1
|
Irons EE, Sajina GC, Lau JT. Sialic acid in the regulation of blood cell production, differentiation and turnover. Immunology 2024; 172:517-532. [PMID: 38503445 PMCID: PMC11223974 DOI: 10.1111/imm.13780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/04/2024] [Indexed: 03/21/2024] Open
Abstract
Sialic acid is a unique sugar moiety that resides in the distal and most accessible position of the glycans on mammalian cell surface and extracellular glycoproteins and glycolipids. The potential for sialic acid to obscure underlying structures has long been postulated, but the means by which such structural changes directly affect biological processes continues to be elucidated. Here, we appraise the growing body of literature detailing the importance of sialic acid for the generation, differentiation, function and death of haematopoietic cells. We conclude that sialylation is a critical post-translational modification utilized in haematopoiesis to meet the dynamic needs of the organism by enforcing rapid changes in availability of lineage-specific cell types. Though long thought to be generated only cell-autonomously within the intracellular ER-Golgi secretory apparatus, emerging data also demonstrate previously unexpected diversity in the mechanisms of sialylation. Emphasis is afforded to the mechanism of extrinsic sialylation, whereby extracellular enzymes remodel cell surface and extracellular glycans, supported by charged sugar donor molecules from activated platelets.
Collapse
Affiliation(s)
| | | | - Joseph T.Y. Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203 USA
| |
Collapse
|
2
|
Isaji T, Gu J. Novel regulatory mechanisms of N-glycan sialylation: Implication of integrin and focal adhesion kinase in the regulation. Biochim Biophys Acta Gen Subj 2024; 1868:130617. [PMID: 38614280 DOI: 10.1016/j.bbagen.2024.130617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/15/2024]
Abstract
BACKGROUND Sialylation of glycoproteins, including integrins, is crucial in various cancers and diseases such as immune disorders. These modifications significantly impact cellular functions and are associated with cancer progression. Sialylation, catalyzed by specific sialyltransferases (STs), has traditionally been considered to be regulated at the mRNA level. SCOPE OF REVIEW Recent research has expanded our understanding of sialylation, revealing ST activity changes beyond mRNA level variations. This includes insights into COPI vesicle formation and Golgi apparatus maintenance and identifying specific target proteins of STs that are not predictable through recombinant enzyme assays. MAJOR CONCLUSIONS This review summarizes that Golgi-associated pathways largely influence the regulation of STs. GOLPH3, GORAB, PI4K, and FAK have become critical elements in sialylation regulation. Some STs have been revealed to possess specificity for specific target proteins, suggesting the presence of additional, enzyme-specific regulatory mechanisms. GENERAL SIGNIFICANCE This study enhances our understanding of the molecular interplay in sialylation regulation, mainly focusing on the role of integrin and FAK. It proposes a bidirectional system where sialylations might influence integrins and vice versa. The diversity of STs and their specific linkages offer new perspectives in cancer research, potentially broadening our understanding of cellular mechanisms and opening avenues for new therapeutic approaches in targeting sialylation pathways.
Collapse
Affiliation(s)
- Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981-8558, Japan.
| |
Collapse
|
3
|
Alghazali R, Nugud A, El-Serafi A. Glycan Modifications as Regulators of Stem Cell Fate. BIOLOGY 2024; 13:76. [PMID: 38392295 PMCID: PMC10886185 DOI: 10.3390/biology13020076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
Glycosylation is a process where proteins or lipids are modified with glycans. The presence of glycans determines the structure, stability, and localization of glycoproteins, thereby impacting various biological processes, including embryogenesis, intercellular communication, and disease progression. Glycans can influence stem cell behavior by modulating signaling molecules that govern the critical aspects of self-renewal and differentiation. Furthermore, being located at the cell surface, glycans are utilized as markers for stem cell pluripotency and differentiation state determination. This review aims to provide a comprehensive overview of the current literature, focusing on the effect of glycans on stem cells with a reflection on the application of synthetic glycans in directing stem cell differentiation. Additionally, this review will serve as a primer for researchers seeking a deeper understanding of how synthetic glycans can be used to control stem cell differentiation, which may help establish new approaches to guide stem cell differentiation into specific lineages. Ultimately, this knowledge can facilitate the identification of efficient strategies for advancing stem cell-based therapeutic interventions.
Collapse
Affiliation(s)
- Raghad Alghazali
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
| | - Ahmed Nugud
- Clinical Sciences, University of Edinburgh, Edinburgh EH4 2XU, UK
- Gastroenterology, Hepatology & Nutrition, Sheikh Khalifa Medical City, Abu Dhabi 51900, United Arab Emirates
| | - Ahmed El-Serafi
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 58183 Linköping, Sweden
- Department of Hand Surgery, Plastic Surgery and Burns, Linköping University, 58185 Linköping, Sweden
| |
Collapse
|
4
|
Mut J, Altmann S, Reising S, Meißner-Weigl J, Driessen MD, Ebert R, Seibel J. SiaNAl can be efficiently incorporated in glycoproteins of human mesenchymal stromal cells by metabolic glycoengineering. ACS Biomater Sci Eng 2024; 10:139-148. [PMID: 36946521 DOI: 10.1021/acsbiomaterials.2c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Metabolic glycoengineering involves the stimulation of cells with functionalized monosaccharides. Glucosamine, galactosamine, and mannosamine derivatives are commercially available, but their application may lead to undirected (i.e., chemical) incorporation into proteins. However, sialic acids are attached to the ends of complex sugar chains of glycoproteins, which might be beneficial for cell surface modification via click chemistry. Thus, we studied the incorporation of chemically synthesized unnatural alkyne modified sialic acid (SiaNAl) into glycoproteins of human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) and we show that SiaNAl can be efficiently incorporated in glycoproteins involved in signal transduction and cell junction.
Collapse
Affiliation(s)
- Jürgen Mut
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephan Altmann
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Sabine Reising
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Jutta Meißner-Weigl
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Marc D Driessen
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
5
|
Bhalerao N, Chakraborty A, Marciel MP, Hwang J, Britain CM, Silva AD, Eltoum IE, Jones RB, Alexander KL, Smythies LE, Smith PD, Crossman DK, Crowley MR, Shin B, Harrington LE, Yan Z, Bethea MM, Hunter CS, Klug CA, Buchsbaum DJ, Bellis SL. ST6GAL1 sialyltransferase promotes acinar to ductal metaplasia and pancreatic cancer progression. JCI Insight 2023; 8:e161563. [PMID: 37643018 PMCID: PMC10619436 DOI: 10.1172/jci.insight.161563] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/24/2023] [Indexed: 08/31/2023] Open
Abstract
The role of aberrant glycosylation in pancreatic ductal adenocarcinoma (PDAC) remains an under-investigated area of research. In this study, we determined that ST6 β-galactoside α2,6 sialyltransferase 1 (ST6GAL1), which adds α2,6-linked sialic acids to N-glycosylated proteins, was upregulated in patients with early-stage PDAC and was further increased in advanced disease. A tumor-promoting function for ST6GAL1 was elucidated using tumor xenograft experiments with human PDAC cells. Additionally, we developed a genetically engineered mouse (GEM) model with transgenic expression of ST6GAL1 in the pancreas and found that mice with dual expression of ST6GAL1 and oncogenic KRASG12D had greatly accelerated PDAC progression compared with mice expressing KRASG12D alone. As ST6GAL1 imparts progenitor-like characteristics, we interrogated ST6GAL1's role in acinar to ductal metaplasia (ADM), a process that fosters neoplasia by reprogramming acinar cells into ductal, progenitor-like cells. We verified ST6GAL1 promotes ADM using multiple models including the 266-6 cell line, GEM-derived organoids and tissues, and an in vivo model of inflammation-induced ADM. EGFR is a key driver of ADM and is known to be activated by ST6GAL1-mediated sialylation. Importantly, EGFR activation was dramatically increased in acinar cells and organoids from mice with transgenic ST6GAL1 expression. These collective results highlight a glycosylation-dependent mechanism involved in early stages of pancreatic neoplasia.
Collapse
Affiliation(s)
| | | | | | - Jihye Hwang
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | | | | | | | | | | | | | - Boyoung Shin
- Department of Cell, Developmental, and Integrative Biology
| | | | - Zhaoqi Yan
- Department of Cell, Developmental, and Integrative Biology
| | | | | | | | - Donald J. Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | |
Collapse
|
6
|
Sankaranarayanan NV, Sistla S, Nagarajan B, Chittum JE, Lau JTY, Desai UR. Computational studies on glycosaminoglycan recognition of sialyl transferases. Glycobiology 2023; 33:579-590. [PMID: 37171590 PMCID: PMC10426320 DOI: 10.1093/glycob/cwad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/03/2023] [Accepted: 05/11/2023] [Indexed: 05/13/2023] Open
Abstract
Despite decades of research, glycosaminoglycans (GAGs) have not been known to interact with sialyl transferases (STs). Using our in-house combinatorial virtual library screening (CVLS) technology, we studied seven human isoforms, including ST6GAL1, ST6GAL2, ST3GAL1, ST3GAL3, ST3GAL4, ST3GAL5, and ST3GAL6, and predicted that GAGs, especially heparan sulfate (HS), are likely to differentially bind to STs. Exhaustive CVLS and molecular dynamics studies suggested that the common hexasaccharide sequence of HS preferentially recognized ST6GAL1 in a site overlapping the binding site of the donor substrate CMP-Sia. Interestingly, CVLS did not ascribe any special role for the rare 3-O-sulfate modification of HS in ST6GAL1 recognition. The computational predictions were tested using spectrofluorimetric studies, which confirmed preferential recognition of HS over other GAGs. A classic chain length-dependent binding of GAGs to ST6GAL1 was observed with polymeric HS displaying a tight affinity of ~65 nM. Biophysical studies also confirmed a direct competition between CMP-Sia and an HS oligosaccharide and CS polysaccharide for binding to ST6GAL1. Overall, our novel observation that GAGs bind to ST6GAL1 with high affinity and compete with the donor substrate is likely to be important because modulation of sialylation of glycan substrates on cells has considerable physiological/pathological consequences. Our work also brings forth the possibility of developing GAG-based chemical probes of ST6GAL1.
Collapse
Affiliation(s)
- Nehru Viji Sankaranarayanan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - Srinivas Sistla
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - Balaji Nagarajan
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - John E Chittum
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo 14263, NY, USA
| | - Umesh R Desai
- Department of Medicinal Chemistry, Virginia Commonwealth University, Virginia 23298, Richmond, USA
- Drug Discovery and Development, Virginia Commonwealth University, Institute for Structural Biology, Virginia 23219, Richmond, USA
| |
Collapse
|
7
|
GC S, Tuy K, Rickenbacker L, Jones R, Chakraborty A, Miller CR, Beierle EA, Hanumanthu VS, Tran AN, Mobley JA, Bellis SL, Hjelmeland AB. α2,6 Sialylation mediated by ST6GAL1 promotes glioblastoma growth. JCI Insight 2022; 7:e158799. [PMID: 36345944 PMCID: PMC9675560 DOI: 10.1172/jci.insight.158799] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 09/20/2022] [Indexed: 11/09/2022] Open
Abstract
One of the least-investigated areas of brain pathology research is glycosylation, which is a critical regulator of cell surface protein structure and function. β-Galactoside α2,6-sialyltransferase (ST6GAL1) is the primary enzyme that α2,6 sialylates N-glycosylated proteins destined for the plasma membrane or secretion, thereby modulating cell signaling and behavior. We demonstrate a potentially novel, protumorigenic role for α2,6 sialylation and ST6GAL1 in the deadly brain tumor glioblastoma (GBM). GBM cells with high α2,6 sialylation exhibited increased in vitro growth and self-renewal capacity and decreased mouse survival when orthotopically injected. α2,6 Sialylation was regulated by ST6GAL1 in GBM, and ST6GAL1 was elevated in brain tumor-initiating cells (BTICs). Knockdown of ST6GAL1 in BTICs decreased in vitro growth, self-renewal capacity, and tumorigenic potential. ST6GAL1 regulates levels of the known BTIC regulators PDGF Receptor β (PDGFRB), Activated Leukocyte Cell Adhesion Molecule, and Neuropilin, which were confirmed to bind to a lectin-recognizing α2,6 sialic acid. Loss of ST6GAL1 was confirmed to decrease PDGFRB α2,6 sialylation, total protein levels, and the induction of phosphorylation by PDGF-BB. Thus, ST6GAL1-mediated α2,6 sialylation of a select subset of cell surface receptors, including PDGFRB, increases GBM growth.
Collapse
Affiliation(s)
- Sajina GC
- Department of Cell, Developmental and Integrative Biology
| | - Kaysaw Tuy
- Department of Cell, Developmental and Integrative Biology
| | | | - Robert Jones
- Department of Cell, Developmental and Integrative Biology
| | | | | | | | | | | | - James A. Mobley
- Department of Anesthesiology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | |
Collapse
|
8
|
GC S, Bellis SL, Hjelmeland AB. ST6Gal1: Oncogenic signaling pathways and targets. Front Mol Biosci 2022; 9:962908. [PMID: 36106023 PMCID: PMC9465715 DOI: 10.3389/fmolb.2022.962908] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/11/2022] [Indexed: 12/24/2022] Open
Abstract
The Golgi-sialyltransferase ST6Gal1 (βgalactosidase α2,6 sialyltransferase 1), adds the negatively charged sugar, sialic acid, to the terminal galactose of N-glycosylated proteins. Upregulation of ST6Gal1 is observed in many malignancies, and a large body of research has determined that ST6Gal1-mediated α2,6 sialylation impacts cancer hallmarks. ST6Gal1 affects oncogenic behaviors including sustained proliferation, enhanced self-renewal, epithelial-to-mesenchymal transition, invasion, and chemoresistance. However, there are relatively few ST6GaL1 related signaling pathways that are well-established to mediate these biologies: greater delineation of specific targets and signaling mechanisms that are orchestrated by ST6Gal1 is needed. The aim of this review is to provide a summary of our current understanding of select oncogenic signaling pathways and targets affected by ST6Gal1.
Collapse
Affiliation(s)
| | | | - Anita B. Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
9
|
Xiang X, Tao Y, DiRusso J, Hsu FM, Zhang J, Xue Z, Pontis J, Trono D, Liu W, Clark AT. Human reproduction is regulated by retrotransposons derived from ancient Hominidae-specific viral infections. Nat Commun 2022; 13:463. [PMID: 35075135 PMCID: PMC8786967 DOI: 10.1038/s41467-022-28105-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/16/2021] [Indexed: 12/26/2022] Open
Abstract
Germ cells are essential to pass DNA from one generation to the next. In human reproduction, germ cell development begins with the specification of primordial germ cells (PGCs) and a failure to specify PGCs leads to human infertility. Recent studies have revealed that the transcription factor network required for PGC specification has diverged in mammals, and this has a significant impact on our understanding of human reproduction. Here, we reveal that the Hominidae-specific Transposable Elements (TEs) LTR5Hs, may serve as TEENhancers (TE Embedded eNhancers) to facilitate PGC specification. LTR5Hs TEENhancers become transcriptionally active during PGC specification both in vivo and in vitro with epigenetic reprogramming leading to increased chromatin accessibility, localized DNA demethylation, enrichment of H3K27ac, and occupation of key hPGC transcription factors. Inactivation of LTR5Hs TEENhancers with KRAB mediated CRISPRi has a significant impact on germ cell specification. In summary, our data reveals the essential role of Hominidae-specific LTR5Hs TEENhancers in human germ cell development. The transcription factor network required for primordial germ cell (PGC) specification is known to diverge in mammals. Here the authors show that hominidae-specific transposable element (TE) LTR5Hs becomes transcriptionally active during PGC specification, and LTR5Hs inactivation abrogates human PGC specification
Collapse
Affiliation(s)
- Xinyu Xiang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Yu Tao
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jonathan DiRusso
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Fei-Man Hsu
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jinchun Zhang
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Ziwei Xue
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China
| | - Julien Pontis
- School of Life Sciences, Ecole Polytechnique Fe ́de ́rale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Didier Trono
- School of Life Sciences, Ecole Polytechnique Fe ́de ́rale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Wanlu Liu
- Zhejiang University-University of Edinburgh Institute (ZJU-UoE Institute), Zhejiang University School of Medicine, International Campus, Zhejiang University, 718 East Haizhou Rd., Haining, 314400, China. .,Department of Orthopedic Surgery of the Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310029, China. .,Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, Zhejiang, 310058, China. .,Alibaba-Zhejiang University Joint Research Center of Future DigitalHealthcare, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Amander T Clark
- Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA. .,Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
10
|
Hugonnet M, Singh P, Haas Q, von Gunten S. The Distinct Roles of Sialyltransferases in Cancer Biology and Onco-Immunology. Front Immunol 2021; 12:799861. [PMID: 34975914 PMCID: PMC8718907 DOI: 10.3389/fimmu.2021.799861] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/02/2021] [Indexed: 12/24/2022] Open
Abstract
Aberrant glycosylation is a key feature of malignant transformation. Hypersialylation, the enhanced expression of sialic acid-terminated glycoconjugates on the cell surface, has been linked to immune evasion and metastatic spread, eventually by interaction with sialoglycan-binding lectins, including Siglecs and selectins. The biosynthesis of tumor-associated sialoglycans involves sialyltransferases, which are differentially expressed in cancer cells. In this review article, we provide an overview of the twenty human sialyltransferases and their roles in cancer biology and immunity. A better understanding of the individual contribution of select sialyltransferases to the tumor sialome may lead to more personalized strategies for the treatment of cancer.
Collapse
Affiliation(s)
- Marjolaine Hugonnet
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| | - Pushpita Singh
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Quentin Haas
- Institute of Pharmacology, University of Bern, Bern, Switzerland
| | - Stephan von Gunten
- Institute of Pharmacology, University of Bern, Bern, Switzerland
- Bern Center for Precision Medicine (BCPM), University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Aberrant Sialylation in Cancer: Biomarker and Potential Target for Therapeutic Intervention? Cancers (Basel) 2021; 13:cancers13092014. [PMID: 33921986 PMCID: PMC8122436 DOI: 10.3390/cancers13092014] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Sialylation is a post-translational modification that consists in the addition of sialic acid to growing glycan chains on glycoproteins and glycolipids. Aberrant sialylation is an established hallmark of several types of cancer, including breast, ovarian, pancreatic, prostate, colorectal and lung cancers, melanoma and hepatocellular carcinoma. Hypersialylation can be the effect of increased activity of sialyltransferases and results in an excess of negatively charged sialic acid on the surface of cancer cells. Sialic acid accumulation contributes to tumor progression by several paths, including stimulation of tumor invasion and migration, and enhancing immune evasion and tumor cell survival. In this review we explore the mechanisms by which sialyltransferases promote cancer progression. In addition, we provide insights into the possible use of sialyltransferases as biomarkers for cancer and summarize findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments. Abstract Sialylation is an integral part of cellular function, governing many biological processes including cellular recognition, adhesion, molecular trafficking, signal transduction and endocytosis. Sialylation is controlled by the levels and the activities of sialyltransferases on glycoproteins and lipids. Altered gene expression of these enzymes in cancer yields to cancer-specific alterations of glycoprotein sialylation. Mounting evidence indicate that hypersialylation is closely associated with cancer progression and metastatic spread, and can be of prognostic significance in human cancer. Aberrant sialylation is not only a result of cancer, but also a driver of malignant phenotype, directly impacting key processes such as tumor cell dissociation and invasion, cell-cell and cell-matrix interactions, angiogenesis, resistance to apoptosis, and evasion of immune destruction. In this review we provide insights on the impact of sialylation in tumor progression, and outline the possible application of sialyltransferases as cancer biomarkers. We also summarize the most promising findings on the development of sialyltransferase inhibitors as potential anti-cancer treatments.
Collapse
|
12
|
Hauser J, Pisa E, Arias Vásquez A, Tomasi F, Traversa A, Chiodi V, Martin FP, Sprenger N, Lukjancenko O, Zollinger A, Metairon S, Schneider N, Steiner P, Martire A, Caputo V, Macrì S. Sialylated human milk oligosaccharides program cognitive development through a non-genomic transmission mode. Mol Psychiatry 2021; 26:2854-2871. [PMID: 33664475 PMCID: PMC8505264 DOI: 10.1038/s41380-021-01054-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/26/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Breastmilk contains bioactive molecules essential for brain and cognitive development. While sialylated human milk oligosaccharides (HMOs) have been implicated in phenotypic programming, their selective role and underlying mechanisms remained elusive. Here, we investigated the long-term consequences of a selective lactational deprivation of a specific sialylated HMO in mice. We capitalized on a knock-out (KO) mouse model (B6.129-St6gal1tm2Jxm/J) lacking the gene responsible for the synthesis of sialyl(alpha2,6)lactose (6'SL), one of the two sources of sialic acid (Neu5Ac) to the lactating offspring. Neu5Ac is involved in the formation of brain structures sustaining cognition. To deprive lactating offspring of 6'SL, we cross-fostered newborn wild-type (WT) pups to KO dams, which provide 6'SL-deficient milk. To test whether lactational 6'SL deprivation affects cognitive capabilities in adulthood, we assessed attention, perseveration, and memory. To detail the associated endophenotypes, we investigated hippocampal electrophysiology, plasma metabolomics, and gut microbiota composition. To investigate the underlying molecular mechanisms, we assessed gene expression (at eye-opening and in adulthood) in two brain regions mediating executive functions and memory (hippocampus and prefrontal cortex, PFC). Compared to control mice, WT offspring deprived of 6'SL during lactation exhibited consistent alterations in all cognitive functions addressed, hippocampal electrophysiology, and in pathways regulating the serotonergic system (identified through gut microbiota and plasma metabolomics). These were associated with a site- (PFC) and time-specific (eye-opening) reduced expression of genes involved in central nervous system development. Our data suggest that 6'SL in maternal milk adjusts cognitive development through a short-term upregulation of genes modulating neuronal patterning in the PFC.
Collapse
Affiliation(s)
- Jonas Hauser
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Edoardo Pisa
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy ,grid.7841.aDepartment of Physiology and Pharmacology “Vittorio Erspamer”, “Sapienza” University of Rome, Rome, Italy
| | - Alejandro Arias Vásquez
- grid.10417.330000 0004 0444 9382Donders Institute for Brain, Cognition and Behaviour, Departments of Psychiatry and Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Flavio Tomasi
- grid.416651.10000 0000 9120 6856Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Alice Traversa
- grid.413503.00000 0004 1757 9135Laboratory of Clinical Genomics, Fondazione IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, FG Italy
| | - Valentina Chiodi
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Francois-Pierre Martin
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Norbert Sprenger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | | | - Alix Zollinger
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Sylviane Metairon
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Nora Schneider
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Pascal Steiner
- grid.419905.00000 0001 0066 4948Société des Produits Nestlé SA, Nestlé Research, Lausanne, Switzerland
| | - Alberto Martire
- grid.416651.10000 0000 9120 6856National Centre for Drug Research and Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | - Viviana Caputo
- grid.7841.aDepartment of Experimental Medicine, “Sapienza” University of Rome, Rome, Italy
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
13
|
Duarte HO, Rodrigues JG, Gomes C, Hensbergen PJ, Ederveen ALH, de Ru AH, Mereiter S, Polónia A, Fernandes E, Ferreira JA, van Veelen PA, Santos LL, Wuhrer M, Gomes J, Reis CA. ST6Gal1 targets the ectodomain of ErbB2 in a site-specific manner and regulates gastric cancer cell sensitivity to trastuzumab. Oncogene 2021; 40:3719-3733. [PMID: 33947960 PMCID: PMC8154592 DOI: 10.1038/s41388-021-01801-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 03/22/2021] [Accepted: 04/14/2021] [Indexed: 02/03/2023]
Abstract
The clinical performance of the therapeutic monoclonal antibody trastuzumab in the treatment of ErbB2-positive unresectable gastric cancer (GC) is severely hampered by the emergence of molecular resistance. Trastuzumab's target epitope is localized within the extracellular domain of the oncogenic cell surface receptor tyrosine kinase (RTK) ErbB2, which is known to undergo extensive N-linked glycosylation. However, the site-specific glycan repertoire of ErbB2, as well as the detailed molecular mechanisms through which specific aberrant glycan signatures functionally impact the malignant features of ErbB2-addicted GC cells, including the acquisition of trastuzumab resistance, remain elusive. Here, we demonstrate that ErbB2 is modified with both α2,6- and α2,3-sialylated glycan structures in GC clinical specimens. In-depth mass spectrometry-based glycomic and glycoproteomic analysis of ErbB2's ectodomain disclosed a site-specific glycosylation profile in GC cells, in which the ST6Gal1 sialyltransferase specifically targets ErbB2 N-glycosylation sites occurring within the receptor's trastuzumab-binding domain. Abrogation of ST6Gal1 expression reshaped the cellular and ErbB2-specific glycomes, expanded the cellular half-life of the ErbB2 receptor, and sensitized ErbB2-dependent GC cells to trastuzumab-induced cytotoxicity through the stabilization of ErbB dimers at the cell membrane, and the decreased activation of both ErbB2 and EGFR RTKs. Overall, our data demonstrates that ST6Gal1-mediated aberrant α2,6-sialylation actively tunes the resistance of ErbB2-driven GC cells to trastuzumab.
Collapse
Affiliation(s)
- Henrique O. Duarte
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Joana G. Rodrigues
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Catarina Gomes
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Paul J. Hensbergen
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Agnes L. Hipgrave Ederveen
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Arnoud H. de Ru
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Stefan Mereiter
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.4299.60000 0001 2169 3852Present Address: IMBA, Institute of Molecular Biotechnology, Austrian Academy of Sciences, Vienna, Austria
| | - António Polónia
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP Diagnostics, Department of Pathology, IPATIMUP, University of Porto, Porto, Portugal
| | - Elisabete Fernandes
- grid.418711.a0000 0004 0631 0608Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology, Porto, Portugal
| | - José A. Ferreira
- grid.418711.a0000 0004 0631 0608Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology, Porto, Portugal
| | - Peter A. van Veelen
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Lúcio L. Santos
- grid.418711.a0000 0004 0631 0608Experimental Pathology and Therapeutics Group, IPO-Porto Research Center, Portuguese Institute of Oncology, Porto, Portugal ,grid.418711.a0000 0004 0631 0608Department of Surgical Oncology, Portuguese Institute of Oncology, Porto, Portugal
| | - Manfred Wuhrer
- grid.10419.3d0000000089452978Leiden University Medical Center, Center for Proteomics and Metabolomics, Leiden, The Netherlands
| | - Joana Gomes
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal
| | - Celso A. Reis
- grid.5808.50000 0001 1503 7226i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226IPATIMUP—Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226ICBAS—Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal ,grid.5808.50000 0001 1503 7226Faculty of Medicine, University of Porto, Porto, Portugal
| |
Collapse
|
14
|
Chowdhury S, Ghosh S. Sialylation of Stem Cells. Stem Cells 2021. [DOI: 10.1007/978-981-16-1638-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Dorsett KA, Marciel MP, Hwang J, Ankenbauer KE, Bhalerao N, Bellis SL. Regulation of ST6GAL1 sialyltransferase expression in cancer cells. Glycobiology 2020; 31:530-539. [PMID: 33320246 DOI: 10.1093/glycob/cwaa110] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 11/07/2020] [Accepted: 11/25/2020] [Indexed: 02/06/2023] Open
Abstract
The ST6GAL1 sialyltransferase, which adds α2-6 linked sialic acids to N-glycosylated proteins, is overexpressed in a wide range of human malignancies. Recent studies have established the importance of ST6GAL1 in promoting tumor cell behaviors such as invasion, resistance to cell stress and chemoresistance. Furthermore, ST6GAL1 activity has been implicated in imparting cancer stem cell characteristics. However, despite the burgeoning interest in the role of ST6GAL1 in the phenotypic features of tumor cells, insufficient attention has been paid to the molecular mechanisms responsible for ST6GAL1 upregulation during neoplastic transformation. Evidence suggests that these mechanisms are multifactorial, encompassing genetic, epigenetic, transcriptional and posttranslational regulation. The purpose of this review is to summarize current knowledge regarding the molecular events that drive enriched ST6GAL1 expression in cancer cells.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Michael P Marciel
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jihye Hwang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Nikita Bhalerao
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
16
|
Oinam L, Changarathil G, Raja E, Ngo YX, Tateno H, Sada A, Yanagisawa H. Glycome profiling by lectin microarray reveals dynamic glycan alterations during epidermal stem cell aging. Aging Cell 2020; 19:e13190. [PMID: 32681764 PMCID: PMC7431822 DOI: 10.1111/acel.13190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 05/01/2020] [Accepted: 06/06/2020] [Indexed: 12/02/2022] Open
Abstract
Aging in the epidermis is marked by a gradual decline in barrier function, impaired wound healing, hair loss, and an increased risk of cancer. This could be due to age‐related changes in the properties of epidermal stem cells and defective interactions with their microenvironment. Currently, no biochemical tools are available to detect and evaluate the aging of epidermal stem cells. The cellular glycosylation is involved in cell–cell communications and cell–matrix adhesions in various physiological and pathological conditions. Here, we explored the changes of glycans in epidermal stem cells as a potential biomarker of aging. Using lectin microarray, we performed a comprehensive glycan profiling of freshly isolated epidermal stem cells from young and old mouse skin. Epidermal stem cells exhibited a significant difference in glycan profiles between young and old mice. In particular, the binding of a mannose‐binder rHeltuba was decreased in old epidermal stem cells, whereas that of an α2‐3Sia‐binder rGal8N increased. These glycan changes were accompanied by upregulation of sialyltransferase, St3gal2 and St6gal1 and mannosidase Man1a genes in old epidermal stem cells. The modification of cell surface glycans by overexpressing these glycogenes leads to a defect in the regenerative ability of epidermal stem cells in culture. Hence, our study suggests the age‐related global alterations in cellular glycosylation patterns and its potential contribution to the stem cell function. These glycan modifications detected by lectins may serve as molecular markers for aging, and further functional studies will lead us to a better understanding of the process of skin aging.
Collapse
Affiliation(s)
- Lalhaba Oinam
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Tsukuba Japan
| | - Gopakumar Changarathil
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Graduate School of Comprehensive Human Sciences University of Tsukuba Tsukuba Japan
| | - Erna Raja
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- International Research Center for Medical Sciences (IRCMS) Kumamoto University Kumamoto Japan
| | - Yen Xuan Ngo
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Ph.D. Program in Human Biology School of Integrative and Global Majors University of Tsukuba Tsukuba Japan
| | - Hiroaki Tateno
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Cellular and Molecular Biotechnology Research Institute National Institute of Advanced Industrial Science and Technology Tsukuba Japan
| | - Aiko Sada
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- International Research Center for Medical Sciences (IRCMS) Kumamoto University Kumamoto Japan
| | - Hiromi Yanagisawa
- Life Science Center for Survival Dynamics Tsukuba Advanced Research Alliance (TARA) University of Tsukuba Tsukuba Japan
- Faculty of Medicine University of Tsukuba Tsukuba Japan
| |
Collapse
|
17
|
Nath S, Mondal S, Butti R, Prasanna Gunasekaran V, Chatterjee U, Halder A, Kundu GC, Mandal C. Desialylation of Sonic-Hedgehog by Neu2 Inhibits Its Association with Patched1 Reducing Stemness-Like Properties in Pancreatic Cancer Sphere-forming Cells. Cells 2020; 9:cells9061512. [PMID: 32575925 PMCID: PMC7349614 DOI: 10.3390/cells9061512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/06/2020] [Accepted: 04/08/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer stem cells (CSCs) are crucial regulators of tumor recurrence/progression. The maintenance of CSCs is dependent on aberrant activation of various pathways, including Hedgehog. Prevalent sialylations contribute to aggressiveness in CSCs. Here, we have addressed the role of sialylation in regulating stemness-like properties of pancreatic cancer sphere-forming cells (PCS) through modulation of the Hedgehog (Hh) pathway. The status of CD133/CD44/surface-sialylation was checked by flow cytometry and effects of Neu2 overexpression in PCS were compared using qPCR, immunoblotting, co-immunoprecipitation and also by colony-formation assays. The work was also validated in a xenograft model after Neu2 overexpression. Neu2 and Shh status in patient tissues were examined by immunohistochemistry. PCS showed higher Hh-pathway activity and sialylation with reduced cytosolic-sialidase (Neu2). Neu2 overexpression caused desialylation of Shh, thereby reducing Shh-Patched1 binding thus causing decreased Hh-pathway activity with lower expression of Snail/Slug/CyclinD1 leading to reduction of stemness-like properties. Neu2-overexpression also induced apoptosis in PCS. Additionally, Neu2-overexpressed PCS demonstrated lower mTORC2 formation and inhibitory-phosphorylation of Gsk3β, reflecting a close relationship with reduced Hh pathway. Moreover, both Neu2 and Rictor (a major component of mTORC2) co-transfection reduced stem cell markers and Hh-pathway activity in PCS. Neu2-overexpressed tumors showed reduction in tumor mass with downregulation of stem cell markers/Shh/mTOR and upregulation of Bax/Caspase8/Caspase3. Thus, we established that reduced sialylation by Neu2 overexpression leads to decreased stemness-like properties by desialylation of Shh, which impaired its association with Patched1 thereby inhibiting the Hh pathway. All these may be responsible for enhanced apoptosis in Neu2-overexpressed PCS.
Collapse
Affiliation(s)
- Shalini Nath
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India; (S.N.); (S.M.)
| | - Susmita Mondal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India; (S.N.); (S.M.)
| | - Ramesh Butti
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune 411007, India; (R.B.); (V.P.G.); (G.C.K.)
| | - Vinoth Prasanna Gunasekaran
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune 411007, India; (R.B.); (V.P.G.); (G.C.K.)
| | - Uttara Chatterjee
- Department of Pathology, Institute of Post-Graduate Medical Education and Research Hospital, Kolkata, West Bengal 700020, India;
| | - Aniket Halder
- School of Digestive & Liver Diseases, Institute of Post-Graduate Medical Education and Research Hospital, Kolkata, West Bengal 700020, India;
| | - Gopal C. Kundu
- Laboratory of Tumor Biology, Angiogenesis and Nanomedicine Research, National Centre for Cell Science (NCCS), Pune 411007, India; (R.B.); (V.P.G.); (G.C.K.)
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology, 4, Raja S.C. Mallick Road, Kolkata 700032, India; (S.N.); (S.M.)
- Correspondence: or ; Tel.: +91-33-2499-5717
| |
Collapse
|
18
|
Mikolajczyk K, Kaczmarek R, Czerwinski M. How glycosylation affects glycosylation: the role of N-glycans in glycosyltransferase activity. Glycobiology 2020; 30:941-969. [PMID: 32363402 DOI: 10.1093/glycob/cwaa041] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 12/15/2022] Open
Abstract
N-glycosylation is one of the most important posttranslational modifications of proteins. It plays important roles in the biogenesis and functions of proteins by influencing their folding, intracellular localization, stability and solubility. N-glycans are synthesized by glycosyltransferases, a complex group of ubiquitous enzymes that occur in most kingdoms of life. A growing body of evidence shows that N-glycans may influence processing and functions of glycosyltransferases, including their secretion, stability and substrate/acceptor affinity. Changes in these properties may have a profound impact on glycosyltransferase activity. Indeed, some glycosyltransferases have to be glycosylated themselves for full activity. N-glycans and glycosyltransferases play roles in the pathogenesis of many diseases (including cancers), so studies on glycosyltransferases may contribute to the development of new therapy methods and novel glycoengineered enzymes with improved properties. In this review, we focus on the role of N-glycosylation in the activity of glycosyltransferases and attempt to summarize all available data about this phenomenon.
Collapse
Affiliation(s)
- Krzysztof Mikolajczyk
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Radoslaw Kaczmarek
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| | - Marcin Czerwinski
- Laboratory of Glycobiology, Hirszfeld Institute of Immunology and Experimental Therapy, Weigla 12, 53-114 Wroclaw, Poland
| |
Collapse
|
19
|
Venturi G, Gomes Ferreira I, Pucci M, Ferracin M, Malagolini N, Chiricolo M, Dall'Olio F. Impact of sialyltransferase ST6GAL1 overexpression on different colon cancer cell types. Glycobiology 2020; 29:684-695. [PMID: 31317190 DOI: 10.1093/glycob/cwz053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 12/11/2022] Open
Abstract
Cancer-associated glycan structures can be both tumor markers and engines of disease progression. The structure Siaα2,6Galβ1,4GlcNAc (Sia6LacNAc), synthesized by sialyltransferase ST6GAL1, is a cancer-associated glycan. Although ST6GAL1/Sia6LacNAc are often overexpressed in colorectal cancer (CRC), their biological and clinical significance remains unclear. To get insights into the clinical relevance of ST6GAL1 expression in CRC, we interrogated The Cancer Genome Atlas with mRNA expression data of hundreds of clinically characterized CRC and normal samples. We found an association of low ST6GAL1 expression with microsatellite instability (MSI), BRAF mutations and mucinous phenotype but not with stage, response to therapy and survival. To investigate the impact of ST6GAL1 expression in experimental systems, we analyzed the transcriptome and the phenotype of the CRC cell lines SW948 and SW48 after retroviral transduction with ST6GAL1 cDNA. The two cell lines display the two main pathways of CRC transformation: chromosomal instability and MSI, respectively. Constitutive ST6GAL1 expression induced much deeper transcriptomic changes in SW948 than in SW48 and affected different genes in the two cell lines. ST6GAL1 expression affected differentially the tyrosine phosphorylation induced by hepatocyte growth factor, the ability to grow in soft agar, to heal a scratch wound and to invade Matrigel in the two cell lines. These results indicate that the altered expression of a cancer-associated glycosyltransferase impacts the gene expression profile, as well as the phenotype, although in a cancer subtype-specific manner.
Collapse
Affiliation(s)
- Giulia Venturi
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Inês Gomes Ferreira
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Michela Pucci
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Nadia Malagolini
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Mariella Chiricolo
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| | - Fabio Dall'Olio
- Department of Experimental, Diagnostic and Specialty Medicine, General Pathology Building, University of Bologna Via S. Giacomo 14, Bologna, Italy
| |
Collapse
|
20
|
Oswald DM, Zhou JY, Jones MB, Cobb BA. Disruption of hepatocyte Sialylation drives a T cell-dependent pro-inflammatory immune tone. Glycoconj J 2020; 37:395-407. [PMID: 32222873 DOI: 10.1007/s10719-020-09918-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022]
Abstract
Through the catalysis of α2,6-linked sialylation, the enzyme ST6Gal1 is thought to play key roles in immune cell communication and homeostasis. Of particular importance, glycans with terminal α2,6-sialic acids are known to negatively regulate B cell receptor signaling and are associated with an immunosuppressive tumor microenvironment that promotes T cell anergy, suggesting that α2,6-sialic acids are a key immune inhibitory signal. Consistent with this model, mice harboring a hepatocyte-specific ablation of ST6Gal1 (H-cKO) develop a progressive and severe non-alcoholic fatty liver disease characterized by steatohepatitis. Using this H-cKO mouse, we have further discovered that loss of hepatocyte α2,6-sialylation not only increases the inflammatory state of the local tissue microenvironment, but also systemic T cell-dependent immune responses. H-cKO mice responded normally to innate and passively induced inflammation, but showed significantly increased morbidity in T cell-dependent house dust mite-antigen (HDM)-induced asthma and myelin oligodendrocyte glycoprotein (MOG) peptide-induced experimental autoimmune encephalomyelitis (EAE). We further discovered that H-cKO mice have a profound shift toward effector/memory T cells even among unchallenged mice, and that macrophages from both the liver and spleen expressed the inhibitory and α2,6-sialic acid-specific glycan binding molecule CD22. These findings align with previously reported pro-inflammatory changes in liver macrophages, and support a model in which the liver microenvironment sets a systemic immune tone that is regulated by tissue α2,6-sialylation and mediated by liver macrophages and systemic T cells.
Collapse
Affiliation(s)
- Douglas M Oswald
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA
| | - Julie Y Zhou
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA
| | - Mark B Jones
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA
| | - Brian A Cobb
- Department of Pathology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH, 44160, USA.
| |
Collapse
|
21
|
Wang W, Chen C, Wang X, Zhang L, Shen D, Wang S, Gao B, Mao J, Song C. Development of Molecular Markers Based on the L1 Retrotransposon Insertion Polymorphisms in Pigs (Sus scrofa) and Their Association with Economic Traits. RUSS J GENET+ 2020. [DOI: 10.1134/s1022795420020131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
22
|
Dorsett KA, Jones RB, Ankenbauer KE, Hjelmeland AB, Bellis SL. Sox2 promotes expression of the ST6Gal-I glycosyltransferase in ovarian cancer cells. J Ovarian Res 2019; 12:93. [PMID: 31610800 PMCID: PMC6792265 DOI: 10.1186/s13048-019-0574-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/25/2019] [Indexed: 12/15/2022] Open
Abstract
Background The ST6Gal-I glycosyltransferase, which adds α2–6-linked sialic acids to N-glycosylated proteins is upregulated in a wide range of malignancies including ovarian cancer. Prior studies have shown that ST6Gal-I-mediated sialylation of select surface receptors remodels intracellular signaling to impart cancer stem cell (CSC) characteristics. However, the mechanisms that contribute to ST6Gal-I expression in stem-like cancer cells are poorly understood. Results Herein, we identify the master stem cell transcription factor, Sox2, as a novel regulator of ST6Gal-I expression. Interestingly, SOX2 and ST6GAL1 are located within the same tumor-associated amplicon, 3q26, and these two genes exhibit coordinate gains in copy number across multiple cancers including ~ 25% of ovarian serious adenocarcinomas. In conjunction with genetic co-amplification, our studies suggest that Sox2 directly binds the ST6GAL1 promoter to drive transcription. ST6Gal-I expression is directed by at least four distinct promoters, and we identified the P3 promoter as the predominant promoter utilized by ovarian cancer cells. Chromatin Immunoprecipitation (ChIP) assays revealed that Sox2 binds regions proximal to the P3 promoter. To confirm that Sox2 regulates ST6Gal-I expression, Sox2 was either overexpressed or knocked-down in various ovarian cancer cell lines. Sox2 overexpression induced an increase in ST6Gal-I mRNA and protein, as well as surface α2–6 sialylation, whereas Sox2 knock-down suppressed levels of ST6Gal-I mRNA, protein and surface α2–6 sialylation. Conclusions These data suggest a process whereby SOX2 and ST6GAL1 are coordinately amplified in cancer cells, with the Sox2 protein then binding the ST6GAL1 promoter to further augment ST6Gal-I expression. Our collective results provide new insight into mechanisms that upregulate ST6Gal-I expression in ovarian cancer cells, and also point to the possibility that some of the CSC characteristics commonly attributed to Sox2 may, in part, be mediated through the sialyltransferase activity of ST6Gal-I.
Collapse
Affiliation(s)
- Kaitlyn A Dorsett
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Robert B Jones
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Katherine E Ankenbauer
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, MCLM 350, 1918 University Boulevard, Birmingham, AL, 35294, USA.
| |
Collapse
|
23
|
Sevoflurane Promotes Regeneration of the Endothelial Glycocalyx by Upregulating Sialyltransferase. J Surg Res 2019; 241:40-47. [DOI: 10.1016/j.jss.2019.03.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Revised: 02/21/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
|
24
|
Li F, Ding J. Sialylation is involved in cell fate decision during development, reprogramming and cancer progression. Protein Cell 2019; 10:550-565. [PMID: 30478534 PMCID: PMC6626595 DOI: 10.1007/s13238-018-0597-5] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 10/31/2018] [Indexed: 01/01/2023] Open
Abstract
Sialylation, or the covalent addition of sialic acid to the terminal end of glycoproteins, is a biologically important modification that is involved in embryonic development, neurodevelopment, reprogramming, oncogenesis and immune responses. In this review, we have given a comprehensive overview of the current literature on the involvement of sialylation in cell fate decision during development, reprogramming and cancer progression. Sialylation is essential for early embryonic development and the deletion of UDP-GlcNAc 2-epimerase, a rate-limiting enzyme in sialic acid biosynthesis, is embryonically lethal. Furthermore, the sialyltransferase ST6GAL1 is required for somatic cell reprogramming, and its downregulation is associated with decreased reprogramming efficiency. In addition, sialylation levels and patterns are altered during cancer progression, indicating the potential of sialylated molecules as cancer biomarkers. Taken together, the current evidences demonstrate that sialylation is involved in crucial cell fate decision.
Collapse
Affiliation(s)
- Fenjie Li
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Junjun Ding
- Program in Stem Cell and Regenerative Medicine, The Third Affiliated Hospital of Sun Yat-Sen University, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
25
|
Zhou X, Kinlough CL, Hughey RP, Jin M, Inoue H, Etling E, Modena BD, Kaminski N, Bleecker ER, Meyers DA, Jarjour NN, Trudeau JB, Holguin F, Ray A, Wenzel SE. Sialylation of MUC4β N-glycans by ST6GAL1 orchestrates human airway epithelial cell differentiation associated with type-2 inflammation. JCI Insight 2019; 4:122475. [PMID: 30730306 DOI: 10.1172/jci.insight.122475] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 01/29/2019] [Indexed: 12/28/2022] Open
Abstract
Although type-2-induced (T2-induced) epithelial dysfunction is likely to profoundly alter epithelial differentiation and repair in asthma, the mechanisms for these effects are poorly understood. A role for specific mucins, heavily N-glycosylated epithelial glycoproteins, in orchestrating epithelial cell fate in response to T2 stimuli has not previously been investigated. Levels of a sialylated MUC4β isoform were found to be increased in airway specimens from asthmatic patients in association with T2 inflammation. We hypothesized that IL-13 would increase sialylation of MUC4β, thereby altering its function and that the β-galactoside α-2,6-sialyltransferase 1 (ST6GAL1) would regulate the sialylation. Using human biologic specimens and cultured primary human airway epithelial cells (HAECs),we demonstrated that IL-13 increases ST6GAL1-mediated sialylation of MUC4β and that both were increased in asthma, particularly in sputum supernatant and/or fresh isolated HAECs with elevated T2 biomarkers. ST6GAL1-induced sialylation of MUC4β altered its lectin binding and secretion. Both ST6GAL1 and MUC4β inhibited epithelial cell proliferation while promoting goblet cell differentiation. These in vivo and in vitro data provide strong evidence for a critical role for ST6GAL1-induced sialylation of MUC4β in epithelial dysfunction associated with T2-high asthma, thereby identifying specific sialylation pathways as potential targets in asthma.
Collapse
Affiliation(s)
- Xiuxia Zhou
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Carol L Kinlough
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebecca P Hughey
- Renal-Electrolyte Division, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mingzhu Jin
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Hideki Inoue
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Division of Pulmonary and Allergy Medicine, Department of Medicine, Showa University School of Medicine, Tokyo, Japan
| | - Emily Etling
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA
| | - Brian D Modena
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Molecular Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Naftali Kaminski
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Deborah A Meyers
- Department of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Nizar N Jarjour
- Division of Allergy, Pulmonary, and Critical Care Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - John B Trudeau
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Fernando Holguin
- Division of Pulmonary and Critical Care Medicine, University of Colorado Health Sciences Center, Denver, Colorado, USA
| | - Anuradha Ray
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sally E Wenzel
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, University of Pittsburgh Asthma Institute at University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania, USA.,Department of Environmental & Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
26
|
Nasirikenari M, Lugade AA, Neelamegham S, Gao Z, Moremen KW, Bogner PN, Thanavala Y, Lau JTY. Recombinant Sialyltransferase Infusion Mitigates Infection-Driven Acute Lung Inflammation. Front Immunol 2019; 10:48. [PMID: 30778346 PMCID: PMC6369197 DOI: 10.3389/fimmu.2019.00048] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 01/09/2019] [Indexed: 11/13/2022] Open
Abstract
Inappropriate inflammation exacerbates a vast array of chronic and acute conditions with severe health risks. In certain situations, such as acute sepsis, traditional therapies may be inadequate in preventing severe organ damage or death. We have previously shown cell surface glycan modification by the circulating sialyltransferase ST6Gal-1 regulates de novo inflammatory cell production via a novel extrinsic glycosylation pathway. Here, we show that therapeutic administration of recombinant, bioactive ST6Gal-1 (rST6G) mitigates acute inflammation in a murine model mimicking acute exacerbations experienced by patients with chronic obstructive pulmonary disease (COPD). In addition to suppressing proximal neutrophil recruitment at onset of infection-mediated inflammation, rST6G also muted local cytokine production. Histologically, exposure with NTHI, a bacterium associated with COPD exacerbations, in rST6G-treated animals revealed consistent and pronounced reduction of pulmonary inflammation, characterized by smaller inflammatory cuffs around bronchovascular bundles, and fewer inflammatory cells within alveolar walls, alveolar spaces, and on pleural surfaces. Taken together, the data advance the idea that manipulating circulatory ST6Gal-1 levels has potential in managing inflammatory conditions by leveraging the combined approaches of controlling new inflammatory cell production and dampening the inflammation mediator cascade.
Collapse
Affiliation(s)
- Mehrab Nasirikenari
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Amit A Lugade
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Sriram Neelamegham
- Department of Chemical and Biomedical Engineering, University at Buffalo, Buffalo, NY, United States
| | - Zhongwei Gao
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Kelley W Moremen
- The Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Paul N Bogner
- Department of Pathology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Yasmin Thanavala
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States
| |
Collapse
|
27
|
Isaji T, Im S, Kameyama A, Wang Y, Fukuda T, Gu J. A complex between phosphatidylinositol 4-kinase IIα and integrin α3β1 is required for N-glycan sialylation in cancer cells. J Biol Chem 2019; 294:4425-4436. [PMID: 30659093 DOI: 10.1074/jbc.ra118.005208] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 01/08/2019] [Indexed: 01/08/2023] Open
Abstract
Aberrant N-glycan sialylation of glycoproteins is closely associated with malignant phenotypes of cancer cells and metastatic potential, which includes cell adhesion, migration, and growth. Recently, phosphatidylinositol 4-kinase IIα (PI4KIIα), which is localized to the trans-Golgi network, was identified as a regulator of Golgi phosphoprotein 3 (GOLPH3) and of vesicle transport in the Golgi apparatus. GOLPH3 is a target of PI4KIIα and helps anchor sialyltransferases and thereby regulates sialylation of cell surface receptors. However, how PI4KIIα-mediated sialyation of cell surface proteins is regulated remains unclear. In this study, using several cell lines, CRISPR/Cas9-based gene knockout and short hairpin RNA-mediated silencing, RT-PCR, lentivirus-mediated overexpression, and immunoblotting methods, we confirmed that PI4KIIα knockdown suppresses the sialylation of N-glycans on the cell surface, in Akt phosphorylation and activation, and integrin α3-mediated cell migration of MDA-MB-231 breast cancer cells. Interestingly, both integrin α3β1 and PI4KIIα co-localized to the trans-Golgi network, where they physically interacted with each other, and PI4KIIα specifically associated with integrin α3 but not α5. Furthermore, overexpression of both integrin α3β1 and PI4KIIα induced hypersialylation. Conversely, integrin α3 knockout significantly inhibited the sialylation of membrane proteins, such as the epidermal growth factor receptor, as well as in total cell lysates. These findings suggest that the malignant phenotype of cancer cells is affected by a sialylation mechanism that is regulated by a complex between PI4KIIα and integrin α3β1.
Collapse
Affiliation(s)
- Tomoya Isaji
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Sanghun Im
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Akihiko Kameyama
- the Department of Life Science and Biotechnology, National Institute of Advanced Industrial Science and Technology, 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan, and
| | - Yuqin Wang
- the Department of Pharmacology, Pharmacy College, Nantong University, Nantong, Jiangsu 226001, China
| | - Tomohiko Fukuda
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan
| | - Jianguo Gu
- From the Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, 4-4-1 Komatsushima, Aoba-ku, Sendai Miyagi 981-8558, Japan,
| |
Collapse
|
28
|
Nishihara S. Glycans in stem cell regulation: from
Drosophila
tissue stem cells to mammalian pluripotent stem cells. FEBS Lett 2018; 592:3773-3790. [DOI: 10.1002/1873-3468.13167] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/14/2018] [Accepted: 06/15/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Shoko Nishihara
- Laboratory of Cell Biology Department of Bioinformatics Graduate School of Engineering Soka University Hachioji Japan
| |
Collapse
|
29
|
Shin B, Kress RL, Kramer PA, Darley-Usmar VM, Bellis SL, Harrington LE. Effector CD4 T cells with progenitor potential mediate chronic intestinal inflammation. J Exp Med 2018; 215:1803-1812. [PMID: 29915024 PMCID: PMC6028516 DOI: 10.1084/jem.20172335] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 04/04/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
Effector CD4 T cells with progenitor properties are present during chronic intestinal inflammation, and these cells support the maintenance of disease. The expression of the glycosyltransferase ST6Gal-I by these cells promotes cell survival and TCF1 levels. Dysregulated CD4 T cell responses are causally linked to autoimmune and chronic inflammatory disorders, yet the cellular attributes responsible for maintaining the disease remain poorly understood. Herein, we identify a discrete population of effector CD4 T cells that is able to both sustain and confer intestinal inflammation. This subset of pathogenic CD4 T cells possesses a unique gene signature consistent with self-renewing T cells and hematopoietic progenitor cells, exhibits enhanced survival, and continually seeds the terminally differentiated IFNγ-producing cells in the inflamed intestine. Mechanistically, this population selectively expresses the glycosyltransferase ST6Gal-I, which is required for optimal expression of the stemness-associated molecule TCF1 by effector CD4 T cells. Our findings indicate that the chronicity of T cell–mediated inflammation is perpetuated by specific effector CD4 T cells with stem-like properties.
Collapse
Affiliation(s)
- Boyoung Shin
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Robert L Kress
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Philip A Kramer
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL
| | | | - Susan L Bellis
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| | - Laurie E Harrington
- Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL
| |
Collapse
|
30
|
Jones RB, Dorsett KA, Hjelmeland AB, Bellis SL. The ST6Gal-I sialyltransferase protects tumor cells against hypoxia by enhancing HIF-1α signaling. J Biol Chem 2018; 293:5659-5667. [PMID: 29475939 PMCID: PMC5900773 DOI: 10.1074/jbc.ra117.001194] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 02/15/2018] [Indexed: 02/05/2023] Open
Abstract
Aberrant cell surface glycosylation is prevalent in tumor cells, and there is ample evidence that glycans have functional roles in carcinogenesis. Nonetheless, many molecular details remain unclear. Tumor cells frequently exhibit increased α2-6 sialylation on N-glycans, a modification that is added by the ST6Gal-I sialyltransferase, and emerging evidence suggests that ST6Gal-I-mediated sialylation promotes the survival of tumor cells exposed to various cell stressors. Here we report that ST6Gal-I protects cancer cells from hypoxic stress. It is well known that hypoxia-inducible factor 1α (HIF-1α) is stabilized in hypoxic cells, and, in turn, HIF-1α directs the transcription of genes important for cell survival. To investigate a putative role for ST6Gal-I in the hypoxic response, we examined HIF-1α accumulation in ovarian and pancreatic cancer cells in ST6Gal-I overexpression or knockdown experiments. We found that ST6Gal-I activity augmented HIF-1α accumulation in cells grown in a hypoxic environment or treated with two chemical hypoxia mimetics, deferoxamine and dimethyloxalylglycine. Correspondingly, hypoxic cells with high ST6Gal-I expression had increased mRNA levels of HIF-1α transcriptional targets, including the glucose transporter genes GLUT1 and GLUT3 and the glycolytic enzyme gene PDHK1 Interestingly, high ST6Gal-I-expressing cells also had an increased pool of HIF-1α mRNA, suggesting that ST6Gal-I may influence HIF-1α expression. Finally, cells grown in hypoxia for several weeks displayed enriched ST6Gal-I expression, consistent with a pro-survival function. Taken together, these findings unravel a glycosylation-dependent mechanism that facilitates tumor cell adaptation to a hypoxic milieu.
Collapse
MESH Headings
- Antigens, CD/biosynthesis
- Antigens, CD/genetics
- Cell Line, Tumor
- Cell Survival/genetics
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
- Ovarian Neoplasms/genetics
- Ovarian Neoplasms/metabolism
- Ovarian Neoplasms/pathology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/metabolism
- Pancreatic Neoplasms/pathology
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Neoplasm/biosynthesis
- RNA, Neoplasm/genetics
- Sialyltransferases/biosynthesis
- Sialyltransferases/genetics
- Signal Transduction
- Tumor Hypoxia
Collapse
Affiliation(s)
- Robert B Jones
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Kaitlyn A Dorsett
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Anita B Hjelmeland
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| | - Susan L Bellis
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama, Birmingham, Alabama 35294
| |
Collapse
|
31
|
Jones MB. IgG and leukocytes: Targets of immunomodulatory α2,6 sialic acids. Cell Immunol 2018; 333:58-64. [PMID: 29685495 DOI: 10.1016/j.cellimm.2018.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/30/2018] [Indexed: 12/27/2022]
Abstract
ST6Gal1 is a critical sialyltransferase enzyme that controls the addition of α2,6-linked sialic acids to the termini of glycans. Attachment of sialic acids to glycoproteins as a posttranslational modification influences cellular responses, and is a well-known modifier of immune cell behavior. ST6Gal1 activity impacts processes such as: effector functions of immunoglobulin G via Fc sialylation, hematopoietic capacity by hematopoietic stem and progenitor cell surface sialylation, and lymphocyte activation thresholds though CD22 engagement and inhibition of galectins. This review summarizes recent studies that suggest α2,6 sialylation by ST6Gal1 has an immunoregulatory effect on immune reactions.
Collapse
Affiliation(s)
- Mark B Jones
- Case Western Reserve University, School of Medicine, Department of Pathology, Cleveland, OH 44106, United States.
| |
Collapse
|
32
|
Britain CM, Holdbrooks AT, Anderson JC, Willey CD, Bellis SL. Sialylation of EGFR by the ST6Gal-I sialyltransferase promotes EGFR activation and resistance to gefitinib-mediated cell death. J Ovarian Res 2018; 11:12. [PMID: 29402301 PMCID: PMC5800010 DOI: 10.1186/s13048-018-0385-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/30/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND The ST6Gal-I sialyltransferase is upregulated in numerous cancers, and high expression of this enzyme correlates with poor patient prognosis in various malignancies, including ovarian cancer. Through its sialylation of a select cohort of cell surface receptors, ST6Gal-I modulates cell signaling to promote tumor cell survival. The goal of the present study was to investigate the influence of ST6Gal-I on another important receptor that controls cancer cell behavior, EGFR. Additionally, the effect of ST6Gal-I on cancer cells treated with the common EGFR inhibitor, gefitinib, was evaluated. RESULTS Using the OV4 ovarian cancer cell line, which lacks endogenous ST6Gal-I expression, a kinomics assay revealed that cells with forced overexpression of ST6Gal-I exhibited increased global tyrosine kinase activity, a finding confirmed by immunoblotting whole cell lysates with an anti-phosphotyrosine antibody. Interestingly, the kinomics assay suggested that one of the most highly activated tyrosine kinases in ST6Gal-I-overexpressing OV4 cells was EGFR. Based on these findings, additional analyses were performed to investigate the effect of ST6Gal-I on EGFR activation. To this end, we utilized, in addition to OV4 cells, the SKOV3 ovarian cancer cell line, engineered with both ST6Gal-I overexpression and knockdown, as well as the BxPC3 pancreatic cancer cell line with knockdown of ST6Gal-I. In all three cell lines, we determined that EGFR is a substrate of ST6Gal-I, and that the sialylation status of EGFR directly correlates with ST6Gal-I expression. Cells with differential ST6Gal-I expression were subsequently evaluated for EGFR tyrosine phosphorylation. Cells with high ST6Gal-I expression were found to have elevated levels of basal and EGF-induced EGFR activation. Conversely, knockdown of ST6Gal-I greatly attenuated EGFR activation, both basally and post EGF treatment. Finally, to illustrate the functional importance of ST6Gal-I in regulating EGFR-dependent survival, cells were treated with gefitinib, an EGFR inhibitor widely used for cancer therapy. These studies showed that ST6Gal-I promotes resistance to gefitinib-mediated apoptosis, as measured by caspase activity assays. CONCLUSION Results herein indicate that ST6Gal-I promotes EGFR activation and protects against gefitinib-mediated cell death. Establishing the tumor-associated ST6Gal-I sialyltransferase as a regulator of EGFR provides novel insight into the role of glycosylation in growth factor signaling and chemoresistance.
Collapse
Affiliation(s)
- Colleen M. Britain
- 0000000106344187grid.265892.2Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 350 McCallum Building, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Andrew T. Holdbrooks
- 0000000106344187grid.265892.2Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 350 McCallum Building, 1918 University Blvd, Birmingham, AL 35294 USA
| | - Joshua C. Anderson
- 0000000106344187grid.265892.2Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233 USA
| | - Christopher D. Willey
- 0000000106344187grid.265892.2Department of Radiation Oncology, University of Alabama at Birmingham, 1700 6th Avenue South, Birmingham, AL 35233 USA
| | - Susan L. Bellis
- 0000000106344187grid.265892.2Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, 350 McCallum Building, 1918 University Blvd, Birmingham, AL 35294 USA
| |
Collapse
|
33
|
Patel KR, Roberts JT, Subedi GP, Barb AW. Restricted processing of CD16a/Fc γ receptor IIIa N-glycans from primary human NK cells impacts structure and function. J Biol Chem 2018; 293:3477-3489. [PMID: 29330305 DOI: 10.1074/jbc.ra117.001207] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/05/2018] [Indexed: 01/13/2023] Open
Abstract
CD16a/Fc γ receptor IIIa is the most abundant antibody Fc receptor expressed on human natural killer (NK) cells and activates a protective cytotoxic response following engagement with antibody clustered on the surface of a pathogen or diseased tissue. Therapeutic monoclonal antibodies (mAbs) with greater Fc-mediated affinity for CD16a show superior therapeutic outcome; however, one significant factor that promotes antibody-CD16a interactions, the asparagine-linked carbohydrates (N-glycans), remains undefined. Here, we purified CD16a from the primary NK cells of three donors and identified a large proportion of hybrid (22%) and oligomannose N-glycans (23%). These proportions indicated restricted N-glycan processing and were unlike those of the recombinant CD16a forms, which have predominantly complex-type N-glycans (82%). Tethering recombinant CD16a to the membrane by including the transmembrane and intracellular domains and via coexpression with the Fc ϵ receptor γ-chain in HEK293F cells was expected to produce N-glycoforms similar to NK cell-derived CD16a but yielded N-glycoforms different from NK cell-derived CD16a and recombinant soluble CD16a. Of note, these differences in CD16a N-glycan composition affected antibody binding: CD16a with oligomannose N-glycans bound IgG1 Fc with 12-fold greater affinity than did CD16a having primarily complex-type and highly branched N-glycans. The changes in binding activity mirrored changes in NMR spectra of the two CD16a glycoforms, indicating that CD16a glycan composition also affects the glycoprotein's structure. These results indicated that CD16a from primary human NK cells is compositionally, and likely also functionally, distinct from commonly used recombinant forms. Furthermore, our study provides critical evidence that cell lineage determines CD16a N-glycan composition and antibody-binding affinity.
Collapse
Affiliation(s)
- Kashyap R Patel
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Jacob T Roberts
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Ganesh P Subedi
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| | - Adam W Barb
- From the Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011
| |
Collapse
|
34
|
Huang ML, Michalak AL, Fisher CJ, Christy M, Smith RAA, Godula K. Small Molecule Antagonist of Cell Surface Glycosaminoglycans Restricts Mouse Embryonic Stem Cells in a Pluripotent State. Stem Cells 2017; 36:45-54. [PMID: 28984039 DOI: 10.1002/stem.2714] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 09/06/2017] [Accepted: 09/14/2017] [Indexed: 11/06/2022]
Abstract
Recently, the field of stem cell-based regeneration has turned its attention toward chemical approaches for controlling the pluripotency and differentiation of embryonic stem cells (ESCs) using drug-like small molecule modulators. Growth factor receptors or their associated downstream kinases that regulate intracellular signaling pathways during differentiation are typically the targets for these molecules. The glycocalyx, which plays an essential role in actuating responses to growth factors at the cellular boundary, offers an underexplored opportunity for intervention using small molecules to influence differentiation. Here, we show that surfen, an antagonist of cell-surface glycosaminoglycans required for growth factor association with cognate receptors, acts as a potent and general inhibitor of differentiation and promoter of pluripotency in mouse ESCs. This finding shows that drugging the stem cell Glycome with small molecules to silence differentiation cues can provide a powerful new alternative to existing techniques for controlling stem cell fate. Stem Cells 2018;36:45-54.
Collapse
Affiliation(s)
- Mia L Huang
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Austen L Michalak
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Christopher J Fisher
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Mitchell Christy
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Raymond A A Smith
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| | - Kamil Godula
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
35
|
Moerkamp AT, Leung HW, Bax NAM, Holst S, Lodder K, Berends T, Dingenouts CKE, Choo A, Smits AM, Goumans MJ. Glycosylated Cell Surface Markers for the Isolation of Human Cardiac Progenitors. Stem Cells Dev 2017; 26:1552-1565. [PMID: 28891400 DOI: 10.1089/scd.2017.0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The aim of stem cell therapy after cardiac injury is to replace damaged cardiac tissue. Human cardiac progenitor cells (CPCs) represent an interesting cell population for clinical strategies to treat cardiac disease and human CPC-specific antibodies would aid in the clinical implementation of cardiac progenitor-based cell therapy. However, the field of CPC biology suffers from the lack of human CPC-specific markers. Therefore, we raised a panel of monoclonal antibodies (mAb) against CPCs. Of this panel of antibodies, we show that mAb C1096 recognizes a progenitor-like population in the fetal and adult human heart and partially colocalize with reported CPC populations in vitro. Furthermore, mAb C1096 can be used to isolate a multipotent progenitor population from human heart tissue. Interestingly, the two lead candidates, mAb C1096 and mAb C19, recognize glycosylated residues on PECAM1 (platelet and endothelial cell adhesion molecule 1) and GRP78, respectively, and de-N-glycosylation significantly abolishes their binding. Thereby, this report describes new clinically applicable antibodies against human CPCs, and for the first time demonstrates the importance of glycosylated residues as CPCs specific markers.
Collapse
Affiliation(s)
- Asja T Moerkamp
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Hau Wan Leung
- 2 Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Noortje A M Bax
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands .,3 Department of Biomedical Engineering, Eindhoven University of Technology , Eindhoven, the Netherlands
| | - Stephanie Holst
- 4 Center for Proteomics and Metabolomics, Leiden University Medical Center , Leiden, the Netherlands
| | - Kirsten Lodder
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Thijs Berends
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Calinda K E Dingenouts
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Andre Choo
- 2 Bioprocessing Technology Institute , Agency for Science, Technology and Research (A*STAR), Singapore, Singapore .,5 Department of Bioengineering, National University of Singapore , Singapore, Singapore
| | - Anke M Smits
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| | - Marie-José Goumans
- 1 Department of Molecular Cell Biology, Leiden University Medical Center , Leiden, the Netherlands
| |
Collapse
|
36
|
Carvalho-Cruz P, Alisson-Silva F, Todeschini AR, Dias WB. Cellular glycosylation senses metabolic changes and modulates cell plasticity during epithelial to mesenchymal transition. Dev Dyn 2017; 247:481-491. [PMID: 28722313 DOI: 10.1002/dvdy.24553] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/09/2017] [Accepted: 07/10/2017] [Indexed: 12/25/2022] Open
Abstract
Epithelial to mesenchymal transition (EMT) is a developmental program reactivated by tumor cells that leads to the switch from epithelial to mesenchymal phenotype. During EMT, cells are transcriptionally regulated to decrease E-cadherin expression while expressing mesenchymal markers such as vimentin, fibronectin, and N-cadherin. Growing body of evidences suggest that cells engaged in EMT undergo a metabolic reprograming process, redirecting glucose flux toward hexosamine biosynthesis pathway (HBP), which fuels aberrant glycosylation patterns that are extensively observed in cancer cells. HBP depends on nutrient availability to produce its end product UDP-GlcNAc, and for this reason is considered a metabolic sensor pathway. UDP-GlcNAc is the substrate used for the synthesis of major types of glycosylation, including O-GlcNAc and cell surface glycans. In general, the rate limiting enzyme of HBP, GFAT, is overexpressed in many cancer types that present EMT features as well as aberrant glycosylation. Moreover, altered levels of O-GlcNAcylation can modulate cell morphology and favor EMT. In this review, we summarize some of the current knowledge that correlates glucose metabolism, aberrant glycosylation and hyper O-GlcNAcylation supported by HBP that leads to EMT activation. Developmental Dynamics 247:481-491, 2018. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Patricia Carvalho-Cruz
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Frederico Alisson-Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Adriane R Todeschini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wagner B Dias
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
37
|
Dougher CWL, Buffone A, Nemeth MJ, Nasirikenari M, Irons EE, Bogner PN, Lau JTY. The blood-borne sialyltransferase ST6Gal-1 is a negative systemic regulator of granulopoiesis. J Leukoc Biol 2017; 102:507-516. [PMID: 28550122 PMCID: PMC5505748 DOI: 10.1189/jlb.3a1216-538rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/25/2022] Open
Abstract
Responding to systemic demands in producing and replenishing end-effector blood cells is predicated on the appropriate delivery and interpretation of extrinsic signals to the HSPCs. The data presented herein implicate the systemic, extracellular form of the glycosyltransferase ST6Gal-1 in the regulation of late-stage neutrophil development. ST6Gal-1 is typically a membrane-bound enzyme sequestered within the intracellular secretory apparatus, but an extracellular form is released into the blood from the liver. Both human and murine HSPCs, upon exposure to extracellular ST6Gal-1 ex vivo, exhibited decreased proliferation, diminished expression of the neutrophilic primary granule protein MPO, and decreased appearance of CD11b+ cells. HSPC suppression was preceded by decreased STAT-3 phosphorylation and diminished C/EBPα expression, without increased apoptosis, indicating attenuated G-CSF receptor signaling. A murine model to raise systemic ST6Gal-1 level was developed to examine the role of the circulatory enzyme in vivo. Our results show that systemic ST6Gal-1 modified the cell surface of the GMP subset of HSPCs and decreased marrow neutrophil reserves. Acute airway neutrophilic inflammation by LPS challenge was used to drive demand for new neutrophil production. Reduced neutrophil infiltration into the airway was observed in mice with elevated circulatory ST6Gal-1 levels. The blunted transition of GMPs into GPs in vitro is consistent with ST6Gal-1-attenuated granulopoiesis. The data confirm that circulatory ST6Gal-1 is a negative systemic regulator of granulopoiesis and moreover suggest a clinical potential to limit the number of inflammatory cells by manipulating blood ST6Gal-1 levels.
Collapse
Affiliation(s)
| | - Alexander Buffone
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Michael J Nemeth
- Department of Immunology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Mehrab Nasirikenari
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Eric E Irons
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| | - Paul N Bogner
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, New York, USA
| | - Joseph T Y Lau
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, New York, USA; and
| |
Collapse
|
38
|
Potassium as a pluripotency-associated element identified through inorganic element profiling in human pluripotent stem cells. Sci Rep 2017; 7:5005. [PMID: 28694442 PMCID: PMC5504050 DOI: 10.1038/s41598-017-05117-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 05/24/2017] [Indexed: 12/20/2022] Open
Abstract
Despite their well-known function in maintaining normal cell physiology, how inorganic elements are relevant to cellular pluripotency and differentiation in human pluripotent stem cells (hPSCs) has yet to be systematically explored. Using total reflection X-ray fluorescence (TXRF) spectrometry and inductively coupled plasma mass spectrometry (ICP-MS), we analyzed the inorganic components of human cells with isogenic backgrounds in distinct states of cellular pluripotency. The elemental profiles revealed that the potassium content of human cells significantly differs when their cellular pluripotency changes. Pharmacological treatment that alters cell membrane permeability to potassium affected the maintenance and establishment of cellular pluripotency via multiple mechanisms in bona fide hPSCs and reprogrammed cells. Collectively, we report that potassium is a pluripotency-associated inorganic element in human cells and provide novel insights into the manipulation of cellular pluripotency in hPSCs by regulating intracellular potassium.
Collapse
|
39
|
Konze SA, Cajic S, Oberbeck A, Hennig R, Pich A, Rapp E, Buettner FFR. Quantitative Assessment of Sialo-Glycoproteins and N-Glycans during Cardiomyogenic Differentiation of Human Induced Pluripotent Stem Cells. Chembiochem 2017; 18:1317-1331. [PMID: 28509371 DOI: 10.1002/cbic.201700100] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Indexed: 12/25/2022]
Abstract
Human induced pluripotent stem-cell-derived cardiomyocytes (hiPSC CMs) may be used in regenerative medicine for individualized tissue transplants in the future. For application in patients, the generated CMs have to be highly pure and well characterized. In order to overcome the prevalent scarcity of CM-specific markers, we quantitatively assessed cell-surface-exposed sialo-glycoproteins and N-glycans of hiPSCs, CM progenitors, and CMs. Applying a combination of metabolic labeling and specific sialo-glycoprotein capture, we could highly enrich and quantify membrane proteins during cardiomyogenic differentiation. Among them we identified a number of novel, putative biomarkers for hiPSC CMs. Analysis of the N-glycome by capillary gel electrophoresis revealed three novel structures comprising β1,3-linked galactose, α2,6-linked sialic acid and complex fucosylation; these were highly specific for hiPSCs. Bisecting GlcNAc structures strongly increased during differentiation, and we propose that they are characteristic of early, immature CMs.
Collapse
Affiliation(s)
- Sarah A Konze
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Astrid Oberbeck
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - René Hennig
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Andreas Pich
- Institute of Toxicology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Falk F R Buettner
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
- REBIRTH Cluster of Excellence, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
40
|
Abeln M, Borst KM, Cajic S, Thiesler H, Kats E, Albers I, Kuhn M, Kaever V, Rapp E, Münster-Kühnel A, Weinhold B. Sialylation Is Dispensable for Early Murine Embryonic Development in Vitro. Chembiochem 2017; 18:1305-1316. [PMID: 28374933 PMCID: PMC5502888 DOI: 10.1002/cbic.201700083] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/19/2022]
Abstract
The negatively charged nonulose sialic acid (Sia) is essential for murine development in vivo. In order to elucidate the impact of sialylation on differentiation processes in the absence of maternal influences, we generated mouse embryonic stem cell (mESC) lines that lack CMP‐Sia synthetase (CMAS) and thereby the ability to activate Sia to CMP‐Sia. Loss of CMAS activity resulted in an asialo cell surface accompanied by an increase in glycoconjugates with terminal galactosyl and oligo‐LacNAc residues, as well as intracellular accumulation of free Sia. Remarkably, these changes did not impact intracellular metabolites or the morphology and transcriptome of pluripotent mESC lines. Moreover, the capacity of Cmas−/− mESCs for undirected differentiation into embryoid bodies, germ layer formation and even the generation of beating cardiomyocytes provides first and conclusive evidence that pluripotency and differentiation of mESC in vitro can proceed in the absence of (poly)sialoglycans.
Collapse
Affiliation(s)
- Markus Abeln
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Kristina M Borst
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Samanta Cajic
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Hauke Thiesler
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Elina Kats
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Iris Albers
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Maike Kuhn
- TWINCORE Centre for Experimental and Clinical Infection Research GmbH, A joint venture between Hannover Medical School, Feodor-Lynen-Strasse 7, 30625, Hannover, Germany.,Helmholtz Centre for Infection Research, Inhoffenstrasse 7, 38124, Braunschweig, Germany
| | - Volkhard Kaever
- Research Core Unit Metabolomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Erdmann Rapp
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany.,glyXera GmbH, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Anja Münster-Kühnel
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| | - Birgit Weinhold
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany
| |
Collapse
|
41
|
Comprehensive Cell Surface Protein Profiling Identifies Specific Markers of Human Naive and Primed Pluripotent States. Cell Stem Cell 2017; 20:874-890.e7. [PMID: 28343983 PMCID: PMC5459756 DOI: 10.1016/j.stem.2017.02.014] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/25/2017] [Accepted: 02/27/2017] [Indexed: 01/09/2023]
Abstract
Human pluripotent stem cells (PSCs) exist in naive and primed states and provide important models to investigate the earliest stages of human development. Naive cells can be obtained through primed-to-naive resetting, but there are no reliable methods to prospectively isolate unmodified naive cells during this process. Here we report comprehensive profiling of cell surface proteins by flow cytometry in naive and primed human PSCs. Several naive-specific, but not primed-specific, proteins were also expressed by pluripotent cells in the human preimplantation embryo. The upregulation of naive-specific cell surface proteins during primed-to-naive resetting enabled the isolation and characterization of live naive cells and intermediate cell populations. This analysis revealed distinct transcriptional and X chromosome inactivation changes associated with the early and late stages of naive cell formation. Thus, identification of state-specific proteins provides a robust set of molecular markers to define the human PSC state and allows new insights into the molecular events leading to naive cell resetting. Flow cytometry profiles cell surface proteins in naive and primed human PSCs The human PSC state can be defined using robust state-specific protein markers Identified cell surface proteins track the dynamics of naive-primed PSC conversions Analyses of early-stage naive cells reveal transcription events during conversion
Collapse
|
42
|
Bresler SC, Min L, Rodig SJ, Walls AC, Xu S, Geng S, Hodi FS, Murphy GF, Lian CG. Gene expression profiling of anti-CTLA4-treated metastatic melanoma in patients with treatment-induced autoimmunity. J Transl Med 2017; 97:207-216. [PMID: 27918555 DOI: 10.1038/labinvest.2016.126] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/28/2016] [Indexed: 12/28/2022] Open
Abstract
Ipilimumab (IPI) is a monoclonal antibody that targets the inhibitory CTLA4 receptor of T cells, enhancing T-cell-driven antitumor responses. IPI therapy in metastatic melanoma results in significant improvement in disease-free and overall survival, although after initial responses disease progression generally ensues. Identification of specific responses in tissue where melanoma tumor cells are subjected to IPI-driven immune attack may reveal mechanisms of treatment efficacy or resistance, permitting refinement of targeted therapeutic approaches. We used NanoString digital barcoding chemistry to identify changes in the transcriptome of metastatic melanoma cells before and after IPI treatment using two comprehensive panels containing a total of 1330 unique genes. Only patients who developed autoimmune disorders following treatment, signifying a robust immune response, were included. Despite evidence of an enhanced immune response, most patients eventually exhibited disease progression. Overall, data from five pre-IPI tumors and four post-IPI tumor samples (from three patients) permitted identification of several candidate genes that showed increased expression based on normalized counts after therapy. These included TTK (~3.1-fold, P=1.18e-4), which encodes a dual-specificity protein tyrosine kinase, a known cell cycle regulator, and BIRC5 (~3.0-fold, P=9.36e-4), which encodes the antiapoptotic protein survivin. Both TTK (MPS1) and survivin are targetable proteins against which a number of pharmacologic agents have been developed. CDK1, which encodes a protein tyrosine kinase known to phosphorylate survivin, was also upregulated (~3.2-fold, P=2.80-3). Tumor cell expression of TTK and survivin proteins was confirmed using immunohistochemistry in an expanded patient cohort. Differences in gene expression for several commonly encountered immune antigens, such as CD3, CD4, CD8, and CTLA4, were not statistically significant, likely reflecting the long length of time (average 323 days) between the last IPI dose and post-treatment biopsies. Although our sample size is limited, these results for the first time identify targetable genes that are significantly altered by interaction between a highly activated, IPI-treated immune system and melanoma cells.
Collapse
Affiliation(s)
- Scott C Bresler
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Le Min
- Harvard Medical School, Boston, MA, USA.,Endocrinology Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Scott J Rodig
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Andrew C Walls
- Harvard Medical School, Boston, MA, USA.,Department of Dermatology, Brigham and Women's Hospital, Boston, MA, USA
| | - Shuyun Xu
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Songmei Geng
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - F Stephen Hodi
- Harvard Medical School, Boston, MA, USA.,Dana Farber Cancer Institute, Boston, MA, USA
| | - George F Murphy
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Christine G Lian
- Program in Dermatopathology, Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| |
Collapse
|
43
|
Britain CM, Dorsett KA, Bellis SL. The Glycosyltransferase ST6Gal-I Protects Tumor Cells against Serum Growth Factor Withdrawal by Enhancing Survival Signaling and Proliferative Potential. J Biol Chem 2017; 292:4663-4673. [PMID: 28154177 DOI: 10.1074/jbc.m116.763862] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 01/24/2017] [Indexed: 12/27/2022] Open
Abstract
A hallmark of cancer cells is the ability to survive and proliferate when challenged with stressors such as growth factor insufficiency. In this study, we report a novel glycosylation-dependent mechanism that protects tumor cells from serum growth factor withdrawal. Our results suggest that the β-galactoside α-2,6-sialyltransferase 1 (ST6Gal-I) sialyltransferase, which is up-regulated in numerous cancers, promotes the survival of serum-starved cells. Using ovarian and pancreatic cancer cell models with ST6Gal-I overexpression or knockdown, we find that serum-starved cells with high ST6Gal-I levels exhibit increased activation of prosurvival signaling molecules, including pAkt, p-p70S6K, and pNFκB. Correspondingly, ST6Gal-I activity augments the expression of tumor-promoting pNFκB transcriptional targets such as IL-6, IL-8, and the apoptosis inhibitor cIAP2. ST6Gal-I also potentiates expression of the cell cycle regulator cyclin D2, leading to increased phosphorylation and inactivation of the cell cycle inhibitor pRb. Consistent with these results, serum-starved cells with high ST6Gal-I expression maintain a greater number of S phase cells compared with low ST6Gal-I expressors, reflecting enhanced proliferation. Finally, selective enrichment in clonal variants with high ST6Gal-I expression is observed upon prolonged serum deprivation, supporting the concept that ST6Gal-I confers a survival advantage. Collectively, these results implicate a functional role for ST6Gal-I in fostering tumor cell survival within the serum-depleted tumor microenvironment.
Collapse
Affiliation(s)
- Colleen M Britain
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Kaitlyn A Dorsett
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Susan L Bellis
- From the Department of Cell, Developmental, and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama 35294
| |
Collapse
|
44
|
O'Brien CM, Chy HS, Zhou Q, Blumenfeld S, Lambshead JW, Liu X, Kie J, Capaldo BD, Chung TL, Adams TE, Phan T, Bentley JD, McKinstry WJ, Oliva K, McMurrick PJ, Wang YC, Rossello FJ, Lindeman GJ, Chen D, Jarde T, Clark AT, Abud HE, Visvader JE, Nefzger CM, Polo JM, Loring JF, Laslett AL. New Monoclonal Antibodies to Defined Cell Surface Proteins on Human Pluripotent Stem Cells. Stem Cells 2017; 35:626-640. [PMID: 28009074 PMCID: PMC5412944 DOI: 10.1002/stem.2558] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 10/31/2016] [Accepted: 11/18/2016] [Indexed: 01/28/2023]
Abstract
The study and application of human pluripotent stem cells (hPSCs) will be enhanced by the availability of well‐characterized monoclonal antibodies (mAbs) detecting cell‐surface epitopes. Here, we report generation of seven new mAbs that detect cell surface proteins present on live and fixed human ES cells (hESCs) and human iPS cells (hiPSCs), confirming our previous prediction that these proteins were present on the cell surface of hPSCs. The mAbs all show a high correlation with POU5F1 (OCT4) expression and other hPSC surface markers (TRA‐160 and SSEA‐4) in hPSC cultures and detect rare OCT4 positive cells in differentiated cell cultures. These mAbs are immunoreactive to cell surface protein epitopes on both primed and naive state hPSCs, providing useful research tools to investigate the cellular mechanisms underlying human pluripotency and states of cellular reprogramming. In addition, we report that subsets of the seven new mAbs are also immunoreactive to human bone marrow‐derived mesenchymal stem cells (MSCs), normal human breast subsets and both normal and tumorigenic colorectal cell populations. The mAbs reported here should accelerate the investigation of the nature of pluripotency, and enable development of robust cell separation and tracing technologies to enrich or deplete for hPSCs and other human stem and somatic cell types. Stem Cells2017;35:626–640
Collapse
Affiliation(s)
- Carmel M O'Brien
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Hun S Chy
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Qi Zhou
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | | | - Jack W Lambshead
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Xiaodong Liu
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Joshua Kie
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Bianca D Capaldo
- The Walter and Eliza Hall Institute (WEHI), Parkville, Victoria, Australia.,Department of Medical Biology
| | - Tung-Liang Chung
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Timothy E Adams
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia
| | - Tram Phan
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia
| | - John D Bentley
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia
| | | | - Karen Oliva
- Department of Surgery, Cabrini Monash University, Malvern, Victoria, Australia
| | - Paul J McMurrick
- Department of Surgery, Cabrini Monash University, Malvern, Victoria, Australia
| | - Yu-Chieh Wang
- Department of Chemical Physiology.,Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Fernando J Rossello
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Geoffrey J Lindeman
- The Walter and Eliza Hall Institute (WEHI), Parkville, Victoria, Australia.,Department of Medicine, The University of Melbourne, Parkville, Victoria, Australia.,Department of Medical Oncology, The Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Di Chen
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA
| | - Thierry Jarde
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.,Cancer Program, Monash Biomedicine Discovery Institute.,Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Amander T Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, California, USA
| | - Helen E Abud
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia.,Cancer Program, Monash Biomedicine Discovery Institute
| | - Jane E Visvader
- The Walter and Eliza Hall Institute (WEHI), Parkville, Victoria, Australia.,Department of Medical Biology
| | - Christian M Nefzger
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Jose M Polo
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia.,Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria, Australia
| | - Jeanne F Loring
- Department of Chemical Physiology.,Center for Regenerative Medicine, The Scripps Research Institute, La Jolla, California, USA
| | - Andrew L Laslett
- Clayton and Parkville, CSIRO Manufacturing, Victoria, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
45
|
Berger RP, Dookwah M, Steet R, Dalton S. Glycosylation and stem cells: Regulatory roles and application of iPSCs in the study of glycosylation-related disorders. Bioessays 2016; 38:1255-1265. [PMID: 27667795 PMCID: PMC5214967 DOI: 10.1002/bies.201600138] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Glycosylation refers to the co- and post-translational modification of protein and lipids by monosaccharides or oligosaccharide chains. The surface of mammalian cells is decorated by a heterogeneous and highly complex array of protein and lipid linked glycan structures that vary significantly between different cell types, raising questions about their roles in development and disease pathogenesis. This review will begin by focusing on recent findings that define roles for cell surface protein and lipid glycosylation in pluripotent stem cells and their functional impact during normal development. Then, we will describe how patient derived induced pluripotent stem cells are being used to model human diseases such as congenital disorders of glycosylation. Collectively, these studies indicate that cell surface glycans perform critical roles in human development and disease.
Collapse
Affiliation(s)
- Ryan P. Berger
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| | - Michelle Dookwah
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Richard Steet
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Center for Molecular Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
46
|
Structural and quantitative evidence of α2-6-sialylated N-glycans as markers of the differentiation potential of human mesenchymal stem cells. Glycoconj J 2016; 34:797-806. [PMID: 27314244 PMCID: PMC5711977 DOI: 10.1007/s10719-016-9699-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 02/02/2023]
Abstract
Human somatic stem cells such as mesenchymal stem cells (hMSCs) have the capacity to differentiate into mesenchymal tissue lineages and to alter immune regulatory functions. As such, they hold promise for use in stem cell-based therapies. However, no method is currently available to evaluate the actual differentiation capacity of hMSCs prior to cell transplantation. Previously, we performed a comprehensive glycan profiling of adipose-derived hMSCs using high-density lectin microarray and demonstrated that α2–6-sialylation is a marker of the differentiation potential of these cells. Nevertheless, no information was available about the structural details of these of α2–6-sialylated glycans. Here we used high performance liquid chromatography (HPLC) analysis combined with mass spectrometry (MS) to perform a structural and quantitative glycome analysis targeting both N- and O-glycans derived from early (with differentiation ability) and late (without differentiation ability) passages of adipose tissue-derived hMSCs. Findings in these cells were compared with those from human induced pluripotent stem cells (hiPSCs), human dermal fibroblasts (hFibs) and cartilage tissue-derived chondrocytes. A higher percentage of α2–6-sialylated N-glycans was detected in early passage cells (24–28 % of sialylated N-glycans) compared with late passage cells (13–15 %). A major α2–6-sialylated N-glycan structure detected in adipose-derived hMSCs was that of mono-sialylated biantennary N-glycan. Similar results were obtained for the cartilage tissue-derived chondrocytes, Yub621c (28 % for passage 7 and 5 % for passage 28). In contrast, no significant differences were observed between early and late passage hMSCs with respect to α2–6-sialylated O-glycan percentages. These results demonstrate that levels of α2–6-sialylated N-glycans, but not O-glycans, could be used as markers of the differential potential of hMSCs.
Collapse
|
47
|
Schultz MJ, Holdbrooks AT, Chakraborty A, Grizzle WE, Landen CN, Buchsbaum DJ, Conner MG, Arend RC, Yoon KJ, Klug CA, Bullard DC, Kesterson RA, Oliver PG, O'Connor AK, Yoder BK, Bellis SL. The Tumor-Associated Glycosyltransferase ST6Gal-I Regulates Stem Cell Transcription Factors and Confers a Cancer Stem Cell Phenotype. Cancer Res 2016; 76:3978-88. [PMID: 27216178 DOI: 10.1158/0008-5472.can-15-2834] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 03/14/2016] [Indexed: 12/14/2022]
Abstract
The glycosyltransferase ST6Gal-I, which adds α2-6-linked sialic acids to substrate glycoproteins, has been implicated in carcinogenesis; however, the nature of its pathogenic role remains poorly understood. Here we show that ST6Gal-I is upregulated in ovarian and pancreatic carcinomas, enriched in metastatic tumors, and associated with reduced patient survival. Notably, ST6Gal-I upregulation in cancer cells conferred hallmark cancer stem-like cell (CSC) characteristics. Modulating ST6Gal-I expression in pancreatic and ovarian cancer cells directly altered CSC spheroid growth, and clonal variants with high ST6Gal-I activity preferentially survived in CSC culture. Primary ovarian cancer cells from patient ascites or solid tumors sorted for α2-6 sialylation grew as spheroids, while cells lacking α2-6 sialylation remained as single cells and lost viability. ST6Gal-I also promoted resistance to gemcitabine and enabled the formation of stably resistant colonies. Gemcitabine treatment of patient-derived xenograft tumors enriched for ST6Gal-I-expressing cells relative to pair-matched untreated tumors. ST6Gal-I also augmented tumor-initiating potential. In limiting dilution assays, subcutaneous tumor formation was inhibited by ST6Gal-I knockdown, whereas in a chemically induced tumor initiation model, mice with conditional ST6Gal-I overexpression exhibited enhanced tumorigenesis. Finally, we found that ST6Gal-I induced expression of the key tumor-promoting transcription factors, Sox9 and Slug. Collectively, this work highlighted a previously unrecognized role for a specific glycosyltransferase in driving a CSC state. Cancer Res; 76(13); 3978-88. ©2016 AACR.
Collapse
Affiliation(s)
- Matthew J Schultz
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Andrew T Holdbrooks
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Asmi Chakraborty
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - William E Grizzle
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Charles N Landen
- Department of Obstetrics and Gynecology, University of Virginia, Charlottesville, Virginia
| | - Donald J Buchsbaum
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Michael G Conner
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Rebecca C Arend
- Department of Obstetrics and Gynecology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Karina J Yoon
- Department of Pharmacology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Christopher A Klug
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Daniel C Bullard
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Robert A Kesterson
- Department of Genetics, University of Alabama at Birmingham, Birmingham, Alabama
| | - Patsy G Oliver
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Amber K O'Connor
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Bradley K Yoder
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Susan L Bellis
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, Alabama.
| |
Collapse
|
48
|
Berger RP, Sun YH, Kulik M, Lee JK, Nairn AV, Moremen KW, Pierce M, Dalton S. ST8SIA4-Dependent Polysialylation is Part of a Developmental Program Required for Germ Layer Formation from Human Pluripotent Stem Cells. Stem Cells 2016; 34:1742-52. [PMID: 27074314 DOI: 10.1002/stem.2379] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/29/2016] [Accepted: 03/30/2016] [Indexed: 12/18/2022]
Abstract
Polysialic acid (PSA) is a carbohydrate polymer of repeating α-2,8 sialic acid residues that decorates multiple targets, including neural cell adhesion molecule (NCAM). PST and STX encode the two enzymes responsible for PSA modification of target proteins in mammalian cells, but despite widespread polysialylation in embryonic development, the majority of studies have focused strictly on the role of PSA in neurogenesis. Using human pluripotent stem cells (hPSCs), we have revisited the developmental role of PST and STX and show that early progenitors of the three embryonic germ layers are polysialylated on their cell surface. Changes in polysialylation can be attributed to lineage-specific expression of polysialyltransferase genes; PST is elevated in endoderm and mesoderm, while STX is elevated in ectoderm. In hPSCs, PST and STX genes are epigenetically marked by overlapping domains of H3K27 and H3K4 trimethylation, indicating that they are held in a "developmentally-primed" state. Activation of PST transcription during early mesendoderm differentiation is under control of the T-Goosecoid transcription factor network, a key regulatory axis required for early cell fate decisions in the vertebrate embryo. This establishes polysialyltransferase genes as part of a developmental program associated with germ layer establishment. Finally, we show by shRNA knockdown and CRISPR-Cas9 genome editing that PST-dependent cell surface polysialylation is essential for endoderm specification. This is the first report to demonstrate a role for a glycosyltransferase in hPSC lineage specification. Stem Cells 2016;34:1742-1752.
Collapse
Affiliation(s)
- Ryan P Berger
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Yu Hua Sun
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Michael Kulik
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| | - Jin Kyu Lee
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Alison V Nairn
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Michael Pierce
- Complex Carbohydrate Research Center, The University of Georgia, Athens, Georgia, USA
| | - Stephen Dalton
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia, USA.,Center for Molecular Medicine, The University of Georgia, Athens, Georgia, USA
| |
Collapse
|
49
|
Tateno H, Saito S, Hiemori K, Kiyoi K, Hasehira K, Toyoda M, Onuma Y, Ito Y, Akutsu H, Hirabayashi J. α2–6 sialylation is a marker of the differentiation potential of human mesenchymal stem cells. Glycobiology 2016; 26:1328-1337. [DOI: 10.1093/glycob/cww039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/05/2016] [Accepted: 03/18/2016] [Indexed: 02/07/2023] Open
|