1
|
Smith IC, Sampaio ML, Melkus G, Meier-Ross K, Chakraborty S, Stotts C, Bourque PR, Lochmuller H, Brais B, Ayoub O, Perkins TJ, Khacho M, Warman-Chardon J. Plasma-derived protein and imaging biomarkers distinguish disease severity in oculopharyngeal muscular dystrophy. J Neuromuscul Dis 2025; 12:244-259. [PMID: 39973404 DOI: 10.1177/22143602241304990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BACKGROUND Oculopharyngeal muscular dystrophy (OPMD) is a rare, late-onset, slowly progressive neuromuscular disorder characterized by ptosis, dysphagia, and proximal limb weakness. Emerging clinical trials require rapidly accessible and sensitive biomarkers to evaluate OPMD disease progression and potential response to future treatments. OBJECTIVE This cross-sectional study was designed to identify candidate circulating protein and imaging biomarkers of OPMD severity for future use in clinical trials. METHODS Twenty-five individuals with OPMD (age 63.3 ± 10.5 years; GCN copy number of 13 in PABPN1) were assessed using the 7k SOMAScan assay to profile the plasma proteome, and MRI to quantify replacement of muscle by fat. OPMD severity was first categorized using the clinical presence/absence of limb weakness, and protein signals were considered distinguishing if they differed by more than 30% between subgroups and had statistically significant P-values after correcting for multiple comparisons. Distinguishing proteins were contrasted with age-matched controls (n = 10). OPMD severity was also treated as a continuous variable using fat fraction of the soleus muscle, and proteins were considered distinguishing if the slope of relationship between protein signal and soleus fat fraction differed significantly from zero after correcting for multiple comparisons. Pathway analyses were conducted using Metascape and the Database for Annotation, Visualization, and Integrated Discovery webtools. RESULTS Eighteen plasma proteins distinguished OPMD on both indicators of severity. Pathway analyses identified skeletal muscle tissue, phagocytosis/engulfment, and extracellular matrix organization as enriched ontology clusters in OPMD with limb weakness. The most distinguishing plasma protein signals (ACTN2, MYOM2, CA3, APOBEC2, MYL3, and PDLIM3) were over 200% higher in OPMD with limb weakness than OPMD without limb weakness as well as controls, and correlated strongly with percent of fatty replacement of soleus (r = 0.89 ± 0.04). CONCLUSIONS The candidate biomarkers identified contribute to the ongoing search for sensitive and accessible biomarkers of OPMD progression, prognosis, and monitoring.
Collapse
Affiliation(s)
- Ian C Smith
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
| | - Marcos L Sampaio
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
| | - Gerd Melkus
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medical Imaging, The Ottawa Hospital, Ottawa, Ontario, Canada
- Department of Radiology, Radiation Oncology and Medical Physics, University of Ottawa, Ottawa, Ontario, Canada
- Department of Physics, Carleton University, Ottawa, Ontario, Canada
| | | | | | - Cameron Stotts
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario Canada
- CAPITAL Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
- Vascular Biology and Experimental Medicine Laboratory, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Pierre R Bourque
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
| | - Hanns Lochmuller
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| | - Bernard Brais
- Montreal Neurological Institute and Hospital, McGill University, Montreal, Quebec, Canada
| | - Othmane Ayoub
- School of Electrical Engineering and Computer Science, Faculty of Engineering, University of Ottawa, Ottawa Ontario, Canada
| | - Theodore J Perkins
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario Canada
| | - Mireille Khacho
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario Canada
- Ottawa Institute of Systems Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jodi Warman-Chardon
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
- Eric Poulin Centre for Neuromuscular Disease, University of Ottawa, Ottawa, Ontario, Canada
- Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
- Department of Medicine, The Ottawa Hospital/University of Ottawa, Ottawa, Ontario, Canada
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, Ontario, Canada
| |
Collapse
|
2
|
Stirm M, Klymiuk N, Nagashima H, Kupatt C, Wolf E. Pig models for translational Duchenne muscular dystrophy research. Trends Mol Med 2024; 30:950-964. [PMID: 38749865 DOI: 10.1016/j.molmed.2024.04.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/13/2024] [Accepted: 04/16/2024] [Indexed: 10/12/2024]
Abstract
Duchenne muscular dystrophy (DMD) is caused by mutations in the X-linked DMD gene, resulting in the absence of dystrophin, progressive muscle degeneration, and heart failure. Genetically tailored pig models resembling human DMD mutations recapitulate the biochemical, clinical, and pathological hallmarks of DMD with an accelerated disease progression compared to human patients. DMD pigs have been used to evaluate therapeutic concepts such as gene editing to reframe a disrupted DMD reading frame or the delivery of artificial chromosome vectors carrying the complete DMD gene. Moreover, DMD pigs have been instrumental in validating new diagnostic modalities such as multispectral optoacoustic tomography (MSOT) for non-invasive monitoring of disease progression. DMD pigs may thus help to bridge the gap between proof-of-concept studies in cellular or rodent models and clinical studies in patients.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Large Animal Models in Cardiovascular Research, Internal Medical Department I, Technical University of Munich (TU Munich), 81675 Munich, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Kanagawa 214-8571, Japan
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum Rechts der Isar, TU Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, 81675 Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig Maximilian University of Munich (LMU Munich), 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU, Munich, 85764, Oberschleißheim, Germany; Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer (ICONLMU), LMU Munich, 81377 Munich, Germany.
| |
Collapse
|
3
|
Wang S, Collins A, Prakash A, Fexova S, Papatheodorou I, Jones AR, Vizcaíno JA. Integrated Proteomics Analysis of Baseline Protein Expression in Pig Tissues. J Proteome Res 2024; 23:1948-1959. [PMID: 38717300 PMCID: PMC11165573 DOI: 10.1021/acs.jproteome.3c00741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 02/16/2024] [Accepted: 04/18/2024] [Indexed: 06/13/2024]
Abstract
The availability of an increasingly large amount of public proteomics data sets presents an opportunity for performing combined analyses to generate comprehensive organism-wide protein expression maps across different organisms and biological conditions. Sus scrofa, a domestic pig, is a model organism relevant for food production and for human biomedical research. Here, we reanalyzed 14 public proteomics data sets from the PRIDE database coming from pig tissues to assess baseline (without any biological perturbation) protein abundance in 14 organs, encompassing a total of 20 healthy tissues from 128 samples. The analysis involved the quantification of protein abundance in 599 mass spectrometry runs. We compared protein expression patterns among different pig organs and examined the distribution of proteins across these organs. Then, we studied how protein abundances were compared across different data sets and studied the tissue specificity of the detected proteins. Of particular interest, we conducted a comparative analysis of protein expression between pig and human tissues, revealing a high degree of correlation in protein expression among orthologs, particularly in brain, kidney, heart, and liver samples. We have integrated the protein expression results into the Expression Atlas resource for easy access and visualization of the protein expression data individually or alongside gene expression data.
Collapse
Affiliation(s)
- Shengbo Wang
- European
Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Andrew Collins
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Ananth Prakash
- European
Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Open
Targets, Wellcome Genome
Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Silvie Fexova
- European
Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Irene Papatheodorou
- European
Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Open
Targets, Wellcome Genome
Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| | - Andrew R. Jones
- Institute
of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, United Kingdom
| | - Juan Antonio Vizcaíno
- European
Molecular Biology Laboratory-European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
- Open
Targets, Wellcome Genome
Campus, Hinxton, Cambridge CB10 1SD, United Kingdom
| |
Collapse
|
4
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
5
|
O’Brien JG, Willis AB, Long AM, Kwon J, Lee G, Li FW, Page PG, Vo AH, Hadhazy M, Spencer MJ, Crosbie RH, Demonbreun AR, McNally EM. The super-healing MRL strain promotes muscle growth in muscular dystrophy through a regenerative extracellular matrix. JCI Insight 2024; 9:e173246. [PMID: 38175727 PMCID: PMC11143963 DOI: 10.1172/jci.insight.173246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024] Open
Abstract
The Murphy Roths Large (MRL) mouse strain has "super-healing" properties that enhance recovery from injury. In mice, the DBA/2J strain intensifies many aspects of muscular dystrophy, so we evaluated the ability of the MRL strain to suppress muscular dystrophy in the Sgcg-null mouse model of limb girdle muscular dystrophy. A comparative analysis of Sgcg-null mice in the DBA/2J versus MRL strains showed greater myofiber regeneration, with reduced structural degradation of muscle in the MRL strain. Transcriptomic profiling of dystrophic muscle indicated strain-dependent expression of extracellular matrix (ECM) and TGF-β signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized myoscaffolds. Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-β1 and TGF-β3 throughout the matrix. Dystrophic myoscaffolds from the MRL background, but not the DBA/2J background, were enriched in myokines like IGF-1 and IL-6. C2C12 myoblasts seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J muscles showed the MRL background induced greater myoblast differentiation compared with dystrophic DBA/2J myoscaffolds. Thus, the MRL background imparts its effect through a highly regenerative ECM, which is active even in muscular dystrophy.
Collapse
Affiliation(s)
- Joseph G. O’Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Ashlee M. Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jason Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Frank W. Li
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Patrick G.T. Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Andy H. Vo
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Melissa J. Spencer
- Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, Department of Neurology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
6
|
Ye X, Wang Z, Lei W, Shen M, Tang J, Xu X, Yang Y, Zhang H. Pentraxin 3: A promising therapeutic target for cardiovascular diseases. Ageing Res Rev 2024; 93:102163. [PMID: 38092307 DOI: 10.1016/j.arr.2023.102163] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/23/2023] [Accepted: 12/07/2023] [Indexed: 12/18/2023]
Abstract
Cardiovascular disease (CVD) is the primary global cause of death, and inflammation is a crucial factor in the development of CVDs. The acute phase inflammatory protein pentraxin 3 (PTX3) is a biomarker reflecting the immune response. Recent research indicates that PTX3 plays a vital role in CVDs and has been investigated as a possible biomarker for CVD in clinical trials. PTX3 is implicated in the progression of CVDs through mechanisms such as exacerbating vascular endothelial dysfunction, affecting angiogenesis, and regulating inflammation and oxidative stress. This review summarized the structure and function of PTX3, focusing on its multifaceted effects on CVDs, such as atherosclerosis, myocardial infarction, and hypertension. This may help in explaining the varying PTX3 functions and usage, as well as in utilizing target organs to manage diseases. Moreover, elucidating the opposite role of PTX3 in the cardiovascular system will demonstrate the therapeutic and predictive potential in human diseases.
Collapse
Affiliation(s)
- Xingyan Ye
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China
| | - Zheng Wang
- Department of Cardiothoracic Surgery, Central Theater Command General Hospital of Chinese People's Liberation Army, 627 Wuluo Road, Wuhan, China
| | - Wangrui Lei
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China
| | - Mingzhi Shen
- Department of General Medicine, Hainan Hospital of Chinese People's Liberation Army (PLA) General Hospital, 80 Jianglin Road, Hainan, China
| | - Jiayou Tang
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Xuezeng Xu
- Department of Cardiovascular Surgery, Xijing Hospital, The Fourth Military Medical University, 127 Changle West Road, Xi'an, China
| | - Yang Yang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| | - Huan Zhang
- Department of Cardiology, Xi'an No.3 Hospital, The Affiliated Hospital of Northwest University. Faculty of Life Sciences and Medicine, Northwest University, 10 Fengcheng Three Road, Xi'an, China; Xi'an Key Laboratory of Innovative Drug Research for Heart Failure, Faculty of Life Sciences and Medicine, Northwest University, 229 Taibai North Road, Xi'an, China.
| |
Collapse
|
7
|
Okamoto K, Matsunari H, Nakano K, Umeyama K, Hasegawa K, Uchikura A, Takayanagi S, Watanabe M, Ohgane J, Stirm M, Kurome M, Klymiuk N, Nagaya M, Wolf E, Nagashima H. Phenotypic features of genetically modified DMD-X KOX WT pigs. Regen Ther 2023; 24:451-458. [PMID: 37772130 PMCID: PMC10523442 DOI: 10.1016/j.reth.2023.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/22/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023] Open
Abstract
INTRODUCTION Duchenne muscular dystrophy (DMD) is a hereditary neuromuscular disorder caused by mutation in the dystrophin gene (DMD) on the X chromosome. Female DMD carriers occasionally exhibit symptoms such as muscle weakness and heart failure. Here, we investigated the characteristics and representativeness of female DMD carrier (DMD-XKOXWT) pigs as a suitable disease model. METHODS In vitro fertilization using sperm from a DMD-XKOY↔XWTXWT chimeric boar yielded DMD-XKOXWT females, which were used to generate F2 and F3 progeny, including DMD-XKOXWT females. F1-F3 piglets were genotyped and subjected to biochemical analysis for blood creatine kinase (CK), aspartate aminotransferase, and lactate dehydrogenase. Skeletal muscle and myocardial tissue were analyzed for the expression of dystrophin and utrophin, as well as for lymphocyte and macrophage infiltration. RESULTS DMD-XKOXWT pigs exhibited various characteristics common to human DMD carrier patients, namely, asymptomatic hyperCKemia, dystrophin expression patterns in the skeletal and cardiac muscles, histopathological features of skeletal muscle degeneration, myocardial lesions in adulthood, and sporadic death. Pathological abnormalities observed in the skeletal muscles in DMD-XKOXWT pigs point to a frequent incidence of pathological abnormalities in the musculoskeletal tissues of latent DMD carriers. Our findings suggest a higher risk of myocardial abnormalities in DMD carrier women than previously believed. CONCLUSIONS We demonstrated that DMD-XKOXWT pigs could serve as a suitable large animal model for understanding the pathogenic mechanism in DMD carriers and developing therapies for female DMD carriers.
Collapse
Affiliation(s)
- Kazutoshi Okamoto
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Koki Hasegawa
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Ayuko Uchikura
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Shuko Takayanagi
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Jun Ohgane
- Laboratory of Genomic Function Engineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleissheim, Germany
| | - Hiroshi Nagashima
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
- Meiji University International Institute for Bio-Resource Research, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan
| |
Collapse
|
8
|
Golding AE, Li W, Blank PS, Cologna SM, Zimmerberg J. Relative quantification of progressive changes in healthy and dysferlin-deficient mouse skeletal muscle proteomes. Muscle Nerve 2023; 68:805-816. [PMID: 37706611 DOI: 10.1002/mus.27975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/15/2023]
Abstract
INTRODUCTION/AIMS Individuals with dysferlinopathies, a group of genetic muscle diseases, experience delay in the onset of muscle weakness. The cause of this delay and subsequent muscle wasting are unknown, and there are currently no clinical interventions to limit or prevent muscle weakness. To better understand molecular drivers of dysferlinopathies, age-dependent changes in the proteomic profile of skeletal muscle (SM) in wild-type (WT) and dysferlin-deficient mice were identified. METHODS Quadriceps were isolated from 6-, 18-, 42-, and 77-wk-old C57BL/6 (WT, Dysf+/+ ) and BLAJ (Dysf-/- ) mice (n = 3, 2 male/1 female or 1 male/2 female, 24 total). Whole-muscle proteomes were characterized using liquid chromatography-mass spectrometry with relative quantification using TMT10plex isobaric labeling. Principle component analysis was utilized to detect age-dependent proteomic differences over the lifespan of, and between, WT and dysferlin-deficient SM. The biological relevance of proteins with significant variation was established using Ingenuity Pathway Analysis. RESULTS Over 3200 proteins were identified between 6-, 18-, 42-, and 77-wk-old mice. In total, 46 proteins varied in aging WT SM (p < .01), while 365 varied in dysferlin-deficient SM. However, 569 proteins varied between aged-matched WT and dysferlin-deficient SM. Proteins with significant variation in expression across all comparisons followed distinct temporal trends. DISCUSSION Proteins involved in sarcolemma repair and regeneration underwent significant changes in SM over the lifespan of WT mice, while those associated with immune infiltration and inflammation were overly represented over the lifespan of dysferlin-deficient mice. The proteins identified herein are likely to contribute to our overall understanding of SM aging and dysferlinopathy disease progression.
Collapse
Affiliation(s)
- Adriana E Golding
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
- Section on Intracellular Protein Trafficking, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Wenping Li
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Paul S Blank
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois, USA
| | - Joshua Zimmerberg
- Section on Integrative Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Stirm M, Shashikadze B, Blutke A, Kemter E, Lange A, Stöckl JB, Jaudas F, Laane L, Kurome M, Keßler B, Zakhartchenko V, Bähr A, Klymiuk N, Nagashima H, Walter MC, Wurst W, Kupatt C, Fröhlich T, Wolf E. Systemic deletion of DMD exon 51 rescues clinically severe Duchenne muscular dystrophy in a pig model lacking DMD exon 52. Proc Natl Acad Sci U S A 2023; 120:e2301250120. [PMID: 37428903 PMCID: PMC10629550 DOI: 10.1073/pnas.2301250120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 06/10/2023] [Indexed: 07/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a fatal X-linked disease caused by mutations in the DMD gene, leading to complete absence of dystrophin and progressive degeneration of skeletal musculature and myocardium. In DMD patients and in a corresponding pig model with a deletion of DMD exon 52 (DMDΔ52), expression of an internally shortened dystrophin can be achieved by skipping of DMD exon 51 to reframe the transcript. To predict the best possible outcome of this strategy, we generated DMDΔ51-52 pigs, additionally representing a model for Becker muscular dystrophy (BMD). DMDΔ51-52 skeletal muscle and myocardium samples stained positive for dystrophin and did not show the characteristic dystrophic alterations observed in DMDΔ52 pigs. Western blot analysis confirmed the presence of dystrophin in the skeletal muscle and myocardium of DMDΔ51-52 pigs and its absence in DMDΔ52 pigs. The proteome profile of skeletal muscle, which showed a large number of abundance alterations in DMDΔ52 vs. wild-type (WT) samples, was normalized in DMDΔ51-52 samples. Cardiac function at age 3.5 mo was significantly reduced in DMDΔ52 pigs (mean left ventricular ejection fraction 58.8% vs. 70.3% in WT) but completely rescued in DMDΔ51-52 pigs (72.3%), in line with normalization of the myocardial proteome profile. Our findings indicate that ubiquitous deletion of DMD exon 51 in DMDΔ52 pigs largely rescues the rapidly progressing, severe muscular dystrophy and the reduced cardiac function of this model. Long-term follow-up studies of DMDΔ51-52 pigs will show if they develop symptoms of the milder BMD.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Andreas Blutke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich80539, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Florian Jaudas
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Laeticia Laane
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Barbara Keßler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
| | - Andrea Bähr
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Nikolai Klymiuk
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki214-8571, Japan
| | - Maggie C. Walter
- Department of Neurology, Friedrich Baur Institute, LMU Munich, Munich80336, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Munich, Neuherberg85674, Germany
- Chair of Developmental Genetics, TUM School of Life Sciences, Technische Universität München, Freising85354, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich81675, Germany
- German Center for Cardiovascular Research, Munich Heart Alliance, Munich81675, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich81377, Germany
- Center for Innovative Medical Models, Department of Veterinary Sciences, LMU Munich, Oberschleissheim85764, Germany
- Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, Munich81377, Germany
- Interfaculty Center for Endocrine and Cardiovascular Disease Network Modelling and Clinical Transfer, LMU Munich, Munich81377, Germany
| |
Collapse
|
10
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
11
|
O’Brien JG, Willis AB, Long AM, Kwon J, Lee G, Li F, Page PG, Vo AH, Hadhazy M, Crosbie RH, Demonbreun AR, McNally EM. The super-healing MRL strain promotes muscle growth in muscular dystrophy through a regenerative extracellular matrix. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547098. [PMID: 37425960 PMCID: PMC10327155 DOI: 10.1101/2023.06.29.547098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Genetic background shifts the severity of muscular dystrophy. In mice, the DBA/2J strain confers a more severe muscular dystrophy phenotype, whereas the Murphy's Roth Large (MRL) strain has "super-healing" properties that reduce fibrosis. A comparative analysis of the Sgcg null model of Limb Girdle Muscular Dystrophy in the DBA/2J versus MRL strain showed the MRL background was associated with greater myofiber regeneration and reduced structural degradation of muscle. Transcriptomic profiling of dystrophic muscle in the DBA/2J and MRL strains indicated strain-dependent expression of the extracellular matrix (ECM) and TGF-β signaling genes. To investigate the MRL ECM, cellular components were removed from dystrophic muscle sections to generate decellularized "myoscaffolds". Decellularized myoscaffolds from dystrophic mice in the protective MRL strain had significantly less deposition of collagen and matrix-bound TGF-β1 and TGF-β3 throughout the matrix, and dystrophic myoscaffolds from the MRL background were enriched in myokines. C2C12 myoblasts were seeded onto decellularized matrices from Sgcg-/- MRL and Sgcg-/- DBA/2J matrices. Acellular myoscaffolds from the dystrophic MRL background induced myoblast differentiation and growth compared to dystrophic myoscaffolds from the DBA/2J matrices. These studies establish that the MRL background also generates its effect through a highly regenerative ECM, which is active even in muscular dystrophy.
Collapse
Affiliation(s)
- Joseph G. O’Brien
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Alexander B. Willis
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Ashlee M. Long
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jason Kwon
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - GaHyun Lee
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Frank Li
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Patrick G.T. Page
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | - Michele Hadhazy
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rachelle H. Crosbie
- Department of Integrative Biology and Physiology, UCLA, Los Angeles, CA; Department of Neurology David Geffen School of Medicine, UCLA, Los Angeles, CA
| | - Alexis R. Demonbreun
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Pharmacology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Elizabeth M. McNally
- Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
12
|
Russell AJ, DuVall M, Barthel B, Qian Y, Peter AK, Newell-Stamper BL, Hunt K, Lehman S, Madden M, Schlachter S, Robertson B, Van Deusen A, Rodriguez HM, Vera C, Su Y, Claflin DR, Brooks SV, Nghiem P, Rutledge A, Juehne TI, Yu J, Barton ER, Luo YE, Patsalos A, Nagy L, Sweeney HL, Leinwand LA, Koch K. Modulating fast skeletal muscle contraction protects skeletal muscle in animal models of Duchenne muscular dystrophy. J Clin Invest 2023; 133:e153837. [PMID: 36995778 PMCID: PMC10178848 DOI: 10.1172/jci153837] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is a lethal muscle disease caused by absence of the protein dystrophin, which acts as a structural link between the basal lamina and contractile machinery to stabilize muscle membranes in response to mechanical stress. In DMD, mechanical stress leads to exaggerated membrane injury and fiber breakdown, with fast fibers being the most susceptible to damage. A major contributor to this injury is muscle contraction, controlled by the motor protein myosin. However, how muscle contraction and fast muscle fiber damage contribute to the pathophysiology of DMD has not been well characterized. We explored the role of fast skeletal muscle contraction in DMD with a potentially novel, selective, orally active inhibitor of fast skeletal muscle myosin, EDG-5506. Surprisingly, even modest decreases of contraction (<15%) were sufficient to protect skeletal muscles in dystrophic mdx mice from stress injury. Longer-term treatment also decreased muscle fibrosis in key disease-implicated tissues. Importantly, therapeutic levels of myosin inhibition with EDG-5506 did not detrimentally affect strength or coordination. Finally, in dystrophic dogs, EDG-5506 reversibly reduced circulating muscle injury biomarkers and increased habitual activity. This unexpected biology may represent an important alternative treatment strategy for Duchenne and related myopathies.
Collapse
Affiliation(s)
- Alan J. Russell
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Mike DuVall
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ben Barthel
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ying Qian
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Angela K. Peter
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | | | - Kevin Hunt
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Sarah Lehman
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Molly Madden
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Stephen Schlachter
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ben Robertson
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Ashleigh Van Deusen
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | | | - Carlos Vera
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Yu Su
- Molecular and Integrative Physiology and
| | - Dennis R. Claflin
- Department of Surgery, Section of Plastic Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Peter Nghiem
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Alexis Rutledge
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, USA
| | - Twlya I. Juehne
- Genome Technology Access Center, Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Jinsheng Yu
- Genome Technology Access Center, Department of Genetics, Washington University in Saint Louis School of Medicine, Saint Louis, Missouri, USA
| | - Elisabeth R. Barton
- Department of Applied Physiology and Kinesiology and Myology Institute, University of Florida College of Health and Human Performance, Gainesville, Florida, USA
| | - Yangyi E. Luo
- Department of Applied Physiology and Kinesiology and Myology Institute, University of Florida College of Health and Human Performance, Gainesville, Florida, USA
| | - Andreas Patsalos
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - Laszlo Nagy
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children’s Hospital, St. Petersburg, Florida, USA
| | - H. Lee Sweeney
- Department of Pharmacology and Therapeutics and Myology Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Leslie A. Leinwand
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Kevin Koch
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
13
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
14
|
Wu X, Dong N, Yu L, Liu M, Jiang J, Tang T, Zhao H, Fang Q. Identification of immune-related features involved in Duchenne muscular dystrophy: A bidirectional transcriptome and proteome-driven analysis. Front Immunol 2022; 13:1017423. [PMID: 36483550 PMCID: PMC9724784 DOI: 10.3389/fimmu.2022.1017423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/02/2022] [Indexed: 11/23/2022] Open
Abstract
Background We aimed to investigate the biological mechanism and feature genes of Duchenne muscular dystrophy (DMD) by multi-omics and experimental verification strategy. Methods We integrated the transcriptomic and proteomic methods to find the differentially expressed mRNAs (DEMs) and proteins (DEPs) between DMD and Control groups. Weighted gene co-expression network analysis (WGCNA) was then used to identify modules of highly correlated genes and hub genes. In the following steps, the immune and stromal cells infiltrations were accomplished by xCELL algorithm. Furthermore, TF and miRNA prediction were performed with Networkanalyst. ELISA, western blot and external datasets were performed to verify the key proteins/mRNAs in DMD patient and mouse. Finally, a nomogram model was established based on the potential biomarkers. Results 4515 DEMs and 56 DEPs were obtained from the transcriptomic and proteomic study respectively. 14 common genes were identified, which is enriched in muscle contraction and inflammation-related pathways. Meanwhile, we observed 33 significant differences in the infiltration of cells in DMD. Afterwards, a total of 22 miRNAs and 23 TF genes interacted with the common genes, including TFAP2C, MAX, MYC, NFKB1, RELA, hsa-miR-1255a, hsa-miR-130a, hsa-miR-130b, hsa-miR-152, and hsa-miR-17. In addition, three genes (ATP6AP2, CTSS, and VIM) showed excellent diagnostic performance on discriminating DMD in GSE1004, GSE3307, GSE6011 and GSE38417 datasets (all AUC > 0.8), which is validated in patients (10 DMD vs. 10 controls), DMD with exon 55 mutations, mdx mouse, and nomogram model. Conclusion Taken together, ATP6AP2, CTSS, and VIM play important roles in the inflammatory response in DMD, which may serve as diagnostic biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Xuan Wu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China,Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Nan Dong
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Liqiang Yu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meirong Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jianhua Jiang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Tieyu Tang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Hongru Zhao
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Hongru Zhao, ; Qi Fang,
| | - Qi Fang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China,*Correspondence: Hongru Zhao, ; Qi Fang,
| |
Collapse
|
15
|
Gargan S, Dowling P, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic Identification of Markers of Membrane Repair, Regeneration and Fibrosis in the Aged and Dystrophic Diaphragm. Life (Basel) 2022; 12:1679. [PMID: 36362832 PMCID: PMC9696191 DOI: 10.3390/life12111679] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Deficiency in the membrane cytoskeletal protein dystrophin is the underlying cause of the progressive muscle wasting disease named Duchenne muscular dystrophy. In order to detect novel disease marker candidates and confirm the complexity of the pathobiochemical signature of dystrophinopathy, mass spectrometric screening approaches represent ideal tools for comprehensive biomarker discovery studies. In this report, we describe the comparative proteomic analysis of young versus aged diaphragm muscles from wild type versus the dystrophic mdx-4cv mouse model of X-linked muscular dystrophy. The survey confirmed the drastic reduction of the dystrophin-glycoprotein complex in the mdx-4cv diaphragm muscle and concomitant age-dependent changes in key markers of muscular dystrophy, including proteins involved in cytoskeletal organization, metabolite transportation, the cellular stress response and excitation-contraction coupling. Importantly, proteomic markers of the regulation of membrane repair, tissue regeneration and reactive myofibrosis were detected by mass spectrometry and changes in key proteins were confirmed by immunoblotting. Potential disease marker candidates include various isoforms of annexin, the matricellular protein periostin and a large number of collagens. Alterations in these proteoforms can be useful to evaluate adaptive, compensatory and pathobiochemical changes in the intracellular cytoskeleton, myofiber membrane integrity and the extracellular matrix in dystrophin-deficient skeletal muscle tissues.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
16
|
Wei J, Zhang W, Li J, Jin Y, Qiu Z. Application of the transgenic pig model in biomedical research: A review. Front Cell Dev Biol 2022; 10:1031812. [PMID: 36325365 PMCID: PMC9618879 DOI: 10.3389/fcell.2022.1031812] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/26/2022] [Indexed: 11/18/2022] Open
Abstract
The large animal model has gradually become an essential part of preclinical research studies, relating to exploring the disease pathological mechanism, genic function, pharmacy, and other subjects. Although the mouse model has already been widely accepted in clinical experiments, the need for finding an animal model with high similarity compared with a human model is urgent due to the different body functions and systems between mice and humans. The pig is an optimal choice for replacement. Therefore, enhancing the production of pigs used for models is an important part of the large animal model as well. Transgenic pigs show superiority in pig model creation because of the progress in genetic engineering. Successful cases of transgenic pig models occur in the clinical field of metabolic diseases, neurodegenerative diseases, and genetic diseases. In addition, the choice of pig breed influences the effort and efficiency of reproduction, and the mini pig has relative obvious advantages in pig model production. Indeed, pig models in these diseases provide great value in studies of their causes and treatments, especially at the genetic level. This review briefly outlines the method used to create transgenic pigs and species of producing transgenic pigs and provides an overview of their applications on different diseases and limitations for present pig model developments.
Collapse
Affiliation(s)
| | | | | | - Ye Jin
- *Correspondence: Ye Jin, ; Zhidong Qiu,
| | | |
Collapse
|
17
|
Soglia F, Bordini M, Mazzoni M, Zappaterra M, Di Nunzio M, Clavenzani P, Davoli R, Meluzzi A, Sirri F, Petracci M. The evolution of vimentin and desmin in Pectoralis major muscles of broiler chickens supports their essential role in muscle regeneration. Front Physiol 2022; 13:970034. [PMID: 36134328 PMCID: PMC9483144 DOI: 10.3389/fphys.2022.970034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Vimentin (VIM) and desmin (DES) are muscle-specific proteins having crucial roles in maintaining the lateral organization and alignment of the sarcomeric structure during myofibrils’ regeneration. The present experiment was designed to ascertain the evolution of VIM and DES in Pectoralis major muscles (PM) of fast-growing (FG) and medium-growing (MG) meat-type chickens both at the protein and gene levels. MG broilers were considered as a control group whereas the evolution of VIM and DES over the growth period was evaluated in FG by collecting samples at different developmental stages (7, 14, 21, 28, 35, and 42 days). After performing a preliminary classification of the samples based on their histological features, 5 PM/sampling time/genotype were selected for western blot, immunohistochemistry (IHC), and gene expression analyses. Overall, the findings obtained at the protein level mirrored those related to their encoding genes, although a potential time lag required to observe the consequences of gene expression was evident. The two- and 3-fold higher level of the VIM-based heterodimer observed in FG at d 21 and d 28 in comparison with MG of the same age might be ascribed to the beginning and progressive development of the regenerative processes. This hypothesis is supported by IHC highlighting the presence of fibers to co-expressing VIM and DES. In addition, gene expression analyses suggested that, unlike VIM common sequence, VIM long isoform may not be directly implicated in muscle regeneration. As for DES content, the fluctuating trends observed for both the native protein and its heterodimer in FG might be ascribed to its importance for maintaining the structural organization of the regenerating fibers. Furthermore, the higher expression level of the DES gene in FG in comparison with MG further supported its potential application as a marker of muscle fibers’ regeneration. In conclusion, the findings of the present research seem to support the existence of a relationship between the occurrence of muscle regeneration and the growth rate of meat-type chickens and corroborate the potential use of VIM and DES as molecular markers of these cellular processes.
Collapse
Affiliation(s)
- Francesca Soglia
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Martina Bordini
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
- *Correspondence: Martina Zappaterra,
| | - Mattia Di Nunzio
- Department of Food, Environmental and Nutritional Sciences (DeFENS), University of Milan, Milan, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Adele Meluzzi
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences (DISTAL), Alma Mater Studiorum–University of Bologna, Bologna, Italy
| |
Collapse
|
18
|
Nimer RM, Sumaily KM, Almuslat A, Jabar MA, Sabi EM, Al-Muhaizea MA, Rahman AMA. Dystrophin Protein Quantification as a Duchenne Muscular Dystrophy Diagnostic Biomarker in Dried Blood Spots Using Multiple Reaction Monitoring Tandem Mass Spectrometry: A Preliminary Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123662. [PMID: 35744792 PMCID: PMC9231037 DOI: 10.3390/molecules27123662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/23/2022] [Accepted: 05/28/2022] [Indexed: 11/16/2022]
Abstract
Duchenne muscular dystrophy (DMD) is an X-linked recessive disorder characterized by progressive muscle loss, leading to difficulties in movement. Mutations in the DMD gene that code for the protein dystrophin are responsible for the development of DMD disorder, where the synthesis of this protein is completely halted. Therefore, circulating dystrophin protein could be a promising biomarker of DMD disease. Current methods for diagnosing DMD have sensitivity, specificity, and reproducibility limitations. Herein, a quantitative liquid chromatography-tandem spectrometry (LC-MS/MS) technique in multiple reaction monitoring (MRM) mode was designed and validated for accurate dystrophin protein measurement in a dried blood spot (DBS). The method was successfully validated on the basis of international guidelines regarding calibration curves, precision, and accuracy. In addition, patients and healthy controls were used to test the amount of dystrophin protein circulating in DBS samples as a potential biomarker for DMD disorders. DMD patients were found to have considerably lower levels than controls. To the best of our knowledge, this is the first study to report dystrophin levels in DBS through LC-MS/MS as a diagnostic marker for DMD to the proposed MRM method, providing a highly specific and sensitive approach to dystrophin quantification in a DBS that can be applied in DMD screening.
Collapse
Affiliation(s)
- Refat M. Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan
- Correspondence: (R.M.N.); (A.M.A.R.)
| | - Khalid M. Sumaily
- Clinical Biochemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.M.S.); (E.M.S.)
- Clinical Biochemistry Unit, Laboratory Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Arwa Almuslat
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSH-RC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia; (A.A.); (M.A.J.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
| | - Mai Abdel Jabar
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSH-RC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia; (A.A.); (M.A.J.)
| | - Essa M. Sabi
- Clinical Biochemistry Unit, Pathology Department, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia; (K.M.S.); (E.M.S.)
- Clinical Biochemistry Unit, Laboratory Medicine, King Saud University Medical City, King Saud University, Riyadh 11461, Saudi Arabia
| | - Mohammad A. Al-Muhaizea
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh 11211, Saudi Arabia;
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Center (KFSH-RC), Zahrawi Street, Al Maather, Riyadh 11211, Saudi Arabia; (A.A.); (M.A.J.)
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Correspondence: (R.M.N.); (A.M.A.R.)
| |
Collapse
|
19
|
Schultz TI, Raucci FJ, Salloum FN. Cardiovascular Disease in Duchenne Muscular Dystrophy. JACC Basic Transl Sci 2022; 7:608-625. [PMID: 35818510 PMCID: PMC9270569 DOI: 10.1016/j.jacbts.2021.11.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/06/2021] [Indexed: 12/11/2022]
Abstract
Cardiomyopathy is the leading cause of death in patients with DMD. DMD has no cure, and there is no current consensus for treatment of DMD cardiomyopathy. This review discusses therapeutic strategies to potentially reduce or prevent cardiac dysfunction in DMD patients. Additional studies are needed to firmly establish optimal treatment modalities for DMD cardiomyopathy.
Duchenne muscular dystrophy (DMD) is a devastating disease affecting approximately 1 in every 3,500 male births worldwide. Multiple mutations in the dystrophin gene have been implicated as underlying causes of DMD. However, there remains no cure for patients with DMD, and cardiomyopathy has become the most common cause of death in the affected population. Extensive research is under way investigating molecular mechanisms that highlight potential therapeutic targets for the development of pharmacotherapy for DMD cardiomyopathy. In this paper, the authors perform a literature review reporting on recent ongoing efforts to identify novel therapeutic strategies to reduce, prevent, or reverse progression of cardiac dysfunction in DMD.
Collapse
|
20
|
Stirm M, Fonteyne LM, Shashikadze B, Stöckl JB, Kurome M, Keßler B, Zakhartchenko V, Kemter E, Blum H, Arnold GJ, Matiasek K, Wanke R, Wurst W, Nagashima H, Knieling F, Walter MC, Kupatt C, Fröhlich T, Klymiuk N, Blutke A, Wolf E. Pig models for Duchenne muscular dystrophy – from disease mechanisms to validation of new diagnostic and therapeutic concepts. Neuromuscul Disord 2022; 32:543-556. [DOI: 10.1016/j.nmd.2022.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 12/13/2022]
|
21
|
Almiñana C, Dubuisson F, Bauersachs S, Royer E, Mermillod P, Blesbois E, Guignot F. Unveiling how vitrification affects the porcine blastocyst: clues from a transcriptomic study. J Anim Sci Biotechnol 2022; 13:46. [PMID: 35303969 PMCID: PMC8932223 DOI: 10.1186/s40104-021-00672-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 12/24/2021] [Indexed: 12/13/2022] Open
Abstract
Background Currently, there is a high demand for efficient pig embryo cryopreservation procedures in the porcine industry as well as for genetic diversity preservation and research purposes. To date, vitrification (VIT) is the most efficient method for pig embryo cryopreservation. Despite a high number of embryos survives in vitro after vitrification/warming procedures, the in vivo embryo survival rates after embryo transfer are variable among laboratories. So far, most studies have focused on cryoprotective agents and devices, while the VIT effects on porcine embryonic gene expression remained unclear. The few studies performed were based on vitrified/warmed embryos that were cultured in vitro (IVC) to allow them to re–expand. Thus, the specific alterations of VIT, IVC, and the cumulative effect of both remained unknown. To unveil the VIT-specific embryonic alterations, gene expression in VIT versus (vs.) IVC embryos was analyzed. Additionally, changes derived from both VIT and IVC vs. control embryos (CO) were analyzed to confirm the VIT embryonic alterations. Three groups of in vivo embryos at the blastocyst stage were analyzed by RNA–sequencing: (1) VIT embryos (vitrified/warmed and cultured in vitro), (2) IVC embryos and (3) CO embryos. Results RNA–sequencing revealed three clearly different mRNA profiles for VIT, IVC and CO embryos. Comparative analysis of mRNA profiles between VIT and IVC identified 321, differentially expressed genes (DEG) (FDR < 0.006). In VIT vs. CO and IVC vs. CO, 1901 and 1519 DEG were found, respectively, with an overlap of 1045 genes. VIT-specific functional alterations were associated to response to osmotic stress, response to hormones, and developmental growth. While alterations in response to hypoxia and mitophagy were related to the sum of VIT and IVC effects. Conclusions Our findings revealed new insights into the VIT procedure-specific alterations of embryonic gene expression by first comparing differences in VIT vs. IVC embryos and second by an integrative transcriptome analysis including in vivo control embryos. The identified VIT alterations might reflect the transcriptional signature of the embryo cryodamage but also the embryo healing process overcoming the VIT impacts. Selected validated genes were pointed as potential biomarkers that may help to improve vitrification. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-021-00672-1.
Collapse
Affiliation(s)
- C Almiñana
- UMR PRC, INRAE 0085, CNRS 7247, Université de Tours, IFCE, F, -37380, Nouzilly, France. .,Functional Genomics Group, Institute of Veterinary Anatomy, VetSuisse Faculty Zurich, University of Zurich, Zürich, Switzerland.
| | - F Dubuisson
- UMR PRC, INRAE 0085, CNRS 7247, Université de Tours, IFCE, F, -37380, Nouzilly, France
| | - S Bauersachs
- Functional Genomics Group, Institute of Veterinary Anatomy, VetSuisse Faculty Zurich, University of Zurich, Zürich, Switzerland
| | - E Royer
- UEPAO, INRAE, F, -37380, Nouzilly, France
| | - P Mermillod
- UMR PRC, INRAE 0085, CNRS 7247, Université de Tours, IFCE, F, -37380, Nouzilly, France
| | - E Blesbois
- UMR PRC, INRAE 0085, CNRS 7247, Université de Tours, IFCE, F, -37380, Nouzilly, France
| | - F Guignot
- UMR PRC, INRAE 0085, CNRS 7247, Université de Tours, IFCE, F, -37380, Nouzilly, France
| |
Collapse
|
22
|
Nieuwenhuis S, Widomska J, Blom P, ‘t Hoen PBAC, van Engelen BGM, Glennon JC. Blood Transcriptome Profiling Links Immunity to Disease Severity in Myotonic Dystrophy Type 1 (DM1). Int J Mol Sci 2022; 23:3081. [PMID: 35328504 PMCID: PMC8954763 DOI: 10.3390/ijms23063081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/01/2022] [Accepted: 03/03/2022] [Indexed: 02/01/2023] Open
Abstract
The blood transcriptome was examined in relation to disease severity in type I myotonic dystrophy (DM1) patients who participated in the Observational Prolonged Trial In DM1 to Improve QoL- Standards (OPTIMISTIC) study. This sought to (a) ascertain if transcriptome changes were associated with increasing disease severity, as measured by the muscle impairment rating scale (MIRS), and (b) establish if these changes in mRNA expression and associated biological pathways were also observed in the Dystrophia Myotonica Biomarker Discovery Initiative (DMBDI) microarray dataset in blood (with equivalent MIRS/DMPK repeat length). The changes in gene expression were compared using a number of complementary pathways, gene ontology and upstream regulator analyses, which suggested that symptom severity in DM1 was linked to transcriptomic alterations in innate and adaptive immunity associated with muscle-wasting. Future studies should explore the role of immunity in DM1 in more detail to assess its relevance to DM1.
Collapse
Affiliation(s)
- Sylvia Nieuwenhuis
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Joanna Widomska
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
| | - Paul Blom
- VDL Enabling Technologies Group B.V., 5651 GH Eindhoven, The Netherlands;
| | - Peter-Bram A. C. ‘t Hoen
- Center for Molecular and Biomolecular Informatics (CMBI), Radboud Institute for Molecular Life Sciences, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands; (S.N.); (P.-B.A.C.‘t.H.)
| | - Baziel G. M. van Engelen
- Department of Neurology, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6500 HB Nijmegen, The Netherlands;
| | - Jeffrey C. Glennon
- Department of Cognitive Neuroscience, Donders Institute for Brain Cognition and Behaviour, Radboud University Medical Centre, 6525 EN Nijmegen, The Netherlands;
- Conway Institute of Biomolecular and Biomedical Research, School of Medicine, University College Dublin, D04 V1W8 Dublin, Ireland
| | | |
Collapse
|
23
|
Kupatt C, Bozoglu T. Ryanodine Receptors Matter for Cardiac Function in Duchenne Muscular Dystrophy: Stability First. J Am Coll Cardiol 2021; 78:2454-2456. [PMID: 34886966 DOI: 10.1016/j.jacc.2021.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022]
Affiliation(s)
- Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, and DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
| | - Tarik Bozoglu
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, and DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| |
Collapse
|
24
|
Stirm M, Fonteyne LM, Shashikadze B, Lindner M, Chirivi M, Lange A, Kaufhold C, Mayer C, Medugorac I, Kessler B, Kurome M, Zakhartchenko V, Hinrichs A, Kemter E, Krause S, Wanke R, Arnold GJ, Wess G, Nagashima H, de Angelis MH, Flenkenthaler F, Kobelke LA, Bearzi C, Rizzi R, Bähr A, Reese S, Matiasek K, Walter MC, Kupatt C, Ziegler S, Bartenstein P, Fröhlich T, Klymiuk N, Blutke A, Wolf E. A scalable, clinically severe pig model for Duchenne muscular dystrophy. Dis Model Mech 2021; 14:273744. [PMID: 34796900 PMCID: PMC8688409 DOI: 10.1242/dmm.049285] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/11/2021] [Indexed: 11/20/2022] Open
Abstract
Large animal models for Duchenne muscular dystrophy (DMD) are crucial for evaluation of diagnostic procedures and treatment strategies. Pigs cloned from male cells lacking DMD exon 52 (DMDΔ52) resemble molecular, clinical and pathological hallmarks of DMD, but die before sexual maturity and cannot be propagated by breeding. Therefore, we generated female DMD+/- carriers. A single founder animal had 11 litters with 29 DMDY/-, 34 DMD+/- as well as 36 male and 29 female wild-type offspring. Breeding with F1 and F2 DMD+/- carriers resulted in additional 114 DMDY/- piglets. With intensive neonatal management, the majority survived for 3-4 months, providing statistically relevant cohorts for experimental studies. Pathological investigations and proteome studies of skeletal muscles and myocardium confirmed the resemblance of human disease mechanisms. Importantly, DMDY/- pigs reveal progressive myocardial fibrosis and increased expression of connexin-43, associated with significantly reduced left ventricular ejection fraction already at age 3 months. Furthermore, behavioral tests provided evidence for impaired cognitive ability. Our breeding cohort of DMDΔ52 pigs and standardized tissue repositories provide important resources for studying DMD disease mechanisms and for testing novel treatment strategies.
Collapse
Affiliation(s)
- Michael Stirm
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Lina Marie Fonteyne
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Bachuki Shashikadze
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Magdalena Lindner
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Maila Chirivi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy.,Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Andreas Lange
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Clara Kaufhold
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Christian Mayer
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Ivica Medugorac
- Population Genomics Group, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Barbara Kessler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Valeri Zakhartchenko
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Sabine Krause
- Friedrich Baur Institute, Department of Neurology, LMU Munich, Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Gerhard Wess
- Clinic of Small Animal Medicine, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | | | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Levin Arne Kobelke
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Claudia Bearzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy.,Institute of Genetic and Biomedical Research, UOS of Milan, National Research Council (IRGB-CNR), Milan, Italy
| | - Roberto Rizzi
- Fondazione Istituto Nazionale di Genetica Molecolare, Milan, Italy.,Institute for Biomedical Technologies, National Research Council (ITB-CNR), Segrate, Milan, Italy
| | - Andrea Bähr
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Sven Reese
- Chair for Anatomy, Histology and Embryology, Department of Veterinary Sciences, LMU Munich, Munich, Germany
| | - Kaspar Matiasek
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich, Germany
| | - Maggie C Walter
- Friedrich Baur Institute, Department of Neurology, LMU Munich, Munich, Germany
| | - Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich and German Center for Cardiovascular Research (DZHK), Munich Heart Alliance, Munich, Germany
| | - Sibylle Ziegler
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| | - Nikolai Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Zentrum Munich, Neuherberg, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, Munich, Germany.,Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany.,Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Munich, Germany
| |
Collapse
|
25
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
26
|
Vu Hong A, Sanson M, Richard I, Israeli D. A revised model for mitochondrial dysfunction in Duchenne muscular dystrophy. Eur J Transl Myol 2021; 31. [PMID: 34533019 PMCID: PMC8495359 DOI: 10.4081/ejtm.2021.10012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/12/2021] [Indexed: 12/27/2022] Open
Abstract
We recently identified a signaling pathway that links the upregulation of miR-379 with a mitochondrial response in dystrophic muscle. In the present commentary, we explain the significance that this pathway may have in mitochondrial dysfunction in Duchenne muscular dystrophy (DMD). We identified the upregulation of miR-379 in the serum and muscles of DMD animal models and patients. We found that miR-379 is one of very few miRNAs whose expression was normalized in DMD patients treated with glucocorticoid. We identified EIF4G2 as a miR-379 target, which may promote mitochondrial oxidative phosphorylation (OxPhos) in the skeletal muscle. We found enriched EIF4G2 expression in oxidative fibers, and identified the mitochondrial ATP synthase subunit DAPIT as a translational target of EIF4G2. The identified signaling cascade, which comprises miR-379, EIF4G2 and DAPIT, may link the glucocorticoid treatment in DMD to a recovered mitochondrial ATP synthesis rate. We propose an updated model of mitochondrial dysfunction in DMD.
Collapse
Affiliation(s)
- Ai Vu Hong
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| | - Mathilde Sanson
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| | - Isabelle Richard
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| | - David Israeli
- Genethon, Evry, France; Université Paris-Saclay, Univ Evry, Inserm, Généthon, Integrare research unit UMR-S951, Evry.
| |
Collapse
|
27
|
Zheng Q, Zhu C, Jing J, Ling Y, Qin S, Wang J, Zha L, Liu Y, Fang F. Morphological changes and functional circRNAs screening of rabbit skeletal muscle development. BMC Genomics 2021; 22:469. [PMID: 34167469 PMCID: PMC8223307 DOI: 10.1186/s12864-021-07706-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 05/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The temporal expression pattern of circular RNAs (circRNAs) across developmental stages is essential for skeletal muscle growth and functional analysis. However, there are few analyses on the potential functions of circRNAs in rabbit skeletal muscle development. RESULTS Initially, the paraffin sections showed extremely significant differences in the diameter, number, area and density of skeletal muscle fibers of the fetus, child, adult rabbit hind legs (P < 0.01). Then, RNA-seq libraries of these three stages were constructed. A total of 481 differentially expressed circRNAs (DE-circRNAs) and 5,658 differentially expressed genes (DEGs) were identified. Subsequently, DE-circRNAs, whose host genes were DEGs or non-DEGs, were analyzed by GO respectively. In the fetus vs. child group, up-regulated DE-circRNAs (whose host genes were DEGs) were related to muscle fiber structure, and down-regulated ones were related to mitosis. The up-regulated DE-circRNAs (whose host genes were non-DEGs) were involved in enzyme activity, methylation and glycosylation, and the down-regulated ones were involved in mitosis and catabolism. In the fetus vs. adult group, the up-regulated DE-circRNAs (whose host genes were DEGs) were related to skeletal muscle basic structure, and the down-regulated ones were also associated with cell proliferation. But the up-regulated DE-circRNAs (whose host genes were non-DEGs) were connected with regulation of histone ubiquitination, chromatin and organelles. The down-regulated DE-circRNAs were connected with the catabolism processes. In addition, novel_circ_0022663 and novel_circ_0005489, which might have coding potential, and novel_circ_0004210 and novel_circ_0001669, which might have miRNA sponge capability, were screened out. CONCLUSIONS In this study, hind leg muscles of fetus, child and adult rabbits were collected for paraffin section and RNA-seq to observe the structural changes of skeletal muscle and obtain circRNA expression profiles at different stages. These data provided a catalog of circRNAs related to muscle development in New Zealand rabbits, allowing us to better understand the functional transitions in mammalian muscle development.
Collapse
Affiliation(s)
- Qi Zheng
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China
| | - Cuiyun Zhu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China
| | - Jing Jing
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China
| | - Yinghui Ling
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China. .,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China.
| | - Shuaiqi Qin
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China
| | - Jiao Wang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China
| | - Lisha Zha
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China. .,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China.
| | - Ya Liu
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China
| | - Fugui Fang
- College of Animal Science and Technology, Anhui Agricultural University, Anhui, Hefei, P.R. China.,Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-Breeding, Anhui Agricultural University, Hefei, P.R. China
| |
Collapse
|
28
|
Zhao Y, Albrecht E, Li Z, Schregel J, Sciascia QL, Metges CC, Maak S. Distinct Roles of Perilipins in the Intramuscular Deposition of Lipids in Glutamine-Supplemented, Low-, and Normal-Birth-Weight Piglets. Front Vet Sci 2021; 8:633898. [PMID: 34235195 PMCID: PMC8257002 DOI: 10.3389/fvets.2021.633898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 05/10/2021] [Indexed: 11/13/2022] Open
Abstract
Piglets with low birth weight (LBW) usually have reduced muscle mass and increased lipid deposition compared with their normal-birth-weight (NBW) littermates. Supplementation of piglets with amino acids during the first days of life may improve muscle growth and simultaneously alter the intramuscular lipid deposition. The aim of the current study was to investigate the influence of glutamine (Gln) supplementation during the early suckling period on lipid deposition in the longissimus muscle (MLD) and the role of different perilipin (PLIN) family members in this process. Four groups were generated consisting of 72 male LBW piglets and 72 NBW littermates. Piglets were supplemented with either 1 g Gln/kg body weight or an isonitrogenous amount of alanine (Ala) between days post natum (dpn) 1 and 12. Twelve piglets per group were slaughtered at 5, 12, and 26 dpn, and muscle tissue was collected. Perilipins were localized by immunohistochemistry in muscle sections. The mRNA and protein abundances of PLIN family members and related lipases were quantified by quantitative RT-PCR (qPCR) and western blots, respectively. While PLIN1 was localized around lipid droplets in mature and developing adipocytes, PLIN2 was localized at intramyocellular lipid droplets, PLIN3 and 4 at cell membranes of muscle fibers and adipocytes, and PLIN5 in the cytoplasm of undefined cells. The western blot results indicated higher protein abundances of PLIN2, 3, 4, and 5 in LBW piglets (p < 0.05) at 5 dpn compared with their NBW littermates independent of supplementation, while not directly reflecting the mRNA expression levels. The mRNA abundance of PLIN2 was lower while PLIN4 was higher in piglets at 26 dpn in comparison with piglets at 5 dpn (p < 0.01). Relative mRNA expression of LPL and CGI-58 was lowest in piglets at 5 dpn (p < 0.001). However, ATGL mRNA was not influenced by birth weight or supplementation, but the Spearman correlation coefficient analysis revealed close correlations with PLIN2, 4, and 5 mRNA at 5 and 26 dpn (r > 0.5, p < 0.001). The results indicated the importance of birth weight and age for intramuscular lipid deposition and different roles of PLIN family members in this process, but no clear modulating effect of Gln supplementation.
Collapse
Affiliation(s)
- Yaolu Zhao
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Elke Albrecht
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Zeyang Li
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Johannes Schregel
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Quentin L Sciascia
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology "Oskar Kellner", Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Steffen Maak
- Institute of Muscle Biology and Growth, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| |
Collapse
|
29
|
Eggers B, Schork K, Turewicz M, Barkovits K, Eisenacher M, Schröder R, Clemen CS, Marcus K. Advanced Fiber Type-Specific Protein Profiles Derived from Adult Murine Skeletal Muscle. Proteomes 2021; 9:proteomes9020028. [PMID: 34201234 PMCID: PMC8293376 DOI: 10.3390/proteomes9020028] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 02/07/2023] Open
Abstract
Skeletal muscle is a heterogeneous tissue consisting of blood vessels, connective tissue, and muscle fibers. The last are highly adaptive and can change their molecular composition depending on external and internal factors, such as exercise, age, and disease. Thus, examination of the skeletal muscles at the fiber type level is essential to detect potential alterations. Therefore, we established a protocol in which myosin heavy chain isoform immunolabeled muscle fibers were laser microdissected and separately investigated by mass spectrometry to develop advanced proteomic profiles of all murine skeletal muscle fiber types. All data are available via ProteomeXchange with the identifier PXD025359. Our in-depth mass spectrometric analysis revealed unique fiber type protein profiles, confirming fiber type-specific metabolic properties and revealing a more versatile function of type IIx fibers. Furthermore, we found that multiple myopathy-associated proteins were enriched in type I and IIa fibers. To further optimize the assignment of fiber types based on the protein profile, we developed a hypothesis-free machine-learning approach, identified a discriminative peptide panel, and confirmed our panel using a public data set.
Collapse
Affiliation(s)
- Britta Eggers
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
- Correspondence: (B.E.); (K.M.)
| | - Karin Schork
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Michael Turewicz
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Katalin Barkovits
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Martin Eisenacher
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Christoph S. Clemen
- German Aerospace Center, Institute of Aerospace Medicine, 51147 Cologne, Germany;
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Katrin Marcus
- Medizinisches Proteom-Center, Medical Faculty, Ruhr-University Bochum, 44801 Bochum, Germany; (K.S.); (M.T.); (K.B.); (M.E.)
- Medical Proteome Analysis, Center for Protein Diagnostics (PRODI), Ruhr-University Bochum, 44801 Bochum, Germany
- Correspondence: (B.E.); (K.M.)
| |
Collapse
|
30
|
Barthel BL, Cox D, Barbieri M, Ziemba M, Straub V, Hoffman EP, Russell AJ. Elevation of fast but not slow troponin I in the circulation of patients with Becker and Duchenne muscular dystrophy. Muscle Nerve 2021; 64:43-49. [PMID: 33683712 PMCID: PMC8362156 DOI: 10.1002/mus.27222] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 11/24/2022]
Abstract
Introduction One of the hallmarks of injured skeletal muscle is the appearance of elevated skeletal muscle proteins in circulation. Human skeletal muscle generally consists of a mosaic of slow (type I) and fast (type IIa, IIx/d) fibers, defined by their myosin isoform expression. Recently, measurement of circulating fiber‐type specific isoforms of troponin I has been used as a biomarker to suggest that muscle injury in healthy volunteers (HV) results in the appearance of muscle proteins from fast but not slow fibers. We sought to understand if this is also the case in severe myopathy patients with Becker and Duchenne muscular dystrophy (BMD, DMD). Methods An enzyme‐linked immunosorbent assay (ELISA) that selectively measures fast and slow skeletal troponin I (TNNI2 and TNNI1) was used to measure a cross‐section of patient plasma samples from HV (N = 50), BMD (N = 49), and DMD (N = 132) patients. Creatine kinase (CK) activity was also measured from the same samples for comparison. Results TNNI2 was elevated in BMD and DMD and correlated with the injury biomarker, CK. In contrast, TNNI1 levels were indistinguishable from levels in HV. There was an inverse relationship between CK and TNNI2 levels and age, but no relationship for TNNI1. Discussion We define a surprising discrepancy between TNNI1 and TNNI2 in patient plasma that may have implications for the interpretation of elevated muscle protein levels in dystrophinopathies. See Editorial on pages 4–5 in this issue.
Collapse
Affiliation(s)
- Benjamin L Barthel
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| | - Dan Cox
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Marissa Barbieri
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - State University of New York, Binghamton, New York, USA
| | - Michael Ziemba
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - State University of New York, Binghamton, New York, USA
| | - Volker Straub
- The John Walton Muscular Dystrophy Research Centre, Translational and Clinical Research Institute, Newcastle University and Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Eric P Hoffman
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, Binghamton University - State University of New York, Binghamton, New York, USA
| | - Alan J Russell
- Edgewise Therapeutics, BioFrontiers Institute, University of Colorado, Boulder, Colorado, USA
| |
Collapse
|
31
|
Kupatt C, Windisch A, Moretti A, Wolf E, Wurst W, Walter MC. Genome editing for Duchenne muscular dystrophy: a glimpse of the future? Gene Ther 2021; 28:542-548. [PMID: 33531685 PMCID: PMC8455335 DOI: 10.1038/s41434-021-00222-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/01/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
Mutations in Dystrophin, one of the largest proteins in the mammalian body, are causative for a severe form of muscle disease, Duchenne Muscular Dystrophy (DMD), affecting not only skeletal muscle, but also the heart. In particular, exons 45–52 constitute a hotspot for DMD mutations. A variety of molecular therapies have been developed, comprising vectors encoding micro- and minidystrophins as well as utrophin, a protein with partially overlapping functions. With the advent of the CRISPR-Cas9-nuclease, genome editing offers a novel option of correction of the disease-cuasing mutations. Full restoration of the healthy gene by homology directed repair is a rare event. However, non-homologous end-joining (NHEJ) may restore the reading frame by causing exon excision. This approach has first been demonstrated in mice and then translated to large animals (dogs, pigs). This review discusses the potential opportunities and limitations of genome editing in DMD, including the generation of appropriate animal models as well as new developments in genome editing tools.
Collapse
Affiliation(s)
- Christian Kupatt
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany. .,DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, Munich, Germany.
| | - Alina Windisch
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Alessandra Moretti
- Klinik und Poliklinik für Innere Medizin I, Klinikum rechts der Isar, Technical University Munich, Munich, Germany.,DZHK (German Center for Cardiovascular Research), Munich Heart Alliance, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| | - Wolfgang Wurst
- Institute of Development Genetics, Helmholtz-Centre Munich, Munich, Germany.,German Center for Neurodegenerative Diseases, Munich, Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Maggie C Walter
- Friedrich Baur Institute, Department of Neurology, LMU Munich, Munich, Germany
| |
Collapse
|
32
|
Koppes EA, Redel BK, Johnson MA, Skvorak KJ, Ghaloul-Gonzalez L, Yates ME, Lewis DW, Gollin SM, Wu YL, Christ SE, Yerle M, Leshinski A, Spate LD, Benne JA, Murphy SL, Samuel MS, Walters EM, Hansen SA, Wells KD, Lichter-Konecki U, Wagner RA, Newsome JT, Dobrowolski SF, Vockley J, Prather RS, Nicholls RD. A porcine model of phenylketonuria generated by CRISPR/Cas9 genome editing. JCI Insight 2020; 5:141523. [PMID: 33055427 PMCID: PMC7605535 DOI: 10.1172/jci.insight.141523] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 09/17/2020] [Indexed: 12/17/2022] Open
Abstract
Phenylalanine hydroxylase-deficient (PAH-deficient) phenylketonuria (PKU) results in systemic hyperphenylalaninemia, leading to neurotoxicity with severe developmental disabilities. Dietary phenylalanine (Phe) restriction prevents the most deleterious effects of hyperphenylalaninemia, but adherence to diet is poor in adult and adolescent patients, resulting in characteristic neurobehavioral phenotypes. Thus, an urgent need exists for new treatments. Additionally, rodent models of PKU do not adequately reflect neurocognitive phenotypes, and thus there is a need for improved animal models. To this end, we have developed PAH-null pigs. After selection of optimal CRISPR/Cas9 genome-editing reagents by using an in vitro cell model, zygote injection of 2 sgRNAs and Cas9 mRNA demonstrated deletions in preimplantation embryos, with embryo transfer to a surrogate leading to 2 founder animals. One pig was heterozygous for a PAH exon 6 deletion allele, while the other was compound heterozygous for deletions of exon 6 and of exons 6-7. The affected pig exhibited hyperphenylalaninemia (2000-5000 μM) that was treatable by dietary Phe restriction, consistent with classical PKU, along with juvenile growth retardation, hypopigmentation, ventriculomegaly, and decreased brain gray matter volume. In conclusion, we have established a large-animal preclinical model of PKU to investigate pathophysiology and to assess new therapeutic interventions.
Collapse
Affiliation(s)
- Erik A. Koppes
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Bethany K. Redel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Marie A. Johnson
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kristen J. Skvorak
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Lina Ghaloul-Gonzalez
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Megan E. Yates
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Dale W. Lewis
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Susanne M. Gollin
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Yijen L. Wu
- Department of Developmental Biology, University of Pittsburgh, and UPMC Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Shawn E. Christ
- Department of Psychological Sciences, University of Missouri, Columbia, Missouri, USA
| | - Martine Yerle
- GenPhySE, Université de Toulouse, INRAE, ENVT, 31326, Castanet-Tolosan, France
| | - Angela Leshinski
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Lee D. Spate
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Joshua A. Benne
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Stephanie L. Murphy
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Melissa S. Samuel
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Eric M. Walters
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Sarah A. Hansen
- Department of Veterinary Pathobiology, College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Kevin D. Wells
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Uta Lichter-Konecki
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Robert A. Wagner
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joseph T. Newsome
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
- Division of Laboratory Animal Resources, Office of Research, Health Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Steven F. Dobrowolski
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Jerry Vockley
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, Pennsylvania, USA
| | - Randall S. Prather
- Division ofAnimal Sciences, College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, Missouri, USA
- National Swine Research and Resource Center (NSRRC), College of Veterinary Medicine, University of Missouri, Columbia, Missouri, USA
| | - Robert D. Nicholls
- Division of Medical Genetics, Department of Pediatrics, University of Pittsburgh School of Medicine, and Universityof Pittsburgh Medical Center (UPMC) Children’s Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
33
|
Tamiyakul H, Kemter E, Kösters M, Ebner S, Blutke A, Klymiuk N, Flenkenthaler F, Wolf E, Arnold GJ, Fröhlich T. Progressive Proteome Changes in the Myocardium of a Pig Model for Duchenne Muscular Dystrophy. iScience 2020; 23:101516. [PMID: 32927262 PMCID: PMC7495112 DOI: 10.1016/j.isci.2020.101516] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/14/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Duchenne muscular dystrophy (DMD), caused by mutations in the dystrophin gene, is characterized by progressive muscle weakness. Even though DMD manifests first in skeletal muscle, heart failure is a major cause of death in late-stage DMD. To get insights into DMD-associated cardiomyopathy, we performed a proteome analysis of myocardium from a genetically engineered porcine DMD model resembling clinical and pathological hallmarks of human DMD. To capture DMD progression, samples from 2-day- and 3-month-old animals were analyzed. Dystrophin was absent in all DMD samples, and components of the dystrophin-associated protein complex were decreased, suggesting destabilization of the cardiomyocyte plasma membrane and impaired cellular signaling. Furthermore, abundance alterations of proteins known to be associated with human cardiomyopathy were observed. Compared with data from skeletal muscle, we found clear evidence that DMD progression in myocardium is not only slower than in skeletal muscle but also involves different biological and biochemical pathways.
Collapse
Affiliation(s)
- Hathaichanok Tamiyakul
- Laboratory for Functional Genome Analysis, LAFUGA, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Kemter
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Miwako Kösters
- Laboratory for Functional Genome Analysis, LAFUGA, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Stefanie Ebner
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Andreas Blutke
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764 Neuherberg, Germany
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis, LAFUGA, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis, LAFUGA, Gene Center, LMU Munich, 81377 Munich, Germany
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
- Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Georg J. Arnold
- Laboratory for Functional Genome Analysis, LAFUGA, Gene Center, LMU Munich, 81377 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, LAFUGA, Gene Center, LMU Munich, 81377 Munich, Germany
| |
Collapse
|
34
|
Fernández-Barroso MÁ, Caraballo C, Silió L, Rodríguez C, Nuñez Y, Sánchez-Esquiliche F, Matos G, García-Casco JM, Muñoz M. Differences in the Loin Tenderness of Iberian Pigs Explained through Dissimilarities in Their Transcriptome Expression Profile. Animals (Basel) 2020; 10:ani10091715. [PMID: 32971875 PMCID: PMC7552750 DOI: 10.3390/ani10091715] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/10/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The Iberian pig is the most representative autochthonous breed of the Mediterranean region with unique genetic and phenotypic characteristics. The breed has been successfully preserved by its high-quality meat and high-priced products. Tenderness is one of the most relevant meat quality traits, and meat tenderization is influenced by genetic and environmental effects such as pre-slaughter handling and post-mortem conditions. Tenderness could be included in Iberian pig breeding programs, mainly focused on the improvement of premium-cuts percentage, in order to avoid the meat quality decline. A better biological understanding of this trait is needed. In the current study, we analyze the transcriptome of pigs divergent for Warner–Bratzler shear force through RNA-seq technique for the identification, characterization and quantification of candidate genes involved in biological pathways, networks and functions affecting meat tenderness. Abstract Tenderness is one of the most important meat quality traits and it can be measured through shear force with the Warner–Bratzler test. In the current study, we use the RNA-seq technique to analyze the transcriptome of Longissimus dorsi (LD) muscle in two groups of Iberian pigs (Tough and Tender) divergent for shear force breeding values. We identified 200 annotated differentially expressed genes (DEGs) and 245 newly predicted isoforms. The RNAseq expression results of 10 genes were validated with quantitative PCR (qPCR). Functional analyses showed an enrichment of DE genes in biological processes related to proteolysis (CTSC, RHOD, MYH8, ACTC1, GADD45B, CASQ2, CHRNA9 and ANKRD1), skeletal muscle tissue development (ANKRD1, DMD, FOS and MSTN), lipid metabolism (FABP3 and PPARGC1A) and collagen metabolism (COL14A1). The upstream analysis revealed a total of 11 transcription regulatory factors that could regulate the expression of some DEGs. Among them, IGF1, VGLL3 and PPARG can be highlighted since they regulate the expression of genes involved in biological pathways that could affect tenderness. The experiment revealed a set of candidate genes and regulatory factors suggestive to search polymorphisms that could be incorporated in a breeding program for improving meat tenderness.
Collapse
Affiliation(s)
- Miguel Ángel Fernández-Barroso
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
- Correspondence:
| | - Carmen Caraballo
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Luis Silió
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Carmen Rodríguez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - Yolanda Nuñez
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | | | - Gema Matos
- Sánchez Romero Carvajal—Jabugo, SRC, 21290 Huelva, Spain; (F.S.-E.); (G.M.)
| | - Juan María García-Casco
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
- Departamento de Mejora Genética Animal, INIA, 28040 Madrid, Spain; (L.S.); (C.R.); (Y.N.); (M.M.)
| | - María Muñoz
- Centro Nacional de I+D del Cerdo Ibérico (CENIDCI), INIA, 06300 Zafra, Spain; (C.C.); (J.M.G.-C.)
| |
Collapse
|
35
|
Hryhorowicz M, Lipiński D, Hryhorowicz S, Nowak-Terpiłowska A, Ryczek N, Zeyland J. Application of Genetically Engineered Pigs in Biomedical Research. Genes (Basel) 2020; 11:genes11060670. [PMID: 32575461 PMCID: PMC7349405 DOI: 10.3390/genes11060670] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 02/07/2023] Open
Abstract
Progress in genetic engineering over the past few decades has made it possible to develop methods that have led to the production of transgenic animals. The development of transgenesis has created new directions in research and possibilities for its practical application. Generating transgenic animal species is not only aimed towards accelerating traditional breeding programs and improving animal health and the quality of animal products for consumption but can also be used in biomedicine. Animal studies are conducted to develop models used in gene function and regulation research and the genetic determinants of certain human diseases. Another direction of research, described in this review, focuses on the use of transgenic animals as a source of high-quality biopharmaceuticals, such as recombinant proteins. The further aspect discussed is the use of genetically modified animals as a source of cells, tissues, and organs for transplantation into human recipients, i.e., xenotransplantation. Numerous studies have shown that the pig (Sus scrofa domestica) is the most suitable species both as a research model for human diseases and as an optimal organ donor for xenotransplantation. Short pregnancy, short generation interval, and high litter size make the production of transgenic pigs less time-consuming in comparison with other livestock species This review describes genetically modified pigs used for biomedical research and the future challenges and perspectives for the use of the swine animal models.
Collapse
Affiliation(s)
- Magdalena Hryhorowicz
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
- Correspondence:
| | - Daniel Lipiński
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Szymon Hryhorowicz
- Institute of Human Genetics, Polish Academy of Sciences, Strzeszyńska 32, 60-479 Poznań, Poland;
| | - Agnieszka Nowak-Terpiłowska
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Natalia Ryczek
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| | - Joanna Zeyland
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland; (D.L.); (A.N.-T.); (N.R.); (J.Z.)
| |
Collapse
|
36
|
Farini A, Villa C, Di Silvestre D, Bella P, Tripodi L, Rossi R, Sitzia C, Gatti S, Mauri P, Torrente Y. PTX3 Predicts Myocardial Damage and Fibrosis in Duchenne Muscular Dystrophy. Front Physiol 2020; 11:403. [PMID: 32508664 PMCID: PMC7248204 DOI: 10.3389/fphys.2020.00403] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/03/2020] [Indexed: 02/06/2023] Open
Abstract
Pentraxin 3 (PTX3) is a main component of the innate immune system by inducing complement pathway activation, acting as an inflammatory mediator, coordinating the functions of macrophages/dendritic cells and promoting apoptosis/necrosis. Additionally, it has been found in fibrotic regions co-localizing with collagen. In this work, we wanted to investigate the predictive role of PTX3 in myocardial damage and fibrosis of Duchenne muscular dystrophy (DMD). DMD is an X-linked recessive disease caused by mutations of the dystrophin gene that affects muscular functions and strength and accompanying dilated cardiomyopathy. Here, we expound the correlation of PTX3 cardiac expression with age and Toll-like receptors (TLRs)/interleukin-1 receptor (IL-1R)-MyD88 inflammatory markers and its modulation by the so-called alarmins IL-33, high-mobility group box 1 (HMGB1), and S100β. These findings suggest that cardiac levels of PTX3 might have prognostic value and potential in guiding therapy for DMD cardiomyopathy.
Collapse
Affiliation(s)
- Andrea Farini
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Chiara Villa
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Dario Di Silvestre
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy
| | - Pamela Bella
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Luana Tripodi
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| | - Rossana Rossi
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy
| | - Clementina Sitzia
- Residency Program in Clinical Pathology and Clinical Biochemistry, Università degli Studi di Milano, Milan, Italy
| | - Stefano Gatti
- Center for Surgical Research, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Pierluigi Mauri
- Institute of Technologies in Biomedicine, National Research Council (ITB-CNR), Milan, Italy
| | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Unit of Neurology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Centro Dino Ferrari, Milan, Italy
| |
Collapse
|
37
|
Hofmann I, Kemter E, Theobalt N, Fiedler S, Bidlingmaier M, Hinrichs A, Aichler M, Burkhardt K, Klymiuk N, Wolf E, Wanke R, Blutke A. Linkage between growth retardation and pituitary cell morphology in a dystrophin-deficient pig model of Duchenne muscular dystrophy. Growth Horm IGF Res 2020; 51:6-16. [PMID: 31926372 DOI: 10.1016/j.ghir.2019.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 12/16/2019] [Accepted: 12/30/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Human patients with Duchenne muscular dystrophy (DMD) commonly exhibit a short stature, but the pathogenesis of this growth retardation is not completely understood. Due to the suspected involvement of the growth hormone/insulin-like growth factor 1 (GH/IGF1) system, controversial therapeutic approaches have been developed, including both GH- administration, as well as GH-inhibition. In the present study, we examined relevant histomorphological and ultrastructural features of adenohypophyseal GH-producing somatotroph cells in a porcine DMD model. METHODS The numbers and volumes of immunohistochemically labelled somatotroph cells were determined in consecutive semi-thin sections of plastic resin embedded adenohypophyseal tissue samples using unbiased state-of-the-art quantitative stereological analysis methods. RESULTS DMD pigs displayed a significant growth retardation, accounting for a 55% reduction of body weight, accompanied by a significant 50% reduction of the number of somatotroph cells, as compared to controls. However, the mean volumes of somatotroph cells and the volume of GH-granules per cell were not altered. Western blot analyses of the adenohypophyseal protein samples showed no differences in the relative adenohypophyseal GH-abundance between DMD pigs and controls. CONCLUSION The findings of this study do not provide evidence for involvement of somatotroph cells in the pathogenesis of growth retardation of DMD pigs. These results are in contrast with previous findings in other dystrophin-deficient animal models, such as the golden retriever model of Duchenne muscular dystrophy, where increased mean somatotroph cell volumes and elevated volumes of intracellular GH-granules were reported and associated with DMD-related growth retardation. Possible reasons for the differences of somatotroph morphology observed in different DMD models are discussed.
Collapse
Affiliation(s)
- I Hofmann
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - E Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - N Theobalt
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - S Fiedler
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - M Bidlingmaier
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, Munich, Germany
| | - A Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - M Aichler
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - K Burkhardt
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - N Klymiuk
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany
| | - E Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Centre and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany; Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Oberschleißheim, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Centre, Ludwig-Maximilians-Universität München, Munich, Germany
| | - R Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - A Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
38
|
Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Viganò A, Lochmüller H, Muntoni F, Ferlini A, Mora M, Gelfi C. Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle 2020; 11:547-563. [PMID: 31991054 PMCID: PMC7113522 DOI: 10.1002/jcsm.12527] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 11/08/2019] [Accepted: 11/24/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are characterized by muscle wasting leading to loss of ambulation in the first or third decade, respectively. In DMD, the lack of dystrophin hampers connections between intracellular cytoskeleton and cell membrane leading to repeated cycles of necrosis and regeneration associated with inflammation and loss of muscle ordered structure. BMD has a similar muscle phenotype but milder. Here, we address the question whether proteins at variance in BMD compared with DMD contribute to the milder phenotype in BMD, thus identifying a specific signature to be targeted for DMD treatment. METHODS Proteins extracted from skeletal muscle from DMD/BMD patients and young healthy subjects were either reduced and solubilized prior two-dimensional difference in gel electrophoresis/mass spectrometry differential analysis or tryptic digested prior label-free liquid chromatography with tandem mass spectrometry. Statistical analyses of proteins and peptides were performed by DeCyder and Perseus software and protein validation and verification by immunoblotting. RESULTS Proteomic results indicate minor changes in the extracellular matrix (ECM) protein composition in BMD muscles with retention of mechanotransduction signalling, reduced changes in cytoskeletal and contractile proteins. Conversely, in DMD patients, increased levels of several ECM cytoskeletal and contractile proteins were observed whereas some proteins of fast fibres and of Z-disc decreased. Detyrosinated alpha-tubulin was unchanged in BMD and increased in DMD although neuronal nitric oxide synthase was unchanged in BMD and greatly reduced in DMD. Metabolically, the tissue is characterized by a decrement of anaerobic metabolism both in DMD and BMD compared with controls, with increased levels of the glycogen metabolic pathway in BMD. Oxidative metabolism is severely compromised in DMD with impairment of malate shuttle; conversely, it is active in BMD supporting the tricarboxylic acid cycle and respiratory chain. Adipogenesis characterizes DMD, whereas proteins involved in fatty acids beta-oxidation are increased in BMD. Proteins involved in protein/amino acid metabolism, cell development, calcium handling, endoplasmic reticulum/sarcoplasmic reticulum stress response, and inflammation/immune response were increased in DMD. Both disorders are characterized by the impairment of N-linked protein glycosylation in the endoplasmic reticulum. Authophagy was decreased in DMD whereas it was retained in BMD. CONCLUSIONS The mechanosensing and metabolic disruption are central nodes of DMD/BMD phenotypes. The ECM proteome composition and the metabolic rewiring in BMD lead to preservation of energy levels supporting autophagy and cell renewal, thus promoting the retention of muscle function. Conversely, DMD patients are characterized by extracellular and cytoskeletal protein dysregulation and by metabolic restriction at the level of α-ketoglutarate leading to shortage of glutamate-derived molecules that over time triggers lipogenesis and lipotoxicity.
Collapse
Affiliation(s)
- Daniele Capitanio
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| | - Manuela Moriggi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Enrica Torretta
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Pietro Barbacini
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Sara De Palma
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Agnese Viganò
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Hanns Lochmüller
- Department of Neuropediatrics and Muscle Disorders, Faculty of Medicine, Medical Center-University of Freiburg, Freiburg, Germany.,Centro Nacional de Análisis Genómico (CNAG-CRG), Center for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona, Catalonia, Spain.,Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Canada.,Division of Neurology, Department of Medicine, The Ottawa Hospital, Ottawa, Canada
| | - Francesco Muntoni
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK.,NIHR Great Ormond Street Hospital Biomedical Research Centre, Great Ormond Street Institute of Child Health, University College London, & Great Ormond Street Hospital Trust, London, UK
| | - Alessandra Ferlini
- Dubowitz Neuromuscular Centre, University College London, Institute of Child Health, London, UK.,Unit of Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marina Mora
- Neuromuscular Diseases and Neuroimmunology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cecilia Gelfi
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy.,IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
39
|
Soglia F, Mazzoni M, Zappaterra M, Di Nunzio M, Babini E, Bordini M, Sirri F, Clavenzani P, Davoli R, Petracci M. Distribution and Expression of Vimentin and Desmin in Broiler Pectoralis major Affected by the Growth-Related Muscular Abnormalities. Front Physiol 2020; 10:1581. [PMID: 32009982 PMCID: PMC6978684 DOI: 10.3389/fphys.2019.01581] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 12/17/2019] [Indexed: 11/18/2022] Open
Abstract
Desmin (DES) and Vimentin (VIM) exert an essential role in maintaining muscle cytoarchitecture and since are considered reliable markers for muscle regeneration, their expression has been extensively investigated in dystrophic muscles. Thus, exhibiting features similar to those of human dystrophic muscles, the present study aimed at assessing the distribution of VIM and DES proteins and the expression of the corresponding genes in Pectoralis major muscles affected by white striping (WS), wooden breast (WB), and spaghetti meat (SM) abnormalities as well as in those having macroscopically normal appearance (NORM). For this purpose, 20 Pectoralis major muscles (5/group) were collected from the same flock of fast-growing broilers to perform immunohistochemistry, immunoblotting and gene expression. Immunohistochemical analyses showed an increased number of fibers immunoreactive to both VIM and DES in WS and WB, while only a few immunoreactive fibers were observed in NORM. Concerning the protein level, if compared with NORM, a 55% increase in VIM content was found in WB affected cases (P < 0.05) thus suggesting the development of intense regenerative processes in an early-stage within these muscles. The significantly higher amount of DES (+53%) found in WS might be attributed to a progression of the regenerative processes that require its synthesis to preserve the structural organization of the developing fibers. On the other hand, significantly lower VIM and DES contents were found in SM. About gene expression, VIM mRNA levels gradually increased from the NORM to the SM group, with significantly higher gene expressions in WB and SM samples compared to the NORM group (P = 0.009 for WB vs. NORM and P = 0.004 for SM vs. NORM). Similarly, the expression of DES gene showed an increase from the NORM to WB group (P = 0.05). Overall, the findings of the present study suggest that intense regenerative processes take place in both WB and WS muscles although a different progression of regeneration might be hypothesized. On the other hand, the lack of correspondence between VIM gene expression and its protein product observed in SM suggests that VIM may also exert a role in the development of the SM phenotype.
Collapse
Affiliation(s)
- Francesca Soglia
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Maurizio Mazzoni
- Department of Veterinary Medical Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Martina Zappaterra
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Mattia Di Nunzio
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Elena Babini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Martina Bordini
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Federico Sirri
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Paolo Clavenzani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Roberta Davoli
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| | - Massimiliano Petracci
- Department of Agricultural and Food Sciences, Alma Mater Studiorum – University of Bologna, Bologna, Italy
| |
Collapse
|
40
|
Detection of collagens by multispectral optoacoustic tomography as an imaging biomarker for Duchenne muscular dystrophy. Nat Med 2019; 25:1905-1915. [PMID: 31792454 DOI: 10.1038/s41591-019-0669-y] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 10/28/2019] [Indexed: 02/07/2023]
Abstract
Biomarkers for monitoring of disease progression and response to therapy are lacking for muscle diseases such as Duchenne muscular dystrophy. Noninvasive in vivo molecular imaging with multispectral optoacoustic tomography (MSOT) uses pulsed laser light to induce acoustic pressure waves, enabling the visualization of endogenous chromophores. Here we describe an application of MSOT, in which illumination in the near- and extended near-infrared ranges from 680-1,100 nm enables the visualization and quantification of collagen content. We first demonstrated the feasibility of this approach to noninvasive quantification of tissue fibrosis in longitudinal studies in a large-animal Duchenne muscular dystrophy model in pigs, and then applied this approach to pediatric patients. MSOT-derived collagen content measurements in skeletal muscle were highly correlated to the functional status of the patients and provided additional information on molecular features as compared to magnetic resonance imaging. This study highlights the potential of MSOT imaging as a noninvasive, age-independent biomarker for the implementation and monitoring of newly developed therapies in muscular diseases.
Collapse
|
41
|
Dowling P, Murphy S, Zweyer M, Raucamp M, Swandulla D, Ohlendieck K. Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn 2019; 19:739-755. [PMID: 31359811 DOI: 10.1080/14737159.2019.1648214] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Progressive skeletal muscle wasting is the manifesting symptom of Duchenne muscular dystrophy, an X-linked inherited disorder triggered by primary abnormalities in the DMD gene. The almost complete loss of dystrophin isoform Dp427 causes a multi-system pathology that features in addition to skeletal muscle weakness also late-onset cardio-respiratory deficiencies, impaired metabolism and abnormalities in the central nervous system. Areas covered: This review focuses on the mass spectrometry-based proteomic characterization of X-linked muscular dystrophy with special emphasis on the identification of novel biomarker candidates in skeletal muscle tissues, as well as non-muscle tissues and various biofluids. Individual sections focus on molecular and cellular aspects of the pathogenic changes in dystrophinopathy, proteomic workflows used in biomarker research, the proteomics of the dystrophin-glycoprotein complex and the potential usefulness of newly identified protein markers involved in fibre degeneration, fibrosis and inflammation. Expert opinion: The systematic application of large-scale proteomic surveys has identified a distinct cohort of both tissue- and biofluid-associated protein species with considerable potential for improving diagnostic, prognostic and therapy-monitoring procedures. Novel proteomic markers include components involved in fibre contraction, cellular signalling, ion homeostasis, cellular stress response, energy metabolism and the immune response, as well as maintenance of the cytoskeletal and extracellular matrix.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University , Newcastle upon Tyne , UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| |
Collapse
|
42
|
Backman M, Flenkenthaler F, Blutke A, Dahlhoff M, Ländström E, Renner S, Philippou-Massier J, Krebs S, Rathkolb B, Prehn C, Grzybek M, Coskun Ü, Rothe M, Adamski J, de Angelis MH, Wanke R, Fröhlich T, Arnold GJ, Blum H, Wolf E. Multi-omics insights into functional alterations of the liver in insulin-deficient diabetes mellitus. Mol Metab 2019; 26:30-44. [PMID: 31221621 PMCID: PMC6667734 DOI: 10.1016/j.molmet.2019.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/20/2019] [Accepted: 05/30/2019] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVE The liver regulates the availability of insulin to other tissues and is the first line insulin response organ physiologically exposed to higher insulin concentrations than the periphery. Basal insulin during fasting inhibits hepatic gluconeogenesis and glycogenolysis, whereas postprandial insulin peaks stimulate glycogen synthesis. The molecular consequences of chronic insulin deficiency for the liver have not been studied systematically. METHODS We analyzed liver samples of a genetically diabetic pig model (MIDY) and of wild-type (WT) littermate controls by RNA sequencing, proteomics, and targeted metabolomics/lipidomics. RESULTS Cross-omics analyses revealed increased activities in amino acid metabolism, oxidation of fatty acids, ketogenesis, and gluconeogenesis in the MIDY samples. In particular, the concentrations of the ketogenic enzyme 3-hydroxy-3-methylglutaryl-CoA synthase 2 (HMGCS2) and of retinol dehydrogenase 16 (RDH16), which catalyzes the first step in retinoic acid biogenesis, were highly increased. Accordingly, elevated levels of retinoic acid, which stimulates the expression of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PCK1), were measured in the MIDY samples. In contrast, pathways related to extracellular matrix and inflammation/pathogen defense response were less active than in the WT samples. CONCLUSIONS The first multi-omics study of a clinically relevant diabetic large animal model revealed molecular signatures and key drivers of functional alterations of the liver in insulin-deficient diabetes mellitus. The multi-omics data set provides a valuable resource for comparative analyses with other experimental or clinical data sets.
Collapse
Affiliation(s)
- Mattias Backman
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Graduate School of Quantitative Biosciences Munich (QBM), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Andreas Blutke
- Research Unit Analytical Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Maik Dahlhoff
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany
| | - Erik Ländström
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; Graduate School of Quantitative Biosciences Munich (QBM), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Simone Renner
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany
| | - Julia Philippou-Massier
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Birgit Rathkolb
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, 85764 Neuherberg, Germany
| | - Cornelia Prehn
- Research Unit of Molecular Endocrinology and Metabolism (MEM), Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Michal Grzybek
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | - Ünal Coskun
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital, Faculty of Medicine Carl Gustav Carus of TU Dresden, 01307 Dresden, Germany
| | | | - Jerzy Adamski
- Research Unit of Molecular Endocrinology and Metabolism (MEM), Helmholtz Zentrum München, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany; Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, 85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85764 Neuherberg, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, 80539 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany
| | - Eckhard Wolf
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, 81377 Munich, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, LMU Munich, 81377 Munich, Germany; Center for Innovative Medical Models (CiMM), LMU Munich, 85764 Oberschleißheim, Germany.
| |
Collapse
|
43
|
Calderone A. The Biological Role of Nestin (+)-Cells in Physiological and Pathological Cardiovascular Remodeling. Front Cell Dev Biol 2018; 6:15. [PMID: 29492403 PMCID: PMC5817075 DOI: 10.3389/fcell.2018.00015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Accepted: 01/31/2018] [Indexed: 01/02/2023] Open
Abstract
The intermediate filament protein nestin was identified in diverse populations of cells implicated in cardiovascular remodeling. Cardiac resident neural progenitor/stem cells constitutively express nestin and following an ischemic insult migrate to the infarct region and participate in angiogenesis and neurogenesis. A modest number of normal adult ventricular fibroblasts express nestin and the intermediate filament protein is upregulated during the progression of reparative and reactive fibrosis. Nestin depletion attenuates cell cycle re-entry suggesting that increased expression of the intermediate filament protein in ventricular fibroblasts may represent an activated phenotype accelerating the biological impact during fibrosis. Nestin immunoreactivity is absent in normal adult rodent ventricular cardiomyocytes. Following ischemic damage, the intermediate filament protein is induced in a modest population of pre-existing adult ventricular cardiomyocytes bordering the peri-infarct/infarct region and nestin(+)-ventricular cardiomyocytes were identified in the infarcted human heart. The appearance of nestin(+)-ventricular cardiomyocytes post-myocardial infarction (MI) recapitulates an embryonic phenotype and depletion of the intermediate filament protein inhibits cell cycle re-entry. Recruitment of the serine/threonine kinase p38 MAPK secondary to an overt inflammatory response after an ischemic insult may represent a seminal event limiting the appearance of nestin(+)-ventricular cardiomyocytes and concomitantly suppressing cell cycle re-entry. Endothelial and vascular smooth muscle cells (VSMCs) express nestin and upregulation of the intermediate filament protein may directly contribute to vascular remodeling. This review will highlight the biological role of nestin(+)-cells during physiological and pathological remodeling of the heart and vasculature and discuss the phenotypic advantage attributed to the intermediate filament protein.
Collapse
Affiliation(s)
- Angelino Calderone
- Département de Pharmacologie et Physiologie, Université de Montréal, Montréal, QC, Canada.,Montreal Heart Institute, Montréal, QC, Canada
| |
Collapse
|
44
|
Matsunari H, Watanabe M, Nakano K, Enosawa S, Umeyama K, Uchikura A, Yashima S, Fukuda T, Klymiuk N, Kurome M, Kessler B, Wuensch A, Zakhartchenko V, Wolf E, Hanazono Y, Nagaya M, Umezawa A, Nakauchi H, Nagashima H. Modeling lethal X-linked genetic disorders in pigs with ensured fertility. Proc Natl Acad Sci U S A 2018; 115:708-713. [PMID: 29311328 PMCID: PMC5789933 DOI: 10.1073/pnas.1715940115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Genetically engineered pigs play an indispensable role in the study of rare monogenic diseases. Pigs harboring a gene responsible for a specific disease can be efficiently generated via somatic cell cloning. The generation of somatic cell-cloned pigs from male cells with mutation(s) in an X chromosomal gene is a reliable and straightforward method for reproducing X-linked genetic diseases (XLGDs) in pigs. However, the severe symptoms of XLGDs are often accompanied by impaired growth and reproductive disorders, which hinder the reproduction of these valuable model animals. Here, we generated unique chimeric boars composed of mutant cells harboring a lethal XLGD and normal cells. The chimeric boars exhibited the cured phenotype with fertility while carrying and transmitting the genotype of the XLGD. This unique reproduction system permits routine production of XLGD model pigs through the male-based breeding, thereby opening an avenue for translational research using disease model pigs.
Collapse
Affiliation(s)
- Hitomi Matsunari
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Masahito Watanabe
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Kazuaki Nakano
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Shin Enosawa
- National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Ayuko Uchikura
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Sayaka Yashima
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Toru Fukuda
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| | - Nikolai Klymiuk
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Mayuko Kurome
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Barbara Kessler
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Annegret Wuensch
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Valeri Zakhartchenko
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Eckhard Wolf
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilian University Munich, D-81377 Munich, Germany
| | - Yutaka Hanazono
- Division of Regenerative Medicine, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Masaki Nagaya
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan
| | - Akihiro Umezawa
- National Center for Child Health and Development, Tokyo 157-0074, Japan
| | - Hiromitsu Nakauchi
- Division of Stem Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA 94305
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305
| | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki 214-8571, Japan;
- Laboratory of Developmental Engineering, Meiji University, Kawasaki 214-8571, Japan
| |
Collapse
|
45
|
Perleberg C, Kind A, Schnieke A. Genetically engineered pigs as models for human disease. Dis Model Mech 2018; 11:11/1/dmm030783. [PMID: 29419487 PMCID: PMC5818075 DOI: 10.1242/dmm.030783] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Genetically modified animals are vital for gaining a proper understanding of disease mechanisms. Mice have long been the mainstay of basic research into a wide variety of diseases but are not always the most suitable means of translating basic knowledge into clinical application. The shortcomings of rodent preclinical studies are widely recognised, and regulatory agencies around the world now require preclinical trial data from nonrodent species. Pigs are well suited to biomedical research, sharing many similarities with humans, including body size, anatomical features, physiology and pathophysiology, and they already play an important role in translational studies. This role is set to increase as advanced genetic techniques simplify the generation of pigs with precisely tailored modifications designed to replicate lesions responsible for human disease. This article provides an overview of the most promising and clinically relevant genetically modified porcine models of human disease for translational biomedical research, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We briefly summarise the technologies involved and consider the future impact of recent technical advances. Summary: An overview of porcine models of human disease, including cardiovascular diseases, cancers, diabetes mellitus, Alzheimer's disease, cystic fibrosis and Duchenne muscular dystrophy. We summarise the technologies involved and potential future impact of recent technical advances.
Collapse
Affiliation(s)
- Carolin Perleberg
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Alexander Kind
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| | - Angelika Schnieke
- Chair of Livestock Biotechnology, School of Life Sciences, Technische Universität München, 85354 Freising, Germany
| |
Collapse
|
46
|
Wilson K, Faelan C, Patterson-Kane JC, Rudmann DG, Moore SA, Frank D, Charleston J, Tinsley J, Young GD, Milici AJ. Duchenne and Becker Muscular Dystrophies: A Review of Animal Models, Clinical End Points, and Biomarker Quantification. Toxicol Pathol 2017; 45:961-976. [PMID: 28974147 DOI: 10.1177/0192623317734823] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Duchenne muscular dystrophy (DMD) and Becker muscular dystrophy (BMD) are neuromuscular disorders that primarily affect boys due to an X-linked mutation in the DMD gene, resulting in reduced to near absence of dystrophin or expression of truncated forms of dystrophin. Some newer therapeutic interventions aim to increase sarcolemmal dystrophin expression, and accurate dystrophin quantification is critical for demonstrating pharmacodynamic relationships in preclinical studies and clinical trials. Current challenges with measuring dystrophin include the variation in protein expression within individual muscle fibers and across whole muscle samples, the presence of preexisting dystrophin-positive revertant fibers, and trace amounts of residual dystrophin. Immunofluorescence quantification of dystrophin can overcome many of these challenges, but manual quantification of protein expression may be complicated by variations in the collection of images, reproducible scoring of fluorescent intensity, and bias introduced by manual scoring of typically only a few high-power fields. This review highlights the pathology of DMD and BMD, discusses animal models of DMD and BMD, and describes dystrophin biomarker quantitation in DMD and BMD, with several image analysis approaches, including a new automated method that evaluates protein expression of individual muscle fibers.
Collapse
Affiliation(s)
- Kristin Wilson
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | - Crystal Faelan
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | | | | - Steven A Moore
- 2 Department of Pathology, Carver College of Medicine, The University of Iowa, Iowa City, Iowa, USA
| | - Diane Frank
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jay Charleston
- 3 Sarepta Therapeutics, Inc., Cambridge, Massachusetts, USA
| | - Jon Tinsley
- 4 Summit Therapeutics, Abingdon, United Kingdom
| | - G David Young
- 1 Flagship Biosciences, Inc., Westminster, Colorado, USA
| | | |
Collapse
|
47
|
Walter MC, Reilich P. Recent developments in Duchenne muscular dystrophy: facts and numbers. J Cachexia Sarcopenia Muscle 2017; 8:681-685. [PMID: 29076660 PMCID: PMC5659056 DOI: 10.1002/jcsm.12245] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 09/04/2017] [Indexed: 01/24/2023] Open
Affiliation(s)
- Maggie C Walter
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Peter Reilich
- Friedrich-Baur-Institute, Department of Neurology, Ludwig-Maximilians-University of Munich, Munich, Germany
| |
Collapse
|
48
|
Papizan JB, Garry GA, Brezprozvannaya S, McAnally JR, Bassel-Duby R, Liu N, Olson EN. Deficiency in Kelch protein Klhl31 causes congenital myopathy in mice. J Clin Invest 2017; 127:3730-3740. [PMID: 28872460 DOI: 10.1172/jci93445] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 07/19/2017] [Indexed: 01/19/2023] Open
Abstract
Maintenance of muscle structure and function depends on the precise organization of contractile proteins into sarcomeres and coupling of the contractile apparatus to the sarcoplasmic reticulum (SR), which serves as the reservoir for calcium required for contraction. Several members of the Kelch superfamily of proteins, which modulate protein stability as substrate-specific adaptors for ubiquitination, have been implicated in sarcomere formation. The Kelch protein Klhl31 is expressed in a muscle-specific manner under control of the transcription factor MEF2. To explore its functions in vivo, we created a mouse model of Klhl31 loss of function using the CRISPR-Cas9 system. Mice lacking Klhl31 exhibited stunted postnatal skeletal muscle growth, centronuclear myopathy, central cores, Z-disc streaming, and SR dilation. We used proteomics to identify several candidate Klhl31 substrates, including Filamin-C (FlnC). In the Klhl31-knockout mice, FlnC protein levels were highly upregulated with no change in transcription, and we further demonstrated that Klhl31 targets FlnC for ubiquitination and degradation. These findings highlight a role for Klhl31 in the maintenance of skeletal muscle structure and provide insight into the mechanisms underlying congenital myopathies.
Collapse
|
49
|
Murphy S, Brinkmeier H, Krautwald M, Henry M, Meleady P, Ohlendieck K. Proteomic profiling of the dystrophin complex and membrane fraction from dystrophic mdx muscle reveals decreases in the cytolinker desmoglein and increases in the extracellular matrix stabilizers biglycan and fibronectin. J Muscle Res Cell Motil 2017; 38:251-268. [DOI: 10.1007/s10974-017-9478-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/05/2017] [Indexed: 01/14/2023]
|
50
|
Blutke A, Renner S, Flenkenthaler F, Backman M, Haesner S, Kemter E, Ländström E, Braun-Reichhart C, Albl B, Streckel E, Rathkolb B, Prehn C, Palladini A, Grzybek M, Krebs S, Bauersachs S, Bähr A, Brühschwein A, Deeg CA, De Monte E, Dmochewitz M, Eberle C, Emrich D, Fux R, Groth F, Gumbert S, Heitmann A, Hinrichs A, Keßler B, Kurome M, Leipig-Rudolph M, Matiasek K, Öztürk H, Otzdorff C, Reichenbach M, Reichenbach HD, Rieger A, Rieseberg B, Rosati M, Saucedo MN, Schleicher A, Schneider MR, Simmet K, Steinmetz J, Übel N, Zehetmaier P, Jung A, Adamski J, Coskun Ü, Hrabě de Angelis M, Simmet C, Ritzmann M, Meyer-Lindenberg A, Blum H, Arnold GJ, Fröhlich T, Wanke R, Wolf E. The Munich MIDY Pig Biobank - A unique resource for studying organ crosstalk in diabetes. Mol Metab 2017; 6:931-940. [PMID: 28752056 PMCID: PMC5518720 DOI: 10.1016/j.molmet.2017.06.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 06/05/2017] [Accepted: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE The prevalence of diabetes mellitus and associated complications is steadily increasing. As a resource for studying systemic consequences of chronic insulin insufficiency and hyperglycemia, we established a comprehensive biobank of long-term diabetic INSC94Y transgenic pigs, a model of mutant INS gene-induced diabetes of youth (MIDY), and of wild-type (WT) littermates. METHODS Female MIDY pigs (n = 4) were maintained with suboptimal insulin treatment for 2 years, together with female WT littermates (n = 5). Plasma insulin, C-peptide and glucagon levels were regularly determined using specific immunoassays. In addition, clinical chemical, targeted metabolomics, and lipidomics analyses were performed. At age 2 years, all pigs were euthanized, necropsied, and a broad spectrum of tissues was taken by systematic uniform random sampling procedures. Total beta cell volume was determined by stereological methods. A pilot proteome analysis of pancreas, liver, and kidney cortex was performed by label free proteomics. RESULTS MIDY pigs had elevated fasting plasma glucose and fructosamine concentrations, C-peptide levels that decreased with age and were undetectable at 2 years, and an 82% reduced total beta cell volume compared to WT. Plasma glucagon and beta hydroxybutyrate levels of MIDY pigs were chronically elevated, reflecting hallmarks of poorly controlled diabetes in humans. In total, ∼1900 samples of different body fluids (blood, serum, plasma, urine, cerebrospinal fluid, and synovial fluid) as well as ∼17,000 samples from ∼50 different tissues and organs were preserved to facilitate a plethora of morphological and molecular analyses. Principal component analyses of plasma targeted metabolomics and lipidomics data and of proteome profiles from pancreas, liver, and kidney cortex clearly separated MIDY and WT samples. CONCLUSIONS The broad spectrum of well-defined biosamples in the Munich MIDY Pig Biobank that will be available to the scientific community provides a unique resource for systematic studies of organ crosstalk in diabetes in a multi-organ, multi-omics dimension.
Collapse
Key Words
- Biobank
- CE, cholesterol ester
- CPT1, carnitine O-palmitoyltransferase 1
- ER, endoplasmic reticulum
- FFA, free fatty acids
- Hyperglycemia
- Insulin insufficiency
- MIDY
- MIDY, mutant INS gene-induced diabetes of youth
- Metabolomics
- PC, phosphatidylcholine
- PCA, principal component analysis
- Pig model
- Proteomics
- Random systematic sampling
- SM, sphingomyelin
- Stereology
- TAG, triacylglycerol
- Transcriptomics
- WT, wild-type
Collapse
Affiliation(s)
- Andreas Blutke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Simone Renner
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Florian Flenkenthaler
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Mattias Backman
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Serena Haesner
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Erik Ländström
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Christina Braun-Reichhart
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Barbara Albl
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Elisabeth Streckel
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Cornelia Prehn
- Genome Analysis Center (GAC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Alessandra Palladini
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Michal Grzybek
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Stefan Krebs
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Stefan Bauersachs
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, Universitätsstr. 2, CH-8092 Zurich, Switzerland
| | - Andrea Bähr
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Andreas Brühschwein
- Clinic for Small Animal Surgery and Reproduction, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Cornelia A Deeg
- Experimental Ophthalmology, Philipps University of Marburg, Baldingerstr., D-35033 Marburg, Germany; Chair for Animal Physiology, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Erica De Monte
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Michaela Dmochewitz
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Caroline Eberle
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Daniela Emrich
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Robert Fux
- Institute for Infectious Diseases and Zoonosis, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Frauke Groth
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Sophie Gumbert
- Clinic for Swine at the Centre of Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, D-85764 Oberschleißheim, Germany
| | - Antonia Heitmann
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Arne Hinrichs
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Barbara Keßler
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Mayuko Kurome
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Miriam Leipig-Rudolph
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Kaspar Matiasek
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany; Munich Center of NeuroSciences - Brain & Mind, Großhaderner Str. 2, D-82152 Planegg-Martinsried, Germany
| | - Hazal Öztürk
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Christiane Otzdorff
- Clinic for Small Animal Surgery and Reproduction, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Myriam Reichenbach
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Horst Dieter Reichenbach
- Bavarian State Research Center for Agriculture - Institute for Animal Breeding, Prof.-Dürrwaechter-Platz 1, D-85586 Grub-Poing, Germany
| | - Alexandra Rieger
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Birte Rieseberg
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Marco Rosati
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Manuel Nicolas Saucedo
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Anna Schleicher
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Marlon R Schneider
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Kilian Simmet
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Judith Steinmetz
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Nicole Übel
- Clinic for Swine at the Centre of Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, D-85764 Oberschleißheim, Germany
| | - Patrizia Zehetmaier
- Chair for Animal Physiology, Department of Veterinary Sciences, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Andreas Jung
- Institute of Pathology, LMU Munich, Thalkirchner Str. 36, D-80337 Munich, Germany
| | - Jerzy Adamski
- Genome Analysis Center (GAC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | - Ünal Coskun
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Paul Langerhans Institute Dresden of the Helmholtz Zentrum München at the University Hospital and Faculty of Medicine Carl Gustav Carus of TU Dresden, Fetscherstr. 74, D-01307 Dresden, Germany
| | - Martin Hrabě de Angelis
- German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; German Mouse Clinic (GMC), Institute of Experimental Genetics, Helmholtz Zentrum München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany
| | | | - Mathias Ritzmann
- Clinic for Swine at the Centre of Clinical Veterinary Medicine, LMU Munich, Sonnenstr. 16, D-85764 Oberschleißheim, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Center for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Helmut Blum
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Georg J Arnold
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Rüdiger Wanke
- Institute of Veterinary Pathology at the Centre for Clinical Veterinary Medicine, LMU Munich, Veterinärstr. 13, D-80539 Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany; German Center for Diabetes Research (DZD), Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany; Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, LMU Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany.
| |
Collapse
|