy To Increase Its Competitiveness. J Bacteriol 2021; 203:JB.00490-20. [PMID: 33168638 PMCID: PMC7811202 DOI: 10.1128/jb.00490-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/02/2020] [Indexed: 12/28/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread antibacterial weapon capable of secreting multiple effectors for inhibition of competitor cells. Most of the effectors in the system share the same purpose of target intoxication, but the rationale for maintaining various types of effectors in a species is not well studied. In this study, we showed that a peptidoglycan amidase effector in Agrobacterium tumefaciens, Tae, cleaves d-Ala-meso-diaminopimelic acid (mDAP) and d-Glu bonds in peptidoglycan and is able to suppress the growth of Escherichia coli recipient cells. The growth suppression was effective only under the condition in which E. coli cells are actively growing. In contrast, the Tde DNase effectors in the strain possessed a dominant killing effect under carbon starvation. Microscopic analysis showed that Tde triggers cell elongation and DNA degradation, while Tae causes cell enlargement without DNA damage in E. coli recipient cells. In a rich medium, A. tumefaciens harboring only functional Tae was able to maintain competitiveness among E. coli and its own sibling cells. Growth suppression and the competitive advantage of A. tumefaciens were abrogated when recipient cells produced the Tae-specific immunity protein Tai. Given that Tae is highly conserved among A. tumefaciens strains, the combination of Tae and Tde effectors could allow A. tumefaciens to better compete with various competitors by increasing its survival during changing environmental conditions.IMPORTANCE The T6SS encodes multiple effectors with diverse functions, but little is known about the biological significance of harboring such a repertoire of effectors. We reported that the T6SS antibacterial activity of the plant pathogen Agrobacterium tumefaciens can be enhanced under carbon starvation or when recipient cell wall peptidoglycan is disturbed. This led to a newly discovered role for the T6SS peptidoglycan amidase Tae effector in providing a growth advantage dependent on the growth status of the target cell. This is in contrast to the Tde DNase effectors that are dominant during carbon starvation. Our study suggests that combining Tae and other effectors could allow A. tumefaciens to increase its competitiveness among changing environmental conditions.
Collapse
|
40
|
Schaefer K, Owens TW, Page JE, Santiago M, Kahne D, Walker S. Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization. Nat Microbiol 2021; 6:34-43. [PMID: 33168989 PMCID: PMC7755832 DOI: 10.1038/s41564-020-00808-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 10/02/2020] [Indexed: 12/24/2022]
Abstract
Bacteria are encapsulated by a peptidoglycan cell wall that is essential for their survival1. During cell wall assembly, a lipid-linked disaccharide-peptide precursor called lipid II is polymerized and cross-linked to produce mature peptidoglycan. As lipid II is polymerized, nascent polymers remain membrane-anchored at one end, and the other end becomes cross-linked to the matrix2-4. How bacteria release newly synthesized peptidoglycan strands from the membrane to complete the synthesis of mature peptidoglycan is a long-standing question. Here, we show that a Staphylococcus aureus cell wall hydrolase and a membrane protein that contains eight transmembrane helices form a complex that may function as a peptidoglycan release factor. The complex cleaves nascent peptidoglycan internally to produce free oligomers as well as lipid-linked oligomers that can undergo further elongation. The polytopic membrane protein, which is similar to a eukaryotic CAAX protease, controls the length of these products. A structure of the complex at a resolution of 2.6 Å shows that the membrane protein scaffolds the hydrolase to orient its active site for cleaving the glycan strand. We propose that this complex functions to detach newly synthesized peptidoglycan polymer from the cell membrane to complete integration into the cell wall matrix.
Collapse
Affiliation(s)
- Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Tristan W Owens
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Julia E Page
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Marina Santiago
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
41
|
Gallagher LA, Shears RK, Fingleton C, Alvarez L, Waters EM, Clarke J, Bricio-Moreno L, Campbell C, Yadav AK, Razvi F, O'Neill E, O'Neill AJ, Cava F, Fey PD, Kadioglu A, O'Gara JP. Impaired Alanine Transport or Exposure to d-Cycloserine Increases the Susceptibility of MRSA to β-lactam Antibiotics. J Infect Dis 2020; 221:1000-1016. [PMID: 31628459 DOI: 10.1093/infdis/jiz542] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 10/14/2019] [Indexed: 12/29/2022] Open
Abstract
Prolonging the clinical effectiveness of β-lactams, which remain first-line antibiotics for many infections, is an important part of efforts to address antimicrobial resistance. We report here that inactivation of the predicted d-cycloserine (DCS) transporter gene cycA resensitized methicillin-resistant Staphylococcus aureus (MRSA) to β-lactam antibiotics. The cycA mutation also resulted in hypersusceptibility to DCS, an alanine analogue antibiotic that inhibits alanine racemase and d-alanine ligase required for d-alanine incorporation into cell wall peptidoglycan. Alanine transport was impaired in the cycA mutant, and this correlated with increased susceptibility to oxacillin and DCS. The cycA mutation or exposure to DCS were both associated with the accumulation of muropeptides with tripeptide stems lacking the terminal d-ala-d-ala and reduced peptidoglycan cross-linking, prompting us to investigate synergism between β-lactams and DCS. DCS resensitized MRSA to β-lactams in vitro and significantly enhanced MRSA eradication by oxacillin in a mouse bacteremia model. These findings reveal alanine transport as a new therapeutic target to enhance the susceptibility of MRSA to β-lactam antibiotics.
Collapse
Affiliation(s)
- Laura A Gallagher
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Rebecca K Shears
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Claire Fingleton
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Laura Alvarez
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Elaine M Waters
- School of Natural Sciences, National University of Ireland, Galway, Ireland.,Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Jenny Clarke
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | | | - Akhilesh K Yadav
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Fareha Razvi
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Eoghan O'Neill
- Department of Clinical Microbiology, Royal College of Surgeons in Ireland, Connolly Hospital, Dublin, Ireland
| | - Alex J O'Neill
- Antimicrobial Research Centre, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds, United Kingdom
| | - Felipe Cava
- Molecular Infection Medicine, Sweden, Molecular Biology Department, Umeå University, Umeå, Sweden
| | - Paul D Fey
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, United Kingdom
| | - James P O'Gara
- School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
42
|
A peptide of a type I toxin-antitoxin system induces Helicobacter pylori morphological transformation from spiral shape to coccoids. Proc Natl Acad Sci U S A 2020; 117:31398-31409. [PMID: 33229580 DOI: 10.1073/pnas.2016195117] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Toxin-antitoxin systems are found in many bacterial chromosomes and plasmids with roles ranging from plasmid stabilization to biofilm formation and persistence. In these systems, the expression/activity of the toxin is counteracted by an antitoxin, which, in type I systems, is an antisense RNA. While the regulatory mechanisms of these systems are mostly well defined, the toxins' biological activity and expression conditions are less understood. Here, these questions were investigated for a type I toxin-antitoxin system (AapA1-IsoA1) expressed from the chromosome of the human pathogen Helicobacter pylori We show that expression of the AapA1 toxin in H. pylori causes growth arrest associated with rapid morphological transformation from spiral-shaped bacteria to round coccoid cells. Coccoids are observed in patients and during in vitro growth as a response to different stress conditions. The AapA1 toxin, first molecular effector of coccoids to be identified, targets H. pylori inner membrane without disrupting it, as visualized by cryoelectron microscopy. The peptidoglycan composition of coccoids is modified with respect to spiral bacteria. No major changes in membrane potential or adenosine 5'-triphosphate (ATP) concentration result from AapA1 expression, suggesting coccoid viability. Single-cell live microscopy tracking the shape conversion suggests a possible association of this process with cell elongation/division interference. Oxidative stress induces coccoid formation and is associated with repression of the antitoxin promoter and enhanced processing of its transcript, leading to an imbalance in favor of AapA1 toxin expression. Our data support the hypothesis of viable coccoids with characteristics of dormant bacteria that might be important in H. pylori infections refractory to treatment.
Collapse
|
43
|
Jia Y, Yu C, Fan J, Fu Y, Ye Z, Guo X, Xu Y, Shen C. Alterations in the Cell Wall of Rhodococcus biphenylivorans Under Norfloxacin Stress. Front Microbiol 2020; 11:554957. [PMID: 33123102 PMCID: PMC7573542 DOI: 10.3389/fmicb.2020.554957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 09/14/2020] [Indexed: 01/20/2023] Open
Abstract
Many microorganisms can enter a viable but non-culturable (VBNC) state under various environmental stresses, while they can also resuscitate when the surroundings turn to suitable conditions. Cell walls play a vital role in maintaining cellular integrity and protecting cells from ambient threats. Here, we investigated the alterations in the cell wall of Rhodococcus biphenylivorans TG9 at VBNC state under norfloxacin stress and then at resuscitated state in fresh lysogeny broth medium. Electron microscopy analyses presented that TG9 in the VBNC state had a thicker and rougher cell wall than that in exponential phase or resuscitated state. Meanwhile, the results from infrared spectroscopy also showed that its VBNC state has different peptidoglycan structures in the cell wall. Moreover, in the VBNC cells the gene expressions related to cell wall synthesis and remodeling maintain a relatively high level. It indicates that the morphological variations of TG9 at the VBNC state might result from kinetic changes in the cell wall synthesis and remodeling. As a consequence, the alterations in the cell wall of VBNC TG9 may somewhat account for its tolerance mechanisms to antibiotic treatment.
Collapse
Affiliation(s)
- Yangyang Jia
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chungui Yu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiahui Fan
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Yulong Fu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Zhe Ye
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Xiaoguang Guo
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China.,Zhejiang Provincial Key Laboratory for Water Pollution Control and Environmental Safety, Hangzhou, China
| |
Collapse
|
44
|
Alvarez L, Cordier B, Van Teeffelen S, Cava F. Analysis of Gram-negative Bacteria Peptidoglycan by Ultra-performance Liquid Chromatography. Bio Protoc 2020; 10:e3780. [PMID: 33659436 DOI: 10.21769/bioprotoc.3780] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/20/2020] [Accepted: 09/21/2020] [Indexed: 11/02/2022] Open
Abstract
Bacteria are surrounded by a protective peptidoglycan cell wall. Provided that this structure and the enzymes involved are the preferred target for our most successful antibiotics, determining its structural and chemical complexity is of the highest interest. Traditionally, high-performance liquid chromatography (HPLC) analyses have been performed, but these methods are very time consuming in terms of sample preparation and chromatographic separation. Here we describe an optimized method for preparation of Gram-negative bacteria peptidoglycan and its subsequent analysis by ultra-performance liquid chromatography (UPLC). The use of UPLC in peptidoglycan analyses provides a dramatic reduction of the sample volume and hands-on time required and, furthermore, permits in-line mass spectrometry (MS) of the UPLC resolved muropeptides, thus facilitating their identification. This method improves our capability to perform high throughput analysis to better understand the cell-wall biology.
Collapse
Affiliation(s)
- Laura Alvarez
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Baptiste Cordier
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
| | - Sven Van Teeffelen
- Microbial Morphogenesis and Growth Laboratory, Institut Pasteur, Paris, France
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| |
Collapse
|
45
|
Gajdiss M, Monk IR, Bertsche U, Kienemund J, Funk T, Dietrich A, Hort M, Sib E, Stinear TP, Bierbaum G. YycH and YycI Regulate Expression of Staphylococcus aureus Autolysins by Activation of WalRK Phosphorylation. Microorganisms 2020; 8:microorganisms8060870. [PMID: 32526915 PMCID: PMC7355866 DOI: 10.3390/microorganisms8060870] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/05/2020] [Accepted: 06/07/2020] [Indexed: 11/16/2022] Open
Abstract
Staphylococcus aureus is a facultative pathogen that can encode numerous antibiotic resistance and immune evasion genes and can cause severe infections. Reduced susceptibility to last resort antibiotics such as vancomycin and daptomycin is often associated with mutations in walRK, an essential two-component regulatory system (TCS). This study focuses on the WalK accessory membrane proteins YycH and YycI and their influence on WalRK phosphorylation. Depletion of YycH and YycI by antisense RNA caused an impaired autolysis, indicating a positive regulatory function on WalK as has been previously described. Phosphorylation assays with full-length recombinant proteins in phospholipid liposomes showed that YycH and YycI stimulate WalK activity and that both regulatory proteins are needed for full activation of the WalK kinase. This was validated in vivo through examining the phosphorylation status of WalR using Phos-tag SDS-PAGE with a yycHI deletion mutant exhibiting reduced levels of phosphorylated WalR. In the yycHI knockdown strain, muropeptide composition of the cell wall was not affected, however, the wall teichoic acid content was increased. In conclusion, a direct modulation of WalRK phosphorylation activity by the accessory proteins YycH and YycI is reported both in vitro and in vivo. Taken together, our results show that YycH and YycI are important in the direct regulation of WalRK-dependent cell wall metabolism.
Collapse
Affiliation(s)
- Mike Gajdiss
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Ian R. Monk
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Ute Bertsche
- Department of Infection Biology, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Janina Kienemund
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Tanja Funk
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Alina Dietrich
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Michael Hort
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Esther Sib
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
| | - Timothy P. Stinear
- Department of Microbiology and Immunology, Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3010, Australia; (I.R.M.); (T.P.S.)
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, 53125 Bonn, Germany; (M.G.); (J.K.); (T.F.); (A.D.); (M.H.); (E.S.)
- Correspondence:
| |
Collapse
|
46
|
Abstract
The NlpC/p60-family of peptidoglycan hydrolases are key enzymes that facilitate bacterial cell division and also modulate microbe-host interactions. These endopeptidases utilize conserved Cys-His residues in their active site and are expressed in most bacterial species as well as some eukaryotes. Here we describe methods for biochemical analysis of Enterococcus faecium SagA-NlpC/p60 peptidoglycan hydrolase activity (Kim et al., 2019; Rangan et al., 2016), which includes recombinant protein preparation and biochemical analysis using both gel-based and LC-MS profiling of peptidoglycan fragments. These protocols should also facilitate the biochemical analysis of other NlpC/p60 peptidoglycan hydrolases.
Collapse
|
47
|
Капустян А, Cherno N. OBTAINING AND CHARACTERISTIC OF MUROPEPTIDES OF PROBIOTIC CULTURES CELL WALLS. FOOD SCIENCE AND TECHNOLOGY 2020. [DOI: 10.15673/fst.v14i1.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Розглянуто можливість отримання муропептидів пептидогліканів клітинних стінок Lactobacillus delbrueckii subsp. Bulgaricus B-3964 шляхом комбінації застосування автолітичних процесів та ферментативної обробки біомаси за участю лізоциму та папаїну. Встановлено, що найбільш значні автолітичні зміни біомаси мають місце при застосуванні високотемпературної обробки (90°С протягом 30 хв) на завершальній стадії логарифмічної фази росту бактерій. Так, на восьмій годині інкубації при 37°С вміст амінокислот у культуральному середовищі складає 1,8 мг/см3, а при 90°С – 5,7 мг/см3. Із метою подальшої деструкції автолізату біомаси та отримання низькомолекулярних фрагментів пептидоглікану, досліджували процес його ферментолізу лізоцимом та папаїном окремо та при їхній комбінації. Найвищий вміст НМП у реакційному середовищі мав місце при ферментолізі біомаси Lactobacillus delbrueckii subsp. Bulgaricus B-3964 композицією ферментів при співвідношенні лізоцим:папаїн 1:2. При концентрації ферментів 10 мг/см3 вміст НМП складав 7,2 мг/см3 на 8-му годину інкубації реакційної суміші. Результати досліджень показали, що ефективність ферментолізу автолізату значно вища. Так, кількість НМП у ферментолізаті, який отримали при обробці автолізату композицією лізоцим:папаїн 1:2 при концентрації ферментів 10мг/см3 та тривалості процесу протягом 8 годин на 36% більша, ніж за аналогічних параметрів без застосування процесу автолізу.
Методом гель-хроматографії доведено, що у складі ферментолізату присутні фракції білкових сполук з молекулярною масою в межах 70–90 кДа, 30–40 кДа та 294–650 Дa. Молекулярна маса останньої фракції відповідає масі мурамилдипептиду.
Collapse
|
48
|
Cannabidiol is an effective helper compound in combination with bacitracin to kill Gram-positive bacteria. Sci Rep 2020; 10:4112. [PMID: 32139776 PMCID: PMC7057955 DOI: 10.1038/s41598-020-60952-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 02/19/2020] [Indexed: 01/19/2023] Open
Abstract
The cannabinoid cannabidiol (CBD) is characterised in this study as a helper compound against resistant bacteria. CBD potentiates the effect of bacitracin (BAC) against Gram-positive bacteria (Staphylococcus species, Listeria monocytogenes, and Enterococcus faecalis) but appears ineffective against Gram-negative bacteria. CBD reduced the MIC value of BAC by at least 64-fold and the combination yielded an FIC index of 0.5 or below in most Gram-positive bacteria tested. Morphological changes in S. aureus as a result of the combination of CBD and BAC included several septa formations during cell division along with membrane irregularities. Analysis of the muropeptide composition of treated S. aureus indicated no changes in the cell wall composition. However, CBD and BAC treated bacteria did show a decreased rate of autolysis. The bacteria further showed a decreased membrane potential upon treatment with CBD; yet, they did not show any further decrease upon combination treatment. Noticeably, expression of a major cell division regulator gene, ezrA, was reduced two-fold upon combination treatment emphasising the impact of the combination on cell division. Based on these observations, the combination of CBD and BAC is suggested to be a putative novel treatment in clinical settings for treatment of infections with antibiotic resistant Gram-positive bacteria.
Collapse
|
49
|
Palace SG, Wang Y, Rubin DHF, Welsh MA, Mortimer TD, Cole K, Eyre DW, Walker S, Grad YH. RNA polymerase mutations cause cephalosporin resistance in clinical Neisseria gonorrhoeae isolates. eLife 2020; 9:e51407. [PMID: 32011233 PMCID: PMC7012608 DOI: 10.7554/elife.51407] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 02/01/2020] [Indexed: 02/06/2023] Open
Abstract
Increasing Neisseria gonorrhoeae resistance to ceftriaxone, the last antibiotic recommended for empiric gonorrhea treatment, poses an urgent public health threat. However, the genetic basis of reduced susceptibility to ceftriaxone is not completely understood: while most ceftriaxone resistance in clinical isolates is caused by target site mutations in penA, some isolates lack these mutations. We show that penA-independent ceftriaxone resistance has evolved multiple times through distinct mutations in rpoB and rpoD. We identify five mutations in these genes that each increase resistance to ceftriaxone, including one mutation that arose independently in two lineages, and show that clinical isolates from multiple lineages are a single nucleotide change from ceftriaxone resistance. These RNA polymerase mutations cause large-scale transcriptional changes without altering susceptibility to other antibiotics, reducing growth rate, or deranging cell morphology. These results underscore the unexpected diversity of pathways to resistance and the importance of continued surveillance for novel resistance mutations.
Collapse
Affiliation(s)
- Samantha G Palace
- Department of Immunology and Infectious DiseasesHarvard T. H. Chan School of Public HealthBostonUnited States
- Center for Communicable Disease DynamicsHarvard T. H. Chan School of Public HealthBostonUnited States
| | - Yi Wang
- Department of Immunology and Infectious DiseasesHarvard T. H. Chan School of Public HealthBostonUnited States
| | - Daniel HF Rubin
- Department of Immunology and Infectious DiseasesHarvard T. H. Chan School of Public HealthBostonUnited States
| | - Michael A Welsh
- Department of MicrobiologyHarvard Medical SchoolBostonUnited States
| | - Tatum D Mortimer
- Department of Immunology and Infectious DiseasesHarvard T. H. Chan School of Public HealthBostonUnited States
| | - Kevin Cole
- Public Health England, Royal Sussex County HospitalBrightonUnited Kingdom
| | - David W Eyre
- Big Data Institute, University of OxfordOxfordUnited Kingdom
| | - Suzanne Walker
- Department of MicrobiologyHarvard Medical SchoolBostonUnited States
| | - Yonatan H Grad
- Department of Immunology and Infectious DiseasesHarvard T. H. Chan School of Public HealthBostonUnited States
- Center for Communicable Disease DynamicsHarvard T. H. Chan School of Public HealthBostonUnited States
- Division of Infectious DiseasesBrigham and Women’s Hospital, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
50
|
Do T, Schaefer K, Santiago AG, Coe KA, Fernandes PB, Kahne D, Pinho MG, Walker S. Staphylococcus aureus cell growth and division are regulated by an amidase that trims peptides from uncrosslinked peptidoglycan. Nat Microbiol 2020; 5:291-303. [PMID: 31932712 PMCID: PMC7046134 DOI: 10.1038/s41564-019-0632-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
Bacteria are protected by a polymer of peptidoglycan that serves as an exoskeleton1. In Staphylococcus aureus, the peptidoglycan assembly enzymes relocate during the cell cycle from the periphery, where they are active during growth, to the division site where they build the partition between daughter cells2-4. But how peptidoglycan synthesis is regulated throughout the cell cycle is poorly understood5,6. Here, we used a transposon screen to identify a membrane protein complex that spatially regulates S. aureus peptidoglycan synthesis. This complex consists of an amidase that removes stem peptides from uncrosslinked peptidoglycan and a partner protein that controls its activity. Amidases typically hydrolyse crosslinked peptidoglycan between daughter cells so that they can separate7. However, this amidase controls cell growth. In its absence, peptidoglycan synthesis becomes spatially dysregulated, which causes cells to grow so large that cell division is defective. We show that the cell growth and division defects due to loss of this amidase can be mitigated by attenuating the polymerase activity of the major S. aureus peptidoglycan synthase. Our findings lead to a model wherein the amidase complex regulates the density of peptidoglycan assembly sites to control peptidoglycan synthase activity at a given subcellular location. Removal of stem peptides from peptidoglycan at the cell periphery promotes peptidoglycan synthase relocation to midcell during cell division. This mechanism ensures that cell expansion is properly coordinated with cell division.
Collapse
Affiliation(s)
- Truc Do
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Kaitlin Schaefer
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | | | - Kathryn A Coe
- Department of Microbiology, Harvard Medical School, Boston, MA, USA
| | - Pedro B Fernandes
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Daniel Kahne
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
| | - Mariana G Pinho
- Bacterial Cell Biology, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Suzanne Walker
- Department of Microbiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|