1
|
Qian Z, Li Z, Peng X, Mao Y, Mao X, Li J. Annexin A: Cell Death, Inflammation, and Translational Medicine. J Inflamm Res 2025; 18:5655-5672. [PMID: 40309306 PMCID: PMC12042829 DOI: 10.2147/jir.s511439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
The annexin superfamily proteins, a family of calcium-dependent phospholipid-binding proteins, are involved in a variety of Ca²+-regulated membrane events. Annexin A, expressed in vertebrates, has been implicated in a variety of regulated cell death (RCD) pathways, including apoptosis, autophagy, pyroptosis, ferroptosis, and neutrophil extracellular trap-induced cell death (NETosis). Given that inflammation is a key driver of cell death, the roles of Annexin A in inflammation have been extensively studied. In this review, we discuss the regulatory roles of Annexin A in RCD and inflammation, the development of related targeted therapies in translational medicine, and the application of animal models to study these processes. We also analyze current challenges and discuss future directions for improved diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Zibing Qian
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Ziyi Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Xuebin Peng
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Yongwu Mao
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Xiaorong Mao
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Department of Infectious Disease, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| | - Junfeng Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
- Institute of Infectious Diseases, The First Hospital of Lanzhou University, Lanzhou, Gansu, 730000, People’s Republic of China
| |
Collapse
|
2
|
Babu N, Gadepalli A, Akhilesh, Sharma D, Singh AK, Chouhan D, Agrawal S, Tiwari V. TLR-4: a promising target for chemotherapy-induced peripheral neuropathy. Mol Biol Rep 2024; 51:1099. [PMID: 39466456 DOI: 10.1007/s11033-024-10038-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024]
Abstract
Chemotherapy-induced peripheral neuropathy (CIPN) affects a significant majority of cancer patients, with up to 80% experiencing this severe and dose-limiting side effect while undergoing anti-cancer treatment. CIPN can be induced by a variety of drugs commonly employed in the management of both solid tumors and hematologic cancers. The inadequacies in comprehending the pharmacological interventions associated with CIPN and the subsequent signaling pathways have significantly contributed to the disappointing outcomes of several drugs in clinical trials. Recent investigations in pain research have demonstrated a growing inclination toward addressing neuro-inflammation as a strategy for managing chronic pain conditions. Notably, toll-like receptor-4 (TLR-4) has emerged as a key player in immune system activation and is undergoing extensive research. In this review, we emphasize the potential role of TLR-4 in neuropathic pain, highlighting its promise as a target for CIPN treatment. Furthermore, we explore and analyse the intricate interplay between TLR-4, diverse immune cells, downstream pathways, and receptors within the context of CIPN. A comprehensive exploration of these interactions provides valuable insights into the central role of TLR-4 in CIPN development, paving the way for potential ground-breaking therapeutic approaches to alleviate this debilitating condition.
Collapse
Affiliation(s)
- Nagendra Babu
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Anagha Gadepalli
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Akhilesh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Dilip Sharma
- Amity Institute of Pharmacy, Amity University of Haryana, Gurgaon, India
| | - Anurag Kumar Singh
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Deepak Chouhan
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Somesh Agrawal
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India
| | - Vinod Tiwari
- Neuroscience and Pain Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi, Uttar Pradesh, India.
| |
Collapse
|
3
|
Tian X, Chen L, Zhou J, Wang E, Wang M, Jakubovics N, Li J, Song K, Lau KT, Koepfli KP, Zhang S, Tan GYA, Yang Y, Choo SW. Pangolin scales as adaptations for innate immunity against pathogens. BMC Biol 2024; 22:234. [PMID: 39397000 PMCID: PMC11472485 DOI: 10.1186/s12915-024-02034-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Pangolins are the only mammals that have overlapping scales covering most of their bodies, and they play a crucial role in the ecosystem, biological research, and human health and disease. Previous studies indicated pangolin scale might provide an important mechanical defense to themselves. The origin and exact functions of this unique trait remain a mystery. Using a multi-omics analysis approach, we report a novel functional explanation for how mammalian scales can provide host-pathogen defense. RESULTS Our data suggest that pangolin scales have a sophisticated structure that could potentially trap pathogens. We identified numerous proteins and metabolites exhibiting antimicrobial activity, which could suggest a role for scales in pathogen defense. Notably, we found evidence suggesting the presence of exosomes derived from diverse cellular origins, including mesenchymal stem cells, immune cells, and keratinocytes. This observation suggests a complex interplay where various cell types may contribute to the release of exosomes and antimicrobial compounds at the interface between scales and viable tissue. These findings indicate that pangolin scales may serve as a multifaceted defense system, potentially contributing to innate immunity. Comparisons with human nail and hair revealed pangolin-specific proteins that were enriched in functions relating to sensing, immune responses, neutrophil degranulation, and stress responses. We demonstrated the antimicrobial activity of key pangolin scale components on pathogenic bacteria by antimicrobial assays. CONCLUSIONS This study identifies a potential role of pangolin scales and implicates scales, as possible determinants of pathogen defense due to their structure and contents. We indicate for the first time the presence of exosomes in pangolin scales and propose the new functions of scales and their mechanisms. This new mechanism could have implications for multiple fields, including providing interesting new research directions and important insights that can be useful for synthesizing and implementing new biomimetic antimicrobial approaches.
Collapse
Affiliation(s)
- Xuechen Tian
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Province-Malaysia International Joint Laboratory for Modern Agriculture and Microbial Innovation, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Li Chen
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Jinfeng Zhou
- China Biodiversity Conservation and Green Development Foundation, Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Enbo Wang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - Mu Wang
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Nicholas Jakubovics
- School of Dental Sciences, Faculty of Medical Sciences, Newcastle University, Framlington Place, Newcastle Upon Tyne, NE2 4BW, UK
| | - Jing Li
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Kunping Song
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
| | - King Tong Lau
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou, China
| | - Klaus-Peter Koepfli
- Smithsonian-Mason School of Conservation, George Mason University, Front Royal, VA, 22630, USA
- Center for Species Survival, Smithsonian's National Zoo and Conservation Biology Institute, Washington, D.C, 20008, USA
| | - Siyuan Zhang
- China Biodiversity Conservation and Green Development Foundation, Empark International Apartment, No. 69, Banding Road, Haidian District, Beijing, China
| | - Geok Yuan Annie Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Yixin Yang
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Zhejiang Province-Malaysia International Joint Laboratory for Modern Agriculture and Microbial Innovation, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA
| | - Siew Woh Choo
- College of Science, Mathematics and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Zhejiang Province-Malaysia International Joint Laboratory for Modern Agriculture and Microbial Innovation, Wenzhou-Kean University, Ouhai, Wenzhou, Zhejiang Province, 325060, China.
- Dorothy and George Hennings College of Science, Mathematics and Technology, Kean University, 1000 Morris Ave, Union, NJ, 07083, USA.
| |
Collapse
|
4
|
Wang T, Zhao D, Zhang Y, Yu D, Liu G, Zhang K. Annexin A2: A Double-Edged Sword in Pathogen Infection. Pathogens 2024; 13:564. [PMID: 39057791 PMCID: PMC11279864 DOI: 10.3390/pathogens13070564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/23/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Annexin A2 (ANXA2) is a multifunctional calcium- and phospholipid-binding protein that plays an important role in various cells. During pathogen infections, ANXA2 modulates the nuclear factor kappa-B (NF-κB) and cell apoptosis signaling pathways and guides the chemotaxis of inflammatory cells toward inflammation sites, thereby protecting the host organism through the modulation of the inflammatory response. In addition, ANXA2 can regulate immune responses, and in certain pathogen infections, it can interact with pathogen proteins to facilitate their invasion and proliferation. This review provides an overview of the research progress on how ANXA2 regulates pathogen infections.
Collapse
Affiliation(s)
- Tianyu Wang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Dengshuai Zhao
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Yuanhang Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Dixi Yu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| | - Guoping Liu
- College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China
| | - Keshan Zhang
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China
| |
Collapse
|
5
|
Papadakos SP, Arvanitakis K, Stergiou IE, Vallilas C, Sougioultzis S, Germanidis G, Theocharis S. Interplay of Extracellular Vesicles and TLR4 Signaling in Hepatocellular Carcinoma Pathophysiology and Therapeutics. Pharmaceutics 2023; 15:2460. [PMID: 37896221 PMCID: PMC10610499 DOI: 10.3390/pharmaceutics15102460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/30/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) stands as a significant contributor to global cancer-related mortality. Chronic inflammation, often arising from diverse sources such as viral hepatitis, alcohol misuse, nonalcoholic fatty liver disease (NAFLD), and nonalcoholic steatohepatitis (NASH), profoundly influences HCC development. Within this context, the interplay of extracellular vesicles (EVs) gains prominence. EVs, encompassing exosomes and microvesicles, mediate cell-to-cell communication and cargo transfer, impacting various biological processes, including inflammation and cancer progression. Toll-like receptor 4 (TLR4), a key sentinel of the innate immune system, recognizes both pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs), thereby triggering diverse signaling cascades and pro-inflammatory cytokine release. The intricate involvement of the TLR4 signaling pathway in chronic liver disease and HCC pathogenesis is discussed in this study. Moreover, we delve into the therapeutic potential of modulating the TLR4 pathway using EVs as novel therapeutic agents for HCC. This review underscores the multifaceted role of EVs in the context of HCC and proposes innovative avenues for targeted interventions against this formidable disease.
Collapse
Affiliation(s)
- Stavros P. Papadakos
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Konstantinos Arvanitakis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Ioanna E. Stergiou
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Christos Vallilas
- Molecular Oncology Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| | - Stavros Sougioultzis
- Department of Pathophysiology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece; (I.E.S.); (S.S.)
| | - Georgios Germanidis
- First Department of Internal Medicine, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece;
- Basic and Translational Research Unit (BTRU), Special Unit for Biomedical Research and Education (BRESU), Faculty of Health Sciences, School of Medicine, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stamatios Theocharis
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679 Athens, Greece;
| |
Collapse
|
6
|
Voskamp AL, Tak T, Gerdes ML, Menafra R, Duijster E, Jochems SP, Kielbasa SM, Kormelink TG, Stam KA, van Hengel OR, de Jong NW, Hendriks RW, Kloet SL, Yazdanbakhsh M, de Jong EC, Gerth van Wijk R, Smits HH. Inflammatory and tolerogenic myeloid cells determine outcome following human allergen challenge. J Exp Med 2023; 220:e20221111. [PMID: 37428185 PMCID: PMC10333709 DOI: 10.1084/jem.20221111] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 03/08/2023] [Accepted: 06/14/2023] [Indexed: 07/11/2023] Open
Abstract
Innate mononuclear phagocytic system (MPS) cells preserve mucosal immune homeostasis. We investigated their role at nasal mucosa following allergen challenge with house dust mite. We combined single-cell proteome and transcriptome profiling on nasal immune cells from nasal biopsies cells from 30 allergic rhinitis and 27 non-allergic subjects before and after repeated nasal allergen challenge. Biopsies of patients showed infiltrating inflammatory HLA-DRhi/CD14+ and CD16+ monocytes and proallergic transcriptional changes in resident CD1C+/CD1A+ conventional dendritic cells (cDC)2 following challenge. In contrast, non-allergic individuals displayed distinct innate MPS responses to allergen challenge: predominant infiltration of myeloid-derived suppressor cells (MDSC: HLA-DRlow/CD14+ monocytes) and cDC2 expressing inhibitory/tolerogenic transcripts. These divergent patterns were confirmed in ex vivo stimulated MPS nasal biopsy cells. Thus, we identified not only MPS cell clusters involved in airway allergic inflammation but also highlight novel roles for non-inflammatory innate MPS responses by MDSC to allergens in non-allergic individuals. Future therapies should address MDSC activity as treatment for inflammatory airway diseases.
Collapse
Affiliation(s)
- Astrid L. Voskamp
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Maarten L. Gerdes
- Department of Ear, Nose and Throat, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Roberta Menafra
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Ellen Duijster
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Simon P. Jochems
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Szymon M. Kielbasa
- Department of Biomedical Data Sciences, Leiden University Medical Center, Leiden, Netherlands
| | - Tom Groot Kormelink
- Department of Exp Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Koen A. Stam
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nicolette W. de Jong
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Rudi W. Hendriks
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Susan L. Kloet
- Leiden Genome Technology Center, Leiden University Medical Center, Leiden, Netherlands
| | - Maria Yazdanbakhsh
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Esther C. de Jong
- Department of Exp Immunology, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Roy Gerth van Wijk
- Department of Internal Medicine, Section Allergology and Clinical Immunology, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Hermelijn H. Smits
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
7
|
The E, Zhai Y, Yao Q, Ao L, Li S, Fullerton DA, Dinarello CA, Meng X. Recombinant IL-37 Exerts an Anti-inflammatory Effect on Human Aortic Valve Interstitial Cells through Extracellular and Intracellular Actions. Int J Biol Sci 2023; 19:3908-3919. [PMID: 37564205 PMCID: PMC10411472 DOI: 10.7150/ijbs.85745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/19/2023] [Indexed: 08/12/2023] Open
Abstract
Calcific aortic valve disease (CAVD) is a chronic inflammatory disease with slow progression that involves soluble extracellular matrix (ECM) proteins. Previously, we found that recombinant interleukin (IL)-37 suppresses aortic valve interstitial cells (AVIC) inflammatory response through the interaction with IL-18 receptor α-chain (IL-18Rα) on the cell surface. Endogenous IL-37 can be retained in the cytoplasm or released into extracellular spaces. It remains unknown whether recombinant IL-37 exerts the anti-inflammatory effect through intracellular action. Here, we found that recombinant IL-37 suppressed AVIC inflammatory response to soluble ECM proteins. Interestingly, recombinant IL-37 was internalized by human AVICs in an IL-18Rα-independent fashion. Blocking endocytic pathways reduced the internalization and anti-inflammatory potency of recombinant IL-37. Overexpression of IL-37 in human AVICs suppressed soluble ECM proteins-induced NF-κB activation and the production of ICAM-1 and VCAM-1. However, IL-37D20A (mutant IL-37 lacking nucleus-targeting sequences) overexpression had no such effect, and the inflammatory response to soluble ECM proteins was essentially intact in AVICs from transgenic mice expressing IL-37D20A. Together, recombinant IL-37 can be internalized by human AVICs through endocytosis. Intracellular IL-37 exerts an anti-inflammatory effect through a nucleus-targeting mechanism. This study highlights the potent anti-inflammatory effect of recombinant IL-37 in both extracellular and intracellular compartments through distinct mechanisms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xianzhong Meng
- Departments of Surgery and Medicine, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
8
|
Ikenohuchi YJ, Silva MDS, Rego CMA, Francisco AF, da Silva Setúbal S, Ferreira E Ferreira AA, Boeno CN, Santana HM, Felipin KP, de Lima AM, de Mattos Fontes MR, Paloschi MV, Soares AM, Zuliani JP. A C-type lectin induces NLRP3 inflammasome activation via TLR4 interaction in human peripheral blood mononuclear cells. Cell Mol Life Sci 2023; 80:188. [PMID: 37349530 PMCID: PMC11073222 DOI: 10.1007/s00018-023-04839-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/17/2023] [Accepted: 06/14/2023] [Indexed: 06/24/2023]
Abstract
Lectins are a large group of proteins found in many snake venoms. BjcuL is a C-type lectin from Bothrops jararacussu snake venom that does not present cytotoxicity action on human peripheral blood mononuclear cells (PBMCs) at concentrations of 5 and 10 μg/mL. BjcuL demonstrates an immunomodulatory role in PBMCs with the production of pro- and anti-inflammatory cytokines (IL-2, IL-10, IFN-γ, IL-6, TNF-α, and IL-17) in addition to stimulate T cells to produce reactive oxygen species (ROS) that could play a role in the acute inflammatory reaction observed in the victims. Inflammasomes are an essential arm in cells of innate immunity to detect and sense a range of endogenous or exogenous, sterile, or infectious stimuli to elicit cellular responses and effector mechanisms. NLRP3 inflammasome is a significant target for this study, because the lectin is responsible for leukocyte activation stimulating the release of inflammatory mediators, which results in dynamic cellular responses to remove the detrimental process to the body in snakebites. Thus, this study aimed to investigate how isolated BjcuL from B. jararacussu venom affects NLRP3 inflammasome activation on PBMCs. For this, the cells were isolated by density gradient and incubated with BjcuL at different periods and concentrations for the evaluation of the activation of the NLRP3 inflammasome through gene and protein expressions of ASC, CASPASE-1, and NLRP3 by RT-qPCR, Western blot, and immunofluorescence, as well as the participation of Toll-like receptor 4 (TLR4) and ROS in the IL-1β production, a product resultant of the NLRP3 inflammasome activation. Herein, BjcuL interacts with TLR4 as demonstrated by in vitro and in silico studies and induces cytokines release via NF-κB signaling. By genic and protein expression assays, BjcuL activates NLRP3 inflammasome, and the pharmacological modulation with LPS-RS, an antagonist of TLR4; LPS-SM, an agonist of TLR4; MCC950, a specific NLRP3 inhibitor, and rotenone, an inhibitor of mitochondrial ROS, confirmed the participation of TLR4 and ROS in the NLRP3 inflammasome activation and IL-1β liberation. The effects of BjcuL on the regulation and activation of the NLRP3 inflammasome complex via TLR4 activation with ROS participation may be determinant for the development of the inflammatory local effects seen in snakebite victims. In addition, in silico together with in vitro studies provide information that may be useful in the rational design of TLR agonists as well as new adjuvants for immunomodulatory therapy.
Collapse
Affiliation(s)
- Yoda Janaina Ikenohuchi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Milena Daniela Souza Silva
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Cristina Matiele Alves Rego
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Aleff Ferreira Francisco
- Department of Physics and Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Sulamita da Silva Setúbal
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Alex Augusto Ferreira E Ferreira
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Charles Nunes Boeno
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Hallison Mota Santana
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Kátia Paula Felipin
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Anderson Maciel de Lima
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Marcos Roberto de Mattos Fontes
- Department of Physics and Biophysics and Pharmacology, Institute of Biosciences, São Paulo State University, UNESP, Botucatu, SP, Brazil
- Institute for Advance Studies of the Sea (IEAMAR), São Paulo State University, UNESP, São Vicente, SP, Brazil
| | - Mauro Valentino Paloschi
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil
| | - Andreimar Martins Soares
- Laboratory of Biotechnology of Proteins and Bioactive Compounds Applied to Health (LABIOPROT) and National Institute of Science and Technology in Epidemiology of the Occidental Amazonia (INCT-EPIAMO), Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Porto Velho, RO, Brazil
| | - Juliana Pavan Zuliani
- Laboratory of Cellular Immunology Applied to Health, Oswaldo Cruz Foundation, FIOCRUZ Rondônia, Rua da Beira, 7671 BR364, Km 3.5, Porto Velho, RO, CEP 76812-245, Brazil.
- Department of Medicine, Federal University of Rondônia, UNIR, Porto Velho, RO, Brazil.
| |
Collapse
|
9
|
Rashidi S, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. The most prominent modulated annexins during parasitic infections. Acta Trop 2023; 243:106942. [PMID: 37172709 DOI: 10.1016/j.actatropica.2023.106942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/05/2023] [Accepted: 05/07/2023] [Indexed: 05/15/2023]
Abstract
Annexins (ANXs) exert different functions in cell biological and pathological processes and are thus known as double or multi-faceted proteins. These sophisticated proteins might express on both parasite structure and secretion and in parasite-infected host cells. In addition to the characterization of these pivotal proteins, describing their mechanism of action can be also fruitful in recognizing their roles in the pathogenesis of parasitic infections. Accordingly, this study presents the most prominent ANXs thus far identified and their relevant functions in parasites and infected host cells during pathogenesis, especially in the most important intracellular protozoan parasitic infections including leishmaniasis, toxoplasmosis, malaria and trypanosomiasis. The data provided in this study demonstrate that the helminth parasites most probably express and secret ANXs to develop pathogenesis while the modulation of the host-ANXs could be employed as a crucial strategy by intracellular protozoan parasites. Moreover, such data highlight that the use of analogs of both parasite and host ANX peptides (which mimic or regulate ANXs physiological functions through various strategies) might suggest novel therapeutic insights into the treatment of parasitic infections. Furthermore, due to the prominent immunoregulatory activities of ANXs during most parasitic infections and the expression levels of these proteins in some parasitic infected tissues, such multifunctional proteins might be also potentially relevant as vaccine and diagnostic biomarkers. We also suggest some prospects and insights that could be useful and applicable to form the basis of future experimental studies.
Collapse
Affiliation(s)
- Sajad Rashidi
- Molecular and Medicine Research Center, Khomein University of Medical Sciences, Khomein, Iran; Department of Medical Laboratory Sciences, Khomein University of Medical Sciences, Khomein, Iran
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Antonio Muro
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain
| | - Paul Nguewa
- University of Navarra, ISTUN Institute of Tropical Health, Department of Microbiology and Parasitology. IdiSNA (Navarra Institute for Health Research), c/ Irunlarrea 1, 31008 Pamplona, Spain.
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (e-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases at the University of Salamanca (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain.
| |
Collapse
|
10
|
Jiménez L, Díaz-Zaragoza M, Hernández M, Navarro L, Hernández-Ávila R, Encarnación-Guevara S, Ostoa-Saloma P, Landa A. Differential Protein Expression of Taenia crassiceps ORF Strain in the Murine Cysticercosis Model Using Resistant (C57BL/6) Mice. Pathogens 2023; 12:pathogens12050678. [PMID: 37242348 DOI: 10.3390/pathogens12050678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
A cysticercosis model of Taenia crassiceps ORF strain in susceptible BALB/c mice revealed a Th2 response after 4 weeks, allowing for the growth of the parasite, whereas resistant C57BL/6 mice developed a sustained Th1 response, limiting parasitic growth. However, little is known about how cysticerci respond to an immunological environment in resistant mice. Here, we show that the Th1 response, during infection in resistant C57BL/6 mice, lasted up to 8 weeks and kept parasitemia low. Proteomics analysis of parasites during this Th1 environment showed an average of 128 expressed proteins; we chose 15 proteins whose differential expression varied between 70 and 100%. A total of 11 proteins were identified that formed a group whose expression increased at 4 weeks and decreased at 8 weeks, and another group with proteins whose expression was high at 2 weeks and decreased at 8 weeks. These identified proteins participate in tissue repair, immunoregulation and parasite establishment. This suggests that T. crassiceps cysticerci in mice resistant under the Th1 environment express proteins that control damage and help to establish a parasite in the host. These proteins could be targets for drugs or vaccine development.
Collapse
Affiliation(s)
- Lucía Jiménez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico
| | - Mariana Díaz-Zaragoza
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico
- Departamento de Ciencias de la Salud, Centro Universitario de los Valles, Universidad de Guadalajara, Carretera Guadalajara-Ameca Km. 45.5, Guadalajara 46600, Mexico
| | - Magdalena Hernández
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 565, Chamilpa, Cuernavaca 62210, Mexico
| | - Luz Navarro
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico
| | - Ricardo Hernández-Ávila
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico
| | - Sergio Encarnación-Guevara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad 565, Chamilpa, Cuernavaca 62210, Mexico
| | - Pedro Ostoa-Saloma
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico
| | - Abraham Landa
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, A.P. 70228, Mexico City 04510, Mexico
| |
Collapse
|
11
|
Chen J, Chen H, Mai H, Lou S, Luo M, Xie H, Zhou B, Hou J, Jiang DK. A functional variant of CD40 modulates clearance of hepatitis B virus in hepatocytes via regulation of the ANXA2/CD40/BST2 axis. Hum Mol Genet 2023; 32:1334-1347. [PMID: 36383401 PMCID: PMC10077505 DOI: 10.1093/hmg/ddac284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/15/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
More than 250 million people in the world are chronically infected with hepatitis B virus (HBV), which causes serious complications. Host genetic susceptibility is essential for chronic hepatitis B (CHB), and our previous genome-wide association study identified a single-nucleotide polymorphism (SNP), rs1883832, in the 5' untranslated region of CD40 predisposing to chronic HBV infection, but the underlying mechanism remains undefined. This study aimed to investigate whether rs1883832 was the real functional SNP (fSNP) of CD40 and how it modulated HBV clearance in hepatocytes. We determined the fSNP of CD40 and its regulatory protein(s) using luciferase reporter assays, electrophoretic mobility shift assay, flanking restriction enhanced pulldown and chromatin immunoprecipitation. The potential anti-HBV activity of CD40 and its downstream molecule BST2 was assessed in HBV-transfected and HBV-infected hepatoma cells and HBV-infected primary human hepatocytes. Moreover, the mechanism of CD40 was investigated by mRNA sequencing, quantitative real-time polymerase chain reaction, immunofluorescence and western blot. We revealed rs1883832 as the true fSNP of CD40 and identified ANXA2 as a negative regulatory protein that preferentially bound to the risk allele T of rs1883832 and hence reduced CD40 expression. Furthermore, CD40 suppressed HBV replication and transcription in hepatocytes via activating the JAK-STAT pathway. BST2 was identified to be the key IFN-stimulated gene regulated by CD40 after activating JAK-STAT pathway. Inhibition of JAK/STAT/BST2 axis attenuated CD40-induced antiviral effect. In conclusion, a functional variant of CD40 modulates HBV clearance via regulation of the ANXA2/CD40/BST2 axis, which may shed new light on HBV personalized therapy.
Collapse
Affiliation(s)
- Jiaxuan Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| | - Haitao Chen
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 510006, China
| | - Haoming Mai
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Shuang Lou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Mengqi Luo
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Haisheng Xie
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Bin Zhou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Jinlin Hou
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - De-Ke Jiang
- State Key Laboratory of Organ Failure Research, Guangdong Key Laboratory of Viral Hepatitis Research, Guangdong Institute of Liver Diseases, Department of Infectious Diseases and Hepatology Unit, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- The Key Laboratory of Molecular Pathology (Hepatic Diseases) of Guangxi, Department of Pathology, the Affiliated Hospital of Youjiang Medical University for Nationalities, Baise 533000, China
| |
Collapse
|
12
|
Pseudorabies Virus Regulates the Extracellular Translocation of Annexin A2 To Promote Its Proliferation. J Virol 2023; 97:e0154522. [PMID: 36786600 PMCID: PMC10062141 DOI: 10.1128/jvi.01545-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023] Open
Abstract
Pseudorabies virus (PRV) infection causes enormous economic losses to the pork industry and severe health consequences in many hosts. Annexin A2 (ANXA2) is a membrane-associated protein with various intracellular functions associated with many viral infections. However, the role of ANXA2 in alphaherpesvirus replication is still not explored. In the present study, we identified the interaction between ANXA2 and PRV US3. The deficiency of ANXA2 significantly restricted PRV proliferation. PRV infection or US3 overexpression led to ANXA2 extracellular translocation. Furthermore, we confirmed that PRV or US3 could lead to the phosphorylation of the Tyr23 ANXA2 and Tyr419 Src kinase, which was associated with the ANXA2 cell surface transposition. US3 can also bind to Src in an ANXA2-independent manner and enhance the interaction between Src and ANXA2. Additionally, inhibitors targeting ANXA2 (A2ti-1) or Src (PP2) could remarkably inhibit PRV propagation in vitro and protect mice from PRV infection in vivo. Collectively, our findings broaden our understanding of the molecular mechanisms of ANXA2 in alphaherpesvirus pathogenicity and suggest that ANXA2 is a potential therapeutic target for treating alphaherpesvirus-induced infectious diseases. IMPORTANCE PRV belongs to the alphaherpesvirus and has recently re-emerged in China, causing severe economic losses. Recent studies also indicate that PRV may pose a potential public health challenge. ANXA2 is a multifunctional calcium- and lipid-binding protein implicated in immune function, multiple human diseases, and viral infection. Herein, we found that ANXA2 was essential to PRV efficient proliferation. PRV infection resulted in the extracellular translocation of ANXA2 through phosphorylation of ANXA2 and Src. ANXA2 and Src formed a complex with PRV US3. Importantly, inhibitors targeting ANXA2 or Src prevented PRV infection in vitro and in vivo. Therefore, our studies reveal a novel strategy by which alphaherpesvirus modifies ANXA2 to promote its replication and highlight ANXA2 as a target in developing novel promising antivirus agents in viral therapy.
Collapse
|
13
|
Lin H, Li W, Shen Z, Bei Y, Wei T, Yu Z, Dai Y, Dai H. Annexin A2 promotes angiogenesis after ischemic stroke via annexin A2 receptor - AKT/ERK pathways. Neurosci Lett 2023; 792:136941. [PMID: 36367512 DOI: 10.1016/j.neulet.2022.136941] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/16/2022] [Accepted: 10/25/2022] [Indexed: 11/07/2022]
Abstract
Promoting angiogenesis to restore circulation to the ischemic tissue is still an important therapeutic target in stroke. Our group and others previously reported that the Ca2+-regulated, phospholipid-and membrane-binding protein-Annexin A2 (ANXA2) functions in cerebrovascular integrity and retinal neoangiogenesis. Here, we hypothesized that ANXA2 may regulate angiogenesis after stroke, ultimately improve neurological outcomes. Compared with wild type (WT) mice, the density of microvessels in brain and the number of new vessels sprouting from aortic ring were significantly increased in Anxa2 knock-in (Anxa2 KI) mice. After focal cerebral ischemia, proliferation of brain endothelial cells in Anxa2 KI mice was significantly elevated at 7 days post-stroke, which further improved behavioral recovery. To assess the pro-angiogenic mechanisms of ANXA2, we used brain endothelial cells cultures to investigate its effects on cell tube-numbers and migration. Recombinant ANXA2 increased tube-numbers and migration of brain endothelial cells either under normal condition or after oxygen glucose deprivation (OGD) injury. Co-immunoprecipitation experiments demonstrated that these protective effects of recombinant ANXA2 were regulated by interaction with ANXA2 receptor (A2R), a protein found in cancer cells that can interact with ANXA2 to promote cell migration and proliferation, and the ability of ANXA2-A2R to activate AKT/ERK pathways. Inhibition of AKT/ERK diminished recombinant ANXA2-induced angiogenesis in vitro. Taken together, our study indicates that ANXA2 might be involved in angiogenesis after ischemic stroke. Further investigation of ANXA2-A2R will provide a new therapeutic target for stroke.
Collapse
Affiliation(s)
- Haoran Lin
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Wenlu Li
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Zexu Shen
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Yun Bei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Taofeng Wei
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Zhanyang Yu
- Departments of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02148, United States
| | - Yunjian Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| | - Haibin Dai
- Department of Pharmacy, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
| |
Collapse
|
14
|
Chen J, Su X, Tan Q, Pu H, Zhang L, Kang Y, Tang Y, Zhao X, Hou W, Qian S, Deng S, Hou L, Gao Y. Effect of cell density on the malignant biological behavior of breast cancer by altering the subcellular localization of ANXA2 and its clinical implications. Clin Transl Oncol 2022; 24:2136-2145. [PMID: 35778647 DOI: 10.1007/s12094-022-02865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/17/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE To investigate the subcellular localization of ANXA2 in breast cancer of different cell densities in humans and its relationship with the clinicopathological features of patients. To investigate the differences in ANXA2 subcellular localization in MDA-MB-231 cells of different cell densities. To compare the proliferation, invasion, and migration ability of MDA-MB-231 cells under different ANXA2 subcellular localization. METHODS Immunohistochemistry was applied to detect the subcellular localization of ANXA2 in tissue sections of 60 breast cancer patients, and the association with ANXA2 subcellular localization was verified in conjunction with cell density. To investigate the relationship between cell density and clinicopathological data of breast cancer patients. To establish high- and low-density models of MDA-MB-231 breast cancer cell lines and verify the subcellular localization of ANXA2 using immunofluorescence and observation under confocal microscopy. The proliferation, migration, and invasion ability of MDA-MB-231 cells under different subcellular localization of ANXA2 were detected and compared using CCK-8 assay and Transwell assay. After changing the subcellular localization of ANXA2 in high-density MDA-MB-231 cells with PY-60, changes in biological behaviors of the compared MDA-MB-231 cells were observed. Two different 4T1 cell lines with high and low densities were implanted subcutaneously in nude mice to observe the effects of different cell densities on tumor growth in nude mice. RESULTS The clinical data showed that breast cancer with high cell density had higher T stage and higher TNM stage, and the cell density was positively correlated with breast cancer mass size. ANXA2 was mainly localized to the cell membrane when the cell density of breast cancer cells was high and to the cytoplasm when the cell density was low. The CCK-8 assay showed that the proliferation rate of MDA-MB-231 cells increased (P < 0.05) after shifting the subcellular localization of ANXA2 from the cell membrane to the cytoplasm. Transwell invasion assay and Transwell migration assay showed that the invasion and migration ability of MDA-MB-231 cells increased significantly after the subcellular localization of ANXA2 was transferred from the cell membrane to the cytoplasm (P < 0.05). The animal experiments showed that high-density breast cancer cells could promote the growth of subcutaneous tumors in nude mice relative to low-density breast cancer cells. CONCLUSION Cell density can regulate the subcellular localization of ANXA2, and changes in the subcellular localization of ANXA2 are accompanied by the changes in the biological behavior of breast cancer.
Collapse
Affiliation(s)
- Jingtai Chen
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Xiaohan Su
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Qiao Tan
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Hongyu Pu
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Linxing Zhang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yuqing Kang
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Yunhui Tang
- Department of Thyroid and Breast Surgery, Guang'an City People's Hospital, Guang'an, Sichuan, China
| | - Xiaobo Zhao
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China
| | - Wei Hou
- Department of Pathology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, China
| | - Shuangqiang Qian
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Shishan Deng
- Basic Medical College, North Sichuan Medical College, Nanchong, Sichuan, China.
| | - Lingmi Hou
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| | - Yanchun Gao
- Department of Thyroid and Breast Surgery, Affiliated Hospital of North Sichuan Medical College, Nanchong, 637000, Sichuan, China.
| |
Collapse
|
15
|
Fomo KN, Schmelter C, Atta J, Beutgen VM, Schwarz R, Perumal N, Govind G, Speck T, Pfeiffer N, Grus FH. Synthetic antibody-derived immunopeptide provides neuroprotection in glaucoma through molecular interaction with retinal protein histone H3.1. Front Med (Lausanne) 2022; 9:993351. [PMID: 36313990 PMCID: PMC9613933 DOI: 10.3389/fmed.2022.993351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 09/28/2022] [Indexed: 11/13/2022] Open
Abstract
Glaucoma is a group of optic neuropathies characterized by the progressive degeneration of retinal ganglion cells (RGCs) as well as their axons leading to irreversible loss of sight. Medical management of the intraocular pressure (IOP) still represents the gold standard in glaucoma therapy, which only manages a single risk factor and does not directly address the neurodegenerative component of this eye disease. Recently, our group showed that antibody-derived immunopeptides (encoding complementarity-determining regions, CDRs) provide attractive glaucoma medication candidates and directly interfere its pathogenic mechanisms by different modes of action. In accordance with these findings, the present study showed the synthetic complementary-determining region 2 (CDR2) peptide (INSDGSSTSYADSVK) significantly increased RGC viability in vitro in a concentration-dependent manner (p < 0.05 using a CDR2 concentration of 50 μg/mL). Employing state-of the-art immunoprecipitation experiments, we confirmed that synthetic CDR2 exhibited a high affinity toward the retinal target protein histone H3.1 (HIST1H3A) (p < 0.001 and log2-fold change > 3). Furthermore, molecular dynamics (MD) simulations along with virtual docking analyses predicted potential CDR2-specific binding regions of HIST1H3A, which might represent essential post-translational modification (PTM) sites for epigenetic regulations. Quantitative mass spectrometry (MS) analysis of retinas demonstrated 39 proteins significantly affected by CDR2 treatment (p < 0.05). An up-regulation of proteins involved in the energy production (e.g., ATP5F1B and MT-CO2) as well as the regulatory ubiquitin proteasome system (e.g., PSMC5) was induced by the synthetic CDR2 peptide. On the other hand, CDR2 reduced metabolic key enzymes (e.g., DDAH1 and MAOB) as well as ER stress-related proteins (e.g., SEC22B and VCP) and these data were partially confirmed by microarray technology. Our outcome measurements indicate that specific protein-peptide interactions influence the regulatory epigenetic function of HIST1H3A promoting the neuroprotective mechanism on RGCs in vitro. In addition to IOP management, such synthetic peptides as CDR2 might serve as a synergistic immunotherapy for glaucoma in the future.
Collapse
Affiliation(s)
- Kristian Nzogang Fomo
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Carsten Schmelter
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Joshua Atta
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Vanessa M. Beutgen
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Rebecca Schwarz
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Natarajan Perumal
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Gokul Govind
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Speck
- Institute of Physics, Johannes Gutenberg University, Mainz, Germany
| | - Norbert Pfeiffer
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franz H. Grus
- Department of Experimental and Translational Ophthalmology, University Medical Center, Johannes Gutenberg University, Mainz, Germany,*Correspondence: Franz H. Grus,
| |
Collapse
|
16
|
Peck AB, Ambrus JL. A Temporal Comparative RNA Transcriptome Profile of the Annexin Gene Family in the Salivary versus Lacrimal Glands of the Sjögren's Syndrome-Susceptible C57BL/6.NOD- Aec1Aec2 Mouse. Int J Mol Sci 2022; 23:11709. [PMID: 36233010 PMCID: PMC9570365 DOI: 10.3390/ijms231911709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/29/2022] [Accepted: 09/29/2022] [Indexed: 11/29/2022] Open
Abstract
A generally accepted hypothesis for the initial activation of an immune or autoimmune response argues that alarmins are released from injured, dying and/or activated immune cells, and these products complex with receptors that activate signal transduction pathways and recruit immune cells to the site of injury where the recruited cells are stimulated to initiate immune and/or cellular repair responses. While there are multiple diverse families of alarmins such as interleukins (IL), heat-shock proteins (HSP), Toll-like receptors (TLR), plus individual molecular entities such as Galectin-3, Calreticulin, Thymosin, alpha-Defensin-1, RAGE, and Interferon-1, one phylogenetically conserved family are the Annexin proteins known to promote an extensive range of biomolecular and cellular products that can directly and indirectly regulate inflammation and immune activities. For the present report, we examined the temporal expression profiles of the 12 mammalian annexin genes (Anxa1-11 and Anxa13), applying our temporal genome-wide transcriptome analyses of ex vivo salivary and lacrimal glands from our C57BL/6.NOD-Aec1Aec2 mouse model of Sjögren's Syndrome (SS), a human autoimmune disease characterized primarily by severe dry mouth and dry eye symptoms. Results indicate that annexin genes Anax1-7 and -11 exhibited upregulated expressions and the initial timing for these upregulations occurred as early as 8 weeks of age and prior to any covert signs of a SS-like disease. While the profiles of the two glands were similar, they were not identical, suggesting the possibility that the SS-like disease may not be uniform in the two glands. Nevertheless, this early pre-clinical and concomitant upregulated expression of this specific set of alarmins within the immune-targeted organs represents a potential target for identifying the pre-clinical stage in human SS as well, a fact that would clearly impact future interventions and therapeutic strategies.
Collapse
Affiliation(s)
- Ammon B Peck
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, P.O. Box 100125, Gainesville, FL 32610, USA
| | - Julian L Ambrus
- Division of Allergy, Immunology and Rheumatology, SUNY Buffalo School of Medicine, 875 Ellicott Street, Buffalo, NY 14203, USA
| |
Collapse
|
17
|
Zhang H, Lu D, Zhang Y, Zhao G, Raheem A, Chen Y, Chen X, Hu C, Chen H, Yang L, Guo A. Annexin A2 regulates Mycoplasma bovis adhesion and invasion to embryo bovine lung cells affecting molecular expression essential to inflammatory response. Front Immunol 2022; 13:974006. [PMID: 36159852 PMCID: PMC9493479 DOI: 10.3389/fimmu.2022.974006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mycoplasma bovis (M. bovis) is an important pathogen of the bovine respiratory disease complex, invading lower respiratory tracts and causing severe pneumonia. However, its molecular mechanism largely remains unknown. Host annexin A2 (ANXA2) is a calcium-dependent phospholipid-binding protein. The current study sought to determine whether ANXA2 could mediate M. bovis adhesion and invasion thereby affecting its induction of inflammatory response. ANXA2 expression was upregulated in M. bovis-infected bovine lung epithelial cells (EBL), and blocking ANXA2 with an anti-ANXA2 antibody reduced M. bovis adhesion to EBL. Compared with uninfected cells, more ANXA2 was translocated from the cytoplasm to the cell surface after M. bovis infection. Furthermore, RNA interference knockdown of ANXA2 expression in EBL cells resulted in a significant decrease in M. bovis invasion and F-actin polymerization. Next, the transcriptomic study of M. bovis-infected EBL cells with and without ANXA2 knockdown were performed. The data exhibited that ANXA2 knockdown EBL cells had 2487 differentially expressed genes (DEGs), with 1175 upregulated and 1312 downregulated compared to control. According to GO and KEGG analyses, 50 genes potentially linked to inflammatory responses, 23 involved in extracellular matrix (ECM) receptor interaction, and 48 associated with PI3K-AKT signal pathways were upregulated, while 38 mRNA binding genes, 16 mRNA 3′-UTR binding genes, and 34 RNA transport genes were downregulated. Furthermore, 19 genes with various change-folds were selected for qPCR verification, and the results agreed with the RNA-seq findings. Above all, the transcription of two chemokines (IL-8 and CXCL5) and a key bovine β-defensin TAP in IL-17 signaling pathway were significantly increased in ANXA2 knockdown cells. Moreover, ANXA2 knockdown or knockout could increase NF-κB and MAPK phosphorylation activity in response to M. bovis infection. Additionally, ANXA2 knockdown also significantly decreased the CD44 transcripts via exon V3 and V7 skipping after M. bovis infection. We concluded that M. bovis borrowed host ANXA2 to mediate its adhesion and invasion thereby negatively regulating molecular expression essential to IL-17 signal pathway. Furthermore, CD44 V3 and V7 isoforms might contribute to this ANXA2 meditated processes in M. bovis infected EBL cells. These findings revealed a new understanding of pathogenesis for M. bovis infection.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- College of Animal Husbandry and Veterinary Medicine, Southwest Minzu University, Chengdu, China
| | - Doukun Lu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yiqiu Zhang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Gang Zhao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Abdul Raheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yingyu Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xi Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Changmin Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Liguo Yang
- College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aizhen Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
- Hubei Hongshan Laboratory, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Development of Veterinary Diagnostic Products, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Hubei International Scientific and Technological Cooperation Base of Veterinary Epidemiology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Ruminant Bio-products of Ministry of Agriculture and Rural Affairs, Huazhong Agriculture University, Wuhan, China
- International Research Center for Animal Disease, Ministry of Science and Technology, Huazhong Agricultural University, Wuhan, China
- *Correspondence: Aizhen Guo,
| |
Collapse
|
18
|
do Nascimento Soares T, Silva Valadares V, Cardoso Amorim G, de Mattos Lacerda de Carvalho M, Berrêdo‐Pinho M, Ceneviva Lacerda Almeida F, Mascarello Bisch P, Batista PR, Miranda Santos Lery L. The C‐terminal extension of
VgrG4
from
Klebsiella pneumoniae
remodels host cell microfilaments. Proteins 2022; 90:1655-1668. [PMID: 35430767 PMCID: PMC9542434 DOI: 10.1002/prot.26344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/11/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Klebsiella pneumoniae is an opportunistic pathogen, which concerns public health systems worldwide, as multiple antibiotic‐resistant strains are frequent. One of its pathogenicity factors is the Type VI Secretion System (T6SS), a macromolecular complex assembled through the bacterial membranes. T6SS injects effector proteins inside target cells. Such effectors confer competitive advantages or modulate the target cell signaling and metabolism to favor bacterial infection. The VgrG protein is a T6SS core component. It may present a variable C‐terminal domain carrying an additional effector function. Kp52.145 genome encodes three VgrG proteins, one of them with a C‐terminal extension (VgrG4‐CTD). VgrG4‐CTD is 138 amino acids long, does not contain domains of known function, but is conserved in some Klebsiella, and non‐Klebsiella species. To get insights into its function, recombinant VgrG4‐CTD was used in pulldown experiments to capture ligands from macrophages and lung epithelial cells. A total of 254 proteins were identified: most of them are ribosomal proteins. Cytoskeleton‐associated and proteins involved in the phagosome maturation pathway were also identified. We further showed that VgrG4‐CTD binds actin and induces actin remodeling in macrophages. This study presents novel clues on the role of K. pneumoniae T6SS in pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Marcia Berrêdo‐Pinho
- Laboratório de Microbiologia Celular Instituto Oswaldo Cruz Rio de Janeiro Brazil
| | - Fábio Ceneviva Lacerda Almeida
- Centro Nacional de Ressonância Magnética Nuclear Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | - Paulo Mascarello Bisch
- Laboratório de Física‐Biológica Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
| | | | | |
Collapse
|
19
|
Sage SE, Nicholson P, Peters LM, Leeb T, Jagannathan V, Gerber V. Single-cell gene expression analysis of cryopreserved equine bronchoalveolar cells. Front Immunol 2022; 13:929922. [PMID: 36105804 PMCID: PMC9467276 DOI: 10.3389/fimmu.2022.929922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/08/2022] [Indexed: 12/21/2022] Open
Abstract
The transcriptomic profile of a cell population can now be studied at the cellular level using single-cell mRNA sequencing (scRNA-seq). This novel technique provides the unprecedented opportunity to explore the cellular composition of the bronchoalveolar lavage fluid (BALF) of the horse, a species for which cell type markers are poorly described. Here, scRNA-seq technology was applied to cryopreserved equine BALF cells. Analysis of 4,631 cells isolated from three asthmatic horses in remission identified 16 cell clusters belonging to six major cell types: monocytes/macrophages, T cells, B/plasma cells, dendritic cells, neutrophils and mast cells. Higher resolution analysis of the constituents of the major immune cell populations allowed deep annotation of monocytes/macrophages, T cells and B/plasma cells. A significantly higher lymphocyte/macrophage ratio was detected with scRNA-seq compared to conventional cytological differential cell count. For the first time in horses, we detected a transcriptomic signature consistent with monocyte-lymphocyte complexes. Our findings indicate that scRNA-seq technology is applicable to cryopreserved equine BALF cells, allowing the identification of its major (cytologically differentiated) populations as well as previously unexplored T cell and macrophage subpopulations. Single-cell gene expression analysis has the potential to facilitate understanding of the immunological mechanisms at play in respiratory disorders of the horse, such as equine asthma.
Collapse
Affiliation(s)
- Sophie E. Sage
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
- *Correspondence: Sophie E. Sage,
| | - Pamela Nicholson
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
| | - Laureen M. Peters
- Clinical Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Tosso Leeb
- Next Generation Sequencing Platform, University of Bern, Bern, Switzerland
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vidhya Jagannathan
- Institute of Genetics, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Vinzenz Gerber
- Swiss Institute of Equine Medicine, Department of Clinical Veterinary Medicine, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Lipopolysaccharide-Induced Immunological Tolerance in Monocyte-Derived Dendritic Cells. IMMUNO 2022. [DOI: 10.3390/immuno2030030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Bacterial lipopolysaccharides (LPS), also referred to as endotoxins, are major outer surface membrane components present on almost all Gram-negative bacteria and are major determinants of sepsis-related clinical complications including septic shock. LPS acts as a strong stimulator of innate or natural immunity in a wide variety of eukaryotic species ranging from insects to humans including specific effects on the adaptive immune system. However, following immune stimulation, lipopolysaccharide can induce tolerance which is an essential immune-homeostatic response that prevents overactivation of the inflammatory response. The tolerance induced by LPS is a state of reduced immune responsiveness due to persistent and repeated challenges, resulting in decreased expression of pro-inflammatory modulators and up-regulation of antimicrobials and other mediators that promote a reduction of inflammation. The presence of environmental-derived LPS may play a key role in decreasing autoimmune diseases and gut tolerance to the plethora of ingested antigens. The use of LPS may be an important immune adjuvant as demonstrated by the promotion of IDO1 increase when present in the fusion protein complex of CTB-INS (a chimera of the cholera toxin B subunit linked to proinsulin) that inhibits human monocyte-derived DC (moDC) activation, which may act through an IDO1-dependent pathway. The resultant state of DC tolerance can be further enhanced by the presence of residual E. coli lipopolysaccharide (LPS) which is almost always present in partially purified CTB-INS preparations. The approach to using an adjuvant with an autoantigen in immunotherapy promises effective treatment for devastating tissue-specific autoimmune diseases like multiple sclerosis (MS) and type 1 diabetes (T1D).
Collapse
|
21
|
Tang G, Yu C, Xiang K, Gao M, Liu Z, Yang B, Yang M, Zhao S. Inhibition of ANXA2 regulated by SRF attenuates the development of severe acute pancreatitis by inhibiting the NF-κB signaling pathway. Inflamm Res 2022; 71:1067-1078. [PMID: 35900381 DOI: 10.1007/s00011-022-01609-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 05/31/2022] [Accepted: 07/04/2022] [Indexed: 11/27/2022] Open
Abstract
BACKGROUND Acute pancreatitis (AP) is an inflammatory process of the pancreas resulting from biliary obstruction or alcohol consumption. Approximately, 10-20% of AP can evolve into severe AP (SAP). In this study, we sought to explore the physiological roles of the transcription factor serum response factor (SRF), annexin A2 (ANXA2), and nuclear factor-kappaB (NF-κB) in SAP. METHODS C57BL/6 mice and rat pancreatic acinar cells (AR42J) were used to establish an AP model in vivo and in vitro by cerulein with or without lipopolysaccharide (LPS). Production of pro-inflammatory cytokines (IL-1β and TNF-α) were examined by ELISA and immunoblotting analysis. Hematoxylin and eosin (HE) staining and TUNEL staining were performed to evaluate pathological changes in the course of AP. Apoptosis was examined by flow cytometric and immunoblotting analysis. Molecular interactions were tested by dual luciferase reporter, ChIP, and Co-IP assays. RESULTS ANXA2 was overexpressed in AP and correlated to the severity of AP. ANXA2 knockdown rescued pancreatic acinar cells against inflammation and apoptosis induced by cerulein with or without LPS. Mechanistic investigations revealed that SRF bound with the ANXA2 promoter region and repressed its expression. ANXA2 could activate the NF-κB signaling pathway by inducing the nuclear translocation of p50. SRF-mediated transcriptional repression of ANXA2-protected pancreatic acinar cells against AP-like injury through repressing the NF-κB signaling pathway. CONCLUSION Our study highlighted a regulatory network consisting of SRF, ANXA2, and NF-κB that was involved in AP progression, possibly providing some novel targets for treating SAP.
Collapse
Affiliation(s)
- Guanxiu Tang
- The Department of Gerontology, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Can Yu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Kaimin Xiang
- The Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Min Gao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Zuoliang Liu
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Bingchang Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Mingshi Yang
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China
| | - Shangping Zhao
- The Department of Intensive Care Unit (ICU), The Third Xiangya Hospital of Central South University, No. 138, Tongzipo Road, Yuelu District, Changsha, 410013, Hunan Province, People's Republic of China.
| |
Collapse
|
22
|
Huang Y, Jia M, Yang X, Han H, Hou G, Bi L, Yang Y, Zhang R, Zhao X, Peng C, Ouyang X. Annexin A2: The Diversity of Pathological Effects in Tumorigenesis and Immune Response. Int J Cancer 2022; 151:497-509. [PMID: 35474212 DOI: 10.1002/ijc.34048] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 11/11/2022]
Abstract
Annexin A2 (ANXA2) is widely used as a marker in a variety of tumors. By regulating multiple signal pathways, ANXA2 promotes the epithelial-mesenchymal transition, which can cause tumorigenesis and accelerate thymus degeneration. The elevated ANXA2 heterotetramer facilitates the production of plasmin, which participates in pathophysiologic processes such as tumor cell invasion and metastasis, bleeding diseases, angiogenesis, inducing the expression of inflammatory factors. In addition, the ANXA2 on the cell membrane mediates immune response via its interaction with surface proteins of pathogens, C1q, toll-like receptor 2, anti-dsDNA antibodies and immunoglobulins. Nuclear ANXA2 plays a role as part of a primer recognition protein complex that enhances DNA synthesis and cells proliferation by acting on the G1-S phase of the cell. ANXA2 reduction leads to the inhibition of invasion and metastasis in multiple tumor cells, bleeding complications in acute promyelocytic leukemia, retinal angiogenesis, autoimmunity response and tumor drug resistance. In this review, we provide an update on the pathological effects of ANXA2 in both tumorigenesis and the immune response. We highlight ANXA2 as a critical protein in numerous malignancies and the immune host response.
Collapse
Affiliation(s)
- Yanjie Huang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China.,Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Mengzhen Jia
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xiaoqing Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Hongyan Han
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Gailing Hou
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Liangliang Bi
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Yueli Yang
- Department of Pediatrics, The First Affiliated Hospital of Henan University of Chinese Medicine, Henan, China
| | - Ruoqi Zhang
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xueru Zhao
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Chaoqun Peng
- Department of Pediatrics, Henan University of Chinese Medicine, Zhengzhou, Henan, China
| | - Xinshou Ouyang
- Department of Internal Medicine, Digestive Disease Section, Yale University, New Haven, Ct, USA
| |
Collapse
|
23
|
Wang B, Zhou C, Wu Q, Lin P, Pu Q, Qin S, Gao P, Wang Z, Liu Y, Arel J, Chen Y, Chen T, Wu M. cGAS modulates cytokine secretion and bacterial burdens by altering the release of mitochondrial DNA in Pseudomonas pulmonary infection. Immunology 2022; 166:408-423. [PMID: 35420160 DOI: 10.1111/imm.13482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 03/06/2022] [Accepted: 03/15/2022] [Indexed: 11/28/2022] Open
Abstract
Cyclic GMP-AMP synthase (cGAS) is essential for fighting against viruses and bacteria, but how cGAS is involved in host immune response remains largely elusive. Here, we uncover the crucial role of cGAS in host immunity based on a Pseudomonas aeruginosa pulmonary infection model. cGAS-/- mice showed more heavy bacterial burdens and serious lung injury accompanied with exorbitant proinflammatory cytokines than wild-type mice. cGAS deficiency caused an accumulation of mitochondrial DNA in cytoplasm, which in turn induced excessive secretion of proinflammatory factors by activating inflammasome and TLR9 signaling. Mechanistically, cGAS deficiency inhibited the recruitment of LC3 by reducing the binding capacity of TBK-1 to p62, leading to impaired mitophagy and augmented release of mitochondrial DNA. Importantly, cytoplasmic mitochondrial DNA also acted as a feedback signal that induced the activation of cGAS. Altogether, these findings identify protective and homeostasis functions of cGAS against Pseudomonas aeruginosa infection, adding significant insight into the pathogenesis of bacterial infectious diseases.
Collapse
Affiliation(s)
- Biao Wang
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China.,Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Chuanmin Zhou
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA.,Wuhan University School of Health Sciences, Wuhan, Hubei Province, P. R. China
| | - Qun Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Ping Lin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Shugang Qin
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Pan Gao
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Zhihan Wang
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yingying Liu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Jacob Arel
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - Yanjiong Chen
- Department of Immunology and Pathogenic Biology, College of Basic Medicine, Xi'an Jiaotong University Health Science Center, Xi'an, P. R. China
| | - Teng Chen
- Forensic Medicine College of Xi'an Jiaotong University, Key Laboratory of the Health Ministry for Forensic Medicine, Xi'an, P. R. China
| | - Min Wu
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
24
|
Barreno-Rocha SG, Guzmán-Silahua S, Rodríguez-Dávila SDC, Gavilanez-Chávez GE, Cardona-Muñoz EG, Riebeling-Navarro C, Rubio-Jurado B, Nava-Zavala AH. Antiphospholipid Antibodies and Lipids in Hematological Malignancies. Int J Mol Sci 2022; 23:ijms23084151. [PMID: 35456969 PMCID: PMC9025841 DOI: 10.3390/ijms23084151] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 02/01/2023] Open
Abstract
One of the main groups of lipids is phospholipids, which are mainly involved in forming cell membranes. Neoplastic processes such as cell replication have increased lipid synthesis, making tumor cells dependent on this synthesis to maintain their requirements. Antiphospholipid antibodies attack phospholipids in the cell membranes. Three main types of antiphospholipid antibodies are recognized: anti-β2 glycoprotein I (anti-β2GP-I), anticardiolipin (aCL), and lupus anticoagulant (LA). These types of antibodies have been proven to be present in hematological neoplasms, particularly in LH and NHL. This review on antiphospholipid antibodies in hematological neoplasms describes their clinical relationship as future implications at the prognostic level for survival and even treatment.
Collapse
Affiliation(s)
- Sonia Guadalupe Barreno-Rocha
- Unidad de Investigación Epidemiológica y en Servicios de Salud, CMNO OOAD Jalisco Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (S.G.B.-R.); (S.G.-S.); (S.-d.-C.R.-D.); (G.E.G.-C.)
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Sandra Guzmán-Silahua
- Unidad de Investigación Epidemiológica y en Servicios de Salud, CMNO OOAD Jalisco Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (S.G.B.-R.); (S.G.-S.); (S.-d.-C.R.-D.); (G.E.G.-C.)
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Sinaí-del-Carmen Rodríguez-Dávila
- Unidad de Investigación Epidemiológica y en Servicios de Salud, CMNO OOAD Jalisco Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (S.G.B.-R.); (S.G.-S.); (S.-d.-C.R.-D.); (G.E.G.-C.)
| | - Guadalupe Estela Gavilanez-Chávez
- Unidad de Investigación Epidemiológica y en Servicios de Salud, CMNO OOAD Jalisco Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (S.G.B.-R.); (S.G.-S.); (S.-d.-C.R.-D.); (G.E.G.-C.)
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Ernesto Germán Cardona-Muñoz
- Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Carlos Riebeling-Navarro
- Unidad de Investigación en Epidemiologia Clínica, UMAE HP CMN-SXXI, Ciudad de México 06720, Mexico;
| | - Benjamín Rubio-Jurado
- Unidad de Investigación Epidemiológica y en Servicios de Salud, CMNO OOAD Jalisco Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (S.G.B.-R.); (S.G.-S.); (S.-d.-C.R.-D.); (G.E.G.-C.)
- Departamento Clínico de Hematología, División Onco-Hematologia, UMAE, Hospital de Especialidades, Centro Médico Nacional de Occidente, Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico
- Correspondence: (B.R.-J.); (A.H.N.-Z.)
| | - Arnulfo Hernán Nava-Zavala
- Unidad de Investigación Epidemiológica y en Servicios de Salud, CMNO OOAD Jalisco Instituto Mexicano del Seguro Social, Guadalajara 44340, Mexico; (S.G.B.-R.); (S.G.-S.); (S.-d.-C.R.-D.); (G.E.G.-C.)
- Programa Internacional de Medicina, Universidad Autónoma de Guadalajara, Guadalajara 44670, Mexico
- Departamento de Inmunología y Reumatología del Hospital General de Occidente, Secretaría de Salud Jalisco, Guadalajara 45070, Mexico
- Correspondence: (B.R.-J.); (A.H.N.-Z.)
| |
Collapse
|
25
|
Mui L, Martin CM, Tschirhart BJ, Feng Q. Therapeutic Potential of Annexins in Sepsis and COVID-19. Front Pharmacol 2021; 12:735472. [PMID: 34566657 PMCID: PMC8458574 DOI: 10.3389/fphar.2021.735472] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sepsis is a continuing problem in modern healthcare, with a relatively high prevalence, and a significant mortality rate worldwide. Currently, no specific anti-sepsis treatment exists despite decades of research on developing potential therapies. Annexins are molecules that show efficacy in preclinical models of sepsis but have not been investigated as a potential therapy in patients with sepsis. Human annexins play important roles in cell membrane dynamics, as well as mediation of systemic effects. Most notably, annexins are highly involved in anti-inflammatory processes, adaptive immunity, modulation of coagulation and fibrinolysis, as well as protective shielding of cells from phagocytosis. These discoveries led to the development of analogous peptides which mimic their physiological function, and investigation into the potential of using the annexins and their analogous peptides as therapeutic agents in conditions where inflammation and coagulation play a large role in the pathophysiology. In numerous studies, treatment with recombinant human annexins and annexin analogue peptides have consistently found positive outcomes in animal models of sepsis, myocardial infarction, and ischemia reperfusion injury. Annexins A1 and A5 improve organ function and reduce mortality in animal sepsis models, inhibit inflammatory processes, reduce inflammatory mediator release, and protect against ischemic injury. The mechanisms of action and demonstrated efficacy of annexins in animal models support development of annexins and their analogues for the treatment of sepsis. The effects of annexin A5 on inflammation and platelet activation may be particularly beneficial in disease caused by SARS-CoV-2 infection. Safety and efficacy of recombinant human annexin A5 are currently being studied in clinical trials in sepsis and severe COVID-19 patients.
Collapse
Affiliation(s)
- Louise Mui
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Claudio M Martin
- Division of Critical Care, Department of Medicine, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada.,Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada
| | - Brent J Tschirhart
- Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| | - Qingping Feng
- Lawson Health Research Institute, London Health Sciences Centre, London, ON, Canada.,Department of Physiology and Pharmacology, Schulich School of Dentistry and Medicine, Western University, London, ON, Canada
| |
Collapse
|
26
|
Edgar L, Akbar N, Braithwaite AT, Krausgruber T, Gallart-Ayala H, Bailey J, Corbin AL, Khoyratty TE, Chai JT, Alkhalil M, Rendeiro AF, Ziberna K, Arya R, Cahill TJ, Bock C, Laurencikiene J, Crabtree MJ, Lemieux ME, Riksen NP, Netea MG, Wheelock CE, Channon KM, Rydén M, Udalova IA, Carnicer R, Choudhury RP. Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation 2021; 144:961-982. [PMID: 34255973 PMCID: PMC8448412 DOI: 10.1161/circulationaha.120.046464] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/23/2021] [Indexed: 11/24/2022]
Abstract
BACKGROUND Cardiovascular risk in diabetes remains elevated despite glucose-lowering therapies. We hypothesized that hyperglycemia induces trained immunity in macrophages, promoting persistent proatherogenic characteristics. METHODS Bone marrow-derived macrophages from control mice and mice with diabetes were grown in physiological glucose (5 mmol/L) and subjected to RNA sequencing (n=6), assay for transposase accessible chromatin sequencing (n=6), and chromatin immunoprecipitation sequencing (n=6) for determination of hyperglycemia-induced trained immunity. Bone marrow transplantation from mice with (n=9) or without (n=6) diabetes into (normoglycemic) Ldlr-/- mice was used to assess its functional significance in vivo. Evidence of hyperglycemia-induced trained immunity was sought in human peripheral blood mononuclear cells from patients with diabetes (n=8) compared with control subjects (n=16) and in human atherosclerotic plaque macrophages excised by laser capture microdissection. RESULTS In macrophages, high extracellular glucose promoted proinflammatory gene expression and proatherogenic functional characteristics through glycolysis-dependent mechanisms. Bone marrow-derived macrophages from diabetic mice retained these characteristics, even when cultured in physiological glucose, indicating hyperglycemia-induced trained immunity. Bone marrow transplantation from diabetic mice into (normoglycemic) Ldlr-/- mice increased aortic root atherosclerosis, confirming a disease-relevant and persistent form of trained innate immunity. Integrated assay for transposase accessible chromatin, chromatin immunoprecipitation, and RNA sequencing analyses of hematopoietic stem cells and bone marrow-derived macrophages revealed a proinflammatory priming effect in diabetes. The pattern of open chromatin implicated transcription factor Runt-related transcription factor 1 (Runx1). Similarly, transcriptomes of atherosclerotic plaque macrophages and peripheral leukocytes in patients with type 2 diabetes were enriched for Runx1 targets, consistent with a potential role in human disease. Pharmacological inhibition of Runx1 in vitro inhibited the trained phenotype. CONCLUSIONS Hyperglycemia-induced trained immunity may explain why targeting elevated glucose is ineffective in reducing macrovascular risk in diabetes and suggests new targets for disease prevention and therapy.
Collapse
Affiliation(s)
- Laurienne Edgar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Naveed Akbar
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Adam T. Braithwaite
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Thomas Krausgruber
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
| | - Héctor Gallart-Ayala
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.)
- Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden
| | - Jade Bailey
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Alastair L. Corbin
- The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
| | - Tariq E. Khoyratty
- The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
| | - Joshua T. Chai
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Mohammad Alkhalil
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - André F. Rendeiro
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
| | - Klemen Ziberna
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Ritu Arya
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Thomas J. Cahill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria (T.K., A.F.R., C.B.)
- Institute of Artificial Intelligence and Decision Support, Center for Medical Statistics, Informatics, and Intelligent Systems, Medical University of Vienna, Austria (C.B.)
| | - Jurga Laurencikiene
- Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
| | - Mark J. Crabtree
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | | | - Niels P. Riksen
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
| | - Mihai G. Netea
- Department of Internal Medicine, Radboud University Medical Centre, Nijmegen, The Netherlands (N.P.R.., M.G.N.)
- Department for Genomics & Immunoregulation, Life and Medical Sciences Institute (LIMES), University of Bonn, Germany (M.G.N.)
| | - Craig E. Wheelock
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden (H.G.-A., C.E.W.)
- Department of Respiratory Medicine and Allergy (H.G.-A., C.E.W.), Karolinska University Hospital, Stockholm, Sweden
| | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Mikael Rydén
- Department of Medicine (H7) (J.L., M.R.), Karolinska University Hospital, Stockholm, Sweden
| | - Irina A. Udalova
- The Kennedy Institute of Rheumatology, University of Oxford, UK (A.L.C., T.E.K., I.A.U.)
| | - Ricardo Carnicer
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| | - Robin P. Choudhury
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, UK (L.E., N.A., A.T.B., J.B., J.T.C., M.A., K.Z., R.A., T.J.C., M.J.C., K.M.C., R.C., R.P.C.)
| |
Collapse
|
27
|
Liu N, Han J, Li Y, Jiang Y, Shi SX, Lok J, Whalen M, Dumont AS, Wang X. Recombinant annexin A2 inhibits peripheral leukocyte activation and brain infiltration after traumatic brain injury. J Neuroinflammation 2021; 18:173. [PMID: 34372870 PMCID: PMC8353736 DOI: 10.1186/s12974-021-02219-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/15/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant cause of death and disability worldwide. The TLR4-NFκB signaling cascade is the critical pro-inflammatory activation pathway of leukocytes after TBI, and modulating this signaling cascade may be an effective therapeutic target for treating TBI. Previous studies indicate that recombinant annexin A2 (rA2) might be an interactive molecule modulating the TLR4-NFκB signaling; however, the role of rA2 in regulating this signaling pathway in leukocytes after TBI and its subsequent effects have not been investigated. METHODS C57BL/6 mice were subjected to TBI and randomly divided into groups that received intraperitoneal rA2 or vehicle at 2 h after TBI. The peripheral leukocyte activation and infiltrating immune cells were examined by flow cytometry, RT-qPCR, and immunostaining. The neutrophilic TLR4 expression on the cell membrane was examined by flow cytometry and confocal microscope, and the interaction of annexin A2 with TLR4 was assessed by co-immunoprecipitation coupled with Western blotting. Neuroinflammation was measured via cytokine proteome profiler array and RT-qPCR. Neurodegeneration was determined by Western blotting and immunostaining. Neurobehavioral assessments were used to monitor motor and cognitive function. Brain tissue loss was assessed via MAP2 staining. RESULTS rA2 administration given at 2 h after TBI significantly attenuates neutrophil activation and brain infiltration at 24 h of TBI. In vivo and in vitro data show that rA2 binds to and reduces TLR4 expression on the neutrophil surface and suppresses TLR4/NFκB signaling pathway in neutrophils at 12 h after TBI. Furthermore, rA2 administration also reduces pro-inflammation of brain tissues within 24 h and neurodegeneration at 48 h after TBI. Lastly, rA2 improves long-term sensorimotor ability and cognitive function, and reduces brain tissue loss at 28 days after TBI. CONCLUSIONS Systematic rA2 administration at 2 h after TBI significantly inhibits activation and brain infiltration of peripheral leukocytes, especially neutrophils at the acute phase. Consequently, rA2 reduces the detrimental brain pro-inflammation-associated neurodegeneration and ultimately ameliorates neurological deficits after TBI. The underlying molecular mechanism might be at least in part attributed to rA2 bindings to pro-inflammatory receptor TLR4 in peripheral leukocytes, thereby blocking NFκB signaling activation pathways following TBI.
Collapse
Affiliation(s)
- Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA.
| | - Jinrui Han
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Yadan Li
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Samuel X Shi
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology and Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Michael Whalen
- Department of Pediatrics, Pediatric Critical Care Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, 02129, USA
| | - Aaron S Dumont
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery and Neurology, Tulane University School of Medicine, New Orleans, LA, 70122, USA.
| |
Collapse
|
28
|
Ho IH, Ng LH, Cheng X, Gin T, Chan CS, Sun W, Xiao L, Zhang L, Chan MT, Wu WK, Liu X. Annexin A2 traps mu-opioid receptors in recycling endosomes upon remifentanil-induced internalization. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 10:100071. [PMID: 34401608 PMCID: PMC8358694 DOI: 10.1016/j.ynpai.2021.100071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/28/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
•ANXA2 is a novel MOR1-interacting protein regulating MOR1 sub-cellular localization.•ANXA2 retains MOR1 in late recycling endosomes after remifentanil exposure.
Collapse
Affiliation(s)
- Idy H.T. Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Lhotse H.L. Ng
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaojie Cheng
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Chee Sam Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
| | - Wuping Sun
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6 Affiliated Hospital of Shenzhen University Health Science Center, National Key Clinical Pain Medicine of China, Shenzhen 518060, China
| | - Lizu Xiao
- Department of Pain Medicine and Shenzhen Municipal Key Laboratory for Pain Medicine, Shenzhen Nanshan People’s Hospital and the 6 Affiliated Hospital of Shenzhen University Health Science Center, National Key Clinical Pain Medicine of China, Shenzhen 518060, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Matthew T.V. Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - William K.K. Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
- State Key Laboratory of Digestive Disease, Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Prince of Wales Hospital, Hong Kong Special Administrative Region, China
- Peter Hung Pain Research Institute, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| |
Collapse
|
29
|
Bugueno IM, Benkirane-Jessel N, Huck O. Implication of Toll/IL-1 receptor domain containing adapters in Porphyromonas gingivalis-induced inflammation. Innate Immun 2021; 27:324-342. [PMID: 34018827 PMCID: PMC8186158 DOI: 10.1177/17534259211013087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is induced by periodontal dysbiosis characterized by the predominance of anaerobic species. TLRs constitute the classical pathway for cell activation by infection. Interestingly, the Toll/IL-1 receptor homology domain adapters initiate signaling events, leading to the activation of the expression of the genes involved in the host immune response. The aim of this study was to evaluate the effects of Porphyromonas gingivalis on the expression and protein-protein interactions among five TIR adapters (MAL, MyD88, TRIF, TRAM and SARM) in gingival epithelial cells and endothelial cells. It was observed that P. gingivalis is able to modulate the signaling cascades activated through its recognition by TLR4/2 in gingival epithelial cells and endothelial cells. Indeed, MAL-MyD88 protein-protein interactions associated with TLR4 was the main pathway activated by P. gingivalis infection. When transient siRNA inhibition was performed, cell viability, inflammation, and cell death induced by infection decreased and such deleterious effects were almost absent when MAL or TRAM were targeted. This study emphasizes the role of such TIR adapter proteins in P. gingivalis elicited inflammation and the precise evaluation of TIR adapter protein interactions may pave the way for future therapeutics in both periodontitis and systemic disease with a P. gingivalis involvement, such as atherothrombosis.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, France.,Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
30
|
Grewal T, Rentero C, Enrich C, Wahba M, Raabe CA, Rescher U. Annexin Animal Models-From Fundamental Principles to Translational Research. Int J Mol Sci 2021; 22:ijms22073439. [PMID: 33810523 PMCID: PMC8037771 DOI: 10.3390/ijms22073439] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/07/2023] Open
Abstract
Routine manipulation of the mouse genome has become a landmark in biomedical research. Traits that are only associated with advanced developmental stages can now be investigated within a living organism, and the in vivo analysis of corresponding phenotypes and functions advances the translation into the clinical setting. The annexins, a family of closely related calcium (Ca2+)- and lipid-binding proteins, are found at various intra- and extracellular locations, and interact with a broad range of membrane lipids and proteins. Their impacts on cellular functions has been extensively assessed in vitro, yet annexin-deficient mouse models generally develop normally and do not display obvious phenotypes. Only in recent years, studies examining genetically modified annexin mouse models which were exposed to stress conditions mimicking human disease often revealed striking phenotypes. This review is the first comprehensive overview of annexin-related research using animal models and their exciting future use for relevant issues in biology and experimental medicine.
Collapse
Affiliation(s)
- Thomas Grewal
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| | - Carles Rentero
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Carlos Enrich
- Departament de Biomedicina, Unitat de Biologia Cel·lular, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain; (C.R.); (C.E.)
- Centre de Recerca Biomèdica CELLEX, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Mohamed Wahba
- School of Pharmacy, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2006, Australia;
| | - Carsten A. Raabe
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
| | - Ursula Rescher
- Research Group Regulatory Mechanisms of Inflammation, Center for Molecular Biology of Inflammation (ZMBE) and Cells in Motion Interfaculty Center (CiM), Institute of Medical Biochemistry, University of Muenster, 48149 Muenster, Germany;
- Correspondence: (T.G.); (U.R.); Tel.: +61-(0)2-9351-8496 (T.G.); +49-(0)251-83-52121 (U.R.)
| |
Collapse
|
31
|
Habib R. Multifaceted roles of Toll-like receptors in acute kidney injury. Heliyon 2021; 7:e06441. [PMID: 33732942 PMCID: PMC7944035 DOI: 10.1016/j.heliyon.2021.e06441] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/08/2020] [Accepted: 03/03/2021] [Indexed: 12/13/2022] Open
Abstract
Toll-like receptors (TLRs) are a family of pattern recognition receptors (PRRs) in the first line defense system of our bodies; they are widely expressed on leukocytes and kidney epithelial cells. Infections due to pathogens or danger signals from injured tissues often activate several TLRs and these receptors mediate their signal transduction through the activation of transcription factors that regulate the expression of cytokine interleukin-1β (IL-1β), type I interferons (IFNs), and nuclear factor kappa light chain enhancer of activated B cells (NF-κB) dependent cytokines and chemokines. Acute kidney injury (AKI) involves early Toll-like receptors driven immunopathology, while resolution of inflammation is needed for rapid regeneration of injured tubular cells. Despite their well known function in the progression of inflammation; interestingly, activation of TLRs also has been implicated in renal epithelial repair through the induction of certain interleukins and improvement in autophagy mechanism. Studies have found that although the blockade of TLRs during the early injury phase of renal tissues prevented tubular necrosis, suppression of interleukins production and impaired kidney regeneration due to their blockade has been observed during the healing phase of tissue. Taken together, these results suggest that the two danger response programs of renal cells i.e. renal inflammation and regeneration may link at the level of TLRs. This review aims to emphasize on the role of TLRs signaling in different acute kidney injury phases. Understanding of these pathways may turn out to be effective as therapeutic option for kidney diseases.
Collapse
Affiliation(s)
- Rakhshinda Habib
- Dow Research Institute of Biotechnology and Biomedical Sciences, Dow University of Health Sciences, Karachi, 74200, Pakistan
| |
Collapse
|
32
|
Zheng W, Xu Q, Zhang Y, E X, Gao W, Zhang M, Zhai W, Rajkumar RS, Liu Z. Toll-like receptor-mediated innate immunity against herpesviridae infection: a current perspective on viral infection signaling pathways. Virol J 2020; 17:192. [PMID: 33298111 PMCID: PMC7726878 DOI: 10.1186/s12985-020-01463-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 12/01/2020] [Indexed: 12/12/2022] Open
Abstract
Background In the past decades, researchers have demonstrated the critical role of Toll-like receptors (TLRs) in the innate immune system. They recognize viral components and trigger immune signal cascades to subsequently promote the activation of the immune system. Main body Herpesviridae family members trigger TLRs to elicit cytokines in the process of infection to activate antiviral innate immune responses in host cells. This review aims to clarify the role of TLRs in the innate immunity defense against herpesviridae, and systematically describes the processes of TLR actions and herpesviridae recognition as well as the signal transduction pathways involved. Conclusions Future studies of the interactions between TLRs and herpesviridae infections, especially the subsequent signaling pathways, will not only contribute to the planning of effective antiviral therapies but also provide new molecular targets for the development of antiviral drugs.
Collapse
Affiliation(s)
- Wenjin Zheng
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Qing Xu
- School of Anesthesiology, Weifang Medical University, Weifang, 261053, China
| | - Yiyuan Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Xiaofei E
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, 01605, USA
| | - Wei Gao
- Key Lab for Immunology in Universities of Shandong Province, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Mogen Zhang
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | - Weijie Zhai
- School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China
| | | | - Zhijun Liu
- Department of Medical Microbiology, School of Basic Medical Sciences, Weifang Medical University, Weifang, 261053, China.
| |
Collapse
|
33
|
Zhou CM, Luo LM, Lin P, Pu Q, Wang B, Qin S, Wu Q, Yu XJ, Wu M. Annexin A2 regulates unfolded protein response via IRE1-XBP1 axis in macrophages during P. aeruginosa infection. J Leukoc Biol 2020; 110:375-384. [PMID: 33225536 DOI: 10.1002/jlb.3a1219-686rr] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 11/02/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
Pseudomonas aeruginosa is a severe Gram-negative opportunistic bacterium that causes a spectrum of organ system diseases, particularly in immunocompromised patients. This bacterium has been shown to induce unfolded protein response (UPR) during mammalian infection. Annexin A2 (AnxA2) is a multicompartmental protein relating to a number of cellular processes; however, it remains unknown whether AnxA2 coordinates a UPR pathway under bacterial infection conditions. Here, we report that the endoplasmic reticulum stress inositol-requiring enzyme 1 (IRE1)-X-box binding protein 1 (XBP1) pathway was up-regulated by AnxA2 through p38 MAPK signaling following P. aeruginosa infection in macrophages, whereas ATF4 and ATF6 not. In addition, XBP1 was found as a positive regulator of innate immunity to tame P. aeruginosa challenges by enhancing autophagy and bacterial clearance. XBP1 also facilitated NF-κB activation to elicit the release of proinflammatory cytokines predominantly in macrophages. Together, our findings identify AnxA2 as a regulator for XBP1-mediated UPR pathway.
Collapse
Affiliation(s)
- Chuan-Min Zhou
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA.,Wuhan University School of Health Sciences, Wuhan, Hubei Province, China
| | - Li-Mei Luo
- Maternal and Child Health Development Research Center, Shandong Provincial Maternal and Child Health Care Hospital, Jinan, China
| | - Ping Lin
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Qinqin Pu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Biao Wang
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Shugang Qin
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Qun Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| | - Xue-Jie Yu
- Wuhan University School of Health Sciences, Wuhan, Hubei Province, China
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health Sciences University of North Dakota, Grand Forks, North Dakota, USA
| |
Collapse
|
34
|
Zhang S, Li N, Chen W, Fu Q, Liu Y. Time Series Gene Expression Profiles Analysis Identified Several Potential Biomarkers for Sepsis. DNA Cell Biol 2020; 39:1862-1871. [PMID: 32845709 DOI: 10.1089/dna.2020.5383] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a life-threatening disorder and leads to organ dysfunction and death. Therefore, searching for more alternative biomarkers is of great significance for sepsis assessment and surveillance. In our study, the gene expression profiles of 163 samples from healthy controls and septic patients were analyzed and 8 gene co-expression modules were identified by constructing weighted gene co-expression network. The blue and yellow modules showed close correlations with the phenotypic trait "days postsepsis." Besides, differentially expressed genes (DEGs) over time in septic patients were screened using Short Time-series Expression Miner (STEM) program. The intersection of genes in the blue and yellow modules and DEGs, which were significantly enriched in "HTLV-1 infection" pathway, was analyzed with protein-protein interaction network. The logistic regression model based on these eight mRNAs was constructed to determine the type of the sample reliably. Eight vital genes CECR1, ANXA2, ELANE, CTSG, AZU1, PRTN3, LYZ, and DEFA4 presented high scores and may be associated with sepsis, which provided candidate biomarkers for sepsis.
Collapse
Affiliation(s)
- Shiyuan Zhang
- Intensive Care Unit, and First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nannan Li
- Department of Emergency, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weili Chen
- Intensive Care Unit, and First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Qiang Fu
- Intensive Care Unit, and First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yi Liu
- Intensive Care Unit, and First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
35
|
Xi Y, Ju R, Wang Y. Roles of Annexin A protein family in autophagy regulation and therapy. Biomed Pharmacother 2020; 130:110591. [PMID: 32763821 DOI: 10.1016/j.biopha.2020.110591] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/25/2020] [Accepted: 07/28/2020] [Indexed: 02/08/2023] Open
Abstract
Annexin A is a kind of calcium-dependent phospholipid-binding proteins, which contributes to the formation of the cell membranes and cytoskeleton and played a part as a membrane skeleton to stabilize lipid bilayer. Autophagy is one of the most important programmed cell death mechanisms. And recently some reports suggest that annexin A family protein is associated with autophagy for annexin A can regulate the formation of vesicular lipid membranes and promote cell exocytosis. In this review, we summarized the roles of annexin A protein family in autophagy regulation and targeted medical treatment for better diagnoses and therapies.
Collapse
Affiliation(s)
- Yufeng Xi
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Rong Ju
- Department of Neonatology, Chengdu Women's and Children's Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Yujia Wang
- Department of Dermatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
36
|
Su Z, Chang Q, Drelich A, Shelite T, Judy B, Liu Y, Xiao J, Zhou C, He X, Jin Y, Saito T, Tang S, Soong L, Wakamiya M, Fang X, Bukreyev A, Ksiazek T, Russell WK, Gong B. Annexin A2 depletion exacerbates the intracerebral microhemorrhage induced by acute rickettsia and Ebola virus infections. PLoS Negl Trop Dis 2020; 14:e0007960. [PMID: 32687500 PMCID: PMC7392349 DOI: 10.1371/journal.pntd.0007960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 07/30/2020] [Accepted: 06/02/2020] [Indexed: 12/17/2022] Open
Abstract
Intracerebral microhemorrhages (CMHs) are small foci of hemorrhages in the cerebrum. Acute infections induced by some intracellular pathogens, including rickettsia, can result in CMHs. Annexin a2 (ANXA2) has been documented to play a functional role during intracellular bacterial adhesion. Here we report that ANXA2-knockout (KO) mice are more susceptible to CMHs in response to rickettsia and Ebola virus infections, suggesting an essential role of ANXA2 in protecting vascular integrity during these intracellular pathogen infections. Proteomic analysis via mass spectrometry of whole brain lysates and brain-derived endosomes from ANXA2-KO and wild-type (WT) mice post-infection with R. australis revealed that a variety of significant proteins were differentially expressed, and the follow-up function enrichment analysis had identified several relevant cell-cell junction functions. Immunohistology study confirmed that both infected WT and infected ANXA2-KO mice were subjected to adherens junctional protein (VE-cadherin) damages. However, key blood-brain barrier (BBB) components, tight junctional proteins ZO-1 and occludin, were disorganized in the brains from R. australis-infected ANXA2-KO mice, but not those of infected WT mice. Similar ANXA2-KO dependent CMHs and fragments of ZO-1 and occludin were also observed in Ebola virus-infected ANXA2-KO mice, but not found in infected WT mice. Overall, our study revealed a novel role of ANXA2 in the formation of CMHs during R. australis and Ebola virus infections; and the underlying mechanism is relevant to the role of ANXA2-regulated tight junctions and its role in stabilizing the BBB in these deadly infections.
Collapse
Affiliation(s)
- Zhengchen Su
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Qing Chang
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Aleksandra Drelich
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Shelite
- Department of Internal Medicine, Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Barbara Judy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yakun Liu
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Jie Xiao
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Changchen Zhou
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xi He
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Yang Jin
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Boston University Medical Campus, Boston, Massachusetts, United States of America
| | - Tais Saito
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - Shaojun Tang
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Maki Wakamiya
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Xiang Fang
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Thomas Ksiazek
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
| | - William K. Russell
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Bin Gong
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Galveston National Laboratory, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Giblin SP, Schwenzer A, Midwood KS. Alternative splicing controls cell lineage-specific responses to endogenous innate immune triggers within the extracellular matrix. Matrix Biol 2020; 93:95-114. [PMID: 32599145 DOI: 10.1016/j.matbio.2020.06.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/15/2020] [Accepted: 06/21/2020] [Indexed: 01/08/2023]
Abstract
The identification of barely more than 20,000 human genes was amongst the most surprising outcomes of the human genome project. Alternative splicing provides an essential means of expanding the proteome, enabling a single gene to encode multiple, distinct isoforms by selective inclusion or exclusion of exons from mature mRNA. However, mis-regulation of this process is associated with most human diseases. Here, we examine the impact of post-transcriptional processing on extracellular matrix function, focusing on the complex alternative splicing patterns of tenascin-C, a molecule that can exist in as many as 500 different isoforms. We demonstrate that the pro-inflammatory activity of this endogenous innate immune trigger is controlled by inclusion or exclusion of a novel immunomodulatory site located within domains AD2AD1, identifying this as a mechanism that prevents unnecessary inflammation in healthy tissues but enables rapid immune cell mobilization and activation upon tissue damage, and defining how this goes awry in autoimmune disease.
Collapse
Affiliation(s)
- Sean P Giblin
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Anja Schwenzer
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom
| | - Kim S Midwood
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
38
|
Annexin A2 in Inflammation and Host Defense. Cells 2020; 9:cells9061499. [PMID: 32575495 PMCID: PMC7348701 DOI: 10.3390/cells9061499] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 12/30/2022] Open
Abstract
Annexin A2 (AnxA2) is a multifunctional calcium2+ (Ca2+) and phospholipid-binding protein that is expressed in a wide spectrum of cells, including those participating in the inflammatory response. In acute inflammation, the interaction of AnxA2 with actin and adherens junction VE-cadherins underlies its role in regulating vascular integrity. In addition, its contribution to endosomal membrane repair impacts several aspects of inflammatory regulation, including lysosome repair, which regulates inflammasome activation, and autophagosome biogenesis, which is essential for macroautophagy. On the other hand, AnxA2 may be co-opted to promote adhesion, entry, and propagation of bacteria or viruses into host cells. In the later stages of acute inflammation, AnxA2 contributes to the initiation of angiogenesis, which promotes tissue repair, but, when dysregulated, may also accompany chronic inflammation. AnxA2 is overexpressed in malignancies, such as breast cancer and glioblastoma, and likely contributes to cancer progression in the context of an inflammatory microenvironment. We conclude that annexin AnxA2 normally fulfills a spectrum of anti-inflammatory functions in the setting of both acute and chronic inflammation but may contribute to disease states in settings of disordered homeostasis.
Collapse
|
39
|
Papafilippou L, Claxton A, Dark P, Kostarelos K, Hadjidemetriou M. Protein corona fingerprinting to differentiate sepsis from non-infectious systemic inflammation. NANOSCALE 2020; 12:10240-10253. [PMID: 32356537 DOI: 10.1039/d0nr02788j] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Rapid and accurate diagnosis of sepsis remains clinically challenging. The lack of specific biomarkers that can differentiate sepsis from non-infectious systemic inflammatory diseases often leads to excessive antibiotic treatment. Novel diagnostic tests are urgently needed to rapidly and accurately diagnose sepsis and enable effective treatment. Despite investment in cutting-edge technologies available today, the discovery of disease-specific biomarkers in blood remains extremely difficult. The highly dynamic environment of plasma restricts access to vital diagnostic information that can be obtained by proteomic analysis. Here, we employed clinically used lipid-based nanoparticles (AmBisome®) as an enrichment platform to analyze the human plasma proteome in the setting of sepsis. We exploited the spontaneous interaction of plasma proteins with nanoparticles (NPs) once in contact, called the 'protein corona', to discover previously unknown disease-specific biomarkers for sepsis diagnosis. Plasma samples obtained from non-infectious acute systemic inflammation controls and sepsis patients were incubated ex vivo with AmBisome® liposomes, and the resultant protein coronas were thoroughly characterised and compared by mass spectrometry (MS)-based proteomics. Our results demonstrate that the proposed nanoparticle enrichment technology enabled the discovery of 67 potential biomarker proteins that could reproducibly differentiate non-infectious acute systemic inflammation from sepsis. This study provides proof-of-concept evidence that nanoscale-based 'omics' enrichment technologies have the potential to substantially improve plasma proteomics analysis and to uncover novel biomarkers in a challenging clinical setting.
Collapse
Affiliation(s)
- Lana Papafilippou
- Nanomedicine Lab, Faculty of Biology, Medicine & Health, AV Hill Building, The University of Manchester, Manchester, M13 9PT, UK.
| | | | | | | | | |
Collapse
|
40
|
Cai H, Wei J, Shen H, Li J, Fan Q, Zhao Z, Deng J, Ming F, Zeng M, Ma M, Zhao P, Liang Q, Jia J, Zhang S, Zhang L. Molecular cloning, characterization and expression profiles of Annexin family (ANXA1~A6) in yellow catfish (Pelteobagrus fulvidraco) and ANX regulation by CpG ODN responding to bacterial infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:609-630. [PMID: 32088284 DOI: 10.1016/j.fsi.2020.02.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/09/2020] [Accepted: 02/16/2020] [Indexed: 06/10/2023]
Abstract
Up to now, many previous reports have emphasized that Annexins (ANX) family played an important role in immune responses. Aeromonas hydrophila (A. hydrophila), the most common zoonotic pathogenic bacteria of yellow catfish (Pelteobagrus fulvidraco), can cause serious economic loss, especially to yellow catfish with high economic value. In our previous work, we demonstrated that synthetic oligodeoxynucleotides containing CpG motifs (CpG ODN) owned powerful immunostimulatory activity. However, the relationship among Pelteobagrus fulvidraco Annexins (Pf_ANX), CpG ODN and A. hydrophila is unknown. Therefore, we cloned Pf_ANX1-6 genes and analyzed its sequences, structures, genetic evolution, post-translation modifications (PTMs), Ca2+ ion binding sites and tissue distribution to reveal the relevance. In addition, we investigated the responses of ANXA1-6 and cytokines in intestine and spleen as well as morbidity/survival rate of fish post CpG ODN immunization and/or A. hydrophila infection. The results showed that compared with challenge alone (challenge-CK) group, the CpG immunization following challenge (CpG-challenge) group displayed relatively flat IL-1β level throughout in both organs. Meanwhile, the expression of IFN-γ and morbidity/survival rate of fish in CpG-challenge group showed a great improvement compared with the challenge-CK group. Our results indicated that CpG ODN could improve morbidity/survival by up-regulating Pf_ANXA 1, 2 and 5 in the intestine and spleen to ameliorate inflammatory responses and promote anti-infective responses. Our findings offer some important insights into ANX related to the immunity of fish infection and lay a theoretical basis for the prevention and treatment of fish infections.
Collapse
Affiliation(s)
- Haiming Cai
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiatian Wei
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Haokun Shen
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jiayi Li
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qin Fan
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zengjue Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinbo Deng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Feiping Ming
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Min Zeng
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Miaopeng Ma
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Peijing Zhao
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Qianyi Liang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Junhao Jia
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuxia Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Linghua Zhang
- Guangdong Provincial Key Laboratory of Protein Function and Regulation in Agricultural Organisms, College of Life Sciences, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
41
|
Liu N, Jiang Y, Chung JY, Li Y, Yu Z, Kim JW, Lok JM, Whalen MJ, Wang X. Annexin A2 Deficiency Exacerbates Neuroinflammation and Long-Term Neurological Deficits after Traumatic Brain Injury in Mice. Int J Mol Sci 2019; 20:ijms20246125. [PMID: 31817350 PMCID: PMC6940735 DOI: 10.3390/ijms20246125] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Our laboratory and others previously showed that Annexin A2 knockout (A2KO) mice had impaired blood-brain barrier (BBB) development and elevated pro-inflammatory response in macrophages, implying that Annexin A2 (AnxA2) might be one of the key endogenous factors for maintaining homeostasis of the neurovascular unit in the brain. Traumatic brain injury (TBI) is an important cause of disability and mortality worldwide, and neurovascular inflammation plays an important role in the TBI pathophysiology. In the present study, we aimed to test the hypothesis that A2KO promotes pro-inflammatory response in the brain and worsens neurobehavioral outcomes after TBI. TBI was conducted by a controlled cortical impact (CCI) device in mice. Our experimental results showed AnxA2 expression was significantly up-regulated in response to TBI at day three post-TBI. We also found more production of pro-inflammatory cytokines in the A2KO mouse brain, while there was a significant increase of inflammatory adhesion molecules mRNA expression in isolated cerebral micro-vessels of A2KO mice compared with wild-type (WT) mice. Consistently, the A2KO mice brains had a significant increase in leukocyte brain infiltration at two days after TBI. Importantly, A2KO mice had significantly worse sensorimotor and cognitive function deficits up to 28 days after TBI and significantly larger brain tissue loss. Therefore, these results suggested that AnxA2 deficiency results in exacerbated early neurovascular pro-inflammation, which leads to a worse long-term neurologic outcome after TBI.
Collapse
Affiliation(s)
- Ning Liu
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
| | - Yinghua Jiang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
| | - Joon Yong Chung
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.Y.C.); (M.J.W.)
| | - Yadan Li
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
| | - Zhanyang Yu
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Z.Y.); (J.W.K.); (J.M.L.)
| | - Jeong Woo Kim
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Z.Y.); (J.W.K.); (J.M.L.)
| | - Josephine M. Lok
- Neuroprotection Research Laboratory, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (Z.Y.); (J.W.K.); (J.M.L.)
| | - Michael J. Whalen
- Neuroscience Center, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA; (J.Y.C.); (M.J.W.)
| | - Xiaoying Wang
- Clinical Neuroscience Research Center, Department of Neurosurgery, School of Medicine, Tulane University, New Orleans, LA 70112, USA; (N.L.); (Y.J.); (Y.L.)
- Correspondence: ; Tel.: +1-504-988-2646; Fax: +1-504-988-5793
| |
Collapse
|
42
|
Jiang Y, Zhou S, Chu W. The effects of dietary Bacillus cereus QSI-1 on skin mucus proteins profile and immune response in Crucian Carp (Carassius auratus gibelio). FISH & SHELLFISH IMMUNOLOGY 2019; 89:319-325. [PMID: 30970281 DOI: 10.1016/j.fsi.2019.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 06/09/2023]
Abstract
The objective of this study was to investigate the effect of dietary quorum quenching bacterium Bacillus cereus QSI-1 on skin mucus protein pattern and innate immune response in Crucian Carp (Carassius auratus gibelio). The differential proteomes of skin mucus of Crucian Carp were analyzed after administration of Bacillus cereus QSI-1 by isobaric tags for relative and absolute quantitation (iTRAQ) labeling, followed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). A total of 1974 proteins were quantified. Using a 1.5-fold change in expression as a physiological significant benchmark, 264 differentially expressed proteins were reliably quantified by iTRAQ analysis, including 130 up- and 134 down-regulated proteins after dietary Bacillus cereus QSI-1. Some Proteins that were involved in immunity included protein S100, annexin, histone H3, lymphocyte cytosolic protein 1, heat shock protein, L-plastin, keratin 91, etc. Furthermore, fish fed 5 × 108 CFU/g Bacillus cereus QSI-1 supplemented diet showed an increase in alternative complement activity and lysozyme activity but expressed a decrease in superoxide dismutase activity in skin mucus (P < 0.05). However, administration of Bacillus cereus QSI-1 had no significant effects on total immunoglobulin level (P > 0.05). These results demonstrated that dietary administration of Bacillus cereus QSI-1 affects skin mucus protein profile and innate immune response in Crucian Carp, and also can enhance the disease resistance of Crucian Carp against A. hydrophila. This is the first report on proteomics analysis of skin mucus proteins in Crucian Carp after administration of quorum quenching bacterium Bacillus cereus, and the results will help to understand the mucosal immune responses to probiotics at the protein level in fish.
Collapse
Affiliation(s)
- Yuanhe Jiang
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Shuxin Zhou
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
43
|
Taylor JR, Skeate JG, Kast WM. Annexin A2 in Virus Infection. Front Microbiol 2018; 9:2954. [PMID: 30568638 PMCID: PMC6290281 DOI: 10.3389/fmicb.2018.02954] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Accepted: 11/16/2018] [Indexed: 12/17/2022] Open
Abstract
Viral life cycles consist of three main phases: (1) attachment and entry, (2) genome replication and expression, and (3) assembly, maturation, and egress. Each of these steps is intrinsically reliant on host cell factors and processes including cellular receptors, genetic replication machinery, endocytosis and exocytosis, and protein expression. Annexin A2 (AnxA2) is a membrane-associated protein with a wide range of intracellular functions and a recurrent host factor in a variety of viral infections. Spatially, AnxA2 is found in the nucleus and cytoplasm, vesicle-bound, and on the inner and outer leaflet of the plasma membrane. Structurally, AnxA2 exists as a monomer or in complex with S100A10 to form the AnxA2/S100A10 heterotetramer (A2t). Both AnxA2 and A2t have been implicated in a vast array of cellular functions such as endocytosis, exocytosis, membrane domain organization, and translational regulation through RNA binding. Accordingly, many discoveries have been made involving AnxA2 in viral pathogenesis, however, the reported work addressing AnxA2 in virology is highly compartmentalized. Therefore, the purpose of this mini review is to provide information regarding the role of AnxA2 in the lifecycle of multiple epithelial cell-targeting viruses to highlight recurrent themes, identify discrepancies, and reveal potential avenues for future research.
Collapse
Affiliation(s)
- Julia R Taylor
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - Joseph G Skeate
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States
| | - W Martin Kast
- Department of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, United States.,Department of Obstetrics and Gynecology, University of Southern California, Los Angeles, CA, United States.,Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
44
|
Vishnu Vardhan GP, Hema M, Sushmitha C, Savithri HS, Natraj U, Murthy MRN. Development of sesbania mosaic virus nanoparticles for imaging. Arch Virol 2018; 164:497-507. [PMID: 30430265 DOI: 10.1007/s00705-018-4097-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 10/22/2018] [Indexed: 11/30/2022]
Abstract
The capsids of viruses have a high degree of symmetry. Therefore, virus nanoparticles (VNPs) can be programmed to display many imaging agents precisely. Plant VNPs are biocompatible, biodegradable and non-infectious to mammals. We have carried out bioconjugation of sesbania mosaic virus (SeMV), a well characterized plant virus, with fluorophores using reactive lysine-N-hydroxysuccinimide ester and cysteine-maleimide chemistries. Monitoring of cellular internalization of labelled SeMV nanoparticles (NPs) by confocal microscopy and flow cytometry showed that the particles have a natural preference for entry into MDA-MB-231 (breast cancer) cells, although they could also enter various other cell lines. The fluorescence of SeMV NPs labelled via the cysteines with Cy5.5 dye was found to be more stable and was detectable with greater sensitivity than that of particles labelled via the lysines with Alexa Fluor. Live-cell imaging using SeMV internally labelled with Cy5.5 showed that it could bind to MDA-MB-231 cells in less than 5 minutes and enter the cells within 15 minutes. The particles undergo endolysosomal degradation by 6 h as evidenced by their co-localization with LAMP-1. Far-western blot analysis with a HeLa cell membrane protein fraction showed that SeMV interacts with 54-, 35- and 33-kDa proteins, which were identified by mass spectrometry as vimentin, voltage-dependent anion-selective channel protein (VDAC1), and annexin A2 isoform 2 (ANXA2), respectively, suggesting that the particles may bind and enter the cell through these proteins. The results presented here demonstrate that the SeMV NPs provide a new platform technology that could be used to develop in vivo imaging and targeted drug delivery agents for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- G P Vishnu Vardhan
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - M Hema
- Department of Virology, Sri Venkateswara University, Tirupati, India.
| | - C Sushmitha
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - H S Savithri
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India.
| | - Usha Natraj
- Department of Biochemistry, Indian Institute of Science, Bengaluru, India
| | - M R N Murthy
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India
| |
Collapse
|
45
|
Nie L, Cai SY, Shao JZ, Chen J. Toll-Like Receptors, Associated Biological Roles, and Signaling Networks in Non-Mammals. Front Immunol 2018; 9:1523. [PMID: 30034391 PMCID: PMC6043800 DOI: 10.3389/fimmu.2018.01523] [Citation(s) in RCA: 203] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 06/19/2018] [Indexed: 01/18/2023] Open
Abstract
The innate immune system is the first line of defense against pathogens, which is initiated by the recognition of pathogen-associated molecular patterns (PAMPs) and endogenous damage-associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). Among all the PRRs identified, the toll-like receptors (TLRs) are the most ancient class, with the most extensive spectrum of pathogen recognition. Since the first discovery of Toll in Drosophila melanogaster, numerous TLRs have been identified across a wide range of invertebrate and vertebrate species. It seems that TLRs, the signaling pathways that they initiate, or related adaptor proteins are essentially conserved in a wide variety of organisms, from Porifera to mammals. Molecular structure analysis indicates that most TLR homologs share similar domain patterns and that some vital participants of TLR signaling co-evolved with TLRs themselves. However, functional specification and emergence of new signaling pathways, as well as adaptors, did occur during evolution. In addition, ambiguities and gaps in knowledge still exist regarding the TLR network, especially in lower organisms. Hence, a systematic review from the comparative angle regarding this tremendous signaling system and the scenario of evolutionary pattern across Animalia is needed. In the current review, we present overview and possible evolutionary patterns of TLRs in non-mammals, hoping that this will provide clues for further investigations in this field.
Collapse
Affiliation(s)
- Li Nie
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Shi-Yu Cai
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China
| |
Collapse
|
46
|
Annexins in Translational Research: Hidden Treasures to Be Found. Int J Mol Sci 2018; 19:ijms19061781. [PMID: 29914106 PMCID: PMC6032224 DOI: 10.3390/ijms19061781] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 06/06/2018] [Accepted: 06/12/2018] [Indexed: 12/12/2022] Open
Abstract
The vertebrate annexin superfamily (AnxA) consists of 12 members of a calcium (Ca2+) and phospholipid binding protein family which share a high structural homology. In keeping with this hallmark feature, annexins have been implicated in the Ca2+-controlled regulation of a broad range of membrane events. In this review, we identify and discuss several themes of annexin actions that hold a potential therapeutic value, namely, the regulation of the immune response and the control of tissue homeostasis, and that repeatedly surface in the annexin activity profile. Our aim is to identify and discuss those annexin properties which might be exploited from a translational science and specifically, a clinical point of view.
Collapse
|
47
|
Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 2018; 135:529-550. [PMID: 29302779 PMCID: PMC5978931 DOI: 10.1007/s00401-017-1803-x] [Citation(s) in RCA: 228] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/15/2022]
Abstract
Recent evidence indicates synaptic dysfunction as an early mechanism affected in neuroinflammatory diseases, such as multiple sclerosis, which are characterized by chronic microglia activation. However, the mode(s) of action of reactive microglia in causing synaptic defects are not fully understood. In this study, we show that inflammatory microglia produce extracellular vesicles (EVs) which are enriched in a set of miRNAs that regulate the expression of key synaptic proteins. Among them, miR-146a-5p, a microglia-specific miRNA not present in hippocampal neurons, controls the expression of presynaptic synaptotagmin1 (Syt1) and postsynaptic neuroligin1 (Nlg1), an adhesion protein which play a crucial role in dendritic spine formation and synaptic stability. Using a Renilla-based sensor, we provide formal proof that inflammatory EVs transfer their miR-146a-5p cargo to neuron. By western blot and immunofluorescence analysis we show that vesicular miR-146a-5p suppresses Syt1 and Nlg1 expression in receiving neurons. Microglia-to-neuron miR-146a-5p transfer and Syt1 and Nlg1 downregulation do not occur when EV-neuron contact is inhibited by cloaking vesicular phosphatidylserine residues and when neurons are exposed to EVs either depleted of miR-146a-5p, produced by pro-regenerative microglia, or storing inactive miR-146a-5p, produced by cells transfected with an anti-miR-146a-5p. Morphological analysis reveals that prolonged exposure to inflammatory EVs leads to significant decrease in dendritic spine density in hippocampal neurons in vivo and in primary culture, which is rescued in vitro by transfection of a miR-insensitive Nlg1 form. Dendritic spine loss is accompanied by a decrease in the density and strength of excitatory synapses, as indicated by reduced mEPSC frequency and amplitude. These findings link inflammatory microglia and enhanced EV production to loss of excitatory synapses, uncovering a previously unrecognized role for microglia-enriched miRNAs, released in association to EVs, in silencing of key synaptic genes.
Collapse
|
48
|
Low incubation temperature during early development negatively affects survival and related innate immune processes in zebrafish larvae exposed to lipopolysaccharide. Sci Rep 2018. [PMID: 29515182 PMCID: PMC5841277 DOI: 10.1038/s41598-018-22288-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
In many fish species, the immune system is significantly constrained by water temperature. In spite of its critical importance in protecting the host against pathogens, little is known about the influence of embryonic incubation temperature on the innate immunity of fish larvae. Zebrafish (Danio rerio) embryos were incubated at 24, 28 or 32 °C until first feeding. Larvae originating from each of these three temperature regimes were further distributed into three challenge temperatures and exposed to lipopolysaccharide (LPS) in a full factorial design (3 incubation × 3 challenge temperatures). At 24 h post LPS challenge, mortality of larvae incubated at 24 °C was 1.2 to 2.6-fold higher than those kept at 28 or 32 °C, regardless of the challenge temperature. LPS challenge at 24 °C stimulated similar immune-related processes but at different levels in larvae incubated at 24 or 32 °C, concomitantly with the down-regulation of some chemokine and lysozyme transcripts in the former group. Larvae incubated at 24 °C and LPS-challenged at 32 °C exhibited a limited immune response with up-regulation of hypoxia and oxidative stress processes. Annexin A2a, S100 calcium binding protein A10b and lymphocyte antigen-6, epidermis were identified as promising candidates for LPS recognition and signal transduction.
Collapse
|
49
|
Teke K, Guzel N, Uslubas AK, Kasap M, Yilmaz H, Akpinar G, Yildiz DK, Dillioglugil O. Monitoring the response of urothelial precancerous lesions to Bacillus Calmette-Guerin at the proteome level in an in vivo rat model. Cancer Immunol Immunother 2018; 67:67-77. [PMID: 28916862 PMCID: PMC11028241 DOI: 10.1007/s00262-017-2063-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/08/2017] [Indexed: 12/12/2022]
Abstract
Intravesical Bacillus Calmette-Guerin (BCG) is the best treatment modality for progression of non-muscle invasive bladder cancer. We aimed to monitor changes at the proteome level to identify putative protein biomarkers associated with the response of urothelial precancerous lesions to intravesical BCG treatment. The rats were divided into three groups (n = 10/group): control, non-treated, and BCG-treated groups. The non-treated and BCG-treated groups received N-methyl-N-nitrosourea intravesically. BCG Tice-strain was instilled into bladder in BCG-treated group. At the endpoint of experiment, all surviving rat bladders were collected and equally divided into two portions vertically from dome to neck. Half of each bladder was assessed immunohistopathologically and the other half was used for 2D-based comparative proteomic analysis. Differentially expressed proteins were validated by Western blot analysis. Precancerous lesions of bladder cancer were more common in non-treated group (77.8%) than in BCG-treated group (50%) and the control group (0%). Greater than twofold changes occurred in the expression of a number of proteins. Among them, Rab-GDIβ, aldehyde dehydrogenase 2 (ALDH2) and 14-3-3 zeta/delta were important since they were previously reported to be associated with cancer and their expression levels were found to be lower in BCG-treated group in comparison to the non-treated group. ALDH2 and 14-3-3 zeta/delta were also found to be highly expressed in the non-treated group compared to the control group. The down-regulation of these proteins and Rab-GDIβ was achieved with BCG; this result indicates that they may be used as putative biomarkers for monitoring changes in bladder carcinogenesis in response to BCG immunotherapy.
Collapse
Affiliation(s)
- Kerem Teke
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey.
| | - Nil Guzel
- Department of Molecular Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Ali Kemal Uslubas
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Murat Kasap
- Department of Molecular Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Hasan Yilmaz
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey
| | - Gurler Akpinar
- Department of Molecular Biology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Demir Kursat Yildiz
- Department of Pathology, Kocaeli University School of Medicine, Kocaeli, Turkey
| | - Ozdal Dillioglugil
- Department of Urology, Kocaeli University School of Medicine, Umuttepe Campus, 41380, Kocaeli, Turkey
| |
Collapse
|
50
|
Drago F, Lombardi M, Prada I, Gabrielli M, Joshi P, Cojoc D, Franck J, Fournier I, Vizioli J, Verderio C. ATP Modifies the Proteome of Extracellular Vesicles Released by Microglia and Influences Their Action on Astrocytes. Front Pharmacol 2017; 8:910. [PMID: 29321741 PMCID: PMC5733563 DOI: 10.3389/fphar.2017.00910] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 11/29/2017] [Indexed: 11/23/2022] Open
Abstract
Extracellular ATP is among molecules promoting microglia activation and inducing the release of extracellular vesicles (EVs), which are potent mediators of intercellular communication between microglia and the microenvironment. We previously showed that EVs produced under ATP stimulation (ATP-EVs) propagate a robust inflammatory reaction among astrocytes and microglia in vitro and in mice with subclinical neuroinflammation (Verderio et al., 2012). However, the proteome of EVs released upon ATP stimulation has not yet been elucidated. In this study we applied a label free proteomic approach to characterize the proteome of EVs released constitutively and during microglia activation with ATP. We show that ATP drives sorting in EVs of a set of proteins implicated in cell adhesion/extracellular matrix organization, autophagy-lysosomal pathway and cellular metabolism, that may influence the response of recipient astrocytes to EVs. These data provide new clues to molecular mechanisms involved in microglia response to ATP and in microglia signaling to the environment via EVs.
Collapse
Affiliation(s)
- Francesco Drago
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France.,Fondazione Istituto Oncologico del Mediterraneo, Viagrande, Italy
| | | | | | | | - Pooja Joshi
- Institute of Neuroscience (CNR), Milan, Italy
| | - Dan Cojoc
- Institute of Materials (CNR), Trieste, Italy
| | - Julien Franck
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Isabelle Fournier
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Jacopo Vizioli
- Univ. Lille, INSERM, U1192 - Protéomique Réponse Inflammatoire Spectrométrie de Masse - PRISM, Lille, France
| | - Claudia Verderio
- IRCCS Humanitas, Rozzano, Italy.,Institute of Neuroscience (CNR), Milan, Italy
| |
Collapse
|