1
|
Yoneda K, Kobayashi C, Araie H, Morita R, Harada R, Shigeta Y, Endo H, Maeda Y, Suzuki I. Characterization of Delta-7 Alkenone Desaturase in Haptophyte Gephyrocapsa huxleyi Through Heterologous Expression in Tisochrysis lutea. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:44. [PMID: 39921736 PMCID: PMC11807052 DOI: 10.1007/s10126-025-10427-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 01/30/2025] [Indexed: 02/10/2025]
Abstract
The marine haptophyte Gephyrocapsa huxleyi is an ecologically and geochemically important phytoplankton due to its contribution to the global carbon cycle and its ability to biosynthesize certain alkenones. These alkenones are long-chain alkyl ketones with two to four trans-type double bonds. The genes encoding alkenone desaturase in G. huxleyi have not been experimentally characterized so far, partly due to the difficulty of inducing genetic transformation in G. huxleyi. Therefore, we introduced the putative alkenone delta-7 desaturase of G. huxleyi (designated "DesT") to the transformable and alkenone-producing haptophyte Tisochrysis lutea. We found two types of coding sequences for DesT, which are probably derived from the expression products of different alleles, and designated them "DesT-1" and "DesT-2." The ratio of C37:3 to C37:2 methyl alkenone in the DesT-1 transformant was significantly higher than that in the mock strain that expressed only the hygromycin resistance gene, suggesting that DesT-1 was an alkenone delta-7 desaturase in G. huxleyi. In the protein structure, a tunnel where a substrate alkenone penetrates was predicted to be located around the histidine box of DesT, and hydrophilic and hydrophobic amino acids were respectively located at the proximal (near side to the histidine box) and distal ends of the tunnel. This is the first study to conduct experimental characterization of the alkenone metabolism-related gene in G. huxleyi. The heterologous expression system using T. lutea paves the way for further characterization of the alkenone metabolism-related genes in less transformable haptophytes.
Collapse
Affiliation(s)
- Kohei Yoneda
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| | - Chinatsu Kobayashi
- Graduate School of Science and Technology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroya Araie
- Department of Biosciences, College of Science and Technology, Kanto Gakuin University, Mutsuura-Higashi, Kanazawa-Ku, Yokohama, Kanagawa, 236-8501, Japan
| | - Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8577, Japan
| | - Hirotoshi Endo
- National Institute of Technology, Tsuruoka College, 104 Sawada, Inooka, Tsuruoka, Yamagata, 997-8511, Japan
| | - Yoshiaki Maeda
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Iwane Suzuki
- Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
2
|
Dedman CJ, Chauhan N, González-Lanchas A, Baldreki C, Dowle AA, Larson TR, Lee RBY, Rickaby REM. Exploring proteins within the coccolith matrix. Sci Rep 2024; 14:31821. [PMID: 39738514 PMCID: PMC11685980 DOI: 10.1038/s41598-024-83052-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 12/11/2024] [Indexed: 01/02/2025] Open
Abstract
Coccolithophores comprise a major component of the oceanic carbon cycle. These unicellular algae produce ornate structures made of calcium carbonate, termed coccoliths, representing ~ 50% of calcite production in the open ocean. The exact molecular mechanisms which direct and control coccolith formation are unknown. In this study, we report on the presence and functional features of proteins within the coccoliths produced by a range of model coccolithophore species including: the globally abundant and well-studied Gephyrocapsa huxleyi (formerly Emiliania huxleyi) and related Gephyrocapsa oceanica, as well as the larger and more heavily calcified Coccolithus braarudii. Protein features were compared between species and against biomineralisation proteins previously identified in other marine calcifying organisms. Notably, several protein features were consistently seen across the examined coccolithophore species, including the cell signalling 14-3-3 domain, chromosome segregation SMC ATPase domain, as well as proteins involved in protein processing and protease inhibition. The copper-binding cupredoxin domain was observed in both Gephyrocapsa species, as well as other marine calcifiers, suggestive of a requirement of Cu in biomineralisation. Building consensus with existing work, we highlight the pentapeptide repeat as a feature which is associated with the coccolith matrix, being identified in all three examined species, and propose that this structural motif may play a role in controlling coccolith growth. This preliminary study provides insight towards the functional diversity of calcification machinery in coccolithophores and presents a number of candidates for future research towards understanding the biochemical controls which direct coccolithogenesis.
Collapse
Affiliation(s)
- Craig J Dedman
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK.
- School of Geography, Earth and Environmental Sciences, Portland Square, University of Plymouth, Plymouth, PL4 8AA, UK.
| | - Nishant Chauhan
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
- Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ, UK
| | - Alba González-Lanchas
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| | - Chloë Baldreki
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Adam A Dowle
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Tony R Larson
- Department of Biology, Bioscience Technology Facility, University of York, York, UK
| | - Renee B Y Lee
- School of Biological Sciences, University of Reading, Whiteknights, Reading, RG6 6UB, UK
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Rd, Oxford, OX1 3AN, UK
| |
Collapse
|
3
|
Trujillo E, Monreal-Escalante E, Angulo C. Microalgae-made human vaccines and therapeutics: A decade of advances. Biotechnol J 2024; 19:e2400091. [PMID: 38719615 DOI: 10.1002/biot.202400091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/05/2024] [Accepted: 04/22/2024] [Indexed: 06/05/2024]
Abstract
Microalgal emergence is a promising platform with two-decade historical background for producing vaccines and biopharmaceuticals. During that period, microalgal-based vaccines have reported successful production for various diseases. Thus, species selection is important for genetic transformation and delivery methods that have been developed. Although many vaccine prototypes have been produced for infectious and non-infectious diseases, fewer studies have reached immunological and immunoprotective evaluations. Microalgae-made vaccines for Staphylococcus aureus, malaria, influenza, human papilloma, and Zika viruses have been explored in their capacity to induce humoral or cellular immune responses and protective efficacies against experimental challenges. Therefore, specific pathogen antigens and immune system role are important and addressed in controlling these infections. Regarding non-communicable diseases, these vaccines have been investigated for breast cancer; microalgal-produced therapeutic molecules and microalgal-made interferon-α have been explored for hypertension and potential applications in treating viral infections and cancer, respectively. Thus, conducting immunological trials is emphasized, discussing the promising results observed in terms of immunogenicity, desired immune response for controlling affections, and challenges for achieving the desired protection levels. The potential advantages and hurdles associated with this innovative approach are highlighted, underlining the relevance of assessing immune responses in preclinical and clinical trials to validate the efficacy of these biopharmaceuticals. The promising future of this healthcare technology is also envisaged.
Collapse
Affiliation(s)
- Edgar Trujillo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Elizabeth Monreal-Escalante
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
- CONAHCYT-Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| | - Carlos Angulo
- Immunology & Vaccinology Group, Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Instituto Politécnico Nacional 195, Playa Palo de Santa Rita Sur, La Paz, B.C.S., México
| |
Collapse
|
4
|
Li J, Wu S, Zhang K, Sun X, Lin W, Wang C, Lin S. Clustered Regularly Interspaced Short Palindromic Repeat/CRISPR-Associated Protein and Its Utility All at Sea: Status, Challenges, and Prospects. Microorganisms 2024; 12:118. [PMID: 38257946 PMCID: PMC10820777 DOI: 10.3390/microorganisms12010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Initially discovered over 35 years ago in the bacterium Escherichia coli as a defense system against invasion of viral (or other exogenous) DNA into the genome, CRISPR/Cas has ushered in a new era of functional genetics and served as a versatile genetic tool in all branches of life science. CRISPR/Cas has revolutionized the methodology of gene knockout with simplicity and rapidity, but it is also powerful for gene knock-in and gene modification. In the field of marine biology and ecology, this tool has been instrumental in the functional characterization of 'dark' genes and the documentation of the functional differentiation of gene paralogs. Powerful as it is, challenges exist that have hindered the advances in functional genetics in some important lineages. This review examines the status of applications of CRISPR/Cas in marine research and assesses the prospect of quickly expanding the deployment of this powerful tool to address the myriad fundamental marine biology and biological oceanography questions.
Collapse
Affiliation(s)
- Jiashun Li
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Shuaishuai Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Kaidian Zhang
- State Key Laboratory of Marine Resource Utilization in the South China Sea, School of Marine Biology and Fisheries, Hainan University, Haikou 570203, China
| | - Xueqiong Sun
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Wenwen Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Cong Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
| | - Senjie Lin
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361101, China
- Department of Marine Sciences, University of Connecticut, Groton, CT 06340, USA
| |
Collapse
|
5
|
Wheeler GL, Sturm D, Langer G. Gephyrocapsa huxleyi (Emiliania huxleyi) as a model system for coccolithophore biology. JOURNAL OF PHYCOLOGY 2023; 59:1123-1129. [PMID: 37983837 DOI: 10.1111/jpy.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 11/22/2023]
Abstract
Coccolithophores are the most abundant calcifying organisms in modern oceans and are important primary producers in many marine ecosystems. Their ability to generate a cellular covering of calcium carbonate plates (coccoliths) plays a major role in marine biogeochemistry and the global carbon cycle. Coccolithophores also play an important role in sulfur cycling through the production of the climate-active gas dimethyl sulfide. The primary model organism for coccolithophore research is Emiliania huxleyi, now named Gephyrocapsa huxleyi. G. huxleyi has a cosmopolitan distribution, occupying coastal and oceanic environments across the globe, and is the most abundant coccolithophore in modern oceans. Research in G. huxleyi has identified many aspects of coccolithophore biology, from cell biology to ecological interactions. In this perspective, we summarize the key advances made using G. huxleyi and examine the emerging tools for research in this model organism. We discuss the key steps that need to be taken by the research community to advance G. huxleyi as a model organism and the suitability of other species as models for specific aspects of coccolithophore biology.
Collapse
Affiliation(s)
- Glen L Wheeler
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
| | - Daniela Sturm
- The Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, UK
- School of Ocean and Earth Science, University of Southampton, Southampton, UK
| | - Gerald Langer
- Institute of Environmental Science and Technology (ICTA-UAB), Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
6
|
Inukai M, Kobayashi N, Endo H, Asakawa K, Amano K, Yasuda Y, Cenci U, Colleoni C, Ball S, Fujiwara S. Kre6 (yeast 1,6-β-transglycosylase) homolog, PhTGS, is essential for β-glucan synthesis in the haptophyte Pleurochrysis haptonemofera. Front Bioeng Biotechnol 2023; 11:1259587. [PMID: 37790259 PMCID: PMC10543733 DOI: 10.3389/fbioe.2023.1259587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 08/29/2023] [Indexed: 10/05/2023] Open
Abstract
Haptophytes synthesize unique β-glucans containing more β-1,6-linkages than β-1,3 linkages, as a storage polysaccharide. To understand the mechanism of the synthesis, we investigated the roles of Kre6 (yeast 1,6-β-transglycosylase) homologs, PhTGS, in the haptophyte Pleurochrysis haptonemofera. RNAi of PhTGS repressed β-glucan accumulation and simultaneously induced lipid production, suggesting that PhTGS is involved in β-glucan synthesis and that the knockdown leads to the alteration of the carbon metabolic flow. PhTGS was expressed more in light, where β-glucan was actively produced by photosynthesis, than in the dark. The crude extract of E. coli expressing PhKre6 demonstrated its activity to incorporate 14C-UDP-glucose into β-glucan of P. haptonemofera. These findings suggest that PhTGS functions in storage β-glucan synthesis specifically in light, probably by producing the β-1,6-branch.
Collapse
Affiliation(s)
- Mayuka Inukai
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Naoya Kobayashi
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Hirotoshi Endo
- National Institute of Technology, Tsuruoka College, Tsuruoka, Japan
| | - Koki Asakawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Keisuke Amano
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Yuki Yasuda
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| | - Ugo Cenci
- University of Lille, French National Centre for Scientific Research, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Christophe Colleoni
- University of Lille, French National Centre for Scientific Research, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Steven Ball
- University of Lille, French National Centre for Scientific Research, UMR8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Shoko Fujiwara
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Japan
| |
Collapse
|
7
|
Liu J, Sun Y, Zhang L, Li X, He Z, Zhou C, Han J. Screening of antibiotics to obtain axenic cell cultures of a marine microalga Chrysotila roscoffensis. Front Bioeng Biotechnol 2023; 11:1218031. [PMID: 37304139 PMCID: PMC10248157 DOI: 10.3389/fbioe.2023.1218031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 05/16/2023] [Indexed: 06/13/2023] Open
Abstract
Due to high growth rate, outstanding abiotic stress tolerance, and rich value-added substances, Chrysotila roscoffensis, belonging to the phylum of Haptophyta, can be considered as a versatile resource for industrial exploitation of bioactive compounds. However, the application potential of C. roscoffensis has drawn attention until just recently, and the understanding related to the biological properties of this species is still scarce. For example, the sensitivities of C. roscoffensis to antibiotics, which is essential for the verification of heterotrophic capacity and the establishment of efficient genetic manipulation system is still unavailable. Aiming to provide fundamental information for future exploitation, the sensitivities of C. roscoffensis to nine types of antibiotics were tested in this study. The results demonstrated that C. roscoffensis exhibited relatively high resistances to ampicillin, kanamycin, streptomycin, gentamicin, and geneticin, while was sensitive to bleomycin, hygromycin B, paromomycin, and chloramphenicol. Using the former five types of antibiotics, a bacteria removal strategy was established tentatively. Finally, the axenicity of treated C. roscoffensis was confirmed based on a multi-strategy method including solid plate, 16S rDNA amplification, and nuclear acid staining. This report can provide valuable information for the development of optimal selection markers, which are meaningful for more extensive transgenic studies in C. roscoffensis. Moreover, our study also paves the way for the establishment of heterotrophic/mixotrophic cultivation modes of C. roscoffensis.
Collapse
Affiliation(s)
- Jiaojiao Liu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Lin Zhang
- Key Laboratory of Marine Biotechnology of Zhejiang Province, School of Marine Sciences, Ningbo University, Ningbo, China
| | - Xiaohui Li
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Zhichao He
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Chengxu Zhou
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
- Ningbo Institute of Oceanography, Ningbo, China
| |
Collapse
|
8
|
Recent Advances in Marine Microalgae Production: Highlighting Human Health Products from Microalgae in View of the Coronavirus Pandemic (COVID-19). FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8090466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Blue biotechnology can greatly help solve some of the most serious social problems due to its wide biodiversity, which includes marine environments. Microalgae are important resources for human needs as an alternative to terrestrial plants because of their rich biodiversity, rapid growth, and product contributions in many fields. The production scheme for microalgae biomass mainly consists of two processes: (I) the Build-Up process and (II) the Pull-Down process. The Build-Up process consists of (1) the super strain concept and (2) cultivation aspects. The Pull-Down process includes (1) harvesting and (2) drying algal biomass. In some cases, such as the manufacture of algal products, the (3) extraction of bioactive compounds is included. Microalgae have a wide range of commercial applications, such as in aquaculture, biofertilizer, bioenergy, pharmaceuticals, and functional foods, which have several industrial and academic applications around the world. The efficiency and success of biomedical products derived from microalgal biomass or its metabolites mainly depend on the technologies used in the cultivation, harvesting, drying, and extraction of microalgae bioactive molecules. The current review focuses on recent advanced technologies that enhance microalgae biomass within microalgae production schemes. Moreover, the current work highlights marine drugs and human health products derived from microalgae that can improve human immunity and reduce viral activities, especially COVID-19.
Collapse
|
9
|
Transformation of the symbiotic alga Oophila amblystomatis: a new tool for animal-algae symbiosis studies. Symbiosis 2022. [DOI: 10.1007/s13199-022-00861-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
10
|
Bolaños-Martínez OC, Mahendran G, Rosales-Mendoza S, Vimolmangkang S. Current Status and Perspective on the Use of Viral-Based Vectors in Eukaryotic Microalgae. Mar Drugs 2022; 20:md20070434. [PMID: 35877728 PMCID: PMC9318342 DOI: 10.3390/md20070434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 11/29/2022] Open
Abstract
During the last two decades, microalgae have attracted increasing interest, both commercially and scientifically. Commercial potential involves utilizing valuable natural compounds, including carotenoids, polysaccharides, and polyunsaturated fatty acids, which are widely applicable in food, biofuel, and pharmaceutical industries. Conversely, scientific potential focuses on bioreactors for producing recombinant proteins and developing viable technologies to significantly increase the yield and harvest periods. Here, viral-based vectors and transient expression strategies have significantly contributed to improving plant biotechnology. We present an updated outlook covering microalgal biotechnology for pharmaceutical application, transformation techniques for generating recombinant proteins, and genetic engineering tactics for viral-based vector construction. Challenges in industrial application are also discussed.
Collapse
Affiliation(s)
- Omayra C. Bolaños-Martínez
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Ganesan Mahendran
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
| | - Sergio Rosales-Mendoza
- Laboratorio de Biofarmacéuticos Recombinantes, Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, Av. Dr. Manuel Nava 6, San Luis Potosí 78210, Mexico;
- Sección de Biotecnología, Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autónoma de San Luis Potosí, Av. Sierra Leona 550, Lomas 2a Sección, San Luis Potosí 78210, Mexico
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand; (O.C.B.-M.); (G.M.)
- Center of Excellence in Plant-Produced Pharmaceuticals, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: ; Tel.: +662-218-8358
| |
Collapse
|
11
|
Voltage-gated proton channels explain coccolithophore sensitivity to ocean acidification. Proc Natl Acad Sci U S A 2022; 119:e2206426119. [PMID: 35687664 PMCID: PMC9231618 DOI: 10.1073/pnas.2206426119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
12
|
Douchi D, Mosey M, Astling DP, Knoshaug EP, Nag A, McGowen J, Laurens LM. Nuclear and chloroplast genome engineering of a productive non-model alga Desmodesmus armatus: Insights into unusual and selective acquisition mechanisms for foreign DNA. ALGAL RES 2021. [DOI: 10.1016/j.algal.2020.102152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
13
|
Brownlee C, Langer G, Wheeler GL. Coccolithophore calcification: Changing paradigms in changing oceans. Acta Biomater 2021; 120:4-11. [PMID: 32763469 DOI: 10.1016/j.actbio.2020.07.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/13/2020] [Accepted: 07/26/2020] [Indexed: 11/30/2022]
Abstract
Coccolithophores represent a major component of the marine phytoplankton and contribute to the bulk of biogenic calcite formation on Earth. These unicellular protists produce minute calcite scales (coccoliths) within the cell, which are secreted to the cell surface. Individual coccoliths and their arrangements on the cell surface display a wide range of morphological variations. This review explores some of the recent evidence that points to similarities and differences in the mechanisms of calcification, focussing on the transport mechanisms that bring substrates to, and remove products from the site of calcification, together with new findings on factors that regulate coccolith morphology. We argue that better knowledge of these mechanisms and their variations is needed to inform more generally how different species of coccolithophore are likely to respond to changes in ocean chemistry. STATEMENT OF SIGNIFICANCE: Coccolithophores, minute single celled phytoplankton are the major producers of biogenic carbonate on Earth. They also represent an important component of the ocean's biota and contribute significantly to global carbon fluxes. Coccolithophores produce intricate calcite scales (coccoliths) internally that they secrete onto their external surface. This review presents some recent key findings on the mechanisms underlying the production of coccoliths. It also considers the factors that regulate the rate of production as well as the variety of shapes of individual coccoliths and their arrangements at the cell surface. Understanding these processes is needed to allow better predictions of how coccolithophores may respond to changing ocean chemistry associated with climate change.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK.
| | - Gerald Langer
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
14
|
Nam O, Suzuki I, Shiraiwa Y, Jin E. Association of Phosphatidylinositol-Specific Phospholipase C with Calcium-Induced Biomineralization in the Coccolithophore Emiliania huxleyi. Microorganisms 2020; 8:E1389. [PMID: 32927844 PMCID: PMC7563939 DOI: 10.3390/microorganisms8091389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 11/17/2022] Open
Abstract
Biomineralization by calcifying microalgae is a precisely controlled intracellular calcification process that produces delicate calcite scales (or coccoliths) in the coccolithophore Emiliania huxleyi (Haptophycea). Despite its importance in biogeochemical cycles and the marine environment globally, the underlying molecular mechanism of intracellular coccolith formation, which requires calcium, bicarbonate, and coccolith-polysaccharides, remains unclear. In E. huxleyi CCMP 371, we demonstrated that reducing the calcium concentration from 10 (ambient seawater) to 0.1 mM strongly restricted coccolith production, which was then recovered by adding 10 mM calcium, irrespective of inorganic phosphate conditions, indicating that coccolith production could be finely controlled by the calcium supply. Using this strain, we investigated the expression of differentially expressed genes (DEGs) to observe the cellular events induced by changes in calcium concentrations. Intriguingly, DEG analysis revealed that the phosphatidylinositol-specific phospholipase C (PI-PLC) gene was upregulated and coccolith production by cells was blocked by the PI-PLC inhibitor U73122 under conditions closely associated with calcium-induced calcification. These findings imply that PI-PLC plays an important role in the biomineralization process of the coccolithophore E. huxleyi.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan; (I.S.); (Y.S.)
| | - EonSeon Jin
- Department of Life Science, Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea;
| |
Collapse
|
15
|
Skeffington AW, Grimm A, Schönefeld S, Petersen K, Scheffel A. An Efficient Method for the Plating of Haploid and Diploid Emiliania huxleyi on Solid Medium 1. JOURNAL OF PHYCOLOGY 2020; 56:238-242. [PMID: 31657459 DOI: 10.1111/jpy.12942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
Emiliania huxleyi is a globally important coccolithophore and one of the most successful eukaryotic organisms in the modern oceans. Despite a large body of work on this organism, including the sequencing of its genome, the tools required for forward and reverse functional genetic studies are still undeveloped. Here we present an optimized method for the clonal isolation of E. huxleyi by plating on solid medium. We demonstrate the utility of this method for a variety of strains including haploid, calcifying-diploid, and noncalcifying diploid strains. We show that, in contrast to previous studies, no changes in cell ploidy status occur when the cells are plated. Our method will greatly aid attempts to elucidate the genetic basis of the remarkable physiology of E. huxleyi by forward and reverse genetic approaches.
Collapse
Affiliation(s)
- Alastair W Skeffington
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Annett Grimm
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Steffi Schönefeld
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476, Potsdam-Golm, Germany
| | - Kerstin Petersen
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476, Potsdam-Golm, Germany
| | - André Scheffel
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
16
|
Genetic tool development in marine protists: emerging model organisms for experimental cell biology. Nat Methods 2020; 17:481-494. [PMID: 32251396 PMCID: PMC7200600 DOI: 10.1038/s41592-020-0796-x] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 03/02/2020] [Indexed: 12/13/2022]
Abstract
Diverse microbial ecosystems underpin life in the sea. Among these microbes are many unicellular eukaryotes that span the diversity of the eukaryotic tree of life. However, genetic tractability has been limited to a few species, which do not represent eukaryotic diversity or environmentally relevant taxa. Here, we report on the development of genetic tools in a range of protists primarily from marine environments. We present evidence for foreign DNA delivery and expression in 13 species never before transformed and for advancement of tools for eight other species, as well as potential reasons for why transformation of yet another 17 species tested was not achieved. Our resource in genetic manipulation will provide insights into the ancestral eukaryotic lifeforms, general eukaryote cell biology, protein diversification and the evolution of cellular pathways.
Collapse
|
17
|
Chen X, Kameshwar AKS, Chio C, Lu F, Qin W. Effect of KNO 3 on Lipid Synthesis and CaCO 3 Accumulation in Pleurochrysis dentata Coccoliths with a Special Focus on Morphological Characters of Coccolithophores. Int J Biol Sci 2019; 15:2844-2858. [PMID: 31853222 PMCID: PMC6909966 DOI: 10.7150/ijbs.35664] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/11/2019] [Indexed: 11/18/2022] Open
Abstract
Pleurochrysis genus algae are widely distributed in ocean waters. Pleurochrysis sp. algae are popularly known for its coccolithophores. Calcium carbonate (CaCO3) shells are major components of the coccolithophore, and they are key absorbers of carbondioxide. In this study, we have reported the effects of potassium nitrate (KNO3) concentration on calcium accumulation and total lipid, carbohydrate and protein contents of Pleurochrysis dentata. Results obtained from complexometric titration and scanning electron microscopy analysis showed higher rates of CaCO3 accumulation on Pleurochrysis dentata cell surface. We have also observed that overall cell size of Pleurochrysis dentata reached maximum when it was cultured at 0.75 mmol L-1 of KNO3. During 10 days of Pleurochrysis dentata culture total lipids and carbohydrate contents decreased, with slightly increased protein content. Results obtained from Fourier-Transform Infrared Spectroscopy (FTIR) also reported an increase in protein and decrease in lipids and carbohydrate contents, respectively. Similarly, Pleurochrysis dentata cultured at 1 mmol L-1 concentration of KNO3 exhibited the lowest carbohydrate (21.08%) and highest protein (32.87%) contents. Interestingly, Pleurochrysis dentata cultured without KNO3 exhibited 33.61% of total lipid content which reduced to a total lipid content of 13.67% when cultured at 1 mmol L-1 concentration of KNO3. Thus, culture medium containing higher than 1 mmol L-1 of KNO3 could inhibit the cell size of Pleurochrysis dentata and CaCO3 accumulation in shells but it could promote its cell growth. For the first time we have reported a relatively complete coccolith structure devoid of its protoplast. In this study, we have also described about the special planar structure of Pleurochrysis dentata CaCO3 shells present on its inner tube of the R unit and parallel to the outer tube of the V unit which we named it as "doornail structure". We believe that this doornail structure provides structural stability and support to the developing coccoliths in Pleurochrysis dentata. Also, we have discussed about the "double-disc" structure of coccoliths which are closely arranged and interlocked with each other. The double-disc structure ensures fixation of each coccolith and objecting its free horizontal movement and helps in attaining a complementary coccolith structure.
Collapse
Affiliation(s)
- Xuantong Chen
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
- Faculty of Natural Resources Management, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | | | - Chonlong Chio
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| | - Fan Lu
- School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan, China, 430068
| | - Wensheng Qin
- Department of Biology, Lakehead University, 955 Oliver Road, Thunder Bay, Ontario, P7B 5E1, Canada
| |
Collapse
|
18
|
Abstract
Microalgae are unicellular organisms that act as the crucial primary producers all over the world, typically found in marine and freshwater environments. Most of them can live photo-autotrophically, reproduce rapidly, and accumulate biomass in a short period efficiently. To adapt to the uninterrupted change of the environment, they evolve and differentiate continuously. As a result, some of them evolve special abilities such as toleration of extreme environment, generation of sophisticated structure to adapt to the environment, and avoid predators. Microalgae are believed to be promising bioreactors because of their high lipid and pigment contents. Genetic engineering technologies have given revolutions in the microalgal industry, which decoded the secrets of microalgal genes, express recombinant genes in microalgal genomes, and largely soar the accumulation of interested components in transgenic microalgae. However, owing to several obstructions, the industry of transgenic microalgae is still immature. Here, we provide an overview to emphasize the advantage and imperfection of the existing transgenic microalgal bioreactors.
Collapse
Affiliation(s)
- Zhi-Cong Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Ming-Hua Liang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Jian-Guo Jiang
- College of Food Science and Engineering, South China University of Technology, Guangzhou, China
| |
Collapse
|
19
|
Abstract
In this study, we examined the effect of a hot-water extract of coccolithophore Pleurochrysis carterae on melanogenesis in B16F1 and B16F10 melanoma cells. P. carterae extract inhibited the α-melanocyte-stimulating hormone (α-MSH)-enhanced melanin synthesis in B16F1 melanoma cells. P. carterae also inhibited unstimulated melanin synthesis in B16F10 melanoma cells. Western blotting showed that the P. carterae extract inhibited tyrosinase and microphthalmia-associated transcription factor (MITF) in a dose-dependent manner. The reporter assay also revealed a decline in the tyrosinase promoter activity in the presence of P. carterae extract. Furthermore, quantitative real-time RT-PCR analysis showed that P. carterae extract downregulated the mRNA levels of tyrosinase and MITF. Finally, our study demonstrated that the hot-water extract of P. carterae inhibits melanin synthesis via the down-regulation of MITF mRNA level. Our findings indicate that P. carterae extract could be a possible cosmetic ingredient.
Collapse
|
20
|
Nam O, Park JM, Lee H, Jin E. De novo transcriptome profile of coccolithophorid alga Emiliania huxleyi CCMP371 at different calcium concentrations with proteome analysis. PLoS One 2019; 14:e0221938. [PMID: 31465514 PMCID: PMC6715215 DOI: 10.1371/journal.pone.0221938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 08/19/2019] [Indexed: 12/16/2022] Open
Abstract
The haptophyte alga Emiliania huxleyi is the most abundant coccolithophore in the modern ocean and produces elaborate calcite crystals, called coccolith, in a separate intracellular compartment known as the coccolith vesicle. Despite the importance of biomineralization in coccolithophores, the molecular mechanism underlying it remains unclear. Understanding this precise machinery at the molecular level will provide the knowledge needed to enable further manipulation of biomineralization. In our previous study, altering the calcium concentration modified the calcifying ability of E. huxleyi CCMP371. Therefore in this study, we tested E. huxleyi cells acclimated to three different calcium concentrations (0, 0.1, and 10 mM). To understand the whole transcript profile at different calcium concentrations, RNA-sequencing was performed and used for de novo assembly and annotation. The differentially expressed genes (DEGs) among the three different calcium concentrations were analyzed. The functional classification by gene ontology (GO) revealed that 'intrinsic component of membrane' was the most enriched of the GO terms at the ambient calcium concentration (10 mM) compared with the limited calcium concentrations (0 and 0.1 mM). Moreover, the DEGs in those comparisons were enriched mainly in 'secondary metabolites biosynthesis, transport and catabolism' and 'signal transduction mechanisms' in the KOG clusters and 'processing in endoplasmic reticulum', and 'ABC transporters' in the KEGG pathways. Furthermore, metabolic pathways involved in protein synthesis were enriched among the differentially expressed proteins. The results of this study provide a molecular profile for understanding the expression of transcripts and proteins in E. huxleyi at different calcium concentrations, which will help to identify the detailed mechanism of its calcification.
Collapse
Affiliation(s)
- Onyou Nam
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| | - Jong-Moon Park
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Hookeun Lee
- Gachon Institute of Pharmaceutical Sciences, Gachon College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - EonSeon Jin
- Department of Life Science, Hanyang University, Seoul, Republic of Korea
| |
Collapse
|
21
|
Sanchez F, Geffroy S, Norest M, Yau S, Moreau H, Grimsley N. Simplified Transformation of Ostreococcus tauri Using Polyethylene Glycol. Genes (Basel) 2019; 10:E399. [PMID: 31130696 PMCID: PMC6562926 DOI: 10.3390/genes10050399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 12/21/2022] Open
Abstract
Ostreococcustauri is an easily cultured representative of unicellular algae (class Mamiellophyceae) that abound in oceans worldwide. Eight complete 13-22 Mb genomes of phylogenetically divergent species within this class are available, and their DNA sequences are nearly always present in metagenomic data produced from marine samples. Here we describe a simplified and robust transformation protocol for the smallest of these algae (O. tauri). Polyethylene glycol (PEG) treatment was much more efficient than the previously described electroporation protocol. Short (2 min or less) incubation times in PEG gave >104 transformants per microgram DNA. The time of cell recovery after transformation could be reduced to a few hours, permitting the experiment to be done in a day rather than overnight as used in previous protocols. DNA was randomly inserted in the O. tauri genome. In our hands PEG was 20-40-fold more efficient than electroporation for the transformation of O. tauri, and this improvement will facilitate mutagenesis of all of the dispensable genes present in the tiny O. tauri genome.
Collapse
Affiliation(s)
- Frédéric Sanchez
- CNRS UMR7232 BIOM (Biologie Intégrative des Organismes Marin) Sorbonne University, 66650 Banyuls sur Mer, France.
| | - Solène Geffroy
- IFREMER, Centre Atlantique, 44331 Nantes CEDEX 03, France.
| | - Manon Norest
- CNRS UMR7232 BIOM (Biologie Intégrative des Organismes Marin) Sorbonne University, 66650 Banyuls sur Mer, France.
| | - Sheree Yau
- CNRS UMR7232 BIOM (Biologie Intégrative des Organismes Marin) Sorbonne University, 66650 Banyuls sur Mer, France.
| | - Hervé Moreau
- CNRS UMR7232 BIOM (Biologie Intégrative des Organismes Marin) Sorbonne University, 66650 Banyuls sur Mer, France.
| | - Nigel Grimsley
- CNRS UMR7232 BIOM (Biologie Intégrative des Organismes Marin) Sorbonne University, 66650 Banyuls sur Mer, France.
| |
Collapse
|
22
|
Kwon YM, Kim KW, Choi TY, Kim SY, Kim JYH. Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory. World J Microbiol Biotechnol 2018; 34:183. [PMID: 30478596 DOI: 10.1007/s11274-018-2567-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/23/2018] [Indexed: 12/16/2022]
Abstract
The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.
Collapse
Affiliation(s)
- Yong Min Kwon
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Kyung Woo Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Tae-Young Choi
- Department of Genetic Resources Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Sun Young Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- Department of Applied Research, National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon, Chungcheongnamdo, 33662, Republic of Korea.
| |
Collapse
|
23
|
Endo H, Hanawa Y, Araie H, Suzuki I, Shiraiwa Y. Overexpression of Tisochrysis lutea Akd1 identifies a key cold-induced alkenone desaturase enzyme. Sci Rep 2018; 8:11230. [PMID: 30046151 PMCID: PMC6060089 DOI: 10.1038/s41598-018-29482-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/12/2018] [Indexed: 12/28/2022] Open
Abstract
Alkenones are unusual long-chain neutral lipids that were first identified in oceanic sediments. Currently they are regarded as reliable palaeothermometers, since their unsaturation status changes depending on temperature. These molecules are synthesised by specific haptophyte algae and are stored in the lipid body as the main energy storage molecules. However, the molecular mechanisms that regulate the alkenone biosynthetic pathway, especially the low temperature-dependent desaturation reaction, have not been elucidated. Here, using an alkenone-producing haptophyte alga, Tisochrysis lutea, we show that the alkenone desaturation reaction is catalysed by a newly identified desaturase. We first isolated two candidate desaturase genes and found that one of these genes was drastically upregulated in response to cold stress. Gas chromatographic analysis revealed that the overexpression of this gene, named as Akd1 finally, increased the conversion of di-unsaturated C37-alkenone to tri-unsaturated molecule by alkenone desaturation, even at a high temperature when endogenous desaturation is efficiently suppressed. We anticipate that the Akd1 gene will be of great help for elucidating more detailed mechanisms of temperature response of alkenone desaturation, and identification of active species contributing alkenone production in metagenomic and/or metatranscriptomic studies in the field of oceanic biogeochemistry.
Collapse
Affiliation(s)
- Hirotoshi Endo
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yutaka Hanawa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Hiroya Araie
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.,College of Science and Engineering, Kanto Gakuin University, 1-50-1 Mutsuura-higashi, Kanazawa-ku, Yokohama, Kanagawa, 236-8501, Japan
| | - Iwane Suzuki
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshihiro Shiraiwa
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan.
| |
Collapse
|
24
|
Velmurugan N, Deka D. Transformation techniques for metabolic engineering of diatoms and haptophytes: current state and prospects. Appl Microbiol Biotechnol 2018; 102:4255-4267. [DOI: 10.1007/s00253-018-8925-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/08/2018] [Accepted: 03/10/2018] [Indexed: 12/11/2022]
|
25
|
Kaur B, Valach M, Peña-Diaz P, Moreira S, Keeling PJ, Burger G, Lukeš J, Faktorová D. Transformation of Diplonema papillatum, the type species of the highly diverse and abundant marine microeukaryotes Diplonemida (Euglenozoa). Environ Microbiol 2018; 20:1030-1040. [PMID: 29318727 DOI: 10.1111/1462-2920.14041] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 11/30/2022]
Abstract
Diplonema papillatum is the type species of diplonemids, which are among the most abundant and diverse heterotrophic microeukaryotes in the world's oceans. Diplonemids are also known for a unique form of post-transcriptional processing in mitochondria. However, the lack of reverse genetics methodologies in these protists has hampered elucidation of their cellular and molecular biology. Here we report a protocol for D. papillatum transformation. We have identified several antibiotics to which D. papillatum is sensitive and thus are suitable selectable markers, and focus in particular on puromycin. Constructs were designed encoding antibiotic resistance markers, fluorescent tags, and additional genomic sequences from D. papillatum to facilitate vector integration into chromosomes. We established conditions for effective electroporation, and demonstrate that electroporated constructs can be stably integrated in the D. papillatum nuclear genome. In D. papillatum transformants, the heterologous puromycin resistance gene is transcribed into mRNA and translated into protein, as determined by Southern hybridization, reverse transcription, and Western blot analyses. This is the first documented case of transformation in a euglenozoan protist outside the well-studied kinetoplastids, making D. papillatum a genetically tractable organism and potentially a model system for marine microeukaryotes.
Collapse
Affiliation(s)
- Binnypreet Kaur
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Matus Valach
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Priscila Peña-Diaz
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Sandrine Moreira
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Patrick J Keeling
- Botany Department, University of British Columbia, Vancouver, Canada
| | - Gertraud Burger
- Department of Biochemistry and Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Drahomíra Faktorová
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
26
|
Skeffington AW, Scheffel A. Exploiting algal mineralization for nanotechnology: bringing coccoliths to the fore. Curr Opin Biotechnol 2018; 49:57-63. [DOI: 10.1016/j.copbio.2017.07.013] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/21/2017] [Accepted: 07/25/2017] [Indexed: 12/17/2022]
|
27
|
Uchida H, Kato K, Suzuki K, Yokota A, Kawano S, Matsunaga S, Okada S. Algal Genes Encoding Enzymes for Photosynthesis and Hydrocarbon Biosynthesis as Candidates for Genetic Engineering. CYTOLOGIA 2018. [DOI: 10.1508/cytologia.83.7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hidenobu Uchida
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Ko Kato
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Kensaku Suzuki
- Tohoku Agricultural Research Center, National Agriculture and Food Research Organization
| | - Akiho Yokota
- Graduate School of Biological Sciences, Nara Institute of Science and Technology
| | - Shigeyuki Kawano
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo
| | - Shigeki Matsunaga
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Shigeru Okada
- Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
28
|
Fu W, Chaiboonchoe A, Khraiwesh B, Nelson DR, Al-Khairy D, Mystikou A, Alzahmi A, Salehi-Ashtiani K. Algal Cell Factories: Approaches, Applications, and Potentials. Mar Drugs 2016; 14:md14120225. [PMID: 27983586 PMCID: PMC5192462 DOI: 10.3390/md14120225] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/02/2016] [Accepted: 12/05/2016] [Indexed: 12/26/2022] Open
Abstract
With the advent of modern biotechnology, microorganisms from diverse lineages have been used to produce bio-based feedstocks and bioactive compounds. Many of these compounds are currently commodities of interest, in a variety of markets and their utility warrants investigation into improving their production through strain development. In this review, we address the issue of strain improvement in a group of organisms with strong potential to be productive “cell factories”: the photosynthetic microalgae. Microalgae are a diverse group of phytoplankton, involving polyphyletic lineage such as green algae and diatoms that are commonly used in the industry. The photosynthetic microalgae have been under intense investigation recently for their ability to produce commercial compounds using only light, CO2, and basic nutrients. However, their strain improvement is still a relatively recent area of work that is under development. Importantly, it is only through appropriate engineering methods that we may see the full biotechnological potential of microalgae come to fruition. Thus, in this review, we address past and present endeavors towards the aim of creating productive algal cell factories and describe possible advantageous future directions for the field.
Collapse
Affiliation(s)
- Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Amphun Chaiboonchoe
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Basel Khraiwesh
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - David R Nelson
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Amnah Alzahmi
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
- Center for Genomics and Systems Biology (CGSB), New York University Abu Dhabi, P.O. Box 129188 Saadiyat Island, Abu Dhabi, UAE.
| |
Collapse
|