1
|
Liu C, Zhao L, Dong H, Hua Z, Wang Y, Wang Y, Li P, Wei X, Zhang K, Xue Y, Wu X, Chen W. Experimental investigation on the reverse mechano-electrical effect of porcine articular cartilage. Front Bioeng Biotechnol 2025; 13:1485593. [PMID: 39963171 PMCID: PMC11830689 DOI: 10.3389/fbioe.2025.1485593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Introduction The electric signals within the cartilage tissue are essential to biological systems and play a significant role in cartilage regeneration. Therefore, this study analyzed and investigated the reverse mechano-electrical effect in porcine articular cartilage and its related influencing factors. Methods The deflection of cartilage samples in an electric field was measured to analyze the mechanisms of different factors affecting the reverse mechano-electrical effect in articular cartilage. Results The results showed that the cartilage thickness, water content, and externally applied voltage all impacted the deflection of the cartilage. The reduction in cartilage water content resulted in a decrease in cartilage thickness, following the same influencing mechanism as thickness. On the other hand, an increase in the externally applied voltage led to an increase in the electric field force within the cartilage space, consequently increasing the deflection of the cartilage in the electric field. Additionally, the externally applied voltage also caused a slight temperature rise in the vicinity of the cartilage specimens, and the magnitude of the temperature increase was proportional to the externally applied voltage. Discussion The fitting results of the experimental data indicated that cartilage thickness influenced the dielectric constant and moment of inertia of the cartilage in the electric field, thereby affecting the magnitude of the electric field force and deflection of the cartilage. This may provide valuable insights for further investigation into the microscopic mechanisms of cell proliferation, differentiation, and cartilage regeneration induced by electrical stimulation.
Collapse
Affiliation(s)
- Chunsheng Liu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Le Zhao
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Hao Dong
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Zekun Hua
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yanqin Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Yongxing Wang
- Taiyuan Great Health Technology Health Management Co., Ltd., Taiyuan, China
| | - Pengcui Li
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan, China
| | - Xiaochun Wei
- Shanxi Provincial Key Laboratory for Repair of Bone and Soft Tissue Injury, Taiyuan, China
| | - Kai Zhang
- Huajin Orthopaedic Hospital, Taiyuan, China
| | - Yanru Xue
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Xiaogang Wu
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| | - Weiyi Chen
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, China
| |
Collapse
|
2
|
Zhang G, Levin M. Bioelectricity is a universal multifaced signaling cue in living organisms. Mol Biol Cell 2025; 36:pe2. [PMID: 39873662 PMCID: PMC11809311 DOI: 10.1091/mbc.e23-08-0312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/30/2025] Open
Abstract
The cellular electrical signals of living organisms were discovered more than a century ago and have been extensively investigated in the neuromuscular system. Neuronal depolarization and hyperpolarization are essential for our neuromuscular physiological and pathological functions. Bioelectricity is being recognized as an ancient, intrinsic, fundamental property of all living cells, and it is not limited to the neuromuscular system. Instead, emerging evidence supports a view of bioelectricity as an instructional signaling cue for fundamental cellular physiology, embryonic development, regeneration, and human diseases, including cancers. Here, we highlight the current understanding of bioelectricity and share our views on the challenges and perspectives.
Collapse
Affiliation(s)
- GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47906
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155
| |
Collapse
|
3
|
Bai Y, Li X, Wu K, Heng BC, Zhang X, Deng X. Biophysical stimuli for promoting bone repair and regeneration. MEDICAL REVIEW (2021) 2025; 5:1-22. [PMID: 39974560 PMCID: PMC11834751 DOI: 10.1515/mr-2024-0023] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 06/19/2024] [Indexed: 02/21/2025]
Abstract
Bone injuries and diseases are associated with profound changes in the biophysical properties of living bone tissues, particularly their electrical and mechanical properties. The biophysical properties of healthy bone are attributed to the complex network of interactions between its various cell types (i.e., osteocytes, osteoclast, immune cells and vascular endothelial cells) with the surrounding extracellular matrix (ECM) against the backdrop of a myriad of biomechanical and bioelectrical stimuli arising from daily physical activities. Understanding the pathophysiological changes in bone biophysical properties is critical to developing new therapeutic strategies and novel scaffold biomaterials for orthopedic surgery and tissue engineering, as well as provides a basis for the application of various biophysical stimuli as therapeutic agents to restore the physiological microenvironment of injured/diseased bone tissue, to facilitate its repair and regeneration. These include mechanical, electrical, magnetic, thermal and ultrasound stimuli, which will be critically examined in this review. A significant advantage of utilizing such biophysical stimuli to facilitate bone healing is that these may be applied non-invasively with minimal damage to surrounding tissues, unlike conventional orthopedic surgical procedures. Furthermore, the effects of such biophysical stimuli can be localized specifically at the bone defect site, unlike drugs or growth factors that tend to diffuse away after delivery, which may result in detrimental side effects at ectopic sites.
Collapse
Affiliation(s)
- Yunyang Bai
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xiaochan Li
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ke Wu
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Boon C. Heng
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuehui Zhang
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| | - Xuliang Deng
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
- Department of Dental Materials & Dental Medical Devices Testing Center, Peking University School and Hospital of Stomatology, Beijing, China
- National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, NMPA Key Laboratory for Dental Materials, Beijing Laboratory of Biomedical Materials & Beijing Key Laboratory of Digital Stomatology, Peking University School and Hospital of Stomatology, Beijing, China
| |
Collapse
|
4
|
Bianconi S, Leppik L, Oppermann E, Marzi I, Henrich D. Direct Current Electrical Stimulation Shifts THP-1-Derived Macrophage Polarization towards Pro-Regenerative M2 Phenotype. Int J Mol Sci 2024; 25:7272. [PMID: 39000377 PMCID: PMC11242703 DOI: 10.3390/ijms25137272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/14/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024] Open
Abstract
A macrophage shift from the M1 to the M2 phenotype is relevant for promoting tissue repair and regeneration. In a previous in vivo study, we found that direct current (DC) electrical stimulation (EStim) increased the proportion of M2 macrophages in healing tissues and directed the balance of the injury response away from healing/scarring towards regeneration. These observations led us to hypothesize that DC EStim regulates macrophage polarization towards an M2 phenotype. THP-1-derived M0, M1 (IFN-γ and LPS), and M2 (IL-4 and IL-13) macrophages were exposed (or not: control group) to 100 mV/mm of DC EStim, 1 h/day for three days. Macrophage polarization was assessed through gene and surface marker expressions and cytokine secretion profiles. Following DC EStim treatment, M0 cells exhibited an upregulation of M2 marker genes IL10, CD163, and PPARG. In M1 cells, DC EStim upregulated the gene expressions of M2 markers IL10, TGM2, and CD206 and downregulated M1 marker gene CD86. EStim treatment also reduced the surface expression of CD86 and secretion of pro-inflammatory cytokines IL-1β and IL-6. Our results suggest that DC EStim differentially exerts pro-M2 effects depending on the macrophage phenotype: it upregulates typical M2 genes in M0 and M1 cells while inhibiting M1 marker CD86 at the nuclear and protein levels and the secretion of pro-inflammatory interleukins in M1 cells. Conversely, M2 cells appear to be less responsive to the EStim treatment employed in this study.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Liudmila Leppik
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Elsie Oppermann
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Ingo Marzi
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - Dirk Henrich
- Department of Trauma Surgery and Orthopedics, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| |
Collapse
|
5
|
Pio-Lopez L, Levin M. Aging as a loss of morphostatic information: A developmental bioelectricity perspective. Ageing Res Rev 2024; 97:102310. [PMID: 38636560 DOI: 10.1016/j.arr.2024.102310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/21/2024] [Accepted: 04/12/2024] [Indexed: 04/20/2024]
Abstract
Maintaining order at the tissue level is crucial throughout the lifespan, as failure can lead to cancer and an accumulation of molecular and cellular disorders. Perhaps, the most consistent and pervasive result of these failures is aging, which is characterized by the progressive loss of function and decline in the ability to maintain anatomical homeostasis and reproduce. This leads to organ malfunction, diseases, and ultimately death. The traditional understanding of aging is that it is caused by the accumulation of molecular and cellular damage. In this article, we propose a complementary view of aging from the perspective of endogenous bioelectricity which has not yet been integrated into aging research. We propose a view of aging as a morphostasis defect, a loss of biophysical prepattern information, encoding anatomical setpoints used for dynamic tissue and organ homeostasis. We hypothesize that this is specifically driven by abrogation of the endogenous bioelectric signaling that normally harnesses individual cell behaviors toward the creation and upkeep of complex multicellular structures in vivo. Herein, we first describe bioelectricity as the physiological software of life, and then identify and discuss the links between bioelectricity and life extension strategies and age-related diseases. We develop a bridge between aging and regeneration via bioelectric signaling that suggests a research program for healthful longevity via morphoceuticals. Finally, we discuss the broader implications of the homologies between development, aging, cancer and regeneration and how morphoceuticals can be developed for aging.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA 02155, USA; Wyss Institute for Biologically Inspired Engineering, Boston, MA 02115, USA.
| |
Collapse
|
6
|
Murugan NJ, Cariba S, Abeygunawardena S, Rouleau N, Payne SL. Biophysical control of plasticity and patterning in regeneration and cancer. Cell Mol Life Sci 2023; 81:9. [PMID: 38099951 PMCID: PMC10724343 DOI: 10.1007/s00018-023-05054-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/12/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Cells and tissues display a remarkable range of plasticity and tissue-patterning activities that are emergent of complex signaling dynamics within their microenvironments. These properties, which when operating normally guide embryogenesis and regeneration, become highly disordered in diseases such as cancer. While morphogens and other molecular factors help determine the shapes of tissues and their patterned cellular organization, the parallel contributions of biophysical control mechanisms must be considered to accurately predict and model important processes such as growth, maturation, injury, repair, and senescence. We now know that mechanical, optical, electric, and electromagnetic signals are integral to cellular plasticity and tissue patterning. Because biophysical modalities underly interactions between cells and their extracellular matrices, including cell cycle, metabolism, migration, and differentiation, their applications as tuning dials for regenerative and anti-cancer therapies are being rapidly exploited. Despite this, the importance of cellular communication through biophysical signaling remains disproportionately underrepresented in the literature. Here, we provide a review of biophysical signaling modalities and known mechanisms that initiate, modulate, or inhibit plasticity and tissue patterning in models of regeneration and cancer. We also discuss current approaches in biomedical engineering that harness biophysical control mechanisms to model, characterize, diagnose, and treat disease states.
Collapse
Affiliation(s)
- Nirosha J Murugan
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada.
- Allen Discovery Center, Tufts University, Medford, MA, USA.
| | - Solsa Cariba
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Nicolas Rouleau
- Department of Health Sciences, Wilfrid Laurier University, Waterloo, ON, Canada
- Allen Discovery Center, Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Samantha L Payne
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
7
|
Madl P, Renati P. Quantum Electrodynamics Coherence and Hormesis: Foundations of Quantum Biology. Int J Mol Sci 2023; 24:14003. [PMID: 37762305 PMCID: PMC10530466 DOI: 10.3390/ijms241814003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND "Quantum biology" (QB) is a promising theoretical approach addressing questions about how living systems are able to unfold dynamics that cannot be solved on a chemical basis or seem to violate some fundamental laws (e.g., thermodynamic yield, morphogenesis, adaptation, autopoiesis, memory, teleology, biosemiotics). Current "quantum" approaches in biology are still very basic and "corpuscular", as these rely on a semi-classical and approximated view. We review important considerations of theory and experiments of the recent past in the field of condensed matter, water, physics of living systems, and biochemistry to join them by creating a consistent picture applicable for life sciences. Within quantum field theory (QFT), the field (also in the matter field) has the primacy whereby the particle, or "quantum", is a derivative of it. The phase of the oscillation and not the number of quanta is the most important observable of the system. Thermodynamics of open systems, symmetry breaking, fractals, and quantum electrodynamics (QED) provide a consistent picture of condensed matter, liquid water, and living matter. Coherence, resonance-driven biochemistry, and ion cyclotron resonance (Liboff-Zhadin effect) emerge as crucial hormetic phenomena. We offer a paradigmatic approach when dealing with living systems in order to enrich and ultimately better understand the implications of current research activities in the field of life sciences.
Collapse
Affiliation(s)
- Pierre Madl
- Department of Biosciences & Medical Biology, University of Salzburg, A-5020 Salzburg, Austria
- Prototyping Unit, Edge-Institute, ER-System Mechatronics, A-5440 Golling, Austria
| | - Paolo Renati
- Prototyping Unit, Edge-Institute, ER-System Mechatronics, A-5440 Golling, Austria
- The World Water Community, Marconistraat 16, 3029 AK Rotterdam, The Netherlands;
| |
Collapse
|
8
|
Bianconi S, Oliveira KMC, Klein KL, Wolf J, Schaible A, Schröder K, Barker J, Marzi I, Leppik L, Henrich D. Pretreatment of Mesenchymal Stem Cells with Electrical Stimulation as a Strategy to Improve Bone Tissue Engineering Outcomes. Cells 2023; 12:2151. [PMID: 37681884 PMCID: PMC10487010 DOI: 10.3390/cells12172151] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/11/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
Electrical stimulation (EStim), whether used alone or in combination with bone tissue engineering (BTE) approaches, has been shown to promote bone healing. In our previous in vitro studies, mesenchymal stem cells (MSCs) were exposed to EStim and a sustained, long-lasting increase in osteogenic activity was observed. Based on these findings, we hypothesized that pretreating MSC with EStim, in 2D or 3D cultures, before using them to treat large bone defects would improve BTE treatments. Critical size femur defects were created in 120 Sprague-Dawley rats and treated with scaffold granules seeded with MSCs that were pre-exposed or not (control group) to EStim 1 h/day for 7 days in 2D (MSCs alone) or 3D culture (MSCs + scaffolds). Bone healing was assessed at 1, 4, and 8 weeks post-surgery. In all groups, the percentage of new bone increased, while fibrous tissue and CD68+ cell count decreased over time. However, these and other healing features, like mineral density, bending stiffness, the amount of new bone and cartilage, and the gene expression of osteogenic markers, did not significantly differ between groups. Based on these findings, it appears that the bone healing environment could counteract the long-term, pro-osteogenic effects of EStim seen in our in vitro studies. Thus, EStim seems to be more effective when administered directly and continuously at the defect site during bone healing, as indicated by our previous studies.
Collapse
Affiliation(s)
- Santiago Bianconi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Karla M. C. Oliveira
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Kari-Leticia Klein
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Jakob Wolf
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Alexander Schaible
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Katrin Schröder
- Vascular Research Centre, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany
| | - John Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Goethe University Frankfurt, 60528 Frankfurt am Main, Germany;
| | - Ingo Marzi
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Liudmila Leppik
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| | - Dirk Henrich
- Department of Trauma, Hand and Reconstructive Surgery, University Hospital, Goethe University Frankfurt, 60590 Frankfurt am Main, Germany (K.-L.K.); (J.W.); (A.S.); (I.M.); (L.L.); (D.H.)
| |
Collapse
|
9
|
Barbosa F, Garrudo FFF, Marques AC, Cabral JMS, Morgado J, Ferreira FC, Silva JC. Novel Electroactive Mineralized Polyacrylonitrile/PEDOT:PSS Electrospun Nanofibers for Bone Repair Applications. Int J Mol Sci 2023; 24:13203. [PMID: 37686010 PMCID: PMC10488027 DOI: 10.3390/ijms241713203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/19/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Bone defect repair remains a critical challenge in current orthopedic clinical practice, as the available therapeutic strategies only offer suboptimal outcomes. Therefore, bone tissue engineering (BTE) approaches, involving the development of biomimetic implantable scaffolds combined with osteoprogenitor cells and native-like physical stimuli, are gaining widespread interest. Electrical stimulation (ES)-based therapies have been found to actively promote bone growth and osteogenesis in both in vivo and in vitro settings. Thus, the combination of electroactive scaffolds comprising conductive biomaterials and ES holds significant promise in improving the effectiveness of BTE for clinical applications. The aim of this study was to develop electroconductive polyacrylonitrile/poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PAN/PEDOT:PSS) nanofibers via electrospinning, which are capable of emulating the native tissue's fibrous extracellular matrix (ECM) and providing a platform for the delivery of exogenous ES. The resulting nanofibers were successfully functionalized with apatite-like structures to mimic the inorganic phase of the bone ECM. The conductive electrospun scaffolds presented nanoscale fiber diameters akin to those of collagen fibrils and displayed bone-like conductivity. PEDOT:PSS incorporation was shown to significantly promote scaffold mineralization in vitro. The mineralized electroconductive nanofibers demonstrated improved biological performance as observed by the significantly enhanced proliferation of both human osteoblast-like MG-63 cells and human bone marrow-derived mesenchymal stem/stromal cells (hBM-MSCs). Moreover, mineralized PAN/PEDOT:PSS nanofibers up-regulated bone marker genes expression levels of hBM-MSCs undergoing osteogenic differentiation, highlighting their potential as electroactive biomimetic BTE scaffolds for innovative bone defect repair strategies.
Collapse
Affiliation(s)
- Frederico Barbosa
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fábio F. F. Garrudo
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Ana C. Marques
- Departament of Chemical Engineering and CERENA—Center for Natural Resources and the Environment, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Joaquim M. S. Cabral
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Jorge Morgado
- Department of Bioengineering and Instituto de Telecomunicações, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
| | - Frederico Castelo Ferreira
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João C. Silva
- Department of Bioengineering and iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (F.B.); (F.F.F.G.); (J.M.S.C.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
10
|
Pinotsis DA, Fridman G, Miller EK. Cytoelectric Coupling: Electric fields sculpt neural activity and "tune" the brain's infrastructure. Prog Neurobiol 2023; 226:102465. [PMID: 37210066 DOI: 10.1016/j.pneurobio.2023.102465] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
We propose and present converging evidence for the Cytoelectric Coupling Hypothesis: Electric fields generated by neurons are causal down to the level of the cytoskeleton. This could be achieved via electrodiffusion and mechanotransduction and exchanges between electrical, potential and chemical energy. Ephaptic coupling organizes neural activity, forming neural ensembles at the macroscale level. This information propagates to the neuron level, affecting spiking, and down to molecular level to stabilize the cytoskeleton, "tuning" it to process information more efficiently.
Collapse
Affiliation(s)
- Dimitris A Pinotsis
- Centre for Mathematical Neuroscience and Psychology and Department of Psychology, City -University of London, London EC1V 0HB, United Kingdom; The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | - Gene Fridman
- Departments of Otolaryngology, Biomedical Engineering, and Electrical Engineering, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Earl K Miller
- The Picower Institute for Learning & Memory and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Pio-Lopez L, Levin M. Morphoceuticals: perspectives for discovery of drugs targeting anatomical control mechanisms in regenerative medicine, cancer and aging. Drug Discov Today 2023; 28:103585. [PMID: 37059328 DOI: 10.1016/j.drudis.2023.103585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/18/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Morphoceuticals are a new class of interventions that target the setpoints of anatomical homeostasis for efficient, modular control of growth and form. Here, we focus on a subclass: electroceuticals, which specifically target the cellular bioelectrical interface. Cellular collectives in all tissues form bioelectrical networks via ion channels and gap junctions that process morphogenetic information, controlling gene expression and allowing cell networks to adaptively and dynamically control growth and pattern formation. Recent progress in understanding this physiological control system, including predictive computational models, suggests that targeting bioelectrical interfaces can control embryogenesis and maintain shape against injury, senescence and tumorigenesis. We propose a roadmap for drug discovery focused on manipulating endogenous bioelectric signaling for regenerative medicine, cancer suppression and antiaging therapeutics. Teaser: By taking advantage of the native problem-solving competencies of cells and tissues, a new kind of top-down approach to biomedicine becomes possible. Bioelectricity offers an especially tractable interface for interventions targeting the software of life for regenerative medicine applications.
Collapse
Affiliation(s)
- Léo Pio-Lopez
- Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Michael Levin
- Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
12
|
Mukherjee P, Roy S, Ghosh D, Nandi SK. Role of animal models in biomedical research: a review. Lab Anim Res 2022; 38:18. [PMID: 35778730 PMCID: PMC9247923 DOI: 10.1186/s42826-022-00128-1] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 06/21/2022] [Indexed: 02/04/2023] Open
Abstract
The animal model deals with the species other than the human, as it can imitate the disease progression, its’ diagnosis as well as a treatment similar to human. Discovery of a drug and/or component, equipment, their toxicological studies, dose, side effects are in vivo studied for future use in humans considering its’ ethical issues. Here lies the importance of the animal model for its enormous use in biomedical research. Animal models have many facets that mimic various disease conditions in humans like systemic autoimmune diseases, rheumatoid arthritis, epilepsy, Alzheimer’s disease, cardiovascular diseases, Atherosclerosis, diabetes, etc., and many more. Besides, the model has tremendous importance in drug development, development of medical devices, tissue engineering, wound healing, and bone and cartilage regeneration studies, as a model in vascular surgeries as well as the model for vertebral disc regeneration surgery. Though, all the models have some advantages as well as challenges, but, present review has emphasized the importance of various small and large animal models in pharmaceutical drug development, transgenic animal models, models for medical device developments, studies for various human diseases, bone and cartilage regeneration model, diabetic and burn wound model as well as surgical models like vascular surgeries and surgeries for intervertebral disc degeneration considering all the ethical issues of that specific animal model. Despite, the process of using the animal model has facilitated researchers to carry out the researches that would have been impossible to accomplish in human considering the ethical prohibitions.
Collapse
Affiliation(s)
- P Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - S Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - D Ghosh
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India
| | - S K Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, India.
| |
Collapse
|
13
|
Davidian D, Levin M. Inducing Vertebrate Limb Regeneration: A Review of Past Advances and Future Outlook. Cold Spring Harb Perspect Biol 2022; 14:a040782. [PMID: 34400551 PMCID: PMC9121900 DOI: 10.1101/cshperspect.a040782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Limb loss due to traumatic injury or amputation is a major biomedical burden. Many vertebrates exhibit the ability to form and pattern normal limbs during embryogenesis from amorphous clusters of precursor cells, hinting that this process could perhaps be activated later in life to rebuild missing or damaged limbs. Indeed, some animals, such as salamanders, are proficient regenerators of limbs throughout their life span. Thus, research over the last century has sought to stimulate regeneration in species that do not normally regenerate their appendages. Importantly, these efforts are not only a vital aspect of regenerative medicine, but also have fundamental implications for understanding evolution and the cellular control of growth and form throughout the body. Here we review major recent advances in augmenting limb regeneration, summarizing the degree of success that has been achieved to date in frog and mammalian models using genetic, biochemical, and bioelectrical interventions. While the degree of whole limb repair in rodent models has been modest to date, a number of new technologies and approaches comprise an exciting near-term road map for basic and clinical progress in regeneration.
Collapse
Affiliation(s)
- Devon Davidian
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
| | - Michael Levin
- Allen Discovery Center at Tufts University, Medford, Massachusetts 02155, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, USA
| |
Collapse
|
14
|
Khaw JS, Xue R, Cassidy NJ, Cartmell SH. Electrical stimulation of titanium to promote stem cell orientation, elongation and osteogenesis. Acta Biomater 2022; 139:204-217. [PMID: 34390847 DOI: 10.1016/j.actbio.2021.08.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/06/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
Electrical stimulation of cells allows exogenous electric signals as stimuli to manipulate cell growth, preferential orientation and bone remodelling. In this study, commercially pure titanium discs were utilised in combination with a custom-built bioreactor to investigate the cellular responses of human mesenchymal stem cells via in-vitro functional assays. Finite element analysis revealed the homogeneous delivery of electric field in the bioreactor chamber with no detection of current density fluctuation in the proposed model. The custom-built bioreactor with capacitive stimulation delivery system features long-term stimulation with homogeneous electric field, biocompatible, sterilisable, scalable design and cost-effective in the manufacturing process. Using a continuous stimulation regime of 100 and 200 mV/mm on cp Ti discs, viability tests revealed up to an approximately 5-fold increase of cell proliferation rate as compared to non-stimulated controls. The human mesenchymal stem cells showed more elongated and differentiated morphology under this regime, with evidence of nuclear elongation and cytoskeletal orientation perpendicular to the direction of electric field. The continuous stimulation did not cause pH fluctuations and hydrogen peroxide production caused by Faradic reactions, signifying the suitability for long-term toxic free stimulation as opposed to the commonly used direct stimulation regime. An approximate of 4-fold increase in alkaline phosphatase production and approximately 9-fold increase of calcium deposition were observed on 200 mV/mm exposed samples relative to non-stimulated controls. It is worth noting that early stem cell differentiation and matrix production were observed under the said electric field even without the presence of chemical inductive growth factors. STATEMENT OF SIGNIFICANCE: This manuscript presents a study on combining pure titanium (primarily preferred as medical implant materials) and electrical stimulation in a purpose-built bioreactor with capacitive stimulation delivery system. A continuous capacitive stimulation regime on titanium disc has resulted in enhanced stem cell orientation, nuclei elongation, proliferation and differentiation as compared to non-stimulated controls. We believe that this manuscript creates a paradigm for future studies on the evolution of healthcare treatments in the area of targeted therapy on implantable and wearable medical devices through tailored innovative electrical stimulation approach, thereby influencing therapeutic conductive and electroactive biomaterials research prospects and development.
Collapse
Affiliation(s)
- Juan Shong Khaw
- The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester M13 9PL, UK
| | - Ruikang Xue
- The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester M13 9PL, UK
| | - Nigel J Cassidy
- Civil Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Sarah H Cartmell
- The Henry Royce Institute, Royce Hub Building, The University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
15
|
Murugan NJ, Vigran HJ, Miller KA, Golding A, Pham QL, Sperry MM, Rasmussen-Ivey C, Kane AW, Kaplan DL, Levin M. Acute multidrug delivery via a wearable bioreactor facilitates long-term limb regeneration and functional recovery in adult Xenopus laevis. SCIENCE ADVANCES 2022; 8:eabj2164. [PMID: 35080969 PMCID: PMC8791464 DOI: 10.1126/sciadv.abj2164] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Limb regeneration is a frontier in biomedical science. Identifying triggers of innate morphogenetic responses in vivo to induce the growth of healthy patterned tissue would address the needs of millions of patients, from diabetics to victims of trauma. Organisms such as Xenopus laevis-whose limited regenerative capacities in adulthood mirror those of humans-are important models with which to test interventions that can restore form and function. Here, we demonstrate long-term (18 months) regrowth, marked tissue repatterning, and functional restoration of an amputated X. laevis hindlimb following a 24-hour exposure to a multidrug, pro-regenerative treatment delivered by a wearable bioreactor. Regenerated tissues composed of skin, bone, vasculature, and nerves significantly exceeded the complexity and sensorimotor capacities of untreated and control animals' hypomorphic spikes. RNA sequencing of early tissue buds revealed activation of developmental pathways such as Wnt/β-catenin, TGF-β, hedgehog, and Notch. These data demonstrate the successful "kickstarting" of endogenous regenerative pathways in a vertebrate model.
Collapse
Affiliation(s)
- Nirosha J. Murugan
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Hannah J. Vigran
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Kelsie A. Miller
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Annie Golding
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Quang L. Pham
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Megan M. Sperry
- Department of Biology, Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Cody Rasmussen-Ivey
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Anna W. Kane
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - David L. Kaplan
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology, Tufts University, Medford, MA, USA
- Allen Discovery Center at Tufts University, Medford, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Corresponding author.
| |
Collapse
|
16
|
Das A, Dobbidi P. Variable Range Hopping in SrTiO 3-Ca 10(PO 4) 6(OH) 2 Bio-Ceramic Composites. ACS OMEGA 2021; 6:25916-25925. [PMID: 34660954 PMCID: PMC8515364 DOI: 10.1021/acsomega.1c02273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
We investigate the electrical properties in ceramics, focusing primarily on the conductivity mechanisms crucial to bio-electrets' service life. A biocompatible ceramic composite of varying concentrations of SrTiO3 (ST) and Ca10(PO4)6(OH)2 (HAP) is developed. By X-ray diffraction, we establish the microstructural and phase evolution of the bio-composites. The crystallite sizes are found to increase with the increasing concentration of ST in the composites. The composites' micrograph reveals the presence of pores, and the grain sizes calculated from it are found to follow a trend similar to the crystallite size. The conduction mechanisms in the composites are studied to explore the composites' electrical properties from the perspective of biological applications. The conductivity is very low (≃10-8 S/cm), and the porous structure of the composites revealed from the micrographs is one of the factors for such low conductivity. From a plethora of conduction mechanisms, Motts' variable range hopping (VRH) conduction is projected as the most appropriate mechanism that appropriately describes the conduction process in the composites. Motts' VRH is also related to the polarization mechanism associated with the development of electrets. Our study points toward the practical potential of applying the designed bio-composites in generating bio-electrets or understanding the electrical properties that are at the forefront of research in designing electro-active smart scaffolds for bone tissue engineering applications.
Collapse
|
17
|
Conta G, Libanori A, Tat T, Chen G, Chen J. Triboelectric Nanogenerators for Therapeutic Electrical Stimulation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2007502. [PMID: 34014583 DOI: 10.1002/adma.202007502] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Current solutions developed for the purpose of in and on body (IOB) electrical stimulation (ES) lack autonomous qualities necessary for comfortable, practical, and self-dependent use. Consequently, recent focus has been placed on developing self-powered IOB therapeutic devices capable of generating therapeutic ES for human use. With the recent invention of the triboelectric nanogenerator (TENG), harnessing passive human biomechanical energy to develop self-powered systems has allowed for the introduction of novel therapeutic ES solutions. TENGs are especially effective at providing ES for IOB therapeutic systems given their bioconformability, low cost, simple manufacturability, and self-powering capabilities. Due to the key role of naturally induced electrical signals in many physiological functions, TENG-induced ES holds promise to provide a novel paradigm in therapeutic interventions. The aim here is to detail research on IOB TENG devices applied for ES-based therapy in the fields of regenerative medicine, neurology, rehabilitation, and pharmaceutical engineering. Furthermore, considering TENG-produced ES can be measured for sensing applications, this technology is paving the way to provide a fully autonomous personalized healthcare system, capable of IOB energy generation, sensing, and therapeutic intervention. Considering these grounds, it seems highly relevant to review TENG-ES research and applications, as they could constitute the foundation and future of personalized healthcare.
Collapse
Affiliation(s)
- Giorgio Conta
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Alberto Libanori
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Trinny Tat
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Guorui Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| |
Collapse
|
18
|
Abstract
It is well known that electrical signals are deeply associated with living entities. Much of our understanding of excitable tissues is derived from studies of specialized cells of neurons or myocytes. However, electric potential is present in all cell types and results from the differential partitioning of ions across membranes. This electrical potential correlates with cell behavior and tissue organization. In recent years, there has been exciting, and broadly unexpected, evidence linking the regulation of development to bioelectric signals. However, experimental modulation of electrical potential can have multifaceted and pleiotropic effects, which makes dissecting the role of electrical signals in development difficult. Here, I review evidence that bioelectric cues play defined instructional roles in orchestrating development and regeneration, and further outline key areas in which to refine our understanding of this signaling mechanism.
Collapse
Affiliation(s)
- Matthew P. Harris
- Department of Genetics, Harvard Medical School, Department of Orthopaedics, Boston Children's Hospital, 300 Longwood Avenue Enders 260, Boston MA 02115, USA
| |
Collapse
|
19
|
Camal Ruggieri IN, Cícero AM, Issa JPM, Feldman S. Bone fracture healing: perspectives according to molecular basis. J Bone Miner Metab 2021; 39:311-331. [PMID: 33151416 DOI: 10.1007/s00774-020-01168-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/13/2020] [Indexed: 12/11/2022]
Abstract
Fractures have a great impact on health all around the world and with fracture healing optimization; this problem could be resolved partially. To make a practical contribution to this issue, the knowledge of bone tissue, cellularity, and metabolism is essential, especially cytoskeletal architecture and its transformations according to external pressures. Special physical and chemical characteristics of the extracellular matrix (ECM) allow the transmission of mechanical stimuli from outside the cell to the plasmatic membrane. The osteocyte cytoskeleton is conformed by a complex network of actin and microtubules combined with crosslinker proteins like vinculin and fimbrin, connecting and transmitting outside stimuli through EMC to cytoplasm. Herein, critical signaling pathways like Cx43-depending ones, MAPK/ERK, Wnt, YAP/TAZ, Rho-ROCK, and others are activated due to mechanical stimuli, resulting in osteocyte cytoskeletal changes and ECM remodeling, altering the tissue and, therefore, the bone. In recent years, the osteocyte has gained more interest and value in relation to bone homeostasis as a great coordinator of other cell populations, thanks to its unique functions. By integrating the latest advances in relation to intracellular signaling pathways, mechanotransmission system of the osteocyte and bone tissue engineering, there are promising experimental strategies, while some are ready for clinical trials. This work aims to show clearly and precisely the integration between cytoskeleton and main molecular pathways in relation to mechanotransmission mechanism in osteocytes, and the use of this theoretical knowledge in therapeutic tools for bone fracture healing.
Collapse
Affiliation(s)
- Iván Nadir Camal Ruggieri
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina.
| | - Andrés Mauricio Cícero
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
| | | | - Sara Feldman
- School of Medicine, LABOATEM (Osteoarticular Biology, Tissue Engineering and Emerging Therapies Laboratory), Biological Chemistry Cat, School of Medicine, Rosario National University, Rosario, Argentina
- Research Council of the Rosario National University (CIUNR) and CONICET, Rosario, Argentina
| |
Collapse
|
20
|
Wan Q, Qin W, Ma Y, Shen M, Li J, Zhang Z, Chen J, Tay FR, Niu L, Jiao K. Crosstalk between Bone and Nerves within Bone. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003390. [PMID: 33854888 PMCID: PMC8025013 DOI: 10.1002/advs.202003390] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/29/2020] [Indexed: 05/11/2023]
Abstract
For the past two decades, the function of intrabony nerves on bone has been a subject of intense research, while the function of bone on intrabony nerves is still hidden in the corner. In the present review, the possible crosstalk between bone and intrabony peripheral nerves will be comprehensively analyzed. Peripheral nerves participate in bone development and repair via a host of signals generated through the secretion of neurotransmitters, neuropeptides, axon guidance factors and neurotrophins, with additional contribution from nerve-resident cells. In return, bone contributes to this microenvironmental rendezvous by housing the nerves within its internal milieu to provide mechanical support and a protective shelf. A large ensemble of chemical, mechanical, and electrical cues works in harmony with bone marrow stromal cells in the regulation of intrabony nerves. The crosstalk between bone and nerves is not limited to the physiological state, but also involved in various bone diseases including osteoporosis, osteoarthritis, heterotopic ossification, psychological stress-related bone abnormalities, and bone related tumors. This crosstalk may be harnessed in the design of tissue engineering scaffolds for repair of bone defects or be targeted for treatment of diseases related to bone and peripheral nerves.
Collapse
Affiliation(s)
- Qian‐Qian Wan
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Wen‐Pin Qin
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Yu‐Xuan Ma
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Min‐Juan Shen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Jing Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Zi‐Bin Zhang
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Ji‐Hua Chen
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Franklin R. Tay
- College of Graduate StudiesAugusta UniversityAugustaGA30912USA
| | - Li‐Na Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| | - Kai Jiao
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of StomatologyDepartment of ProsthodonticsSchool of StomatologyThe Fourth Military Medical UniversityXi'anShaanxi710032China
| |
Collapse
|
21
|
Saunders D, Rose L. Regenerative rehabilitation of catastrophic extremity injury in military conflicts and a review of recent developmental efforts. Connect Tissue Res 2021; 62:83-98. [PMID: 32552156 DOI: 10.1080/03008207.2020.1776707] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
AIM OF THE REVIEW This review aims to describe the current state of regenerative rehabilitation of severe military extremity injuries, and promising new therapies on the horizon. DISCUSSION The nature of warfare is rapidly shifting with information operations, autonomous weapons, and the threat of full-scale peer adversary conflicts threatening to create contested environments with delayed medical evacuation to definitive care. More destructive weapons will lead to more devastating injuries, creating new challenges for limb repair and restoration. Current paradigms of delayed rehabilitation following initial stabilization, damage control surgery, and prolonged antibiotic therapy will need to shift. Advances in regenerative medicine technologies offer the possibility of treatment along the continuum of care. Regenerative rehabilitation will begin at the point of injury and require a holistic, organ-systems approach. CONCLUSIONS Both technological improvements and a rapidly advancing understanding of injury pathophysiology will contribute to improved limb-salvage outcomes, and shift the calculus away from early limb amputation.
Collapse
Affiliation(s)
- David Saunders
- US Army Medical Material Development Activity, Fort Detrick, MD , USA
| | - Lloyd Rose
- US Army Medical Material Development Activity, Fort Detrick, MD , USA
| |
Collapse
|
22
|
Oliveira KMC, Leppik L, Keswani K, Rajeev S, Bhavsar MB, Henrich D, Barker JH. Electrical Stimulation Decreases Dental Pulp Stem Cell Osteo-/Odontogenic Differentiation. Biores Open Access 2020; 9:162-173. [PMID: 32642331 PMCID: PMC7337168 DOI: 10.1089/biores.2020.0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/28/2020] [Indexed: 12/11/2022] Open
Abstract
Dental pulp stem cells (DPSCs) have great potential for use in tissue engineering (TE)-based dental treatments. Electrical stimulation (EStim) has been shown to influence cellular functions that could play an important role in the success of TE treatments. Despite many recent studies focused on DPSCs, few have investigated the effect EStim has on these cells. The aim of this research was to investigate the effects of direct current (DC) EStim on osteo-/odontogenic differentiation of DPSCs. To do so cells were isolated from male Sprague Dawley rats (7-8 weeks old), and phenotype characterization and multilineage differentiation analysis were conducted to verify their "stemness." Different voltages of DC EStim were administrated 1 h/day for 7 days, and the effect of EStim on DPSC osteo-/odontogenic differentiation was assessed by measuring calcium and collagen deposition, alkaline phosphatase (ALP) activity, and expression of osteo- and odontogenic marker genes at days 7 and 14 of culture. We found that while 10 and 50 mV/mm of EStim had no effect on cell number or metabolic activity, 100 mV/mm caused a significant reduction in cell number, and 150 mV/mm resulted in cell death. Despite increased gene expression of osteo-/odontogenic gene markers, Osteocalcin, RunX2, BSP, and DMP1, at day 7 in EStim treated cells, 50 mV/mm of EStim decreased collagen deposition and ALP activity at both time points, and calcium deposition was found to be lower at day 14. In conclusion, under the conditions tested, EStim appears to impair DPSC osteo-/odontogenic differentiation. Additional studies are needed to further characterize and understand the mechanisms involved in DPSC response to EStim, with an eye toward its potential use in TE-based dental treatments.
Collapse
Affiliation(s)
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Khyati Keswani
- Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Sreeraj Rajeev
- Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Mit B. Bhavsar
- Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University, Frankfurt/Main, Germany
| | - Dirk Henrich
- Department of Trauma-, Hand- and Reconstructive Surgery, J.W. Goethe-University, Frankfurt/Main, Germany
| | - John H. Barker
- Frankfurt Initiative for Regenerative Medicine, J.W. Goethe-University, Frankfurt/Main, Germany
| |
Collapse
|
23
|
Tung A, Levin M. Extra-genomic instructive influences in morphogenesis: A review of external signals that regulate growth and form. Dev Biol 2020; 461:1-12. [PMID: 31981561 DOI: 10.1016/j.ydbio.2020.01.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/18/2022]
Abstract
Embryonic development and regeneration accomplish a remarkable feat: individual cells work together to create or repair complex anatomical structures. What is the source of the instructive signals that specify these invariant and robust organ-level outcomes? The most frequently studied source of morphogenetic control is the host genome and its transcriptional circuits. However, it is now apparent that significant information affecting patterning also arrives from outside of the body. Both biotic and physical factors, including temperature and various molecular signals emanating from pathogens, commensals, and conspecific organisms, affect developmental outcomes. Here, we review examples in which anatomical patterning decisions are strongly impacted by lateral signals that originate from outside of the zygotic genome. The endogenous pathways targeted by these influences often show transgenerational effects, enabling them to shape the evolution of anatomies even faster than traditional Baldwin-type assimilation. We also discuss recent advances in the biophysics of morphogenetic controls and speculate on additional sources of important patterning information which could be exploited to better understand the evolution of bodies and to design novel approaches for regenerative medicine.
Collapse
Affiliation(s)
- Angela Tung
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA
| | - Michael Levin
- Department of Biology and Allen Discovery Center at Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA.
| |
Collapse
|
24
|
Leppik L, Oliveira KMC, Bhavsar MB, Barker JH. Electrical stimulation in bone tissue engineering treatments. Eur J Trauma Emerg Surg 2020; 46:231-244. [PMID: 32078704 PMCID: PMC7113220 DOI: 10.1007/s00068-020-01324-1] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/04/2020] [Indexed: 12/20/2022]
Abstract
Electrical stimulation (EStim) has been shown to promote bone healing and regeneration both in animal experiments and clinical treatments. Therefore, incorporating EStim into promising new bone tissue engineering (BTE) therapies is a logical next step. The goal of current BTE research is to develop combinations of cells, scaffolds, and chemical and physical stimuli that optimize treatment outcomes. Recent studies demonstrating EStim's positive osteogenic effects at the cellular and molecular level provide intriguing clues to the underlying mechanisms by which it promotes bone healing. In this review, we discuss results of recent in vitro and in vivo research focused on using EStim to promote bone healing and regeneration and consider possible strategies for its application to improve outcomes in BTE treatments. Technical aspects of exposing cells and tissues to EStim in in vitro and in vivo model systems are also discussed.
Collapse
Affiliation(s)
- Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany.
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, J.W. Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
25
|
Levin M, Selberg J, Rolandi M. Endogenous Bioelectrics in Development, Cancer, and Regeneration: Drugs and Bioelectronic Devices as Electroceuticals for Regenerative Medicine. iScience 2019; 22:519-533. [PMID: 31837520 PMCID: PMC6920204 DOI: 10.1016/j.isci.2019.11.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/15/2019] [Accepted: 11/12/2019] [Indexed: 12/21/2022] Open
Abstract
A major frontier in the post-genomic era is the investigation of the control of coordinated growth and three-dimensional form. Dynamic remodeling of complex organs in regulative embryogenesis, regeneration, and cancer reveals that cells and tissues make decisions that implement complex anatomical outcomes. It is now essential to understand not only the genetics that specifies cellular hardware but also the physiological software that implements tissue-level plasticity and robust morphogenesis. Here, we review recent discoveries about the endogenous mechanisms of bioelectrical communication among non-neural cells that enables them to cooperate in vivo. We discuss important advances in bioelectronics, as well as computational and pharmacological tools that are enabling the taming of biophysical controls toward applications in regenerative medicine and synthetic bioengineering.
Collapse
Affiliation(s)
- Michael Levin
- Allen Discovery Center at Tufts University, Medford, MA 02155, USA.
| | - John Selberg
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| | - Marco Rolandi
- Electrical and Computer Engineering Department, University of California, Santa Cruz, CA 95064, USA
| |
Collapse
|
26
|
Herrera-Rincon C, Golding AS, Moran KM, Harrison C, Martyniuk CJ, Guay JA, Zaltsman J, Carabello H, Kaplan DL, Levin M. Brief Local Application of Progesterone via a Wearable Bioreactor Induces Long-Term Regenerative Response in Adult Xenopus Hindlimb. Cell Rep 2019; 25:1593-1609.e7. [PMID: 30404012 PMCID: PMC6317729 DOI: 10.1016/j.celrep.2018.10.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 08/14/2018] [Accepted: 10/01/2018] [Indexed: 12/11/2022] Open
Abstract
The induction of limb repair in adult vertebrates is a pressing, unsolved problem. Here, we characterize the effects of an integrated device that delivers drugs to severed hindlimbs of adult Xenopus laevis, which normally regenerate cartilaginous spikes after amputation. A wearable bioreactor containing a silk protein-based hydrogel that delivered progesterone to the wound site immediately after hindlimb amputation for only 24 hr induced the regeneration of paddle-like structures in adult frogs. Molecular markers, morphometric analysis, X-ray imaging, immunofluorescence, and behavioral assays were used to characterize the differences between the paddle-like structures of successful regenerates and hypomorphic spikes that grew in untreated animals. Our experiments establish a model for testing therapeutic cocktails in vertebrate hindlimb regeneration, identify pro-regenerative activities of progesterone-containing bioreactors, and provide proof of principle of brief use of integrated device-based delivery of small-molecule drugs as a viable strategy to induce and maintain a long-term regenerative response. The complexity of vertebrate limbs drives the search for regenerative treatments that trigger endogenous processes of repair. Herrera-Rincon et al. show that a wearable bioreactor containing progesterone, applied for only 24 hr, induces months of regenerative growth and patterning of amputated hindlimbs in the frog Xenopus laevis.
Collapse
Affiliation(s)
- Celia Herrera-Rincon
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Annie S Golding
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Kristine M Moran
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Christina Harrison
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology and Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Justin A Guay
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Julia Zaltsman
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - Hayley Carabello
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA
| | - David L Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Michael Levin
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
27
|
Oliveira KMC, Barker JH, Berezikov E, Pindur L, Kynigopoulos S, Eischen-Loges M, Han Z, Bhavsar MB, Henrich D, Leppik L. Electrical stimulation shifts healing/scarring towards regeneration in a rat limb amputation model. Sci Rep 2019; 9:11433. [PMID: 31391536 PMCID: PMC6685943 DOI: 10.1038/s41598-019-47389-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 07/16/2019] [Indexed: 12/19/2022] Open
Abstract
Different species respond differently to severe injury, such as limb loss. In species that regenerate, limb loss is met with complete restoration of the limbs’ form and function, whereas in mammals the amputated limb’s stump heals and scars. In in vitro studies, electrical stimulation (EStim) has been shown to promote cell migration, and osteo- and chondrogenesis. In in vivo studies, after limb amputation, EStim causes significant new bone, cartilage and vessel growth. Here, in a rat model, the stumps of amputated rat limbs were exposed to EStim, and we measured extracellular matrix (ECM) deposition, macrophage distribution, cell proliferation and gene expression changes at early (3 and 7 days) and later stages (28 days). We found that EStim caused differences in ECM deposition, with less condensed collagen fibrils, and modified macrophage response by changing M1 to M2 macrophage ratio. The number of proliferating cells was increased in EStim treated stumps 7 days after amputation, and transcriptome data strongly supported our histological findings, with activated gene pathways known to play key roles in embryonic development and regeneration. In conclusion, our findings support the hypothesis that EStim shifts injury response from healing/scarring towards regeneration. A better understanding of if and how EStim controls these changes, could lead to strategies that replace scarring with regeneration.
Collapse
Affiliation(s)
- K M C Oliveira
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - J H Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - E Berezikov
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - L Pindur
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.,Department of Plastic, Hand and Reconstructive Surgery, BG Trauma Center Frankfurt am Main gGmbH, Frankfurt am Main, Germany
| | - S Kynigopoulos
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - Z Han
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - M B Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - D Henrich
- Department of Trauma, Hand and Reconstructive Surgery, J.W. Goethe University, Frankfurt am Main, Germany
| | - L Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics & Trauma Surgery, J.W. Goethe University, Frankfurt am Main, Germany.
| |
Collapse
|
28
|
Electrical stimulation-based bone fracture treatment, if it works so well why do not more surgeons use it? Eur J Trauma Emerg Surg 2019; 46:245-264. [PMID: 30955053 DOI: 10.1007/s00068-019-01127-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/29/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND Electrical stimulation (EStim) has been proven to promote bone healing in experimental settings and has been used clinically for many years and yet it has not become a mainstream clinical treatment. METHODS To better understand this discrepancy we reviewed 72 animal and 69 clinical studies published between 1978 and 2017, and separately asked 161 orthopedic surgeons worldwide about their awareness, experience, and acceptance of EStim for treating fracture patients. RESULTS Of the 72 animal studies, 77% reported positive outcomes, and the most common model, bone, fracture type, and method of administering EStim were dog, tibia, large bone defects, and DC, respectively. Of the 69 clinical studies, 73% reported positive outcomes, and the most common bone treated, fracture type, and method of administration were tibia, delayed/non-unions, and PEMF, respectively. Of the 161 survey respondents, most (73%) were aware of the positive outcomes reported in the literature, yet only 32% used EStim in their patients. The most common fracture they treated was delayed/non-unions, and the greatest problems with EStim were high costs and inconsistent results. CONCLUSION Despite their awareness of EStim's pro-fracture healing effects few orthopedic surgeons use it in their patients. Our review of the literature and survey indicate that this is due to confusion in the literature due to the great variation in methods reported, and the inconsistent results associated with this treatment approach. In spite of this surgeons seem to be open to using this treatment if advancements in the technology were able to provide an easy to use, cost-effective method to deliver EStim in their fracture patients.
Collapse
|
29
|
Srinivasan S, Vyas K, McAvoy M, Calvaresi P, Khan OF, Langer R, Anderson DG, Herr H. Polyimide Electrode-Based Electrical Stimulation Impedes Early Stage Muscle Graft Regeneration. Front Neurol 2019; 10:252. [PMID: 30967830 PMCID: PMC6438882 DOI: 10.3389/fneur.2019.00252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/25/2019] [Indexed: 01/22/2023] Open
Abstract
Given the increasing use of regenerative free muscle flaps for various reconstructive procedures and neuroprosthetic applications, there is great interest and value in their enhanced regeneration, revascularization, and reinnervation for improved functional recovery. Here, we implant polyimide-based mircroelectrodes on free flap grafts and perform electrical stimulation for 6 weeks in a murine model. Using electrophysiological and histological assessments, we compare outcomes of stimulated grafts with unstimulated control grafts. We find delayed reinnervation and abnormal electromyographic (EMG) signals, with significantly more polyphasia, lower compound muscle action potentials and higher fatigability in stimulated animals. These metrics are suggestive of myopathy in the free flap grafts stimulated with the electrode. Additionally, active inflammatory processes and partial necrosis are observed in grafts stimulated with the implanted electrode. The results suggest that under this treatment protocol, implanted epimysial electrodes and electrical stimulation to deinnervated, and devascularized flaps during the early recovery phase may be detrimental to regeneration. Future work should determine the optimal implantation and stimulation window for accelerating free muscle graft regeneration.
Collapse
Affiliation(s)
- Shriya Srinivasan
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Keval Vyas
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Malia McAvoy
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Peter Calvaresi
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Omar F. Khan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Robert Langer
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Daniel G. Anderson
- Harvard/MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, United States
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, United States
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Hugh Herr
- Center for Extreme Bionics, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
30
|
Soares Dos Santos MP, Coutinho J, Marote A, Sousa B, Ramos A, Ferreira JAF, Bernardo R, Rodrigues A, Marques AT, Cruz E Silva OABD, Furlani EP, Simões JAO, Vieira SI. Capacitive technologies for highly controlled and personalized electrical stimulation by implantable biomedical systems. Sci Rep 2019; 9:5001. [PMID: 30899061 PMCID: PMC6428833 DOI: 10.1038/s41598-019-41540-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/28/2019] [Indexed: 11/09/2022] Open
Abstract
Cosurface electrode architectures are able to deliver personalized electric stimuli to target tissues. As such, this technology holds potential for a variety of innovative biomedical devices. However, to date, no detailed analyses have been conducted to evaluate the impact of stimulator architecture and geometry on stimuli features. This work characterizes, for the first time, the electric stimuli delivered to bone cellular tissues during in vitro experiments, when using three capacitive architectures: stripped, interdigitated and circular patterns. Computational models are presented that predict the influence of cell confluence, cosurface architecture, electrodes geometry, gap size between electrodes and power excitation on the stimuli delivered to cellular layers. The results demonstrate that these stimulators are able to deliver osteoconductive stimuli. Significant differences in stimuli distributions were observed for different stimulator designs and different external excitations. The thickness specification was found to be of utmost importance. In vitro experiments using an osteoblastic cell line highlight that cosurface stimulation at a low frequency can enhance osteoconductive responses, with some electrode-specific differences being found. A major feature of this type of work is that it enables future detailed analyses of stimuli distribution throughout more complex biological structures, such as tissues and organs, towards sophisticated biodevice personalization.
Collapse
Affiliation(s)
- Marco P Soares Dos Santos
- Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, Aveiro, Portugal.
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal.
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), Porto, Portugal.
| | - J Coutinho
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Ana Marote
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Bárbara Sousa
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - A Ramos
- Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, Aveiro, Portugal
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Jorge A F Ferreira
- Centre for Mechanical Technology & Automation (TEMA), University of Aveiro, Aveiro, Portugal
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Rodrigo Bernardo
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - André Rodrigues
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - A Torres Marques
- Associated Laboratory for Energy, Transports and Aeronautics (LAETA), Porto, Portugal
- Mechanical Engineering Department, University of Porto, 4200-465, Porto, Portugal
| | - Odete A B da Cruz E Silva
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Edward P Furlani
- Department of Chemical and Biological Engineering, Department of Electrical Engineering, University at Buffalo, SUNY, Buffalo, NY, USA
| | - José A O Simões
- Department of Mechanical Engineering, University of Aveiro, Aveiro, Portugal
| | - Sandra I Vieira
- Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
31
|
Bhavsar MB, Cato G, Hauschild A, Leppik L, Costa Oliveira KM, Eischen-Loges MJ, Barker JH. Membrane potential (V mem) measurements during mesenchymal stem cell (MSC) proliferation and osteogenic differentiation. PeerJ 2019; 7:e6341. [PMID: 30775170 PMCID: PMC6369823 DOI: 10.7717/peerj.6341] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 12/22/2018] [Indexed: 01/30/2023] Open
Abstract
Background Electrochemical signals play an important role in cell communication and behavior. Electrically charged ions transported across cell membranes maintain an electrochemical imbalance that gives rise to bioelectric signaling, called membrane potential or Vmem. Vmem plays a key role in numerous inter- and intracellular functions that regulate cell behaviors like proliferation, differentiation and migration, all playing a critical role in embryonic development, healing, and regeneration. Methods With the goal of analyzing the changes in Vmem during cell proliferation and differentiation, here we used direct current electrical stimulation (EStim) to promote cell proliferation and differentiation and simultaneously tracked the corresponding changes in Vmem in adipose derived mesenchymal stem cells (AT-MSC). Results We found that EStim caused increased AT-MSC proliferation that corresponded to Vmem depolarization and increased osteogenic differentiation that corresponded to Vmem hyperpolarization. Taken together, this shows that Vmem changes associated with EStim induced cell proliferation and differentiation can be accurately tracked during these important cell functions. Using this tool to monitor Vmem changes associated with these important cell behaviors we hope to learn more about how these electrochemical cues regulate cell function with the ultimate goal of developing new EStim based treatments capable of controlling healing and regeneration.
Collapse
Affiliation(s)
- Mit Balvantray Bhavsar
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Gloria Cato
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Alexander Hauschild
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Karla Mychellyne Costa Oliveira
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - Maria José Eischen-Loges
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Hessen, Germany
| |
Collapse
|
32
|
Churchill CDM, Winter P, Tuszynski JA, Levin M. EDEn-Electroceutical Design Environment: Ion Channel Tissue Expression Database with Small Molecule Modulators. iScience 2019; 11:42-56. [PMID: 30590250 PMCID: PMC6308252 DOI: 10.1016/j.isci.2018.12.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/22/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023] Open
Abstract
The emerging field of bioelectricity has revealed numerous new roles for ion channels beyond the nervous system, which can be exploited for applications in regenerative medicine. Developing such biomedical interventions for birth defects, cancer, traumatic injury, and bioengineering first requires knowledge of ion channel targets expressed in tissues of interest. This information can then be used to select combinations of small molecule inhibitors and/or activators that manipulate the bioelectric state. Here, we provide an overview of electroceutical design environment (EDEn), the first bioinformatic platform that facilitates the design of such therapeutic strategies. This database includes information on ion channels and ion pumps, linked to known chemical modulators and their properties. The database also provides information about the expression levels of the ion channels in over 100 tissue types. The graphical interface allows the user to readily identify chemical entities that can alter the electrical properties of target cells and tissues.
Collapse
Affiliation(s)
| | - Philip Winter
- Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Jack A Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada; Department of Oncology, University of Alberta, Edmonton, AB T6G 1Z2, Canada
| | - Michael Levin
- Allen Discovery Center, Tufts University, 200 Boston Avenue, Suite 4600, Medford, MA 02155, USA.
| |
Collapse
|
33
|
Abstract
This study was designed to characterize morphologic stages during neuroma development post amputation with an eye toward developing better treatment strategies that intervene before neuromas are fully formed. Right forelimbs of 30 Sprague Dawley rats were amputated and limb stumps were collected at 3, 7, 28, 60 and 90 Days Post Amputation (DPA). Morphology of newly formed nerves and neuromas were assessed via general histology and neurofilament protein antibody staining. Analysis revealed six morphological characteristics during nerve and neuroma development; 1) normal nerve, 2) degenerating axons, 3) axonal sprouts, 4) unorganized bundles of axons, 5) unorganized axon growth into muscles, and 6) unorganized axon growth into fibrotic tissue (neuroma). At early stages (3 & 7 DPA) after amputation, normal nerves could be identified throughout the limb stump and small areas of axonal sprouts were present near the site of injury. Signs of degenerating axons were evident from 7 to 90 DPA. From day 28 on, variability of nerve characteristics with signs of unorganized axon growth into muscle and fibrotic tissue and neuroma formation became visible in multiple areas of stump tissue. These pathological features became more evident on days 60 and 90. At 90 DPA frank neuroma formation was present in all stump tissue. By following nerve regrowth and neuroma formation after amputation we were able to identify 6 separate histological stages of nerve regrowth and neuroma development. Axonal regrowth was observed as early as 3 DPA and signs of unorganized axonal growth and neuroma formation were evident by 28 DPA. Based on these observations we speculate that neuroma treatment and or prevention strategies might be more successful if targeted at the initial stages of development and not after 28 DPA.
Collapse
|
34
|
Molsberger A, McCaig CD. Percutaneous direct current stimulation - a new electroceutical solution for severe neurological pain and soft tissue injuries. MEDICAL DEVICES-EVIDENCE AND RESEARCH 2018; 11:205-214. [PMID: 29950908 PMCID: PMC6011884 DOI: 10.2147/mder.s163368] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a high medical need to improve the effectiveness of the treatment of pain and traumatic soft tissue injuries. In this context, electrostimulating devices have been used with only sporadic success. There is also much evidence of endogenous electrical signals that play key roles in regulating the development and regeneration of many tissues. Transepithelial potential gradients are one source of the direct current (DC) electrical signals that stimulate and guide the migration of inflammatory cells, epithelial cells, fibroblasts and mesenchymal stem cells to achieve effective wound healing. Up to now, this electrophysiological knowledge has not been adequately translated into a clinical treatment. Here, we present a mobile, handheld electroceutical smart device based on a microcontroller, an analog front end and a battery, which generates DC electric fields (EFs), mimicking and modulating the patient’s own physiological electrical signals. The electrical stimulation is applied to percutaneous metal probes, which are located close to the inflamed or injured tissue of the patient. The treatment can be used in an ambulatory or stationary environment. It shows unexpectedly, highly effective treatment for certain severe neurological pain conditions, as well as traumatic soft tissue injuries (muscle/ligament ruptures, joint sprains). Without EF intervention, these conditions, respectively, are either virtually incurable or take several months to heal. We present three cases – severe chronic cluster headache, acute massive muscle rupture of the rectus femoris and an acute ankle sprain with a ruptured anterior talofibular ligament – to demonstrate clinical effectiveness and discuss the fundamental differences between mimicking DC simulation and conventional transcutaneous electric nerve stimulation (TENS) or TENS-like implanted devices as used for peripheral nerve cord, spinal cord or dorsal root stimulation.
Collapse
Affiliation(s)
- Albrecht Molsberger
- Department of Orthopedics, Ruhr-University Bochum, Bochum, Germany.,Clinic for Orthopedics and Pain Treatment, Düsseldorf, Germany
| | - Colin D McCaig
- Institute of Medical Sciences, University of Aberdeen, Aberdeen, Scotland
| |
Collapse
|
35
|
Combining electrical stimulation and tissue engineering to treat large bone defects in a rat model. Sci Rep 2018; 8:6307. [PMID: 29679025 PMCID: PMC5910383 DOI: 10.1038/s41598-018-24892-0] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Bone Tissue engineering (BTE) has recently been introduced as an alternative to conventional treatments for large non-healing bone defects. BTE approaches mimic autologous bone grafts, by combining cells, scaffold, and growth factors, and have the added benefit of being able to manipulate these constituents to optimize healing. Electrical stimulation (ES) has long been used to successfully treat non-healing fractures and has recently been shown to stimulate bone cells to migrate, proliferate, align, differentiate, and adhere to bio compatible scaffolds, all cell behaviors that could improve BTE treatment outcomes. With the above in mind we performed in vitro experiments and demonstrated that exposing Mesenchymal Stem Cells (MSC) + scaffold to ES for 3 weeks resulted in significant increases in osteogenic differentiation. Then in in vivo experiments, for the first time, we demonstrated that exposing BTE treated rat femur large defects to ES for 8 weeks, caused improved healing, as indicated by increased bone formation, strength, vessel density, and osteogenic gene expression. Our results demonstrate that ES significantly increases osteogenic differentiation in vitro and that this effect is translated into improved healing in vivo. These findings support the use of ES to help BTE treatments achieve their full therapeutic potential.
Collapse
|
36
|
McLaughlin KA, Levin M. Bioelectric signaling in regeneration: Mechanisms of ionic controls of growth and form. Dev Biol 2018; 433:177-189. [PMID: 29291972 PMCID: PMC5753428 DOI: 10.1016/j.ydbio.2017.08.032] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/23/2017] [Accepted: 08/28/2017] [Indexed: 12/11/2022]
Abstract
The ability to control pattern formation is critical for the both the embryonic development of complex structures as well as for the regeneration/repair of damaged or missing tissues and organs. In addition to chemical gradients and gene regulatory networks, endogenous ion flows are key regulators of cell behavior. Not only do bioelectric cues provide information needed for the initial development of structures, they also enable the robust restoration of normal pattern after injury. In order to expand our basic understanding of morphogenetic processes responsible for the repair of complex anatomy, we need to identify the roles of endogenous voltage gradients, ion flows, and electric fields. In complement to the current focus on molecular genetics, decoding the information transduced by bioelectric cues enhances our knowledge of the dynamic control of growth and pattern formation. Recent advances in science and technology place us in an exciting time to elucidate the interplay between molecular-genetic inputs and important biophysical cues that direct the creation of tissues and organs. Moving forward, these new insights enable additional approaches to direct cell behavior and may result in profound advances in augmentation of regenerative capacity.
Collapse
Affiliation(s)
- Kelly A McLaughlin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States.
| | - Michael Levin
- Allen Discovery Center, Department of Biology, Tufts University, 200 Boston Ave., Suite 4700, Medford, MA 02155, United States
| |
Collapse
|
37
|
Busse SM, McMillen PT, Levin M. Cross-limb communication during Xenopus hind-limb regenerative response: non-local bioelectric injury signals. Development 2018; 145:dev.164210. [DOI: 10.1242/dev.164210] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/31/2018] [Indexed: 12/29/2022]
Abstract
Regeneration of damaged body-parts requires coordination of size, shape, location, and orientation of tissue with the rest of the body. It is not currently known how far injury sites communicate with the remaining soma during repair, or what information may emanate from the injury site to other regions. We examined the bioelectric properties (resting potential gradients in the epidermis) of Xenopus froglets undergoing hind-limb amputation and observed that the contralateral (un-damaged) limb exhibits apparent depolarization signals immediately after the opposite hind-limb is amputated. The pattern of depolarization matches that of the amputated limb and is correlated to the position and type of injury, revealing that information about damage is available to remote body tissues and is detectable non-invasively in vivo by monitoring of the bioelectric state. These data extend knowledge about the electrophysiology of regenerative response, identify a novel communication process via long-range spread of injury signaling, a phenomenon which we call bioelectric injury mirroring (BIM), and suggests revisions to regenerative medicine and diagnostic strategies focused entirely on the wound site and to the use of contralateral limbs as controls.
Collapse
Affiliation(s)
- Sera M. Busse
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Patrick T. McMillen
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| | - Michael Levin
- Biology Department and Allen Discovery Center, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
38
|
Wu F, Jin L, Zheng X, Yan B, Tang P, Yang H, Deng W, Yang W. Self-Powered Nanocomposites under an External Rotating Magnetic Field for Noninvasive External Power Supply Electrical Stimulation. ACS APPLIED MATERIALS & INTERFACES 2017; 9:38323-38335. [PMID: 29039642 DOI: 10.1021/acsami.7b12854] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Electrical stimulation in biology and gene expression has attracted considerable attention in recent years. However, it is inconvenient that the electric stimulation needs to be supplied an implanted power-transported wire connecting the external power supply. Here, we fabricated a self-powered composite nanofiber (CNF) and developed an electric generating system to realize electrical stimulation based on the electromagnetic induction effect under an external rotating magnetic field. The self-powered CNFs generating an electric signal consist of modified MWNTs (m-MWNTs) coated Fe3O4/PCL fibers. Moreover, the output current of the nanocomposites can be increased due to the presence of the magnetic nanoparticles during an external magnetic field is applied. In this paper, these CNFs were employed to replace a bullfrog's sciatic nerve and to realize the effective functional electrical stimulation. The cytotoxicity assays and animal tests of the nanocomposites were also used to evaluate the biocompatibility and tissue integration. These results demonstrated that this self-powered CNF not only plays a role as power source but also can act as an external power supply under an external rotating magnetic field for noninvasive the replacement of injured nerve.
Collapse
Affiliation(s)
- Fengluan Wu
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Long Jin
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Xiaotong Zheng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Bingyun Yan
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Pandeng Tang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Huikai Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Weili Deng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| | - Weiqing Yang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University , Chengdu 610031, China
| |
Collapse
|
39
|
Tyler SEB. Nature's Electric Potential: A Systematic Review of the Role of Bioelectricity in Wound Healing and Regenerative Processes in Animals, Humans, and Plants. Front Physiol 2017; 8:627. [PMID: 28928669 PMCID: PMC5591378 DOI: 10.3389/fphys.2017.00627] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 08/11/2017] [Indexed: 12/24/2022] Open
Abstract
Natural endogenous voltage gradients not only predict and correlate with growth and development but also drive wound healing and regeneration processes. This review summarizes the existing literature for the nature, sources, and transmission of information-bearing bioelectric signals involved in controlling wound healing and regeneration in animals, humans, and plants. It emerges that some bioelectric characteristics occur ubiquitously in a range of animal and plant species. However, the limits of similarities are probed to give a realistic assessment of future areas to be explored. Major gaps remain in our knowledge of the mechanistic basis for these processes, on which regenerative therapies ultimately depend. In relation to this, it is concluded that the mapping of voltage patterns and the processes generating them is a promising future research focus, to probe three aspects: the role of wound/regeneration currents in relation to morphology; the role of endogenous flux changes in driving wound healing and regeneration; and the mapping of patterns in organisms of extreme longevity, in contrast with the aberrant voltage patterns underlying impaired healing, to inform interventions aimed at restoring them.
Collapse
|
40
|
Zhu W, Ye T, Lee SJ, Cui H, Miao S, Zhou X, Shuai D, Zhang LG. Enhanced neural stem cell functions in conductive annealed carbon nanofibrous scaffolds with electrical stimulation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 14:2485-2494. [PMID: 28552650 DOI: 10.1016/j.nano.2017.03.018] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/19/2017] [Accepted: 03/06/2017] [Indexed: 01/19/2023]
Abstract
Carbon-based nanomaterials have shown great promise in regenerative medicine because of their unique electrical, mechanical, and biological properties; however, it is still difficult to engineer 2D pure carbon nanomaterials into a 3D scaffold while maintaining its structural integrity. In the present study, we developed novel carbon nanofibrous scaffolds by annealing electrospun mats at elevated temperature. The resultant scaffold showed a cohesive structure and excellent mechanical flexibility. The graphitic structure generated by annealing renders superior electrical conductivity to the carbon nanofibrous scaffold. By integrating the conductive scaffold with biphasic electrical stimulation, neural stem cell proliferation was promoted associating with upregulated neuronal gene expression level and increased microtubule-associated protein 2 immunofluorescence, demonstrating an improved neuronal differentiation and maturation. The findings suggest that the integration of the conducting carbon nanofibrous scaffold and electrical stimulation may pave a new avenue for neural tissue regeneration.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Tao Ye
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, United States
| | - Se-Jun Lee
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Shida Miao
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Xuan Zhou
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC, United States
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, USA; Department of Biomedical Engineering, The George Washington University, Washington, DC, USA; Department of Medicine, The George Washington University, Washington, DC, USA.
| |
Collapse
|
41
|
Durant F, Morokuma J, Fields C, Williams K, Adams DS, Levin M. Long-Term, Stochastic Editing of Regenerative Anatomy via Targeting Endogenous Bioelectric Gradients. Biophys J 2017; 112:2231-2243. [PMID: 28538159 PMCID: PMC5443973 DOI: 10.1016/j.bpj.2017.04.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/30/2017] [Accepted: 04/14/2017] [Indexed: 12/22/2022] Open
Abstract
We show that regenerating planarians' normal anterior-posterior pattern can be permanently rewritten by a brief perturbation of endogenous bioelectrical networks. Temporary modulation of regenerative bioelectric dynamics in amputated trunk fragments of planaria stochastically results in a constant ratio of regenerates with two heads to regenerates with normal morphology. Remarkably, this is shown to be due not to partial penetrance of treatment, but a profound yet hidden alteration to the animals' patterning circuitry. Subsequent amputations of the morphologically normal regenerates in water result in the same ratio of double-headed to normal morphology, revealing a cryptic phenotype that is not apparent unless the animals are cut. These animals do not differ from wild-type worms in histology, expression of key polarity genes, or neoblast distribution. Instead, the altered regenerative bodyplan is stored in seemingly normal planaria via global patterns of cellular resting potential. This gradient is functionally instructive, and represents a multistable, epigenetic anatomical switch: experimental reversals of bioelectric state reset subsequent regenerative morphology back to wild-type. Hence, bioelectric properties can stably override genome-default target morphology, and provide a tractable control point for investigating cryptic phenotypes and the stochasticity of large-scale epigenetic controls.
Collapse
Affiliation(s)
- Fallon Durant
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Junji Morokuma
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | | | - Katherine Williams
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Dany Spencer Adams
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts
| | - Michael Levin
- Allen Discovery Center at Tufts University, and Department of Biology, Tufts University, Medford, Massachusetts.
| |
Collapse
|
42
|
Mathews J, Levin M. Gap junctional signaling in pattern regulation: Physiological network connectivity instructs growth and form. Dev Neurobiol 2017; 77:643-673. [PMID: 27265625 PMCID: PMC10478170 DOI: 10.1002/dneu.22405] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/27/2016] [Accepted: 05/31/2016] [Indexed: 12/19/2022]
Abstract
Gap junctions (GJs) are aqueous channels that allow cells to communicate via physiological signals directly. The role of gap junctional connectivity in determining single-cell functions has long been recognized. However, GJs have another important role: the regulation of large-scale anatomical pattern. GJs are not only versatile computational elements that allow cells to control which small molecule signals they receive and emit, but also establish connectivity patterns within large groups of cells. By dynamically regulating the topology of bioelectric networks in vivo, GJs underlie the ability of many tissues to implement complex morphogenesis. Here, a review of recent data on patterning roles of GJs in growth of the zebrafish fin, the establishment of left-right patterning, the developmental dysregulation known as cancer, and the control of large-scale head-tail polarity, and head shape in planarian regeneration has been reported. A perspective in which GJs are not only molecular features functioning in single cells, but also enable global neural-like dynamics in non-neural somatic tissues has been proposed. This view suggests a rich program of future work which capitalizes on the rapid advances in the biophysics of GJs to exploit GJ-mediated global dynamics for applications in birth defects, regenerative medicine, and morphogenetic bioengineering. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 643-673, 2017.
Collapse
Affiliation(s)
- Juanita Mathews
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| | - Michael Levin
- Department of Biology, Tufts Center for Regenerative and Developmental Biology, Tufts University, Medford, MA
| |
Collapse
|
43
|
Mobini S, Leppik L, Thottakkattumana Parameswaran V, Barker JH. In vitro effect of direct current electrical stimulation on rat mesenchymal stem cells. PeerJ 2017; 5:e2821. [PMID: 28097053 PMCID: PMC5237370 DOI: 10.7717/peerj.2821] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 11/22/2016] [Indexed: 12/11/2022] Open
Abstract
Background Electrical stimulation (ES) has been successfully used to treat bone defects clinically. Recently, both cellular and molecular approaches have demonstrated that ES can change cell behavior such as migration, proliferation and differentiation. Methods In the present study we exposed rat bone marrow- (BM-) and adipose tissue- (AT-) derived mesenchymal stem cells (MSCs) to direct current electrical stimulation (DC ES) and assessed temporal changes in osteogenic differentiation. We applied 100 mV/mm of DC ES for 1 h per day for three, seven and 14 days to cells cultivated in osteogenic differentiation medium and assessed viability and calcium deposition at the different time points. In addition, expression of osteogenic genes, Runx2, Osteopontin, and Col1A2 was assessed in BM- and AT-derived MSCs at the different time points. Results Results showed that ES changed osteogenic gene expression patterns in both BM- and AT-MSCs, and these changes differed between the two groups. In BM-MSCs, ES caused a significant increase in mRNA levels of Runx2, Osteopontin and Col1A2 at day 7, while in AT-MSCs, the increase in Runx2 and Osteopontin expression were observed after 14 days of ES. Discussion This study shows that rat bone marrow- and adipose tissue-derived stem cells react differently to electrical stimuli, an observation that could be important for application of electrical stimulation in tissue engineering.
Collapse
Affiliation(s)
- Sahba Mobini
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany.,School of Materials, Faculty of Engineering and Physical Sciences, University of Manchester, Manchester, United Kingdom
| | - Liudmila Leppik
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Vishnu Thottakkattumana Parameswaran
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - John Howard Barker
- Frankfurt Initiative for Regenerative Medicine, Experimental Orthopedics and Trauma Surgery, Johann Wolfgang Goethe Universität Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
44
|
Ferreira F, Luxardi G, Reid B, Zhao M. Early bioelectric activities mediate redox-modulated regeneration. Development 2016; 143:4582-4594. [PMID: 27827821 DOI: 10.1242/dev.142034] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 10/21/2016] [Indexed: 12/26/2022]
Abstract
Reactive oxygen species (ROS) and electric currents modulate regeneration; however, the interplay between biochemical and biophysical signals during regeneration remains poorly understood. We investigate the interactions between redox and bioelectric activities during tail regeneration in Xenopus laevis tadpoles. We show that inhibition of NADPH oxidase-mediated production of ROS, or scavenging or blocking their diffusion into cells, impairs regeneration and consistently regulates the dynamics of membrane potential, transepithelial potential (TEP) and electric current densities (JI) during regeneration. Depletion of ROS mimics the altered TEP and JI observed in the non-regenerative refractory period. Short-term application of hydrogen peroxide (H2O2) rescues (from depleted ROS) and induces (from the refractory period) regeneration, TEP increase and JI reversal. H2O2 is therefore necessary for and sufficient to induce regeneration and to regulate TEP and JI Epistasis assays show that voltage-gated Na+ channels act downstream of H2O2 to modulate regeneration. Altogether, these results suggest a novel mechanism for regeneration via redox-bioelectric orchestration.
Collapse
Affiliation(s)
- Fernando Ferreira
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, CA 95817, USA .,Departamento de Biologia, Centro de Biologia Molecular e Ambiental (CBMA), Universidade do Minho, Braga 4710, Portugal
| | - Guillaume Luxardi
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, CA 95817, USA
| | - Brian Reid
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, CA 95817, USA
| | - Min Zhao
- Department of Dermatology, Institute for Regenerative Cures, University of California, Davis, CA 95817, USA .,Department of Ophthalmology, Institute for Regenerative Cures, University of California, Davis, CA 95817, USA
| |
Collapse
|
45
|
Abstract
The central nervous system (CNS) underlies memory, perception, decision-making, and behavior in numerous organisms. However, neural networks have no monopoly on the signaling functions that implement these remarkable algorithms. It is often forgotten that neurons optimized cellular signaling modes that existed long before the CNS appeared during evolution, and were used by somatic cellular networks to orchestrate physiology, embryonic development, and behavior. Many of the key dynamics that enable information processing can, in fact, be implemented by different biological hardware. This is widely exploited by organisms throughout the tree of life. Here, we review data on memory, learning, and other aspects of cognition in a range of models, including single celled organisms, plants, and tissues in animal bodies. We discuss current knowledge of the molecular mechanisms at work in these systems, and suggest several hypotheses for future investigation. The study of cognitive processes implemented in aneural contexts is a fascinating, highly interdisciplinary topic that has many implications for evolution, cell biology, regenerative medicine, computer science, and synthetic bioengineering.
Collapse
Affiliation(s)
- František Baluška
- Department of Plant Cell Biology, IZMB, University of Bonn Bonn, Germany
| | - Michael Levin
- Biology Department, Tufts Center for Regenerative and Developmental Biology, Tufts University Medford, MA, USA
| |
Collapse
|
46
|
Wang X, Gao Y, Shi H, Liu N, Zhang W, Li H. Influence of the intensity and loading time of direct current electric field on the directional migration of rat bone marrow mesenchymal stem cells. Front Med 2016; 10:286-96. [PMID: 27324024 DOI: 10.1007/s11684-016-0456-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
Exogenic electric fields can effectively accelerate bone healing and remodeling through the enhanced migration of bone marrow mesenchymal stem cells (BMSCs) toward the injured area. This study aimed to determine the following: (1) the direction of rat BMSC (rBMSC) migration upon exposure to a direct current electric field (DCEF), (2) the optimal DCEF intensity and duration, and (3) the possible regulatory role of SDF-1/CXCR4 axis in rBMSC migration as induced by DCEF. Results showed that rBMSCs migrated to the positive electrode of the DCEF, and that the DCEF of 200 mV/mm for 4 h was found to be optimal in enhancing rBMSC migration. This DCEF strength and duration also upregulated the expression of osteoblastic genes, including ALP and OCN, and upregulated the expression of ALP and Runx2 proteins. Moreover, when CXCR4 was inhibited, rBMSC migration due to DCEF was partially blocked. These findings indicated that DCEF can effectively induce rBMSC migration. A DCEF of 200 mV/mm for 4 h was recommended because of its ability to promote rBMSC migration, proliferation, and osteogenic differentiation. The SDF-1/CXCR4 signaling pathway may play an important role in regulating the DCEF-induced migration of rBMSCs.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Department of Stomatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuxuan Gao
- Department of Stomatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Haigang Shi
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Na Liu
- Department of Stomatology, Chinese PLA General Hospital, Beijing, 100853, China
| | - Wei Zhang
- Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Hongbo Li
- Department of Stomatology, Chinese PLA General Hospital, Beijing, 100853, China.
| |
Collapse
|
47
|
Golding A, Guay JA, Herrera-Rincon C, Levin M, Kaplan DL. A Tunable Silk Hydrogel Device for Studying Limb Regeneration in Adult Xenopus Laevis. PLoS One 2016; 11:e0155618. [PMID: 27257960 PMCID: PMC4892606 DOI: 10.1371/journal.pone.0155618] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023] Open
Abstract
In certain amphibian models limb regeneration can be promoted or inhibited by the local wound bed environment. This research introduces a device that can be utilized as an experimental tool to characterize the conditions that promotes limb regeneration in the adult frog (Xenopus laevis) model. In particular, this device was designed to manipulate the local wound environment via a hydrogel insert. Initial characterization of the hydrogel insert revealed that this interaction had a significant influence on mechanical forces to the animal, due to the contraction of the hydrogel. The material and mechanical properties of the hydrogel insert were a factor in the device design in relation to the comfort of the animal and the ability to effectively manipulate the amputation site. The tunable features of the hydrogel were important in determining the pro-regenerative effects in limb regeneration, which was measured by cartilage spike formation and quantified by micro-computed tomography. The hydrogel insert was a factor in the observed morphological outcomes following amputation. Future work will focus on characterizing and optimizing the device's observed capability to manipulate biological pathways that are essential for limb regeneration. However, the present work provides a framework for the role of a hydrogel in the device and a path forward for more systematic studies.
Collapse
Affiliation(s)
- Anne Golding
- Department of Chemical and Biological Engineering, Tufts University, Medford, Massachusetts, United States of America
| | - Justin A. Guay
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Celia Herrera-Rincon
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| | - Michael Levin
- Department of Biology, Center for Regenerative and Developmental Biology, Tufts University, Medford, Massachusetts, United States of America
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts, United States of America
| |
Collapse
|
48
|
Durant F, Lobo D, Hammelman J, Levin M. Physiological controls of large-scale patterning in planarian regeneration: a molecular and computational perspective on growth and form. REGENERATION (OXFORD, ENGLAND) 2016; 3:78-102. [PMID: 27499881 PMCID: PMC4895326 DOI: 10.1002/reg2.54] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 12/12/2022]
Abstract
Planaria are complex metazoans that repair damage to their bodies and cease remodeling when a correct anatomy has been achieved. This model system offers a unique opportunity to understand how large-scale anatomical homeostasis emerges from the activities of individual cells. Much progress has been made on the molecular genetics of stem cell activity in planaria. However, recent data also indicate that the global pattern is regulated by physiological circuits composed of ionic and neurotransmitter signaling. Here, we overview the multi-scale problem of understanding pattern regulation in planaria, with specific focus on bioelectric signaling via ion channels and gap junctions (electrical synapses), and computational efforts to extract explanatory models from functional and molecular data on regeneration. We present a perspective that interprets results in this fascinating field using concepts from dynamical systems theory and computational neuroscience. Serving as a tractable nexus between genetic, physiological, and computational approaches to pattern regulation, planarian pattern homeostasis harbors many deep insights for regenerative medicine, evolutionary biology, and engineering.
Collapse
Affiliation(s)
- Fallon Durant
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Daniel Lobo
- Department of Biological SciencesUniversity of MarylandBaltimore County, 1000 Hilltop CircleBaltimoreMD21250USA
| | - Jennifer Hammelman
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| | - Michael Levin
- Department of Biology, Allen Discovery Center at Tufts University, Tufts Center for Regenerative and Developmental BiologyTufts UniversityMA02155USA
| |
Collapse
|