1
|
Wang A, Yan S, Liu J, Chen X, Hu M, Du X, Jiang W, Pan Z, Fan L, Sun G. Endoplasmic reticulum stress-related super enhancer promotes epithelial-mesenchymal transformation in hepatocellular carcinoma through CREB5 mediated activation of TNC. Cell Death Dis 2025; 16:73. [PMID: 39915455 PMCID: PMC11802765 DOI: 10.1038/s41419-025-07356-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 12/19/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025]
Abstract
Super-enhancers (SEs) are associated with key genes that control cellular state and cell identity. Endoplasmic reticulum stress (ERS) regulates epithelial-mesenchymal transformation (EMT). However, whether SEs are involved in ERS-related activation of EMT in hepatocellular carcinoma (HCC) is unknown. In this study, we identified 17 ERS-related SEs by comparing ERS-HCC cells with untreated control cells using ChIP-seq and RNA-seq. CRISPR-Cas9 and RT-qPCR identified CAMP responsive element binding protein 5 (CREB5) as a key target of ERS-related SE. Analyses of TCGA datasets and tissue arrays showed that CREB5 mRNA and protein expression levels were higher in liver cancer tissues than in paired normal tissues. In addition, overexpression of CREB5 was associated with poor prognosis and an aggressive phenotype in patients with HCC. We also found that activation of ERS enhanced the expression of CREB5, and upregulation of CREB5 significantly increased cell proliferation, migration, and invasion, and promoted EMT, but inhibited apoptosis. More importantly, ERS activation increased the expression of several EMT markers by modulating the expression of CREB5. Mechanistically, CREB5 upregulates the transcription of tenascin-C (TNC) by directly binding to its promoter region, thereby promoting EMT in liver cancer cells. In summary, our findings suggest that ERS activation promotes EMT in liver cancer cells via SE-mediated upregulation of the CREB5/TNC pathway. This result provides a new direction for uncovering how ERS regulates EMT and a foundation for preventing the progression of EMT in HCC.
Collapse
Affiliation(s)
- Anqi Wang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Sitong Yan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Jiatao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiang Chen
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mengyao Hu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Department of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiao Du
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Weijia Jiang
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Zhipeng Pan
- Department of Oncology, The Second Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Lulu Fan
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guoping Sun
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
2
|
Li D, Jian J, Shi M, Chen Z, Zhao A, Wei X, Huang Y, Chen Y, Hou J, Lin Y. Elevated miR-221-3p inhibits epithelial-mesenchymal transition and biochemical recurrence of prostate cancer via targeting KPNA2: an evidence-based and knowledge-guided strategy. BMC Cancer 2025; 25:34. [PMID: 39780096 PMCID: PMC11708077 DOI: 10.1186/s12885-025-13444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 01/03/2025] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) is commonly occurred among males worldwide and its prognosis could be influenced by biochemical recurrence (BCR). MicroRNAs (miRNAs) are functional regulators in carcinogenesis, and miR-221-3p was reported as one of the significant candidates deregulated in PCa. However, its regulatory pattern in PCa BCR across literature reports was not consistent, and the targets and mechanisms in PCa malignant transition and BCR are less explored. METHODS In this study, an evidence-based and knowledge-guided approach was proposed to decipher the role and mechanism of miR-221-3p in PCa development. First, the literature-reported inconsistency between miR-221-3p and PCa BCR was quantitatively measured by meta-analysis. Then a knowledge-guided network strategy was applied to prioritize key targets of miR-221-3p in PCa progression based both on topological and functional characterization of genes in multi-omics miRNA-mRNA and protein-protein interaction networks. Finally, a key gene was computationally identified and experimentally validated using cell line and clinical samples through EdU assay, scratch assay, transwell assay, dual-luciferase reporter assay and the epithelial-to-mesenchymal transition (EMT)-related analysis. RESULTS Down-regulation of miR-221-3p was correlated with a lower biochemical recurrence-free survival (BRFS) in PCa (HR: 0.72, 95%, CI: 0.64-0.81, P < 0.00001). A significant down-regulation of miR-221-3p was observed in most of the PCa cells compared with the normal control. KPNA2 was identified as a key target of miR-221-3p and it was over-expressed in all the PCa cells and human PCa tissues. Moreover, elevated miR-221-3p inhibited the proliferation, migration, invasion, and EMT of PCa cells in vitro via directly and negatively mediating KPNA2 expression. CONCLUSIONS miR-221-3p down-regulation was a risk factor for PCa BRFS, and its over-expression could inhibit the malignant phenotype and EMT of PCa cells by directly targeting KPNA2. Translational and personalized applications of the findings will be conducted in the future.
Collapse
Affiliation(s)
- Dingchao Li
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Jingang Jian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Manhong Shi
- College of Information and Network Engineering, Anhui Science and Technology University, Bengbu, 233000, China
| | - Zihao Chen
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Anguo Zhao
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China
| | - Xuedong Wei
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yuhua Huang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yalan Chen
- Department of Medical Informatics, School of Medicine, Nantong University, Nantong, 226001, China.
| | - Jianquan Hou
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Department of Urology, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215000, China.
| | - Yuxin Lin
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
- Center for Systems Biology, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
3
|
Wu S, Zhang J, Wang Y, Qin X, Zhang Z, Lu Z, Kim P, Zhou X, Huang L. metsDB: a knowledgebase of cancer metastasis at bulk, single-cell and spatial levels. Nucleic Acids Res 2025; 53:D1427-D1434. [PMID: 39436035 PMCID: PMC11701579 DOI: 10.1093/nar/gkae916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/18/2024] [Accepted: 10/18/2024] [Indexed: 10/23/2024] Open
Abstract
Cancer metastasis, the process by which tumour cells migrate and colonize distant organs from a primary site, is responsible for the majority of cancer-related deaths. Understanding the cellular and molecular mechanisms underlying this complex process is essential for developing effective metastasis prevention and therapy strategies. To this end, we systematically analysed 1786 bulk tissue samples from 13 cancer types, 988 463 single cells from 17 cancer types, and 40 252 spots from 45 spatial slides across 10 cancer types. The results of these analyses are compiled in the metsDB database, accessible at https://relab.xidian.edu.cn/metsDB/. This database provides insights into alterations in cell constitutions, cell relationships, biological pathways, molecular biomarkers, and drug responses during cancer metastasis at bulk, single-cell, and spatial levels. Users can perform cell or gene searches to obtain multi-view and multi-scale metastasis-related data. This comprehensive resource is invaluable for understanding the metastasis process and for designing molecular therapies.
Collapse
Affiliation(s)
- Sijia Wu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, PR China
| | - Jiajin Zhang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, PR China
| | - Yanfei Wang
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xinyu Qin
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, PR China
| | - Zhaocan Zhang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, PR China
| | - Zhennan Lu
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, PR China
| | - Pora Kim
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xiaobo Zhou
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Liyu Huang
- School of Life Science and Technology, Xidian University, Xi’an, Shaanxi 710126, PR China
| |
Collapse
|
4
|
Hartmann L, Kristofori P, Li C, Becker K, Hexemer L, Bohn S, Lenhardt S, Weiss S, Voss B, Loewer A, Legewie S. Transcriptional regulators ensuring specific gene expression and decision-making at high TGFβ doses. Life Sci Alliance 2025; 8:e202402859. [PMID: 39542693 PMCID: PMC11565188 DOI: 10.26508/lsa.202402859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/30/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024] Open
Abstract
TGFβ-signaling regulates cancer progression by controlling cell division, migration, and death. These outcomes are mediated by gene expression changes, but the mechanisms of decision-making toward specific fates remain unclear. Here, we combine SMAD transcription factor imaging, genome-wide RNA sequencing, and morphological assays to quantitatively link signaling, gene expression, and fate decisions in mammary epithelial cells. Fitting genome-wide kinetic models to our time-resolved data, we find that most of the TGFβ target genes can be explained as direct targets of SMAD transcription factors, whereas the remainder show signs of complex regulation, involving delayed regulation and strong amplification at high TGFβ doses. Knockdown experiments followed by global RNA sequencing revealed transcription factors interacting with SMADs in feedforward loops to control delayed and dose-discriminating target genes, thereby reinforcing the specific epithelial-to-mesenchymal transition at high TGFβ doses. We identified early repressors, preventing premature activation, and a late activator, boosting gene expression responses for a sufficiently strong TGFβ stimulus. Taken together, we present a global view of TGFβ-dependent gene regulation and describe specificity mechanisms reinforcing cellular decision-making.
Collapse
Affiliation(s)
- Laura Hartmann
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Panajot Kristofori
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Congxin Li
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Kolja Becker
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Lorenz Hexemer
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Stefan Bohn
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sonja Lenhardt
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Sylvia Weiss
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Björn Voss
- Department of RNA-Biology & Bioinformatics, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
| | - Alexander Loewer
- Department of Biology, Technische Universität Darmstadt, Darmstadt, Germany
| | - Stefan Legewie
- Department of Systems Biology, Institute for Biomedical Genetics (IBMG), University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center for Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Jaygude U, Hughes GM, Simpson JC. Exploring the role of the Rab network in epithelial-to-mesenchymal transition. BIOINFORMATICS ADVANCES 2024; 5:vbae200. [PMID: 39736966 PMCID: PMC11684074 DOI: 10.1093/bioadv/vbae200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/29/2024] [Accepted: 12/12/2024] [Indexed: 01/01/2025]
Abstract
Motivation Rab GTPases (Rabs) are crucial for membrane trafficking within mammalian cells, and their dysfunction is implicated in many diseases. This gene family plays a role in several crucial cellular processes. Network analyses can uncover the complete repertoire of interaction patterns across the Rab network, informing disease research, opening new opportunities for therapeutic interventions. Results We examined Rabs and their interactors in the context of epithelial-to-mesenchymal transition (EMT), an indicator of cancer metastasizing to distant organs. A Rab network was first established from analysis of literature and was gradually expanded. Our Python module, resnet, assessed its network resilience and selected an optimally sized, resilient Rab network for further analyses. Pathway enrichment confirmed its role in EMT. We then identified 73 candidate genes showing a strong up-/down-regulation, across 10 cancer types, in patients with metastasized tumours compared to only primary-site tumours. We suggest that their encoded proteins might play a critical role in EMT, and further in vitro studies are needed to confirm their role as predictive markers of cancer metastasis. The use of resnet within the systematic analysis approach described here can be easily applied to assess other gene families and their role in biological events of interest. Availability and implementation Source code for resnet is freely available at https://github.com/Unmani199/resnet.
Collapse
Affiliation(s)
- Unmani Jaygude
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Graham M Hughes
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| | - Jeremy C Simpson
- School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
- Cell Screening Laboratory, School of Biology and Environmental Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
6
|
Wang Y, Yao J, Zhang Z, Wei L, Wang S. Generation of novel lipid metabolism-based signatures to predict prognosis and immunotherapy response for colorectal adenocarcinoma. Sci Rep 2024; 14:17158. [PMID: 39060344 PMCID: PMC11282063 DOI: 10.1038/s41598-024-67549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Lipid metabolism reprogramming involves in epithelial-mesenchymal transition (EMT), cancer stemness and immune checkpoints (ICs), which influence the metastasis of cancer. This study aimed to generate lipid metabolism-based signatures to predict prognosis, immunotherapy and chemotherapy response for colorectal adenocarcinoma (COAD). Transcriptome data and clinical information of COAD patients were collected from the cancer genome atlas (TCGA) database. The expression of EMT-, stem cell-, and IC-related genes were assessed between COAD and control samples. Modules and genes correlated EMT, ICs and stemness signatures were identified through weighted gene co-expression network analysis (WGCNA). Prognostic signatures were generated and then the distribution of risk genes was evaluated using single-cell RNA sequencing (scRNA-seq) data from GSE132465 dataset. COAD patients exhibited increased EMT score and stemness along with decreased ICs. Next, 12 hub genes (PIK3CG, ALOX5AP, PIK3R5, TNFAIP8L2, DPEP2, PIK3CD, PIK3R6, GGT5, ELOVL4, PTGIS, CYP7B1 and PRKD1) were found within green and yellow modules correlated with EMT, stemness and ICs. Lipid metabolism-based prognostic signatures were generated based on PIK3CG, GGT5 and PTGIS. Patients with high-risk group had poor prognosis, elevated ESTIMATEScore and StromalScore, 100% mutation rate and higher TIDE score. Samples in low-risk group had more immunogenicity on ICIs. Notably, PIK3CG was expressed in B cells, while GGT5 and PTGIS were expressed in stromal cells. This study generates lipid metabolism-based signatures correlated with EMT, stemness and ICs for predicting prognosis of COAD, and provides potential therapeutic targets for immunotherapy in COAD.
Collapse
Affiliation(s)
- Yi Wang
- Department of Oncology and Hematology, Suzhou Kowloon Hospital, Shanghai Jiao Tong University School of Medicine, Suzhou, 215127, China
| | - Jun Yao
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Zhe Zhang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Luxin Wei
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China
| | - Sheng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Soochow University, Suzhou, 215127, China.
| |
Collapse
|
7
|
Ackerman WE, Rigo MM, DaSilva-Arnold SC, Do C, Tariq M, Salas M, Castano A, Zamudio S, Tycko B, Illsley NP. Epigenetic changes regulating the epithelial-mesenchymal transition in human trophoblast differentiation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601748. [PMID: 39005325 PMCID: PMC11244995 DOI: 10.1101/2024.07.02.601748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The phenotype of human placental extravillous trophoblast (EVT) at the end of pregnancy reflects both first trimester differentiation from villous cytotrophoblast (CTB) and later gestational changes, including loss of proliferative and invasive capacity. Invasion abnormalities are central to two major placental pathologies, preeclampsia and placenta accreta spectrum, so characterization of the corresponding normal processes is crucial. In this report, our gene expression analysis, using purified human CTB and EVT cells, highlights an epithelial-mesenchymal transition (EMT) mechanism underlying CTB-EVT differentiation and provides a trophoblast-specific EMT signature. In parallel, DNA methylation profiling shows that CTB cells, already hypomethylated relative to non-trophoblast cell lineages, show further genome-wide hypomethylation in the transition to EVT. However, a small subgroup of genes undergoes gains of methylation (GOM) in their regulatory regions or gene bodies, associated with differential mRNA expression (DE). Prominent in this GOM-DE group are genes involved in the EMT, including multiple canonical EMT markers and the EMT-linked transcription factor RUNX1, for which we demonstrate a functional role in modulating the migratory and invasive capacities of JEG3 trophoblast cells. This analysis of DE associated with locus-specific GOM, together with functional studies of an important GOM-DE gene, highlights epigenetically regulated genes and pathways acting in human EVT differentiation and invasion, with implications for obstetric disorders in which these processes are dysregulated.
Collapse
Affiliation(s)
- William E. Ackerman
- Department of Obstetrics and Gynecology and AI.Health4All Center for Health Equity Using Machine Learning and Artificial Intelligence, University of Illinois College of Medicine, Chicago, USA
| | - Mauricio M. Rigo
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Sonia C. DaSilva-Arnold
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| | - Catherine Do
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Mariam Tariq
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Martha Salas
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Angelica Castano
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Stacy Zamudio
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| | - Benjamin Tycko
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ
| | - Nicholas P. Illsley
- Department of Obstetrics and Gynecology, Hackensack University Medical Center, Hackensack NJ
| |
Collapse
|
8
|
Askari N, Pirouz MS, Mafikandi V, Hadizadeh M, Mousavi SZ. The lncRNA UCA1 Enhances Pancreatic Cancer EMT by Regulating miR-708-5p and miR-135b-5p: A Bioinformatics Approach. IRANIAN JOURNAL OF PUBLIC HEALTH 2024; 53:1659-1669. [PMID: 39086404 PMCID: PMC11287582 DOI: 10.18502/ijph.v53i7.16060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 11/11/2023] [Indexed: 08/02/2024]
Abstract
Background Pancreatic cancer (PC) is an exceedingly malignant ailment that is not only characterized by its insidious onset and rapid progression but also by its poor therapeutic effects. Recently, emerging evidence has shed light on the significant role that non-coding RNAs (ncRNAs), particularly long ncRNAs (lncRNAs) and microRNAs (miRNAs), play in the pathogenesis of PC. This investigation aimed to construct a network of interactions between miRNAs, lncRNAs, and mRNAs, as well as to perform correlation analyses in the context of PC. Methods This study carried out in Kerman City, southeastern Iran in 2023. We utilized the GSE119794 dataset from the Gene Expression Omnibus (GEO) to analyze differentially expressed lncRNAs (DE-lncRNAs), miRNAs (DE-miRNAs), and mRNAs (DE-mRNAs). Following the identification of the DE-lncRNAs, DE-mRNAs, and DE-miRNAs, we proceeded to examine differentially expressed epithelialmesenchymal transition (EMT) genes. Subsequently, we utilized the RNAInter database to predict interactions among lncRNAs, miRNAs, and mRNAs. Finally, we employed Cytoscape to visualize and analyze the constructed network. Results 14 DE-lncRNAs, 14 DE-miRNAs, 545 DE-mRNAs, and 65 DE-EMT from pancreatic cancer and its adjacent tissue RNA-Seq data were identified. 1184 EMT genes from dbEMT were obtained, among which 65 DE-EMT were assigned as EMT genes and correlated with tumor progression. One functional lncRNA (UCA1) was identified as a key functional lncRNA. The area under the ROC curve (AUC) of UCA1 and miR-708-5p were 0.79 and 0.86, respectively. Thus, it is reasonable to believe that this prognostic risk model helps predict PC metastasis. Conclusion UCA1 is a new lncRNA linked with EMT in PC and contributes to a better knowledge of the regulatory mechanisms related to lncRNAs in PC.
Collapse
Affiliation(s)
- Nahid Askari
- Department of Biotechnology, Institute of Sciences and High Technology and Environmental Sciences, Graduate University of Advanced Technology, Kerman, Iran
| | - Marziye Shad Pirouz
- Laboratory of Complex Biological Systems and Bioinformatics (CBB), Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Vida Mafikandi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Morteza Hadizadeh
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Seyedeh Zahra Mousavi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
9
|
Said R, Hernández-Losa J, Haro RSLD, Moline T, Zouari S, Blel A, Rammeh S, Derouiche A, Ouerhani S. Epithelial-mesenchymal transition dysregulation in prostate cancer: Insights from molecular unraveling and epidemiological analyses in Tunisia, North Africa. Ann Hum Genet 2024. [PMID: 38661458 DOI: 10.1111/ahg.12563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/09/2024] [Accepted: 04/04/2024] [Indexed: 04/26/2024]
Abstract
INTRODUCTION The progression of prostate cancer (PCa) has been linked worldwide, including in African populations, to the dysregulation of the epithelial-mesenchymal transition (EMT). METHODS To clarify the connection among EMT markers, clinicopathological parameters, and epidemiological factors, we analyzed 35 PCa specimens from patients in Tunisia, a country in North Africa, arranged by stages. We also carried out extensive molecular and epidemiological analyses. RESULTS Significant dysregulation of EMT genes was found, with an overexpression of ZEB-1, Twist, Snail-1, and Vimentin (p < 0.05) and underexpression of E-cadherin and β-catenin (p < 0.05). Positive correlations were observed between transcription factors and the mesenchymal marker Vimentin (p < 0.001, r = 0.574; p = 0.029, r = 0.411; and p < 0.001; r = 0.506) according to Spearman correlation analyses, whereas negative correlations were found between epithelial markers (E-cadherin, β-catenin) and Vimentin (p < 0.05; r < 0). Higher PSA, Gleason scores, and metastasis were all correlated with the dysregulation of EMT (p < 0.05). Notably, there was a positive correlation between higher consumption of tobacco (≥20 Packets per year) and Vimentin expression (p < 0.001, r = 0.854), suggesting a relationship between smoking and EMT activation in the Tunisian population. Moreover, Twist showed a positive correlation with diabetes (p < 0.001, r = 0.385), whereas no significant correlations were found between EMT markers and comorbidities such as hypertension and coronary insufficiency. These results demonstrate the intricate connection between molecular changes, epidemiological factors, and disease progression, and they emphasize the crucial role that EMT plays in promoting PCa aggressiveness in African populations, particularly in Tunisia. CONCLUSION In summary, understanding these correlations could help develop focused treatment plans and enhance patient outcomes for PCa management in African settings.
Collapse
Affiliation(s)
- Rahma Said
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology-University of Carthage, Tunis, Tunisia
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Higher Institute of Biotechnology of Beja, University of Jendouba, Beja, Tunisia
| | - Javier Hernández-Losa
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Somoza Lopez de Haro
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Teresa Moline
- Molecular Biology Laboratory, Department of Pathology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Skander Zouari
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Ahlem Blel
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Soumaya Rammeh
- Pathology Anatomy and Cytology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Amine Derouiche
- Urology Department, Charles Nicolle Hospital, Tunis, Tunisia
| | - Slah Ouerhani
- Laboratory of Protein Engineering and Bio-Active Molecules, National Institute of Applied Science and Technology-University of Carthage, Tunis, Tunisia
| |
Collapse
|
10
|
Kwon HJ, Lee S, Han YB, Lee J, Kwon S, Kim H, Chung JH. Genomic Landscape of Pulmonary Sarcomatoid Carcinoma. Cancer Res Treat 2024; 56:442-454. [PMID: 37973906 PMCID: PMC11016656 DOI: 10.4143/crt.2023.764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
PURPOSE Pulmonary sarcomatoid carcinoma (PSC) is a rare aggressive subtype of non-small cell lung cancer (NSCLC) with limited therapeutic strategies. We attempted to elucidate the evolutionary trajectories of PSC using multiregional and longitudinal tumor samples. MATERIALS AND METHODS A total of 31 patients were enrolled in this study and 11 longitudinal samples were available from them. Using whole exome sequencing data, we analyzed the mutational signatures in both carcinomatous and sarcomatous areas in primary tumors of the 31 patients and longitudinal samples obtained from 11 patients. Furthermore, digital droplet polymerase chain reaction (ddPCR), and programmed death-ligand 1 (PD-L1) immunohistochemistry using the Ventana SP263 assay were performed. RESULTS TP53 was identified as the most frequently altered gene in the primary (74%) and metastatic (73%) samples. MET exon 14 skipping mutations, confirmed by ddPCR, and TP53 mutations were mutually exclusive; whereas, MET exon 14 skipping mutations frequently co-occurred with MDM2 amplification. Metastatic tumors showed dissimilar genetic profiles from either primary component. During metastasis, the signatures of APOBEC decreased in metastatic lesions compared with that in primary lesions. PSC showed higher MET and KEAP1 mutations and stronger PD-L1 protein expression compared with that recorded in other NSCLCs. CONCLUSION Decreased APOBEC signatures and subclonal diversity were detected during malignant progression in PSC. Frequent MET mutations and strong PD-L1 expression distinguished PSC from other NSCLCs. The aggressiveness and therapeutic difficulties of PSC were possibly attributable to profound intratumoral and intertumoral genetic diversity. Next-generation sequencing could suggest the appropriate treatment strategy for PSC.
Collapse
Affiliation(s)
- Hyun Jung Kwon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sejoon Lee
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Yeon Bi Han
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jeonghyo Lee
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Soohyeon Kwon
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Hyojin Kim
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University College of Medicine, Seoul, Korea
- Department of Pathology and Translational Medicine, Seoul National University Bundang Hospital, Seongnam, Korea
- Artificial Intelligence Institute of Seoul National University, Seoul, Korea
- Genomic Medicine Institute, Seoul National University Medical Research Center, Seoul, Korea
| |
Collapse
|
11
|
Kalita B, Coumar MS. Deciphering Breast Cancer Metastasis Cascade: A Systems Biology Approach Integrating Transcriptome and Interactome Insights for Target Discovery. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:148-161. [PMID: 38484298 DOI: 10.1089/omi.2023.0285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Breast cancer is the lead cause of cancer-related deaths among women globally. Breast cancer metastasis is a complex and still inadequately understood process and a key dimension of mortality attendant to breast cancer. This study reports dysregulated genes across metastatic stages and tissues, shedding light on their molecular interplay in disease pathogenesis and new possibilities for drug discovery. Comprehensive analyses of gene expression data from primary breast tumor, circulating tumor cells, and distant metastatic sites in the brain, lung, liver, and bone were conducted. Genes dysregulated across multiple stages and tissues were identified as metastatic cascade genes, and are further classified based on functional associations with metastasis-related mechanisms. Their interactions with HUB genes in interactome networks were scrutinized, followed by pathway enrichment analysis. Validation for their potential as targets included assessments for survival, druggability, prognostic marker status, secretome annotation, protein expression, and cell type marker association. Results displayed critical genes in the metastatic cascade and those specific to metastatic sites, revealing the involvement of the collagen degradation and assembly of collagen fibrils and other multimeric structure pathways in driving metastasis. Notably, pivotal cascade genes FABP4, CXCL12, APOD, and IGF1 emerged with high metastatic potential, linked to significant druggability and survival scores, establishing them as potential molecular targets. The significance of this research lies in its potential to uncover novel biomarkers for early detection, therapeutic targets, and a deeper understanding of the molecular mechanisms underpinning the metastatic cascade in breast cancer, and with an eye to precision/personalized medicine.
Collapse
Affiliation(s)
- Bikashita Kalita
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Mohane Selvaraj Coumar
- Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
12
|
Yang X, Chen X, Wang W, Qu S, Lai B, Zhang J, Chen J, Han C, Tian Y, Xiao Y, Gao W, Wu Y. Transcriptional profile of human thymus reveals IGFBP5 is correlated with age-related thymic involution. Front Immunol 2024; 15:1322214. [PMID: 38318192 PMCID: PMC10839013 DOI: 10.3389/fimmu.2024.1322214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 02/07/2024] Open
Abstract
Thymus is the main immune organ which is responsible for the production of self-tolerant and functional T cells, but it shrinks rapidly with age after birth. Although studies have researched thymus development and involution in mouse, the critical regulators that arise with age in human thymus remain unclear. We collected public human single-cell transcriptomic sequencing (scRNA-seq) datasets containing 350,678 cells from 36 samples, integrated them as a cell atlas of human thymus. Clinical samples were collected and experiments were performed for validation. We found early thymocyte-specific signaling and regulons which played roles in thymocyte migration, proliferation, apoptosis and differentiation. Nevertheless, signaling patterns including number, strength and path completely changed during aging, Transcription factors (FOXC1, MXI1, KLF9, NFIL3) and their target gene, IGFBP5, were resolved and up-regulated in aging thymus and involved in promoting epithelial-mesenchymal transition (EMT), responding to steroid and adipogenesis process of thymic epithelial cell (TECs). Furthermore, we validated that IGFBP5 protein increased at TECs and Hassall's corpuscle in both human and mouse aging thymus and knockdown of IGFBP5 significantly increased the expression of proliferation-related genes in thymocytes. Collectively, we systematically explored cell-cell communications and regulons of early thymocytes as well as age-related differences in human thymus by using both bioinformatic and experimental verification, indicating IGFBP5 as a functional marker of thymic involution and providing new insights into the mechanisms of thymus involution.
Collapse
Affiliation(s)
- Xiaojing Yang
- College of Bioengineering, Chongqing University, Chongqing, China
| | - Xichan Chen
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Wei Wang
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Siming Qu
- Organ Transplantation Center, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Binbin Lai
- Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Ji Zhang
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jian Chen
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Chao Han
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yi Tian
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yingbin Xiao
- Department of Cardiovascular Surgery, the Second Affiliated Hospital, Army Medical University, Chongqing, China
| | - Weiwu Gao
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Yuzhang Wu
- College of Bioengineering, Chongqing University, Chongqing, China
- Institute of Immunology People’s Liberation Army (PLA) & Department of Immunology, College of Basic Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
13
|
Nagai-Singer MA, Woolls MK, Leedy K, Hendricks-Wenger A, Brock RM, Coutermarsh-Ott S, Paul T, Morrison HA, Imran KM, Tupik JD, Fletcher EJ, Brown DA, Allen IC. Cellular Context Dictates the Suppression or Augmentation of Triple-Negative Mammary Tumor Metastasis by NLRX1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1844-1857. [PMID: 37909827 PMCID: PMC10694032 DOI: 10.4049/jimmunol.2200834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 10/12/2023] [Indexed: 11/03/2023]
Abstract
Prior studies have defined multiple, but inconsistent, roles for the enigmatic pattern recognition receptor NLRX1 in regulating several cancer-associated biological functions. In this study, we explore the role of NLRX1 in the highly metastatic murine 4T1 mammary tumor model. We describe a functional dichotomy of NLRX1 between two different cellular contexts: expression in healthy host cells versus expression in the 4T1 tumor cells. Using Nlrx1-/- mice engrafted with 4T1 tumors, we demonstrate that NLRX1 functions as a tumor suppressor when expressed in the host cells. Specifically, NLRX1 in healthy host cells attenuates tumor growth and lung metastasis through suppressing characteristics of epithelial-mesenchymal transition and the lung metastatic niche. Conversely, we demonstrate that NLRX1 functions as a tumor promoter when expressed in 4T1 tumor cells using gain- and loss-of-function studies both in vitro and in vivo. Mechanistically, NLRX1 in the tumor cells augments 4T1 aggressiveness and metastasis through regulating epithelial-mesenchymal transition hallmarks, cell death, proliferation, migration, reactive oxygen species levels, and mitochondrial respiration. Collectively, we provide critical insight into NLRX1 function and establish a dichotomous role of NLRX1 in the 4T1 murine mammary carcinoma model that is dictated by cellular context.
Collapse
Affiliation(s)
- Margaret A. Nagai-Singer
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Mackenzie K. Woolls
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Katerina Leedy
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | | | - Rebecca M. Brock
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Sheryl Coutermarsh-Ott
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Tamalika Paul
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Holly A. Morrison
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Khan M. Imran
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA
| | - Juselyn D. Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| | - Endia J. Fletcher
- Postbaccalaureate Research Education Program, Virginia Tech, Blacksburg, VA
| | | | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA
| |
Collapse
|
14
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. Respiratory Syncytial Virus Infection Does Not Induce Epithelial-Mesenchymal Transition. J Virol 2023; 97:e0039423. [PMID: 37338373 PMCID: PMC10373540 DOI: 10.1128/jvi.00394-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/24/2023] [Indexed: 06/21/2023] Open
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections during our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, transforming growth factor β1 (TGF-β1), driving cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT. IMPORTANCE We have previously shown that RSV infects ciliated cells on the apical side of the lung airway. RSV-induced cytoskeletal inflammation contributes to an uneven increase in the height of the airway epithelium, resembling noncanonical bronchial wall thickening. RSV infection changes epithelial cell morphology by modulating actin-protein 2/3 complex-driven actin polymerization. Therefore, it is prudent to investigate whether RSV-induced cell morphological changes contribute to EMT. Our data indicate that RSV does not induce EMT in at least three different epithelial in vitro models: an epithelial cell line, primary epithelial cells, and pseudostratified bronchial airway epithelium.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, USA
| |
Collapse
|
15
|
Talukdar SN, McGregor B, Osan JK, Hur J, Mehedi M. RSV infection does not induce EMT. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.13.532506. [PMID: 36993657 PMCID: PMC10055011 DOI: 10.1101/2023.03.13.532506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Respiratory syncytial virus (RSV) infection does not cause severe disease in most of us despite suffering from multiple RSV infections in our lives. However, infants, young children, older adults, and immunocompromised patients are unfortunately vulnerable to RSV-associated severe diseases. A recent study suggested that RSV infection causes cell expansion, resulting in bronchial wall thickening in vitro. Whether the virus-induced changes in the lung airway resemble epithelial-mesenchymal transition (EMT) is still unknown. Here, we report that RSV does not induce EMT in three different in vitro lung models: the epithelial A549 cell line, primary normal human bronchial epithelial cells, and pseudostratified airway epithelium. We found that RSV increases the cell surface area and perimeter in the infected airway epithelium, which is distinct from the effects of a potent EMT inducer, TGF-β1-driven cell elongation-indicative of cell motility. A genome-wide transcriptome analysis revealed that both RSV and TGF-β1 have distinct modulation patterns of the transcriptome, which suggests that RSV-induced changes are distinct from EMT.
Collapse
Affiliation(s)
- Sattya N. Talukdar
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Brett McGregor
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Jaspreet K. Osan
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| | - Masfique Mehedi
- Department of Biomedical Sciences, University of North Dakota School of Medicine & Health Sciences, Grand Forks, North Dakota, United States of America
| |
Collapse
|
16
|
An EMT-based gene signature enhances the clinical understanding and prognostic prediction of patients with ovarian cancers. J Ovarian Res 2023; 16:51. [PMID: 36907877 PMCID: PMC10009944 DOI: 10.1186/s13048-023-01132-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 03/02/2023] [Indexed: 03/14/2023] Open
Abstract
BACKGROUND Ovarian cancer (OC) is one of the most common gynecological cancers with malignant metastasis and poor prognosis. Current evidence substantiates that epithelial-mesenchymal transition (EMT) is a critical mechanism that drives OC progression. In this study, we aspire to identify pivotal EMT-related genes (EMTG) in OC development, and establish an EMT gene-based model for prognosis prediction. METHODS We constructed the risk score model by screening EMT genes via univariate/LASSO/step multivariate Cox regressions in the OC cohort from TCGA database. The efficacy of the EMTG model was tested in external GEO cohort, and quantified by the nomogram. Moreover, the immune infiltration and chemotherapy sensitivity were analyzed in different risk score groups. RESULTS We established a 11-EMTGs risk score model to predict the prognosis of OC patients. Based on the model, OC patients were split into high- and low- risk score groups, and the high-risk score group had an inevitably poor survival. The predictive power of the model was verified by external OC cohort. The nomogram showed that the model was an independent factor for prognosis prediction. Moreover, immune infiltration analysis revealed the immunosuppressive microenvironment in the high-risk score group. Finally, the EMTG model can be used to predict the sensitivity to chemotherapy drugs. CONCLUSIONS This study demonstrated that EMTG model was a powerful tool for prognostic prediction of OC patients. Our work not only provide a novel insight into the etiology of OC tumorigenesis, but also can be used in the clinical decisions on OC treatment.
Collapse
|
17
|
Integrative network analysis reveals subtype-specific long non-coding RNA regulatory mechanisms in head and neck squamous cell carcinoma. Comput Struct Biotechnol J 2022; 21:535-549. [PMID: 36659932 PMCID: PMC9816915 DOI: 10.1016/j.csbj.2022.12.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) is one of most common malignancies with high mortality worldwide. Importantly, the molecular heterogeneity of HNSC complicates the clinical diagnosis and treatment, leading to poor overall survival outcomes. To dissect the complex heterogeneity, recent studies have reported multiple molecular subtyping systems. For instance, HNSC can be subdivided to four distinct molecular subtypes: atypical, basal, classical, and mesenchymal, of which the mesenchymal subtype is characterized by upregulated epithelial-mesenchymal transition (EMT) and associated with poorer survival outcomes. Despite a wealth of studies into the complex molecular heterogeneity, the regulatory mechanism specific to this aggressive subtype remain largely unclear. Herein, we developed a network-based bioinformatics framework that integrates lncRNA and mRNA expression profiles to elucidate the subtype-specific regulatory mechanisms. Applying the framework to HNSC, we identified a clinically relevant lncRNA LNCOG as a key master regulator mediating EMT underlying the mesenchymal subtype. Five genes with strong prognostic values, namely ANXA5, ITGA5, CCBE1, P4HA2, and EPHX3, were predicted to be the putative targets of LNCOG and subsequently validated in other independent datasets. By integrative analysis of the miRNA expression profiles, we found that LNCOG may act as a ceRNA to sponge miR-148a-3p thereby upregulating ITGA5 to promote HNSC progression. Furthermore, our drug sensitivity analysis demonstrated that the five putative targets of LNCOG were also predictive of the sensitivities of multiple FDA-approved drugs. In summary, our bioinformatics framework facilitates the dissection of cancer subtype-specific lncRNA regulatory mechanisms, providing potential novel biomarkers for more optimized treatment of HNSC.
Collapse
Key Words
- AUC, area under the curve
- BH, Benjamini-Hochberg
- CI, confidence interval
- CTRP, The Cancer Therapeutics Response Portal
- Competitive endogenous RNA
- DEG, differentially expressed gene
- DEX, dexamethasone
- DFS, disease-free survival
- EMT, epithelial-mesenchymal transition
- FPKM, fragments per kilobase million
- GEO, Gene Expression Omnibus
- GO, Gene Ontology
- GSEA, gene set enrichment analysis
- HNSC, head and neck squamous cell carcinoma
- HR, hazard ratio
- Head and neck cancer
- ICGC, The International Cancer Genome Consortium
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LASSO, least absolute shrinkage and selection operator
- Long non-coding RNAs
- Network inference
- OS, overall survival
- ROC, receiver operating characteristic curve
- Subtype-specific
- TCGA, The Cancer Genome Atlas
- TPM, transcripts per million
- UCSC, the University of California Santa Cruz
- ceRNA, the competitive endogenous RNA
- lncRNA, long non-coding RNA
- miRNA, microRNA
Collapse
|
18
|
Pérez-Benavente B, Fathinajafabadi A, de la Fuente L, Gandía C, Martínez-Férriz A, Pardo-Sánchez JM, Milián L, Conesa A, Romero OA, Carretero J, Matthiesen R, Jariel-Encontre I, Piechaczyk M, Farràs R. New roles for AP-1/JUNB in cell cycle control and tumorigenic cell invasion via regulation of cyclin E1 and TGF-β2. Genome Biol 2022; 23:252. [PMID: 36494864 PMCID: PMC9733061 DOI: 10.1186/s13059-022-02800-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 10/20/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND JUNB transcription factor contributes to the formation of the ubiquitous transcriptional complex AP-1 involved in the control of many physiological and disease-associated functions. The roles of JUNB in the control of cell division and tumorigenic processes are acknowledged but still unclear. RESULTS Here, we report the results of combined transcriptomic, genomic, and functional studies showing that JUNB promotes cell cycle progression via induction of cyclin E1 and repression of transforming growth factor (TGF)-β2 genes. We also show that high levels of JUNB switch the response of TGF-β2 stimulation from an antiproliferative to a pro-invasive one, induce endogenous TGF-β2 production by promoting TGF-β2 mRNA translation, and enhance tumor growth and metastasis in mice. Moreover, tumor genomic data indicate that JUNB amplification associates with poor prognosis in breast and ovarian cancer patients. CONCLUSIONS Our results reveal novel functions for JUNB in cell proliferation and tumor aggressiveness through regulation of cyclin E1 and TGF-β2 expression, which might be exploited for cancer prognosis and therapy.
Collapse
Affiliation(s)
| | | | - Lorena de la Fuente
- Centro de Investigación Príncipe Felipe, Valencia, Spain
- Present Address: PerkinElmer Informatics, Tres Cantos, Madrid, Spain
| | | | | | | | - Lara Milián
- Department of Pathology, Faculty of Medicine and Dentistry, Universitat de València, Valencia, Spain
- INCLIVA Biomedical Research Institute, 46010, Valencia, Spain
| | - Ana Conesa
- Spanish National Research Council, Institute for Integrative Systems Biology, Paterna, Valencia, Spain
- Microbiology and Cell Science, University of Florida, Gainesville, FL, USA
| | - Octavio A Romero
- Cancer Genetics Group, Josep Carreras Leukaemia Research Institute (IJC), Badalona, Barcelona, Spain
| | - Julián Carretero
- Departament de Fisiologia, Facultat de Farmacia, Universitat de València, Burjassot, Valencia, Spain
| | - Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
| | - Isabelle Jariel-Encontre
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
- Present address: IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Montpellier, France
| | - Marc Piechaczyk
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, CNRS, Montpellier, France
| | - Rosa Farràs
- Centro de Investigación Príncipe Felipe, Valencia, Spain.
| |
Collapse
|
19
|
Gopal D, Nagarajan H, Muthuvel B, Vetrivel U, George R, Janakiraman N. Synthesis and Characterization of a Novel Peptide Targeting Human Tenon Fibroblast Cells To Modulate Fibrosis: An Integrated Empirical Approach. ACS Pharmacol Transl Sci 2022; 5:1254-1266. [PMID: 36524010 PMCID: PMC9745891 DOI: 10.1021/acsptsci.2c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Indexed: 11/17/2022]
Abstract
Fibrosis is the primary factor influencing the prognosis of glaucoma post-trabeculectomy surgery, an eye condition characterized by increased intraocular pressure (IOP). Despite advancements in surgical procedures and aftercare, it continues to be a serious impediment. During the clinical intervention of scarring, fibrosis is managed by using topical application of combined antifibrotic drugs (mitomycin C). But still, scarring remains a key problem due to minimal drug penetration and nonbioavailability. In this study, we synthesized a cell-specific peptide for modulating scarring in human tenon fibroblasts undergoing epithelial-mesenchymal transition (EMT). The peptide was also conjugated with mitomycin C in order to investigate the effect of the drug conjugation on human tenon fibroblasts from the nanofiber composite system and to evaluate the fibrosis process. Peptide VRF2019 was identified using a subtractive proteomics approach, including solubility, cell penetration, and amphipathic properties. The peptide structure was determined using circular dichroism spectroscopy. The peptide and drug was conjugated using N-ethyl-N'-(3-(dimethylamino)propyl) carbodiimide/N-hydroxysuccinimide (EDC-NHS) chemistry, and the conjugation efficiency was evaluated using high-pressure liquid chromatography. The conjugated product and polycaprolactone (PCL) were electrospun to form a composite nanofiber, which was tested for cytotoxicity and drug release on human tenon fibroblast cells. The modeled VRF2019 peptide structure formed an α-helical structure with all residues spanning the allowed regions of the Ramachandran plot. Subsequent molecular dynamics simulations also demonstrated its membrane penetration potential. The peptide uptake was also studied in human tenon fibroblast cells. High-pressure liquid chromatography (HPLC) and mass spectrometry measurements confirmed peptide-drug conjugation and stability. Furthermore, scanning electron microscopy (SEM) investigation revealed the structure and size of the PCL composite nanofiber. We infer from early research that the PCL composite nanofiber matrix can greatly increase drug delivery and bioavailability.
Collapse
Affiliation(s)
- Divya Gopal
- Department
of Nanobiotechnology, Vision Research Foundation, No. 18/41, College Road, Nungambakkam, Chennai 600006, Tamil Nadu, India
| | - Hemavathy Nagarajan
- Centre
for Bioinformatics, Vision Research Foundation, No. 18/41, College Road, Nungambakkam, Chennai 600006, Tamil Nadu, India
| | - Bharathselvi Muthuvel
- R.S.
Mehta Jain Department of Biochemistry and Cell Biology, Vision Research Foundation, No. 18/41, College Road, Nungambakkam, Chennai 600006, Tamil Nadu, India
| | - Umashankar Vetrivel
- ICMR−National
Institute of Traditional Medicine, Nehru Nagar, Belagavi 590010, Karnataka, India
| | - Ronnie George
- Department
of Glaucoma, Medical Research Foundation, No. 18/41, College Road, Nungambakkam, Chennai 600006, Tamil Nadu, India
| | - Narayanan Janakiraman
- Department
of Nanobiotechnology, Vision Research Foundation, No. 18/41, College Road, Nungambakkam, Chennai 600006, Tamil Nadu, India
| |
Collapse
|
20
|
Kashkin KN, Kotova ES, Alekseenko IV, Bulanenkova SS, Akopov SB, Kopantzev EP, Nikolaev LG, Chernov IP, Didych DA. Efficient Selection of Enhancers and Promoters from MIA PaCa-2 Pancreatic Cancer Cells by ChIP-lentiMPRA. Int J Mol Sci 2022; 23:ijms232315011. [PMID: 36499347 PMCID: PMC9740945 DOI: 10.3390/ijms232315011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/05/2022] Open
Abstract
A library of active genome regulatory elements (putative promoters and enhancers) from MIA PaCa-2 pancreatic adenocarcinoma cells was constructed using a specially designed lentiviral vector and a massive parallel reporter assay (ChIP-lentiMPRA). Chromatin immunoprecipitation of the cell genomic DNA by H3K27ac antibodies was used for primary enrichment of the library for regulatory elements. Totally, 11,264 unique genome regions, many of which are capable of enhancing the expression of the CopGFP reporter gene from the minimal CMV promoter, were identified. The regions tend to be located near promoters. Based on the proximity assay, we found an enrichment of highly expressed genes among those associated with three or more mapped distal regions (2 kb distant from the 5'-ends of genes). It was shown significant enrichment of genes related to carcinogenesis or Mia PaCa-2 cell identity genes in this group. In contrast, genes associated with 1-2 distal regions or only with proximal regions (within 2 kbp of the 5'-ends of genes) are more often related to housekeeping functions. Thus, ChIP-lentiMPRA is a useful strategy for creating libraries of regulatory elements for the study of tumor-specific gene transcription.
Collapse
Affiliation(s)
- Kirill Nikitich Kashkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Elena Sergeevna Kotova
- Laboratory of Human Molecular Genetics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Street, 1a, 119435 Moscow, Russia
| | - Irina Vasilievna Alekseenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Svetlana Sergeevna Bulanenkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Sergey Borisovich Akopov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Eugene Pavlovich Kopantzev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Lev Grigorievich Nikolaev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Igor Pavlovich Chernov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
| | - Dmitry Alexandrovich Didych
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, 117997 Moscow, Russia
- Correspondence: ; Tel.: +7-919-777-4620
| |
Collapse
|
21
|
Sikandar SS, Gulati GS, Antony J, Fetter I, Kuo AH, Ho WHD, Haro-Acosta V, Das S, Steen CB, Pereira TA, Qian D, Beachy PA, Dirbas FM, Red-Horse K, Rabbitts TH, Thiery JP, Newman AM, Clarke MF. Identification of a minority population of LMO2 + breast cancer cells that integrate into the vasculature and initiate metastasis. SCIENCE ADVANCES 2022; 8:eabm3548. [PMID: 36351009 PMCID: PMC10939096 DOI: 10.1126/sciadv.abm3548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Metastasis is responsible for most breast cancer-related deaths; however, identifying the cellular determinants of metastasis has remained challenging. Here, we identified a minority population of immature THY1+/VEGFA+ tumor epithelial cells in human breast tumor biopsies that display angiogenic features and are marked by the expression of the oncogene, LMO2. Higher abundance of LMO2+ basal cells correlated with tumor endothelial content and predicted poor distant recurrence-free survival in patients. Using MMTV-PyMT/Lmo2CreERT2 mice, we demonstrated that Lmo2 lineage-traced cells integrate into the vasculature and have a higher propensity to metastasize. LMO2 knockdown in human breast tumors reduced lung metastasis by impairing intravasation, leading to a reduced frequency of circulating tumor cells. Mechanistically, we find that LMO2 binds to STAT3 and is required for STAT3 activation by tumor necrosis factor-α and interleukin-6. Collectively, our study identifies a population of metastasis-initiating cells with angiogenic features and establishes the LMO2-STAT3 signaling axis as a therapeutic target in breast cancer metastasis.
Collapse
Affiliation(s)
- Shaheen S. Sikandar
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Gunsagar S. Gulati
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Jane Antony
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Isobel Fetter
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Angera H. Kuo
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - William Hai Dang Ho
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Veronica Haro-Acosta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, Santa Cruz, CA 95064, USA
| | - Soumyashree Das
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Chloé B. Steen
- Division of Oncology, Department of Medicine, Stanford Cancer Institute, Stanford University, Stanford, CA, USA
| | - Thiago Almeida Pereira
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Dalong Qian
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Philip A. Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
| | - Frederick M. Dirbas
- Department of Surgery, Stanford Cancer Institute, Stanford University School of Medicine, 875 Blake Wilbur Drive, Rm CC2235, Stanford, CA 94305, USA
| | - Kristy Red-Horse
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford, CA 94305, USA
| | - Terence H. Rabbitts
- Division of Cancer Therapeutics, Institute of Cancer Research, London SM2 5NG, UK
| | - Jean Paul Thiery
- Guangzhou Laboratory, International Biological Island, Guangzhou, Guangdong 510005, China
| | - Aaron M. Newman
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Michael F. Clarke
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, 265 Campus Drive, School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
22
|
Caldwell AB, Liu Q, Zhang C, Schroth GP, Galasko DR, Rynearson KD, Tanzi RE, Yuan SH, Wagner SL, Subramaniam S. Endotype reversal as a novel strategy for screening drugs targeting familial Alzheimer's disease. Alzheimers Dement 2022; 18:2117-2130. [PMID: 35084109 PMCID: PMC9787711 DOI: 10.1002/alz.12553] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/08/2021] [Accepted: 10/25/2021] [Indexed: 01/31/2023]
Abstract
While amyloid-β (Aβ) plaques are considered a hallmark of Alzheimer's disease, clinical trials focused on targeting gamma secretase, an enzyme involved in aberrant Aβ peptide production, have not led to amelioration of AD symptoms or synaptic dysregulation. Screening strategies based on mechanistic, multi-omics approaches that go beyond pathological readouts can aid in the evaluation of therapeutics. Using early-onset Alzheimer's (EOFAD) disease patient lineage PSEN1A246E iPSC-derived neurons, we performed RNA-seq to characterize AD-associated endotypes, which are in turn used as a screening evaluation metric for two gamma secretase drugs, the inhibitor Semagacestat and the modulator BPN-15606. We demonstrate that drug treatment partially restores the neuronal state while concomitantly inhibiting cell cycle re-entry and dedifferentiation endotypes to different degrees depending on the mechanism of gamma secretase engagement. Our endotype-centric screening approach offers a new paradigm by which candidate AD therapeutics can be evaluated for their overall ability to reverse disease endotypes.
Collapse
Affiliation(s)
- Andrew B. Caldwell
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Qing Liu
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of California, San DiegoLa JollaCalifornia92093USA
| | - Can Zhang
- Genetics and Aging Research Unit, Department of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | | | - Douglas R. Galasko
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Kevin D. Rynearson
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Department of NeurologyMassachusetts General HospitalCharlestownMassachusettsUSA
| | - Shauna H. Yuan
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,N. Bud Grossman Center for Memory Research and CareDepartment of Neurology, University of Minnesota, Minneapolis, MN, USA; GRECC, Minneapolis VA Health Care SystemMinneapolisMNUSA
| | - Steven L. Wagner
- Department of NeurosciencesUniversity of California, San DiegoLa JollaCaliforniaUSA,VA San Diego Healthcare SystemLa JollaCaliforniaUSA
| | - Shankar Subramaniam
- Department of BioengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Cellular and Molecular MedicineUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of NanoengineeringUniversity of California, San DiegoLa JollaCaliforniaUSA,Department of Computer Science and EngineeringUniversity of California, San DiegoLa JollaCaliforniaUSA
| |
Collapse
|
23
|
Liu H, Yuan M, Mitra R, Zhou X, Long M, Lei W, Zhou S, Huang YE, Hou F, Eischen CM, Jiang W. CTpathway: a CrossTalk-based pathway enrichment analysis method for cancer research. Genome Med 2022; 14:118. [PMID: 36229842 PMCID: PMC9563764 DOI: 10.1186/s13073-022-01119-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Pathway enrichment analysis (PEA) is a common method for exploring functions of hundreds of genes and identifying disease-risk pathways. Moreover, different pathways exert their functions through crosstalk. However, existing PEA methods do not sufficiently integrate essential pathway features, including pathway crosstalk, molecular interactions, and network topologies, resulting in many risk pathways that remain uninvestigated. METHODS To overcome these limitations, we develop a new crosstalk-based PEA method, CTpathway, based on a global pathway crosstalk map (GPCM) with >440,000 edges by combing pathways from eight resources, transcription factor-gene regulations, and large-scale protein-protein interactions. Integrating gene differential expression and crosstalk effects in GPCM, we assign a risk score to genes in the GPCM and identify risk pathways enriched with the risk genes. RESULTS Analysis of >8300 expression profiles covering ten cancer tissues and blood samples indicates that CTpathway outperforms the current state-of-the-art methods in identifying risk pathways with higher accuracy, reproducibility, and speed. CTpathway recapitulates known risk pathways and exclusively identifies several previously unreported critical pathways for individual cancer types. CTpathway also outperforms other methods in identifying risk pathways across all cancer stages, including early-stage cancer with a small number of differentially expressed genes. Moreover, the robust design of CTpathway enables researchers to analyze both bulk and single-cell RNA-seq profiles to predict both cancer tissue and cell type-specific risk pathways with higher accuracy. CONCLUSIONS Collectively, CTpathway is a fast, accurate, and stable pathway enrichment analysis method for cancer research that can be used to identify cancer risk pathways. The CTpathway interactive web server can be accessed here http://www.jianglab.cn/CTpathway/ . The stand-alone program can be accessed here https://github.com/Bioccjw/CTpathway .
Collapse
Affiliation(s)
- Haizhou Liu
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Mengqin Yuan
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Ramkrishna Mitra
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA, 19107, USA
| | - Xu Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Min Long
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Wanyue Lei
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Shunheng Zhou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Yu-E Huang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Fei Hou
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China
| | - Christine M Eischen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th St., Philadelphia, PA, 19107, USA.
| | - Wei Jiang
- Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, No. 29, Jiangjun Avenue, Nanjing, 211106, Jiangsu Province, China.
| |
Collapse
|
24
|
Inhibitory Effects of Rhein on Renal Interstitial Fibrosis via the SHH-Gli1 Signal Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:4398265. [PMID: 35966731 PMCID: PMC9374561 DOI: 10.1155/2022/4398265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/21/2022] [Accepted: 04/11/2022] [Indexed: 11/17/2022]
Abstract
Background. Rhein is the main extract of Rheum palmatum L., which has been proved to improve the renal function of chronic kidney disease, but its mechanism is not clear. Therefore, this experiment explored the potential pharmacological effect of rhein on renal interstitial fibrosis rats. Methods. This study explores the potential pharmacological action of rhein. In this work, we investigate the potential pharmacological action of rhein in unilateral urethral obstruction (UUO) rats. Thirty Sprague Dawley rats were randomly divided into three groups: sham, UUO, and rhein (rhein-treated UUO rats) groups. The left ureters of the UUO group rats were exposed and bluntly dissected. The rhein group rats were administered an intragastric gavage of rhein (2 mg·kg−1·d−1) for 14 d. Kidney function-related indicators were monitored in these rats, while indexes of pathologic aspects were determined histologically. The expression of α-SMA, TGF-β1, SHH, Gli1, and Snail was quantified using real-time polymerase chain reaction and western blotting. The NRK-49F cells were incubated with and without SHH (100 ng·ml−1) for 48 hours. The SHH-activated NRK-49F cells were incubated with cyclopamine (CNP, 20 umol L−1) or rhein (1 ng·ml−1). The Gli1 and Snail mRNA and protein level were detected. Results. In the in vivo experiment, the results exhibited that UUO caused renal pathological damages. However, these changes could be significantly reversed by the administration of rhein. Compared with the untreated UUO group, the rhein group showed reduced kidney tubular atrophy and necrosis, interstitial fibrosis, hyperplasia, and abnormal deposition of extracellular matrix. Rhein reduced the RNA and protein expression of SHH, Gli1, and Snail of the UUO rats. In the in vitro experiment, CNP or rhein treatment decreased the expression of Gli1 and Snail on mRNA and protein levels in SHH-induced NRK-49F cells, suggesting that CNP or rhein suppresses SHH-induced NRK-49F activation. Taken together, these results demonstrated that rhein suppresses SHH-Gli1-Snail signal pathway activation, with potential implications for the treatment of renal fibrosis. Conclusions. Treatment with rhein remarkably ameliorated renal interstitial fibrosis in UUO rats by regulating the SHH-Gli1-Snail signal pathway.
Collapse
|
25
|
Goettsch KA, Zhang L, Singh AB, Dhawan P, Bastola DK. Reliable epithelial-mesenchymal transition biomarkers for colorectal cancer detection. Biomark Med 2022; 16:889-901. [PMID: 35892269 PMCID: PMC9442548 DOI: 10.2217/bmm-2022-0071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aims: To combat increases in colorectal cancer (CRC) incidence and mortality, biomarkers among differentially expressed genes (DEGs) have been identified to objectively detect cancer. However, DEGs are numerous, and additional parameters may identify more reliable biomarkers. Here, CRC DEGs were filtered into a prioritized list of biomarkers. Materials & methods: Two independent datasets (COAD-READ [n = 698] and GSE50760 [n = 36]) were input alternatively to the recently published data-driven reference method. Results were filtered based on epithelial-mesenchymal transition enrichment (χ-square statistic: 919.05; p = 2.2e-16) to produce 37 potential CRC biomarkers. Results: All 37 genes reliably classified CRC samples and ETV4, CLDN1 and CA2 together were top-ranked by DDR (accuracy: 89%; F1 score: 0.89). Conclusion: Biological and statistical information were combined to produce a better set of CRC detection biomarkers.
Collapse
Affiliation(s)
- Kaitlin A Goettsch
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, 1110 S. 67th Street, Omaha, NE 68182, USA
| | - Ling Zhang
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, 1110 S. 67th Street, Omaha, NE 68182, USA
| | - Amar B Singh
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 42nd & Emile Streets, Omaha, NE 68198, USA.,Veterans Affairs Nebraska - Western Iowa Health Care System, Research Service, Omaha, NE 68105, USA
| | - Punita Dhawan
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, 42nd & Emile Streets, Omaha, NE 68198, USA
| | - Dhundy K Bastola
- School of Interdisciplinary Informatics, College of Information Science & Technology, University of Nebraska at Omaha, 1110 S. 67th Street, Omaha, NE 68182, USA
| |
Collapse
|
26
|
Antoniali G, Dalla E, Mangiapane G, Zhao X, Jing X, Cheng Y, De Sanctis V, Ayyildiz D, Piazza S, Li M, Tell G. APE1 controls DICER1 expression in NSCLC through miR-33a and miR-130b. Cell Mol Life Sci 2022; 79:446. [PMID: 35876890 PMCID: PMC9314295 DOI: 10.1007/s00018-022-04443-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 12/04/2022]
Abstract
Increasing evidence suggests different, not completely understood roles of microRNA biogenesis in the development and progression of lung cancer. The overexpression of the DNA repair protein apurinic/apyrimidinic endodeoxyribonuclease 1 (APE1) is an important cause of poor chemotherapeutic response in lung cancer and its involvement in onco-miRNAs biogenesis has been recently described. Whether APE1 regulates miRNAs acting as prognostic biomarkers of lung cancer has not been investigated, yet. In this study, we analyzed miRNAs differential expression upon APE1 depletion in the A549 lung cancer cell line using high-throughput methods. We defined a signature of 13 miRNAs that strongly correlate with APE1 expression in human lung cancer: miR-1246, miR-4488, miR-24, miR-183, miR-660, miR-130b, miR-543, miR-200c, miR-376c, miR-218, miR-146a, miR-92b and miR-33a. Functional enrichment analysis of this signature revealed its biological relevance in cancer cell proliferation and survival. We validated DICER1 as a direct functional target of the APE1-regulated miRNA-33a-5p and miR-130b-3p. Importantly, IHC analyses of different human tumors confirmed a negative correlation existing between APE1 and Dicer1 protein levels. DICER1 downregulation represents a prognostic marker of cancer development but the mechanisms at the basis of this phenomenon are still completely unknown. Our findings, suggesting that APE1 modulates DICER1 expression via miR-33a and miR-130b, reveal new mechanistic insights on DICER1 regulation, which are of relevance in lung cancer chemoresistance and cancer invasiveness.
Collapse
Affiliation(s)
- Giulia Antoniali
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Emiliano Dalla
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Giovanna Mangiapane
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Xiaolong Zhao
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Xinming Jing
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Yi Cheng
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China
| | - Veronica De Sanctis
- Next Generation Sequence Facility, Department CIBIO, University of Trento, Trento, Italy
| | - Dilara Ayyildiz
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy
| | - Silvano Piazza
- Bioinformatics Core Facility, Department CIBIO, University of Trento, Trento, Italy.,Computational Biology, International Centre for Genetic Engineering and Biotechnology, ICGEB, Trieste, Italy
| | - Mengxia Li
- Cancer Center of Daping Hospital, Third Military Medical University, Chongqing, China.
| | - Gianluca Tell
- Laboratory of Molecular Biology and DNA Repair, Department of Medicine, University of Udine, Udine, Italy.
| |
Collapse
|
27
|
Hou L, Hou S, Yin L, Zhao S, Li X. Epithelial-Mesenchymal Transition-Based Gene Signature and Distinct Molecular Subtypes for Predicting Clinical Outcomes in Breast Cancer. Int J Gen Med 2022; 15:3497-3515. [PMID: 35386860 PMCID: PMC8979091 DOI: 10.2147/ijgm.s343885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/14/2022] [Indexed: 12/21/2022] Open
Abstract
Purpose Regulation of inducers and transcription factor families influence epithelial–mesenchymal transition (EMT), a contributing factor to breast cancer invasion and progression. Methods Molecular subtypes were classified based on EMT-related mRNAs using ConsensusClusterPlus package. Differences in tumor immune microenvironment and prognosis were assessed among subtypes. Based on EMT genes, a gene signature for prognosis was built using TCGA training set by performing multivariate and univariate Cox regression analyses. Prediction accuracy of the signature was validated by receiver operating characteristic (ROC) curves and overall survival analysis on internal and external datasets. By conducting univariate and multivariate Cox regression analyses, the risk signature as an independent prognostic indicator was assessed. A nomogram was constructed and validated by calibration analysis and decision curve analysis (DCA). Results Five molecular subtypes were characterized based on EMT genes. Patients in Cluster 2 exhibited an activated immune state and a better prognosis. An 11-EMT gene-signature was built to predict breast cancer prognosis. After validation, the signature showed independence and robustness in predicting clinical outcomes of patients. A nomogram combining the RiskScore and pTNM_stage accurately predicted 1-, 2-, 3-, and 5-year survival chance. In comparison with published model, the current model showed a higher area under the curve (AUC). Conclusion We characterized five breast cancer subtypes with distinct clinical outcomes and immune status. The study developed an 11-EMT gene-signature as an independent prognostic factor for predicting clinical outcomes of breast cancer.
Collapse
Affiliation(s)
- Lili Hou
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Shuang Hou
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Lei Yin
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Shuai Zhao
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| | - Xiaohua Li
- Department of Breast and Thyroid Surgery, Wuzhong People's Hospital of Suzhou City, Suzhou, 215128, People's Republic of China
| |
Collapse
|
28
|
Identification of a Twelve Epithelial-Mesenchymal Transition-Related lncRNA Prognostic Signature in Kidney Clear Cell Carcinoma. DISEASE MARKERS 2022; 2022:8131007. [PMID: 35371341 PMCID: PMC8967576 DOI: 10.1155/2022/8131007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/31/2021] [Accepted: 03/02/2022] [Indexed: 11/26/2022]
Abstract
Background Epithelial-mesenchymal transition (EMT) plays a vital role in tumor metastasis and drug resistance. It has been reported that EMT is regulated by several long noncoding RNAs (lncRNAs). We aimed to identify EMT-related lncRNAs and develop an EMT-related lncRNA prognostic signature in kidney renal clear cell carcinoma (KIRC). Materials and Methods In total, 530 ccRCC patients with 611 transcriptome profiles were included in this study. We first identified differentially expressed EMT-related lncRNAs. Then, all the samples with transcriptional data and clinical survival information were randomly split into training/test sets at a ratio of 1 : 1. Accordingly, we further developed a twelve differentially expressed EMT-related lncRNA prognostic signature in the training set. Following this, risk analysis, survival analysis, subgroup analysis, and the construction of the ROC curves were applied to verify the efficacy of the signature in the training set, test set, and all patients. Besides, we further investigated the differential immune infiltration, immune checkpoint expression, and immune-related functions between high-risk patients. Finally, we explored the different drug responses to targeted therapy (sunitinib and sorafenib) and immunotherapy (anti-PD1 and anti-CTLA4). Results A twelve differentially expressed EMT-related lncRNA prognostic signature performed superior in predicting the overall survival of KIRC patients. High-risk patients were observed with a significantly higher immune checkpoint expression and showed better responses to the targeted therapy and immunotherapy. Conclusions Our study demonstrates that the twelve differentially expressed EMT-related lncRNA prognostic signature could act as an efficient prognostic indicator for KIRC, which also contributes to the decision-making of the further treatment.
Collapse
|
29
|
In Silico Analysis of Ion Channels and Their Correlation with Epithelial to Mesenchymal Transition in Breast Cancer. Cancers (Basel) 2022; 14:cancers14061444. [PMID: 35326596 PMCID: PMC8946083 DOI: 10.3390/cancers14061444] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Breast cancer involves changes in the healthy cells of the breast resulting in rapid and abnormal division of cells that later spread to other parts of the body through the process of metastasis, which involves epithelial mesenchymal transition (EMT). Ion channels play a significant role in the switch from epithelial to mesenchymal transition through their contributions to cellular motility, cell volume regulation and cell cycle progression. Comprehensive computational analyses were performed to understand the role of ion channels in tumor/metastatic samples of breast cancer and their correlation with EMT. Abstract Uncontrolled growth of breast cells due to altered gene expression is a key feature of breast cancer. Alterations in the expression of ion channels lead to variations in cellular activities, thus contributing to attributes of cancer hallmarks. Changes in the expression levels of ion channels were observed as a consequence of EMT. Additionally, ion channels were reported in the activation of EMT and maintenance of a mesenchymal phenotype. Here, to identify altered ion channels in breast cancer patients, differential gene expression and weighted gene co-expression network analyses were performed using transcriptomic data. Protein–protein interactions network analysis was carried out to determine the ion channels interacting with hub EMT-related genes in breast cancer. Thirty-two ion channels were found interacting with twenty-six hub EMT-related genes. The identified ion channels were further correlated with EMT scores, indicating mesenchymal phenotype. Further, the pathway map was generated to represent a snapshot of deregulated cellular processes by altered ion channels and EMT-related genes. Kaplan–Meier five-year survival analysis and Cox regressions indicated the expression of CACNA1B, ANO6, TRPV3, VDAC1 and VDAC2 to be potentially associated with poor survival. Deregulated ion channels correlate with EMT-related genes and have a crucial role in breast cancer-associated tumorigenesis. Most likely, they are potential candidates for the determination of prognosis in patients with breast cancer.
Collapse
|
30
|
Smit MM, Feller KJ, You L, Storteboom J, Begce Y, Beerens C, Chien MP. Spatially Annotated Single Cell Sequencing for Unraveling Intratumor Heterogeneity. Front Bioeng Biotechnol 2022; 10:829509. [PMID: 35273957 PMCID: PMC8902076 DOI: 10.3389/fbioe.2022.829509] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/11/2022] [Indexed: 11/27/2022] Open
Abstract
Intratumor heterogeneity is a major obstacle to effective cancer treatment. Current methods to study intratumor heterogeneity using single-cell RNA sequencing (scRNA-seq) lack information on the spatial organization of cells. While state-of-the art spatial transcriptomics methods capture the spatial distribution, they either lack single cell resolution or have relatively low transcript counts. Here, we introduce spatially annotated single cell sequencing, based on the previously developed functional single cell sequencing (FUNseq) technique, to spatially profile tumor cells with deep scRNA-seq and single cell resolution. Using our approach, we profiled cells located at different distances from the center of a 2D epithelial cell mass. By profiling the cell patch in concentric bands of varying width, we showed that cells at the outermost edge of the patch responded strongest to their local microenvironment, behaved most invasively, and activated the process of epithelial-to-mesenchymal transition (EMT) to migrate to low-confluence areas. We inferred cell-cell communication networks and demonstrated that cells in the outermost ∼10 cell wide band, which we termed the invasive edge, induced similar phenotypic plasticity in neighboring regions. Applying FUNseq to spatially annotate and profile tumor cells enables deep characterization of tumor subpopulations, thereby unraveling the mechanistic basis for intratumor heterogeneity.
Collapse
Affiliation(s)
- Myrthe M. Smit
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Kate J. Feller
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Li You
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Jelle Storteboom
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Yasin Begce
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Cecile Beerens
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Miao-Ping Chien
- Department of Molecular Genetics, Erasmus University Medical Center, Rotterdam, Netherlands
- Erasmus MC Cancer Institute, Rotterdam, Netherlands
- Oncode Institute, Utrecht, Netherlands
- *Correspondence: Miao-Ping Chien,
| |
Collapse
|
31
|
Epithelial-mesenchymal transition related genes in unruptured aneurysms identified through weighted gene coexpression network analysis. Sci Rep 2022; 12:225. [PMID: 34997174 PMCID: PMC8741966 DOI: 10.1038/s41598-021-04390-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/21/2021] [Indexed: 11/08/2022] Open
Abstract
Intracranial aneurysm (IA) can cause fatal subarachnoid hemorrhage (SAH) after rupture, and identifying patients with unruptured IAs is essential for reducing SAH fatalities. The epithelial-mesenchymal transition (EMT) may be vital to IA progression. Here, identified key EMT-related genes in aneurysms and their pathogenic mechanisms via bioinformatic analysis. The GSE13353, GSE75436, and GSE54083 datasets from Gene Expression Omnibus were analyzed with limma to identify differentially expressed genes (DEGs) among unruptured aneurysms, ruptured aneurysms, and healthy samples. The results revealed that three EMT-related DEGs (ADIPOQ, WNT11, and CCL21) were shared among all groups. Coexpression modules and hub genes were identified via weighted gene co-expression network analysis, revealing two significant modules (red and green) and 14 EMT-related genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses suggested that cytokine interactions were closely related. Gene set enrichment analysis revealed that unruptured aneurysms were enriched for the terms "inflammatory response" and "vascular endothelial growth". Protein-protein interaction analysis identified seven key genes, which were evaluated with the GSE54083 dataset to determine their sensitivity and specificity. In the external validation set, we verified the differential expression of seven genes in unruptured aneurysms and normal samples. Together, these findings indicate that FN1, and SPARC may help distinguish normal patients from patients with asymptomatic IAs.
Collapse
|
32
|
Cook DP, Vanderhyden BC. Transcriptional census of epithelial-mesenchymal plasticity in cancer. SCIENCE ADVANCES 2022; 8:eabi7640. [PMID: 34985957 PMCID: PMC8730603 DOI: 10.1126/sciadv.abi7640] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/10/2021] [Indexed: 05/06/2023]
Abstract
Epithelial-mesenchymal plasticity (EMP) contributes to tumor progression, promoting therapy resistance and immune cell evasion. Definitive molecular features of this plasticity have largely remained elusive due to the limited scale of most studies. Leveraging single-cell RNA sequencing data from 266 tumors spanning eight different cancer types, we identify expression patterns associated with intratumoral EMP. Integrative analysis of these programs confirmed a high degree of diversity among tumors. These diverse programs are associated with combinations of various common regulatory mechanisms initiated from cues within the tumor microenvironment. We show that inferring regulatory features can inform effective therapeutics to restrict EMP.
Collapse
Affiliation(s)
- David P. Cook
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Barbara C. Vanderhyden
- Cancer Therapeutics Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
33
|
Wang Q, Karvelsson ST, Kotronoulas A, Gudjonsson T, Halldorsson S, Rolfsson O. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) is upregulated in breast epithelial-mesenchymal transition and responds to oxidative stress. Mol Cell Proteomics 2021; 21:100185. [PMID: 34923141 PMCID: PMC8803663 DOI: 10.1016/j.mcpro.2021.100185] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/20/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Breast cancer cells that have undergone partial epithelial–mesenchymal transition (EMT) are believed to be more invasive than cells that have completed EMT. To study metabolic reprogramming in different mesenchymal states, we analyzed protein expression following EMT in the breast epithelial cell model D492 with single-shot LFQ supported by a SILAC proteomics approach. The D492 EMT cell model contains three cell lines: the epithelial D492 cells, the mesenchymal D492M cells, and a partial mesenchymal, tumorigenic variant of D492 that overexpresses the oncogene HER2. The analysis classified the D492 and D492M cells as basal-like and D492HER2 as claudin-low. Comparative analysis of D492 and D492M to tumorigenic D492HER2 differentiated metabolic markers of migration from those of invasion. Glutamine-fructose-6-phosphate transaminase 2 (GFPT2) was one of the top dysregulated enzymes in D492HER2. Gene expression analysis of the cancer genome atlas showed that GFPT2 expression was a characteristic of claudin-low breast cancer. siRNA-mediated knockdown of GFPT2 influenced the EMT marker vimentin and both cell growth and invasion in vitro and was accompanied by lowered metabolic flux through the hexosamine biosynthesis pathway (HBP). Knockdown of GFPT2 decreased cystathionine and sulfide:quinone oxidoreductase (SQOR) in the transsulfuration pathway that regulates H2S production and mitochondrial homeostasis. Moreover, GFPT2 was within the regulation network of insulin and EGF, and its expression was regulated by reduced glutathione (GSH) and suppressed by the oxidative stress regulator GSK3-β. Our results demonstrate that GFPT2 controls growth and invasion in the D492 EMT model, is a marker for oxidative stress, and associated with poor prognosis in claudin-low breast cancer. GFPT2 is upregulated following EMT. GFPT2 is a marker for claudin-low breast cancer. GFPT2 affects vimentin, cell proliferation, and cell invasion. GFPT2 responds to oxidative stress. GFPT2 is regulated by insulin and EGF.
Collapse
Affiliation(s)
- Qiong Wang
- Center for Systems Biology, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Sigurdur Trausti Karvelsson
- Center for Systems Biology, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Aristotelis Kotronoulas
- Center for Systems Biology, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Thorarinn Gudjonsson
- Stem Cell Research Unit, Biomedical Center, Department of Anatomy, Faculty of Medicine, School of Health Sciences, University of Iceland, Vatnsmyrarvegi 16, 101 Reykjavík, Iceland
| | - Skarphedinn Halldorsson
- Center for Systems Biology, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland
| | - Ottar Rolfsson
- Center for Systems Biology, Biomedical Center, Faculty of Medicine, School of Health Sciences, University of Iceland, Sturlugata 8, 101 Reykjavik, Iceland.
| |
Collapse
|
34
|
The enhanced cell cycle related to the response to adjuvant therapy in pancreatic ductal adenocarcinoma. Genomics 2021; 114:95-106. [PMID: 34863899 DOI: 10.1016/j.ygeno.2021.11.036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022]
Abstract
A major clinical challenge for treating patients with pancreatic ductal adenocarcinoma (PDAC) is identifying those that may benefit from adjuvant chemotherapy versus those that will not. Thus, there is a need for a robust and convenient biomarker for predicting chemotherapy response in PDAC patients. In this study, network inference was conducted by integrating the differentially expressed cell cycle signatures and target genes between the basal-like subtype and classical subtype of PDAC. As a result from this statistical analysis, two dominant cell cycle genes, RASAL2 and ASPM, were identified. Based on the expression levels of these two genes, we constructed a "Enhanced Cell Cycle" scoring system (ECC score). Patients were given an ECC score, and respectively divided into ECC-high and ECC-low groups. Survival, pathway enrichment, immune environment characteristics, and chemotherapy response analysis' were performed between the two groups in a total of 891 patients across 5 cohorts. ECC-high patients exhibited shortened recurrence-free survival (RFS) and overall survival (OS) rates. In addition, it was found that adjuvant chemotherapy could significantly improve the outcome of the ECC-high patients while ECC-low patients did not benefit from adjuvant chemotherapy. It was also found that there was less CD8+ T cell, natural killer (NK) cell, M1 macrophage, and plasma cell infiltration in ECC-high patients when compared to ECC-low patients. Also, the expression of CD73, an immune suppressor gene, and it's related hypoxia pathway were elevated in the ECC-high group when compared to the ECC-low group. In conclusion, this study showed that patients characterized as ECC-high not only had reduced RFS and OS rates, but were also more sensitive to adjuvant chemotherapy and could potentially be less sensitive to immune checkpoint inhibitors. Being able to characterize patients by these parameters would allow doctors to make more informed decisions on patient treatment regimens.
Collapse
|
35
|
Mertz JL, Sripathi SR, Yang X, Chen L, Esumi N, Zhang H, Zack DJ. Proteomic and phosphoproteomic analyses identify liver-related signaling in retinal pigment epithelial cells during EMT. Cell Rep 2021; 37:109866. [PMID: 34686321 DOI: 10.1016/j.celrep.2021.109866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/03/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Epithelial-mesenchymal transition (EMT) of the retinal pigment epithelium (RPE) is associated with several blinding retinal diseases. Using proteomics and phosphoproteomics studies of human induced pluripotent stem cell-derived RPE monolayers with induced EMT, we capture kinase/phosphatase signaling cascades 1 h and 12 h after induction to better understand the pathways mediating RPE EMT. Induction by co-treatment with transforming growth factor β and tumor necrosis factor alpha (TGNF) or enzymatic dissociation perturbs signaling in many of the same pathways, with striking similarity in the respective phosphoproteomes at 1 h. Liver hyperplasia and hepatocyte growth factor (HGF)-MET signaling exhibit the highest overall enrichment. We also observe that HGF and epidermal growth factor signaling, two cooperative pathways inhibited by EMT induction, regulate the RPE transcriptional profile.
Collapse
Affiliation(s)
- Joseph L Mertz
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | - Srinivasa R Sripathi
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Xue Yang
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Lijun Chen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Noriko Esumi
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Hui Zhang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Donald J Zack
- Department of Ophthalmology, Stem Cell Ocular Regenerative Medicine Center, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Department of Molecular Biology and Genetics, Department of Genetic Medicine, Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
36
|
Li B, Kong X, Post H, Raaijmakers L, Peeper DS, Altelaar M. Proteomics and Phosphoproteomics Profiling of Drug-Addicted BRAFi-Resistant Melanoma Cells. J Proteome Res 2021; 20:4381-4392. [PMID: 34343000 PMCID: PMC8419860 DOI: 10.1021/acs.jproteome.1c00331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Indexed: 11/29/2022]
Abstract
Acquired resistance to MAPK inhibitors limits the clinical efficacy in melanoma treatment. We and others have recently shown that BRAF inhibitor (BRAFi)-resistant melanoma cells can develop a dependency on the therapeutic drugs to which they have acquired resistance, creating a vulnerability for these cells that can potentially be exploited in cancer treatment. In drug-addicted melanoma cells, it was shown that this induction of cell death was preceded by a specific ERK2-dependent phenotype switch; however, the underlying molecular mechanisms are largely lacking. To increase the molecular understanding of this drug dependency, we applied a mass spectrometry-based proteomic approach on BRAFi-resistant BRAFMUT 451Lu cells, in which ERK1, ERK2, and JUNB were silenced separately using CRISPR-Cas9. Inactivation of ERK2 and, to a lesser extent, JUNB prevents drug addiction in these melanoma cells, while, conversely, knockout of ERK1 fails to reverse this phenotype, showing a response similar to that of control cells. Our analysis reveals that ERK2 and JUNB share comparable proteome responses dominated by reactivation of cell division. Importantly, we find that EMT activation in drug-addicted melanoma cells upon drug withdrawal is affected by silencing ERK2 but not ERK1. Moreover, transcription factor (regulator) enrichment shows that PIR acts as an effector of ERK2 and phosphoproteome analysis reveals that silencing of ERK2 but not ERK1 leads to amplification of GSK3 kinase activity. Our results depict possible mechanisms of drug addiction in melanoma, which may provide a guide for therapeutic strategies in drug-resistant melanoma.
Collapse
Affiliation(s)
- Bohui Li
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Xiangjun Kong
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Harm Post
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Linsey Raaijmakers
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| | - Daniel S. Peeper
- Division
of Molecular Oncology and Immunology, The
Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands
| | - Maarten Altelaar
- Biomolecular
Mass Spectrometry and Proteomics Group, Utrecht Institute for Pharmaceutical
Science, Utrecht University, Utrecht 3584 CH, The Netherlands
- Netherlands
Proteomics Center, Padualaan
8, 3584 CH Utrecht, The Netherlands
| |
Collapse
|
37
|
Tan JJ, Guyette JP, Miki K, Xiao L, Kaur G, Wu T, Zhu L, Hansen KJ, Ling KH, Milan DJ, Ott HC. Human iPS-derived pre-epicardial cells direct cardiomyocyte aggregation expansion and organization in vitro. Nat Commun 2021; 12:4997. [PMID: 34404774 PMCID: PMC8370973 DOI: 10.1038/s41467-021-24921-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/10/2021] [Indexed: 12/13/2022] Open
Abstract
Epicardial formation is necessary for normal myocardial morphogenesis. Here, we show that differentiating hiPSC-derived lateral plate mesoderm with BMP4, RA and VEGF (BVR) can generate a premature form of epicardial cells (termed pre-epicardial cells, PECs) expressing WT1, TBX18, SEMA3D, and SCX within 7 days. BVR stimulation after Wnt inhibition of LPM demonstrates co-differentiation and spatial organization of PECs and cardiomyocytes (CMs) in a single 2D culture. Co-culture consolidates CMs into dense aggregates, which then form a connected beating syncytium with enhanced contractility and calcium handling; while PECs become more mature with significant upregulation of UPK1B, ITGA4, and ALDH1A2 expressions. Our study also demonstrates that PECs secrete IGF2 and stimulate CM proliferation in co-culture. Three-dimensional PEC-CM spheroid co-cultures form outer smooth muscle cell layers on cardiac micro-tissues with organized internal luminal structures. These characteristics suggest PECs could play a key role in enhancing tissue organization within engineered cardiac constructs in vitro. The authors form pre-epicardial cells (PECs) from hiPSC-derived lateral plate mesoderm on treating with BMP4, RA and VEGF, and co-culture these PECs with cardiomyocytes, inducing cardiomyocyte aggregation, proliferation and network formation with more mature structures and improved beating/contractility.
Collapse
Affiliation(s)
- Jun Jie Tan
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Advanced Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia.
| | - Jacques P Guyette
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Kenji Miki
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA.,Center for iPS Cell Research and Applications, Kyoto University, Kyoto, Japan
| | - Ling Xiao
- Harvard Medical School, Boston, MA, USA.,Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Gurbani Kaur
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Tong Wu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Liye Zhu
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Katrina J Hansen
- Worcester Polytechnic Institute, Dept. of Biomedical Engineering, Worcester, MA, USA
| | - King-Hwa Ling
- Department of Genetics, Harvard Medical School, Boston, MA, USA.,Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Selangor, Malaysia
| | - David J Milan
- Harvard Medical School, Boston, MA, USA.,Division of Cardiology, Massachusetts General Hospital, Boston, MA, USA.,Leducq Foundation, Boston, MA, USA
| | - Harald C Ott
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Medical School, Boston, MA, USA. .,Division of Thoracic Surgery, Department of Surgery, Massachusetts General Hospital, Boston, MA, USA. .,Harvard Stem Cell Institute, Boston, MA, USA.
| |
Collapse
|
38
|
Baasch S, Giansanti P, Kolter J, Riedl A, Forde AJ, Runge S, Zenke S, Elling R, Halenius A, Brabletz S, Hengel H, Kuster B, Brabletz T, Cicin-Sain L, Arens R, Vlachos A, Rohr JC, Stemmler MP, Kopf M, Ruzsics Z, Henneke P. Cytomegalovirus subverts macrophage identity. Cell 2021; 184:3774-3793.e25. [PMID: 34115982 DOI: 10.1016/j.cell.2021.05.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 02/26/2021] [Accepted: 05/07/2021] [Indexed: 12/12/2022]
Abstract
Cytomegaloviruses (CMVs) have co-evolved with their mammalian hosts for millions of years, leading to remarkable host specificity and high infection prevalence. Macrophages, which already populate barrier tissues in the embryo, are the predominant immune cells at potential CMV entry sites. Here we show that, upon CMV infection, macrophages undergo a morphological, immunophenotypic, and metabolic transformation process with features of stemness, altered migration, enhanced invasiveness, and provision of the cell cycle machinery for viral proliferation. This complex process depends on Wnt signaling and the transcription factor ZEB1. In pulmonary infection, mouse CMV primarily targets and reprograms alveolar macrophages, which alters lung physiology and facilitates primary CMV and secondary bacterial infection by attenuating the inflammatory response. Thus, CMV profoundly perturbs macrophage identity beyond established limits of plasticity and rewires specific differentiation processes, allowing viral spread and impairing innate tissue immunity.
Collapse
Affiliation(s)
- Sebastian Baasch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Piero Giansanti
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany
| | - Julia Kolter
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - André Riedl
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Aaron James Forde
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Solveig Runge
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Simon Zenke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Roland Elling
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
| | - Anne Halenius
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Simone Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Hartmut Hengel
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, 85354 Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University Munich, 85354 Freising, Germany
| | - Thomas Brabletz
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Luka Cicin-Sain
- Immune Aging and Chronic Infections Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hanover Medical School (MHH), 30625 Hanover, Germany
| | - Ramon Arens
- Department of Immunology, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany; Center for Basics in Neuromodulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany
| | - Jan Christopher Rohr
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany
| | - Marc Philippe Stemmler
- Department of Experimental Medicine I, Nikolaus-Fiebiger Center for Molecular Medicine, Friedrich Alexander University of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Kopf
- Institute of Molecular Health Sciences, ETH Zürich, 8093 Zürich, Switzerland
| | - Zsolt Ruzsics
- Institute of Virology, University Medical Center, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany
| | - Philipp Henneke
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency (CCI), University Medical Center, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany; Center for Pediatrics and Adolescent Medicine, University Medical Center, 79106 Freiburg, Germany.
| |
Collapse
|
39
|
Mo S, Dai W, Zhou Z, Gu R, Li Y, Xiang W, Han L, Zhang L, Wang R, Cai G, Cai S, Gan L, Li Q. Comprehensive Transcriptomic Analysis Reveals Prognostic Value of an EMT-Related Gene Signature in Colorectal Cancer. Front Cell Dev Biol 2021; 9:681431. [PMID: 34211976 PMCID: PMC8239228 DOI: 10.3389/fcell.2021.681431] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 05/25/2021] [Indexed: 11/16/2022] Open
Abstract
Lymph node metastasis (LNM) is closely related to the postoperative recurrence of colorectal cancer (CRC), and greatly affects patient survival. Conducting Gene set variation analysis (GSVA) and gene set enrichment analysis (GSEA), we found that the epithelial-mesenchymal transition (EMT) signaling pathway is the signaling pathway most relevant to the process of LNM. An EMT-related gene signature was identified from a discovery dataset obtained 489 patients using LIMMA and LASSO Cox methods. Six external independent dataset analyses including a total of 1,045 CRC patients and stratification analysis showed that EMT-related gene signature could sort out those high- and low-risk CRC patients accurately. Functional analysis and loss-of-function exploration in vitro and in vivo indicated that the EMT-related-signature-associated coding genes might play functional roles in the sophisticated regulation of CRC proliferation and metastasis. Prognostic nomograms integrating the EMT-related gene signature and clinicopathological risk factors were constructed for use as numerical prediction tools to assess clinical prognosis and clinical decision-makings. The comprehensive transcriptomic analysis in this article highlights the prognostic value of an EMT-related gene signature for postoperative disease recurrence in CRC patients and reveals a potential prognostic and therapeutic biomarker for CRC.
Collapse
Affiliation(s)
- Shaobo Mo
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zheng Zhou
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ruiqi Gu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yaqi Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wenqiang Xiang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lingyu Han
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Long Zhang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Renjie Wang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiang Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Sanjun Cai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Cancer Institute, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Lu Gan
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China.,Center of Evidence-Based Medicine, Fudan University, Shanghai, China
| | - Qingguo Li
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Gumbarewicz E, Tylżanowski P, Łuszczki J, Kałafut J, Czerwonka A, Szumiło J, Wawruszak A, Kupisz K, Polberg K, Smok-Kalwat J, Stepulak A. Differential molecular response of larynx cancer cell lines to combined VPA/CDDP treatment. Am J Cancer Res 2021; 11:2821-2837. [PMID: 34249430 PMCID: PMC8263637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 05/14/2021] [Indexed: 06/13/2023] Open
Abstract
Successful treatment of advanced larynx squamous cell carcinoma (LSCC) remains a challenge, mainly due to limited response to chemotherapy and the phenomenon of the drug resistance. Therefore, new chemotherapeutic solutions are needed. The aim of this study was to explore benefit of combined cisplatin (CDDP) and valproic acid (VPA) therapy in patients' derived LSCC cell lines. Cell viability assay was used to establish cellular response to the drug by isobolography followed by RNA sequencing (RNAseq) analysis. Danio rerio were used for in vivo studies. Depending on the cell line, we found that the combinations of drugs resulted in synergistic or antagonistic pharmacological interaction, which was accompanied by significant changes in genes expression profiles. The presented therapeutic scheme efficiently blocked tumor growth in an in vivo model, corresponding to the in vitro performed studies. Interestingly the RK5 cell line, upon the combined treatment acquired a molecular profile typically associated with epithelial to mesenchymal transition (EMT). Hence, our studies demonstrates that patient-specific personalized therapy of larynx cancer should be considered and the combination of cisplatin and valproic acid should be explored as a potential therapeutic strategy in the treatment of larynx cancer.
Collapse
Affiliation(s)
- Ewelina Gumbarewicz
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Przemko Tylżanowski
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
- Laboratory for Developmental and Stem Cell Biology, Department of Development and Regeneration, Skeletal Biology and Engineering Research Centre, University of LeuvenLeuven, Belgium
| | | | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Arkadiusz Czerwonka
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of LublinLublin, Poland
| | - Anna Wawruszak
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| | - Krzysztof Kupisz
- Department of Otolaryngology and Laryngeal Oncology, Medical University of LublinLublin, Poland
- Department of Otolaryngology, Center of Oncology of The Lublin RegionLublin, Poland
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of LublinChodzki 1 St., 20-093 Lublin, Poland
| |
Collapse
|
41
|
Bannerman D, Pascual-Gil S, Floryan M, Radisic M. Bioengineering strategies to control epithelial-to-mesenchymal transition for studies of cardiac development and disease. APL Bioeng 2021; 5:021504. [PMID: 33948525 PMCID: PMC8068500 DOI: 10.1063/5.0033710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process that occurs in a wide range of tissues and environments, in response to numerous factors and conditions, and plays a critical role in development, disease, and regeneration. The process involves epithelia transitioning into a mobile state and becoming mesenchymal cells. The investigation of EMT processes has been important for understanding developmental biology and disease progression, enabling the advancement of treatment approaches for a variety of disorders such as cancer and myocardial infarction. More recently, tissue engineering efforts have also recognized the importance of controlling the EMT process. In this review, we provide an overview of the EMT process and the signaling pathways and factors that control it, followed by a discussion of bioengineering strategies to control EMT. Important biological, biomaterial, biochemical, and physical factors and properties that have been utilized to control EMT are described, as well as the studies that have investigated the modulation of EMT in tissue engineering and regenerative approaches in vivo, with a specific focus on the heart. Novel tools that can be used to characterize and assess EMT are discussed and finally, we close with a perspective on new bioengineering methods that have the potential to transform our ability to control EMT, ultimately leading to new therapies.
Collapse
|
42
|
Wang X, Xing Z, Xu H, Yang H, Xing T. Development and validation of epithelial mesenchymal transition-related prognostic model for hepatocellular carcinoma. Aging (Albany NY) 2021; 13:13822-13845. [PMID: 33929972 PMCID: PMC8202896 DOI: 10.18632/aging.202976] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/27/2021] [Indexed: 12/24/2022]
Abstract
Epithelial cell transformation (EMT) plays an important role in the pathogenesis and metastasis of hepatocellular carcinoma (HCC). We aimed to establish a genetic risk model to evaluate HCC prognosis based on the expression levels of EMT-related genes. The data of HCC patients were collected from TCGA and ICGC databases. Gene expression differential analysis, univariate analysis, and lasso combined with stepwise Cox regression were used to construct the prognostic model. Kaplan-Meier curve, receiver operating characteristic (ROC) curve, calibration analysis, Harrell's concordance index (C-index), and decision curve analysis (DCA) were used to evaluate the predictive ability of the risk model or nomogram. GO and KEGG were used to analyze differently expressed EMT genes, or genes that directly or indirectly interact with the risk-associated genes. A 10-gene signature, including TSC2, ACTA2, SLC2A1, PGF, MYCN, PIK3R1, EOMES, BDNF, ZNF746, and TFDP3, was identified. Kaplan-Meier survival analysis showed a significant prognostic difference between high- and low-risk groups of patients. ROC curve analysis showed that the risk score model could effectively predict the 1-, 3-, and 5-year overall survival rates of patients with HCC. The nomogram showed a stronger predictive effect than clinical indicators. C-index, DCA, and calibration analysis demonstrated that the risk score and nomogram had high accuracy. The single sample gene set enrichment analysis results confirmed significant differences in the types of infiltrating immune cells between patients in the high- and low-risk groups. This study established a new prediction model of risk gene signature for predicting prognosis in patients with HCC, and provides a new molecular tool for the clinical evaluation of HCC prognosis.
Collapse
Affiliation(s)
- Xuequan Wang
- Public Research Platform, Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Ziming Xing
- School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Huihui Xu
- Central Laboratory, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Haihua Yang
- Department of Radiation Oncology, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| | - Tongjing Xing
- Department of Infectious Disease, Taizhou Hospital of Zhejiang Province affiliated to Wenzhou Medical University, Linhai 317000, Zhejiang Province, China
| |
Collapse
|
43
|
From Proteomic Mapping to Invasion-Metastasis-Cascade Systemic Biomarkering and Targeted Drugging of Mutant BRAF-Dependent Human Cutaneous Melanomagenesis. Cancers (Basel) 2021; 13:cancers13092024. [PMID: 33922182 PMCID: PMC8122743 DOI: 10.3390/cancers13092024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/09/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Despite the recent advances in human malignancy therapy, metastasis and chemoresistance remain the principal causes of cancer-derived deaths. Given the fatal forms of cutaneous metastatic melanoma, we herein employed primary (WM115) and metastatic (WM266-4) melanoma cells, both obtained from the same patient, to identify novel biomarkers and therapeutic agents. Through state-of-the-art technologies including deep proteome landscaping, immunofluorescence phenotyping, and drug toxicity screening, we were able to describe new molecular programs, oncogenic drivers, and drug regimens, controlling the invasion-metastasis cascade during BRAFV600D-dependent melanomagenesis. It proved that proteomic navigation could foster the development of systemic biomarkering and targeted drugging for successful treatment of advanced disease. Abstract Melanoma is classified among the most notoriously aggressive human cancers. Despite the recent progress, due to its propensity for metastasis and resistance to therapy, novel biomarkers and oncogenic molecular drivers need to be promptly identified for metastatic melanoma. Hence, by employing nano liquid chromatography-tandem mass spectrometry deep proteomics technology, advanced bioinformatics algorithms, immunofluorescence, western blotting, wound healing protocols, molecular modeling programs, and MTT assays, we comparatively examined the respective proteomic contents of WM115 primary (n = 3955 proteins) and WM266-4 metastatic (n = 6681 proteins) melanoma cells. It proved that WM115 and WM266-4 cells have engaged hybrid epithelial-to-mesenchymal transition/mesenchymal-to-epithelial transition states, with TGF-β controlling their motility in vitro. They are characterized by different signatures of SOX-dependent neural crest-like stemness and distinct architectures of the cytoskeleton network. Multiple signaling pathways have already been activated from the primary melanoma stage, whereas HIF1α, the major hypoxia-inducible factor, can be exclusively observed in metastatic melanoma cells. Invasion-metastasis cascade-specific sub-routines of activated Caspase-3-triggered apoptosis and LC3B-II-dependent constitutive autophagy were also unveiled. Importantly, WM115 and WM266-4 cells exhibited diverse drug response profiles, with epirubicin holding considerable promise as a beneficial drug for metastatic melanoma clinical management. It is the proteome navigation that enables systemic biomarkering and targeted drugging to open new therapeutic windows for advanced disease.
Collapse
|
44
|
Wang L, Jiang X, Zhang X, Shu P. Prognostic implications of an autophagy-based signature in colorectal cancer. Medicine (Baltimore) 2021; 100:e25148. [PMID: 33787596 PMCID: PMC8021367 DOI: 10.1097/md.0000000000025148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 02/22/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The heterogeneity of colorectal cancer (CRC) poses a significant challenge to the precise treatment of patients. CRC has been divided into 4 consensus molecular subtypes (CMSs) with distinct biological and clinical characteristics, of which CMS4 has the mesenchymal identity and the highest relapse rate. Autophagy plays a vital role in CRC development and therapeutic response. METHODS The gene expression profiles collected from 6 datasets were applied to this study. Network analysis was applied to integrate the subtype-specific molecular modalities and autophagy signature to establish an autophagy-based prognostic signature for CRC (APSCRC). RESULTS Network analysis revealed that 6 prognostic autophagy genes (VAMP7, DLC1, FKBP1B, PEA15, PEX14, and DNAJB1) predominantly regulated the mesenchymal modalities of CRC. The APSCRC was constructed by these 6 core genes and applied for risk calculation. Patients were divided into high- and low-risk groups based on APSCRC score in all cohorts. Patients within the high-risk group showed an unfavorable prognosis. In multivariate analysis, the APSCRC remained an independent predictor of prognosis. Moreover, the APSCRC achieved higher prognostic power than commercialized multigene signatures. CONCLUSIONS We proposed and validated an autophagy-based signature, which is a promising prognostic biomarker of CRC patients. Further prospective studies are warranted to test and validate its efficiency for clinical application.
Collapse
Affiliation(s)
- Liangbin Wang
- Department of Anorectal Surgery, Beilun People's Hospital, Ningbo
| | - Xinlei Jiang
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin
| | - Xingguo Zhang
- Molecular Laboratory, Beilun People's Hospital, Ningbo, P.R. China
| | - Peng Shu
- Molecular Laboratory, Beilun People's Hospital, Ningbo, P.R. China
| |
Collapse
|
45
|
Tai CS, Lan KC, Wang E, Chan FE, Hsieh MT, Huang CW, Weng SL, Chen PC, Chen WL. Nanotopography as Artificial Microenvironment for Accurate Visualization of Metastasis Development via Simulation of ECM Dynamics. NANO LETTERS 2021; 21:1400-1411. [PMID: 33522822 DOI: 10.1021/acs.nanolett.0c04209] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Metastatic progression is mediated by complex interactions between deregulated extracellular matrix (ECM) and cancer cells and remains a major challenge in cancer management. To investigate the role of ECM dynamics in promoting metastasis development, we developed an artificial microenvironment (AME) platform comprised of nanodot arrays of increasing diameter. Cells cultured on the platform showed increasing signs of mesenchymal-like cell transition as AME diameter increased, suggesting accurate simulation of ECM-mediated gene regulation. Gene expression was analyzed to determine genes significant to transition, which were then used to select appropriate small molecule drugs for time course treatments. Our results suggest that the platform can identify critical target genes as well as possible drug candidates. Overall, the AME platform allows for the study of intricate ECM-induced gene expression trends across metastasis development that would otherwise be difficult to visualize in vivo and may open new avenues toward successful personalized cancer management.
Collapse
Affiliation(s)
- Chun-San Tai
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Kuan-Chun Lan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsinchu, Taiwan
| | - Erick Wang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
| | - Fu-Erh Chan
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ming-Ting Hsieh
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Ching-Wen Huang
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Division of Thoracic Surgery, Department of Surgery, Shuang Ho Hospital, Taipei Medical University, New Taipei City, Taiwan
| | - Shun-Long Weng
- Department of Medicine, MacKay Medical College, New Taipei City, Taiwan
- Department of Obstetrics and Gynecology, Hsinchu MacKay Memorial Hospital, Hsinchu City, Taiwan
| | - Po-Chun Chen
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, Taiwan
- Institute of Material Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Wen Liang Chen
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Center for Intelligent Drug Systems and Smart Bio-devices (IDS2B), National Chiao Tung University, Hsinchu, Taiwan
| |
Collapse
|
46
|
Ghannoum S, Leoncio Netto W, Fantini D, Ragan-Kelley B, Parizadeh A, Jonasson E, Ståhlberg A, Farhan H, Köhn-Luque A. DIscBIO: A User-Friendly Pipeline for Biomarker Discovery in Single-Cell Transcriptomics. Int J Mol Sci 2021; 22:ijms22031399. [PMID: 33573289 PMCID: PMC7866810 DOI: 10.3390/ijms22031399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/08/2021] [Accepted: 01/28/2021] [Indexed: 02/08/2023] Open
Abstract
The growing attention toward the benefits of single-cell RNA sequencing (scRNA-seq) is leading to a myriad of computational packages for the analysis of different aspects of scRNA-seq data. For researchers without advanced programing skills, it is very challenging to combine several packages in order to perform the desired analysis in a simple and reproducible way. Here we present DIscBIO, an open-source, multi-algorithmic pipeline for easy, efficient and reproducible analysis of cellular sub-populations at the transcriptomic level. The pipeline integrates multiple scRNA-seq packages and allows biomarker discovery with decision trees and gene enrichment analysis in a network context using single-cell sequencing read counts through clustering and differential analysis. DIscBIO is freely available as an R package. It can be run either in command-line mode or through a user-friendly computational pipeline using Jupyter notebooks. We showcase all pipeline features using two scRNA-seq datasets. The first dataset consists of circulating tumor cells from patients with breast cancer. The second one is a cell cycle regulation dataset in myxoid liposarcoma. All analyses are available as notebooks that integrate in a sequential narrative R code with explanatory text and output data and images. R users can use the notebooks to understand the different steps of the pipeline and will guide them to explore their scRNA-seq data. We also provide a cloud version using Binder that allows the execution of the pipeline without the need of downloading R, Jupyter or any of the packages used by the pipeline. The cloud version can serve as a tutorial for training purposes, especially for those that are not R users or have limited programing skills. However, in order to do meaningful scRNA-seq analyses, all users will need to understand the implemented methods and their possible options and limitations.
Collapse
Affiliation(s)
- Salim Ghannoum
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
- Correspondence: (S.G.); (A.K.-L.); Tel.: +46-76-5770129 (S.G.)
| | - Waldir Leoncio Netto
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
| | - Damiano Fantini
- Department of Urology, Northwestern University, Chicago, IL 60611, USA;
| | | | - Amirabbas Parizadeh
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
| | - Emma Jonasson
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-41390 Gothenburg, Sweden; (E.J.); (A.S.)
| | - Anders Ståhlberg
- Sahlgrenska Center for Cancer Research, Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy at University of Gothenburg, SE-41390 Gothenburg, Sweden; (E.J.); (A.S.)
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, SE-41390 Gothenburg, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, SE-41390 Gothenburg, Sweden
| | - Hesso Farhan
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway; (A.P.); (H.F.)
| | - Alvaro Köhn-Luque
- Oslo Centre for Biostatistics and Epidemiology, Faculty of Medicine, University of Oslo, 0372 Oslo, Norway;
- Correspondence: (S.G.); (A.K.-L.); Tel.: +46-76-5770129 (S.G.)
| |
Collapse
|
47
|
Novikov NM, Zolotaryova SY, Gautreau AM, Denisov EV. Mutational drivers of cancer cell migration and invasion. Br J Cancer 2021; 124:102-114. [PMID: 33204027 PMCID: PMC7784720 DOI: 10.1038/s41416-020-01149-0] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/06/2023] Open
Abstract
Genomic instability and mutations underlie the hallmarks of cancer-genetic alterations determine cancer cell fate by affecting cell proliferation, apoptosis and immune response, and increasing data show that mutations are involved in metastasis, a crucial event in cancer progression and a life-threatening problem in cancer patients. Invasion is the first step in the metastatic cascade, when tumour cells acquire the ability to move, penetrate into the surrounding tissue and enter lymphatic and blood vessels in order to disseminate. A role for genetic alterations in invasion is not universally accepted, with sceptics arguing that cellular motility is related only to external factors such as hypoxia, chemoattractants and the rigidity of the extracellular matrix. However, increasing evidence shows that mutations might trigger and accelerate the migration and invasion of different types of cancer cells. In this review, we summarise data from published literature on the effect of chromosomal instability and genetic mutations on cancer cell migration and invasion.
Collapse
Affiliation(s)
- Nikita M Novikov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Sofia Y Zolotaryova
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Alexis M Gautreau
- CNRS UMR7654, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
- School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | - Evgeny V Denisov
- Laboratory of Cancer Progression Biology, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
| |
Collapse
|
48
|
Abdullah A, Akhand SS, Paez JSP, Brown W, Pan L, Libring S, Badamy M, Dykuizen E, Solorio L, Andy Tao W, Wendt MK. Epigenetic targeting of neuropilin-1 prevents bypass signaling in drug-resistant breast cancer. Oncogene 2021; 40:322-333. [PMID: 33128042 PMCID: PMC7808937 DOI: 10.1038/s41388-020-01530-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 12/18/2022]
Abstract
Human epidermal growth factor receptor 2 (HER2)-amplified breast cancers are treated using targeted antibodies and kinase inhibitors, but resistance to these therapies leads to systemic tumor recurrence of metastatic disease. Herein, we conducted gene expression analyses of HER2 kinase inhibitor-resistant cell lines as compared to their drug-sensitive counterparts. These data demonstrate the induction of epithelial-mesenchymal transition (EMT), which included enhanced expression of fibroblast growth factor receptor 1 (FGFR1) and axonal guidance molecules known as neuropilins (NRPs). Immunoprecipitation of FGFR1 coupled with mass spectroscopy indicated that FGFR1 forms a physical complex with NRPs, which is enhanced upon induction of EMT. Confocal imaging revealed that FGFR1 and NRP1 predominantly interact throughout the cytoplasm. Along these lines, short hairpin RNA-mediated depletion of NRP1, but not the use of NRP1-blocking antibodies, inhibited FGFR signaling and reduced tumor cell growth in vitro and in vivo. Our results further indicate that NRP1 upregulation during EMT is mediated via binding of the chromatin reader protein, bromodomain containing 4 (BRD4) in the NRP1 proximal promoter region. Pharmacological inhibition of BRD4 decreased NRP1 expression and ablated FGF-mediated tumor cell growth. Overall, our studies indicate that NRPs facilitate aberrant growth factor signaling during EMT-associated drug resistance and metastasis. Pharmacological combination of epigenetic modulators with FGFR-targeted kinase inhibitors may provide improved outcomes for breast cancer patients with drug-resistant metastatic disease.
Collapse
MESH Headings
- Animals
- Apoptosis
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Cell Proliferation
- Drug Resistance, Neoplasm/genetics
- Epigenesis, Genetic
- Epithelial-Mesenchymal Transition
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Humans
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Protein Kinase Inhibitors/pharmacology
- Receptor, Fibroblast Growth Factor, Type 1/genetics
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Tumor Cells, Cultured
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Ammara Abdullah
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Saeed Salehin Akhand
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Juan Sebastian Paez Paez
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Wells Brown
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Li Pan
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Sarah Libring
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael Badamy
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
| | - Emily Dykuizen
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Luis Solorio
- Department of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - W Andy Tao
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA
| | - Michael K Wendt
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN, 47907, USA.
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
49
|
Vasaikar SV, Deshmukh AP, den Hollander P, Addanki S, Kuburich NA, Kudaravalli S, Joseph R, Chang JT, Soundararajan R, Mani SA. EMTome: a resource for pan-cancer analysis of epithelial-mesenchymal transition genes and signatures. Br J Cancer 2021; 124:259-269. [PMID: 33299129 PMCID: PMC7782839 DOI: 10.1038/s41416-020-01178-9] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 10/30/2020] [Accepted: 11/04/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The epithelial-mesenchymal transition (EMT) enables dissociation of tumour cells from the primary tumour mass, invasion through the extracellular matrix, intravasation into blood vessels and colonisation of distant organs. Cells that revert to the epithelial state via the mesenchymal-epithelial transition cause metastases, the primary cause of death in cancer patients. EMT also empowers cancer cells with stem-cell properties and induces resistance to chemotherapeutic drugs. Understanding the driving factors of EMT is critical for the development of effective therapeutic interventions. METHODS This manuscript describes the generation of a database containing EMT gene signatures derived from cell lines, patient-derived xenografts and patient studies across cancer types and multiomics data and the creation of a web-based portal to provide a comprehensive analysis resource. RESULTS EMTome incorporates (i) EMT gene signatures; (ii) EMT-related genes with multiomics features across different cancer types; (iii) interactomes of EMT-related genes (miRNAs, transcription factors, and proteins); (iv) immune profiles identified from The Cancer Genome Atlas (TCGA) cohorts by exploring transcriptomics, epigenomics, and proteomics, and drug sensitivity and (iv) clinical outcomes of cancer cohorts linked to EMT gene signatures. CONCLUSION The web-based EMTome portal is a resource for primary and metastatic tumour research publicly available at www.emtome.org .
Collapse
Affiliation(s)
- Suhas V Vasaikar
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Abhijeet P Deshmukh
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Petra den Hollander
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sridevi Addanki
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Nick Allen Kuburich
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sriya Kudaravalli
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robiya Joseph
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jeffrey T Chang
- Department of Integrative Biology & Pharmacology, Institute of Molecular Medicine, School of Biomedical Informatics University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Rama Soundararajan
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Sendurai A Mani
- Department of Translational Molecular Pathology, Division of Pathology/Lab Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
50
|
Si H, Kuziora M, Quinn KJ, Helman E, Ye J, Liu F, Scheuring U, Peters S, Rizvi NA, Brohawn PZ, Ranade K, Higgs BW, Banks KC, Chand VK, Raja R. A Blood-based Assay for Assessment of Tumor Mutational Burden in First-line Metastatic NSCLC Treatment: Results from the MYSTIC Study. Clin Cancer Res 2020; 27:1631-1640. [PMID: 33355200 DOI: 10.1158/1078-0432.ccr-20-3771] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/07/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Tumor mutational burden (TMB) has been shown to be predictive of survival benefit in patients with non-small cell lung cancer (NSCLC) treated with immune checkpoint inhibitors. Measuring TMB in the blood (bTMB) using circulating cell-free tumor DNA (ctDNA) offers practical advantages compared with TMB measurement in tissue (tTMB); however, there is a need for validated assays and identification of optimal cutoffs. We describe the analytic validation of a new bTMB algorithm and its clinical utility using data from the phase III MYSTIC trial. PATIENTS AND METHODS The dataset used for the clinical validation was from MYSTIC, which evaluated first-line durvalumab (anti-PD-L1 antibody) ± tremelimumab (anticytotoxic T-lymphocyte-associated antigen-4 antibody) or chemotherapy for metastatic NSCLC. bTMB and tTMB were evaluated using the GuardantOMNI and FoundationOne CDx assays, respectively. A Cox proportional hazards model and minimal P value cross-validation approach were used to identify the optimal bTMB cutoff. RESULTS In MYSTIC, somatic mutations could be detected in ctDNA extracted from plasma samples in a majority of patients, allowing subsequent calculation of bTMB. The success rate for obtaining valid TMB scores was higher for bTMB (809/1,001; 81%) than for tTMB (460/735; 63%). Minimal P value cross-validation analysis confirmed the selection of bTMB ≥20 mutations per megabase (mut/Mb) as the optimal cutoff for clinical benefit with durvalumab + tremelimumab. CONCLUSIONS Our study demonstrates the feasibility, accuracy, and reproducibility of the GuardantOMNI ctDNA platform for quantifying bTMB from plasma samples. Using the new bTMB algorithm and an optimal bTMB cutoff of ≥20 mut/Mb, high bTMB was predictive of clinical benefit with durvalumab + tremelimumab versus chemotherapy.
Collapse
Affiliation(s)
- Han Si
- AstraZeneca, Gaithersburg, Maryland
| | | | | | | | - Jiabu Ye
- AstraZeneca, Gaithersburg, Maryland
| | - Feng Liu
- AstraZeneca, Gaithersburg, Maryland
| | | | - Solange Peters
- Centre Hospitalier Universitaire Vaudois, Lausanne University, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|