1
|
Vresk L, Flanagan M, Daniel AI, Potani I, Bourdon C, Spiegel-Feld C, Thind MK, Farooqui A, Ling C, Miraglia E, Hu G, Wen B, Zlotkin S, James P, McGrath M, Bandsma RHJ. Micronutrient status in children aged 6-59 months with severe wasting and/or nutritional edema: implications for nutritional rehabilitation formulations. Nutr Rev 2025; 83:112-145. [PMID: 38350491 PMCID: PMC11632376 DOI: 10.1093/nutrit/nuad165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Abstract
Undernutrition remains a global struggle and is associated with almost 45% of deaths in children younger than 5 years. Despite advances in management of severe wasting (though less so for nutritional edema), full and sustained recovery remains elusive. Children with severe wasting and/or nutritional edema (also commonly referred to as severe acute malnutrition and part of the umbrella term "severe malnutrition") continue to have a high mortality rate. This suggests a likely multifactorial etiology that may include micronutrient deficiency. Micronutrients are currently provided in therapeutic foods at levels based on expert opinion, with few supportive studies of high quality having been conducted. This narrative review looks at the knowledge base on micronutrient deficiencies in children aged 6-59 months who have severe wasting and/or nutritional edema, in addition to highlighting areas where further research is warranted (See "Future Directions" section).
Collapse
Affiliation(s)
- Laura Vresk
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mary Flanagan
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Allison I Daniel
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Isabel Potani
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Celine Bourdon
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Carolyn Spiegel-Feld
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Mehakpreet K Thind
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Amber Farooqui
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Catriona Ling
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Emiliano Miraglia
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Guanlan Hu
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Bijun Wen
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stanley Zlotkin
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Philip James
- Emergency Nutrition Network, Oxford, United Kingdom
| | | | - Robert H J Bandsma
- Translational Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Nutritional Sciences, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Kruger K, Myeonghyun Y, van der Wielen N, Kok DE, Hooiveld GJ, Keshtkar S, Diepeveen-de Bruin M, Balvers MGJ, Grootte-Bromhaar M, Mudde K, Ly NTHN, Vermeiren Y, de Groot LCPGM, de Vos RCH, Gonzales GB, Steegenga WT, van Trijp MPH. Evaluation of inter- and intra-variability in gut health markers in healthy adults using an optimised faecal sampling and processing method. Sci Rep 2024; 14:24580. [PMID: 39427011 PMCID: PMC11490648 DOI: 10.1038/s41598-024-75477-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
Despite advances in gut health research, the variability of important gut markers within individuals over time remains underexplored. We investigated the intra-individual variation of various faecal gut health markers using an optimised processing protocol aimed at reducing variability. Faecal samples from ten healthy adults over three consecutive days demonstrated marker-specific intra-individual coefficients of variation (CV%), namely: stool consistency (16.5%), water content (5.7%), pH (3.9%), total SCFAs (17.2%), total BCFAs (27.4%), total bacteria and fungi copies (40.6% and 66.7%), calprotectin and myeloperoxidase (63.8% and 106.5%), and untargeted metabolites (on average 40%). For thirteen microbiota genera, including Bifidobacterium and Akkermansia, variability exceeded 30%, whereas microbiota diversity was less variable (Phylogenetic Diversity 3.3%, Inverse Simpson 17.2%). Mill-homogenisation of frozen faeces significantly reduced the replicates CV% for total SCFAs (20.4-7.5%) and total BCFAs (15.9-7.8%), and untargeted metabolites compared to faecal hammering only, without altering mean concentrations. Our results show the potential need for repeated sampling to accurately represent specific gut health markers. We also demonstrated the effectiveness of optimised preprocessing of human stool samples in reducing overall analytical variability.
Collapse
Affiliation(s)
- Kirsten Kruger
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Yoou Myeonghyun
- Clinical Microbiomics, Copenhagen, Denmark
- Department of Health Technology, Technical University of Denmark, Lyngby, Denmark
| | - Nicky van der Wielen
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Dieuwertje E Kok
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Guido J Hooiveld
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Shohreh Keshtkar
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Michiel G J Balvers
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Mechteld Grootte-Bromhaar
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Karin Mudde
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Nhien T H N Ly
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Yannick Vermeiren
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Lisette C P G M de Groot
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Ric C H de Vos
- Bioscience, Wageningen Plant Research, Wageningen University & Research, Wageningen, The Netherlands
| | - Gerard Bryan Gonzales
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
- Department of Public Health and Primary Care, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Wilma T Steegenga
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands
| | - Mara P H van Trijp
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
3
|
Malat I, Drancourt M, Grine G. Methanobrevibacter smithii cell variants in human physiology and pathology: A review. Heliyon 2024; 10:e36742. [PMID: 39347381 PMCID: PMC11437934 DOI: 10.1016/j.heliyon.2024.e36742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 10/01/2024] Open
Abstract
Methanobrevibacter smithii (M. smithii), initially isolated from human feces, has been recognised as a distinct taxon within the Archaea domain following comprehensive phenotypic, genetic, and genomic analyses confirming its uniqueness among methanogens. Its diversity, encompassing 15 genotypes, mirrors that of biotic and host-associated ecosystems in which M. smithii plays a crucial role in detoxifying hydrogen from bacterial fermentations, converting it into mechanically expelled gaseous methane. In microbiota in contact with host epithelial mucosae, M. smithii centres metabolism-driven microbial networks with Bacteroides, Prevotella, Ruminococcus, Veillonella, Enterococcus, Escherichia, Enterobacter, Klebsiella, whereas symbiotic association with the nanoarchaea Candidatus Nanopusillus phoceensis determines small and large cell variants of M. smithii. The former translocate with bacteria to induce detectable inflammatory and serological responses and are co-cultured from blood, urine, and tissular abscesses with bacteria, prototyping M. smithii as a model organism for pathogenicity by association. The sources, mechanisms and dynamics of in utero and lifespan M. smithii acquisition, its diversity, and its susceptibility to molecules of environmental, veterinary, and medical interest still have to be deeply investigated, as only four strains of M. smithii are available in microbial collections, despite the pivotal role this neglected microorganism plays in microbiota physiology and pathologies.
Collapse
Affiliation(s)
- Ihab Malat
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Michel Drancourt
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| | - Ghiles Grine
- IHU Méditerranée Infection, Marseille, France
- Aix-Marseille-Université, MEPHI, IHU Méditerranée Infection, France
| |
Collapse
|
4
|
Kim YI, Kim SY, Lee S, Kim M, Kim WJ. Investigation of gut microbiota diversity according to infectious agent in pediatric infectious acute gastroenteritis in a Korean university hospital. Pediatr Neonatol 2024; 65:476-481. [PMID: 38471992 DOI: 10.1016/j.pedneo.2024.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Acute gastroenteritis (AGE) is a common cause of pediatric morbidity and mortality worldwide. AGE can cause an imbalance in the intestinal microbiota. This study aimed to investigate the diversity of the gut microbiome in Korean children hospitalized for infectious AGE at a university hospital. METHODS A total of 23 stool samples from patients aged 5 months to 11 years with AGE were analyzed. Thirteen convalescent stool samples were collected 1 month after discharge. Multiplex polymerase chain reaction (PCR) for the five viruses and 16 bacteria-specific AGE pathogens (PowerChek Multiplex Real time PCR Kit, Seoul, Korea), and 16s rRNA sequencing (Illumina MiSeq Sequencing system, Illumina, USA) were performed. RESULTS According to the results of multiplex PCR for causative pathogens, the microbiome taxonomic profile (MTP) of the gut microbiome in three groups of AGE, norovirus AGE (n = 11), Campylobacter AGE (n = 7) and Salmonella AGE (n = 5) was compared. The phylum Actinobacteria was significantly more abundant in the norovirus AGE (P = 0.011), whereas the phylum Proteobacteria was significantly more abundant in Salmonella AGE (P = 0.012). Alpha diversity, which indicates species richness and diversity, showed no statistical differences. However, beta diversity, representing the similarity in MTP between norovirus, Campylobacter, and Salmonella AGE, was significantly different (P = 0.007). In convalescence, compared with their corresponding AGE samples, the phylum Firmicutes; and the lower taxa Christensenellaceae (P = 0.0152) and Lachnospiraceae (P = 0.0327) were significantly increased. CONCLUSIONS In pediatric AGE, the type of infectious agent can affect the diversity and dominance of gut microbiota in pediatric patients. Furthermore, healthy gut bacteria increased during the period of 1 month after infection, allowing a return to a healthy state without causing long-term dysbiosis.
Collapse
Affiliation(s)
- You Ie Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sang Yong Kim
- Department of Pediatrics, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seungok Lee
- Department of Laboratory Medicine, Incheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| | - Myungshin Kim
- Department of Laboratory Medicine, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Woo Jin Kim
- EONE Laboratories, Incheon, Republic of Korea
| |
Collapse
|
5
|
Schemczssen-Graeff Z, Silva CR, de Freitas PNN, Constantin PP, Pileggi SAV, Olchanheski LR, Pileggi M. Probiotics as a strategy for addressing helminth infections in low-income countries: Working smarter rather than richer. Biochem Pharmacol 2024; 226:116363. [PMID: 38871336 DOI: 10.1016/j.bcp.2024.116363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Helminth infections, which affect approximately 1.5 billion individuals worldwide (mainly children), are common in low- and middle-income tropical countries and can lead to various diseases. One crucial factor affecting the occurrence of these diseases is the reduced diversity of the gut microbiome due to antibiotic use. This reduced diversity compromises immune health in hosts and alters host gene expression through epigenetic mechanisms. Helminth infections may produce complex biochemical signatures that could serve as therapeutic targets. Such therapies include next-generation probiotics, live biotherapeutic products, and biochemical drug approaches. Probiotics can bind ferric hydroxide, reducing the iron that is available to opportunistic microorganisms. They also produce short-chain fatty acids associated with immune response modulation, oral tolerance facilitation, and inflammation reduction. In this review, we examine the potential link between these effects and epigenetic changes in immune response-related genes by analyzing methyltransferase-related genes within probiotic strains discussed in the literature. The identified genes were only correlated with methylation in bacterial genes. Various metabolic interactions among hosts, helminth parasites, and intestinal microbiomes can impact the immune system, potentially aiding or hindering worm expulsion through chemical signaling. Implementing a comprehensive strategy using probiotics may reduce the impact of drug-resistant helminth strains.
Collapse
Affiliation(s)
- Zelinda Schemczssen-Graeff
- Comparative Immunology Laboratory, Department of Microbiology, Parasitology, and Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Caroline Rosa Silva
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | | | - Paola Pereira Constantin
- Department of Biotechnology, Genetics and Cell Biology, State University of Maringá, Maringá, Brazil
| | - Sônia Alvim Veiga Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Luiz Ricardo Olchanheski
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil
| | - Marcos Pileggi
- Environmental Microbiology Laboratory, Life Sciences and Health Institute, Structural and Molecular Biology, and Genetics Department, Ponta Grossa State University, Ponta Grossa, Brazil.
| |
Collapse
|
6
|
Zoghi S, Sadeghpour Heravi F, Nikniaz Z, Shirmohamadi M, Moaddab SY, Ebrahimzadeh Leylabadlo H. Gut microbiota and childhood malnutrition: Understanding the link and exploring therapeutic interventions. Eng Life Sci 2024; 24:2300070. [PMID: 38708416 PMCID: PMC11065333 DOI: 10.1002/elsc.202300070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/12/2023] [Accepted: 09/22/2023] [Indexed: 05/07/2024] Open
Abstract
Childhood malnutrition is a metabolic condition that affects the physical and mental well-being of children and leads to resultant disorders in maturity. The development of childhood malnutrition is influenced by a number of physiological and environmental factors including metabolic stress, infections, diet, genetic variables, and gut microbiota. The imbalanced gut microbiota is one of the main environmental risk factors that significantly influence host physiology and childhood malnutrition progression. In this review, we have evaluated the gut microbiota association with undernutrition and overnutrition in children, and then the quantitative and qualitative significance of gut dysbiosis in order to reveal the impact of gut microbiota modification using probiotics, prebiotics, synbiotics, postbiotics, fecal microbiota transplantation, and engineering biology methods as new therapeutic challenges in the management of disturbed energy homeostasis. Understanding the host-microbiota interaction and the remote regulation of other organs and pathways by gut microbiota can improve the effectiveness of new therapeutic approaches and mitigate the negative consequences of childhood malnutrition.
Collapse
Affiliation(s)
- Sevda Zoghi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | | - Zeinab Nikniaz
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Masoud Shirmohamadi
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | - Seyed Yaghoub Moaddab
- Liver and Gastrointestinal Diseases Research CenterTabriz University of Medical SciencesTabrizIran
| | | |
Collapse
|
7
|
Shennon I, Wilson BC, Behling AH, Portlock T, Haque R, Forrester T, Nelson CA, O'Sullivan JM. The infant gut microbiome and cognitive development in malnutrition. Clin Nutr 2024; 43:1181-1189. [PMID: 38608404 DOI: 10.1016/j.clnu.2024.03.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 03/11/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024]
Abstract
Malnutrition affects 195 million children under the age of five worldwide with long term effects that include impaired cognitive development. Brain development occurs rapidly over the first 36 months of life. Whilst seemingly independent, changes to the brain and gut microbiome are linked by metabolites, hormones, and neurotransmitters as part of the gut-brain axis. In the context of severe malnutrition, the composition of the gut microbiome and the repertoire of biochemicals exchanged via the gut-brain axis vary when compared to healthy individuals. These effects are primarily due to the recognized interacting determinants, macro- and micronutrient deficiencies, infection, infestations and toxins related to poor sanitation, and a dearth of psycho-social stimulation. The standard of care for the treatment of severe acute malnutrition is focused on nutritional repletion and weight restoration through the provision of macro- and micronutrients, the latter usually in excess of recommended dietary allowances (RDA). However, existing formulations and supplements have not been designed to specifically address key recovery requirements for brain and gut microbiome development. Animal model studies indicate that treatments targeting the gut microbiome could improve brain development. Despite this, research on humans targeting the gut microbiome with the aim of restoring brain functionality are scarce. We conclude that there is a need for assessment of cognition and the use of various tools that permit visualization of the brain anatomy and function (e.g., Magnetic resonance imaging (MRI), functional near-infrared spectroscopy (fNIRS), electroencephalogram (EEG)) to understand how interventions targeting the gut microbiome impact brain development.
Collapse
Affiliation(s)
- Inoli Shennon
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Brooke C Wilson
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Anna H Behling
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Theo Portlock
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand
| | - Rashidul Haque
- Infectious Disease Division, International Centre for Diarrheal Disease Research, Bangladesh
| | - Terrence Forrester
- UWI Solutions for Developing Countries, The University of the West Indies, Mona, Kingston 7, Jamaica
| | - Charles A Nelson
- Department of Pediatrics, Division of Developmental Medicine, Boston Children's Hospital, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA; Harvard Graduate School of Education, Cambridge, MA, USA
| | - Justin M O'Sullivan
- The Liggins Institute, The University of Auckland, Auckland 1023, New Zealand; The Maurice Wilkins Centre, The University of Auckland, Auckland 1010, New Zealand; MRC Lifecourse Epidemiology Unit, University of Southampton, University Road, Southampton SO17 1BJ, UK; Singapore Institute for Clinical Sciences, Agency for Science Technology and Research, Singapore.
| |
Collapse
|
8
|
Huangfu W, Cao S, Li S, Zhang S, Liu M, Liu B, Zhu X, Cui Y, Wang Z, Zhao J, Shi Y. In vitro and in vivo fermentation models to study the function of dietary fiber in pig nutrition. Appl Microbiol Biotechnol 2024; 108:314. [PMID: 38683435 PMCID: PMC11058960 DOI: 10.1007/s00253-024-13148-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024]
Abstract
The importance of dietary fiber (DF) in animal diets is increasing with the advancement of nutritional research. DF is fermented by gut microbiota to produce metabolites, which are important in improving intestinal health. This review is a systematic review of DF in pig nutrition using in vitro and in vivo models. The fermentation characteristics of DF and the metabolic mechanisms of its metabolites were summarized in an in vitro model, and it was pointed out that SCFAs and gases are the important metabolites connecting DF, gut microbiota, and intestinal health, and they play a key role in intestinal health. At the same time, some information about host-microbe interactions could have been improved through traditional animal in vivo models, and the most direct feedback on nutrients was generated, confirming the beneficial effects of DF on sow reproductive performance, piglet intestinal health, and growing pork quality. Finally, the advantages and disadvantages of different fermentation models were compared. In future studies, it is necessary to flexibly combine in vivo and in vitro fermentation models to profoundly investigate the mechanism of DF on the organism in order to promote the development of precision nutrition tools and to provide a scientific basis for the in-depth and rational utilization of DF in animal husbandry. KEY POINTS: • The fermentation characteristics of dietary fiber in vitro models were reviewed. • Metabolic pathways of metabolites and their roles in the intestine were reviewed. • The role of dietary fiber in pigs at different stages was reviewed.
Collapse
Affiliation(s)
- Weikang Huangfu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shixi Cao
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shouren Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Shuhang Zhang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Mengqi Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
| | - Boshuai Liu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Xiaoyan Zhu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Yalei Cui
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Zhichang Wang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, USA
| | - Yinghua Shi
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, No.15 Longzihu University Area, Zhengdong New District, Zhengzhou, 450046, China.
- Henan Key Laboratory of Innovation and Utilization of Grassland Resources, Zhengzhou, China.
- Henan Forage Engineering Technology Research Center, Zhengzhou, 450002, Henan, China.
| |
Collapse
|
9
|
Cho DE, Hong JP, Kim Y, Sim JY, Kim HS, Kim SR, Lee B, Cho HS, Cho IH, Shin S, Yeom M, Kwon SK, Lee IS, Park H, Kim K, Hahm DH. Role of gut-derived bacterial lipopolysaccharide and peripheral TLR4 in immobilization stress-induced itch aggravation in a mouse model of atopic dermatitis. Sci Rep 2024; 14:6263. [PMID: 38491103 PMCID: PMC10942979 DOI: 10.1038/s41598-024-56936-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/12/2024] [Indexed: 03/18/2024] Open
Abstract
Psychological stress and intestinal leakage are key factors in atopic dermatitis (AD) recurrence and exacerbation. Here, we demonstrate the mechanism underlying bacterial translocation across intestinal epithelial barrier damaged due to stress and further aggravation of trimellitic anhydride (TMA)-induced itch, which remain unclear, in AD mice. Immobilization (IMO) stress exacerbated scratching bouts and colon histological damage, and increased serum corticosterone and lipopolysaccharide (LPS). Orally administered fluorescein isothiocyanate (FITC)-dextran and surgically injected (into the colon) Cy5.5-conjugated LPS were detected in the serum and skin after IMO stress, respectively. The relative abundance of aerobic or facultative anaerobic bacteria was increased in the colon mucus layer, and Lactobacillus murinus, E. coli, Staphylococcus nepalensis, and several strains of Bacillus sp. were isolated from the spleens and mesenteric lymph nodes. Oral antibiotics or intestinal permeability blockers, such as lubiprostone (Lu), 2,4,6-triaminopyrimidine (TAP) and ML-7, inhibited IMO stress-associated itch; however, it was reinduced through intradermal or i.p. injection of LPS without IMO stress. I.p. injection of TAK-242 (resatorvid), a TLR4 inhibitor, abrogated IMO stress-associated itch, which was also confirmed in TLR4-KO mice. IMO stress alone did not cause itch in naïve mice. IMO stress-induced itch aggravation in TMA-treated AD mice might be attributed to the translocation of gut-derived bacterial cells and LPS, which activates peripheral TLR4 signaling.
Collapse
Affiliation(s)
- Da-Eun Cho
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Joon-Pyo Hong
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Yoongeun Kim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ju Yeon Sim
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Heenam Stanley Kim
- Division of Biosystems and Biomedical Sciences, College of Health Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Song-Rae Kim
- Chuncheon Center, Korea Basic Science Institute (KBSI), Chuncheon, 24341, Republic of Korea
| | - Bombi Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hyo-Sung Cho
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Ik-Hyun Cho
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Sooan Shin
- ACCURIEBIO Co., IRIS Lab., 6th Floor, Sangwon 12-gil 34, Seongdong-gu, Seoul, 04790, Republic of Korea
| | - Mijung Yeom
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Soon-Kyeong Kwon
- Division of Applied Life Science (Brain Korea 21 PLUS), Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - In-Seon Lee
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Hijoon Park
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea
- Department of Korean Medical Science, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Kyuseok Kim
- Department of Ophthalmology, Otorhinolaryngology and Dermatology of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea
| | - Dae-Hyun Hahm
- Department of Biomedical Sciences, Graduate School, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, 02447, Republic of Korea.
- Department of Physiology, College of Medicine, Kyung Hee University, Seoul, 02447, Republic of Korea.
| |
Collapse
|
10
|
Fu ZL, Yang Y, Ma L, Malmuthuge N, Guan LL, Bu DP. Dynamics of oxidative stress and immune responses in neonatal calves during diarrhea. J Dairy Sci 2024; 107:1286-1298. [PMID: 37776998 DOI: 10.3168/jds.2023-23630] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
Oxidative stress is the imbalanced redox status between oxidant production and their scavengers leading to intestinal physiological dysfunction. However, the role of systemic and local oxidative status during neonatal calf diarrhea is not known. This study assessed systemic (serum) and local (fecal) oxidative status when calves either naturally developed diarrhea or naturally recovered. Healthy calves were enrolled in the study at d 18 of age, and their health status was monitored from the enrollment. Based on their enteric health status on d 21 and 28, calves were grouped as continuous diarrhea from d 21 to 28 (n = 14), diarrhea at d 21 but recovered at d 28 (DH group, n = 19), healthy at d 21 but developed diarrhea at d 28 (HD group, n = 15), and healthy throughout the study (HH group, n = 16). Serum and fecal samples were collected at d 21 and 28 from all calves in the morning 2 h after feeding. Dynamics of oxidative stress indicators including reactive oxygen species (ROS), malondialdehyde (MDA), H2O2, 8-hydroxy-2'-deoxyguanosine (8-OHDG), glutathione peroxidase, superoxide dismutase, catalase (CAT), and total antioxidant capacity and inflammatory indicators TNF-α, IL-1β, IL-4, IL-6, IL-10, and IFN-γ were evaluated using serum samples. In addition, fecal oxidative stress indicators ROS and MDA were measured. Serum ROS, MDA, 8-OHDG, as well as fecal ROS and MDA, were higher, whereas serum CAT and H2O2 were lower in diarrheic calves than those of healthy calves. Serum ROS, MDA, and 8OHDG and fecal ROS and MDA increased in the HD group from d 21 to 28 as they developed diarrhea. In contrast, all these oxidative stress markers decreased in the DH group from d 21 to 28 as they recovered. However, serum H2O2 had an opposite changing trend, which became lower in the HD group and higher in the DH group at d 28. In conclusion, both systemic and local oxidative stress markers and cytokine profiles altered as calves moved from being healthy to having diarrhea or vice versa. Serum ROS, MDA, and 8-OHDG can be used to develop biomarkers to screen calves prone to enteric infections during the preweaning period.
Collapse
Affiliation(s)
- Z L Fu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada
| | - Y Yang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China; School of Agriculture and Food Science, University College Dublin, Belfield, Dublin 4, A94 R704, Ireland
| | - L Ma
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - N Malmuthuge
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - L L Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, T6G 2P5, Canada; Faculty of Land and Food Systems, the University of British Columbia, Vancouver, BC, V6T 1Z4 Canada.
| | - D P Bu
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
11
|
Ruiz-Valdepeñas Montiel V, Vargas E, Ben Hassine A, Simon I, Duvvuri A, Chang AY, Nandhakumar P, Bulbarello A, Düsterloh A, Mak T, Wang J. Decentralized ORP Measurements for Gut Redox Status Monitoring: Toward Personalized Gut Microbiota Balance. Anal Chem 2024; 96:480-487. [PMID: 38150379 DOI: 10.1021/acs.analchem.3c04570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Gut microbiome targeting has emerged as a new generation of personalized medicine and a potential wellness and disease driver. Specifically, the gut redox balance plays a key role in shaping the gut microbiota and its link with the host, immune system, and disease evolution. In this sense, precise and personalized nutrition has proven synergy and capability to modulate the gut microbiome environment through the formulation of dietary interventions, such as vitamin support. Accordingly, there are urgent demands for simple and effective analytical platforms for understanding the relationship between the tailored vitamin administration and the gut microbiota balance by rapid noninvasive on-the-spot oxidation/reduction potential monitoring for frequent and close surveillance of the gut redox status and targeting by personalized nutrition interventions. Herein, we present a disposable potentiometric sensor chip and a homemade multiwell potentiometric array to address the interplay of vitamin levels with the oxidation/reduction potential in human feces and saliva. The potentiometric ORP sensing platforms have been successfully validated and scaled up for the setup of a multiapplication prototype for cross-talk-free simple screening of many specimens. The interpersonal variability of the gut microbiota environment illustrates the potential of feces and saliva samples for noninvasive, frequent, and decentralized monitoring of the gut redox status to support timely human microbiota surveillance and guide precise dietary intervention toward restoring and promoting personalized gut redox balance.
Collapse
Affiliation(s)
- Víctor Ruiz-Valdepeñas Montiel
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
- Department of Analytical Chemistry, Chemistry Faculty, University Complutense of Madrid, E-28040 Madrid, Spain
| | - Eva Vargas
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Amira Ben Hassine
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ignasi Simon
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Andres Duvvuri
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - An-Yi Chang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Ponnusamy Nandhakumar
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | | | | | - Tim Mak
- DSM-Firmenich AG, Kaiseraugst 4303, Switzerland
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
12
|
Xu R, Feng N, Li Q, Wang H, Li L, Feng X, Su Y, Zhu W. Pectin supplementation accelerates post-antibiotic gut microbiome reconstitution orchestrated with reduced gut redox potential. THE ISME JOURNAL 2024; 18:wrae101. [PMID: 38857378 PMCID: PMC11203915 DOI: 10.1093/ismejo/wrae101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 05/31/2024] [Accepted: 06/09/2024] [Indexed: 06/12/2024]
Abstract
Antibiotic-induced gut dysbiosis (AID) presents a big challenge to host health, and the recovery from this dysbiosis is often slow and incomplete. AID is typically characterized by elevation in redox potential, Enterobacteriaceae load, and aerobic metabolism. In our previous study, a pectin-enriched diet was demonstrated to decrease fecal redox potential and modulate the gut microbiome. Therefore, we propose that pectin supplementation may modulate gut redox potential and favor post-antibiotic gut microbiome reconstitution from dysbiosis. In the present study, rats with AIDwere used to investigate the effects of pectin supplementation on post-antibiotic gut microbiome reconstitution from dysbiosis. The results showed that pectin supplementation accelerated post-antibiotic reconstitution of gut microbiome composition and function and led to enhancement of anabolic reductive metabolism and weakening of catabolic oxidative pathways. These results were corroborated by the measurement of redox potential, findings suggesting that pectin favors post-antibiotic recovery from dysbiosis. Pectin-modulated fecal microbiota transplantation accelerated the decrease in antibiotics-elevated redox potential and Enterobacteriaceae load similarly to pectin supplementation. Moreover, both pectin supplementation and Pectin-modulated fecal microbiota transplantation enriched anaerobic members, primarily from Lachnospiraceae orchestration with enhancement of microbial reductive metabolism in post-antibiotic rats. These findings suggested that pectin supplementation accelerated post-antibiotic gut microbiome reconstitution orchestrated with reduced gut redox potential and that the effect of pectin on redox potential was mediated by remodeling of the intestinal microbiota.
Collapse
Affiliation(s)
- Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Ni Feng
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Lian Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Feng
- Research Institute of General Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing 210095, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
13
|
Kim M, Kim WJ, Park SJ. Analyzing Gut Microbial Community in Varroa destructor-Infested Western Honeybee ( Apis mellifera). J Microbiol Biotechnol 2023; 33:1495-1505. [PMID: 37482801 DOI: 10.4014/jmb.2306.06040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/25/2023]
Abstract
The western honeybee Apis mellifera L., a vital crop pollinator and producer of honey and royal jelly, faces numerous threats including diseases, chemicals, and mite infestations, causing widespread concern. While extensive research has explored the link between gut microbiota and their hosts. However, the impact of Varroa destructor infestation remains understudied. In this study, we employed massive parallel amplicon sequencing assays to examine the diversity and structure of gut microbial communities in adult bee groups, comparing healthy (NG) and Varroa-infested (VG) samples. Additionally, we analyzed Varroa-infested hives to assess the whole body of larvae. Our results indicated a notable prevalence of the genus Bombella in larvae and the genera Gillamella, unidentified Lactobacillaceae, and Snodgrassella in adult bees. However, no statistically significant difference was observed between NG and VG. Furthermore, our PICRUSt analysis demonstrated distinct KEGG classification patterns between larval and adult bee groups, with larvae displaying a higher abundance of genes involved in cofactor and vitamin production. Notably, despite the complex nature of the honeybee bacterial community, methanogens were found to be present in low abundance in the honeybee microbiota.
Collapse
Affiliation(s)
- Minji Kim
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| | - Woo Jae Kim
- Center for Life Science (HCLS), Harbin Institute of Technology, No.92 West Dazhi Street, Nangang District, Harbin City, Hei Longjiang Province, P.R. China
| | - Soo-Je Park
- Department of Biology, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
14
|
Homolak J, Babic Perhoc A, Knezovic A, Osmanovic Barilar J, Virag D, Salkovic-Petrisic M. Exploratory Study of Gastrointestinal Redox Biomarkers in the Presymptomatic and Symptomatic Tg2576 Mouse Model of Familial Alzheimer's Disease: Phenotypic Correlates and Effects of Chronic Oral d-Galactose. ACS Chem Neurosci 2023; 14:4013-4025. [PMID: 37932005 PMCID: PMC10655039 DOI: 10.1021/acschemneuro.3c00495] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
The gut might play an important role in the etiopathogenesis of Alzheimer's disease (AD) as gastrointestinal alterations often precede the development of neuropathological changes in the brain and correlate with disease progression in animal models. The gut has an immense capacity to generate free radicals whose role in the etiopathogenesis of AD is well-known; however, it remains to be clarified whether gastrointestinal redox homeostasis is associated with the development of AD. The aim was to (i) examine gastrointestinal redox homeostasis in the presymptomatic and symptomatic Tg2576 mouse model of AD; (ii) investigate the effects of oral d-galactose previously shown to alleviate cognitive deficits and metabolic changes in animal models of AD and reduce gastrointestinal oxidative stress; and (iii) investigate the association between gastrointestinal redox biomarkers and behavioral alterations in Tg2576 mice. In the presymptomatic stage, Tg2576 mice displayed an increased gastrointestinal electrophilic tone, characterized by higher lipid peroxidation and elevated Mn/Fe-SOD activity. In the symptomatic stage, these alterations are rectified, but the total antioxidant capacity is decreased. Chronic oral d-galactose increased the antioxidant capacity and reduced lipid peroxidation in the Tg2576 but had the opposite effects in the wild-type animals. The total antioxidant capacity of the gastrointestinal tract was associated with greater spatial memory. Gut redox homeostasis might be involved in the development and progression of AD pathophysiology and should be further explored in this context.
Collapse
Affiliation(s)
- Jan Homolak
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
- Interfaculty
Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen 72076, Germany
- Cluster
of Excellence “Controlling Microbes to Fight Infections”, University of Tübingen, Tübingen 72076, Germany
| | - Ana Babic Perhoc
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Ana Knezovic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Jelena Osmanovic Barilar
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Davor Virag
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| | - Melita Salkovic-Petrisic
- Department
of Pharmacology, University of Zagreb School
of Medicine, Zagreb 10000, Croatia
- Croatian
Institute for Brain Research, University of Zagreb School of Medicine, Zagreb 10000, Croatia
| |
Collapse
|
15
|
Mathlouthi NEH, Belguith I, Yengui M, Oumarou Hama H, Lagier JC, Ammar Keskes L, Grine G, Gdoura R. The Archaeome's Role in Colorectal Cancer: Unveiling the DPANN Group and Investigating Archaeal Functional Signatures. Microorganisms 2023; 11:2742. [PMID: 38004753 PMCID: PMC10673094 DOI: 10.3390/microorganisms11112742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 11/26/2023] Open
Abstract
BACKGROUND AND AIMS Gut microbial imbalances are linked to colorectal cancer (CRC), but archaea's role remains underexplored. Here, using previously published metagenomic data from different populations including Austria, Germany, Italy, Japan, China, and India, we performed bioinformatic and statistical analysis to identify archaeal taxonomic and functional signatures related to CRC. METHODS We analyzed published fecal metagenomic data from 390 subjects, comparing the archaeomes of CRC and healthy individuals. We conducted a biostatistical analysis to investigate the relationship between Candidatus Mancarchaeum acidiphilum (DPANN superphylum) and other archaeal species associated with CRC. Using the Prokka tool, we annotated the data focusing on archaeal genes, subsequently linking them to CRC and mapping them against UniprotKB and GO databases for specific archaeal gene functions. RESULTS Our analysis identified enrichment of methanogenic archaea in healthy subjects, with an exception for Methanobrevibacter smithii, which correlated with CRC. Notably, CRC showed a strong association with archaeal species, particularly Natrinema sp. J7-2, Ferroglobus placidus, and Candidatus Mancarchaeum acidiphilum. Furthermore, the DPANN archaeon exhibited a significant correlation with other CRC-associated archaea (p < 0.001). Functionally, we found a marked association between MvhB-type polyferredoxin and colorectal cancer. We also highlighted the association of archaeal proteins involved in the biosynthesis of leucine and the galactose metabolism process with the healthy phenotype. CONCLUSIONS The archaeomes of CRC patients show identifiable alterations, including a decline in methanogens and an increase in Halobacteria species. MvhB-type polyferredoxin, linked with CRC and species like Candidatus Mancarchaeum acidiphilum, Natrinema sp. J7-2, and Ferroglobus placidus emerge as potential archaeal biomarkers. Archaeal proteins may also offer gut protection, underscoring archaea's role in CRC dynamics.
Collapse
Affiliation(s)
- Nour El Houda Mathlouthi
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Imen Belguith
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Mariem Yengui
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| | - Hamadou Oumarou Hama
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Jean-Christophe Lagier
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
| | - Leila Ammar Keskes
- Laboratoire de Recherche de Génétique Moléculaire Humaine, Faculté de Médecine de Sfax, University of Sfax, Avenue Majida BOULILA, Sfax 3029, Tunisia; (I.B.); (L.A.K.)
| | - Ghiles Grine
- IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 19-21, Bd. Jean Moulin, 13005 Marseille, France; (H.O.H.); (J.-C.L.); (G.G.)
- Institut de Recherche pour le Développement (IRD), Aix-Marseille Université, IHU Méditerranée Infection, l’unité de Recherche Microbes, Evolution, Phylogénie et Infection (MEPHI), 13005 Marseille, France
| | - Radhouane Gdoura
- Laboratoire de Recherche Toxicologie Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, University of Sfax, Sfax 3000, Tunisia; (N.E.H.M.); (M.Y.)
| |
Collapse
|
16
|
Sang X, Li S, Guo R, Yan Q, Liu C, Zhang Y, Lv Q, Wu L, Ma J, You W, Feng L, Sun W. Dynamics and ecological reassembly of the human gut microbiome and the host metabolome in response to prolonged fasting. Front Microbiol 2023; 14:1265425. [PMID: 37854337 PMCID: PMC10579591 DOI: 10.3389/fmicb.2023.1265425] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/13/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Prolonged fasting is an intervention approach with potential benefits for individuals with obesity or metabolic disorders. Changes in gut microbiota during and after fasting may also have significant effects on the human body. Methods Here we conducted a 7-days medically supervised water-only fasting for 46 obese volunteers and characterized their gut microbiota based on whole-metagenome sequencing of feces at five timepoints. Results Substantial changes in the gut microbial diversity and composition were observed during fasting, with rapid restoration after fasting. The ecological pattern of the microbiota was also reassembled during fasting, reflecting the reduced metabolic capacity of diet-derived carbohydrates, while other metabolic abilities such as degradation of glycoproteins, amino acids, lipids, and organic acid metabolism, were enhanced. We identified a group of species that responded significantly to fasting, including 130 fasting-resistant (consisting of a variety of members of Bacteroidetes, Proteobacteria, and Fusobacteria) and 140 fasting-sensitive bacteria (mainly consisting of Firmicutes members). Functional comparison of the fasting-responded bacteria untangled the associations of taxon-specific functions (e.g., pentose phosphate pathway modules, glycosaminoglycan degradation, and folate biosynthesis) with fasting. Furthermore, we found that the serum and urine metabolomes of individuals were also substantially changed across the fasting procedure, and particularly, these changes were largely affected by the fasting-responded bacteria in the gut microbiota. Discussion Overall, our findings delineated the patterns of gut microbiota alterations under prolonged fasting, which will boost future mechanistic and clinical intervention studies.
Collapse
Affiliation(s)
- Xiaopu Sang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | | | | | - Qiulong Yan
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Changxi Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Zhang
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Qingbo Lv
- Department of Microbiology, College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Lili Wu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei You
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Ling Feng
- Second Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin, China
| | - Wen Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Health Cultivation of the Ministry of Education, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Health Cultivation, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
18
|
Volmer JG, McRae H, Morrison M. The evolving role of methanogenic archaea in mammalian microbiomes. Front Microbiol 2023; 14:1268451. [PMID: 37727289 PMCID: PMC10506414 DOI: 10.3389/fmicb.2023.1268451] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/18/2023] [Indexed: 09/21/2023] Open
Abstract
Methanogenic archaea (methanogens) represent a diverse group of microorganisms that inhabit various environmental and host-associated microbiomes. These organisms play an essential role in global carbon cycling given their ability to produce methane, a potent greenhouse gas, as a by-product of their energy production. Recent advances in culture-independent and -dependent studies have highlighted an increased prevalence of methanogens in the host-associated microbiome of diverse animal species. Moreover, there is increasing evidence that methanogens, and/or the methane they produce, may play a substantial role in human health and disease. This review addresses the expanding host-range and the emerging view of host-specific adaptations in methanogen biology and ecology, and the implications for host health and disease.
Collapse
Affiliation(s)
- James G. Volmer
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, QLD, Australia
| | - Harley McRae
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Mark Morrison
- Faculty of Medicine, University of Queensland Frazer Institute, Translational Research Institute, Woolloongabba, QLD, Australia
| |
Collapse
|
19
|
Hoskinson C, Dai DLY, Del Bel KL, Becker AB, Moraes TJ, Mandhane PJ, Finlay BB, Simons E, Kozyrskyj AL, Azad MB, Subbarao P, Petersen C, Turvey SE. Delayed gut microbiota maturation in the first year of life is a hallmark of pediatric allergic disease. Nat Commun 2023; 14:4785. [PMID: 37644001 PMCID: PMC10465508 DOI: 10.1038/s41467-023-40336-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/19/2023] [Indexed: 08/31/2023] Open
Abstract
Allergic diseases affect millions of people worldwide. An increase in their prevalence has been associated with alterations in the gut microbiome, i.e., the microorganisms and their genes within the gastrointestinal tract. Maturation of the infant immune system and gut microbiota occur in parallel; thus, the conformation of the microbiome may determine if tolerant immune programming arises within the infant. Here we show, using deeply phenotyped participants in the CHILD birth cohort (n = 1115), that there are early-life influences and microbiome features which are uniformly associated with four distinct allergic diagnoses at 5 years: atopic dermatitis (AD, n = 367), asthma (As, n = 165), food allergy (FA, n = 136), and allergic rhinitis (AR, n = 187). In a subset with shotgun metagenomic and metabolomic profiling (n = 589), we discover that impaired 1-year microbiota maturation may be universal to pediatric allergies (AD p = 0.000014; As p = 0.0073; FA p = 0.00083; and AR p = 0.0021). Extending this, we find a core set of functional and metabolic imbalances characterized by compromised mucous integrity, elevated oxidative activity, decreased secondary fermentation, and elevated trace amines, to be a significant mediator between microbiota maturation at age 1 year and allergic diagnoses at age 5 years (βindirect = -2.28; p = 0.0020). Microbiota maturation thus provides a focal point to identify deviations from normative development to predict and prevent allergic disease.
Collapse
Affiliation(s)
- Courtney Hoskinson
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Darlene L Y Dai
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Kate L Del Bel
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Allan B Becker
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Theo J Moraes
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - B Brett Finlay
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, BC, Canada
| | - Elinor Simons
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
| | - Anita L Kozyrskyj
- Department of Pediatrics, University of Alberta, Edmonton, AB, Canada
| | - Meghan B Azad
- Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, MB, Canada
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
- Manitoba Interdisciplinary Lactation Centre (MILC), Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Padmaja Subbarao
- Department of Pediatrics, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Medicine, McMaster University, Hamilton, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | - Charisse Petersen
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada
| | - Stuart E Turvey
- Department of Pediatrics, BC Children's Hospital, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
20
|
Garcia-Bonete MJ, Rajan A, Suriano F, Layunta E. The Underrated Gut Microbiota Helminths, Bacteriophages, Fungi, and Archaea. Life (Basel) 2023; 13:1765. [PMID: 37629622 PMCID: PMC10455619 DOI: 10.3390/life13081765] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/12/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
The microbiota inhabits the gastrointestinal tract, providing essential capacities to the host. The microbiota is a crucial factor in intestinal health and regulates intestinal physiology. However, microbiota disturbances, named dysbiosis, can disrupt intestinal homeostasis, leading to the development of diseases. Classically, the microbiota has been referred to as bacteria, though other organisms form this complex group, including viruses, archaea, and eukaryotes such as fungi and protozoa. This review aims to clarify the role of helminths, bacteriophages, fungi, and archaea in intestinal homeostasis and diseases, their interaction with bacteria, and their use as therapeutic targets in intestinal maladies.
Collapse
Affiliation(s)
- Maria Jose Garcia-Bonete
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Anandi Rajan
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Francesco Suriano
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
| | - Elena Layunta
- Department of Medical Biochemistry and Cell Biology, University of Gothenburg, SE-405 30 Gothenburg, Sweden
- Instituto de Investigación Sanitaria de Aragón (IIS Aragón), 50009 Zaragoza, Spain
| |
Collapse
|
21
|
Ujlaki G, Kovács T, Vida A, Kókai E, Rauch B, Schwarcz S, Mikó E, Janka E, Sipos A, Hegedűs C, Uray K, Nagy P, Bai P. Identification of Bacterial Metabolites Modulating Breast Cancer Cell Proliferation and Epithelial-Mesenchymal Transition. Molecules 2023; 28:5898. [PMID: 37570868 PMCID: PMC10420980 DOI: 10.3390/molecules28155898] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/27/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Breast cancer patients are characterized by the oncobiotic transformation of multiple microbiome communities, including the gut microbiome. Oncobiotic transformation of the gut microbiome impairs the production of antineoplastic bacterial metabolites. The goal of this study was to identify bacterial metabolites with antineoplastic properties. We constructed a 30-member bacterial metabolite library and screened the library compounds for effects on cell proliferation and epithelial-mesenchymal transition. The metabolites were applied to 4T1 murine breast cancer cells in concentrations corresponding to the reference serum concentrations. However, yric acid, glycolic acid, d-mannitol, 2,3-butanediol, and trans-ferulic acid exerted cytostatic effects, and 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, and vanillic acid exerted hyperproliferative effects. Furthermore, 3-hydroxyphenylacetic acid, 4-hydroxybenzoic acid, 2,3-butanediol, and hydrocinnamic acid inhibited epithelial-to-mesenchymal (EMT) transition. We identified redox sets among the metabolites (d-mannitol-d-mannose, 1-butanol-butyric acid, ethylene glycol-glycolic acid-oxalic acid), wherein only one partner within the set (d-mannitol, butyric acid, glycolic acid) possessed bioactivity in our system, suggesting that changes to the local redox potential may affect the bacterial secretome. Of the nine bioactive metabolites, 2,3-butanediol was the only compound with both cytostatic and anti-EMT properties.
Collapse
Affiliation(s)
- Gyula Ujlaki
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - András Vida
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Endre Kókai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Boglára Rauch
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Szandra Schwarcz
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Eszter Janka
- Department of Dermatology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Csaba Hegedűs
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Karen Uray
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
| | - Péter Nagy
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| | - Peter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary; (G.U.); (T.K.); (A.V.); (E.K.); (B.R.); (S.S.); (E.M.); (A.S.); (C.H.); (K.U.)
- MTA-DE Lendület Laboratory of Cellular Metabolism, 4032 Debrecen, Hungary
- Research Center for Molecular Medicine, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary
- ELKH-DE Cell Biology and Signaling Research Group ELKH, 4032 Debrecen, Hungary
| |
Collapse
|
22
|
Inda-Webb ME, Jimenez M, Liu Q, Phan NV, Ahn J, Steiger C, Wentworth A, Riaz A, Zirtiloglu T, Wong K, Ishida K, Fabian N, Jenkins J, Kuosmanen J, Madani W, McNally R, Lai Y, Hayward A, Mimee M, Nadeau P, Chandrakasan AP, Traverso G, Yazicigil RT, Lu TK. Sub-1.4 cm 3 capsule for detecting labile inflammatory biomarkers in situ. Nature 2023; 620:386-392. [PMID: 37495692 DOI: 10.1038/s41586-023-06369-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/26/2023] [Indexed: 07/28/2023]
Abstract
Transient molecules in the gastrointestinal tract such as nitric oxide and hydrogen sulfide are key signals and mediators of inflammation. Owing to their highly reactive nature and extremely short lifetime in the body, these molecules are difficult to detect. Here we develop a miniaturized device that integrates genetically engineered probiotic biosensors with a custom-designed photodetector and readout chip to track these molecules in the gastrointestinal tract. Leveraging the molecular specificity of living sensors1, we genetically encoded bacteria to respond to inflammation-associated molecules by producing luminescence. Low-power electronic readout circuits2 integrated into the device convert the light emitted by the encapsulated bacteria to a wireless signal. We demonstrate in vivo biosensor monitoring in the gastrointestinal tract of small and large animal models and the integration of all components into a sub-1.4 cm3 form factor that is compatible with ingestion and capable of supporting wireless communication. With this device, diseases such as inflammatory bowel disease could be diagnosed earlier than is currently possible, and disease progression could be more accurately tracked. The wireless detection of short-lived, disease-associated molecules with our device could also support timely communication between patients and caregivers, as well as remote personalized care.
Collapse
Affiliation(s)
- M E Inda-Webb
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - M Jimenez
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Q Liu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - N V Phan
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Ahn
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Steiger
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Wentworth
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - A Riaz
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - T Zirtiloglu
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA
| | - K Wong
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - K Ishida
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - N Fabian
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - J Jenkins
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - J Kuosmanen
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - W Madani
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - R McNally
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Y Lai
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A Hayward
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Division of Comparative Medicine, MIT, Cambridge, MA, USA
| | - M Mimee
- Department of Microbiology, Biological Sciences Division and Pritzker School of Molecular Engineering, The University of Chicago, Chicago, IL, USA
| | | | - A P Chandrakasan
- Department of Electrical Engineering and Computer Science, MIT, Cambridge, MA, USA
| | - G Traverso
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Division of Gastroenterology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - R T Yazicigil
- Electrical and Computer Engineering Department, Boston University, Boston, MA, USA.
| | - T K Lu
- Synthetic Biology Group, MIT Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Research Laboratory of Electronics, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Senti Biosciences, South San Francisco, CA, USA.
| |
Collapse
|
23
|
Andres SF, Zhang Y, Kuhn M, Scottoline B. Building better barriers: how nutrition and undernutrition impact pediatric intestinal health. Front Immunol 2023; 14:1192936. [PMID: 37545496 PMCID: PMC10401430 DOI: 10.3389/fimmu.2023.1192936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Chronic undernutrition is a major cause of death for children under five, leaving survivors at risk for adverse long-term consequences. This review focuses on the role of nutrients in normal intestinal development and function, from the intestinal epithelium, to the closely-associated mucosal immune system and intestinal microbiota. We examine what is known about the impacts of undernutrition on intestinal physiology, with focus again on the same systems. We provide a discussion of existing animal models of undernutrition, and review the evidence demonstrating that correcting undernutrition alone does not fully ameliorate effects on intestinal function, the microbiome, or growth. We review efforts to treat undernutrition that incorporate data indicating that improved recovery is possible with interventions focused not only on delivery of sufficient energy, macronutrients, and micronutrients, but also on efforts to correct the abnormal intestinal microbiome that is a consequence of undernutrition. Understanding of the role of the intestinal microbiome in the undernourished state and correction of the phenotype is both complex and a subject that holds great potential to improve recovery. We conclude with critical unanswered questions in the field, including the need for greater mechanistic research, improved models for the impacts of undernourishment, and new interventions that incorporate recent research gains. This review highlights the importance of understanding the mechanistic effects of undernutrition on the intestinal ecosystem to better treat and improve long-term outcomes for survivors.
Collapse
Affiliation(s)
- Sarah F. Andres
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Yang Zhang
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Madeline Kuhn
- Division of Pediatric Gastroenterology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| | - Brian Scottoline
- Division of Neonatology, Department of Pediatrics, Oregon Health and Science University, Portland, OR, United States
| |
Collapse
|
24
|
Calva-Cruz ODJ, Ovando-Vázquez C, De León-Rodríguez A, Veana F, Espitia-Rangel E, Treviño S, Barba-de la Rosa AP. Dietary Supplementation with Popped Amaranth Modulates the Gut Microbiota in Low Height-for-Age Children: A Nonrandomized Pilot Trial. Foods 2023; 12:2760. [PMID: 37509852 PMCID: PMC10379428 DOI: 10.3390/foods12142760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Amaranth has been recognized as a nutraceutical food because it contains high-quality proteins due to its adequate amino acid composition that covers the recommended requirements for children and adults. Since pre-Hispanic times, amaranth has been consumed as popped grain; the popping process improves its nutritive quality and improves its digestibility. Popped amaranth consumption has been associated with the recovery of malnourished children. However, there is no information on the impact that popped amaranth consumption has on gut microbiota composition. A non-randomized pilot trial was conducted to evaluate the changes in composition, structure, and function of the gut microbiota of stunted children who received four grams of popped amaranth daily for three months. Stool and serum were collected at the beginning and at the end of the trial. Short-chain fatty acids (SCFA) were quantified, and gut bacterial composition was analyzed by 16S rRNA gene sequencing. Biometry and hematology results showed that children had no pathology other than low height-for-age. A decrease in the relative abundance of Alistipes putredinis, Bacteroides coprocola, and Bacteroides stercoris bacteria related to inflammation and colitis, and an increase in the relative abundance of Akkermansia muciniphila and Streptococcus thermophiles bacteria associated with health and longevity, was observed. The results demonstrate that popped amaranth is a nutritious food that helps to combat childhood malnutrition through gut microbiota modulation.
Collapse
Affiliation(s)
- Oscar de Jesús Calva-Cruz
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| | - Cesaré Ovando-Vázquez
- CONACYT-Centro Nacional de Supercómputo, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico;
| | - Antonio De León-Rodríguez
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| | - Fabiola Veana
- Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Valles, Ciudad Valles 79010, Mexico;
| | - Eduardo Espitia-Rangel
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Texcoco 56250, Mexico;
| | - Samuel Treviño
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, Av. San Claudio S/N, Ciudad Universitaria, Puebla 72000, Mexico;
| | - Ana Paulina Barba-de la Rosa
- Molecular Biology Division, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí 78216, Mexico; (O.d.J.C.-C.); (A.D.L.-R.)
| |
Collapse
|
25
|
Tap J, Lejzerowicz F, Cotillard A, Pichaud M, McDonald D, Song SJ, Knight R, Veiga P, Derrien M. Global branches and local states of the human gut microbiome define associations with environmental and intrinsic factors. Nat Commun 2023; 14:3310. [PMID: 37339957 DOI: 10.1038/s41467-023-38558-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/04/2023] [Indexed: 06/22/2023] Open
Abstract
The gut microbiome is important for human health, yet modulation requires more insight into inter-individual variation. Here, we explored latent structures of the human gut microbiome across the human lifespan, applying partitioning, pseudotime, and ordination approaches to >35,000 samples. Specifically, three major gut microbiome branches were identified, within which multiple partitions were observed in adulthood, with differential abundances of species along branches. Different compositions and metabolic functions characterized the branches' tips, reflecting ecological differences. An unsupervised network analysis from longitudinal data from 745 individuals showed that partitions exhibited connected gut microbiome states rather than over-partitioning. Stability in the Bacteroides-enriched branch was associated with specific ratios of Faecalibacterium:Bacteroides. We also showed that associations with factors (intrinsic and extrinsic) could be generic, branch- or partition-specific. Our ecological framework for cross-sectional and longitudinal data allows a better understanding of overall variation in the human gut microbiome and disentangles factors associated with specific configurations.
Collapse
Affiliation(s)
- Julien Tap
- Danone Nutricia Research, Gif-sur-Yvette, France.
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.
| | - Franck Lejzerowicz
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Section for Aquatic Biology and Toxicology, University of Oslo, Oslo, Norway
| | | | | | - Daniel McDonald
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Se Jin Song
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, School of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California San Diego, La Jolla, CA, USA
| | - Patrick Veiga
- Danone Nutricia Research, Gif-sur-Yvette, France
- Université Paris-Saclay, INRAE, MGP, Jouy-en-Josas, France
| | - Muriel Derrien
- Danone Nutricia Research, Gif-sur-Yvette, France.
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium.
| |
Collapse
|
26
|
Fontaine F, Turjeman S, Callens K, Koren O. The intersection of undernutrition, microbiome, and child development in the first years of life. Nat Commun 2023; 14:3554. [PMID: 37322020 PMCID: PMC10272168 DOI: 10.1038/s41467-023-39285-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 06/17/2023] Open
Abstract
Undernutrition affects about one out of five children worldwide. It is associated with impaired growth, neurodevelopment deficits, and increased infectious morbidity and mortality. Undernutrition, however, cannot be solely attributed to a lack of food or nutrient deficiency but rather results from a complex mix of biological and environmental factors. Recent research has shown that the gut microbiome is intimately involved in the metabolism of dietary components, in growth, in the training of the immune system, and in healthy development. In this review, we look at these features in the first three years of life, which is a critical window for both microbiome establishment and maturation and child development. We also discuss the potential of the microbiome in undernutrition interventions, which could increase efficacy and improve child health outcomes.
Collapse
Affiliation(s)
- Fanette Fontaine
- Food and Agriculture Organization of the United Nations, Rome, Italy
- Université Paris- Cité, 75006, Paris, France
| | - Sondra Turjeman
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel
| | - Karel Callens
- Food and Agriculture Organization of the United Nations, Rome, Italy
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar-Ilan University, Safed, Israel.
| |
Collapse
|
27
|
Qi X, Zhang Y, Zhang Y, Luo F, Song K, Wang G, Ling F. Vitamin B 12 produced by Cetobacterium somerae improves host resistance against pathogen infection through strengthening the interactions within gut microbiota. MICROBIOME 2023; 11:135. [PMID: 37322528 PMCID: PMC10268390 DOI: 10.1186/s40168-023-01574-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Pathogen infections seriously affect host health, and the use of antibiotics increases the risk of the emergence of drug-resistant bacteria and also increases environmental and health safety risks. Probiotics have received much attention for their excellent ability to prevent pathogen infections. Particularly, explaining mechanism of action of probiotics against pathogen infections is important for more efficient and rational use of probiotics and the maintenance of host health. RESULTS Here, we describe the impacts of probiotic on host resistance to pathogen infections. Our findings revealed that (I) the protective effect of oral supplementation with B. velezensis against Aeromonas hydrophila infection was dependent on gut microbiota, specially the anaerobic indigenous gut microbe Cetobacterium; (II) Cetobacterium was a sensor of health, especially for fish infected with pathogenic bacteria; (III) the genome resolved the ability of Cetobacterium somerae CS2105-BJ to synthesize vitamin B12 de novo, while in vivo and in vitro metabolism assays also showed the ability of Cetobacterium somerae CS2105-BJ to produce vitamin B12; (IV) the addition of vitamin B12 significantly altered the gut redox status and the gut microbiome structure and function, and then improved the stability of the gut microbial ecological network, and enhanced the gut barrier tight junctions to prevent the pathogen infection. CONCLUSION Collectively, this study found that the effect of probiotics in enhancing host resistance to pathogen infections depended on function of B12 produced by an anaerobic indigenous gut microbe, Cetobacterium. Furthermore, as a gut microbial regulator, B12 exhibited the ability to strengthen the interactions within gut microbiota and gut barrier tight junctions, thereby improving host resistance against pathogen infection. Video Abstract.
Collapse
Affiliation(s)
- Xiaozhou Qi
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yong Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yilin Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Fei Luo
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kaige Song
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Gaoxue Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| | - Fei Ling
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
28
|
Pilliol V, Guindo CO, Terrer E, Aboudharam G, Drancourt M, Grine G. Culturing clinical Methanobrevibacter smithii using GG medium in a minimal anaerobe atmosphere. J Microbiol Methods 2023; 207:106704. [PMID: 36907565 DOI: 10.1016/j.mimet.2023.106704] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/12/2023]
Abstract
Methanobrevibacter smithii (M. smithii), the most prevalent and abundant gut methanogen, detoxifies hydrogen into methane and is, therefore, of paramount importance for the equilibrium of the gut microbiota. The isolation by culture of M. smithii has routinely relied upon hydrogen‑carbon dioxide-enriched, oxygen-deprived atmospheres. In this study, we developed a medium referred to as "GG", which allowed for M. smithii growth and isolation by culture in an oxygen-deprived atmosphere, with no supply of either hydrogen or carbon dioxide, making it easier to detect M. smithii by culture in clinical microbiology laboratories.
Collapse
Affiliation(s)
- Virginie Pilliol
- Aix-Marseille Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | - Cheick Oumar Guindo
- Aix-Marseille Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Elodie Terrer
- Aix-Marseille Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | - Gérard Aboudharam
- Aix-Marseille Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille, France; Aix-Marseille Université, Ecole de Médecine Dentaire, Marseille, France
| | - Michel Drancourt
- Aix-Marseille Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille, France; IHU Méditerranée Infection, Marseille, France
| | - Ghiles Grine
- Aix-Marseille Univ., IRD, MEPHI, AP-HM, IHU Méditerranée Infection, Marseille, France; IHU Méditerranée Infection, Marseille, France.
| |
Collapse
|
29
|
El-Sayed A, Aleya L, Kamel M. Epigenetics and the role of nutraceuticals in health and disease. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:28480-28505. [PMID: 36694069 DOI: 10.1007/s11356-023-25236-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
In the post-genomic era, the data provided by complete genome sequencing could not answer several fundamental questions about the causes of many noninfectious diseases, diagnostic biomarkers, and novel therapeutic approaches. The rapidly expanding understanding of epigenetic mechanisms, as well as widespread acceptance of their hypothesized role in disease induction, facilitated the development of a number of novel diagnostic markers and therapeutic concepts. Epigenetic aberrations are reversible in nature, which enables the treatment of serious incurable diseases. Therefore, the interest in epigenetic modulatory effects has increased over the last decade, so about 60,000 publications discussing the expression of epigenetics could be detected in the PubMed database. Out of these, 58,442 were published alone in the last 10 years, including 17,672 reviews (69 historical articles), 314 clinical trials, 202 case reports, 197 meta-analyses, 156 letters to the editor, 108 randomized controlled trials, 87 observation studies, 40 book chapters, 22 published lectures, and 2 clinical trial protocols. The remaining publications are either miscellaneous or a mixture of the previously mentioned items. According to the species and gender, the publications included 44,589 human studies (17,106 females, 14,509 males, and the gender is not mentioned in the remaining papers) and 30,253 animal studies. In the present work, the role of epigenetic modulations in health and disease and the influencing factors in epigenetics are discussed.
Collapse
Affiliation(s)
- Amr El-Sayed
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Lotfi Aleya
- Chrono-Environnement Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, 25030, Besançon Cedex, France
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| |
Collapse
|
30
|
Xu R, Li Q, Wang H, Su Y, Zhu W. Reduction of Redox Potential Exerts a Key Role in Modulating Gut Microbial Taxa and Function by Dietary Supplementation of Pectin in a Pig Model. Microbiol Spectr 2023; 11:e0328322. [PMID: 36475916 PMCID: PMC9927287 DOI: 10.1128/spectrum.03283-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/22/2022] [Indexed: 12/13/2022] Open
Abstract
Pectin exists in a vast range of plants and has a long history of acting as a functional food additive with potential prebiotic effects on intestinal health. However, knowledge of how pectin regulates gut microbial communities is still insufficient and limited. Here, metatranscriptome sequencing revealed that a pectin-enriched diet (PEC) decreased the abundances of fungal keystone taxa (e.g., amino acid-producing Kazachstania spp.) and their genes involved in oxidative phosphorylation, while it increased the abundance of sulfate-reducing Desulfovibrio spp., and methane-producing Methanobrevibacter spp. in colon microbiomes. Furthermore, we first confirmed that PEC decreased fecal redox potential in a fistula pig model, which could be supported by the enrichment of antioxidants (e.g., inosine) in feces. Fecal metagenome analysis disclosed that certain microbial taxa promoted inosine biosynthesis from pectin degradation, including Prevotella, which plays an essential role in pectin biodegradation. Overall, these results demonstrate that pectin decreases the redox potential in pig hindgut to modulate microbial composition and functions, and specific microorganisms generate reducing agents in the course of pectin degradation to decrease redox potential of microbial ecosystem. IMPORTANCE Collective studies indicate that pectin degradation promotes extensive microorganisms that can be involved in pectin degradation directly or indirectly, or benefit from the altered physiological conditions caused by pectin ingestions. Our study focuses on effects of pectin on gut microbial taxa and functions, as well as its interactions with altered environmental features. Our results demonstrate pectin-induced proreducing shifts on colon microbial taxa and functions, and first confirm that pectin decreases hindgut redox potential, which is an important environmental feature that can modulate microbial communities. These results infer that there is bidirectional regulation between microbiota and redox potential during pectin degradation. In general, this investigation proposes new insights into the pectin-modulating gut microbial ecosystem and also provides new perspectives for targeting modulation of gut microbiota.
Collapse
Affiliation(s)
- Rongying Xu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Qiuke Li
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Hongyu Wang
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Yong Su
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| | - Weiyun Zhu
- Laboratory of Gastrointestinal Microbiology, Jiangsu Key Laboratory of Gastrointestinal Nutrition and Animal Health, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
- National Center for International Research on Animal Gut Nutrition, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
31
|
Gao Y, Hao X, Hu Y, Zhou N, Ma Q, Zou L, Yao Y. Modification of the functional properties of chickpea proteins by ultrasonication treatment and alleviation of malnutrition in rat. Food Funct 2023; 14:1773-1784. [PMID: 36723159 DOI: 10.1039/d2fo02492f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High-intensity ultrasonication (HIU) is an emerging technology for improving the functional properties of the leguminous proteins in the food industry. In this study, chickpea protein (CP) was treated at 150 W for 30 min to obtain ultrasonic chickpea protein (UCP). The physicochemical (particle size, ζ-potential, hydrophobicity, and free sulfhydryl) and structural properties (FTIR) were changed after the HIU treatment, which led to an improvement of functional properties, including the solubility, emulsifying, and foamability in UCP. The chickpea protein diet (CPD) and ultrasound chickpea protein diet (UCPD) were supplemented to undernourished weaning rats to assess their potential in improving malnutrition. After 6 weeks of administration, the body weight of malnourished rats in UCPD increased by 11.97% compared with that in CPD. The results in OMICS showed that beneficial bacteria and short-chain fatty acids were positively related to growth. This work demonstrated the physicochemical and functional properties of CP and UCP and guided the application of the UCP to malnutrition improvement.
Collapse
Affiliation(s)
- Yue Gao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China.
| | - Xiyu Hao
- Heilongjiang Feihe Dairy Co., Ltd., C-16, 10A Jiuxianqiao Rd, Chaoyang District, Beijing, 100015, People's Republic of China
| | - Yichen Hu
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, People's Republic of China
| | - Nong Zhou
- Laboratory for Green Cultivation and Deep Processing of Three Gorges Reservoir Area's Medicinal Herbs, College of Life Science & Engineering, The Chongqing Engineering, Chongqing Three Gorges University, Chongqing, 404000, People's Republic of China
| | - Qiang Ma
- Department of Basic Medicine, Chongqing Three Gorges Medical College, Chongqing, 404120, People's Republic of China.
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Sichuan Engineering & Technology Research Center of Coarse Cereal Industralization, School of Food and Biological Engineering, Chengdu University, Chengdu, Sichuan, 610106, People's Republic of China
| | - Yang Yao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China. .,Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Ministry of Agriculture and Rural Affairs, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South Street, Haidian District, Beijing, 100081, People's Republic of China
| |
Collapse
|
32
|
Jaswal K, Todd OA, Behnsen J. Neglected gut microbiome: interactions of the non-bacterial gut microbiota with enteric pathogens. Gut Microbes 2023; 15:2226916. [PMID: 37365731 PMCID: PMC10305517 DOI: 10.1080/19490976.2023.2226916] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023] Open
Abstract
A diverse array of commensal microorganisms inhabits the human intestinal tract. The most abundant and most studied members of this microbial community are undoubtedly bacteria. Their important role in gut physiology, defense against pathogens, and immune system education has been well documented over the last decades. However, the gut microbiome is not restricted to bacteria. It encompasses the entire breadth of microbial life: viruses, archaea, fungi, protists, and parasitic worms can also be found in the gut. While less studied than bacteria, their divergent but important roles during health and disease have become increasingly more appreciated. This review focuses on these understudied members of the gut microbiome. We will detail the composition and development of these microbial communities and will specifically highlight their functional interactions with enteric pathogens, such as species of the family Enterobacteriaceae. The interactions can be direct through physical interactions, or indirect through secreted metabolites or modulation of the immune response. We will present general concepts and specific examples of how non-bacterial gut communities modulate bacterial pathogenesis and present an outlook for future gut microbiome research that includes these communities.
Collapse
Affiliation(s)
- Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
33
|
Hazan S, Dave S, Papoutsis AJ, Deshpande N, Howell MC, Martin LM. Vitamin C improves gut Bifidobacteria in humans. Future Microbiol 2022. [PMID: 36475828 DOI: 10.2217/fmb-2022-0209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Aims: Numerous beneficial effects of vitamin C (ascorbic acid) supplementation have been reported in the literature. However, data on its effects toward the gut microbiome are limited. We assessed the effect of vitamin C supplementation on the abundance of beneficial bacterial species in the gut microbiome. Materials and methods: Stool samples were analyzed for relative abundance of gut microbiome bacteria using next-generation sequencing-based profiling and metagenomic shotgun analysis. Results: Supplementation with vitamin C increased the abundance of bacteria of the genus Bifidobacterium (p = 0.0001) and affected various species. Conclusion: The beneficial effects of vitamin C supplementation may be attributed to modulation of the gut microbiome and the consequent health benefits thereof.
Collapse
Affiliation(s)
- Sabine Hazan
- ProgenaBIome, LLC, Ventura, CA 93003, USA
- Mcrobiome Research Foundation, Ventura, CA 93003, USA
| | - Sonya Dave
- Mcrobiome Research Foundation, Ventura, CA 93003, USA
| | | | | | | | - Leisha Ma Martin
- Texas A&M University - Corpus Christi, Department of Life Sciences, Corpus Christi, TX 78412, USA
| |
Collapse
|
34
|
Bustamante CC, de Paula VB, Rabelo IP, Fernandes CC, Kishi LT, Canola PA, Lemos EGDM, Valadão CAA. Effects of Starch Overload and Cecal Buffering on Fecal Microbiota of Horses. Animals (Basel) 2022; 12:ani12233435. [PMID: 36496956 PMCID: PMC9737938 DOI: 10.3390/ani12233435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Starch overload in horses causes gastrointestinal and metabolic disorders that are associated with microbiota changes. Therefore, we identified the fecal microbiota and hypothesized that intracecal injection of alkaline solution (buffer; Mg(OH)2 + Al(OH)3) could stabilize these microbiota and clinical changes in horses submitted to corn starch overload. Ten crossbred horses (females and geldings) were allocated to group I (water−saline and starch−buffer treatments) and group II (water−buffer and starch−saline treatments). Clinical signs, gross analysis of the feces, and fecal microbiota were evaluated through 72 h (T0; T8; T12; T24; T48; T72). Corn starch or water were administrated by nasogastric tube at T0, and the buffer injected into the cecum at T8 in starch−buffer and water−buffer treatments. Starch overload reduced the richness (p < 0.001) and diversity (p = 0.001) of the fecal microbiota. However, the starch−buffer treatment showed greater increase in amylolytic bacteria (Bifidobacterium 0.0% to 5.6%; Lactobacillus 0.1% to 7.4%; p < 0.05) and decrease in fibrolytic bacteria (Lachnospiraceae 10.2% to 5.0%; Ruminococcaceae 11.7% to 4.2%; p < 0.05) than starch−saline treatment. Additionally, animals that received starch−buffer treatment showed more signs of abdominal discomfort and lameness associated with dysbiosis (amylolytic r > 0.5; fribolytic r < 0.1; p < 0.05), showing that cecal infusion of buffer did not prevent, but intensified intestinal disturbances and the risk of laminitis.
Collapse
Affiliation(s)
- Caio C. Bustamante
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Vanessa B. de Paula
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Isabela P. Rabelo
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Camila C. Fernandes
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Luciano T. Kishi
- Department of Technology, Multiuse Sequencing Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Paulo A. Canola
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Eliana Gertrudes de M. Lemos
- Department of Technology, Biochemistry of Microorganisms and Plants Laboratory, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
| | - Carlos Augusto A. Valadão
- Department of Veterinary Medicine and Surgery, School of Agricultural and Veterinary Sciences, UNESP-São Paulo State University, Jaboticabal 14884-900, SP, Brazil
- Correspondence:
| |
Collapse
|
35
|
Bellali S, Haddad G, Pham TPT, Iwaza R, Ibrahim A, Armstrong N, Fadlane A, Couderc C, Diallo A, Sokhna C, Million M, Raoult D, Tidjani Alou M. Draft genomes and descriptions of Urmitella timonensis gen. nov., sp. nov. and Marasmitruncus massiliensis gen. nov., sp. nov., isolated from severely malnourished African children using culturomics. Antonie Van Leeuwenhoek 2022; 115:1349-1361. [PMID: 36149539 PMCID: PMC9584879 DOI: 10.1007/s10482-022-01777-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 08/27/2022] [Indexed: 11/25/2022]
Abstract
Two strains, designated as Marseille-P2918T and Marseille-P3646T, were isolated from a 14-week-old Senegalese girl using culturomics: Urmitella timonensis strain Marseille-P2918T (= CSUR P2918, = DSM 103634) and Marasmitruncus massiliensis strain Marseille-P3646T (= CSUR P3646, = CCUG72353). Both strains were rod-shaped, anaerobic, spore forming motile bacteria. The 16S rRNA gene sequences of strains Marseille-P2918T (LT598554) and Marseille-P3646T (LT725660) shared 93.25% and 94.34% identity with Tissierella praeacuta ATCC 25539T and Anaerotruncus colihominis CIP 107754T, their respective phylogenetically closest species with standing in nomenclature. Therefore, strain Marseille-P2918T is classified within the family Tissierellaceae and order Tissierellales whereas strain Marseille-P3646T is classified within the family Oscillospiraceae and order Eubacteriales. The genome of strain Marseille-P2918T had a size of 2.13 Mb with a GC content of 50.52% and includes six scaffolds and six contigs, and that of strain Marseille-P3646T was 3.76 Mbp long consisting of five contigs with a 50.04% GC content. The genomes of both strains presented a high percentage of genes encoding enzymes involved in genetic information and processing, suggesting a high growth rate and adaptability. These new taxa are extensively described and characterised in this paper, using the concept of taxono-genomic description.
Collapse
Affiliation(s)
- Sara Bellali
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Gabriel Haddad
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
| | - Thi-Phuong-Thao Pham
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Rim Iwaza
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
| | - Ahmad Ibrahim
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
| | - Nicholas Armstrong
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Amael Fadlane
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Carine Couderc
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | | | - Cheikh Sokhna
- Campus Commun UCAD-IRD of Hann, Dakar, Senegal
- Aix Marseille Univ, IRD, AP-HM, SSA, VITROME, Marseille, France
| | - Matthieu Million
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France
- IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13385, Marseille, France
| | - Maryam Tidjani Alou
- Aix Marseille Université, MEPHI, URMITE, UM63, CNRS 7278, IRD 198, INSERM 1095, Marseille, France.
| |
Collapse
|
36
|
Hankel J, Mößeler A, Hartung CB, Rath S, Schulten L, Visscher C, Kamphues J, Vital M. Responses of Ileal and Fecal Microbiota to Withdrawal of Pancreatic Enzyme Replacement Therapy in a Porcine Model of Exocrine Pancreatic Insufficiency. Int J Mol Sci 2022; 23:11700. [PMID: 36233002 PMCID: PMC9570030 DOI: 10.3390/ijms231911700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/20/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022] Open
Abstract
Little is known regarding the interplay between microbiota and pancreas functions in humans as investigations are usually limited to distal sites, namely the analyses of fecal samples. The aim of this study was to investigate both ileal and fecal microbiota in response to pancreatic enzyme replacement therapy (PERT) in a porcine model of exocrine pancreatic insufficiency (EPI). PERT was stopped for ten days in ileo-cecal fistulated minipigs with experimentally induced EPI (n = 8) and ileal digesta as well as fecal samples were obtained before withdrawal, during withdrawal and after the reintroduction of PERT. Profound community changes occurred three days after enzyme omission and were maintained throughout the withdrawal phase. A reduction in α-diversity together with relative abundance changes in several taxa, in particular increases in Bifidobacteria (at both sites) and Lactobacilli (only feces) were observed. Overall, dysbiosis events from the ileum had accumulating effects in distal parts of the gastrointestinal tract with additional alterations occurring only in the colon. Changes were reversible after continuing PERT, and one week later, bacterial communities resembled those at baseline. Our study demonstrates the rapid and profound impacts of enzyme withdrawal in bacterial communities, contributing to our understanding of the interplay between pancreas function and microbiota.
Collapse
Affiliation(s)
- Julia Hankel
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Anne Mößeler
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
- Institute for Animal Nutrition and Dietetics, Vetsuisse-Faculty, 8057 Zürich, Switzerland
| | - Clara Berenike Hartung
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Silke Rath
- Microbial Interactions and Processes Group, Helmholtz Centre for Infection Research, 30628 Braunschweig, Germany
| | - Lisa Schulten
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, 30173 Hanover, Germany
| | - Marius Vital
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, 30625 Hannover, Germany
| |
Collapse
|
37
|
Liu A, Gao W, Zhu Y, Hou X, Chu H. Gut Non-Bacterial Microbiota: Emerging Link to Irritable Bowel Syndrome. Toxins (Basel) 2022; 14:596. [PMID: 36136534 PMCID: PMC9503233 DOI: 10.3390/toxins14090596] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/18/2022] [Accepted: 08/25/2022] [Indexed: 11/20/2022] Open
Abstract
As a common functional gastrointestinal disorder, irritable bowel syndrome (IBS) significantly affects personal health and imposes a substantial economic burden on society, but the current understanding of its occurrence and treatment is still inadequate. Emerging evidence suggests that IBS is associated with gut microbial dysbiosis, but most studies focus on the bacteria and neglect other communities of the microbiota, including fungi, viruses, archaea, and other parasitic microorganisms. This review summarizes the latest findings that link the nonbacterial microbiota with IBS. IBS patients show less fungal and viral diversity but some alterations in mycobiome, virome, and archaeome, such as an increased abundance of Candida albicans. Moreover, fungi and methanogens can aid in diagnosis. Fungi are related to distinct IBS symptoms and induce immune responses, intestinal barrier disruption, and visceral hypersensitivity via specific receptors, cells, and metabolites. Novel therapeutic methods for IBS include fungicides, inhibitors targeting fungal pathogenic pathways, probiotic fungi, prebiotics, and fecal microbiota transplantation. Additionally, viruses, methanogens, and parasitic microorganisms are also involved in the pathophysiology and treatment. Therefore, the gut nonbacterial microbiota is involved in the pathogenesis of IBS, which provides a novel perspective on the noninvasive diagnosis and precise treatment of this disease.
Collapse
Affiliation(s)
- Ao Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, China
| |
Collapse
|
38
|
Bai P, Rais H, Fawad B, Kumari S. Concordance Between Indices of Malnutrition: Mid-Upper Arm Circumference V/S Weight for the Height Z Score in Different Age Groups in Karachi, Pakistan. Cureus 2022; 14:e27387. [PMID: 36046331 PMCID: PMC9419114 DOI: 10.7759/cureus.27387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2022] [Indexed: 11/10/2022] Open
Abstract
Objective To compare the WHO cut-off of the mid-upper arm circumference (MUAC) with the weight for height z-score (WHZ) in different age groups of children (6 months to 59 months of age) with acute malnutrition in Pakistan. Methodology A cross-sectional study was carried out in the pediatric unit of Ziauddin Medical University and Hospital on malnourished children from six to 59 months of age to compare two different indices of malnutrition, MUAC and WHZ. A total of 450 children with WHZ of <-2SD and <-3SD were included in the study after excluding children with failure to thrive due to chronic illness, congenital defects, and immune deficiencies/malabsorption. Results The study revealed a significant mean difference in weight, height, and MUAC among the participants (0.030, 0.053, and 0.02). The sensitivity of MUAC at <11.5 cm was highest in the 12-24-month age group with a decline at 24-48 months while specificity was highest at six to 12 months of age, which shows a mixed response. Conclusion The result revealed variation in the cut-off value of MUAC in different age groups; the best specificity of MUAC was found at six to 12 months of age and the best sensitivity at 12-24 months of age.
Collapse
|
39
|
Eslabão LB, Gubert GF, Beltrame LC, Mello IMA, Bruna-Romero O, Zárate-Bladés CR. Prophylactic Treatment of Undernourished Mice with Cotrimoxazole Induces a Different Profile of Dysbiosis with Functional Metabolic Alterations. Cells 2022; 11:cells11152278. [PMID: 35892575 PMCID: PMC9331864 DOI: 10.3390/cells11152278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/12/2022] [Accepted: 07/16/2022] [Indexed: 02/01/2023] Open
Abstract
Childhood malnutrition affects physiology and development. It increases infection rates, which may not present clinical signs in severe cases. The World Health Organization recommends prophylactic treatment with cotrimoxazole (SXT) and nutritional recovery to overcome this issue. This treatment is controversial, since evidence of a reduction in morbidity and mortality is not a consensus and could induce the development of antibiotic-resistant bacteria. Moreover, the impact of using this wide-spectrum antibiotic on gut microbiota in a critical period of development, and weakness is unknown. To understand how SXT prophylaxis could affect gut microbiota in undernutrition, we induced protein–energy undernutrition (PEU) in weaning C57BL/6 mice for three weeks and treated animals with SXT for two weeks. Using 16S rRNA gene sequencing, we compared the taxonomic composition and metabolic pathways of control mice, animals submitted to undernutrition (UND), treated with SXT, or undernourished and SXT treated (UND + SXT). We identified that UND mice had a significant increase in predicted pathways related to metabolic syndromes later in life. The prophylactic SXT treatment alone resulted in a significant loss in community richness and beta diversity. Furthermore, we identified the reduction of three genera in SXT treated mice, including the butyrate producers Faecalibacterium and Anaerotruncus. Both UND and double challenge (UND + SXT) resulted in a reduction of the amino acid’s biosynthesis pathway related to cell growth. Our results show that the SXT prophylaxis of young mice during an undernourishment period did not re-establish the undernourished microbiota community composition similar to healthy controls but induced a distinct dysbiotic profile with functional metabolic consequences.
Collapse
Affiliation(s)
- Lívia Budziarek Eslabão
- Laboratório de Imunorregulação, iREG, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Florianópolis 88034-040, SC, Brazil; (L.B.E.); (G.F.G.); (L.C.B.); (I.M.A.M.)
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Florianópolis 88034-040, SC, Brazil
| | - Gabriela Farias Gubert
- Laboratório de Imunorregulação, iREG, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Florianópolis 88034-040, SC, Brazil; (L.B.E.); (G.F.G.); (L.C.B.); (I.M.A.M.)
| | - Lucas Cafferati Beltrame
- Laboratório de Imunorregulação, iREG, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Florianópolis 88034-040, SC, Brazil; (L.B.E.); (G.F.G.); (L.C.B.); (I.M.A.M.)
| | - Isis M. A. Mello
- Laboratório de Imunorregulação, iREG, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Florianópolis 88034-040, SC, Brazil; (L.B.E.); (G.F.G.); (L.C.B.); (I.M.A.M.)
| | - Oscar Bruna-Romero
- Laboratório de Imunologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Florianópolis 88034-040, SC, Brazil
- Correspondence: (O.B.-R.); (C.R.Z.-B.); Tel.: +55-48-37215210 (C.R.Z.-B.)
| | - Carlos R. Zárate-Bladés
- Laboratório de Imunorregulação, iREG, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Campus Universitário da Trindade, Florianópolis 88034-040, SC, Brazil; (L.B.E.); (G.F.G.); (L.C.B.); (I.M.A.M.)
- Correspondence: (O.B.-R.); (C.R.Z.-B.); Tel.: +55-48-37215210 (C.R.Z.-B.)
| |
Collapse
|
40
|
The Influence of Dietary Factors on the Gut Microbiota. Microorganisms 2022; 10:microorganisms10071368. [PMID: 35889087 PMCID: PMC9318379 DOI: 10.3390/microorganisms10071368] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/04/2022] [Accepted: 07/05/2022] [Indexed: 12/19/2022] Open
Abstract
There is increasing evidence that diet influences the relationship between gut microbiota and individual health outcomes. Nutrient intake affects the composition of the gut microbial community and provides metabolites that influence the host physiology. Dietary patterns, including macronutrient balance and feeding/fasting cycles which may be manipulated with dietary regimens based on caloric restriction periods, influence the gut homeostasis through its impact on the microbial ecosystem. Along the same line, prebiotic and probiotic ingredients and additives in foods, as well as the degree of food processing have consequences on gut microbiota and the related immune and metabolic response of the human host. Acquiring knowledge of these aspects, especially through an -omics-integral approach, might provide the basis for personalized nutritional interventions directed to avoid dysbiosis and contribute to the prevention of major chronic degenerative diseases. Despite vast scientific evidence supporting the relationship between dietary factors and gut microbiota composition and function, the underlying mechanisms and their potential impact are far from clear. There is a lack of well-designed longitudinal studies performed in target population groups whose dietary patterns can be particularly relevant for their future health, as is the case in infants, pregnant women, or athletes.
Collapse
|
41
|
Patterson GT, Osorio EY, Peniche A, Dann SM, Cordova E, Preidis GA, Suh JH, Ito I, Saldarriaga OA, Loeffelholz M, Ajami NJ, Travi BL, Melby PC. Pathologic Inflammation in Malnutrition Is Driven by Proinflammatory Intestinal Microbiota, Large Intestine Barrier Dysfunction, and Translocation of Bacterial Lipopolysaccharide. Front Immunol 2022; 13:846155. [PMID: 35720380 PMCID: PMC9204284 DOI: 10.3389/fimmu.2022.846155] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 04/20/2022] [Indexed: 12/12/2022] Open
Abstract
Acute malnutrition, or wasting, is implicated in over half of all deaths in children under five and increases risk of infectious disease. Studies in humans and preclinical models have demonstrated that malnutrition is linked to an immature intestinal microbiota characterized by increased prevalence of Enterobacteriaceae. Observational studies in children with moderate acute malnutrition (MAM) have also observed heightened systemic inflammation and increased circulating bacterial lipopolysaccharides (LPS; endotoxin). However, the mechanisms that underpin the systemic inflammatory state and endotoxemia, and their pathophysiological consequences, remain uncertain. Understanding these pathophysiological mechanisms is necessary to design targeted treatments that will improve the unacceptable rate of failure or relapse that plague current approaches. Here we use a mouse model of MAM to investigate the mechanisms that promote inflammation in the malnourished host. We found that mice with MAM exhibited increased systemic inflammation at baseline, increased translocation of bacteria and bacterial LPS, and an exaggerated response to inflammatory stimuli. An exaggerated response to bacterial LPS was associated with increased acute weight loss. Remarkably, intestinal inflammation and barrier dysfunction was found in the cecum and colon. The cecum showed a dysbiotic microbiota with expansion of Gammaproteobacteria and some Firmicutes, and contraction of Bacteroidetes. These changes were paralleled by an increase in fecal LPS bioactivity. The inflammatory phenotype and weight loss was modulated by oral administration of non-absorbable antibiotics that altered the proportion of cecal Gammaproteobacteria. We propose that the heightened inflammation of acute malnutrition is the result of changes in the intestinal microbiota, intestinal barrier dysfunction in the cecum and colon, and increased systemic exposure to LPS.
Collapse
Affiliation(s)
- Grace T Patterson
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elvia Y Osorio
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Alex Peniche
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Sara M Dann
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Erika Cordova
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Geoffrey A Preidis
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Ji Ho Suh
- Division of Gastroenterology, Hepatology, & Nutrition, Department of Pediatrics, Baylor College of Medicine and Texas Children's Hospital, Houston, TX, United States
| | - Ichiaki Ito
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States
| | - Omar A Saldarriaga
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michael Loeffelholz
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nadim J Ajami
- The Alkek Center for Metagenomics and Microbiome Research, Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, United States
| | - Bruno L Travi
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
| | - Peter C Melby
- Division of Infectious Diseases, Department of Internal Medicine, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Center for Tropical Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
42
|
Panelli S, Calcaterra V, Verduci E, Comandatore F, Pelizzo G, Borghi E, Bandi C, Zuccotti G. Dysbiosis in Children With Neurological Impairment and Long-Term Enteral Nutrition. Front Nutr 2022; 9:895046. [PMID: 35811980 PMCID: PMC9265901 DOI: 10.3389/fnut.2022.895046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/23/2022] [Indexed: 11/14/2022] Open
Abstract
Severe neurological impairment (NI) is often accompanied by the need for artificial nutritional support, normally provided enterally (enteral nutrition [EN]) to ensure growth, counteract morbidity and mortality, and improve quality of life. On the other hand, long-term EN (LTEN) may contribute to the establishment, or exacerbation, of gastrointestinal disorders that may lead to malnutrition, which in turn is associated with alterations in gut microbiota (GM) composition and functional capacities. To the best of our knowledge, we investigated, for the first time in this study, the consequences of LTEN in a pediatric population in this pathological context. Using amplicon sequencing, we compared the fecal microbiota of a pediatric population suffering from severe NI and under LTEN to that of sex- and age-matched controls. The two groups presented evident differences in GM composition and a consistent differential clustering. In general, the taxonomic picture in NI children under LTEN seemed to mirror a profound dysbiotic condition, in which anti-inflammatory taxa appear severely depleted (among others, the Clostridiales families of Lachnospiraceae and Ruminococcaceae, and, within the latter, Faecalibacterium spp. and Gemmiger spp.), while known pathobionts (Gammaproteobacteria and Klebsiella) or emerging pathogens (e.g., Synergistales, Cloacibacillus, and Fusobacterium) were significantly enriched. Our data suggest that LTEN has a significant impact on the GM taxonomic composition in NI children. Even if other factors are probably at work, such as the bidirectional interaction between gastrointestinal impairment/immaturity and the central nervous system (CNS), the assumption of drugs, and physical inactivity, these data define possible routes and targets to try to alleviate this dysbiosis, with a view to better management of these patients and an improvement in their quality of life.
Collapse
Affiliation(s)
- Simona Panelli
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children's Hospital, Milan, Italy
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
| | - Elvira Verduci
- Pediatric Department, “Vittore Buzzi” Children's Hospital, Milan, Italy
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Francesco Comandatore
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Gloria Pelizzo
- Pediatric Clinical Research Center “Invernizzi”, Department of Biosciences, University of Milan, Milan, Italy
- Pediatric Surgery Department, “Vittore Buzzi” Children's Hospital, Milan, Italy
| | - Elisa Borghi
- Department of Health Sciences, University of Milano, Milan, Italy
| | - Claudio Bandi
- Pediatric Clinical Research Center “Invernizzi”, Department of Biosciences, University of Milan, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Clinical Research Center “Invernizzi”, Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
- Pediatric Department, “Vittore Buzzi” Children's Hospital, Milan, Italy
| |
Collapse
|
43
|
Giron M, Thomas M, Dardevet D, Chassard C, Savary-Auzeloux I. Gut microbes and muscle function: can probiotics make our muscles stronger? J Cachexia Sarcopenia Muscle 2022; 13:1460-1476. [PMID: 35278043 PMCID: PMC9178375 DOI: 10.1002/jcsm.12964] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 01/07/2022] [Accepted: 02/03/2022] [Indexed: 12/20/2022] Open
Abstract
Evidence suggests that gut microbiota composition and diversity can be a determinant of skeletal muscle metabolism and functionality. This is true in catabolic (sarcopenia and cachexia) or anabolic (exercise or in athletes) situations. As gut microbiota is known to be causal in the development and worsening of metabolic dysregulation phenotypes such as obesity or insulin resistance, it can regulate, at least partially, skeletal muscle mass and function. Skeletal muscles are physiologically far from the gut. Signals generated by the gut due to its interaction with the gut microbiome (microbial metabolites, gut peptides, lipopolysaccharides, and interleukins) constitute links between gut microbiota activity and skeletal muscle and regulate muscle functionality via modulation of systemic/tissue inflammation as well as insulin sensitivity. The probiotics able to limit sarcopenia and cachexia or promote health performances in rodents are mainly lactic acid bacteria and bifidobacteria. In humans, the same bacteria have been tested, but the scarcity of the studies, the variability of the populations, and the difficulty to measure accurately and with high reproducibility muscle mass and function have not allowed to highlight specific strains able to optimize muscle mass and function. Further studies are required on more defined population, in order to design personalized nutrition. For elderly, testing the efficiency of probiotics according to the degree of frailty, nutritional state, or degree of sarcopenia before supplementation is essential. For exercise, selection of probiotics capable to be efficient in recreational and/or elite athletes, resistance, and/or endurance exercise would also require further attention. Ultimately, a combination of strategies capable to optimize muscle functionality, including bacteria (new microbes, bacterial ecosystems, or mix, more prone to colonize a specific gut ecosystem) associated with prebiotics and other 'traditional' supplements known to stimulate muscle anabolism (e.g. proteins), could be the best way to preserve muscle functionality in healthy individuals at all ages or patients.
Collapse
Affiliation(s)
- Muriel Giron
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, France.,Université Paris-Saclay, INRAE UMR1319, AgroParisTech, Micalis Institute, Jouy-en-Josas, France.,INRAE UMR0545, Unité Mixte de Recherche sur le Fromage, Aurillac, France
| | - Muriel Thomas
- Université Paris-Saclay, INRAE UMR1319, AgroParisTech, Micalis Institute, Jouy-en-Josas, France
| | | | | | | |
Collapse
|
44
|
Panigrahi MK, Kaliaperumal V, Akella A, Venugopal G, Ramadass B. Mapping microbiome-redox spectrum and evaluating Microbial-Redox Index in chronic gastritis. Sci Rep 2022; 12:8450. [PMID: 35589904 PMCID: PMC9120160 DOI: 10.1038/s41598-022-12431-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 05/11/2022] [Indexed: 12/27/2022] Open
Abstract
Peptic ulcer disease (PUD) and chronic gastritis are prevalent in developing countries. The role of oxidative stress in the pathogenesis of gastrointestinal mucosal disorders is well recognized. In PUD, the gastric mucosa and its associated microbiome are subject to diet and stress-induced oxidative perturbations. Tissue redox potential (ORP) measurement can quantify oxidative stress, reflecting the balance between prooxidants and antioxidants. This study hypothesizes that the oxidative stress quantified by tissue ORP will be associated with characteristic changes in the mucosa-associated microbiome in PUD and gastritis. In addition, we propose using relative microbial abundance as a quantitative marker of mucosal health. Endoscopy was performed to obtain gastric mucosal biopsies from ten PUD and ten non-ulcer dyspepsia (NUD) patients. The tissue ORP was measured directly with a microelectrode using a biopsy specimen. A second specimen from an adjacent site was subjected to 16s rRNA gene sequencing. From the OTUs, the relative abundance of the microbial taxon in each of the samples was derived. We analyzed the genome of the predominant species for genes encoding the utilization of oxygen as an electron acceptor in respiration and for the presence of antioxidant defense mechanisms. The organisms were then grouped based on their established and inferred redox traits. Shannon diversity index and Species richness were calculated on rarefied data. The relative abundance of organisms that prefer high ORP over those that favor low ORP is conceived as the “Microbial Redox Index (MRI),” an indicator of mucosal health. In the gastric mucosa, aerobic species predominate and are more diverse than the anaerobes. The predominant aerobes are Helicobacter pylori and Sphingobacterium mizutaii. The abundance of these two species had an inverse correlation with the abundance of low ORP preferring anaerobes. Their relative abundance ratio (Microbial Redox Index) correlated with the tissue oxidation–reduction potential (ORP), a direct measure of oxidative stress. Correlation analysis also revealed that the abundance of all anaerobes inversely correlated with the dominant aerobic taxa. In addition, Shannon and Species richness diversity indices, the probable indicators of mucosal health, were negatively correlated with Microbial Redox Index. Using PUD as a prototype mucosal disease, this article describes a generalized approach to infer and quantify mucosal oxidative stress by analyzing the relative abundance of microorganisms that preferentially grow at the extremes of the tissue redox potential. This ratiometric Microbial Redox Index can also be assessed using simple qPCR without the need for sequencing. The approach described herein may be helpful as a widely applicable quantitative measure of mucosal health with prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Manas Kumar Panigrahi
- Department of Gastroenterology, All India Institute of Medical Sciences, Bhubaneswar, India
| | - Venkatesh Kaliaperumal
- MYAS-NIN Department of Sports Science, ICMR-National Institute of Nutrition, Hyderabad, India
| | - Abhishek Akella
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences, Bhubaneswar, 751019, India
| | - Giriprasad Venugopal
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences, Bhubaneswar, 751019, India
| | - Balamurugan Ramadass
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences, Bhubaneswar, 751019, India. .,Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar, India.
| |
Collapse
|
45
|
Li XB, Chu XJ, Cao NW, Wang H, Fang XY, Fan YG, Li BZ, Ye DQ. Proton pump inhibitors induce changes in the gut microbiome composition of systemic lupus erythematosus patients. BMC Microbiol 2022; 22:117. [PMID: 35477382 PMCID: PMC9043501 DOI: 10.1186/s12866-022-02533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 04/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Currently, few studies focus on the association between gut microbiota and systemic lupus erythematosus (SLE), and much less studies consider the effect of drug usage. Proton pump inhibitors (PPIs) are commonly used to treat drug-related gastrointestinal damage in SLE patients. Therefore, the purpose of this study is to examine the gut microbiota of SLE patients using PPIs. METHODS Fecal samples from 20 SLE patients with PPIs (P-SLE), 20 SLE patients without PPIs (NP-SLE) and 17 healthy controls (HCs) were obtained. The structure of the bacterial community in the fecal samples was analyzed by 16S rRNA gene sequencing. Redundancy analysis (RDA) was performed to observe the relationship between clinical variables and microbiome composition in P-SLE and NP-SLE patients. Based on the Kyoto Encyclopedia of Genes and Genomes (KEGG) database, functional capabilities of microbiota were estimated. Network analysis was performed to analyze the association of metabolic pathway alterations with altered gut microbiota in P-SLE and NP-SLE patients. RESULTS P-SLE patients exhibited increased alpha-diversity and an altered composition of the gut microbiota compared with NP-SLE patients. The alpha-diversity of NP-SLE patients was significantly lower than HCs but also of P-SLE patients, whose alpha-diversity had become similar to HCs. Compared with NP-SLE patients, the relative abundances of Lactobacillus, Roseburia, Oxalobacter, and Desulfovibrio were increased, while those of Veillonella, Escherichia, Morganella, Pseudomonas and Stenotrophomonas were decreased in P-SLE patients. RDA indicated that PPI use was the only significant exploratory variable for the microbiome composition when comparing SLE patients. KEGG analysis showed that 16 metabolic pathways were significantly different between NP-SLE and P-SLE patients. These metabolic pathways were mainly associated with changes in Escherichia, Roseburia, Stenotrophomonas, Morganella and Alipipes as determined by the network analysis. CONCLUSIONS PPI use is associated with an improved microbiome composition of SLE patients as it 1) increases alpha-diversity levels back to normal, 2) increases the abundance of various (beneficial) commensals, and 3) decreases the abundance of certain opportunistic pathogenic genera such as Escherichia. Validation studies with higher patient numbers are however recommended to explore these patterns in more detail.
Collapse
Affiliation(s)
- Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Xin-Yu Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Yin-Guang Fan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China.,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China. .,Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, China.
| |
Collapse
|
46
|
Djemai K, Drancourt M, Tidjani Alou M. Bacteria and Methanogens in the Human Microbiome: a Review of Syntrophic Interactions. MICROBIAL ECOLOGY 2022; 83:536-554. [PMID: 34169332 DOI: 10.1007/s00248-021-01796-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Methanogens are microorganisms belonging to the Archaea domain and represent the primary source of biotic methane. Methanogens encode a series of enzymes which can convert secondary substrates into methane following three major methanogenesis pathways. Initially recognized as environmental microorganisms, methanogens have more recently been acknowledged as host-associated microorganisms after their detection and initial isolation in ruminants in the 1950s. Methanogens have also been co-detected with bacteria in various pathological situations, bringing their role as pathogens into question. Here, we review reported associations between methanogens and bacteria in physiological and pathological situations in order to understand the metabolic interactions explaining these associations. To do so, we describe the origin of the metabolites used for methanogenesis and highlight the central role of methanogens in the syntrophic process during carbon cycling. We then focus on the metabolic abilities of co-detected bacterial species described in the literature and infer from their genomes the probable mechanisms of their association with methanogens. The syntrophic interactions between bacteria and methanogens are paramount to gut homeostasis. Therefore, any dysbiosis affecting methanogens might impact human health. Thus, the monitoring of methanogens may be used as a bio-indicator of dysbiosis. Moreover, new therapeutic approaches can be developed based on their administration as probiotics. We thus insist on the importance of investigating methanogens in clinical microbiology.
Collapse
Affiliation(s)
- Kenza Djemai
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
- IHU Méditerranée Infection, Marseille, France
| | - Michel Drancourt
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France
| | - Maryam Tidjani Alou
- IRD, MEPHI, IHU Méditerranée Infection, Aix-Marseille-University, 19-12 Bd Jean Moulin, 13005, Marseille, France.
| |
Collapse
|
47
|
First Detection of Methanogens in Orthopedic Prosthesis Infection: A Four-Case Founding Series. PROSTHESIS 2022. [DOI: 10.3390/prosthesis4010005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Orthopedic prosthesis infection must be medically managed after appropriate microbiological documentation. While bacteria and fungi are acknowledged to be causative opportunistic pathogens in this situation, the potential role of methanogens in orthopedic prosthesis infections is still unknown. In a retrospective study, a total of 100 joint and bone samples collected from 25 patients were screened by specific PCR assays for the detection of methanogens. PCR-positive samples were observed by autofluorescence, electron microscopy and tentatively cultured under specific culture conditions. Methanogens were detected by quantitative PCR in 4/100 samples, in the presence of negative controls. Sequencing identified Methanobrevibacter oralis in two cases, Methanobrevibacter smithii in one case and Methanobrevibacter wolinii in one case. Microscopic methods confirmed molecular findings and bacterial culture yielded two strains of Staphylococcus aureus, one strain of Staphylococcus epidermidis and one strain of Proteus mirabilis. These unprecedented data highlight the presence of methanogens in joint and bone samples of patients also diagnosed with bacterial orthopedic prosthesis infection, questioning the role of methanogens as additional opportunistic co-pathogens in this situation.
Collapse
|
48
|
Hassani Y, Saad J, Terrer E, Aboudharam G, Giancarlo B, Silvestri F, Raoult D, Drancourt M, Grine G. Introducing clinical nanorachaeaology: Isolation by co-culture of Nanopusillus massiliensis sp. nov. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100100. [PMID: 35005659 PMCID: PMC8718826 DOI: 10.1016/j.crmicr.2021.100100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/13/2021] [Accepted: 12/13/2021] [Indexed: 11/16/2022] Open
Abstract
The first ever detection in human microbiota of nanoarchaea. Detection and co-isolation of nanoarchaea new species in human oral microbiota. These data suggest the contribution of methanogens to the perinatal development of intestinal microbiota and physiology. Extended our knowledge of human microbiota diversity. Opening a new field of research in clinical microbiology here referred to as clinical nanoarchaeology.
Background Nanoarchaeota, obligate symbiont of some environmental archaea with reduced genomes, have been described in marine thermal vent environments, yet never detected in hosts, including humans. Methods Here, using laboratory tools geared towards the detection of nanoarchaea including PCR-sequencing, WGS, microscopy and culture. Results We discovered a novel nanoarchaea, Nanopusillus massiliensis, detected in dental plate samples by specific PCR-based assays. Combining fluorescent in situ hybridization (FISH) with scanning electron microscopy disclosed close contacts between N. massiliensis and the archaea Methanobrevibacter oralis in these samples. Culturing one sample yielded co-isolation of M. oralis and N. massiliensis with a 606,935-bp genome, with 23.6% GC encoded 16 tRNA, 3 rRNA and 942 coding DNA sequences, of which 400 were assigned to clusters of orthologous groups. Conclusion The discovery of N. massiliensis, made publicly available in collection, extended our knowledge of human microbiota diversity, opening a new field of research in clinical microbiology here referred to as clinical nanoarchaeology.
Collapse
Affiliation(s)
- Y. Hassani
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - J. Saad
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - E. Terrer
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - G. Aboudharam
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - B Giancarlo
- Private practice Marseille France, Marseille, France
| | - F. Silvestri
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
| | - D. Raoult
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - M. Drancourt
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- IHU Méditerranée Infection, Marseille 13005, France
| | - G. Grine
- Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France
- Faculté de médecine dentaire, Aix-Marseille Université, Marseille 13005, France
- Corresponding author at: Aix-Marseille-Univ., IRD, MEPHI, IHU Méditerranée Infection, 19-21 Boulevard Jean Moulin, Marseille 13005, France.
| |
Collapse
|
49
|
Pham VT, Fehlbaum S, Seifert N, Richard N, Bruins MJ, Sybesma W, Rehman A, Steinert RE. Effects of colon-targeted vitamins on the composition and metabolic activity of the human gut microbiome- a pilot study. Gut Microbes 2022; 13:1-20. [PMID: 33615992 PMCID: PMC7899684 DOI: 10.1080/19490976.2021.1875774] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
An increasing body of evidence has shown that gut microbiota imbalances are linked to diseases. Currently, the possibility of regulating gut microbiota to reverse these perturbations by developing novel therapeutic and preventive strategies is being extensively investigated. The modulatory effect of vitamins on the gut microbiome and related host health benefits remain largely unclear. We investigated the effects of colon-delivered vitamins A, B2, C, D, and E on the gut microbiota using a human clinical study and batch fermentation experiments, in combination with cell models for the assessment of barrier and immune functions. Vitamins C, B2, and D may modulate the human gut microbiome in terms of metabolic activity and bacterial composition. The most distinct effect was that of vitamin C, which significantly increased microbial alpha diversity and fecal short-chain fatty acids compared to the placebo. The remaining vitamins tested showed similar effects on microbial diversity, composition, and/or metabolic activity in vitro, but in varying degrees. Here, we showed that vitamins may modulate the human gut microbiome. Follow-up studies investigating targeted delivery of vitamins to the colon may help clarify the clinical significance of this novel concept for treating and preventing dysbiotic microbiota-related human diseases. Trial registration: ClinicalTrials.gov, NCT03668964. Registered 13 September 2018 - Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT03668964.
Collapse
Affiliation(s)
- Van T. Pham
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland,CONTACT Van T. Pham Wurmisweg 576, 4303 Kaiseraugst203/117A+41 618 158 828
| | - Sophie Fehlbaum
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nicole Seifert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Nathalie Richard
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Maaike J. Bruins
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Wilbert Sybesma
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Ateequr Rehman
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland
| | - Robert E. Steinert
- R&D Human Nutrition and Health, DSM Nutritional Products Ltd., Basel, Switzerland,Department of Surgery, Division of Visceral and Transplantation Surgery, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
50
|
Gut microbiome dysbiosis in malnutrition. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 192:205-229. [DOI: 10.1016/bs.pmbts.2022.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|