1
|
Kalyvas JT, Wang Y, Romeo O, Horsley JR, Abell AD. Broad-Spectrum Gramicidin S Derivatives with Potent Activity Against Multidrug-Resistant Gram-Negative ESKAPE Pathogens. Antibiotics (Basel) 2025; 14:423. [PMID: 40426491 PMCID: PMC12108418 DOI: 10.3390/antibiotics14050423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/16/2025] [Accepted: 04/20/2025] [Indexed: 05/29/2025] Open
Abstract
BACKGROUND/OBJECTIVES Multidrug-resistant Gram-negative ESKAPE pathogens, including E. coli, K. pneumoniae, P. aeruginosa, and A. baumannii, pose a significant global health threat. Gramicidin S, a potent cyclic antimicrobial peptide, is largely ineffective against these bacteria, and its high haemolytic toxicity limits its clinical usage. This study reports on several novel gramicidin S analogues with improved efficacy and safety profiles against multidrug-resistant Gram-negative bacteria. METHODS A total of 19 gramicidin S derivatives were synthesised using Fmoc-based solid-phase peptide synthesis with targeted substitutions to enhance cationicity and modulate hydrophobicity. Minimum inhibitory concentrations (MICs) were determined against standard Gram-negative and Gram-positive strains. Haemolytic toxicity and in vitro nephrotoxicity were evaluated using human red blood cells and HEK-293 cells, respectively. All peptides were characterised by RP-HPLC and HRMS. RESULTS The selective incorporation of DArg and Trp significantly enhanced activity against Gram-negative bacteria while reducing cytotoxicity. Peptide 8 improved the therapeutic index (TI) against E. coli by 10-fold (MIC: 8 µg/mL; TI: 4.10) compared to gramicidin S (MIC: 32 µg/mL; TI: 0.38). Peptide 9 exhibited an 8-fold potency increase against K. pneumoniae and a 25-fold TI improvement. Peptide 19 enhanced activity against P. aeruginosa 8-fold over gramicidin S, while peptide 7 showed a 27-fold TI enhancement. All active peptides retained broad-spectrum activity against S. aureus, including MRSA. CONCLUSIONS The findings highlight the critical role of balancing hydrophobicity and cationicity to overcome species-specific resistance mechanisms. Our gramicidin S analogues demonstrate potent broad-spectrum activity with significantly reduced toxicity compared to the parent peptide, providing a robust platform for the development of new antibiotics against ESKAPE bacterial pathogens.
Collapse
Affiliation(s)
- John T. Kalyvas
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (J.T.K.); (Y.W.); (J.R.H.)
| | - Yifei Wang
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (J.T.K.); (Y.W.); (J.R.H.)
| | - Ornella Romeo
- Research Centre for Infectious Diseases, School of Biological Sciences, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - John R. Horsley
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (J.T.K.); (Y.W.); (J.R.H.)
| | - Andrew D. Abell
- Department of Chemistry, School of Physics, Chemistry and Earth Sciences, The University of Adelaide, Adelaide, SA 5005, Australia; (J.T.K.); (Y.W.); (J.R.H.)
| |
Collapse
|
2
|
Chang DH, Richardson JD, Lee MR, Lynn DM, Palecek SP, Van Lehn RC. Machine learning-driven discovery of highly selective antifungal peptides containing non-canonical β-amino acids. Chem Sci 2025; 16:5579-5594. [PMID: 40028619 PMCID: PMC11867109 DOI: 10.1039/d4sc06689h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025] Open
Abstract
Antimicrobial peptides (AMPs) are promising compounds for the treatment and prevention of multidrug-resistant infections because of their ability to directly disrupt microbial membranes, a mechanism that is less likely to lead to resistance compared to antibiotics. Unfortunately, natural AMPs are prone to proteolytic cleavage in vivo and have relatively low selectivity for microbial versus human cells, motivating the development of synthetic peptidomimetics of AMPs with improved peptide stability, activity, and selectivity. However, a lack of understanding of structure-activity relationships for peptidomimetics constrains development to rational design or experimental predictors, both of which are cost and time prohibitive, especially when the design space of possible sequences scales exponentially with the number of amino acids. To address these challenges, we developed an iterative Gaussian process regression (GPR) approach to explore a large design space of 336 000 synthetic α/β-peptide analogues of a natural AMP, aurein 1.2, based on an initial training set of 147 sequences and their biological activities against microbial pathogens and selectivity for microbes vs. mammalian cells. We show that the quantification of prediction uncertainty provided by GPR can guide the exploration of this design space via iterative experimental measurements to efficiently discover novel sequences with up to a 52-fold increase in antifungal selectivity compared to aurein 1.2. The highest selectivity peptide discovered using this approach features an unconventional substitution of cationic amino acids in the hydrophobic face and would be unlikely to be explored by conventional rational design. Overall, this work demonstrates a generalizable approach that integrates computation and experiment to accurately predict the selectivity of AMPs containing synthetic amino acids, which we employed to discover new α/β-peptides that hold promise as selective antifungal agents to combat the antimicrobial resistance crisis.
Collapse
Affiliation(s)
- Douglas H Chang
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison WI USA
| | - Joshua D Richardson
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison WI USA
| | - Myung-Ryul Lee
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison WI USA
| | - David M Lynn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison WI USA
- Department of Chemistry, University of Wisconsin-Madison Madison WI USA
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison WI USA
| | - Reid C Van Lehn
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison Madison WI USA
- Department of Chemistry, University of Wisconsin-Madison Madison WI USA
| |
Collapse
|
3
|
Taheri MN, Seyedjavadi SS, Goudarzi M, Ebrahimipour G, Hashemi A. Cliotide U1, a Novel Antimicrobial Peptide Isolated From Urtica Dioica Leaves. Bioinform Biol Insights 2025; 19:11779322251315291. [PMID: 39886350 PMCID: PMC11780632 DOI: 10.1177/11779322251315291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/06/2025] [Indexed: 02/01/2025] Open
Abstract
Aims Antibiotic resistance is currently a major challenge to scientists. Thus, attempts have been made to develop new compounds with antimicrobial activity. In this research, a new antimicrobial peptide with antibacterial activity was isolated from the plant Urtica dioica. Methods A new antimicrobial peptide, named cliotide U1, was purified through precipitation with ammonium sulfate and reverse-phase high-performance liquid chromatography. In silico methods analyzed the physicochemical properties of cliotide U1. The properties of the peptide, including antibacterial activity, pH stability, heat stability, cytotoxicity, and hemolytic activity, were also examined. Findings The purified peptide was composed of 35 amino acids with a hydrophobicity ratio of 63% and a net charge of + 5. The antibacterial activity of cliotide U1 was observed against gram-negative and gram-positive bacteria with a minimum inhibitory concentration (MIC) of 1 to 4 µM. Cliotide U1 had less than 2% cytotoxic activity at the MIC range against the human embryonic kidney cell line 293 with no clear hemolytic activity. The stability of cliotide U1 was preserved at various temperatures (10-60°C) and pH (6-9). Conclusion Our results demonstrated that cliotide U1 had potent antibacterial potential against gram-negative and gram-positive bacteria. Considering its properties, cliotide U1 can be introduced as a novel antibacterial candidate for expanding new therapeutic drugs.
Collapse
Affiliation(s)
- Mahnaz Nasre Taheri
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | | | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Infectious Diseases and Tropical Medicine Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Ebrahimipour
- Department of Microbiology, Faculty of Biological Sciences and Technology, Shahid Beheshti University, Tehran, Iran
| | - Ali Hashemi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Fratini F, Pecorini C, Resci I, Copelotti E, Nocera FP, Najar B, Mancini S. Evaluation of the Synergistic Antimicrobial Activity of Essential Oils and Cecropin A Natural Peptide on Gram-Negative Bacteria. Animals (Basel) 2025; 15:282. [PMID: 39858282 PMCID: PMC11760479 DOI: 10.3390/ani15020282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/16/2025] [Accepted: 01/17/2025] [Indexed: 01/27/2025] Open
Abstract
In an era dominated by the phenomenon of antibiotic resistance, it is increasingly important to look for alternatives to synthetic antibiotics. In light of these considerations, the synergistic use of essential oils and Antimicrobial Peptides (AMPs) seems a viable strategy. In this study, we assessed the Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC) and Fractional Inhibitory Concentration (FIC) of three Essential Oils (EOs): winter savory (Satureja montana), bergamot (Citrus bergamia) and cinnamon (Cinnamomum zeylanicum) and of the insect antimicrobial peptide Cecropin A (CecA), alone and in combination with EOs, against two Gram-negative ATCC bacterial strains: Escherichia coli and Salmonella enterica serovar Typhimurium. The MIC results showed that winter savory EO (SmEO) and cinnamon EO (CzEO) exhibited the strongest antibacterial activity against both bacterial strains, whereas bergamot EO (CbEO) and CecA demonstrated comparatively lower antibacterial efficacy. These results were also confirmed by the MBC values. The FIC Indices (FICI) revealed that the most effective synergies were observed with the combinations SmEO/CzEO and SmEO/CbEO against E. coli, while against S. enterica Typhimurium the best combinations were CbEO/CzEO and SmEO/CzEO. Regarding CecA, although it was not the most efficient agent either individually or in combination, it is noteworthy that, when combined, it exhibited antibacterial activity even at a 1:64 dilution.
Collapse
Affiliation(s)
- Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Chiara Pecorini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Ilaria Resci
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Emma Copelotti
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| | - Francesca Paola Nocera
- Department of Veterinary Medicine and Animal Production, University of Naples “Federico II”, Via Delpino 1, 80137 Naples, Italy
| | - Basma Najar
- RD3—Pharmacognosy, Bioanalysis & Drug Discovery Unit, Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Free University of Brussels, Campus Plaine, Blvd Triomphe, CP 205/5, B-1050 Brussels, Belgium;
| | - Simone Mancini
- Department of Veterinary Sciences, University of Pisa, Viale delle Piagge 2, 56124 Pisa, Italy; (F.F.); (C.P.); (I.R.); (E.C.); (S.M.)
| |
Collapse
|
5
|
Akhtar S, Ansari MM, Verma RD, Sharma J, Gupta A, Dhuriya RK, Verma DP, Saroj J, Ali M, Verma NK, Mitra K, Singh BN, Ghosh JK. Generating a Peptide Library Using the Repeats of Amino Acid Scaffolds Created by Sliding the Framework of a 7-mer Human Chemerin Segment and Discovery of Potent Antibacterial and Antimycobacterial Peptides. J Med Chem 2025; 68:566-589. [PMID: 39718360 DOI: 10.1021/acs.jmedchem.4c02351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The quest for new approaches for generating novel bioactive designer proteins/peptides has continued with their success in various biomedical applications. Previously, we designed a 14-mer α-helical peptide with antimicrobial and antimycobacterial activities by employing a tandem repeat of the 7-mer, "KVLGRLV" human chemerin segment. Herein, we devised a new method of "sliding framework" with this segment to create amino acid scaffolds of varying sizes and sequences and explored the design of a peptide library with antibacterial and antimycobacterial activities. By utilizing 2 to 7 repeats of these 2 to 6-residue scaffolds, we designed and synthesized 30 peptides of 10-16 residue lengths. Thus, we identified novel AMPs with α-helical, β-sheet, and random coil structures, membrane-destabilizing, and intracellular modes of action, and 9 of them showed therapeutic indices between 100 and 750. Three and two of these nine peptides showed in vivo antibacterial and antitubercular efficacies against Escherichia coli ATCC 25922 and Mycobacterium bovis BCG infections, respectively, in a mouse model.
Collapse
Affiliation(s)
- Sariyah Akhtar
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Mohd Mustkim Ansari
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Rahul Dev Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Juhi Sharma
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Arvind Gupta
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajendra Kumar Dhuriya
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devesh Pratap Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
| | - Jyotshana Saroj
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mehmood Ali
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Neeraj Kumar Verma
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- School of Studies in Biotechnology, Shaheed Mahendra Karma Vishwavidyalaya, Bastar, Dharampura-2, Jagdalpur, C.G. 494001, India
| | - Kalyan Mitra
- Electron Microscopy Unit, SAIF &R Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Bhupendra Narain Singh
- Division of Molecular Microbiology and Immunology, CSIR- Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jimut Kanti Ghosh
- Biochemistry and Structural Biology Division, CSIR-Central Drug Research Institute, Sector 10, Jankipuram Extension, Sitapur Road, Lucknow 226031, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
6
|
Haddad H, da Franca Rodrigues KA, Othman H, Veras LMC, Rodrigues RRL, Ouahchi I, Ouni B, Zaϊri A. In vitro Antileishmanial Activity and In silico Molecular Modeling Studies of Novel Analogs of Dermaseptins S4 and B2. Curr Pharm Biotechnol 2025; 26:276-288. [PMID: 39257149 DOI: 10.2174/0113892010296038240427050421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 09/12/2024]
Abstract
BACKGROUND Leishmaniasis is responsible for approximately 65,000 annual deaths. Various Leishmania species are the predominant cause of visceral, cutaneous, or mucocutaneous leishmaniasis, affecting millions worldwide. The lack of a vaccine, emergence of resistance, and undesirable side effects caused by antileishmanial medications have prompted researchers to look for novel therapeutic approaches to treat this disease. Antimicrobial peptides (AMPs) offer an alternative for promoting the discovery of new drugs. METHODS In this study, we detail the synthesis process and investigate the antileishmanial activity against Leishmania (Viannia) braziliensis for peptides belonging to the dermaseptin (DS) family and their synthetic analogs. The MTT assay was performed to investigate the cytotoxicity of these peptides on the murine macrophage cell line RAW 264.7. Subsequently, we performed molecular modeling analysis to explore the structure-function correlation of the derivatives interacting with the parasitic membrane. RESULTS All examined derivatives displayed concentration-dependent antileishmanial effect at low concentrations. Their effectiveness varied according to the peptide's proprieties. Notably, peptides with higher levels of charge demonstrated the most pronounced activities. Cytotoxicity assays showed that all the tested peptides were not cytotoxic compared to the tested conventional drug. The structure-function relationships demonstrated that the charged N-terminus could be responsible for the antileishmanial effect observed on promastigotes. CONCLUSION Collectively, these results propose that dermaseptins (DS) might offer potential as promising candidates for the development of effective antileishmanial therapies.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, 5000 Monastir, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | | | - Houcemeddine Othman
- Laboratory of Cytogenetics and Reproductive Biology, CHU Farhat Hached, 4000 Sousse, Tunisia
| | - Leiz Maria Costa Veras
- Biodiversity and Biotechnology Research Center, BIOTEC, Federal University of Piauí, Parnaíba, PI, Brazil
| | - Raiza Raianne Luz Rodrigues
- Laboratory of Infectious Diseases, Ladic, Campus Ministro Reis Velloso, Federal University of Delta do Parnaíba, 64202-020, Brazil
| | - Ines Ouahchi
- Biodiversity Cytogenetics, Molecular Genetics and Reproductive Biology, Farhat Hached University Hospital, 4000 Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| | - Amira Zaϊri
- Biochemistry Department, Faculty of Medicine, University of Sousse, 4002 Sousse, Tunisia
| |
Collapse
|
7
|
Cheng X, Zhang Y, Zhang Y, Chen Y, Chen J, Wang W, Zhu G. Multiple strategies of HSP antimicrobial peptide optimization to enhance antimicrobial activity. Amino Acids 2024; 56:66. [PMID: 39589573 PMCID: PMC11599297 DOI: 10.1007/s00726-024-03428-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024]
Abstract
Antimicrobial peptides (AMPs) have caught the attention of researchers over the last couple of years due to their unique membrane lytic mechanism for combating antibiotic resistance, which differs from the molecular targets of traditional antibiotics. Although natural AMPs exhibit potential antimicrobial activity against a wide range of microorganisms, some drawbacks, such as toxicity, low antibacterial activity, and high production costs limit their clinical application. To enhance the antimicrobial activity of a series of HSP peptides derived from the natural peptide HSP-1, this study optimized them using a variety of strategies, including net charge, hydrophobic moment, hydrophobicity, and helicity. Optimizing the antimicrobial action of HSP peptides depended mostly on net charge, hydrophobic moment, and hydrophobicity rather than helicity. HSP-M4 may be designed to combat microbial infections because the antimicrobial activity and cytotoxicity assays showed that they exhibited low cytotoxicity and prominent antimicrobial activity, respectively.
Collapse
Affiliation(s)
- Xiaozhong Cheng
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| | - Yonghuang Zhang
- Department of Pharmacy, Hefei Binhu Hospital, Hefei, 230601, China
| | - Yan Zhang
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China
| | - Yajun Chen
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China
| | - Jianli Chen
- Shimadzu (China) Co., Ltd, Wuhan, 430000, China
| | - Wei Wang
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| | - Guilan Zhu
- Anhui Province Green Food Collaborative Technology Service Center for Rural Revitalization, Hefei Normal University, Hefei, 230601, China.
| |
Collapse
|
8
|
Cho HS, Kim D, Jeon H, Somasundaram P, Soundrarajan N, Park C. Bactericidal activities and biochemical features of 16 antimicrobial peptides against bovine-mastitis causative pathogens. Vet Res 2024; 55:150. [PMID: 39543729 PMCID: PMC11566078 DOI: 10.1186/s13567-024-01402-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/20/2024] [Indexed: 11/17/2024] Open
Abstract
Mastitis, often caused by bacterial infection, is an inflammatory condition affecting the mammary glands. The condition is particularly prevalent in dairy cattle. Current treatment of bovine mastitis heavily relies on the use of antibiotics. To identify alternative solutions to antibiotic use, we evaluated the antimicrobial activity of 14 cathelicidins reported from 10 animal species. In conjunction, we assessed two bacteriocins against the bovine-mastitis causative bacterial panel, consisting of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis, Streptococcus agalactiae, Streptococcus dysgalactiae, and Streptococcus equi. Among the antimicrobial peptides (AMPs), cc-CATH3, ML-CATH, and PD-CATH proved to be highly active (minimum inhibitory concentration of 2-41 μg/mL, 0.2-10.3 μM) against all bacterial strains in the panel and field isolates from milk, with elevated somatic cell counts (≥ 500,000 cells/mL). Of the AMPs tested in this study, ML-CATH presented the highest level of effectiveness in controlling mastitis-associated bacterial strains while also possessing minimal cytotoxicity and functional stability against pH change and a high salt condition. The results of in silico analyses on the biochemical features of 12 helical cathelicidins revealed that the charge of AMPs appears to be a major determinant in killing Gram-negative bacteria. Furthermore, we observed a unique motif, "N(n≥3)-P(n≥1)-N(n≥3)", from the sequences of PMAP-36, cc-CATH3, ML-CATH, and PD-CATH that exhibits potent antimicrobial activity against a broad spectrum of bacteria compared to others. Our findings support the proposition that AMPs could serve as effective antimicrobial alternatives to conventional antibiotics in treating complex animal diseases caused by microbial infection, such as bovine mastitis.
Collapse
Affiliation(s)
- Hye-Sun Cho
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-Dong, Kwangjin-Gu, Seoul, Republic of Korea
| | - Dohun Kim
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-Dong, Kwangjin-Gu, Seoul, Republic of Korea
| | - Hyoim Jeon
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-Dong, Kwangjin-Gu, Seoul, Republic of Korea
| | - Prathap Somasundaram
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-Dong, Kwangjin-Gu, Seoul, Republic of Korea
| | - Nagasundarapandian Soundrarajan
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-Dong, Kwangjin-Gu, Seoul, Republic of Korea
| | - Chankyu Park
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Hwayang-Dong, Kwangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Verma DP, Tripathi AK, Thakur AK. Innovative Strategies and Methodologies in Antimicrobial Peptide Design. J Funct Biomater 2024; 15:320. [PMID: 39590524 PMCID: PMC11595219 DOI: 10.3390/jfb15110320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/28/2024] Open
Abstract
Multiple lines of research have led to the hypothesis that antimicrobial peptides (AMPs) are an important component of the innate immune response, playing a vital role in the defense against a wide range of infectious diseases. In this review, we explore the occurrence and availability of antimicrobial proteins and peptides across various species, highlighting their natural abundance and evolutionary significance. The design of AMPs has been driven by the identification of key structural and functional features, which are essential for optimizing their antimicrobial activity and reducing toxicity to host cells. We discuss various approaches, including rational design, high-throughput screening, and computational modeling, that have been employed to develop novel AMPs with enhanced efficacy. A particular focus is given to the identification and characterization of peptide fragments derived from naturally occurring host defense proteins, which offer a promising avenue for the discovery of new AMPs. The incorporation of artificial intelligence (AI) and machine learning (ML) tools into AMP research has further accelerated the identification, optimization, and application of these peptides. This review also discusses the current status and therapeutic potential of AMPs, emphasizing their role in addressing the growing issue of antibiotic resistance. The conclusion highlights the importance of continued research and innovation in AMP development to fully harness their potential as next-generation antimicrobial agents.
Collapse
Affiliation(s)
- Devesh Pratap Verma
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Amit Kumar Tripathi
- Department of Microbiology, Immunology and Genetics, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Ashwani Kumar Thakur
- Department of Biological Sciences & Bioengineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| |
Collapse
|
10
|
Mousa WK, Shaikh AY, Ghemrawi R, Aldulaimi M, Al Ali A, Sammani N, Khair M, Helal MI, Al-Marzooq F, Oueis E. Human microbiome derived synthetic antimicrobial peptides with activity against Gram-negative, Gram-positive, and antibiotic resistant bacteria. RSC Med Chem 2024; 16:d4md00383g. [PMID: 39479472 PMCID: PMC11520653 DOI: 10.1039/d4md00383g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/09/2024] [Indexed: 11/02/2024] Open
Abstract
The prevalence of antibacterial resistance has become one of the major health threats of modern times, requiring the development of novel antibacterials. Antimicrobial peptides are a promising source of antibiotic candidates, mostly requiring further optimization to enhance druggability. In this study, a series of new antimicrobial peptides derived from lactomodulin, a human microbiome natural peptide, was designed, synthesized, and biologically evaluated. Within the most active region of the parent peptide, linear peptide LM6 with the sequence LSKISGGIGPLVIPV-NH2 and its cyclic derivatives LM13a and LM13b showed strong antibacterial activity against Gram-positive bacteria, including resistant strains, and Gram-negative bacteria. The peptides were found to have a rapid onset of bactericidal activity and transmission electron microscopy clearly shows the disintegration of the cell membrane, suggesting a membrane-targeting mode of action.
Collapse
Affiliation(s)
- Walaa K Mousa
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
- College of Pharmacy, Mansoura University Mansoura 35516 Egypt
| | - Ashif Y Shaikh
- Department of chemistry, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| | - Rose Ghemrawi
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
| | - Mohammed Aldulaimi
- Department of chemistry, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| | - Aya Al Ali
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
| | - Nour Sammani
- College of Pharmacy, Al Ain University PO BOX 64141 Abu Dhabi United Arab Emirates
- AAU Health and Biomedical Research Center, Al Ain University PO BOX 112612 Abu Dhabi United Arab Emirates
| | - Mostafa Khair
- Core Technology Platforms, New York University Abu Dhabi PO BOX 127788 United Arab Emirates
| | - Mohamed I Helal
- Electron Microscopy Core Labs, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| | - Farah Al-Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, UAE University P.O. Box 15551 Al Ain United Arab Emirates
| | - Emilia Oueis
- Department of chemistry, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
- Healthcare Engineering Innovation Group, Khalifa University of Science and Technology PO BOX 127788 Abu Dhabi United Arab Emirates
| |
Collapse
|
11
|
Song J, Zhang S, Xing J, Zhang L, Wang J, Shan A. Optimizing therapeutic efficacy of antifungal peptides via strategic terminal amino acid modification. J Adv Res 2024:S2090-1232(24)00416-8. [PMID: 39322048 DOI: 10.1016/j.jare.2024.09.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 08/26/2024] [Accepted: 09/15/2024] [Indexed: 09/27/2024] Open
Abstract
INTRODUCTION Antifungal peptides (AFPs) have the potential to treat antifungal-resistant infections; however, their structure-function relationship remains unknown, hindering their rapid development. Therefore, it is imperative to investigate and clarify the structure-function relationships of AFPs. OBJECTIVES This study aimed to investigate the impact of end-tagging single hydrophobic amino acids and capping the N-terminus with glycine (Gly) on the antifungal activity of peptide W4. METHODS The antifungal efficacy of the engineered peptides was initially assessed by determining the minimum inhibitory concentration (MIC) /minimal fungicidal concentration (MFC), killing kinetics, and drug resistance induction, in addition to evaluating the biocompatibility and stability. Subsequently, the antifungal mechanism was investigated using fluorescence labeling, electron microscopy, reactive oxygen species (ROS) detection, and measurement of mitochondrial membrane potential and apoptosis. The impact of the engineered peptides on Candida albicans (C. albicans) biofilm and their potential application in the scratch keratomycosis model were investigated. RESULTS The antifungal activity of W4 was significantly enhanced by capping Gly at the N-terminus, resulting in a decrease in average activity from 11.86 μM to 6.25 μM (GW4) and an increase in TI values by 1.9-fold (TIGW4 = 40.99). Mechanistically, GW4 exerted its antifungal effect by disrupting the cellular membrane structure in C. albicans, forming pores and subsequent leakage of intracellular contents. Concurrently, it facilitated intracellular ROS accumulation while decreasing the mitochondrial membrane potential. Additionally, GW4 demonstrated an excellent ability to inhibit and eliminate biofilms of C. albicans. Notably, GW4 demonstrated significant therapeutic potential in a C. albicans-associated keratitis model. CONCLUSION Capping Gly at the N-terminus increased residue length while significantly enhancing the helical propensity of W4, thereby augmenting its antifungal activity. Our exploratory study demonstrated the potential strategies and avenues for optimizing the structure-function relationships of AFPs and developing highly effective antifungal drugs.
Collapse
Affiliation(s)
- Jing Song
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Shanshan Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Junya Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Licong Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China
| | - Jiajun Wang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| | - Anshan Shan
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China.
| |
Collapse
|
12
|
Haddad H, Tangy F, Ouahchi I, Sahtout W, Ouni B, Zaïri A. Evaluation of the antiviral activity of new dermaseptin analogs against Zika virus. Biochem Biophys Rep 2024; 39:101747. [PMID: 38939125 PMCID: PMC11208914 DOI: 10.1016/j.bbrep.2024.101747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/29/2024] [Accepted: 05/30/2024] [Indexed: 06/29/2024] Open
Abstract
Zika virus represents the primary cause of infection during pregnancy and can lead to various neurological disorders such as microcephaly and Guillain-Barré syndrome affecting both children and adults. This infection is also associated with urological and nephrological problems. So far, evidence of mosquito-borne Zika virus infection has been reported in a total of 89 countries and territories. However, surveillance efforts primarily concentrate on outbreaks that this virus can cause, yet the measures implemented are typically limited. Currently, there are no specific treatments or vaccines designed for the prevention or treatment of Zika virus infection or its associated disease. The development of effective therapeutic agents presents an urgent need. Importantly, an alternative for advancing the discovery of new molecules could be dermaseptins, a family of antimicrobial peptides known for their potential antiviral properties. In this study, we carried out the synthesis of dermaseptins and their analogs and subsequently assessed the bioactivity tests against Zika virus (ZIKV PF13) of dermaseptins B2 and S4 and their derivatives. The cytotoxicity of these peptides was investigated on HMC3 cell line and HeLa cells by CellTiter-Glo® Luminescent Cell Viability Assay. Thereafter, we evaluated the antiviral activity caused by the action of our dermaseptins on the viral envelope using the Fluorescence Activated Cell Sorting (FACS). The cytotoxicity of our molecules was concentration-dependent at microgram concentrations Expect for dermaseptin B2 and its derivative which present no toxicity against HeLa and HMC3 cell lines. It was observed that all tested analogs from S4 family exhibited antiviral activity with low concentrations ranging from 3 to 12.5 μg/ml , unlike the native B2 and its derivative which increased the infectivity. Pre-incubating of dermaseptins with ZIKV PF13 before infection revealed that these derivatives inhibit the initial stages of virus infection. In summary, these results suggest that dermaseptins could serve as novel lead structures for the development of potent antiviral agents against Zika virus infections.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, LR14ES06, The Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, Monastir, 5000, Tunisia
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| | - Frédéric Tangy
- Institut Pasteur, Université Paris Cité, Vaccines-innovation Laboratory, 75015, Paris, France
| | - Ines Ouahchi
- Cytogenetics and Reproductive Biology department, Farhat Hached University Teaching Hospital, University of Sousse, 4000, Sousse, Tunisia
| | - Wissal Sahtout
- Nephrology Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
- Research Laboratory LR12SP11, Biochemistry Department, Sahloul University Hospital, University of Sousse, 4054, Sousse, Tunisia
| | - Bouraoui Ouni
- Pharmacology Department, Faculty of Medicine, University of Sousse, 4002, ousse, Tunisia
| | - Amira Zaïri
- Biochemistry Department, Faculty of Medicine, University of Sousse, Sousse, 4002, Tunisia
| |
Collapse
|
13
|
Yang H, Wang J, Wang X, Wang S, Xu J, Shan Q, Wang J, Ma X, Zhu Y. Nanofiber Peptides for Bacterial Trapping: A Novel Approach to Antibiotic Alternatives in Wound Infections. Adv Healthc Mater 2024; 13:e2304657. [PMID: 38607802 DOI: 10.1002/adhm.202304657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/09/2024] [Indexed: 04/14/2024]
Abstract
The pervasive employment of antibiotics has engendered the advent of drug-resistant bacteria, imperiling the well-being and health of both humans and animals. Infections precipitated by such multi-resistant bacteria, especially those induced by methicillin-resistant Staphylococcus aureus (MRSA), pervade hospital settings, constituting a grave menace to patient vitality. Antimicrobial peptides (AMPs) have garnered considerable attention as a potent countermeasure against multidrug resistant bacteria. In preceding research endeavors, an insect-derived antimicrobial peptide is identified that, while possessing antimicrobial attributes, manifested suboptimal efficacy against drug-resistant Gram-positive bacteria. To ameliorate this issue, this work enhances the antimicrobial capabilities of the initial β-hairpin AMPs by substituting the structural sequence of the original AMPs with variant lengths of hydrophobic amino acid-hydrophilic amino acid repeat units. Throughout this endeavor, this work has identified a number of peptides that possess highly effective antibacterial characteristics against a wide range of bacteria. Additionally, some of these peptides have the ability to self-assemble into nanofibers, which then build networks in a distinctive manner to capture bacteria. Consequently, they represent prospective antibiotic alternatives for addressing wound infections engendered by drug-resistant bacteria.
Collapse
Affiliation(s)
- Hao Yang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jiufeng Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Xue Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Siyu Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jieru Xu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Qiang Shan
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jingyi Wang
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yaohong Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
- College of Veterinary Medicine, Sanya Institute of China Agricultural University, Sanya, 572025, China
| |
Collapse
|
14
|
Liang Q, Liu Z, Liang Z, Zhu C, Li D, Kong Q, Mou H. Development strategies and application of antimicrobial peptides as future alternatives to in-feed antibiotics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172150. [PMID: 38580107 DOI: 10.1016/j.scitotenv.2024.172150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/14/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024]
Abstract
The use of in-feed antibiotics has been widely restricted due to the significant environmental pollution and food safety concerns they have caused. Antimicrobial peptides (AMPs) have attracted widespread attention as potential future alternatives to in-feed antibiotics owing to their demonstrated antimicrobial activity and environment friendly characteristics. However, the challenges of weak bioactivity, immature stability, and low production yields of natural AMPs impede practical application in the feed industry. To address these problems, efforts have been made to develop strategies for approaching the AMPs with enhanced properties. Herein, we summarize approaches to improving the properties of AMPs as potential alternatives to in-feed antibiotics, mainly including optimization of structural parameters, sequence modification, selection of microbial hosts, fusion expression, and industrially fermentation control. Additionally, the potential for application of AMPs in animal husbandry is discussed. This comprehensive review lays a strong theoretical foundation for the development of in-feed AMPs to achieve the public health globally.
Collapse
Affiliation(s)
- Qingping Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Zhemin Liu
- Fundamental Science R&D Center of Vazyme Biotech Co. Ltd., Nanjing 210000, China
| | - Ziyu Liang
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Changliang Zhu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Dongyu Li
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Qing Kong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China.
| |
Collapse
|
15
|
Silva MSD, Taveira GB, Silva Gebara RD, Azevedo Dos Santos LD, Cherene MB, Souza TAM, Moreira FF, Rodrigues PS, Motta OV, Seabra SH, Oliveira Carvalho AD, Rodrigues R, Gomes VM. Understanding the mechanism of action of protease inhibitors in controlling the growth of the Candida Genus: potential candidates for development of new antifungal molecules. Arch Microbiol 2024; 206:257. [PMID: 38734773 DOI: 10.1007/s00203-024-03993-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
There is a growing imperative for research into alternative compounds for the treatment of the fungal infections. Thus, many studies have focused on the analysis of antifungal proteins and peptides from different plant sources. Among these molecules are protease inhibitors (PIs). Previously, PIs present in the peptide-rich fractions called PEF1, PEF2 and PEF3 were identified from Capsicum chinense seeds, which have strong activity against phytopathogenic fungi. The aim of this study was to evaluate the mechanism of action and antimicrobial activity of PIs from PEF2 and PEF3 on the growth of yeasts of the genus Candida. In this work, analyses of their antimicrobial activity and cell viability were carried out. Subsequently, the mechanism of action by which the PIs cause the death of the yeasts was evaluated. Cytotoxicity was assessed in vitro by erythrocytes lysis and in vivo in Galleria mellonella larvae. PEF2 and PEF3 caused 100% of the growth inhibition of C. tropicalis and C. buinensis. For C. albicans inhibition was approximately 60% for both fractions. The PEF2 and PEF3 caused a reduction in mitochondrial functionality of 54% and 46% for C. albicans, 26% and 30% for C. tropicalis, and 71% and 68% for C. buinensis, respectively. These fractions induced morphological alterations, led to membrane permeabilization, elevated ROS levels, and resulted in necrotic cell death in C. tropicalis, whilst demonstrating low toxicity toward host cells. From the results obtained here, we intend to contribute to the understanding of the action of PIs in the control of fungal diseases of medical importance.
Collapse
Affiliation(s)
- Marciele Souza da Silva
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel Bonan Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rodrigo da Silva Gebara
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Layrana de Azevedo Dos Santos
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Milena Bellei Cherene
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Thaynã Amanda Melo Souza
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Felipe Figueirôa Moreira
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Pedro Souto Rodrigues
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Olney Vieira Motta
- Laboratório de Sanidade Animal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Sergio Henrique Seabra
- Laboratório de Biologia Celular e Tecidual, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - André de Oliveira Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Rosana Rodrigues
- Laboratório de Melhoramento e Genética Vegetal, Centro de Ciências e Tecnologias Agropecuárias, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, 28013-602, Brazil
| | - Valdirene Moreira Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil.
| |
Collapse
|
16
|
Larwood DJ, Stevens DA. Antifungal Activity of Brilacidin, a Nonpeptide Host Defense Molecule. Antibiotics (Basel) 2024; 13:405. [PMID: 38786134 PMCID: PMC11117233 DOI: 10.3390/antibiotics13050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/16/2024] [Accepted: 04/17/2024] [Indexed: 05/25/2024] Open
Abstract
Natural host defensins, also sometimes termed antimicrobial peptides, are evolutionarily conserved. They have been studied as antimicrobials, but some pharmaceutical properties, undesirable for clinical use, have led to the development of synthetic molecules with constructed peptide arrangements and/or peptides not found in nature. The leading development currently is synthetic small-molecule nonpeptide mimetics, whose physical properties capture the characteristics of the natural molecules and share their biological attributes. We studied brilacidin, an arylamide of this type, for its activity in vitro against fungi (40 clinical isolates, 20 species) that the World Health Organization has highlighted as problem human pathogens. We found antifungal activity at low concentrations for many pathogens, which indicates that further screening for activity, particularly in vivo, is justified to evaluate this compound, and other mimetics, as attractive leads for the development of effective antifungal agents.
Collapse
Affiliation(s)
- David J. Larwood
- Department of Pharmaceutical Chemistry, University of California-San Francisco, San Francisco, CA 94158, USA;
- California Institute for Medical Research, San Jose, CA 95128, USA
- Valley Fever Solutions, Tucson, AZ 85719, USA
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| |
Collapse
|
17
|
Chiramba C, Möller DS, Lorenz CD, Chirombo RR, Mason AJ, Bester MJ, Gaspar ARM. Tryptophan End-Tagging Confers Antifungal Activity on a Tick-Derived Peptide by Triggering Reactive Oxygen Species Production. ACS OMEGA 2024; 9:15556-15572. [PMID: 38585074 PMCID: PMC10993377 DOI: 10.1021/acsomega.4c00478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/26/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
WHO has identified several Candida species including Candida albicans as critical priority fungal pathogens due to greater infection prevalence and formation of recalcitrant biofilms. Novel antifungal agents are urgently needed, and antimicrobial peptides (AMPs) are being considered as potential alternatives, but inactivity in physiological salt environments, serum, and plasma often limits further therapeutic development. Tryptophan end-tagging is a strategy to overcome these limitations and is thought to selectively enhance membrane permeabilization in both fungal and bacterial plasma membranes. Here, we show that C-terminal tryptophan end-tagging of the tick-derived peptide Os-C transforms an inactive peptide into Os-C(W5), an antifungal peptide capable of preventing the formation of C. albicans biofilms. Mechanistic insight is provided by circular dichroism spectroscopy and molecular dynamics simulations, which demonstrate that tryptophan end-tagging alters the secondary structure of Os-C, while the latter reveals that end-tagging reduces interactions with, and insertion into, a model C. albicans membrane but promotes peptide aggregation on its surface. Interestingly, this leads to the induction of reactive oxygen species production rather than membrane permeabilization, and consequently, oxidative stress leads to cell wall damage. Os-C(W5) does not induce the hemolysis of human erythrocytes. Reduced cell adhesion and viability contribute to decreased biofilm extracellular matrix formation which, although reduced, is retained in the serum-containing medium. In this study, tryptophan end-tagging was identified as a promising strategy for enhancing the antifungal activity, including the biofilm inhibitory activity of Os-C against C. albicans in physiological salt environments.
Collapse
Affiliation(s)
- Court
K. Chiramba
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Dalton S. Möller
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| | | | - Rumbidzai R. Chirombo
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - A. James Mason
- Institute
of Pharmaceutical Science, School of Cancer & Pharmaceutical Science, King’s College London, London SE1 9NH, U.K.
| | - Megan J. Bester
- Department
of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria 0002, South Africa
| | - Anabella R. M. Gaspar
- Department
of Biochemistry, Genetics and Microbiology, Faculty of Natural and
Agricultural Sciences, University of Pretoria, Pretoria 0002, South Africa
| |
Collapse
|
18
|
Balczon R, Lin MT, Voth S, Nelson AR, Schupp JC, Wagener BM, Pittet JF, Stevens T. Lung endothelium, tau, and amyloids in health and disease. Physiol Rev 2024; 104:533-587. [PMID: 37561137 PMCID: PMC11281824 DOI: 10.1152/physrev.00006.2023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/26/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023] Open
Abstract
Lung endothelia in the arteries, capillaries, and veins are heterogeneous in structure and function. Lung capillaries in particular represent a unique vascular niche, with a thin yet highly restrictive alveolar-capillary barrier that optimizes gas exchange. Capillary endothelium surveys the blood while simultaneously interpreting cues initiated within the alveolus and communicated via immediately adjacent type I and type II epithelial cells, fibroblasts, and pericytes. This cell-cell communication is necessary to coordinate the immune response to lower respiratory tract infection. Recent discoveries identify an important role for the microtubule-associated protein tau that is expressed in lung capillary endothelia in the host-pathogen interaction. This endothelial tau stabilizes microtubules necessary for barrier integrity, yet infection drives production of cytotoxic tau variants that are released into the airways and circulation, where they contribute to end-organ dysfunction. Similarly, beta-amyloid is produced during infection. Beta-amyloid has antimicrobial activity, but during infection it can acquire cytotoxic activity that is deleterious to the host. The production and function of these cytotoxic tau and amyloid variants are the subject of this review. Lung-derived cytotoxic tau and amyloid variants are a recently discovered mechanism of end-organ dysfunction, including neurocognitive dysfunction, during and in the aftermath of infection.
Collapse
Affiliation(s)
- Ron Balczon
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Mike T Lin
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Sarah Voth
- Department of Cell Biology and Physiology, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States
| | - Amy R Nelson
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| | - Jonas C Schupp
- Pulmonary and Critical Care Medicine, Department of Internal Medicine, Yale University, New Haven, Connecticut, United States
- Department of Respiratory Medicine, Hannover Medical School, Hannover, Germany
- German Center for Lung Research (DZL), Hannover, Germany
| | - Brant M Wagener
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Jean-Francois Pittet
- Department of Anesthesiology and Perioperative Medicine, University of Alabama-Birmingham, Birmingham, Alabama, United States
| | - Troy Stevens
- Department of Physiology and Cell Biology, University of South Alabama, Mobile, Alabama, United States
- Department of Internal Medicine, University of South Alabama, Mobile, Alabama, United States
- Center for Lung Biology, University of South Alabama, Mobile, Alabama, United States
| |
Collapse
|
19
|
Behera LM, Ghosh M, Gupta PK, Rana S. A rationally engineered small antimicrobial peptide with potent antibacterial activity. J Cell Biochem 2024; 125:e30503. [PMID: 37992185 DOI: 10.1002/jcb.30503] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/24/2023]
Abstract
Antimicrobial resistance (AMR) is a silent pandemic declared by the WHO that requires urgent attention in the post-COVID world. AMR is a critical public health concern worldwide, potentially affecting people at different stages of life, including the veterinary and agriculture industries. Notably, very few new-age antimicrobial agents are in the current developmental pipeline. Thus, the design, discovery, and development of new antimicrobial agents are required to address the menace of AMR. Antimicrobial peptides (AMPs) are an important class of antimicrobial agents for combating AMR due to their broad-spectrum activity and ability to evade AMR through a multimodal mechanism of action. However, molecular size, aggregability, proteolytic degradation, cytotoxicity, and hemolysis activity significantly limit the clinical application of natural AMPs. The de novo design and engineering of a short synthetic amphipathic AMP (≤16 aa, Mol. Wt. ≤ 2 kDa) with an unusual architecture comprised of coded and noncoded amino acids (NCAAs) is presented here, which demonstrates potent antibacterial activity against a few selected bacterial strains mentioned in the WHO priority list. The designer AMP is conformationally ordered in solution and effectively permeabilizes the outer and inner membranes, leading to bacterial growth inhibition and death. Additionally, the peptide is resistant to proteolysis and has negligible cytotoxicity and hemolysis activity up to 150 μM toward cultured human cell lines and erythrocytes. The designer AMP is unique and appears to be a potent therapeutic candidate, which can be subsequently subjected to preclinical studies to explicitly understand and address the menace of AMR.
Collapse
Affiliation(s)
- Lalita Mohan Behera
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Manaswini Ghosh
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Pulkit Kr Gupta
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| | - Soumendra Rana
- Chemical Biology Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Odisha, India
| |
Collapse
|
20
|
Haddad H, Mejri R, de Araujo AR, Zaïri A. Evaluation of the Antibacterial Activity of New Dermaseptin Derivatives against Acinetobacter baumannii. Pharmaceuticals (Basel) 2024; 17:171. [PMID: 38399385 PMCID: PMC10892451 DOI: 10.3390/ph17020171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/06/2024] [Accepted: 01/17/2024] [Indexed: 02/25/2024] Open
Abstract
Nosocomial infections represent one of the biggest health problems nowadays. Acinetobacter baumannii is known as an opportunistic pathogen in humans, affecting people with compromised immune systems, and is becoming increasingly important as a hospital-derived infection. It is known that in recent years, more and more bacteria have become multidrug-resistant (MDR) and, for this reason, the development of new drugs is a priority. However, these products must not affect the human body, and therefore, cytotoxicity studies are mandatory. In this context, antimicrobial peptides with potential antibacterial proprieties could be an alternative. In this research, we describe the synthesis and the bioactivity of dermaseptins and their derivatives against Acinetobacter baumannii. The cytotoxicity of these compounds was investigated on the HEp-2 cell line by MTT cell viability assay. Thereafter, we studied the morphological alterations caused by the action of one of the active peptides on the bacterial membrane using atomic force microscopy (AFM). The cytotoxicity of dermaseptins was concentration-dependent at microgram concentrations. It was observed that all tested analogs exhibited antibacterial activity with Minimum Inhibitory Concentrations (MICs) ranging from 3.125 to 12.5 μg/mL and Minimum Bactericidal Concentrations (MBCs) ranging from 6.25 to 25 μg/mL. Microscopic images obtained by AFM revealed morphological changes on the surface of the treated bacteria caused by K4S4(1-16), as well as significant surface alterations. Overall, these findings demonstrate that dermaseptins might constitute new lead structures for the development of potent antibacterial agents against Acinetobacter baumannii infections.
Collapse
Affiliation(s)
- Houda Haddad
- BIOLIVAL Laboratory, LR14ES06, The Higher Institute of Biotechnology of Monastir ISBM, University of Monastir, Monastir 5000, Tunisia;
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| | - Radhia Mejri
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| | - Alyne Rodrigues de Araujo
- Biodiversity and Biotechnology Research Center, BIOTEC, Federal University of Piauí, Parnaíba 64202-020, PI, Brazil;
| | - Amira Zaïri
- Biochemistry Department, LR18ES47, Faculty of Medicine, University of Sousse, Sousse 4002, Tunisia;
| |
Collapse
|
21
|
Saraswat J, Firoz A, Kamli MR, Patel R. Improved Antibacterial Activity of Peptide Nisin with Pyrrole-Based Ionic Liquids Having Bis(trifluoromethylsulfonyl)imide as a Counterion: A Synergistic Approach to Combat Bacterial Infections. ACS OMEGA 2024; 9:2758-2769. [PMID: 38250392 PMCID: PMC10795159 DOI: 10.1021/acsomega.3c07824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 01/23/2024]
Abstract
Bacterial resistance against antimicrobial drugs is a forthcoming threat to the prevention and treatment of developing bacterial infections. Hence, the development of new antimicrobial therapy or therapeutic drugs is desperately needed. A combination of antibiotics exhibits synergistic antibacterial effects. As the combination approach of antibiotics has always shown better results against pathogens compared to monotherapy with an antibiotic, we focused on creating a new combination that may reduce the chances of strains attaining resistance, consequently lowering the toxicity factor associated with the consumption of high amounts of antibiotics. Nisin, a food preservative and potential antibiotic, shows antibacterial activity against Gram-positive strains. Since the past decade, ionic liquids (ILs) have proven to be an important class of potential antibacterial agents. In our study, we studied the effect of pyrrolidinium-based ILs and arrived at a noncovalent conjugate formed by combining nisin with ILs. The conjugates were tested against a couple of clinically relevant microorganisms, namely, Escherichia coli and Staphylococcus aureus. We reached a novel discovery that the combination of sodium/iodide symporter (NIS) and IL exhibited inhibitory effects against Gram-negative bacteria, which was not observed with NIS alone. The results showed remarkable improvement in the minimum inhibitory concentration (MIC) value of NIS in the presence of ILs targeted against both microorganisms. Further, flow cytometry and confocal microscopy results revealed the membrane disruption efficiency of the best combination obtained, leading to cell death. Additionally, the complexation of nisin and ILs was studied using various techniques, such as surface tension, dynamic light scattering, absorption spectroscopy, and molecular docking.
Collapse
Affiliation(s)
- Juhi Saraswat
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Ahmad Firoz
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Princess
Dr. Najla Bint Saud Al-Saud Centre for Excellence Research in Biotechnology, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Majid Rasool Kamli
- Department
of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Rajan Patel
- Biophysical
Chemistry Laboratory, Centre for Interdisciplinary Research in Basic
Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
22
|
Chen Y, Yang J, Rao Q, Wang C, Chen X, Zhang Y, Suo H, Song J. Understanding Hyperuricemia: Pathogenesis, Potential Therapeutic Role of Bioactive Peptides, and Assessing Bioactive Peptide Advantages and Challenges. Foods 2023; 12:4465. [PMID: 38137270 PMCID: PMC10742721 DOI: 10.3390/foods12244465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/11/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023] Open
Abstract
Hyperuricemia is a medical condition characterized by an elevated level of serum uric acid, closely associated with other metabolic disorders, and its global incidence rate is increasing. Increased synthesis or decreased excretion of uric acid can lead to hyperuricemia. Protein peptides from various food sources have demonstrated potential in treating hyperuricemia, including marine organisms, ovalbumin, milk, nuts, rice, legumes, mushrooms, and protein-rich processing by-products. Through in vitro experiments and the establishment of cell or animal models, it has been proven that these peptides exhibit anti-hyperuricemia biological activities by inhibiting xanthine oxidase activity, downregulating key enzymes in purine metabolism, regulating the expression level of uric acid transporters, and restoring the composition of the intestinal flora. Protein peptides derived from food offer advantages such as a wide range of sources, significant therapeutic benefits, and minimal adverse effects. However, they also face challenges in terms of commercialization. The findings of this review contribute to a better understanding of hyperuricemia and peptides with hyperuricemia-alleviating activity. Furthermore, they provide a theoretical reference for developing new functional foods suitable for individuals with hyperuricemia.
Collapse
Affiliation(s)
- Yanchao Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jing Yang
- Chongqing Engineering Research Center for Processing & Storage of Distinct Agricultural Products, Chongqing Technology and Business University, Chongqing 400067, China
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Qinchun Rao
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL 32306, USA
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoyong Chen
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yu Zhang
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Huayi Suo
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Jiajia Song
- College of Food Science, Southwest University, Chongqing 400715, China
| |
Collapse
|
23
|
Jha B, Singh S. Investigating antimicrobial peptide RI12 (K3W) as an effective bio-preservative against Listeria monocytogenes: a major foodborne pathogen. Arch Microbiol 2023; 205:367. [PMID: 37917273 DOI: 10.1007/s00203-023-03707-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/01/2023] [Accepted: 10/12/2023] [Indexed: 11/04/2023]
Abstract
Due to public apprehension regarding the use of chemical preservatives to prevent food spoilage and food-borne diseases, it is imperative to identify natural alternatives such as antimicrobial peptides as a potential solution. The study aimed at evaluating the effectiveness of the antimicrobial peptide RI12 (K3W) against Listeria monocytogenes. RI12 (K3W) exhibited potent antimicrobial properties, with a minimum inhibitory concentration and minimum bactericidal concentration of 16 µM and 32 µM, respectively. The time-kill assay revealed a consistent reduction in bacterial viability at 8, 16, and 24 h of study. Cytotoxicity testing on mammalian cells demonstrated no apparent change in morphology or cell count. Investigating how well it worked in a food matrix to replicate real-world conditions showed a significant decrease in the bacterial count. The study underscores the potential of RI12 (K3W) as a safe and effective antimicrobial against L. monocytogenes that might also serve as an alternative to chemical preservatives.
Collapse
Affiliation(s)
- Bhavna Jha
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - Satparkash Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India.
| |
Collapse
|
24
|
Kannoth S, Ali N, Prasanth GK, Arvind K, Mohany M, Hembrom PS, Sadanandan S, Vasu DA, Grace T. Transcriptome analysis of Corvus splendens reveals a repertoire of antimicrobial peptides. Sci Rep 2023; 13:18728. [PMID: 37907616 PMCID: PMC10618271 DOI: 10.1038/s41598-023-45875-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023] Open
Abstract
Multidrug resistance has become a global health problem associated with high morbidity and mortality. Antimicrobial peptides have been acknowledged as potential leads for prospective anti-infectives. Owing to their scavenging lifestyle, Corvus splendens is thought to have developed robust immunity to pathogens found in their diet, implying that they have evolved mechanisms to resist infection. In the current study, the transcriptome of C. splendens was sequenced, and de novo assembled to identify the presence of antimicrobial peptide genes. 72.09 million high-quality clean reads were obtained which were then de novo assembled into 3,43,503 transcripts and 74,958 unigenes. About 37,559 unigenes were successfully annotated using SwissProt, Pfam, GO, and KEGG databases. A search against APD3, CAMPR3 and LAMP databases identified 63 AMP candidates belonging to more than 20 diverse families and functional classes. mRNA of AvBD-2, AvBD-13 and CATH-2 were found to be differentially expressed between the three tested crows as well as among the tissues. We also characterized Corvus Cathelicidin 2 (CATH-2) to gain knowledge of its antimicrobial mechanisms. The CD spectroscopy of synthesized mature Corvus CATH-2 peptide displayed an amphipathic α-helical structure. Though the synthetic CATH-2 caused hemolysis of human RBC, it also exhibited antimicrobial activity against E. coli, S. aureus, and B. cereus. Docking simulation results revealed that this peptide could bind to the LPS binding site of MD-2, which may prevent LPS from entering the MD-2 binding pocket, and trigger TLR4 signaling pathway. The Corvus CATH-2 characterized in this study could aid in the development of novel therapeutics.
Collapse
Affiliation(s)
- Shalini Kannoth
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Ganesh K Prasanth
- Department of Biochemistry and Molecular Biology, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Kumar Arvind
- Neurogenetics Branch, National Institute of Neurological Disorder and Stroke, National Institute of Health, Bethesda, MD, 20892, USA
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Preety Sweta Hembrom
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Shemmy Sadanandan
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Deepa Azhchath Vasu
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India
| | - Tony Grace
- Department of Genomic Science, School of Biological Sciences, Central University of Kerala, Kasaragod, Kerala, India.
| |
Collapse
|
25
|
Kumari A, Singh M, Sharma R, Kumar T, Jindal N, Maan S, Joshi VG. Apoptin NLS2 homodimerization strategy for improved antibacterial activity and bio-stability. Amino Acids 2023; 55:1405-1416. [PMID: 37725185 DOI: 10.1007/s00726-023-03321-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/21/2023] [Indexed: 09/21/2023]
Abstract
The emergence of antibiotic resistance prompts exploration of viable antimicrobial peptides (AMPs) designs. The present study explores the antimicrobial prospects of Apoptin nuclear localization sequence (NLS2)-derived peptide ANLP (PRPRTAKRRIRL). Further, we examined the utility of the NLS dimerization strategy for improvement in antimicrobial activity and sustained bio-stability of AMPs. Initially, the antimicrobial potential of ANLP using antimicrobial peptide databases was analyzed. Then, ANLP along with its two homodimer variants namely ANLP-K1 and ANLP-K2 were synthesized and evaluated for antimicrobial activity against Escherichia coli and Salmonella. Among three AMPs, ANLP-K2 showed efficient antibacterial activity with 12 µM minimum inhibitory concentration (MIC). Slow degradation of ANLP-K1 (26.48%) and ANLP-K2 (13.21%) compared with linear ANLP (52.33%) at 480 min in serum stability assay indicates improved bio-stability of dimeric peptides. The AMPs presented no cytotoxicity in Vero cells. Dye penetration assays confirmed the membrane interacting nature of AMPs. The zeta potential analysis reveals effective charge neutralization of both lipopolysaccharide (LPS) and bacterial cells by dimeric AMPs. The dimeric AMPs on scanning electron microscopy studies showed multiple pore formations on the bacterial surface. Collectively, proposed Lysine scaffold dimerization of Apoptin NLS2 strategy resulted in enhancing antibacterial activity, bio-stability, and could be effective in neutralizing the off-target effect of LPS. In conclusion, these results suggest that nuclear localization sequence with a modified dimeric approach could represent a rich source of template for designing future antimicrobial peptides.
Collapse
Affiliation(s)
- Anu Kumari
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Mahavir Singh
- College Central Laboratory, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Ruchi Sharma
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Tarun Kumar
- Veterinary Clinical Complex, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Naresh Jindal
- Department of Veterinary Public Health and Epidemiology, College of Veterinary Sciences, LUVAS, Hisar, Haryana, 125004, India
| | - Sushila Maan
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India
| | - Vinay G Joshi
- Department of Animal Biotechnology, College of Veterinary Sciences, Lala Lajpat Rai University of Veterinary and Animal Sciences (LUVAS), Hisar, Haryana, 125004, India.
| |
Collapse
|
26
|
Sosiangdi S, Taemaitree L, Tankrathok A, Daduang S, Boonlue S, Klaynongsruang S, Jangpromma N. Rational design and characterization of cell-selective antimicrobial peptides based on a bioactive peptide from Crocodylus siamensis hemoglobin. Sci Rep 2023; 13:16096. [PMID: 37752188 PMCID: PMC10522709 DOI: 10.1038/s41598-023-43274-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/21/2023] [Indexed: 09/28/2023] Open
Abstract
Antimicrobial resistance is a growing health concern. Antimicrobial peptides are a potential solution because they bypass conventional drug resistance mechanisms. Previously, we isolated a peptide from Crocodylus siamensis hemoglobin hydrolysate, which has antimicrobial activity and identified the main peptide from this mixture (QL17). The objective of this work was to evaluate and rationally modify QL17 in order to: (1) control its mechanism of action through bacterial membrane disruption; (2) improve its antimicrobial activity; and (3) ensure it has low cytotoxicity against normal eukaryotic cells. QL17 was rationally designed using physicochemical and template-based methods. These new peptide variants were assessed for: (1) their in vitro inhibition of microbial growth, (2) their cytotoxicity against normal cells, (3) their selectivity for microbes, and (4) the mode of action against bacteria using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and confocal microscopy. The results indicate that all designed peptides have more potent antimicrobial efficacy than QL17 and IL15 peptides. However, only the most rationally modified peptides showed strong antimicrobial activity and minimal toxicity against normal cells. In particular, IL15.3 (hydrophobicity of 47% and net charge of + 6) was a potent antimicrobial agent (MIC = 4-12 μg/mL; MBC = 6-25 μg/mL) and displayed excellent selectivity for microbes (cf. human cells) via FACS assays. Microscopy confirmed that IL15.3 acts against bacteria by disrupting the cell membrane integrity and penetrating into the membrane. This causes the release of intracellular content into the outer environment leading to the death of bacteria. Moreover, IL15.3 can also interact with DNA suggesting it could have dual mode of action. Overall, a novel variant of QL17 is described that increases antimicrobial activity by over 1000-fold (~ 5 μg/mL MIC) and has minimal cytotoxicity. It may have applications in clinical use to treat and safeguard against bacteria.
Collapse
Affiliation(s)
- Sirinthip Sosiangdi
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Lapatrada Taemaitree
- Department of Integrated Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Anupong Tankrathok
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biotechnology, Faculty of Agricultural Technology, Kalasin University, Kalasin, 46000, Thailand
| | - Sakda Daduang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Pharmacognosy and Toxicology, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sophon Boonlue
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Sompong Klaynongsruang
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nisachon Jangpromma
- Protein and Proteomics Research Center for Commercial and Industrial Purposes (ProCCI), Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
- Department of Biochemistry, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
27
|
Biondi B, de Pascale L, Mardirossian M, Di Stasi A, Favaro M, Scocchi M, Peggion C. Structural and biological characterization of shortened derivatives of the cathelicidin PMAP-36. Sci Rep 2023; 13:15132. [PMID: 37704689 PMCID: PMC10499915 DOI: 10.1038/s41598-023-41945-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023] Open
Abstract
Cathelicidins, a family of host defence peptides in vertebrates, play an important role in the innate immune response, exhibiting antimicrobial activity against many bacteria, as well as viruses and fungi. This work describes the design and synthesis of shortened analogues of porcine cathelicidin PMAP-36, which contain structural changes to improve the pharmacokinetic properties. In particular, 20-mers based on PMAP-36 (residues 12-31) and 13-mers (residues 12-24) with modification of amino acid residues at critical positions and introduction of lipid moieties of different lengths were studied to identify the physical parameters, including hydrophobicity, charge, and helical structure, required to optimise their antibacterial activity. Extensive conformational analysis, performed by CD and NMR, revealed that the substitution of Pro25-Pro26 with Ala25-Lys26 increased the α-helix content of the 20-mer peptides, resulting in broad-spectrum antibacterial activity against Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Staphylococcus epidermidis strains. Interestingly, shortening to just 13 residues resulted in only a slight decrease in antibacterial activity. Furthermore, two sequences, a 13-mer and a 20-mer, did not show cytotoxicity against HaCat cells up to 64 µM, indicating that both derivatives are not only effective but also selective antimicrobial peptides. In the short peptide, the introduction of the helicogenic α-aminoisobutyric acid forced the helix toward a prevailing 310 structure, allowing the antimicrobial activity to be maintained. Preliminary tests of resistance to Ser protease chymotrypsin indicated that this modification resulted in a peptide with an increased in vivo lifespan. Thus, some of the PMAP-36 derivatives studied in this work show a good balance between chain length, antibacterial activity, and selectivity, so they represent a good starting point for the development of even more effective and proteolysis-resistant active peptides.
Collapse
Affiliation(s)
- Barbara Biondi
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Padova, Italy
| | - Luigi de Pascale
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | | | - Adriana Di Stasi
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Matteo Favaro
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Marco Scocchi
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| | - Cristina Peggion
- Institute of Biomolecular Chemistry, CNR, Padova Unit, Padova, Italy.
- Department of Chemical Sciences, University of Padova, Padova, Italy.
| |
Collapse
|
28
|
Suchi SA, Lee DY, Kim YK, Kang SS, Bilkis T, Yoo JC. Synergistic Effect, Improved Cell Selectivity, and Elucidating the Action Mechanism of Antimicrobial Peptide YS12. Int J Mol Sci 2023; 24:13522. [PMID: 37686328 PMCID: PMC10487915 DOI: 10.3390/ijms241713522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/15/2023] [Accepted: 08/25/2023] [Indexed: 09/10/2023] Open
Abstract
Antimicrobial peptides (AMPs) have attracted considerable attention as potential substitutes for traditional antibiotics. In our previous research, a novel antimicrobial peptide YS12 derived from the Bacillus velezensis strain showed broad-spectrum antimicrobial activity against Gram-positive and Gram-negative bacteria. In this study, the fractional inhibitory concentration index (FICI) indicated that combining YS12 with commercial antibiotics produced a synergistic effect. Following these findings, the combination of YS12 with an antibiotic resulted in a faster killing effect against bacterial strains compared to the treatment with the peptide YS12 or antibiotic alone. The peptide YS12 maintained its antimicrobial activity under different physiological salts (Na+, Mg2+, and Fe3+). Most importantly, YS12 exhibited no cytotoxicity towards Raw 264.7 cells and showed low hemolytic activity, whereas positive control melittin indicated extremely high toxicity. In terms of mode of action, we found that peptide YS12 was able to bind with LPS through electrostatic interaction. The results from fluorescent measurement revealed that peptide YS12 damaged the integrity of the bacterial membrane. Confocal laser microscopy further confirmed that the localization of peptide YS12 was almost in the cytoplasm of the cells. Peptide YS12 also exhibited anti-inflammatory activity by reducing the release of LPS-induced pro-inflammatory mediators such as TNF-α, IL-1β, and NO. Collectively, these properties strongly suggest that the antimicrobial peptide YS12 may be a promising candidate for treating microbial infections and inflammation.
Collapse
Affiliation(s)
- Suzia Aktar Suchi
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Dae Young Lee
- Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, RDA, Eumseong 27709, Republic of Korea
| | - Young Kyun Kim
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| | - Seong Soo Kang
- Department of Veterinary Medicine and BK21 Four Program, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Tahmina Bilkis
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Republic of Korea
| | - Jin Cheol Yoo
- Department of Pharmacy, College of Pharmacy, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
29
|
Ioannou P, Baliou S, Kofteridis DP. Antimicrobial Peptides in Infectious Diseases and Beyond-A Narrative Review. Life (Basel) 2023; 13:1651. [PMID: 37629508 PMCID: PMC10455936 DOI: 10.3390/life13081651] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
Despite recent medical research and clinical practice developments, the development of antimicrobial resistance (AMR) significantly limits therapeutics for infectious diseases. Thus, novel treatments for infectious diseases, especially in this era of increasing AMR, are urgently needed. There is ongoing research on non-classical therapies for infectious diseases utilizing alternative antimicrobial mechanisms to fight pathogens, such as bacteriophages or antimicrobial peptides (AMPs). AMPs are evolutionarily conserved molecules naturally produced by several organisms, such as plants, insects, marine organisms, and mammals, aiming to protect the host by fighting pathogenic microorganisms. There is ongoing research regarding developing AMPs for clinical use in infectious diseases. Moreover, AMPs have several other non-medical applications in the food industry, such as preservatives, animal husbandry, plant protection, and aquaculture. This review focuses on AMPs, their origins, biology, structure, mechanisms of action, non-medical applications, and clinical applications in infectious diseases.
Collapse
Affiliation(s)
- Petros Ioannou
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Stella Baliou
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| | - Diamantis P. Kofteridis
- School of Medicine, University of Crete, 71003 Heraklion, Greece
- Internal Medicine, University Hospital of Heraklion, 71110 Heraklion, Greece
| |
Collapse
|
30
|
Lyu Z, Yang P, Lei J, Zhao J. Biological Function of Antimicrobial Peptides on Suppressing Pathogens and Improving Host Immunity. Antibiotics (Basel) 2023; 12:1037. [PMID: 37370356 DOI: 10.3390/antibiotics12061037] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/29/2023] Open
Abstract
The emergence of drug-resistant genes and concerns about food safety caused by the overuse of antibiotics are becoming increasingly prominent. There is an urgent need for effective alternatives to antibiotics in the fields of livestock production and human medicine. Antimicrobial peptides can effectively replace antibiotics to kill pathogens and enhance the immune functions of the host, and pathogens cannot easily produce genes that are resistant to them. The ability of antimicrobial peptides (AMPs) to kill pathogens is associated with their structure and physicochemical properties, such as their conformation, electrical charges, hydrophilicity, and hydrophobicity. AMPs regulate the activity of immunological cells and stimulate the secretion of inflammatory cytokines via the activation of the NF-κB and MAPK signaling pathways. However, there are still some limitations to the application of AMPs in the fields of livestock production and human medicine, including a restricted source base, high costs of purification and expression, and the instability of the intestines of animals and humans. This review summarizes the information on AMPs as effective antibiotic substitutes to improve the immunological functions of the host through suppressing pathogens and regulating inflammatory responses. Potential challenges for the commercial application of AMPs in animal husbandry and human medicine are discussed.
Collapse
Affiliation(s)
- Zhiqian Lyu
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pan Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jian Lei
- Guangdong Haid Group Co., Ltd., Guangzhou 511400, China
- Qingyuan Haibei BIO-TECH Co., Ltd., Qingyuan 511853, China
| | - Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
31
|
Structural Analysis and Antimicrobial Mechanism of a Protein GBSPI-A from Ginkgo Biloba Seed. J Food Biochem 2023. [DOI: 10.1155/2023/3979546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Ginkgo biloba seed has antimicrobial activity. In this study, ginkgo biloba seed protein was prepared, identified, and named GBSPI-A, finding its construction was similar to 11-S globulin. Then, the influence of GBSPI-A on the cell membrane and physiological metabolism of K. pneumoniae and S. aureus were investigated. The results showed that GBSPI-A (20 mg/mL) destroyed the cell membrane, causing leakage of intracellular material and inhibited bacterial growth with an inhibition rate of approximately 80%. In addition, the GBSPI-A (10 mg/mL) caused the decreasing activity of ATPase and respiratory rate, and the respiratory depression rate was 7.24%. Furthermore, the decreasing ATP synthesis and intracellular β-galactosidase activity led to an insufficient supply of physiological metabolic energy. Therefore, the results showed that GBSPI-A could be used as a natural bacteriostatic agent to replace related drugs and also provide a new insight into the application of GBSPI-A in food safety.
Collapse
|
32
|
Park YJ, Kang CE, Kim JH, Shin D, Lee DH, Lee NK, Paik HD. Antibacterial mechanism of mixed natural preservatives (ε-poly-Lysine, cinnamon extract, and chestnut inner shell extract) against Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
33
|
Specific Focus on Antifungal Peptides against Azole Resistant Aspergillus fumigatus: Current Status, Challenges, and Future Perspectives. J Fungi (Basel) 2022; 9:jof9010042. [PMID: 36675863 PMCID: PMC9864941 DOI: 10.3390/jof9010042] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/25/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The prevalence of fungal infections is increasing worldwide, especially that of aspergillosis, which previously only affected people with immunosuppression. Aspergillus fumigatus can cause allergic bronchopulmonary aspergillosis and endangers public health due to resistance to azole-type antimycotics such as fluconazole. Antifungal peptides are viable alternatives that combat infection by forming pores in membranes through electrostatic interactions with the phospholipids as well as cell death to peptides that inhibit protein synthesis and inhibit cell replication. Engineering antifungal peptides with nanotechnology can enhance the efficacy of these therapeutics at lower doses and reduce immune responses. This manuscript explains how antifungal peptides combat antifungal-resistant aspergillosis and also how rational peptide design with nanotechnology and artificial intelligence can engineer peptides to be a feasible antifungal alternative.
Collapse
|
34
|
Liu Y, Zhang X, Meng C, Ji S, Guo K. Antimicrobial activity of the recombinant peptide Melittin-Thanatin with three glycine to tryptophan mutations. Prep Biochem Biotechnol 2022:1-11. [PMID: 36508334 DOI: 10.1080/10826068.2022.2151016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The antimicrobial peptide was considered an important target for developing novel antibacterial drugs. However, the unstable biological activity and the low antibacterial activity are challenges for the application of recombinant proteins. In this study, the fusion peptide of Melittin-Thanatin (MT) was designed and produced, and its derivative sequence (MT-W) was obtained by replacing three glycines (Gly, G) with tryptophan (Trp, W). The MT-W peptide were synthesized in Bacillus subtilis WB700 by EDDIE self-cleavage protein fusion. Compared with MT, MT-W exhibited 2-4 times higher antibacterial rate against Escherichia coli K88. In addition, MT-W showed lower cytotoxicity (IC50 > 300 mg·L-1) to the red blood cell, and more stable biological activities under the conditions of different temperatures (20, 30, 40, 50, 60, 70, 80, and 90 °C), pH values (2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, and 9.0) and different proteases. Especially, MT-W showed a broader antibacterial effect on three drug-resistant strains than florfenicol and oxytetracycline calcium. In conclusion, compared with MT, the MT-W showed increased antibacterial activity, stability, lower cytotoxicity, and broader antimicrobial effect. Therefore, it would become a promising alternative to conventional antibiotics.
Collapse
Affiliation(s)
- Yong Liu
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Xiuping Zhang
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
- College of Animal Science and Technology, Tarim University, Alar, China
| | - Chunyan Meng
- Beijing Sinogene High-Tech Biotechnology Co., Ltd, Beijing, China
| | - Shengyue Ji
- Beijing Sinogene High-Tech Biotechnology Co., Ltd, Beijing, China
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kangkang Guo
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| |
Collapse
|
35
|
Mohammed EH, Lohan S, Ghaffari T, Gupta S, Tiwari RK, Parang K. Membrane-Active Cyclic Amphiphilic Peptides: Broad-Spectrum Antibacterial Activity Alone and in Combination with Antibiotics. J Med Chem 2022; 65:15819-15839. [PMID: 36442155 PMCID: PMC9743092 DOI: 10.1021/acs.jmedchem.2c01469] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Indexed: 11/29/2022]
Abstract
We designed a library of 24 cyclic peptides containing arginine (R) and tryptophan (W) residues in a sequential manner [RnWn] (n = 2-7) to study the impact of the hydrophilic/hydrophobic ratio, charge, and ring size on the antibacterial activity against Gram-positive and Gram-negative strains. Among peptides, 5a and 6a demonstrated the highest antimicrobial activity. In combination with 11 commercially available antibiotics, 5a and 6a showed remarkable synergism against a large panel of resistant pathogens. Hemolysis (HC50 = 340 μg/mL) and cell viability against mammalian cells demonstrated the selective lethal action of 5a against bacteria over mammalian cells. Calcein dye leakage and scanning electron microscopy studies revealed the membranolytic effect of 5a. Moreover, the stability in human plasma (t1/2 = 3 h) and the negligible ability of pathogens to develop resistance further reflect the potential of 5a for further development as a peptide-based antibiotic.
Collapse
Affiliation(s)
- Eman H.
M. Mohammed
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
- Department
of Chemistry, Faculty of Science, Menoufia
University, Shebin
El-Koam51132, Egypt
- AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Sandeep Lohan
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
- AJK
Biopharmaceutical, Irvine, California92617, United States
| | - Tarra Ghaffari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Shilpi Gupta
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Rakesh K. Tiwari
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| | - Keykavous Parang
- Center
for Targeted Drug Delivery, Department of Biomedical and Pharmaceutical
Sciences, Chapman University School of Pharmacy,
Harry and Diane Rinker Health Science Campus, Irvine, California92618, United States
| |
Collapse
|
36
|
Megaly AMA, Miyashita M, Abdel-Wahab M, Nakagawa Y, Miyagawa H. Molecular Diversity of Linear Peptides Revealed by Transcriptomic Analysis of the Venom Gland of the Spider Lycosa poonaensis. Toxins (Basel) 2022; 14:toxins14120854. [PMID: 36548751 PMCID: PMC9788040 DOI: 10.3390/toxins14120854] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Spider venom is a complex mixture of bioactive components. Previously, we identified two linear peptides in Lycosa poonaensis venom using mass spectrometric analysis and predicted the presence of more linear peptides therein. In this study, a transcriptomic analysis of the L. poonaensis venom gland was conducted to identify other undetermined linear peptides in the venom. The results identified 87 contigs encoding peptides and proteins in the venom that were similar to those in other spider venoms. The number of contigs identified as neurotoxins was the highest, and 15 contigs encoding 17 linear peptide sequences were identified. Seven peptides that were representative of each family were chemically synthesized, and their biological activities were evaluated. All peptides showed significant antibacterial activity against Gram-positive and Gram-negative bacteria, although their selectivity for bacterial species differed. All peptides also exhibited paralytic activity against crickets, but none showed hemolytic activity. The secondary structure analysis based on the circular dichroism spectroscopy showed that all these peptides adopt an amphiphilic α-helical structure. Their activities appear to depend on the net charge, the arrangement of basic and acidic residues, and the hydrophobicity of the peptides.
Collapse
Affiliation(s)
- Alhussin Mohamed Abdelhakeem Megaly
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Masahiro Miyashita
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
- Correspondence:
| | - Mohammed Abdel-Wahab
- Zoology Department, Faculty of Science, Al-Azhar University, Assuit 71524, Egypt
| | - Yoshiaki Nakagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Hisashi Miyagawa
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| |
Collapse
|
37
|
Efficacy of natural antimicrobial peptides versus peptidomimetic analogues: a systematic review. Future Med Chem 2022; 14:1899-1921. [PMID: 36421051 DOI: 10.4155/fmc-2022-0160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Aims: This systematic review was carried out to determine whether synthetic peptidomimetics exhibit significant advantages over antimicrobial peptides in terms of in vitro potency. Structural features - molecular weight, charge and length - were examined for correlations with activity. Methods: Original research articles reporting minimum inhibitory concentration values against Escherichia coli, indexed until 31 December 2020, were searched in PubMed/ScienceDirect/Google Scholar and evaluated using mixed-effects models. Results: In vitro antimicrobial activity of peptidomimetics resembled that of antimicrobial peptides. Net charge significantly affected minimum inhibitory concentration values (p < 0.001) with a trend of 4.6% decrease for increments in charge by +1. Conclusion: AMPs and antibacterial peptidomimetics exhibit similar potencies, providing an opportunity to exploit the advantageous stability and bioavailability typically associated with peptidomimetics.
Collapse
|
38
|
Synthesis and Antimicrobial Activity of Short Analogues of the Marine Antimicrobial Peptide Turgencin A: Effects of SAR Optimizations, Cys-Cys Cyclization and Lipopeptide Modifications. Int J Mol Sci 2022; 23:ijms232213844. [PMID: 36430320 PMCID: PMC9696794 DOI: 10.3390/ijms232213844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 11/08/2022] [Indexed: 11/12/2022] Open
Abstract
We have synthesised short analogues of the marine antimicrobial peptide Turgencin A from the colonial Arctic ascidian Synoicum turgens. In this study, we focused on a central, cationic 12-residue Cys-Cys loop region within the sequence. Modified (tryptophan- and arginine-enriched) linear peptides were compared with Cys-Cys cyclic derivatives, and both linear and Cys-cyclic peptides were N-terminally acylated with octanoic acid (C8), decanoic acid (C10) or dodecanoic acid (C12). The highest antimicrobial potency was achieved by introducing dodecanoic acid to a cyclic Turgencin A analogue with low intrinsic hydrophobicity, and by introducing octanoic acid to a cyclic analogue displaying a higher intrinsic hydrophobicity. Among all tested synthetic Turgencin A lipopeptide analogues, the most promising candidates regarding both antimicrobial and haemolytic activity were C12-cTurg-1 and C8-cTurg-2. These optimized cyclic lipopeptides displayed minimum inhibitory concentrations of 4 µg/mL against Staphylococcus aureus, Escherichia coli and the fungus Rhodothorula sp. Mode of action studies on bacteria showed a rapid membrane disruption and bactericidal effect of the cyclic lipopeptides. Haemolytic activity against human erythrocytes was low, indicating favorable selective targeting of bacterial cells.
Collapse
|
39
|
Parra ALC, Freitas CDT, Souza PFN, von Aderkas P, Borchers CH, Beattie GA, Silva FDA, Thornburg RW. Ornamental tobacco floral nectar is a rich source of antimicrobial peptides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 324:111427. [PMID: 36007629 DOI: 10.1016/j.plantsci.2022.111427] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/29/2022] [Accepted: 08/19/2022] [Indexed: 06/15/2023]
Abstract
Although floral nectar is a rich source of nutrients, it is rarely infected by microorganisms. Defense molecules such as proteins have been identified in this fluid, but defense peptides have been largely overlooked. Thus, the aim of this study was to perform an extensive peptidomic analysis of the ornamental tobacco floral nectar to seek peptides involved in nectar defense. Using LC-MS/MS, 793 peptides were sequenced and characterized. After extensive bioinformatics analysis, six peptides were selected for further characterization, synthesis, and evaluation of their antimicrobial properties against phytopathogenic fungi and bacteria. All six peptides had antimicrobial activity to some extent. However, the activity varied by peptide concentration and microorganism tested. An analysis of the action mechanism revealed damage in the cell membrane induced by peptides. The results show that floral nectar is rich in peptides and that, together with proteins and hydrogen peroxide, they contribute to plant defense against microorganisms during pollination.
Collapse
Affiliation(s)
- Aura L C Parra
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Cleverson D T Freitas
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil; Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| | - Pedro F N Souza
- Department of Biochemistry and Molecular Biology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Patrick von Aderkas
- University of Victoria - Genome BC Proteomics Center, University of Victoria, Victoria, BC V8P 5C2, Canada; Centre for Forest Biology, Department of Biology, University of Victoria, Victoria, BC V8W 3N5, Canada
| | - Christoph H Borchers
- Segal Cancer Proteomics Centre, Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada; Gerald Bronfman Department of Oncology, Jewish General Hospital, McGill University, Montreal, Quebec H3T 1E2, Canada
| | - Gwyn A Beattie
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, USA
| | - Fredy D A Silva
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA
| | - Robert W Thornburg
- Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, IA, USA.
| |
Collapse
|
40
|
Jiang M, Chen R, Zhang J, Chen F, Wang KJ. A Novel Antimicrobial Peptide Spampcin 56-86 from Scylla paramamosain Exerting Rapid Bactericidal and Anti-Biofilm Activity In Vitro and Anti-Infection In Vivo. Int J Mol Sci 2022; 23:ijms232113316. [PMID: 36362111 PMCID: PMC9653689 DOI: 10.3390/ijms232113316] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
The abuse of antibiotics leads to the increase of bacterial resistance, which seriously threatens human health. Therefore, there is an urgent need to find effective alternatives to antibiotics, and antimicrobial peptides (AMPs) are the most promising antibacterial agents and have received extensive attention. In this study, a novel potential AMP was identified from the marine invertebrate Scylla paramamosain and named Spampcin. After bioinformatics analysis and AMP database prediction, four truncated peptides (Spa31, Spa22, Spa20 and Spa14) derived from Spampcin were screened, all of which showed potent antimicrobial activity with different antibacterial spectrum. Among them, Spampcin56-86 (Spa31 for short) exhibited strong bactericidal activity against a variety of clinical pathogens and could rapidly kill the tested bacteria within minutes. Further analysis of the antibacterial mechanism revealed that Spa31 disrupted the integrity of the bacterial membrane (as confirmed by scanning electron microscopy observation, NPN, and PI staining assays), leading to bacterial rupture, leakage of cellular contents (such as elevated extracellular ATP), increased ROS production, and ultimately cell death. Furthermore, Spa31 was found to interact with LPS and effectively inhibit bacterial biofilms. The antibacterial activity of Spa31 had good thermal stability, certain ion tolerance, and no obvious cytotoxicity. It is worth noting that Spa31 could significantly improve the survival rate of zebrafish Danio rerio infected with Pseudomonas aeruginosa, indicating that Spa31 played an important role in anti-infection in vivo. This study will enrich the database of marine animal AMPs and provide theoretical reference and scientific basis for the application of marine AMPs in medical fields.
Collapse
Affiliation(s)
- Manyu Jiang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Roushi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Jingrong Zhang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Fujian Innovation Research Institute for Marine Biological Antimicrobial Peptide Industrial Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen 361102, China
- Correspondence: (F.C.); (K.-J.W.)
| |
Collapse
|
41
|
Moreira Brito JC, Carvalho LR, Neves de Souza A, Carneiro G, Magalhães PP, Farias LM, Guimarães NR, Verly RM, Resende JM, Elena de Lima M. PEGylation of the antimicrobial peptide LyeTx I-b maintains structure-related biological properties and improves selectivity. Front Mol Biosci 2022; 9:1001508. [PMID: 36310605 PMCID: PMC9611540 DOI: 10.3389/fmolb.2022.1001508] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/20/2022] [Indexed: 07/31/2023] Open
Abstract
The biological activity of antimicrobial peptides and proteins is closely related to their structural aspects and is sensitive to certain post-translational modifications such as glycosylation, lipidation and PEGylation. However, PEGylation of protein and peptide drugs has expanded in recent years due to the reduction of their toxicity. Due to their size, the PEGylation process can either preserve or compromise the overall structure of these biopolymers and their biological properties. The antimicrobial peptide LyeTx I-bcys was synthesized by Fmoc strategy and coupled to polyethylene glycol 2.0 kDa. The conjugates were purified by HPLC and characterized by MALDI-ToF-MS analysis. Microbiological assays with LyeTx I-bcys and LyeTx I-bPEG were performed against Staphylococcus aureus (ATCC 33591) and Escherichia coli (ATCC 25922) in liquid medium. MIC values of 2.0 and 1.0 µM for LyeTx I-bcys and 8.0 and 4.0 µM for LyeTx I-bPEG were observed against S. aureus and E. coli, respectively. PEGylation of LyeTx I-bcys (LyeTx I-bPEG) decreased the cytotoxicity determined by MTT method for VERO cells compared to the non-PEGylated peptide. In addition, structural and biophysical studies were performed to evaluate the effects of PEGylation on the nature of peptide-membrane interactions. Surface Plasmon Resonance experiments showed that LyeTx I-b binds to anionic membranes with an association constant twice higher than the PEGylated form. The three-dimensional NMR structures of LyeTx I-bcys and LyeTx I-bPEG were determined and compared with the LyeTx I-b structure, and the hydrodynamic diameter and zeta potential of POPC:POPG vesicles were similar upon the addition of both peptides. The mPEG-MAL conjugation of LyeTx I-bcys gave epimers, and it, together with LyeTx I-bPEG, showed clear α-helical profiles. While LyeTx I-bcys showed no significant change in amphipathicity compared to LyeTx I-b, LyeTx I-bPEG was found to have a slightly less clear separation between hydrophilic and hydrophobic faces. However, the similar conformational freedom of LyeTx I-b and LyeTx I-bPEG suggests that PEGylation does not cause significant structural changes. Overall, our structural and biophysical studies indicate that the PEGylation does not alter the mode of peptide interaction and maintains antimicrobial activity while minimizing tissue toxicity, which confirmed previous results obtained in vivo. Interestingly, significantly improved proteolytic resistance to trypsin and proteinase K was observed after PEGylation.
Collapse
Affiliation(s)
| | - Lucas Raposo Carvalho
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Amanda Neves de Souza
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Guilherme Carneiro
- Departamento de Farmácia, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Paula Prazeres Magalhães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luiz Macêdo Farias
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Natália Rocha Guimarães
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Rodrigo Moreira Verly
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil
| | - Jarbas Magalhães Resende
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria Elena de Lima
- Programa de Pós-graduação em Medicina e Biomedicina da Santa Casa de Belo Horizonte, Belo Horizonte, MG, Brazil
| |
Collapse
|
42
|
Luong AD, Buzid A, Luong JHT. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J Funct Biomater 2022; 13:jfb13040175. [PMID: 36278644 PMCID: PMC9589978 DOI: 10.3390/jfb13040175] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 01/10/2023] Open
Abstract
Numerous epithelial cells and sometimes leukocytes release AMPs as their first line of defense. AMPs encompass cationic histatins, defensins, and cathelicidin to encounter oral pathogens with minimal resistance. However, their concentrations are significantly below the effective levels and AMPs are unstable under physiological conditions due to proteolysis, acid hydrolysis, and salt effects. In parallel to a search for more effective AMPs from natural sources, considerable efforts have focused on synthetic stable and low-cytotoxicy AMPs with significant activities against microorganisms. Using natural AMP templates, various attempts have been used to synthesize sAMPs with different charges, hydrophobicity, chain length, amino acid sequence, and amphipathicity. Thus far, sAMPs have been designed to target Streptococcus mutans and other common oral pathogens. Apart from sAMPs with antifungal activities against Candida albicans, future endeavors should focus on sAMPs with capabilities to promote remineralization and antibacterial adhesion. Delivery systems using nanomaterials and biomolecules are promising to stabilize, reduce cytotoxicity, and improve the antimicrobial activities of AMPs against oral pathogens. Nanostructured AMPs will soon become a viable alternative to antibiotics due to their antimicrobial mechanisms, broad-spectrum antimicrobial activity, low drug residue, and ease of synthesis and modification.
Collapse
Affiliation(s)
- Albert Donald Luong
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, University of Buffalo, Buffalo, NY 14215, USA
| | - Alyah Buzid
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 380, Al-Ahsa 31982, Saudi Arabia
| | - John H. T. Luong
- School of Chemistry and Analytical & Biological Chemistry Research Facility (ABCRF), University College Cork, College Road, T12 YN60 Cork, Ireland
- Correspondence: or
| |
Collapse
|
43
|
Poshvina DV, Dilbaryan DS, Kasyanov SP, Sadykova VS, Lapchinskaya OA, Rogozhin EA, Vasilchenko AS. Staphylococcus aureus is able to generate resistance to novel lipoglycopeptide antibiotic gausemycin A. Front Microbiol 2022; 13:963979. [PMID: 36246291 PMCID: PMC9558223 DOI: 10.3389/fmicb.2022.963979] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/14/2022] [Indexed: 11/13/2022] Open
Abstract
Gausemycin A is the first member of the novel lipoglycopeptides family produced by Streptomyces roseoflavus INA-Ac-5812. Gausemycin A has a pronounced bactericidal activity against methicillin-resistant Staphylococcus aureus. However, the ability of S. aureus to be resistant to gausemycin A has not been investigated yet. Using serial passaging, we have obtained the resistant variant S. aureus 5812R, which is 80 times more resistant compared to the parent strain. Susceptibility testing of S. aureus 5812R revealed the acquisition of cross-resistance to daptomycin, cefazolin, tetracycline, and gentamicin, while the resistance to vancomycin, nisin, and ramoplanin was absent. Whole genome sequencing revealed single nucleotide polymorphism (SNP) and deletions in S. aureus 5812R, among which are genes encoding efflux pump (sepA), the two-component Kdp system (kdpE), and the component of isoprenoid biosynthesis pathway (hepT). Phenotypically, S. aureus 5812R resembles a small-colony variant, as it is slow-growing, forms small colonies, and is deficient in pigments. Profiling of fatty acids (FA) composition constituting the cytoplasmic membrane of S. aureus 5812R revealed the prevalence of anteiso-branched FA, while straight FA was slightly less present. The evidence also showed that the gausemycin A-resistant strain has increased expression of the cls2 gene of the cardiolipin synthase. The performed checkerboard assay pointed out that the combination of gausemycin A and ciprofloxacin showed a synergistic effect against S. aureus 5812R.
Collapse
Affiliation(s)
- Darya V. Poshvina
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Diana S. Dilbaryan
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
| | - Sergey P. Kasyanov
- A.V. Zhirmunsky National Scientific Center of Marine Biology, Vladivostok, Russia
| | | | | | - Eugene A. Rogozhin
- Gause Institute of New Antibiotics, Moscow, Russia
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry Russian Academy of Sciences, Moscow, Russia
| | - Alexey S. Vasilchenko
- Laboratory of Antimicrobial Resistance, Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, Tyumen, Russia
- *Correspondence: Alexey S. Vasilchenko
| |
Collapse
|
44
|
Ma Z, Zhang D, Cheng Z, Niu Y, Kong L, Lu Z, Bie X. Designed symmetrical β-hairpin peptides for treating multidrug-resistant salmonella typhimurium infections. Eur J Med Chem 2022; 243:114769. [PMID: 36137364 DOI: 10.1016/j.ejmech.2022.114769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/28/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022]
Abstract
The rapid emergence and prevalence of multidrug-resistant salmonellosis lack effective therapies, which causes epidemic health problems and stimulates the development of antimicrobials with novel modes of action. In this research, 10 short symmetrical β-hairpin peptides are synthesized by combining the β-turn of Leucocin-A with recurring hydrophobic and cationic amino acid sequences. Those designed peptides exhibited potent antibacterial activities against drug-susceptible and drug-resistant Salmonella. One of the 10 peptides, WK2 ((WK)2CTKSGC(KW)2), displayed best cell selectivity towards Salmonella cells over macrophages and erythrocytes in a co-culture model. Fluorescent measurements and microscopic observations reflected that WK2 exerted its antimicrobial activity through a membrane-lytic mechanism. Moreover, the β-hairpin peptides can bind to endotoxin (LPS) and suppress the production of LPS-induced proinflammatory cytokines in RAW264.7 cells, indicating as a potent anti-inflammatory activity. The preliminary in vivo studies can also demonstrate that WK2 decreased loads of Salmonella in the liver and spleen, mitigated Salmonella-caused inflammation and maintained the integrity of intestinal mucosal surfaces. Ultimately, the results highlight that WK2 is a promising therapeutic agent to prevent multidrug-resistant S. Typhimurium infections in humans and animals.
Collapse
Affiliation(s)
- Zhi Ma
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China; College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Dong Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Ziyi Cheng
- Faculty of Cell and Molecular Biology, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Yandong Niu
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 4Z6, Canada
| | - Liangyu Kong
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaomei Bie
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
45
|
Sayed-Ahmed ETA, Salah KBH, El-Mekkawy RM, Rabie NA, Ashkan MF, Alamoudi SA, Alruhaili MH, Al Jaouni SK, Almuhayawi MS, Selim S, Saad AM, Namir M. The Preservative Action of Protein Hydrolysates from Legume Seed Waste on Fresh Meat Steak at 4 °C: Limiting Unwanted Microbial and Chemical Fluctuations. Polymers (Basel) 2022; 14:polym14153188. [PMID: 35956703 PMCID: PMC9371118 DOI: 10.3390/polym14153188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/04/2023] Open
Abstract
Valorizing agricultural wastes to preserve food or to produce functional food is a general trend regarding the global food shortage. Therefore, natural preservatives were developed from the seed waste of the cluster bean and the common bean to extend the shelf life of fresh buffalo meat steak and boost its quality via immersion in high-solubility peptides, cluster bean protein hydrolysate (CBH), and kidney bean protein hydrolysate (RCH). The CBH and the RCH were successfully obtained after 60 min of pepsin hydrolysis with a hydrolysis degree of 27−30%. The SDS-PAGE electropherogram showed that at 60 min of pepsin hydrolysis, the CBH bands disappeared, and RCH (11−48 kD bands) nearly disappeared, assuring the high solubility of the obtained hydrolysates. The CBH and the RCH have considerable antioxidant activity compared to ascorbic acid, antimicrobial activity against tested microorganisms compared to antibiotics, and significant functional properties. The CBH and the RCH (500 µg/mL) successfully scavenged 93 or 89% of DPPH radicals. During the 30-day cold storage (4 °C), the quality of treated and untreated fresh meat steaks was monitored. Protein hydrolysates (500 g/g) inhibited lipid oxidation by 130−153% compared to the control and nisin and eliminated 31−55% of the bacterial load. The CBH and the RCH (500 µg/g) significantly enhanced meat redness (a* values). The protein maintained 80−90% of the steak’s flavor and color (p < 0.05). In addition, it increased the juiciness of the steak. CBH and RCH are ways to valorize wastes that can be safely incorporated into novel foods.
Collapse
Affiliation(s)
| | - Karima Bel Hadj Salah
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
- Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, University of Monastir, Monastir 5089, Tunisia
| | - Rasha M. El-Mekkawy
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig 44511, Egypt
| | - Nourhan A. Rabie
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Mada F. Ashkan
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Soha A. Alamoudi
- Biological Sciences Department, College of Science & Arts, King Abdulaziz University, Rabigh 21911, Saudi Arabia
| | - Mohammed H. Alruhaili
- Medical Microbiology and Parasitology Department, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Soad K. Al Jaouni
- Department of Hematology/Oncology, Yousef Abdulatif Jameel Scientific Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Mohammed S. Almuhayawi
- Medical Microbiology and Parasitology Department, Faculty of Medicine, King AbdulAziz University, Jeddah 21589, Saudi Arabia
| | - Samy Selim
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
- Correspondence: (S.S.); (A.M.S.)
| | - Ahmed M. Saad
- Biochemistry Department, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
- Correspondence: (S.S.); (A.M.S.)
| | - Mohammad Namir
- Department of Food Science, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| |
Collapse
|
46
|
Jayathilaka EHTT, Rajapaksha DC, Nikapitiya C, Lee J, De Zoysa M, Whang I. Novel Antimicrobial Peptide “Octoprohibitin” against Multidrug Resistant Acinetobacter baumannii. Pharmaceuticals (Basel) 2022; 15:ph15080928. [PMID: 36015076 PMCID: PMC9415640 DOI: 10.3390/ph15080928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/11/2022] [Accepted: 07/22/2022] [Indexed: 11/16/2022] Open
Abstract
Octoprohibitin is a synthetic antimicrobial peptide (AMP), derived from the prohibitin-2 gene of Octopus minor. It showed substantial activity against multidrug resistant (MDR) Acinetobacter baumannii with a minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of 200 and 400 µg/mL, respectively. Time-kill kinetics and bacterial viability assays confirmed the concentration-dependent antibacterial activity of octoprohibitin against A. baumannii. The morphology and ultrastructure of A. baumannii were altered by treatment with octoprohibitin at the MIC and MBC levels. Furthermore, propidium iodide-fluorescein diacetate (PI-FDA) staining and 2′,7′-dichlorodihydrofluorescein diacetate (H2DCFDA) staining of octoprohibitin-treated A. baumannii revealed membrane permeability alterations and reactive oxygen species (ROS) generation, respectively. Agarose gel retardation results confirmed the DNA-binding ability of octoprohibitin to the genomic DNA of A. baumannii. Furthermore, octoprohibitin showed concentration-dependent inhibition of biofilm formation and eradication. The minimum biofilm inhibition concentration (MBIC) and minimum biofilm eradication concentration (MBEC) of octoprohibitin were 1000 and 1460 µg/mL, respectively. Octoprohibitin produced no significant cytotoxicity up to 800 µg/mL, and no hemolysis was observed up to 400 µg/mL. Furthermore, in vivo analysis in an A. baumannii-infected zebrafish model confirmed the effective bactericidal activity of octoprohibitin with higher cumulative survival percent (46.6%) and fewer pathological signs. Histological analysis showed reduced alterations in the gut, kidney, and gill tissues in the octoprohibitin-treated group compared with those in the phosphate-buffered saline (PBS)-treated group. In conclusion, our results suggest that octoprohibitin is a potential antibacterial and antibiofilm agent against MDR A. baumannii.
Collapse
Affiliation(s)
- E. H. T. Thulshan Jayathilaka
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
| | - Dinusha C. Rajapaksha
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
| | - Chamilani Nikapitiya
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
| | - Joeun Lee
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro, 101beon-gil, Janghang-eup 33662, Korea;
| | - Mahanama De Zoysa
- College of Veterinary Medicine and Research Institute of Veterinary Medicine, Chungnam National University, Yuseong-gu, Daejeon 34134, Korea; (E.H.T.T.J.); (D.C.R.); (C.N.)
- Correspondence: (M.D.Z.); (I.W.)
| | - Ilson Whang
- National Marine Biodiversity Institute of Korea (MABIK), 75, Jangsan-ro, 101beon-gil, Janghang-eup 33662, Korea;
- Correspondence: (M.D.Z.); (I.W.)
| |
Collapse
|
47
|
Akbari R, Hakemi Vala M, Sabatier JM, Pooshang Bagheri K. Fast killing kinetics, significant therapeutic index, and high stability of melittin-derived antimicrobial peptide. Amino Acids 2022; 54:1275-1285. [PMID: 35779173 DOI: 10.1007/s00726-022-03180-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 06/07/2022] [Indexed: 12/01/2022]
Abstract
The emergence of multidrug-resistant (MDR) bacteria is a major challenge for antimicrobial chemotherapy. Concerning this issue, antimicrobial peptides (AMPs) have been presented as novel promising antibiotics. Our previous de novo designed melittin-derived peptides (MDP1 and MDP2) indicated their potential as peptide drug leads. Accordingly, this study was aimed to evaluate the kinetics of activity, toxicity, and stability of MDP1 and MDP2 as well as determination of their structures. The killing kinetics of MDP1 and MDP2 demonstrate that all bacterial strains were rapidly killed. MDP1 and MDP2 were ca. 100- and 26.6-fold less hemolytic than melittin and found to be respectively 72.9- and 41.6-fold less cytotoxic than melittin on the HEK293 cell line. MDP1 and MDP2 showed 252- and 132-fold improvement in their therapeutic index in comparison to melittin. MDP1 and MDP2 sustained their activities in the presence of human plasma and were found to be ca. four to eightfold more stable than melittin. Spectropolarimetry analysis of MDP1 and MDP2 indicates that the peptides adopt an alpha-helical structure predominantly. According to the fast killing kinetics, significant therapeutic index, and high stability of MDP1, it could be considered as a drug lead in a mouse model of septicemia infections.
Collapse
Affiliation(s)
- Reza Akbari
- Department of Microbiology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, West Azerbaijan, Iran
| | - Mojdeh Hakemi Vala
- Department of Microbiology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Jean-Marc Sabatier
- Institute of NeuroPhysiopathology (INP), Faculté de Pharmacie, Université D'Aix-Marseille, UMR 7051, 27 Bd Jean Moulin, CEDEX 05, 13385, Marseille, France
| | - Kamran Pooshang Bagheri
- Venom and Biotherapeutics Molecules Lab, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
48
|
Sarker A. A Review on the Application of Bioactive Peptides as Preservatives and Functional Ingredients in Food Model Systems. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ayesha Sarker
- Assistant Professor for Food Science Agricultural and Environmental Research Station, West Virginia State University Institute WV USA
| |
Collapse
|
49
|
Shu L, Yang M, Liu N, Liu Y, Sun H, Wang S, Zhang Y, Li Y, Yang X, Wang Y. Short Hexapeptide Optimized from Rice-Derived Peptide 1 Shows Promising Anti-hyperuricemia Activities. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6679-6687. [PMID: 35608514 DOI: 10.1021/acs.jafc.2c00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Plant-derived peptides are a treasure trove for new-generation anti-hyperuricemia drugs. In the current study, we optimized a short hexapeptide rice-derived peptide 1 (RDP1)-M3 (AAAAGA) according to the anti-hyperuricemia RDP1 peptide identified from rice in our previous research. Results showed that RDP1-M3 exerted better hyperuricemia-alleviating and xanthine oxidase (XOD)-inhibiting potency in mice than RDP1. The biodistribution of RDP1-M3 was also analyzed. RDP1-M3 directly decreased XOD and uric acid levels in vivo and in vitro. In addition, RDP1-M3 reduced the expression of urate transporter 1 and glucose transporter 9, increased the level of organic anion transporter 1, reduced the expression of NOD-like receptor superfamily pyrin 3 inflammasomes, and reduced the levels of interleukin-1β and tumor necrosis factor-α of hyperuricemic mice. Thus, our results indicated that the optimized short hexapeptide RDP1-M3 may be a candidate drug for anti-hyperuricemia.
Collapse
Affiliation(s)
- Longjun Shu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Meifeng Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Naixin Liu
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yixiang Liu
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Huiling Sun
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Siyu Wang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yue Zhang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Yilin Li
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| | - Xinwang Yang
- Department of Anatomy and Histology and Embryology, Faculty of Basic Medical Science, Kunming Medical University, Kunming, Yunnan 650500, China
| | - Ying Wang
- Key Laboratory of Chemistry in Ethnic Medicinal Resources & Key Laboratory of Natural Products Synthetic Biology of Ethnic Medicinal Endophytes, State Ethnic Affairs Commission & Ministry of Education, School of Ethnic Medicine, Yunnan Minzu University, Kunming, Yunnan 650504, China
| |
Collapse
|
50
|
Bingxue Chang, Ma W, Lu Z, Lv F, Meng F, Zheng L, Bie X. Design and Antibacterial Mechanism of Peptides Derived from Sakacin P. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022020054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|