1
|
Ramos-Hernández I, Fuster-García C, Aguilar-González A, Lozano-Vinagre M, Guenechea-Amurrio G, Sanchez-Luque F, Gonçalves MFV, Cathomen T, Muñoz P, Molina-Estévez F, Martín F. Donor insertion into CX3CR1 allows epigenetic modulation of a constitutive promoter on hematopoietic stem cells and its activation upon myeloid differentiation. Nucleic Acids Res 2025; 53:gkaf344. [PMID: 40298109 PMCID: PMC12038399 DOI: 10.1093/nar/gkaf344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 04/03/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025] Open
Abstract
To improve ex vivo gene therapy strategies involving hematopoietic stem and progenitor cells (HSPCs), we propose a novel knock-in strategy (named KI-Ep) aiming to achieve transgene regulation of the inserted cassette through the acquisition of naturally occurring epigenetic marks. Based on this hypothesis, we selected CX3CR1 (a myeloid-specific gene presenting a poised histone signature on primitive HSPCs) as safe harbor to generate KI-Ep HSPCs. We demonstrated that, unlike the expression pattern achieved with lentiviral vectors (LVs), the insertion of a constitutive expression cassette into the intron 1 of the CX3CR1 locus (CX3CR1-I) in HSPCs resulted in very low expression levels in the more primitive HSPCs but, crucially, strong expression in HSPC-differentiated populations (especially myeloid cells), both in vitro and in vivo. Furthermore, we showed that the promoter of the expression cassette inserted into CX3CR1-I acquired epigenetic marks associated with poised genes during the HSPC stage. These marks transitioned to activated histone states upon KI-Ep HSPCs differentiation. In summary, here, we introduce the KI-Ep concept which enables the epigenetic modulation of the inserted transgene during the HSPCs stem cell stages and its subsequent activation upon differentiation.
Collapse
Affiliation(s)
- Iris Ramos-Hernández
- GENYO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Andalusian Regional Government. PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
| | - Carla Fuster-García
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
| | - Araceli Aguilar-González
- GENYO, Pfizer-University of Granada-Andalusian Regional Government Centre for Genomics and Oncological Research, Andalusian Regional Government. PTS Granada, Avenida de la Ilustración 114, 18016 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Department of Medicinal and Organic Chemistry and Excellence Research Unit of Chemistry Applied to Biomedicine and the Environment, School of Pharmacy, University of Granada, Campus Cartuja s/n, 18071 Granada, Spain
| | - María L Lozano-Vinagre
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Guillermo Guenechea-Amurrio
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER) and Advanced Therapies Unit, Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD, UAM), 28040 Madrid, Spain
| | - Francisco J Sanchez-Luque
- Institute of Parasitology and Biomedicine ‘López-Neyra’ (Spanish National Research Council), Avda. del Conocimiento 17 (PTS Granada), 18016 Armilla (Granada), Spain
| | - Manuel A F V Gonçalves
- Leiden University Medical Center, Department of Cell and Chemical Biology, Einthovenweg 20, 2333 ZC, Leiden, The Netherlands
| | - Toni Cathomen
- Institute for Transfusion Medicine and Gene Therapy, Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center—University of Freiburg, 79106 Freiburg, Germany
- Faculty of Medicine, University of Freiburg,79110 Freiburg, Germany
| | - Pilar Muñoz
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departmento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Francisco J Molina-Estévez
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departmento de Biología Celular, Facultad de Ciencias, Universidad de Granada, Campus Fuentenueva, 18071 Granada, Spain
| | - Francisco Martín
- Fundación Pública Andaluza para la Investigación Biosanitaria en Andalucía Oriental Alejandro Otero (FIBAO), Avenida de Madrid, 15, Beiro, 18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs. GRANADA, 18012 Granada, Spain
- Departamento de Bioquímica y Biología Molecular 3 e Inmunología, Facultad de Medicina, Universidad de Granada, Avda. de la Investigación 11, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016, 34 Granada, Spain
| |
Collapse
|
2
|
Glaser S, Wagener R, Kretzmer H, López C, Baptista MJ, Bens S, Bernhart S, Bhatia K, Borkhardt A, Elgaafary S, Hoffmann S, Hübschmann D, Hummel M, Klapper W, Kolarova J, Kreuz M, Lazzi S, Löffler M, Navarro JT, Neequaye J, Onyango N, Onyuma T, Ott G, Radlwimmer B, Rohde M, Rosenwald A, Rosolowski M, Schlesner M, Szczepanowski M, Tapia G, Wößmann W, Küppers R, Trümper L, Leoncini L, Lichter P, del Val C, Ammerpohl O, Burkhardt B, Mbulaiteye SM, Siebert R. Subtyping Burkitt Lymphoma by DNA Methylation. Genes Chromosomes Cancer 2025; 64:e70042. [PMID: 40192513 PMCID: PMC11974478 DOI: 10.1002/gcc.70042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Burkitt lymphoma (BL) is an aggressive germinal center B-cell-derived malignancy. Historically, sporadic, endemic, and immunodeficiency-associated variants were distinguished, which differ in the frequency of Epstein-Barr virus (EBV) positivity. Aiming to identify subgroups based on DNA methylation patterns, we here profiled 96 BL cases, 17 BL cell lines, and six EBV-transformed lymphoblastoid cell lines using Illumina BeadChip arrays. DNA methylation analyses clustered the cases into four subgroups: two containing mostly EBV-positive cases (BL-mC1, BL-mC2) and two containing mostly EBV-negative cases (BL-mC3, BL-mC4). The subgroups BL-mC1/2, enriched for EBV-positive cases, showed increased DNA methylation, epigenetic age, and, in part, proliferation history compared to BL-mC3/4. CpGs hypermethylated in EBV-positive BLs were enriched for polycomb repressive complex 2 marks, while the CpGs hypomethylated in EBV-negative BLs were linked to, for example, B-cell receptor signaling. EBV-associated hypermethylation affected regulatory regions of genes frequently mutated in BL (e.g., CCND3, TP53) and impacted superenhancers. This finding suggests that hypermethylation may compensate for the lower mutational burden of pathogenic drivers in EBV-positive BLs. Though minor, significant differences were also observed between EBV-positive endemic and sporadic cases (e.g., at the SOX11 and RUNX1 loci). Our findings suggest that EBV status, rather than epidemiological variants, drives the DNA methylation-based subgrouping of BL.
Collapse
Affiliation(s)
- Selina Glaser
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
| | - Rabea Wagener
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institute of Human GeneticsChristian‐Albrechts‐University Kiel and University Hospital Schleswig‐HolsteinKielGermany
| | - Helene Kretzmer
- Department of Genome RegulationMax Planck Institute for Molecular GeneticsBerlinGermany
- Digital Health Cluster, Hasso Plattner Institute for Digital Engineering, Digital Engineering FacultyUniversity of PotsdamPotsdamGermany
| | - Cristina López
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institute of Human GeneticsChristian‐Albrechts‐University Kiel and University Hospital Schleswig‐HolsteinKielGermany
- Hematopathology Section, Pathology DepartmentHospital Clínic de BarcelonaBarcelonaSpain
| | | | - Susanne Bens
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institute of Human GeneticsChristian‐Albrechts‐University Kiel and University Hospital Schleswig‐HolsteinKielGermany
| | - Stephan Bernhart
- Interdisciplinary Center for BioinformaticsUniversity of LeipzigLeipzigGermany
- Bioinformatics Group, Department of ComputerUniversity of LeipzigLeipzigGermany
| | - Kishor Bhatia
- Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Arndt Borkhardt
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical FacultyHeinrich‐Heine University DuesseldorfDuesseldorfGermany
| | - Shaymaa Elgaafary
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institute of Human GeneticsChristian‐Albrechts‐University Kiel and University Hospital Schleswig‐HolsteinKielGermany
| | - Steve Hoffmann
- Faculty of Biosciences, Leibniz Institute on Aging‐Fritz Lipmann Institute (FLI)Friedrich Schiller University JenaJenaGermany
| | - Daniel Hübschmann
- Pattern Recognition and Digital Medicine Group (PRDM)Heidelberg Institute for Stem Cell Technology and Experimental Medicine (HI‐STEM)HeidelbergGermany
| | - Michael Hummel
- Charité Center for Biomedicine (CC4)Charité—University Medicine BerlinBerlinGermany
| | - Wolfram Klapper
- Hematopathology Section, Institute of PathologyChristian‐Albrechts‐UniversityKielGermany
| | - Julia Kolarova
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institute of Human GeneticsChristian‐Albrechts‐University Kiel and University Hospital Schleswig‐HolsteinKielGermany
| | - Markus Kreuz
- Institute for Medical Informatics Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Stefano Lazzi
- Department of Medical BiotechnologyUniversity of SienaSienaItaly
| | - Markus Löffler
- Institute for Medical Informatics Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Jose Tomas Navarro
- Josep Carreras Leukaemia Research InstituteBadalonaSpain
- Department of Hematology, Institut Català d'Oncologia, Germans Trias i Pujol University HospitalUniversitat Autònoma de BarcelonaBadalonaSpain
| | - Janet Neequaye
- Department of Child HealthUniversity of Ghana Medical SchoolAccraGhana
| | - Noel Onyango
- Department of Medical Microbiology and ImmunologyUniversity of NairobiNairobiKenya
| | | | - German Ott
- Department of Clinical PathologyRobert‐Bosch Krankenhaus, and Dr. Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
| | - Bernhard Radlwimmer
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Marius Rohde
- Department of Pediatric Hematology and OncologyJustus‐Liebig‐University GiessenGiessenGermany
| | | | - Maciej Rosolowski
- Institute for Medical Informatics Statistics and EpidemiologyUniversity of LeipzigLeipzigGermany
| | - Matthias Schlesner
- Biomedical Informatics, Data Mining and Data Analytics, Faculty of Applied Computer Science and Medical FacultyUniversity of AugsburgAugsburgGermany
| | - Monika Szczepanowski
- Clinic of Internal Medicine II, Hematology Laboratory SectionUniversity Hospital Schleswig‐Holstein Campus KielKielGermany
| | - Gustavo Tapia
- Department of Pathology, Germans Trias i Pujol University HospitalUniversitat Autònoma de BarcelonaBadalonaSpain
| | - Wilhelm Wößmann
- NHL‐BFM Study Centre and Pediatric Hematology and OncologyUniversity Medical Center Hamburg‐EppendorfHamburgGermany
| | - Ralf Küppers
- Institute of Cell Biology (Cancer Research)University of Duisburg‐Essen, Medical SchoolEssenGermany
- German Cancer Consortium (DKTK)EssenGermany
| | - Lorenz Trümper
- Department of Hematology and OncologyGeorg‐August‐University of GöttingenGöttingenGermany
| | - Lorenzo Leoncini
- Department of Medical BiotechnologyUniversity of SienaSienaItaly
| | - Peter Lichter
- Division of Molecular GeneticsGerman Cancer Research Center (DKFZ)HeidelbergGermany
| | - Coral del Val
- Department of Computer Science and Artificial Intelligence, Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI)University of GranadaGranadaSpain
- Instituto de Investigación Biosanitaria Ibs.GRANADAComplejo Hospitales Universitarios de Granada/Universidad de GranadaGranadaSpain
| | - Ole Ammerpohl
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institute of Human GeneticsChristian‐Albrechts‐University Kiel and University Hospital Schleswig‐HolsteinKielGermany
- German Center for Child and Adolescent Health (DZKJ)UlmGermany
- Airway Research Center NorthMember of the German Center for Lung Research (DZL)GrosshansdorfGermany
| | - Birgit Burkhardt
- Pediatric Hematology and OncologyUniversity Hospital MuensterMuensterGermany
| | - Sam M. Mbulaiteye
- Division of Cancer Epidemiology and GeneticsNational Cancer Institute, National Institutes of HealthBethesdaMarylandUSA
| | - Reiner Siebert
- Institute of Human GeneticsUlm University and Ulm University Medical CenterUlmGermany
- Institute of Human GeneticsChristian‐Albrechts‐University Kiel and University Hospital Schleswig‐HolsteinKielGermany
- German Center for Child and Adolescent Health (DZKJ)UlmGermany
| | | |
Collapse
|
3
|
O'Geen H, Mihalovits A, Brophy BD, Yang H, Miller MW, Lee CJ, Segal DJ, Tomkova M. De-novo DNA Methylation of Bivalent Promoters Induces Gene Activation through PRC2 Displacement. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.636872. [PMID: 39975160 PMCID: PMC11839071 DOI: 10.1101/2025.02.07.636872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Promoter DNA methylation is a key epigenetic mark, commonly associated with gene silencing. However, we noticed that a positive association between promoter DNA methylation and expression is surprisingly common in cancer. Here, we use hit-and-run CRISPR/dCas9 epigenome editing to evaluate how deposition of DNA methylation can regulate gene expression dependent on pre-existing chromatin environment. While the predominant effect of DNA methylation in non-bivalent promoters is gene repression, we show that in bivalent promoters this often leads to gene activation. We demonstrate that gain of DNA methylation leads to reduced MTF2 binding and eviction of H3K27me3, a repressive mark that guards bivalent genes against activation. Our cancer patient data analyses reveal that in cancer, this mechanism likely leads to activation of a large group of transcription factors regulating pluripotency, apoptosis, and senescence signalling. In conclusion, our study uncovers an activating role of DNA methylation in bivalent promoters, with broad implications for cancer and development.
Collapse
|
4
|
Lambert J, Jørgensen HF. Epigenetic regulation of vascular smooth muscle cell phenotypes in atherosclerosis. Atherosclerosis 2025; 401:119085. [PMID: 39709233 DOI: 10.1016/j.atherosclerosis.2024.119085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024]
Abstract
Vascular smooth muscle cells (VSMCs) in adult arteries maintain substantial phenotypic plasticity, which allows for the reversible cell state changes that enable vascular remodelling and homeostasis. In atherosclerosis, VSMCs dedifferentiate in response to lipid accumulation and inflammation, resulting in loss of their characteristic contractile state. Recent studies showed that individual, pre-existing VSMCs expand clonally and can acquire many different phenotypes in atherosclerotic lesions. The changes in gene expression underlying this phenotypic diversity are mediated by epigenetic modifications which affect transcription factor access and thereby gene expression dynamics. Additionally, epigenetic mechanisms can maintain cellular memory, potentially facilitating reversion to the contractile state. While technological advances have provided some insight, a comprehensive understanding of how VSMC phenotypes are governed in disease remains elusive. Here we review current literature in light of novel insight from studies at single-cell resolution. We also discuss how lessons from epigenetic studies of cellular regulation in other fields could help in translating the potential of targeting VSMC phenotype conversion into novel therapies in cardiovascular disease.
Collapse
Affiliation(s)
- Jordi Lambert
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| | - Helle F Jørgensen
- Section of Cardiorespiratory Medicine, University of Cambridge, VPD Heart and Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
| |
Collapse
|
5
|
Manoukian P, Kuhnen LC, van Laarhoven HWM, Bijlsma MF. Association of epigenetic landscapes with heterogeneity and plasticity in pancreatic cancer. Crit Rev Oncol Hematol 2025; 206:104573. [PMID: 39581245 DOI: 10.1016/j.critrevonc.2024.104573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/13/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. Due to a lack of clear symptoms, patients often present with advanced disease, with limited clinical intervention options. The high mortality rate of PDAC is, however, also a result of several other factors that include a high degree of heterogeneity and treatment resistant cellular phenotypes. Molecular subtypes of PDAC have been identified that are thought to represent cellular phenotypes at the tissue level. The epigenetic landscape is an important factor that dictates these subtypes. Permissive epigenetic landscapes serve as drivers of molecular heterogeneity and cellular plasticity in developing crypts as well as metaplastic lesions. Drawing parallels with other cancers, we hypothesize that epigenetic permissiveness is a potential driver of cellular plasticity in PDAC. In this review will explore the epigenetic alterations that underlie PDAC cell states and relate them to cellular plasticity from other contexts. In doing so, we aim to highlight epigenomic drivers of PDAC heterogeneity and plasticity and, with that, offer some insight to guide pre-clinical research.
Collapse
Affiliation(s)
- Paul Manoukian
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands.
| | - Leo C Kuhnen
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands; Amsterdam UMC location University of Amsterdam, Department of Medical Oncology, Amsterdam, the Netherlands
| | - Maarten F Bijlsma
- Amsterdam UMC location University of Amsterdam, Center for Experimental and Molecular Medicine, Laboratory of Experimental Oncology and Radiobiology, Amsterdam, the Netherlands; Cancer Center Amsterdam, Cancer Biology, Amsterdam, the Netherlands
| |
Collapse
|
6
|
Tommasi S, Brocchieri L, Tornaletti S, Besaratinia A. Epigenomic Dysregulation in Youth Vapers: Implications for Disease Risk Assessment. Am J Respir Cell Mol Biol 2025; 72:206-218. [PMID: 39133188 PMCID: PMC11976656 DOI: 10.1165/rcmb.2024-0207oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/12/2024] [Indexed: 08/13/2024] Open
Abstract
Despite the ongoing epidemic of youth vaping, the long-term health consequences of electronic cigarette use are largely unknown. We report the effects of vaping versus smoking on the oral cell methylome of healthy young vapers and smokers relative to nonusers. Whereas vapers and smokers differ in the number of differentially methylated regions (DMRs) (831 vs. 2,863), they share striking similarities in the distribution and patterns of DNA methylation, chromatin states, transcription factor binding motifs, and pathways. There is substantial overlap in DMR-associated genes between vapers and smokers, with the shared subset of genes enriched for transcriptional regulation, signaling, tobacco use disorders, and cancer-related pathways. Of significance is the identification of a common hypermethylated DMR at the promoter of HIC1 (hypermethylated in cancer 1), a tumor suppressor gene frequently silenced in smoking-related cancers. Our data support a potential link between epigenomic dysregulation in youth vapers and disease risk. These novel findings have significant implications for public health and tobacco product regulation.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Population and Public Health Sciences, Keck School of Medicine, and
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California; and
| | | | | | - Ahmad Besaratinia
- Department of Population and Public Health Sciences, Keck School of Medicine, and
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California; and
| |
Collapse
|
7
|
Wang Y, Liu H, Zhang M, Xu J, Zheng L, Liu P, Chen J, Liu H, Chen C. Epigenetic reprogramming in gastrointestinal cancer: biology and translational perspectives. MedComm (Beijing) 2024; 5:e670. [PMID: 39184862 PMCID: PMC11344282 DOI: 10.1002/mco2.670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 08/27/2024] Open
Abstract
Gastrointestinal tumors, the second leading cause of human mortality, are characterized by their association with inflammation. Currently, progress in the early diagnosis and effective treatment of gastrointestinal tumors is limited. Recent whole-genome analyses have underscored their profound heterogeneity and extensive genetic and epigenetic reprogramming. Epigenetic reprogramming pertains to dynamic and hereditable alterations in epigenetic patterns, devoid of concurrent modifications in the underlying DNA sequence. Common epigenetic modifications encompass DNA methylation, histone modifications, noncoding RNA, RNA modifications, and chromatin remodeling. These modifications possess the potential to invoke or suppress a multitude of genes associated with cancer, thereby governing the establishment of chromatin configurations characterized by diverse levels of accessibility. This intricate interplay assumes a pivotal and indispensable role in governing the commencement and advancement of gastrointestinal cancer. This article focuses on the impact of epigenetic reprogramming in the initiation and progression of gastric cancer, esophageal cancer, and colorectal cancer, as well as other uncommon gastrointestinal tumors. We elucidate the epigenetic landscape of gastrointestinal tumors, encompassing DNA methylation, histone modifications, chromatin remodeling, and their interrelationships. Besides, this review summarizes the potential diagnostic, therapeutic, and prognostic targets in epigenetic reprogramming, with the aim of assisting clinical treatment strategies.
Collapse
Affiliation(s)
- Yingjie Wang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Mengsha Zhang
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Liuxian Zheng
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Pengpeng Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jingyao Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Hongyu Liu
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengduSichuanChina
| |
Collapse
|
8
|
Penny L, Main SC, De Michino SD, Bratman SV. Chromatin- and nucleosome-associated features in liquid biopsy: implications for cancer biomarker discovery. Biochem Cell Biol 2024; 102:291-298. [PMID: 38478957 DOI: 10.1139/bcb-2024-0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024] Open
Abstract
Cell-free DNA (cfDNA) from the bloodstream has been studied for cancer biomarker discovery, and chromatin-derived epigenetic features have come into the spotlight for their potential to expand clinical applications. Methylation, fragmentation, and nucleosome positioning patterns of cfDNA have previously been shown to reveal epigenomic and inferred transcriptomic information. More recently, histone modifications have emerged as a tool to further identify tumor-specific chromatin variants in plasma. A number of sequencing methods have been developed to analyze these epigenetic markers, offering new insights into tumor biology. Features within cfDNA allow for cancer detection, subtype and tissue of origin classification, and inference of gene expression. These methods provide a window into the complexity of cancer and the dynamic nature of its progression. In this review, we highlight the array of epigenetic features in cfDNA that can be extracted from chromatin- and nucleosome-associated organization and outline potential use cases in cancer management.
Collapse
Affiliation(s)
- Lucas Penny
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Sasha C Main
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Steven D De Michino
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
| | - Scott V Bratman
- Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 2C1, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON M5G 1L7, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
9
|
Niimi P, Gould V, Thrush-Evensen K, Levine ME. The Latent Aging of Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.28.596284. [PMID: 38854054 PMCID: PMC11160607 DOI: 10.1101/2024.05.28.596284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
As epigenetic clocks have evolved from powerful estimators of chronological aging to predictors of mortality and disease risk, it begs the question of what role DNA methylation plays in the aging process. We hypothesize that while it has the potential to serve as an informative biomarker, DNA methylation could also be a key to understanding the biology entangled between aging, (de)differentiation, and epigenetic reprogramming. Here we use an unsupervised approach to analyze time associated DNA methylation from both in vivo and in vitro samples to measure an underlying signal that ties these phenomena together. We identify a methylation pattern shared across all three, as well as a signal that tracks aging in tissues but appears refractory to reprogramming, suggesting that aging and reprogramming may not be fully mirrored processes.
Collapse
Affiliation(s)
- Peter Niimi
- Program in Experimental Pathology, Yale University, New Haven, CT, USA
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | - Victoria Gould
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| | | | - Morgan E Levine
- Altos Labs, San Diego Institute of Science, San Diego, CA, USA
| |
Collapse
|
10
|
Zhang J, Miao N, Lao L, Deng W, Wang J, Zhu X, Huang Y, Lin H, Zeng W, Zhang W, Tan L, Yuan X, Zeng X, Zhu J, Chen X, Song E, Yang L, Nie Y, Huang D. Activation of Bivalent Gene POU4F1 Promotes and Maintains Basal-like Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307660. [PMID: 38491910 PMCID: PMC11132042 DOI: 10.1002/advs.202307660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/26/2024] [Indexed: 03/18/2024]
Abstract
Basal-like breast cancer (BLBC) is the most aggressive molecular subtype of breast cancer with worse prognosis and fewer treatment options. The underlying mechanisms upon BLBC transcriptional dysregulation and its upstream transcription factors (TFs) remain unclear. Here, among the hyperactive candidate TFs of BLBC identified by bioinformatic analysis, POU4F1 is uniquely upregulated in BLBC and is associated with poor prognosis. POU4F1 is necessary for the tumor growth and malignant phenotypes of BLBC through regulating G1/S transition by direct binding at the promoter of CDK2 and CCND1. More importantly, POU4F1 maintains BLBC identity by repressing ERα expression through CDK2-mediated EZH2 phosphorylation and subsequent H3K27me3 modification in ESR1 promoter. Knocking out POU4F1 in BLBC cells reactivates functional ERα expression, rendering BLBC sensitive to tamoxifen treatment. In-depth epigenetic analysis reveals that the subtype-specific re-configuration and activation of the bivalent chromatin in the POU4F1 promoter contributes to its unique expression in BLBC, which is maintained by DNA demethylase TET1. Together, these results reveal a subtype-specific epigenetically activated TF with critical role in promoting and maintaining BLBC, suggesting that POU4F1 is a potential therapeutic target for BLBC.
Collapse
Affiliation(s)
- Jiahui Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Nanyan Miao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Department of Plastic SurgerySun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Liyan Lao
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wen Deng
- Center for BiotherapySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Jiawen Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaofeng Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Yongsheng Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
- Cellular & Molecular Diagnostics CenterSun Yat‐Sen Memorial HospitalSun Yat‐Sen UniversityGuangzhou510120China
| | - Huayue Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wenfeng Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Wei Zhang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Luyuan Tan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xiaoqing Yuan
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xin Zeng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Jingkun Zhu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Xueman Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Linbin Yang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Yan Nie
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Di Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene RegulationGuangdong‐Hong Kong Joint Laboratory for RNA MedicineBreast Tumor CenterSun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| |
Collapse
|
11
|
Wang SS, Hall ML, Lee E, Kim SC, Ramesh N, Lee SH, Jang JY, Bold RJ, Ku JL, Hwang CI. Whole-genome bisulfite sequencing identifies stage- and subtype-specific DNA methylation signatures in pancreatic cancer. iScience 2024; 27:109414. [PMID: 38532888 PMCID: PMC10963232 DOI: 10.1016/j.isci.2024.109414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Accepted: 02/29/2024] [Indexed: 03/28/2024] Open
Abstract
In pancreatic ductal adenocarcinoma (PDAC), no recurrent metastasis-specific mutation has been found, suggesting that epigenetic mechanisms, such as DNA methylation, are the major contributors of late-stage disease progression. Here, we performed the first whole-genome bisulfite sequencing (WGBS) on mouse and human PDAC organoid models to identify stage-specific and molecular subtype-specific DNA methylation signatures. With this approach, we identified thousands of differentially methylated regions (DMRs) that can distinguish between the stages and molecular subtypes of PDAC. Stage-specific DMRs are associated with genes related to nervous system development and cell-cell adhesions, and are enriched in promoters and bivalent enhancers. Subtype-specific DMRs showed hypermethylation of GATA6 foregut endoderm transcriptional networks in the squamous subtype and hypermethylation of EMT transcriptional networks in the progenitor subtype. These results indicate that aberrant DNA methylation contributes to both PDAC progression and subtype differentiation, resulting in significant and reoccurring DNA methylation patterns with diagnostic and prognostic potential.
Collapse
Affiliation(s)
- Sarah S. Wang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Madison L. Hall
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - EunJung Lee
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Soon-Chan Kim
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Neha Ramesh
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea
| | - Jin-Young Jang
- Department of Surgery and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Richard J. Bold
- Division of Surgical Oncology, Department of Surgery, University of California, Davis, Sacramento, CA, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, South Korea
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California Davis, Davis, CA 95616, USA
- University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| |
Collapse
|
12
|
Rea M, Kimmerer G, Mittendorf S, Xiong X, Green M, Chandler D, Saintilnord W, Blackburn J, Gao T, Fondufe-Mittendorf YN. A dynamic model of inorganic arsenic-induced carcinogenesis reveals an epigenetic mechanism for epithelial-mesenchymal plasticity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123586. [PMID: 38467368 PMCID: PMC11005477 DOI: 10.1016/j.envpol.2024.123586] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/12/2024] [Accepted: 02/14/2024] [Indexed: 03/13/2024]
Abstract
Inorganic arsenic (iAs) causes cancer by initiating dynamic transitions between epithelial and mesenchymal cell phenotypes. These transitions transform normal cells into cancerous cells, and cancerous cells into metastatic cells. Most in vitro models assume that transitions between states are binary and complete, and do not consider the possibility that intermediate, stable cellular states might exist. In this paper, we describe a new, two-hit in vitro model of iAs-induced carcinogenesis that extends to 28 weeks of iAs exposure. Through week 17, the model faithfully recapitulates known and expected phenotypic, genetic, and epigenetic characteristics of iAs-induced carcinogenesis. By 28 weeks, however, exposed cells exhibit stable, intermediate phenotypes and epigenetic properties, and key transcription factor promoters (SNAI1, ZEB1) enter an epigenetically poised or bivalent state. These data suggest that key epigenetic transitions and cellular states exist during iAs-induced epithelial-to-mesenchymal transition (EMT), and that it is important for our in vitro models to encapsulate all aspects of EMT and the mesenchymal-to-epithelial transition (MET). In so doing, and by understanding the epigenetic systems controlling these transitions, we might find new, unexpected opportunities for developing targeted, cell state-specific therapeutics.
Collapse
Affiliation(s)
- Matthew Rea
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Greg Kimmerer
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Shania Mittendorf
- Department of Biology, University of Kentucky, Lexington, KY, 40506, USA
| | - Xiaopeng Xiong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Meghan Green
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Darrell Chandler
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA
| | - Wesley Saintilnord
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI, 49502, USA; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA
| | - Jessica Blackburn
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | - Tianyan Gao
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, USA; Markey Cancer Center, University of Kentucky, Lexington, KY, 40536, USA
| | | |
Collapse
|
13
|
Pinton A, Courtois L, Doublet C, Cabannes-Hamy A, Andrieu G, Smith C, Balducci E, Cieslak A, Touzart A, Simonin M, Lhéritier V, Huguet F, Balsat M, Dombret H, Rousselot P, Spicuglia S, Macintyre E, Boissel N, Asnafi V. PHF6-altered T-ALL Harbor Epigenetic Repressive Switch at Bivalent Promoters and Respond to 5-Azacitidine and Venetoclax. Clin Cancer Res 2024; 30:94-105. [PMID: 37889114 DOI: 10.1158/1078-0432.ccr-23-2159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/27/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To assess the impact of PHF6 alterations on clinical outcome and therapeutical actionability in T-cell acute lymphoblastic leukemia (T-ALL). EXPERIMENTAL DESIGN We described PHF6 alterations in an adult cohort of T-ALL from the French trial Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL)-2003/2005 and retrospectively analyzed clinical outcomes between PHF6-altered (PHF6ALT) and wild-type patients. We also used EPIC and chromatin immunoprecipitation sequencing data of patient samples to analyze the epigenetic landscape of PHF6ALT T-ALLs. We consecutively evaluated 5-azacitidine efficacy, alone or combined with venetoclax, in PHF6ALT T-ALL. RESULTS We show that PHF6 alterations account for 47% of cases in our cohort and demonstrate that PHF6ALT T-ALL presented significantly better clinical outcomes. Integrative analysis of DNA methylation and histone marks shows that PHF6ALT are characterized by DNA hypermethylation and H3K27me3 loss at promoters physiologically bivalent in thymocytes. Using patient-derived xenografts, we show that PHF6ALT T-ALL respond to the 5-azacytidine alone. Finally, synergism with the BCL2-inhibitor venetoclax was demonstrated in refractory/relapsing (R/R) PHF6ALT T-ALL using fresh samples. Importantly, we report three cases of R/R PHF6ALT patients who were successfully treated with this combination. CONCLUSIONS Overall, our study supports the use of PHF6 alterations as a biomarker of sensitivity to 5-azacytidine and venetoclax combination in R/R T-ALL.
Collapse
Affiliation(s)
- Antoine Pinton
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Lucien Courtois
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | | | | | - Guillaume Andrieu
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Charlotte Smith
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Estelle Balducci
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Agata Cieslak
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Aurore Touzart
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Mathieu Simonin
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Véronique Lhéritier
- Coordination du Groupe Group for Research in Adult Acute Lymphoblastic Leukemia, Hospices Civils de Lyon, Hôpital Lyon Sud, Lyon, France
| | - Françoise Huguet
- Service d'Hématologie, CHU de Toulouse, IUCT-Oncopole, Toulouse, France
| | - Marie Balsat
- Service d'Hématologie Clinique, Hôpital Lyon Sud, Lyon, France
| | - Hervé Dombret
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Philippe Rousselot
- Centre Hospitalier de Versailles, Versailles, France
- Université Versailles Saint Quentin en Yvelines Paris Saclay, INSERM U1184, Paris, France
| | - Salvatore Spicuglia
- Aix-Marseille University, Inserm, TAGC, UMR1090, Marseille, France
- Equipe Labélisée Ligue Contre le Cancer, Marseille, France
| | - Elizabeth Macintyre
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| | - Nicolas Boissel
- Service d'Hématologie Adolescents et Jeunes Adultes, Hôpital Saint-Louis, Assistance Publique-Hôpitaux de Paris, Paris, France
- Institut de Recherche Saint-Louis, UPR-3518, Université Paris Cité, Paris, France
| | - Vahid Asnafi
- Institut Necker Enfants-Malades, INSERM U1151, Hôpital Necker Enfants-Malades, Laboratoire d'Onco-Hématologie, Assistance Publique - Hôpitaux de Paris, and Université Paris-Cité, Paris, France
| |
Collapse
|
14
|
Jaroszewicz A, Ernst J. ChromGene: gene-based modeling of epigenomic data. Genome Biol 2023; 24:203. [PMID: 37679846 PMCID: PMC10486095 DOI: 10.1186/s13059-023-03041-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/21/2023] [Indexed: 09/09/2023] Open
Abstract
Various computational approaches have been developed to annotate epigenomes on a per-position basis by modeling combinatorial and spatial patterns within epigenomic data. However, such annotations are less suitable for gene-based analyses. We present ChromGene, a method based on a mixture of learned hidden Markov models, to annotate genes based on multiple epigenomic maps across the gene body and flanks. We provide ChromGene assignments for over 100 cell and tissue types. We characterize the mixture components in terms of gene expression, constraint, and other gene annotations. The ChromGene method and annotations will provide a useful resource for gene-based epigenomic analyses.
Collapse
Affiliation(s)
- Artur Jaroszewicz
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Jason Ernst
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Computer Science Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Computational Medicine Department, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
15
|
Traxler L, Lucciola R, Herdy JR, Jones JR, Mertens J, Gage FH. Neural cell state shifts and fate loss in ageing and age-related diseases. Nat Rev Neurol 2023; 19:434-443. [PMID: 37268723 PMCID: PMC10478103 DOI: 10.1038/s41582-023-00815-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 06/04/2023]
Abstract
Most age-related neurodegenerative diseases remain incurable owing to an incomplete understanding of the disease mechanisms. Several environmental and genetic factors contribute to disease onset, with human biological ageing being the primary risk factor. In response to acute cellular damage and external stimuli, somatic cells undergo state shifts characterized by temporal changes in their structure and function that increase their resilience, repair cellular damage, and lead to their mobilization to counteract the pathology. This basic cell biological principle also applies to human brain cells, including mature neurons that upregulate developmental features such as cell cycle markers or glycolytic reprogramming in response to stress. Although such temporary state shifts are required to sustain the function and resilience of the young human brain, excessive state shifts in the aged brain might result in terminal fate loss of neurons and glia, characterized by a permanent change in cell identity. Here, we offer a new perspective on the roles of cell states in sustaining health and counteracting disease, and we examine how cellular ageing might set the stage for pathological fate loss and neurodegeneration. A better understanding of neuronal state and fate shifts might provide the means for a controlled manipulation of cell fate to promote brain resilience and repair.
Collapse
Affiliation(s)
- Larissa Traxler
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
| | - Raffaella Lucciola
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Joseph R Herdy
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jeffrey R Jones
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jerome Mertens
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA, USA.
| |
Collapse
|
16
|
Lu Y, Cao Q, Yu Y, Sun Y, Jiang X, Li X. Pan-cancer analysis revealed H3K4me1 at bivalent promoters premarks DNA hypermethylation during tumor development and identified the regulatory role of DNA methylation in relation to histone modifications. BMC Genomics 2023; 24:235. [PMID: 37138231 PMCID: PMC10157937 DOI: 10.1186/s12864-023-09341-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/27/2023] [Indexed: 05/05/2023] Open
Abstract
BACKGROUND DNA hypermethylation at promoter CpG islands (CGIs) is a hallmark of cancers and could lead to dysregulation of gene expression in the development of cancers, however, its dynamics and regulatory mechanisms remain elusive. Bivalent genes, that direct development and differentiation of stem cells, are found to be frequent targets of hypermethylation in cancers. RESULTS Here we performed comprehensive analysis across multiple cancer types and identified that the decrease in H3K4me1 levels coincides with DNA hypermethylation at the bivalent promoter CGIs during tumorigenesis. Removal of DNA hypermethylation leads to increment of H3K4me1 at promoter CGIs with preference for bivalent genes. Nevertheless, the alteration of H3K4me1 by overexpressing or knockout LSD1, the demethylase of H3K4, doesn't change the level or pattern of DNA methylation. Moreover, LSD1 was found to regulate the expression of a bivalent gene OVOL2 to promote tumorigenesis. Knockdown of OVOL2 in LSD1 knockout HCT116 cells restored the cancer cell phenotype. CONCLUSION In summary, our work identified a universal indicator that can pre-mark DNA hypermethylation in cancer cells, and dissected the interplay between H3K4me1 and DNA hypermethylation in detail. Current study also reveals a novel mechanism underlying the oncogenic role of LSD1, providing clues for cancer therapies.
Collapse
Affiliation(s)
- Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qiang Cao
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yazhou Sun
- The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China.
| |
Collapse
|
17
|
Zúñiga-Hernández JM, Olivares GH, Olguín P, Glavic A. Low-nutrient diet in Drosophila larvae stage causes enhancement in dopamine modulation in adult brain due epigenetic imprinting. Open Biol 2023; 13:230049. [PMID: 37161288 PMCID: PMC10170216 DOI: 10.1098/rsob.230049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Nutrient scarcity is a frequent adverse condition that organisms face during their development. This condition may lead to long-lasting effects on the metabolism and behaviour of adults due to developmental epigenetic modifications. Here, we show that reducing nutrient availability during larval development affects adult spontaneous activity and sleep behaviour, together with changes in gene expression and epigenetic marks in the mushroom bodies (MBs). We found that open chromatin regions map to 100 of 241 transcriptionally upregulated genes in the adult MBs, these new opening zones are preferentially located in regulatory zones such as promoter-TSS and introns. Importantly, opened chromatin at the Dopamine 1-like receptor 2 regulatory zones correlate with increased expression. In consequence, adult administration of a dopamine antagonist reverses increased spontaneous activity and diminished sleep time observed in response to early-life nutrient restriction. In comparison, reducing dop1R2 expression in MBs also ameliorates these effects, albeit to a lesser degree. These results lead to the conclusion that increased dopamine signalling in the MBs of flies reared in a poor nutritional environment underlies the behavioural changes observed due to this condition during development.
Collapse
Affiliation(s)
- J M Zúñiga-Hernández
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| | - Gonzalo H Olivares
- Escuela de Kinesiología, Facultad de Medicina, Center of Integrative Biology (CIB), Universidad Mayor, Chile
| | - Patricio Olguín
- Programa de Genética Humana, ICBM, Biomedical Neuroscience Institute, Departamento de Neurociencia, Facultad de Medicina, Universidad de Chile, Chile
| | - Alvaro Glavic
- Laboratorio Biología del Desarrollo, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Chile
| |
Collapse
|
18
|
Wu H, Eckhardt CM, Baccarelli AA. Molecular mechanisms of environmental exposures and human disease. Nat Rev Genet 2023; 24:332-344. [PMID: 36717624 PMCID: PMC10562207 DOI: 10.1038/s41576-022-00569-3] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2022] [Indexed: 02/01/2023]
Abstract
A substantial proportion of disease risk for common complex disorders is attributable to environmental exposures and pollutants. An appreciation of how environmental pollutants act on our cells to produce deleterious health effects has led to advances in our understanding of the molecular mechanisms underlying the pathogenesis of chronic diseases, including cancer and cardiovascular, neurodegenerative and respiratory diseases. Here, we discuss emerging research on the interplay of environmental pollutants with the human genome and epigenome. We review evidence showing the environmental impact on gene expression through epigenetic modifications, including DNA methylation, histone modification and non-coding RNAs. We also highlight recent studies that evaluate recently discovered molecular processes through which the environment can exert its effects, including extracellular vesicles, the epitranscriptome and the mitochondrial genome. Finally, we discuss current challenges when studying the exposome - the cumulative measure of environmental influences over the lifespan - and its integration into future environmental health research.
Collapse
Affiliation(s)
- Haotian Wu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Christina M Eckhardt
- Department of Pulmonary, Allergy and Critical Care Medicine, Columbia University College of Physicians and Surgeons, New York, NY, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, USA.
| |
Collapse
|
19
|
Yu Y, Li X, Jiao R, Lu Y, Jiang X, Li X. H3K27me3-H3K4me1 transition at bivalent promoters instructs lineage specification in development. Cell Biosci 2023; 13:66. [PMID: 36991495 DOI: 10.1186/s13578-023-01017-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
BACKGROUND Bivalent genes, of which promoters are marked by both H3K4me3 (trimethylation of histone H3 on lysine 4) and H3K27me3 (trimethylation of histone H3 on lysine 27), play critical roles in development and tumorigenesis. Monomethylation on lysine 4 of histone H3 (H3K4me1) is commonly associated with enhancers, but H3K4me1 is also present at promoter regions as an active bimodal or a repressed unimodal pattern. Whether the co-occurrence of H3K4me1 and bivalent marks at promoters plays regulatory role in development is largely unknown. RESULTS We report that in the process of lineage differentiation, bivalent promoters undergo H3K27me3-H3K4me1 transition, the loss of H3K27me3 accompanies by bimodal pattern loss or unimodal pattern enrichment of H3K4me1. More importantly, this transition regulates tissue-specific gene expression to orchestrate the development. Furthermore, knockout of Eed (Embryonic Ectoderm Development) or Suz12 (Suppressor of Zeste 12) in mESCs (mouse embryonic stem cells), the core components of Polycomb repressive complex 2 (PRC2) which catalyzes H3K27 trimethylation, generates an artificial H3K27me3-H3K4me1 transition at partial bivalent promoters, which leads to up-regulation of meso-endoderm related genes and down-regulation of ectoderm related genes, thus could explain the observed neural ectoderm differentiation failure upon retinoic acid (RA) induction. Finally, we find that lysine-specific demethylase 1 (LSD1) interacts with PRC2 and contributes to the H3K27me3-H3K4me1 transition in mESCs. CONCLUSIONS These findings suggest that H3K27me3-H3K4me1 transition plays a key role in lineage differentiation by regulating the expression of tissue specific genes, and H3K4me1 pattern in bivalent promoters could be modulated by LSD1 via interacting with PRC2.
Collapse
Affiliation(s)
- Yue Yu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xinjie Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Rui Jiao
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Yang Lu
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Xuan Jiang
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
| | - Xin Li
- School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
20
|
Macrae TA, Fothergill-Robinson J, Ramalho-Santos M. Regulation, functions and transmission of bivalent chromatin during mammalian development. Nat Rev Mol Cell Biol 2023; 24:6-26. [PMID: 36028557 DOI: 10.1038/s41580-022-00518-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2022] [Indexed: 12/25/2022]
Abstract
Cells differentiate and progress through development guided by a dynamic chromatin landscape that mediates gene expression programmes. During development, mammalian cells display a paradoxical chromatin state: histone modifications associated with gene activation (trimethylated histone H3 Lys4 (H3K4me3)) and with gene repression (trimethylated H3 Lys27 (H3K27me3)) co-occur at promoters of developmental genes. This bivalent chromatin modification state is thought to poise important regulatory genes for expression or repression during cell-lineage specification. In this Review, we discuss recent work that has expanded our understanding of the molecular basis of bivalent chromatin and its contributions to mammalian development. We describe the factors that establish bivalency, especially histone-lysine N-methyltransferase 2B (KMT2B) and Polycomb repressive complex 2 (PRC2), and consider evidence indicating that PRC1 shapes bivalency and may contribute to its transmission between generations. We posit that bivalency is a key feature of germline and embryonic stem cells, as well as other types of stem and progenitor cells. Finally, we discuss the relevance of bivalent chromtin to human development and cancer, and outline avenues of future research.
Collapse
Affiliation(s)
- Trisha A Macrae
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA.
| | - Julie Fothergill-Robinson
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Miguel Ramalho-Santos
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada.
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada.
| |
Collapse
|
21
|
Synthesizing genome regulation data with vote-counting. Trends Genet 2022; 38:1208-1216. [PMID: 35817619 DOI: 10.1016/j.tig.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 06/16/2022] [Indexed: 01/24/2023]
Abstract
The increasing availability of high-throughput datasets allows amalgamating research information across a large body of genome regulation studies. Given the recent success of meta-analyses on transcriptional regulators, epigenetic marks, and enhancer:gene associations, we expect that such surveys will continue to provide novel and reproducible insights. However, meta-analyses are severely hampered by the diversity of available data, concurring protocols, an eclectic amount of bioinformatics tools, and myriads of conceivable parameter combinations. Such factors can easily bar life scientists from synthesizing omics data and substantially curb their interpretability. Despite statistical challenges of the method, we would like to emphasize the advantages of joining data from different sources through vote-counting and showcase examples that achieve a simple but highly intuitive data integration.
Collapse
|
22
|
Interplay Between the Histone Variant H2A.Z and the Epigenome in Pancreatic Cancer. Arch Med Res 2022; 53:840-858. [PMID: 36470770 DOI: 10.1016/j.arcmed.2022.11.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND The oncogenic process is orchestrated by a complex network of chromatin remodeling elements that shape the cancer epigenome. Histone variant H2A.Z regulates DNA control elements such as promoters and enhancers in different types of cancer; however, the interplay between H2A.Z and the pancreatic cancer epigenome is unknown. OBJECTIVE This study analyzed the role of H2A.Z in different DNA regulatory elements. METHODS We performed Chromatin Immunoprecipitation Sequencing assays (ChiP-seq) with total H2A.Z and acetylated H2A.Z (acH2A.Z) antibodies and analyzed published data from ChIP-seq, RNA-seq, bromouridine labeling-UV and sequencing (BruUV-seq), Hi-C and ATAC-seq (Assay for Transposase-Accessible Chromatin using sequencing) in the pancreatic cancer cell line PANC-1. RESULTS The results indicate that total H2A.Z facilitates the recruitment of RNA polymerase II and transcription factors at promoters and enhancers allowing the expression of pro-oncogenic genes. Interestingly, we demonstrated that H2A.Z is enriched in super-enhancers (SEs) contributing to the transcriptional activation of key genes implicated in tumor development. Importantly, we established that H2A.Z contributes to the three-dimensional (3D) genome organization of pancreatic cancer and that it is a component of the Topological Associated Domains (TADs) boundaries in PANC-1 and that total H2A.Z and acH2A.Z are associated with A and B compartments, respectively. CONCLUSIONS H2A.Z participates in the biology and development of pancreatic cancer by generating a pro-oncogenic transcriptome through its posttranslational modifications, interactions with different partners, and regulatory elements, contributing to the oncogenic 3D genome organization. These data allow us to understand the molecular mechanisms that promote an oncogenic transcriptome in pancreatic cancer mediated by H2A.Z.
Collapse
|
23
|
Fischer DK, Krick KS, Han C, Woolf MT, Heller EA. Cocaine regulation of Nr4a1 chromatin bivalency and mRNA in male and female mice. Sci Rep 2022; 12:15735. [PMID: 36130958 PMCID: PMC9492678 DOI: 10.1038/s41598-022-19908-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 09/06/2022] [Indexed: 11/08/2022] Open
Abstract
Cocaine epigenetically regulates gene expression via changes in histone post-translational modifications (HPTMs). We previously found that the immediate early gene Nr4a1 is epigenetically activated by cocaine in mouse brain reward regions. However, few studies have examined multiple HPTMs at a single gene. Bivalent gene promoters are simultaneously enriched in both activating (H3K4me3 (K4)) and repressive (H3K27me3 (K27)) HPTMs. As such, bivalent genes are lowly expressed but poised for activity-dependent gene regulation. In this study, we identified K4&K27 bivalency at Nr4a1 following investigator-administered cocaine in male and female mice. We applied sequential chromatin immunoprecipitation and qPCR to define Nr4a1 bivalency and expression in striatum (STR), prefrontal cortex (PFC), and hippocampus (HPC). We used Pearson's correlation to quantify relationships within each brain region across treatment conditions for each sex. In female STR, cocaine increased Nr4a1 mRNA while maintaining Nr4a1 K4&K27 bivalency. In male STR, cocaine enriched repressive H3K27me3 and K4&K27 bivalency at Nr4a1 and maintained Nr4a1 mRNA. Furthermore, cocaine epigenetically regulated a putative NR4A1 target, Cartpt, in male PFC. This study defined the epigenetic regulation of Nr4a1 in reward brain regions in male and female mice following cocaine, and, thus, shed light on the biological relevance of sex to cocaine use disorder.
Collapse
Affiliation(s)
- Delaney K Fischer
- Neuroscience Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keegan S Krick
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chloe Han
- College of Arts & Sciences, University of Pennsylvania, Philadelphia, PA, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Morgan T Woolf
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth A Heller
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
24
|
O’Geen H, Tomkova M, Combs JA, Tilley EK, Segal D. Determinants of heritable gene silencing for KRAB-dCas9 + DNMT3 and Ezh2-dCas9 + DNMT3 hit-and-run epigenome editing. Nucleic Acids Res 2022; 50:3239-3253. [PMID: 35234927 PMCID: PMC8989539 DOI: 10.1093/nar/gkac123] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 02/01/2022] [Accepted: 02/08/2022] [Indexed: 11/12/2022] Open
Abstract
Precision epigenome editing has gained significant attention as a method to modulate gene expression without altering genetic information. However, a major limiting factor has been that the gene expression changes are often transient, unlike the life-long epigenetic changes that occur frequently in nature. Here, we systematically interrogate the ability of CRISPR/dCas9-based epigenome editors (Epi-dCas9) to engineer persistent epigenetic silencing. We elucidated cis regulatory features that contribute to the differential stability of epigenetic reprogramming, such as the active transcription histone marks H3K36me3 and H3K27ac strongly correlating with resistance to short-term repression and resistance to long-term silencing, respectively. H3K27ac inversely correlates with increased DNA methylation. Interestingly, the dependance on H3K27ac was only observed when a combination of KRAB-dCas9 and targetable DNA methyltransferases (DNMT3A-dCas9 + DNMT3L) was used, but not when KRAB was replaced with the targetable H3K27 histone methyltransferase Ezh2. In addition, programmable Ezh2/DNMT3A + L treatment demonstrated enhanced engineering of localized DNA methylation and was not sensitive to a divergent chromatin state. Our results highlight the importance of local chromatin features for heritability of programmable silencing and the differential response to KRAB- and Ezh2-based epigenetic editing platforms. The information gained in this study provides fundamental insights into understanding contextual cues to more predictably engineer persistent silencing.
Collapse
Affiliation(s)
| | - Marketa Tomkova
- Genome Center, University of California, Davis, CA 95616, USA
| | | | - Emma K Tilley
- Genome Center, University of California, Davis, CA 95616, USA
| | - David J Segal
- Genome Center, University of California, Davis, CA 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA 95616, USA
| |
Collapse
|
25
|
Mlodawska OW, Saini P, Parker JB, Wei JJ, Bulun SE, Simon MA, Chakravarti D. Epigenomic and enhancer dysregulation in uterine leiomyomas. Hum Reprod Update 2022; 28:518-547. [PMID: 35199155 PMCID: PMC9247409 DOI: 10.1093/humupd/dmac008] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/16/2022] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Uterine leiomyomas, also known as uterine fibroids or myomas, are the most common benign gynecological tumors and are found in women of reproductive and postmenopausal age. There is an exceptionally high prevalence of this tumor in women by the age of 50 years. Black women are particularly affected, with an increased incidence, earlier age of onset, larger and faster growing fibroids and greater severity of symptoms as compared to White women. Although advances in identifying genetic and environmental factors to delineate these fibroids have already been made, only recently has the role of epigenomics in the pathogenesis of this disease been considered. OBJECTIVE AND RATIONALE Over recent years, studies have identified multiple epigenomic aberrations that may contribute to leiomyoma development and growth. This review will focus on the most recent discoveries in three categories of epigenomic changes found in uterine fibroids, namely aberrant DNA methylation, histone tail modifications and histone variant exchange, and their translation into altered target gene architecture and transcriptional outcome. The findings demonstrating how the altered 3D shape of the enhancer can regulate gene expression from millions of base pairs away will be discussed. Additionally, translational implications of these discoveries and potential roadblocks in leiomyoma treatment will be addressed. SEARCH METHODS A comprehensive PubMed search was performed to identify published articles containing keywords relevant to the focus of the review, such as: uterine leiomyoma, uterine fibroids, epigenetic alterations, epigenomics, stem cells, chromatin modifications, extracellular matrix [ECM] organization, DNA methylation, enhancer, histone post-translational modifications and dysregulated gene expression. Articles until September 2021 were explored and evaluated to identify relevant updates in the field. Most of the articles focused on in the discussion were published between 2015 and 2021, although some key discoveries made before 2015 were included for background information and foundational purposes. We apologize to the authors whose work was not included because of space restrictions or inadvertent omission. OUTCOMES Chemical alterations to the DNA structure and of nucleosomal histones, without changing the underlying DNA sequence, have now been implicated in the phenotypic manifestation of uterine leiomyomas. Genome-wide DNA methylation analysis has revealed subsets of either suppressed or overexpressed genes accompanied by aberrant promoter methylation. Furthermore, differential promoter access resulting from altered 3D chromatin structure and histone modifications plays a role in regulating transcription of key genes thought to be involved in leiomyoma etiology. The dysregulated genes function in tumor suppression, apoptosis, angiogenesis, ECM formation, a variety of cancer-related signaling pathways and stem cell differentiation. Aberrant DNA methylation or histone modification is also observed in altering enhancer architecture, which leads to changes in enhancer-promoter contact strength, producing novel explanations for the overexpression of high mobility group AT-hook 2 and gene dysregulation found in mediator complex subunit 12 mutant fibroids. While many molecular mechanisms and epigenomic features have been investigated, the basis for the racial disparity observed among those in the Black population remains unclear. WIDER IMPLICATIONS A comprehensive understanding of the exact pathogenesis of uterine leiomyoma is lacking and requires attention as it can provide clues for prevention and viable non-surgical treatment. These findings will widen our knowledge of the role epigenomics plays in the mechanisms related to uterine leiomyoma development and highlight novel approaches for the prevention and identification of epigenome targets for long-term non-invasive treatment options of this significantly common disease.
Collapse
Affiliation(s)
| | | | - J Brandon Parker
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jian-Jun Wei
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA,Robert H. Lurie Comprehensive Cancer Center of Northwestern University, Chicago, IL 60611, USA
| | - Serdar E Bulun
- Division of Reproductive Science in Medicine, Department of Obstetrics and Gynecology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Melissa A Simon
- Department of Obstetrics and Gynecology, Center for Health Equity Transformation, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Debabrata Chakravarti
- Correspondence address. Department of Obstetrics and Gynecology, Northwestern University, Feinberg School of Medicine, 303 E Superior Street, Lurie 4-119, Chicago, IL 60611, USA. E-mail:
| |
Collapse
|
26
|
Horvath S, Haghani A, Peng S, Hales EN, Zoller JA, Raj K, Larison B, Robeck TR, Petersen JL, Bellone RR, Finno CJ. DNA methylation aging and transcriptomic studies in horses. Nat Commun 2022; 13:40. [PMID: 35013267 PMCID: PMC8748428 DOI: 10.1038/s41467-021-27754-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 12/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cytosine methylation patterns have not yet been thoroughly studied in horses. Here, we profile n = 333 samples from 42 horse tissue types at loci that are highly conserved between mammalian species using a custom array (HorvathMammalMethylChip40). Using the blood and liver tissues from horses, we develop five epigenetic aging clocks: a multi-tissue clock, a blood clock, a liver clock and two dual-species clocks that apply to both horses and humans. In addition, using blood methylation data from three additional equid species (plains zebra, Grevy's zebras and Somali asses), we develop another clock that applies across all equid species. Castration does not significantly impact the epigenetic aging rate of blood or liver samples from horses. Methylation and RNA data from the same tissues define the relationship between methylation and RNA expression across horse tissues. We expect that the multi-tissue atlas will become a valuable resource.
Collapse
Affiliation(s)
- Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Amin Haghani
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sichong Peng
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Erin N Hales
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Joseph A Zoller
- Department of Biostatistics, Fielding School of Public Health, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ken Raj
- Radiation Effects Department, Centre for Radiation, Chemical and Environmental Hazards, Public Health England, Chilton, Didcot, UK
| | - Brenda Larison
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA, USA
| | - Todd R Robeck
- Zoological Operations, SeaWorld Parks and Entertainment, 7007 SeaWorld Drive, Orlando, FL, USA
| | | | - Rebecca R Bellone
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
- Veterinary Genetics Laboratory, University of California, Davis School of Veterinary Medicine, Davis, CA, USA
| | - Carrie J Finno
- Department of Population Health and Reproduction, University of California, Davis School of Veterinary Medicine, Davis, CA, USA.
| |
Collapse
|
27
|
Brown AP, Cai L, Laufer BI, Miller LA, LaSalle JM, Ji H. Long-term effects of wildfire smoke exposure during early life on the nasal epigenome in rhesus macaques. ENVIRONMENT INTERNATIONAL 2022; 158:106993. [PMID: 34991254 PMCID: PMC8852822 DOI: 10.1016/j.envint.2021.106993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 05/17/2023]
Abstract
BACKGROUND Wildfire smoke is responsible for around 20% of all particulate emissions in the U.S. and affects millions of people worldwide. Children are especially vulnerable, as ambient air pollution exposure during early childhood is associated with reduced lung function. Most studies, however, have focused on the short-term impacts of wildfire smoke exposures. We aimed to identify long-term baseline epigenetic changes associated with early-life exposure to wildfire smoke. We collected nasal epithelium samples for whole genome bisulfite sequencing (WGBS) from two groups of adult female rhesus macaques: one group born just before the 2008 California wildfire season and exposed to wildfire smoke during early-life (n = 8), and the other group born in 2009 with no wildfire smoke exposure during early-life (n = 14). RNA-sequencing was also performed on a subset of these samples. RESULTS We identified 3370 differentially methylated regions (DMRs) (difference in methylation ≥ 5%, empirical p < 0.05) and 1 differentially expressed gene (FLOT2) (FDR < 0.05, fold of change ≥ 1.2). The DMRs were annotated to genes significantly enriched for synaptogenesis signaling, protein kinase A signaling, and a variety of immune processes, and some DMRs significantly correlated with gene expression differences. DMRs were also significantly enriched within regions of bivalent chromatin (top odds ratio = 1.46, q-value < 3 × 10-6) that often silence key developmental genes while keeping them poised for activation in pluripotent cells. CONCLUSIONS These data suggest that early-life exposure to wildfire smoke leads to long-term changes in the methylome over genes impacting the nervous and immune systems. Follow-up studies will be required to test whether these changes influence transcription following an immune/respiratory challenge.
Collapse
Affiliation(s)
- Anthony P Brown
- California National Primate Research Center, Davis, CA 95616, USA
| | - Lucy Cai
- California National Primate Research Center, Davis, CA 95616, USA
| | - Benjamin I Laufer
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Lisa A Miller
- California National Primate Research Center, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, MIND Institute, Genome Center, University of California, Davis, CA 95616, USA
| | - Hong Ji
- California National Primate Research Center, Davis, CA 95616, USA; Department of Anatomy, Physiology and Cell biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| |
Collapse
|
28
|
Fritz AJ, El Dika M, Toor RH, Rodriguez PD, Foley SJ, Ullah R, Nie D, Banerjee B, Lohese D, Glass KC, Frietze S, Ghule PN, Heath JL, Imbalzano AN, van Wijnen A, Gordon J, Lian JB, Stein JL, Stein GS, Stein GS. Epigenetic-Mediated Regulation of Gene Expression for Biological Control and Cancer: Cell and Tissue Structure, Function, and Phenotype. Results Probl Cell Differ 2022; 70:339-373. [PMID: 36348114 PMCID: PMC9753575 DOI: 10.1007/978-3-031-06573-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epigenetic gene regulatory mechanisms play a central role in the biological control of cell and tissue structure, function, and phenotype. Identification of epigenetic dysregulation in cancer provides mechanistic into tumor initiation and progression and may prove valuable for a variety of clinical applications. We present an overview of epigenetically driven mechanisms that are obligatory for physiological regulation and parameters of epigenetic control that are modified in tumor cells. The interrelationship between nuclear structure and function is not mutually exclusive but synergistic. We explore concepts influencing the maintenance of chromatin structures, including phase separation, recognition signals, factors that mediate enhancer-promoter looping, and insulation and how these are altered during the cell cycle and in cancer. Understanding how these processes are altered in cancer provides a potential for advancing capabilities for the diagnosis and identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Andrew J. Fritz
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Mohammed El Dika
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rabail H. Toor
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | | - Stephen J. Foley
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Rahim Ullah
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Daijing Nie
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Bodhisattwa Banerjee
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Dorcas Lohese
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Karen C. Glass
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Pharmacology, Burlington, VT 05405
| | - Seth Frietze
- University of Vermont, College of Nursing and Health Sciences, Burlington, VT 05405
| | - Prachi N. Ghule
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jessica L. Heath
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405,University of Vermont, Larner College of Medicine, Department of Pediatrics, Burlington, VT 05405
| | - Anthony N. Imbalzano
- UMass Chan Medical School, Department of Biochemistry and Molecular Biotechnology, Worcester, MA 01605
| | - Andre van Wijnen
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jonathan Gordon
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Jane B. Lian
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Janet L. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | - Gary S. Stein
- University of Vermont, UVM Cancer Center, Larner College of Medicine, Department of Biochemistry, Burlington, VT 05405
| | | |
Collapse
|
29
|
Kumar D, Cinghu S, Oldfield AJ, Yang P, Jothi R. Decoding the function of bivalent chromatin in development and cancer. Genome Res 2021; 31:2170-2184. [PMID: 34667120 PMCID: PMC8647824 DOI: 10.1101/gr.275736.121] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022]
Abstract
Bivalent chromatin is characterized by the simultaneous presence of H3K4me3 and H3K27me3, histone modifications generally associated with transcriptionally active and repressed chromatin, respectively. Prevalent in embryonic stem cells (ESCs), bivalency is postulated to poise/prime lineage-controlling developmental genes for rapid activation during embryogenesis while maintaining a transcriptionally repressed state in the absence of activation cues; however, this hypothesis remains to be directly tested. Most gene promoters DNA hypermethylated in adult human cancers are bivalently marked in ESCs, and it was speculated that bivalency predisposes them for aberrant de novo DNA methylation and irreversible silencing in cancer, but evidence supporting this model is largely lacking. Here, we show that bivalent chromatin does not poise genes for rapid activation but protects promoters from de novo DNA methylation. Genome-wide studies in differentiating ESCs reveal that activation of bivalent genes is no more rapid than that of other transcriptionally silent genes, challenging the premise that H3K4me3 is instructive for transcription. H3K4me3 at bivalent promoters-a product of the underlying DNA sequence-persists in nearly all cell types irrespective of gene expression and confers protection from de novo DNA methylation. Bivalent genes in ESCs that are frequent targets of aberrant hypermethylation in cancer are particularly strongly associated with loss of H3K4me3/bivalency in cancer. Altogether, our findings suggest that bivalency protects reversibly repressed genes from irreversible silencing and that loss of H3K4me3 may make them more susceptible to aberrant DNA methylation in diseases such as cancer. Bivalency may thus represent a distinct regulatory mechanism for maintaining epigenetic plasticity.
Collapse
Affiliation(s)
- Dhirendra Kumar
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Senthilkumar Cinghu
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Andrew J Oldfield
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Pengyi Yang
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| | - Raja Jothi
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA
| |
Collapse
|
30
|
Bonitto K, Sarathy K, Atai K, Mitra M, Coller HA. Is There a Histone Code for Cellular Quiescence? Front Cell Dev Biol 2021; 9:739780. [PMID: 34778253 PMCID: PMC8586460 DOI: 10.3389/fcell.2021.739780] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/17/2021] [Indexed: 12/14/2022] Open
Abstract
Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone “code,” a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.
Collapse
Affiliation(s)
- Kenya Bonitto
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kirthana Sarathy
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kaiser Atai
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Interdepartmental Doctoral Program, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mithun Mitra
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Hilary A Coller
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, United States.,Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States.,Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
31
|
Nguyen K, Dobrowolski C, Shukla M, Cho WK, Luttge B, Karn J. Inhibition of the H3K27 demethylase UTX enhances the epigenetic silencing of HIV proviruses and induces HIV-1 DNA hypermethylation but fails to permanently block HIV reactivation. PLoS Pathog 2021; 17:e1010014. [PMID: 34673825 PMCID: PMC8562785 DOI: 10.1371/journal.ppat.1010014] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 11/02/2021] [Accepted: 10/07/2021] [Indexed: 01/09/2023] Open
Abstract
One strategy for a functional cure of HIV-1 is "block and lock", which seeks to permanently suppress the rebound of quiescent HIV-1 by epigenetic silencing. For the bivalent promoter in the HIV LTR, both histone 3 lysine 27 tri-methylation (H3K27me3) and DNA methylation are associated with viral suppression, while H3K4 tri-methylation (H3K4me3) is correlated with viral expression. However, H3K27me3 is readily reversed upon activation of T-cells through the T-cell receptor. In an attempt to suppress latent HIV-1 in a stable fashion, we knocked down the expression or inhibited the activity of UTX/KDM6A, the major H3K27 demethylase, and investigated its impact on latent HIV-1 reactivation in T cells. Inhibition of UTX dramatically enhanced H3K27me3 levels at the HIV LTR and was associated with increased DNA methylation. In latently infected cells from patients, GSK-J4, which is a potent dual inhibitor of the H3K27me3/me2-demethylases JMJD3/KDM6B and UTX/KDM6A, effectively suppressed the reactivation of latent HIV-1 and also induced DNA methylation at specific sites in the 5'LTR of latent HIV-1 by the enhanced recruitment of DNMT3A to HIV-1. Nonetheless, suppression of HIV-1 through epigenetic silencing required the continued treatment with GSK-J4 and was rapidly reversed after removal of the drug. DNA methylation was also rapidly lost after removal of drug, suggesting active and rapid DNA-demethylation of the HIV LTR. Thus, induction of epigenetic silencing by histone and DNA methylation appears to be insufficient to permanently silence HIV-1 proviral transcription.
Collapse
Affiliation(s)
- Kien Nguyen
- Department of Molecular Biology and Microbiology, Case Western Reserve University Medical School, Cleveland, Ohio, United States of America
| | - Curtis Dobrowolski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, Georgia, United States of America
| | - Meenakshi Shukla
- Department of Molecular Biology and Microbiology, Case Western Reserve University Medical School, Cleveland, Ohio, United States of America
| | - Won-Kyung Cho
- Korean Medicine (KM)-Application Center, Korea Institute of Oriental Medicine (KIOM), Dong-gu, Daegu, Republic of Korea
| | - Benjamin Luttge
- Department of Molecular Biology and Microbiology, Case Western Reserve University Medical School, Cleveland, Ohio, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University Medical School, Cleveland, Ohio, United States of America
| |
Collapse
|
32
|
Stein CM, Benchek P, Bartlett J, Igo RP, Sobota RS, Chervenak K, Mayanja-Kizza H, von Reyn CF, Lahey T, Bush WS, Boom WH, Scott WK, Marsit C, Sirugo G, Williams SM. Methylome-wide Analysis Reveals Epigenetic Marks Associated With Resistance to Tuberculosis in Human Immunodeficiency Virus-Infected Individuals From East Africa. J Infect Dis 2021; 224:695-704. [PMID: 33400784 DOI: 10.1093/infdis/jiaa785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the most deadly infectious disease globally and is highly prevalent in the developing world. For individuals infected with both Mycobacterium tuberculosis (Mtb) and human immunodeficiency virus (HIV), the risk of active TB is 10% or more annually. Previously, we identified in a genome-wide association study (GWAS) a region on chromosome 5 associated with resistance to TB, which included epigenetic marks that could influence gene regulation. We hypothesized that HIV-infected individuals exposed to Mtb who remain disease free carry epigenetic changes that strongly protect them from active TB. METHODS We conducted a methylome-wide study in HIV-infected, TB-exposed cohorts from Uganda and Tanzania and integrated data from our GWAS. RESULTS We identified 3 regions of interest that included markers that were differentially methylated between TB cases and controls with latent TB infection: chromosome 1 (RNF220, P = 4 × 10-5), chromosome 2 (between COPS8 and COL6A3, P = 2.7 × 10-5), and chromosome 5 (CEP72, P = 1.3 × 10-5). These methylation results co-localized with associated single-nucleotide polymorphisms (SNPs), methylation QTLs, and methylation × SNP interaction effects. These markers were in regions with regulatory markers for cells involved in TB immunity and/or lung. CONCLUSIONS Epigenetic regulation is a potential biologic factor underlying resistance to TB in immunocompromised individuals that can act in conjunction with genetic variants.
Collapse
Affiliation(s)
- Catherine M Stein
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Penelope Benchek
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jacquelaine Bartlett
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Robert P Igo
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - Rafal S Sobota
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Keith Chervenak
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harriet Mayanja-Kizza
- Department of Medicine and Mulago Hospital, School of Medicine, Makerere University, Kampala, Uganda
| | - C Fordham von Reyn
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - Timothy Lahey
- Geisel School of Medicine, Dartmouth College, Hanover, New Hampshire, USA
| | - William S Bush
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| | - W Henry Boom
- Division of Infectious Disease and HIV Medicine, Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | - William K Scott
- John P. Hussman Institute for Human Genomics, University of Miami, Miami, Florida, USA
| | - Carmen Marsit
- Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Giorgio Sirugo
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio, USA.,Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
33
|
Derrien J, Guérin-Charbonnel C, Gaborit V, Campion L, Devic M, Douillard E, Roi N, Avet-Loiseau H, Decaux O, Facon T, Mallm JP, Eils R, Munshi NC, Moreau P, Herrmann C, Magrangeas F, Minvielle S. The DNA methylation landscape of multiple myeloma shows extensive inter- and intrapatient heterogeneity that fuels transcriptomic variability. Genome Med 2021; 13:127. [PMID: 34372935 PMCID: PMC8351364 DOI: 10.1186/s13073-021-00938-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 07/09/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Cancer evolution depends on epigenetic and genetic diversity. Historically, in multiple myeloma (MM), subclonal diversity and tumor evolution have been investigated mostly from a genetic perspective. METHODS Here, we performed an analysis of 42 MM samples from 21 patients by using enhanced reduced representation bisulfite sequencing (eRRBS). We combined several metrics of epigenetic heterogeneity to analyze DNA methylation heterogeneity in MM patients. RESULTS We show that MM is characterized by the continuous accumulation of stochastic methylation at the promoters of development-related genes. High combinatorial entropy change is associated with poor outcomes in our pilot study and depends predominantly on partially methylated domains (PMDs). These PMDs, which represent the major source of inter- and intrapatient DNA methylation heterogeneity in MM, are linked to other key epigenetic aberrations, such as CpG island (CGI)/transcription start site (TSS) hypermethylation and H3K27me3 redistribution as well as 3D organization alterations. In addition, transcriptome analysis revealed that intratumor methylation heterogeneity was associated with low-level expression and high variability. CONCLUSIONS We propose that disrupted DNA methylation in MM is responsible for high epigenetic and transcriptomic instability allowing tumor cells to adapt to environmental changes by tapping into a pool of evolutionary trajectories.
Collapse
Affiliation(s)
- Jennifer Derrien
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
| | - Catherine Guérin-Charbonnel
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Victor Gaborit
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- LS2N, CNRS, Université de Nantes, Nantes, France
| | - Loïc Campion
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- Institut de Cancérologie de l'Ouest, Nantes-Saint Herblain, France
| | - Magali Devic
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- Centre Hospitalier Universitaire, Nantes, France
| | - Elise Douillard
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- Centre Hospitalier Universitaire, Nantes, France
| | - Nathalie Roi
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- Centre Hospitalier Universitaire, Nantes, France
| | - Hervé Avet-Loiseau
- Institut Universitaire du Cancer, CHU, Centre de Recherche en Cancérologie de Toulouse, INSERM 1037, Toulouse, France
| | | | | | - Jan-Philipp Mallm
- Research Group Genome Organization & Function, DKFZ, and BioQuant Heidelberg, Heidelberg, 69120, Germany
| | - Roland Eils
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, 69120, Germany
- Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt- Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, Berlin, 10117, Germany
- Berlin Institute of Health (BIH), Center for Digital Health, Anna-Louisa-Karsch-Strasse 2, Berlin, 10178, Germany
| | - Nikhil C Munshi
- Dana-Farber Cancer Institute, Harvard Medical School, LeBow Institute for Myeloma Therapeutics and Jerome Lipper Center for Multiple Myeloma Research, Boston, MA, United States
| | - Philippe Moreau
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- Centre Hospitalier Universitaire, Nantes, France
| | - Carl Herrmann
- Health Data Science Unit, Medical Faculty Heidelberg and BioQuant, Heidelberg, 69120, Germany
| | - Florence Magrangeas
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France
- Centre Hospitalier Universitaire, Nantes, France
| | - Stéphane Minvielle
- Université de Nantes, CNRS, INSERM, CRCINA, Nantes, F-44000, France.
- Centre Hospitalier Universitaire, Nantes, France.
| |
Collapse
|
34
|
Tachmatzidi EC, Galanopoulou O, Talianidis I. Transcription Control of Liver Development. Cells 2021; 10:cells10082026. [PMID: 34440795 PMCID: PMC8391549 DOI: 10.3390/cells10082026] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 02/06/2023] Open
Abstract
During liver organogenesis, cellular transcriptional profiles are constantly reshaped by the action of hepatic transcriptional regulators, including FoxA1-3, GATA4/6, HNF1α/β, HNF4α, HNF6, OC-2, C/EBPα/β, Hex, and Prox1. These factors are crucial for the activation of hepatic genes that, in the context of compact chromatin, cannot access their targets. The initial opening of highly condensed chromatin is executed by a special class of transcription factors known as pioneer factors. They bind and destabilize highly condensed chromatin and facilitate access to other "non-pioneer" factors. The association of target genes with pioneer and non-pioneer transcription factors takes place long before gene activation. In this way, the underlying gene regulatory regions are marked for future activation. The process is called "bookmarking", which confers transcriptional competence on target genes. Developmental bookmarking is accompanied by a dynamic maturation process, which prepares the genomic loci for stable and efficient transcription. Stable hepatic expression profiles are maintained during development and adulthood by the constant availability of the main regulators. This is achieved by a self-sustaining regulatory network that is established by complex cross-regulatory interactions between the major regulators. This network gradually grows during liver development and provides an epigenetic memory mechanism for safeguarding the optimal expression of the regulators.
Collapse
Affiliation(s)
- Evangelia C. Tachmatzidi
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Ourania Galanopoulou
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Department of Biology, University of Crete, 70013 Herakleion, Crete, Greece
| | - Iannis Talianidis
- Institute of Molecular Biology and Biotechnology, FORTH, 70013 Herakleion, Crete, Greece; (E.C.T.); (O.G.)
- Correspondence:
| |
Collapse
|
35
|
Zhu X, Xu T, Zhu J. The regulatory function of tandem repeat VNTR2-1 in hTERT gene involves basic Helix-loop-helix family transcription factors. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2021; 62:338-349. [PMID: 34115413 PMCID: PMC9648534 DOI: 10.1002/em.22447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 06/06/2021] [Accepted: 06/09/2021] [Indexed: 06/12/2023]
Abstract
Telomerase is a ribonucleoprotein enzyme that synthesizes telomere end sequence. The expression of hTERT gene, encoding the catalytic subunit of human telomerase, is restricted to highly proliferative tissues and is undetectable in most somatic cells. Abnormal activation of hTERT gene is found in 90% of human tumors. Previously, we identified tandem repeat of 42-bp/unit, VNTR2-1, in intron 2 of the hTERT gene, as a novel regulatory element important for hTERT transcription in cancer cells. In the current study, we found that multiple 42-bp repeats of VNTR2-1 activated luciferase gene in reporter plasmids. Mutation of the predicted cis-regulatory elements within the 42-bp repeats, including a E-box motif, resulted in a partial or complete loss of its enhancer activity. Moreover, MYC family proteins, c-MYC, MAX, and MNT, regulated hTERT gene transcription through both VNTR2-1 and E-boxes at the proximal hTERT promoter. Chromatin segmentation analysis of published ChIP-sequencing data from K562 cells indicated that VNTR2-1 was a bivalent enhancer. In telomerase-expressing human melanoma cell line MelJuSo, deletion of VNTR2-1 caused the hTERT promoter chromatin status to change from an active state to a repressed state, accompanied by increases of H3K27me3 and H3K9me3 marks. Therefore, we provided additional evidence for VNTR2-1 as a functional regulatory element that regulated hTERT expression by MYC family transcription factors. These results have improved our knowledge on the functions of repetitive genomic DNAs and the regulatory mechanisms of human telomerase gene.
Collapse
Affiliation(s)
| | | | - Jiyue Zhu
- To whom correspondence should be addressed. Tel: 1-509-368-6565; Fax: 1-509-368-6561; ; 412E Spokane Falls Blvd, PBS323, Spokane, WA, 99202, USA
| |
Collapse
|
36
|
Hitchler MJ, Domann FE. The epigenetic and morphogenetic effects of molecular oxygen and its derived reactive species in development. Free Radic Biol Med 2021; 170:70-84. [PMID: 33450377 PMCID: PMC8217084 DOI: 10.1016/j.freeradbiomed.2021.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 12/11/2022]
Abstract
The development of multicellular organisms involves the unpacking of a complex genetic program. Extensive characterization of discrete developmental steps has revealed the genetic program is controlled by an epigenetic state. Shifting the epigenome is a group of epigenetic enzymes that modify DNA and proteins to regulate cell type specific gene expression. While the role of these modifications in development has been established, the input(s) responsible for electing changes in the epigenetic state remains unknown. Development is also associated with dynamic changes in cellular metabolism, redox, free radical production, and oxygen availability. It has previously been postulated that these changes are causal in development by affecting gene expression. This suggests that oxygen is a morphogenic compound that impacts the removal of epigenetic marks. Likewise, metabolism and reactive oxygen species influence redox signaling through iron and glutathione to limit the availability of key epigenetic cofactors such as α-ketoglutarate, ascorbate, NAD+ and S-adenosylmethionine. Given the close relationship between these cofactors and epigenetic marks it seems likely that the two are linked. Here we describe how changing these inputs might affect the epigenetic state during development to drive gene expression. Combined, these cofactors and reactive oxygen species constitute the epigenetic landscape guiding cells along differing developmental paths.
Collapse
Affiliation(s)
- Michael J Hitchler
- Department of Radiation Oncology, Kaiser Permanente Los Angeles Medical Center, 4950 Sunset Blvd, Los Angeles, CA, 90027, USA.
| | - Frederick E Domann
- Department of Radiation Oncology, Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
37
|
Infante T, Franzese M, Ruocco A, Schiano C, Affinito O, Pane K, Memoli D, Rizzo F, Weisz A, Bontempo P, Grimaldi V, Berrino L, Soricelli A, Mauro C, Napoli C. ABCA1, TCF7, NFATC1, PRKCZ, and PDGFA DNA methylation as potential epigenetic-sensitive targets in acute coronary syndrome via network analysis. Epigenetics 2021; 17:547-563. [PMID: 34151742 DOI: 10.1080/15592294.2021.1939481] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Acute coronary syndrome (ACS) is the most severe clinical manifestation of coronary heart disease.We performed an epigenome-wide analysis of circulating CD4+ and CD8+ T cells isolated from ACS patients and healthy subjects (HS), enrolled in the DIANA clinical trial, by reduced-representation bisulphite sequencing (RRBS). In CD4+ T cells, we identified 61 differentially methylated regions (DMRs) associated with 57 annotated genes (53% hyper- and 47% hypo-methylated) by comparing ACS patients vs HS. In CD8+ T cells, we identified 613 DMRs associated with 569 annotated genes (28% hyper- and 72% hypo-methylated) in ACS patients as compared to HS. In CD4+ vs CD8+ T cells of ACS patients we identified 175 statistically significant DMRs associated with 157 annotated genes (41% hyper- and 59% hypo-methylated). From pathway analyses, we selected six differentially methylated hub genes (NFATC1, TCF7, PDGFA, PRKCB, PRKCZ, ABCA1) and assessed their expression levels by q-RT-PCR. We found an up-regulation of selected genes in ACS patients vs HS (P < 0.001). ABCA1, TCF7, PDGFA, and PRKCZ gene expression was positively associated with CK-MB serum concentrations (r = 0.75, P = 0.03; r = 0.760, P = 0.029; r = 0.72, P = 0.044; r = 0.74, P = 0.035, respectively).This pilot study is the first single-base resolution map of DNA methylome by RRBS in CD4+ and CD8+ T cells and provides specific methylation signatures to clarify the role of aberrant methylation in ACS pathogenesis, thus supporting future research for novel epigenetic-sensitive biomarkers in the prevention and early diagnosis of this pathology.
Collapse
Affiliation(s)
- Teresa Infante
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | - Antonio Ruocco
- Unit of Cardiovascular Diseases and Arrhythmias, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Concetta Schiano
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy
| | | | | | - Domenico Memoli
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Francesca Rizzo
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Alessandro Weisz
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana," University of Salerno, Baronissi, SA, Italy.,Genome Research Center for Health, Campus of Medicine, Baronissi, SA, Italy
| | - Paola Bontempo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vincenzo Grimaldi
- IRCCS SDN, Naples, Italy.,U.O.C. Division of Clinical Immunology, Immunohematology, Transfusion Medicine and Transplant Immunology, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Liberato Berrino
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Andrea Soricelli
- IRCCS SDN, Naples, Italy.,Department of Exercise and Wellness Sciences, University of Naples Parthenope, Naples, Italy
| | - Ciro Mauro
- Unit of Cardiovascular Diseases and Arrhythmias, "Antonio Cardarelli" Hospital, Naples, Italy
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania "Luigi Vanvitelli", Naples, Italy.,IRCCS SDN, Naples, Italy
| |
Collapse
|
38
|
Papoutsopoulou S, Pollock L, Walker C, Tench W, Samad SS, Bergey F, Lenzi L, Sheibani-Tezerji R, Rosenstiel P, Alam MT, Martins Dos Santos VAP, Müller W, Campbell BJ. Impact of Interleukin 10 Deficiency on Intestinal Epithelium Responses to Inflammatory Signals. Front Immunol 2021; 12:690817. [PMID: 34220850 PMCID: PMC8244292 DOI: 10.3389/fimmu.2021.690817] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 05/25/2021] [Indexed: 12/30/2022] Open
Abstract
Interleukin 10 (IL-10) is a pleiotropic, anti-inflammatory cytokine that has a major protective role in the intestine. Although its production by cells of the innate and adaptive immune system has been extensively studied, its intrinsic role in intestinal epithelial cells is poorly understood. In this study, we utilised both ATAC sequencing and RNA sequencing to define the transcriptional response of murine enteroids to tumour necrosis factor (TNF). We identified that the key early phase drivers of the transcriptional response to TNF within intestinal epithelium were NFκB transcription factor dependent. Using wild-type and Il10-/- enteroid cultures, we showed an intrinsic, intestinal epithelium specific effect of IL-10 deficiency on TNF-induced gene transcription, with significant downregulation of identified NFκB target genes Tnf, Ccl20, and Cxcl10, and delayed overexpression of NFκB inhibitor encoding genes, Nfkbia and Tnfaip3. IL-10 deficiency, or immunoblockade of IL-10 receptor, impacted on TNF-induced endogenous NFκB activity and downstream NFκB target gene transcription. Intestinal epithelium-derived IL-10 appears to play a crucial role as a positive regulator of the canonical NFκB pathway, contributing to maintenance of intestinal homeostasis. This is particularly important in the context of an inflammatory environment and highlights the potential for future tissue-targeted IL-10 therapeutic intervention.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
- Department of Biochemistry and Biotechnology, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Liam Pollock
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Catherine Walker
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - William Tench
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Sakim Shakh Samad
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | | | - Luca Lenzi
- Centre for Genomic Research (CGR), Department of Evolution, Ecology & Behaviour, University of Liverpool, Liverpool, United Kingdom
| | | | - Phillip Rosenstiel
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel, Germany
| | - Mohammad Tauqeer Alam
- Warwick Medical School, Bioinformatics Research Technology Platform (RTP), University of Warwick, Coventry, United Kingdom
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Vitor A. P. Martins Dos Santos
- LifeGlimmer GmbH, Berlin, Germany
- Laboratory of Systems & Synthetic Biology, Wageningen University & Research, Wageningen, Netherlands
| | - Werner Müller
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Barry J. Campbell
- The Henry Wellcome Laboratories of Molecular & Cellular Gastroenterology, Faculty of Health & Life Sciences, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
39
|
Sadeghi L, Wright AP. Migration and Adhesion of B-Lymphocytes to Specific Microenvironments in Mantle Cell Lymphoma: Interplay between Signaling Pathways and the Epigenetic Landscape. Int J Mol Sci 2021; 22:6247. [PMID: 34200679 PMCID: PMC8228059 DOI: 10.3390/ijms22126247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 02/06/2023] Open
Abstract
Lymphocyte migration to and sequestration in specific microenvironments plays a crucial role in their differentiation and survival. Lymphocyte trafficking and homing are tightly regulated by signaling pathways and is mediated by cytokines, chemokines, cytokine/chemokine receptors and adhesion molecules. The production of cytokines and chemokines is largely controlled by transcription factors in the context of a specific epigenetic landscape. These regulatory factors are strongly interconnected, and they influence the gene expression pattern in lymphocytes, promoting processes such as cell survival. The epigenetic status of the genome plays a key role in regulating gene expression during many key biological processes, and it is becoming more evident that dysregulation of epigenetic mechanisms contributes to cancer initiation, progression and drug resistance. Here, we review the signaling pathways that regulate lymphoma cell migration and adhesion with a focus on Mantle cell lymphoma and highlight the fundamental role of epigenetic mechanisms in integrating signals at the level of gene expression throughout the genome.
Collapse
Affiliation(s)
- Laia Sadeghi
- Department of Laboratory Medicine, Division of Biomedical and Cellular Medicine, Karolinska Institutet, 141 57 Stockholm, Sweden;
| | | |
Collapse
|
40
|
Dynamic patterns of DNA methylation in the normal prostate epithelial differentiation program are targets of aberrant methylation in prostate cancer. Sci Rep 2021; 11:11405. [PMID: 34075163 PMCID: PMC8169877 DOI: 10.1038/s41598-021-91037-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/20/2021] [Indexed: 12/31/2022] Open
Abstract
Understanding the epigenetic control of normal differentiation programs might yield principal information about critical regulatory states that are disturbed in cancer. We utilized the established non-malignant HPr1-AR prostate epithelial cell model that upon androgen exposure commits to a luminal cell differentiation trajectory from that of a basal-like state. We profile the dynamic transcriptome associated with this transition at multiple time points (0 h, 1 h, 24 h, 96 h), and confirm that expression patterns are strongly indicative of a progressive basal to luminal cell differentiation program based on human expression signatures. Furthermore, we establish dynamic patterns of DNA methylation associated with this program by use of whole genome bisulfite sequencing (WGBS). Expression patterns associated with androgen induced luminal cell differentiation were found to have significantly elevated DNA methylation dynamics. Shifts in methylation profiles were strongly associated with Polycomb repressed regions and to promoters associated with bivalency, and strongly enriched for binding motifs of AR and MYC. Importantly, we found that dynamic DNA methylation patterns observed in the normal luminal cell differentiation program were significant targets of aberrant methylation in prostate cancer. These findings suggest that the normal dynamics of DNA methylation in luminal differentiation contribute to the aberrant methylation patterns in prostate cancer.
Collapse
|
41
|
Zheng Y, Huang G, Silva TC, Yang Q, Jiang YY, Koeffler HP, Lin DC, Berman BP. A pan-cancer analysis of CpG Island gene regulation reveals extensive plasticity within Polycomb target genes. Nat Commun 2021; 12:2485. [PMID: 33931649 PMCID: PMC8087678 DOI: 10.1038/s41467-021-22720-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 03/23/2021] [Indexed: 02/05/2023] Open
Abstract
CpG Island promoter genes make up more than half of human genes, and a subset regulated by Polycomb-Repressive Complex 2 (PRC2+-CGI) become DNA hypermethylated and silenced in cancer. Here, we perform a systematic analysis of CGI genes across TCGA cancer types, finding that PRC2+-CGI genes are frequently prone to transcriptional upregulation as well. These upregulated PRC2+-CGI genes control important pathways such as Epithelial-Mesenchymal Transition (EMT) and TNFα-associated inflammatory response, and have greater cancer-type specificity than other CGI genes. Using publicly available chromatin datasets and genetic perturbations, we show that transcription factor binding sites (TFBSs) within distal enhancers underlie transcriptional activation of PRC2+-CGI genes, coinciding with loss of the PRC2-associated mark H3K27me3 at the linked promoter. In contrast, PRC2-free CGI genes are predominantly regulated by promoter TFBSs which are common to most cancer types. Surprisingly, a large subset of PRC2+-CGI genes that are upregulated in one cancer type are also hypermethylated/silenced in at least one other cancer type, underscoring the high degree of regulatory plasticity of these genes, likely derived from their complex regulatory control during normal development.
Collapse
Affiliation(s)
- Yueyuan Zheng
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Guowei Huang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Pathology, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Tiago C Silva
- Center for Bioinformatics and Functional Genomics, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Qian Yang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yan-Yi Jiang
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - H Phillip Koeffler
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - De-Chen Lin
- Department of Medicine, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Benjamin P Berman
- Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
42
|
Dixon G, Pan H, Yang D, Rosen BP, Jashari T, Verma N, Pulecio J, Caspi I, Lee K, Stransky S, Glezer A, Liu C, Rivas M, Kumar R, Lan Y, Torregroza I, He C, Sidoli S, Evans T, Elemento O, Huangfu D. QSER1 protects DNA methylation valleys from de novo methylation. Science 2021; 372:eabd0875. [PMID: 33833093 PMCID: PMC8185639 DOI: 10.1126/science.abd0875] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 02/23/2021] [Indexed: 12/12/2022]
Abstract
DNA methylation is essential to mammalian development, and dysregulation can cause serious pathological conditions. Key enzymes responsible for deposition and removal of DNA methylation are known, but how they cooperate to regulate the methylation landscape remains a central question. Using a knockin DNA methylation reporter, we performed a genome-wide CRISPR-Cas9 screen in human embryonic stem cells to discover DNA methylation regulators. The top screen hit was an uncharacterized gene, QSER1, which proved to be a key guardian of bivalent promoters and poised enhancers of developmental genes, especially those residing in DNA methylation valleys (or canyons). We further demonstrate genetic and biochemical interactions of QSER1 and TET1, supporting their cooperation to safeguard transcriptional and developmental programs from DNMT3-mediated de novo methylation.
Collapse
Affiliation(s)
- Gary Dixon
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Heng Pan
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Bess P Rosen
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Therande Jashari
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
- Weill Graduate School of Medical Sciences at Cornell University-The Rockefeller University-Sloan Kettering Institute Tri-Institutional M.D.-Ph.D. Program, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Inbal Caspi
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Kihyun Lee
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Stephanie Stransky
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Abigail Glezer
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Chang Liu
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Marco Rivas
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Ritu Kumar
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yahui Lan
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ingrid Torregroza
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL 60637, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY 10065, USA
| | - Olivier Elemento
- Department of Physiology and Biophysics, Englander Institute for Precision Medicine, Institute for Computational Biomedicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY 10065, USA.
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
43
|
Laufer BI, Gomez JA, Jianu JM, LaSalle JM. Stable DNMT3L overexpression in SH-SY5Y neurons recreates a facet of the genome-wide Down syndrome DNA methylation signature. Epigenetics Chromatin 2021; 14:13. [PMID: 33750431 PMCID: PMC7942011 DOI: 10.1186/s13072-021-00387-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Down syndrome (DS) is characterized by a genome-wide profile of differential DNA methylation that is skewed towards hypermethylation in most tissues, including brain, and includes pan-tissue differential methylation. The molecular mechanisms involve the overexpression of genes related to DNA methylation on chromosome 21. Here, we stably overexpressed the chromosome 21 gene DNA methyltransferase 3L (DNMT3L) in the human SH-SY5Y neuroblastoma cell line and assayed DNA methylation at over 26 million CpGs by whole genome bisulfite sequencing (WGBS) at three different developmental phases (undifferentiated, differentiating, and differentiated). Results DNMT3L overexpression resulted in global CpG and CpG island hypermethylation as well as thousands of differentially methylated regions (DMRs). The DNMT3L DMRs were skewed towards hypermethylation and mapped to genes involved in neurodevelopment, cellular signaling, and gene regulation. Consensus DNMT3L DMRs showed that cell lines clustered by genotype and then differentiation phase, demonstrating sets of common genes affected across neuronal differentiation. The hypermethylated DNMT3L DMRs from all pairwise comparisons were enriched for regions of bivalent chromatin marked by H3K4me3 as well as differentially methylated sites from previous DS studies of diverse tissues. In contrast, the hypomethylated DNMT3L DMRs from all pairwise comparisons displayed a tissue-specific profile enriched for regions of heterochromatin marked by H3K9me3 during embryonic development. Conclusions Taken together, these results support a mechanism whereby regions of bivalent chromatin that lose H3K4me3 during neuronal differentiation are targeted by excess DNMT3L and become hypermethylated. Overall, these findings demonstrate that DNMT3L overexpression during neurodevelopment recreates a facet of the genome-wide DS DNA methylation signature by targeting known genes and gene clusters that display pan-tissue differential methylation in DS. Supplementary Information The online version contains supplementary material available at 10.1186/s13072-021-00387-7.
Collapse
Affiliation(s)
- Benjamin I Laufer
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - J Antonio Gomez
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Julia M Jianu
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA.,Genome Center, University of California, Davis, CA, 95616, USA.,MIND Institute, University of California, Davis, CA, 95616, USA
| | - Janine M LaSalle
- Department of Medical Microbiology and Immunology, School of Medicine, University of California, Davis, CA, 95616, USA. .,Genome Center, University of California, Davis, CA, 95616, USA. .,MIND Institute, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
44
|
Leong MML, Lung ML. The Impact of Epstein-Barr Virus Infection on Epigenetic Regulation of Host Cell Gene Expression in Epithelial and Lymphocytic Malignancies. Front Oncol 2021; 11:629780. [PMID: 33718209 PMCID: PMC7947917 DOI: 10.3389/fonc.2021.629780] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 01/18/2021] [Indexed: 12/29/2022] Open
Abstract
Epstein-Barr virus (EBV) infection is associated with a variety of malignancies including Burkitt's lymphoma (BL), Hodgkin's disease, T cell lymphoma, nasopharyngeal carcinoma (NPC), and ∼10% of cases of gastric cancer (EBVaGC). Disruption of epigenetic regulation in the expression of tumor suppressor genes or oncogenes has been considered as one of the important mechanisms for carcinogenesis. Global hypermethylation is a distinct feature in NPC and EBVaGC, whereas global reduction of H3K27me3 is more prevalent in EBVaGC and EBV-transformed lymphoblastoid cells. In BL, EBV may even usurp the host factors to epigenetically regulate its own viral gene expression to restrict latency and lytic switch, resulting in evasion of immunosurveillance. Furthermore, in BL and EBVaGC, the interaction between the EBV episome and the host genome is evident with respectively unique epigenetic features. While the interaction is associated with suppression of gene expression in BL, the corresponding activity in EBVaGC is linked to activation of gene expression. As EBV establishes a unique latency program in these cancer types, it is possible that EBV utilizes different latency proteins to hijack the epigenetic modulators in the host cells for pathogenesis. Since epigenetic regulation of gene expression is reversible, understanding the precise mechanisms about how EBV dysregulates the epigenetic mechanisms enables us to identify the potential targets for epigenetic therapies. This review summarizes the currently available epigenetic profiles of several well-studied EBV-associated cancers and the relevant distinct mechanisms leading to aberrant epigenetic signatures due to EBV.
Collapse
Affiliation(s)
- Merrin Man Long Leong
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States.,Department of Microbiology, Harvard Medical School, Harvard University, Boston, MA, United States
| | - Maria Li Lung
- Department of Clinical Oncology, University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
45
|
Markouli M, Strepkos D, Papavassiliou KA, Papavassiliou AG, Piperi C. Bivalent Genes Targeting of Glioma Heterogeneity and Plasticity. Int J Mol Sci 2021; 22:540. [PMID: 33430434 PMCID: PMC7826605 DOI: 10.3390/ijms22020540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/27/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas account for most primary Central Nervous System (CNS) neoplasms, characterized by high aggressiveness and low survival rates. Despite the immense research efforts, there is a small improvement in glioma survival rates, mostly attributed to their heterogeneity and complex pathophysiology. Recent data indicate the delicate interplay of genetic and epigenetic mechanisms in regulating gene expression and cell differentiation, pointing towards the pivotal role of bivalent genes. Bivalency refers to a property of chromatin to acquire more than one histone marks during the cell cycle and rapidly transition gene expression from an active to a suppressed transcriptional state. Although first identified in embryonal stem cells, bivalent genes have now been associated with tumorigenesis and cancer progression. Emerging evidence indicates the implication of bivalent gene regulation in glioma heterogeneity and plasticity, mainly involving Homeobox genes, Wingless-Type MMTV Integration Site Family Members, Hedgehog protein, and Solute Carrier Family members. These genes control a wide variety of cellular functions, including cellular differentiation during early organism development, regulation of cell growth, invasion, migration, angiogenesis, therapy resistance, and apoptosis. In this review, we discuss the implication of bivalent genes in glioma pathogenesis and their potential therapeutic targeting options.
Collapse
Affiliation(s)
| | | | | | | | - Christina Piperi
- Correspondence: (A.G.P.); (C.P.); Tel.: +30-210-7462610 (C.P.); Fax: +30-210-7462703 (C.P.)
| |
Collapse
|
46
|
Erenpreisa J, Salmina K, Anatskaya O, Cragg MS. Paradoxes of cancer: Survival at the brink. Semin Cancer Biol 2020; 81:119-131. [PMID: 33340646 DOI: 10.1016/j.semcancer.2020.12.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/07/2020] [Accepted: 12/09/2020] [Indexed: 12/17/2022]
Abstract
The fundamental understanding of how Cancer initiates, persists and then progresses is evolving. High-resolution technologies, including single-cell mutation and gene expression measurements, are now attainable, providing an ever-increasing insight into the molecular details. However, this higher resolution has shown that somatic mutation theory itself cannot explain the extraordinary resistance of cancer to extinction. There is a need for a more Systems-based framework of understanding cancer complexity, which in particular explains the regulation of gene expression during cell-fate decisions. Cancer displays a series of paradoxes. Here we attempt to approach them from the view-point of adaptive exploration of gene regulatory networks at the edge of order and chaos, where cell-fate is changed by oscillations between alternative regulators of cellular senescence and reprogramming operating through self-organisation. On this background, the role of polyploidy in accessing the phylogenetically pre-programmed "oncofetal attractor" state, related to unicellularity, and the de-selection of unsuitable variants at the brink of cell survival is highlighted. The concepts of the embryological and atavistic theory of cancer, cancer cell "life-cycle", and cancer aneuploidy paradox are dissected under this lense. Finally, we challenge researchers to consider that cancer "defects" are mostly the adaptation tools of survival programs that have arisen during evolution and are intrinsic of cancer. Recognition of these features should help in the development of more successful anti-cancer treatments.
Collapse
Affiliation(s)
| | - Kristine Salmina
- Latvian Biomedical Research and Study Centre, Riga, LV-1067, Latvia
| | | | - Mark S Cragg
- Centre for Cancer Immunology, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| |
Collapse
|
47
|
Mukherjee S, Adhikary S, Gadad SS, Mondal P, Sen S, Choudhari R, Singh V, Adhikari S, Mandal P, Chaudhuri S, Sengupta A, Lakshmanaswamy R, Chakrabarti P, Roy S, Das C. Suppression of poised oncogenes by ZMYND8 promotes chemo-sensitization. Cell Death Dis 2020; 11:1073. [PMID: 33323928 PMCID: PMC7738522 DOI: 10.1038/s41419-020-03129-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023]
Abstract
The major challenge in chemotherapy lies in the gain of therapeutic resistance properties of cancer cells. The relatively small fraction of chemo-resistant cancer cells outgrows and are responsible for tumor relapse, with acquired invasiveness and stemness. We demonstrate that zinc-finger MYND type-8 (ZMYND8), a putative chromatin reader, suppresses stemness, drug resistance, and tumor-promoting genes, which are hallmarks of cancer. Reinstating ZMYND8 suppresses chemotherapeutic drug doxorubicin-induced tumorigenic potential (at a sublethal dose) and drug resistance, thereby resetting the transcriptional program of cells to the epithelial state. The ability of ZMYND8 to chemo-sensitize doxorubicin-treated metastatic breast cancer cells by downregulating tumor-associated genes was further confirmed by transcriptome analysis. Interestingly, we observed that ZMYND8 overexpression in doxorubicin-treated cells stimulated those involved in a good prognosis in breast cancer. Consistently, sensitizing the cancer cells with ZMYND8 followed by doxorubicin treatment led to tumor regression in vivo and revert back the phenotypes associated with drug resistance and stemness. Intriguingly, ZMYND8 modulates the bivalent or poised oncogenes through its association with KDM5C and EZH2, thereby chemo-sensitizing the cells to chemotherapy for better disease-free survival. Collectively, our findings indicate that poised chromatin is instrumental for the acquisition of chemo-resistance by cancer cells and propose ZMYND8 as a suitable epigenetic tool that can re-sensitize the chemo-refractory breast carcinoma.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/pharmacology
- Breast Neoplasms/drug therapy
- Breast Neoplasms/genetics
- Breast Neoplasms/pathology
- Carcinogenesis/drug effects
- Carcinogenesis/genetics
- Carcinogenesis/pathology
- Cell Line, Tumor
- Cell Movement/drug effects
- Cell Movement/genetics
- Down-Regulation/drug effects
- Down-Regulation/genetics
- Doxorubicin/pharmacology
- Doxorubicin/therapeutic use
- Drug Resistance, Neoplasm/drug effects
- Drug Resistance, Neoplasm/genetics
- Enhancer of Zeste Homolog 2 Protein/metabolism
- Epigenesis, Genetic/drug effects
- Epithelial-Mesenchymal Transition/drug effects
- Epithelial-Mesenchymal Transition/genetics
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic/drug effects
- Genome, Human
- Histone Demethylases/metabolism
- Humans
- Mice, Inbred BALB C
- Mice, Nude
- Neoplastic Stem Cells/metabolism
- Neoplastic Stem Cells/pathology
- Oncogenes
- Phenotype
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Treatment Outcome
- Triple Negative Breast Neoplasms/drug therapy
- Triple Negative Breast Neoplasms/genetics
- Triple Negative Breast Neoplasms/pathology
- Tumor Suppressor Proteins/metabolism
Collapse
Affiliation(s)
- Shravanti Mukherjee
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Santanu Adhikary
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Shrikanth S Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Cecil H. and Ida Green Center for Reproductive Biology Sciences, Department of Obstetrics and Gynaecology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Payel Mondal
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Sabyasachi Sen
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Ramesh Choudhari
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Shri B. M. Patil Medical College, Hospital and Research Centre, BLDE (Deemed to be University), Vijayapura, Karnataka, 586103, India
| | - Vipin Singh
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Swagata Adhikari
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
- Homi Bhaba National Institute, Mumbai, India
| | - Pratiti Mandal
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Soumi Chaudhuri
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Amrita Sengupta
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India
| | - Rajkumar Lakshmanaswamy
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center El Paso, El Paso, TX, 79905, USA
| | - Partha Chakrabarti
- Cell Biology and Physiology Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Siddhartha Roy
- Structural Biology and Bioinformatics Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S.C. Mullick Road, Kolkata, 700032, India
| | - Chandrima Das
- Biophysics and Structural Genomics Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata, 700064, India.
- Homi Bhaba National Institute, Mumbai, India.
| |
Collapse
|
48
|
Anatskaya OV, Vinogradov AE, Vainshelbaum NM, Giuliani A, Erenpreisa J. Phylostratic Shift of Whole-Genome Duplications in Normal Mammalian Tissues towards Unicellularity Is Driven by Developmental Bivalent Genes and Reveals a Link to Cancer. Int J Mol Sci 2020; 21:ijms21228759. [PMID: 33228223 PMCID: PMC7699474 DOI: 10.3390/ijms21228759] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/15/2020] [Accepted: 11/17/2020] [Indexed: 12/17/2022] Open
Abstract
Tumours were recently revealed to undergo a phylostratic and phenotypic shift to unicellularity. As well, aggressive tumours are characterized by an increased proportion of polyploid cells. In order to investigate a possible shared causation of these two features, we performed a comparative phylostratigraphic analysis of ploidy-related genes, obtained from transcriptomic data for polyploid and diploid human and mouse tissues using pairwise cross-species transcriptome comparison and principal component analysis. Our results indicate that polyploidy shifts the evolutionary age balance of the expressed genes from the late metazoan phylostrata towards the upregulation of unicellular and early metazoan phylostrata. The up-regulation of unicellular metabolic and drug-resistance pathways and the downregulation of pathways related to circadian clock were identified. This evolutionary shift was associated with the enrichment of ploidy with bivalent genes (p < 10−16). The protein interactome of activated bivalent genes revealed the increase of the connectivity of unicellulars and (early) multicellulars, while circadian regulators were depressed. The mutual polyploidy-c-MYC-bivalent genes-associated protein network was organized by gene-hubs engaged in both embryonic development and metastatic cancer including driver (proto)-oncogenes of viral origin. Our data suggest that, in cancer, the atavistic shift goes hand-in-hand with polyploidy and is driven by epigenetic mechanisms impinging on development-related bivalent genes.
Collapse
Affiliation(s)
- Olga V. Anatskaya
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Alexander E. Vinogradov
- Department of Bioinformatics and Functional Genomics, Institute of Cytology, Russian Academy of sciences, 194064 St. Petersburg, Russia
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| | - Ninel M. Vainshelbaum
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Faculty of Biology, University of Latvia, LV-1586 Riga, Latvia
| | | | - Jekaterina Erenpreisa
- Department of Oncology, Latvian Biomedical Research and Study Centre, Cancer Research Division, LV-1067 Riga, Latvia;
- Correspondence: (O.V.A.); (A.E.V.); (J.E.)
| |
Collapse
|
49
|
Keller M, Yaskolka Meir A, Bernhart SH, Gepner Y, Shelef I, Schwarzfuchs D, Tsaban G, Zelicha H, Hopp L, Müller L, Rohde K, Böttcher Y, Stadler PF, Stumvoll M, Blüher M, Kovacs P, Shai I. DNA methylation signature in blood mirrors successful weight-loss during lifestyle interventions: the CENTRAL trial. Genome Med 2020; 12:97. [PMID: 33198820 PMCID: PMC7670623 DOI: 10.1186/s13073-020-00794-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 10/27/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND One of the major challenges in obesity treatment is to explain the high variability in the individual's response to specific dietary and physical activity interventions. With this study, we tested the hypothesis that specific DNA methylation changes reflect individual responsiveness to lifestyle intervention and may serve as epigenetic predictors for a successful weight-loss. METHODS We conducted an explorative genome-wide DNA methylation analysis in blood samples from 120 subjects (90% men, mean ± SD age = 49 ± 9 years, body mass-index (BMI) = 30.2 ± 3.3 kg/m2) from the 18-month CENTRAL randomized controlled trial who underwent either Mediterranean/low-carbohydrate or low-fat diet with or without physical activity. RESULTS Analyses comparing male subjects with the most prominent body weight-loss (responders, mean weight change - 16%) vs. non-responders (+ 2.4%) (N = 10 each) revealed significant variation in DNA methylation of several genes including LRRC27, CRISP2, and SLFN12 (all adj. P < 1 × 10-5). Gene ontology analysis indicated that biological processes such as cell adhesion and molecular functions such as calcium ion binding could have an important role in determining the success of interventional therapies in obesity. Epigenome-wide association for relative weight-loss (%) identified 15 CpGs being negatively correlated with weight change after intervention (all combined P < 1 × 10- 4) including new and also known obesity candidates such as NUDT3 and NCOR2. A baseline DNA methylation score better predicted successful weight-loss [area under the curve (AUC) receiver operating characteristic (ROC) = 0.95-1.0] than predictors such as age and BMI (AUC ROC = 0.56). CONCLUSIONS Body weight-loss following 18-month lifestyle intervention is associated with specific methylation signatures. Moreover, methylation differences in the identified genes could serve as prognostic biomarkers to predict a successful weight-loss therapy and thus contribute to advances in patient-tailored obesity treatment.
Collapse
Affiliation(s)
- Maria Keller
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Liebigstrasse 19-21, 04103, Leipzig, Germany
| | - Anat Yaskolka Meir
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer Sheva, Israel
| | - Stephan H Bernhart
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
- Bioinformatics Group, Department of Computer Science, University of Leipzig, 04107, Leipzig, Germany
- Transcriptome Bioinformatics, LIFE Research Center for Civilization Diseases, University of Leipzig, 04107, Leipzig, Germany
| | - Yftach Gepner
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer Sheva, Israel
- Department of Epidemiology and Preventive Medicine, School of Public Health, Sackler Faculty of Medicine and Sylvan Adams Sports Institute, Tel Aviv University, 6997801, Ramat Aviv, Israel
| | - Ilan Shelef
- Soroka University Medical Center, 84101, Beer-Sheva, Israel
| | - Dan Schwarzfuchs
- Soroka University Medical Center, 84101, Beer-Sheva, Israel
- Nuclear Research Center-Negev, 84190, Dimona, Israel
| | - Gal Tsaban
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer Sheva, Israel
| | - Hila Zelicha
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer Sheva, Israel
| | - Lydia Hopp
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107, Leipzig, Germany
| | - Luise Müller
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Liebigstrasse 19-21, 04103, Leipzig, Germany
| | - Kerstin Rohde
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Yvonne Böttcher
- IFB Adiposity Diseases, University of Leipzig, Liebigstrasse 19-21, 04103, Leipzig, Germany
- Department of Clinical Molecular Biology, Institute of Clinical Medicine, University of Oslo, 0316, Oslo, Norway
- Medical Division, Akershus University Hospital, 1478, Lørenskog, Norway
| | - Peter F Stadler
- Bioinformatics Group, Department of Computer Science, University of Leipzig, 04107, Leipzig, Germany
- Competence Center for Scalable Data Services and Solutions Dresden/Leipzig, German Centre for Integrative Biodiversity Research (iDiv), and Leipzig Research Center for Civilization Diseases, University of Leipzig, 04109, Leipzig, Germany
- Max Planck Institute for Mathematics in the Sciences, 04103, Leipzig, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, 04103, Leipzig, Germany
- Department of Theoretical Chemistry, University of Vienna, 1090, Vienna, Austria
- Center for RNA in Technology and Health, University of Copenhagen, 1871, Frederiksberg, Denmark
- Santa Fe Institute, Santa Fe, NM, 87501, USA
| | - Michael Stumvoll
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
- IFB Adiposity Diseases, University of Leipzig, Liebigstrasse 19-21, 04103, Leipzig, Germany
- Deutsches Zentrum für Diabetesforschung, Helmholtz Zentrum München, Neuherberg, 85764, USA
| | - Matthias Blüher
- Helmholtz Institute for Metabolic, Obesity and Vascular Research (HI-MAG) of the Helmholtz Center Munich at the University of Leipzig and University Hospital Leipzig, 04103, Leipzig, Germany
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany
| | - Peter Kovacs
- Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, 04103, Leipzig, Germany.
| | - Iris Shai
- Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.Box 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
50
|
Ramezankhani R, Solhi R, Es HA, Vosough M, Hassan M. Novel molecular targets in gastric adenocarcinoma. Pharmacol Ther 2020; 220:107714. [PMID: 33172596 DOI: 10.1016/j.pharmthera.2020.107714] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/19/2020] [Indexed: 02/06/2023]
Abstract
Gastric adenocarcinoma (GAC) is the third leading cause of cancer-related death worldwide. A high mortality rate and resistance to treatment protocols due to a heterogeneous molecular pathogenesis has made discovering the key etiologic molecular alterations of the utmost importance. The remarkable role played by epigenetic modifications in repressing or activating many cancer-related genes and forming new epigenetic signatures can affect cancer initiation and progression. Hence, targeting the key epigenetic drivers could potentially attenuate cancer progression. MLLs, ARID1A and EZH2 are among the major epigenetic players that are frequently mutated in GACs. In this paper, we have proposed the existence of a network between these proteins that, together with PCAF and KDM6A, control the 3D chromatin structure and regulate the expression of tumor suppressor genes (TSGs) and oncogenes in GAC. Therefore, we suggest that manipulating the expression of EZH2, PCAF, and KDM6A or their downstream targets may reduce the cancerous phenotype in GAC.
Collapse
Affiliation(s)
- Roya Ramezankhani
- Department of Applied Cell Sciences, Faculty of Basic Science and Advanced Medical Technologies, Royan Institute, ACECR, Tehran, Iran; Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Development and Regeneration, Stem Cell Biology and Embryology, KU Leuven Stem Cell Institute, Leuven, Belgium
| | - Roya Solhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research (ACECR), Tehran, Iran; Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, Academic Center for Education, Culture and Research, ACECR, Tehran, Iran.
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden; ECM, Clinical research center (KFC), Karolinska University Hospital Huddinge, Sweden.
| |
Collapse
|