1
|
Doherty TM, Weinberger B, Didierlaurent A, Lambert PH. Age-related changes in the immune system and challenges for the development of age-specific vaccines. Ann Med 2025; 57:2477300. [PMID: 40110678 PMCID: PMC11926906 DOI: 10.1080/07853890.2025.2477300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND A better understanding of how the immune system evolves with age and how vaccines work in older people has led to increasing focus on the development of vaccines aimed specifically at older age groups. We discuss strategies used to improve vaccine immunogenicity for older adults, focusing on licensed adjuvants. FINDINGS With age-related immune decline (immunosenescence), older adults face increased vulnerability to infections and severe complications. Immunosenescence affects T-cell and B-cell populations and innate immunity, leading to reduced chemotaxis, cytotoxicity, and altered cytokine production. This contributes to inflammaging-low-grade, chronic inflammation linked to aging. However, immune responses vary due to genetics and life-long exposures, making chronological age an imperfect indicator of immune health. Vaccination remains key to prevention, yet immune dysfunction complicates vaccine efficacy. Strategies to enhance responses in older adults include mRNA vaccines, high-antigen content vaccines, intradermal administration, and adjuvants. mRNA COVID-19 vaccines generated strong immune responses in older adults, though lower than in younger groups. High-antigen content influenza vaccines have shown superior efficacy compared to standard vaccination. Adjuvants offer a well-established approach to boosting vaccine responses by enhancing innate immunity. CONCLUSIONS Of various strategies used to improve immunogenicity of vaccines for older adults, adjuvants have been the most consistently effective and practical. More recently, mRNA vaccines have also shown great promise.
Collapse
Affiliation(s)
| | - Birgit Weinberger
- Universität Innsbruck, Institute for Biomedical Aging Research, Innsbruck, Austria
| | | | | |
Collapse
|
2
|
Shi P, Zhao L, Zhang M, Zhao J, Niu J, Zhai J, Yin J. Discovery of novel adjuvants: Identification of saponins from Hylomecon japonica (Thunb.) Prantl & Kündig and insights into their in vitro and in vivo activities. Bioorg Chem 2025; 161:108501. [PMID: 40318505 DOI: 10.1016/j.bioorg.2025.108501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/13/2025] [Accepted: 04/20/2025] [Indexed: 05/07/2025]
Abstract
Bioassay-guided approach resulted in the isolation of fourteen triterpenoid saponins were isolated from the herba of Hylomecon japonica (Thunb.) Prantl & Kündig including eight novel saponins (1-8) and six known saponins (9-14). Their chemical structures were unequivocally determined through comprehensive spectral data analysis. By screening all compounds to enhance the ability of RAW 264.7 cells to produce NO, the novel compound 1 (HA) was identified as a candidate for immune adjuvant. In vitro experiments demonstrated that HA promotes the proliferation of spleen lymphocytes, DC 2.4, and RAW 264.7 cells, while also enhancing the phagocytic activity of DC 2.4 and RAW 264.7 cells. HA also counteracts the LPS-induced decline in dendritic cell phagocytosis and works with LPS to further improve macrophage phagocytosis. The network pharmacology analysis identified a total of 46 targets and 20 pathways through which HA exerts its immune-enhancing effects. In vivo experiments, HA enhanced immune organ development, boosted specific serum antibodies, increased Th1 and Th2 cytokines, and amplified related gene expression. And HA could boost lymphocyte proliferation, increased CD3+ T cells and altered CD4+ and CD8+ levels. It also promoted dendritic cell maturation in lymph nodes, raised MHC II molecules and co-stimulatory factors. HA triggered the upregulation of TL4, MyD88, and IKK proteins and promoted the phosphorylation of NF-κB P65 and P-IkBα within the TLR4/NF-κB signaling pathway, while simultaneously suppressing IκBα protein expression. HA has the characteristics and functions of enhancing immunity and could be applied as an immune adjuvant. The findings presented herein establish a fundamental basis for investigating the immune adjuvant effect of triterpenoid saponins.
Collapse
Affiliation(s)
- Peixin Shi
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lichun Zhao
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Min Zhang
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingjing Zhao
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianan Niu
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jianxiu Zhai
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Jun Yin
- Development and Utilization Key Laboratory of Northeast Plant Materials, Key Laboratory of Northeast Authentic Materials Research and Development in Liaoning Province, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
3
|
Xing J, Zhao X, Li X, Fang R, Sun M, Zhang Y, Song N. The recent advances in vaccine adjuvants. Front Immunol 2025; 16:1557415. [PMID: 40433383 PMCID: PMC12106398 DOI: 10.3389/fimmu.2025.1557415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Vaccine adjuvants, as key components in enhancing vaccine immunogenicity, play a vital role in modern vaccinology. This review systematically examines the historical evolution and mechanisms of vaccine adjuvants, with particular emphasis on innovative advancements in aluminum-based adjuvants, emulsion-based adjuvants, and nucleic acid adjuvants (e.g., CpG oligonucleotides). Specifically, aluminum adjuvants enhance immune responses through particle formation/antigen adsorption, inflammatory cascade activation, and T-cell stimulation. Emulsion adjuvants amplify immunogenicity via antigen depot effects and localized inflammation, while nucleic acid adjuvants like CpG oligonucleotides directly activate B cells and dendritic cells to promote Th1-type immune responses and memory T-cell generation. The article further explores the prospective applications of these novel adjuvants in combating emerging pathogens (including influenza and SARS-CoV-2), particularly highlighting their significance in improving vaccine potency and durability. Moreover, this review underscores the critical importance of adjuvant development in next-generation vaccine design and provides theoretical foundations for creating safer, effective adjuvant.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ningning Song
- Weifang Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| |
Collapse
|
4
|
Lee SM, Lee J, Kim DI, Avila JP, Nakaya H, Kwak K, Kim EH. Emulsion adjuvant-induced uric acid release modulates optimal immunogenicity by targeting dendritic cells and B cells. NPJ Vaccines 2025; 10:72. [PMID: 40240376 PMCID: PMC12003798 DOI: 10.1038/s41541-025-01130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/07/2025] [Indexed: 04/18/2025] Open
Abstract
Squalene-based emulsion (SE) adjuvants like MF59 and AS03 are used in protein subunit vaccines against influenza virus (e.g., Fluad, Pandemrix, Arepanrix) and SARS-CoV-2 (e.g., Covifenz, SKYCovione). We demonstrate the critical role of uric acid (UA), a damage-associated molecular pattern (DAMP), in triggering immunogenicity by SE adjuvants. In mice, SE adjuvants elevated DAMP levels in draining lymph nodes. Strikingly, inhibition of UA synthesis reduced vaccine-induced innate immunity, subsequently impairing optimal antibody and T cell responses. In vivo treatment with UA crystals elicited partial adjuvant effects. In vitro stimulation with UA crystals augmented the activation of dendritic cells (DCs) and B cells and altered multiple pathways in these cells, including inflammation and antigen presentation in DCs and cell proliferation in B cells. In an influenza vaccine model, UA contributed to protection against influenza viral infection. These results demonstrate the importance of DAMPs, specifically the versatile role of UA in the immunogenicity of SE adjuvants, by regulating DCs and B cells.
Collapse
Affiliation(s)
- Sun Min Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Junghwa Lee
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Dong-In Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea
| | - Jonathan P Avila
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Helder Nakaya
- Department of Clinical and Toxicological Analysis, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
- Hospital Israelita Albert Einstein, São Paulo, Brazil
| | - Kihyuck Kwak
- Department of Microbiology and Immunology, Yonsei University College of Medicine, Seoul, South Korea
| | - Eui Ho Kim
- Viral Immunology Laboratory, Institut Pasteur Korea, Seongnam, South Korea.
- Department of Advanced Drug discovery & development, University of Science and Technology (UST), Daejeon, South Korea.
| |
Collapse
|
5
|
Bouma RG, Wang AZ, den Haan JMM. Exploring CD169 + Macrophages as Key Targets for Vaccination and Therapeutic Interventions. Vaccines (Basel) 2025; 13:330. [PMID: 40266235 PMCID: PMC11946325 DOI: 10.3390/vaccines13030330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/12/2025] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
CD169 is a sialic acid-binding immunoglobulin-like lectin (Siglec-1, sialoadhesin) that is expressed by subsets of tissue-resident macrophages and circulating monocytes. This receptor interacts with α2,3-linked Neu5Ac on glycoproteins as well as glycolipids present on the surface of immune cells and pathogens. CD169-expressing macrophages exert tissue-specific homeostatic functions, but they also have opposing effects on the immune response. CD169+ macrophages act as a pathogen filter, protect against infectious diseases, and enhance adaptive immunity, but at the same time pathogens also exploit them to enable further dissemination. In cancer, CD169+ macrophages in tumor-draining lymph nodes are correlated with better clinical outcomes. In inflammatory diseases, CD169 expression is upregulated on monocytes and on monocyte-derived macrophages and this correlates with the disease state. Given their role in promoting adaptive immunity, CD169+ macrophages are currently investigated as targets for vaccination strategies against cancer. In this review, we describe the studies investigating the importance of CD169 and CD169+ macrophages in several disease settings and the vaccination strategies currently under investigation.
Collapse
Affiliation(s)
- Rianne G. Bouma
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Aru Z. Wang
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| | - Joke M. M. den Haan
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Cancer Immunology, 1081 HV Amsterdam, The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
6
|
Ben-Akiva E, Chapman A, Mao T, Irvine DJ. Linking vaccine adjuvant mechanisms of action to function. Sci Immunol 2025; 10:eado5937. [PMID: 39951545 DOI: 10.1126/sciimmunol.ado5937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/23/2025] [Indexed: 02/16/2025]
Abstract
Vaccines deliver an immunogen in a manner designed to safely provoke an immune response, leading to the generation of memory T and B cells and long-lived antibody-producing plasma cells. Adjuvants play a critical role in vaccines by controlling how the immune system is exposed to the immunogen and providing inflammatory cues that enable productive immune priming. However, mechanisms of action underlying adjuvant function at the molecular, cell, and tissue levels are diverse and often poorly understood. Here, we review the current understanding of mechanisms of action underlying adjuvants used in subunit protein/polysaccharide vaccines and mRNA vaccines, discuss where possible how these mechanisms of action link to downstream effects on the immune response, and identify knowledge gaps that will be important to fill in order to enable the continued development of more effective adjuvants for challenging pathogens such as HIV and emerging threats.
Collapse
Affiliation(s)
- Elana Ben-Akiva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Asheley Chapman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
| | - Tianyang Mao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA, USA
- Broad Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
7
|
Kroemer G, Montégut L, Kepp O, Zitvogel L. The danger theory of immunity revisited. Nat Rev Immunol 2024; 24:912-928. [PMID: 39511426 DOI: 10.1038/s41577-024-01102-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/15/2024]
Abstract
The danger theory of immunity, introduced by Polly Matzinger in 1994, posits that tissue stress, damage or infection has a decisive role in determining immune responses. Since then, a growing body of evidence has supported the idea that the capacity to elicit cognate immune responses (immunogenicity) relies on the combination of antigenicity (the ability to be recognized by T cell receptors or antibodies) and adjuvanticity (additional signals arising owing to tissue damage). Here, we discuss the molecular foundations of the danger theory while focusing on immunologically relevant damage-associated molecular patterns, microorganism-associated molecular patterns, and neuroendocrine stress-associated immunomodulatory molecules, as well as on their receptors. We critically evaluate patient-relevant evidence, examining how cancer cells and pathogenic viruses suppress damage-associated molecular patterns to evade immune recognition, how intestinal dysbiosis can reduce immunostimulatory microorganism-associated molecular patterns and compromise immune responses, and which hereditary immune defects support the validity of the danger theory. Furthermore, we incorporate the danger hypothesis into a close-to-fail-safe hierarchy of immunological tolerance mechanisms that also involve the clonal deletion and inactivation of immune cells.
Collapse
Affiliation(s)
- Guido Kroemer
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France.
- Institut du Cancer Paris CARPEM, Department of Biology, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - Léa Montégut
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Oliver Kepp
- Centre de Recherche des Cordeliers, INSERM U1138, Équipe Labellisée - Ligue Nationale contre le Cancer, Université Paris Cité, Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Clinicobiome, Villejuif, France.
- INSERM UMR 1015, ClinicObiome, Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France.
- Université Paris-Saclay, Ile-de-France, Paris, France.
- Center of Clinical Investigations in Biotherapies of Cancer (BIOTHERIS), Villejuif, France.
| |
Collapse
|
8
|
Sasaki H, Suzuki Y, Morimoto K, Takeda K, Uchida K, Iyoda M, Ishikawa H. Intranasal Immunization with Nasal Immuno-Inducible Sequence-Fused Antigens Elicits Antigen-Specific Antibody Production. Int J Mol Sci 2024; 25:12828. [PMID: 39684539 DOI: 10.3390/ijms252312828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/22/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Intranasal immunization is one of the most effective methods for eliciting lung mucosal immunity. Multiple intranasal immunization with bacterial polypeptide, termed as a modified PnxIIIA (MP3) protein, is known to elicit production of a specific antibody in mice. In this study, a nasal immuno-inducible sequence (NAIS) was designed to remove the antigenicity of the MP3 protein that can induce mucosal immunity by intranasal immunization, and was examined to induce antigen-specific antibodies against the fused bacterial thioredoxin (Trx) as a model antigen. A NAIS was modified and generated to remove a large number of predicted MHC (Major Histocompatibility Complex)-I and MHC-II binding sites in parent protein PnxIIIA and MP3 in order to reduce the number of antigen epitope sites. For comparative analysis, full-length NAIS291, NAIS230, and NAIS61 fused with Trx and 6× His tag and Trx-fused 6× His tag were used as antigen variants for the intranasal immunization of BALB/c mice every two weeks for three immunizations. Anti-Trx antibody titers in serum and bronchoalveolar lavage fluid (BALF) IgA obtained from NAIS291-fused Trx-immunized mice were significantly higher than those from Trx-immunized mice. The antibody titers against NAIS alone were significantly lower than those against Trx alone in the serum IgG, serum IgA, and BALF IgA. These results indicate that the NAIS contributes to antibody elicitation of the fused antigen as an immunostimulant in intranasal vaccination vaccines. The results indicate that the NAIS and target inactivated antigen fusions can be applied to intranasal vaccine systems.
Collapse
Affiliation(s)
- Hiraku Sasaki
- Graduate School of Health and Sports Science, Juntendo University, Chiba 2701695, Japan
| | - Yoshio Suzuki
- Graduate School of Health and Sports Science, Juntendo University, Chiba 2701695, Japan
| | - Kodai Morimoto
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo 1138421, Japan
| | - Kazuyoshi Takeda
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo 1138421, Japan
- Department of Biofunctional Microbiota, Graduate School of Medicine, Juntendo University, Tokyo 1138421, Japan
- Laboratory of Cell Biology, Research Support Center, Graduate School of Medicine, Juntendo University, Tokyo 1138421, Japan
| | - Koichiro Uchida
- Center for Immune Therapeutics and Diagnosis, Juntendo University, Tokyo 1138421, Japan
| | - Masayuki Iyoda
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo 1428555, Japan
| | - Hiroki Ishikawa
- Department of Microbiology and Immunology, Showa University School of Medicine, Tokyo 1428555, Japan
| |
Collapse
|
9
|
Han J, Mao K, Yang YG, Sun T. Impact of inorganic/organic nanomaterials on the immune system for disease treatment. Biomater Sci 2024; 12:4903-4926. [PMID: 39190428 DOI: 10.1039/d4bm00853g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
The study of nanomaterials' nature, function, and biocompatibility highlights their potential in drug delivery, imaging, diagnostics, and therapeutics. Advancements in nanotechnology have fostered the development and application of diverse nanomaterials. These materials facilitate drug delivery and influence the immune system directly. Yet, understanding of their impact on the immune system is incomplete, underscoring the need to select materials to achieve desired outcomes carefully. In this review, we outline and summarize the distinctive characteristics and effector functions of inorganic nanomaterials and organic materials in inducing immune responses. We highlight the role and advantages of nanomaterial-induced immune responses in the treatment of immune-related diseases. Finally, we briefly discuss the current challenges and future opportunities for disease treatment and clinical translation of these nanomaterials.
Collapse
Affiliation(s)
- Jing Han
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
- State Key Laboratory of Kidney Diseases, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
10
|
Stylianou VV, Bertram KM, Vo VA, Dunn EB, Baharlou H, Terre DJ, Elhindi J, Elder E, French J, Meybodi F, Temmerman ST, Didierlaurent AM, Coccia M, Sandgren KJ, Cunningham AL. Innate immune cell activation by adjuvant AS01 in human lymph node explants is age independent. J Clin Invest 2024; 134:e174144. [PMID: 39316442 PMCID: PMC11563676 DOI: 10.1172/jci174144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 09/13/2024] [Indexed: 09/26/2024] Open
Abstract
Vaccine adjuvants are thought to work by stimulating innate immunity in the draining lymph node (LN), although this has not been proven in humans. To bridge the data obtained in animals to humans, we have developed an in situ human LN explant model to investigate how adjuvants initiate immunity. Slices of explanted LNs were exposed to vaccine adjuvants and revealed responses that were not detectable in LN cell suspensions. We used this model to compare the liposome-based AS01 with its components, monophosphoryl lipid A (MPL) and QS-21, and TLR ligands. Liposomes were predominantly taken up by subcapsular sinus-lining macrophages, monocytes, and DCs. AS01 induced DC maturation and a strong proinflammatory cytokine response in intact LN slices but not in dissociated cell cultures, in contrast to R848. This suggests that the onset of the immune response to AS01 required a coordinated activation of LN cells in time and space. Consistent with the robust immune response observed in older adults with AS01-adjuvanted vaccines, the AS01 response in human LNs was independent of age, unlike the response to R848. This human LN explant model is a valuable tool for studying the mechanism of action of adjuvants in humans and for screening new formulations to streamline vaccine development.
Collapse
Affiliation(s)
- Vicki V. Stylianou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M. Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Van Anh Vo
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Elizabeth B. Dunn
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Darcii J. Terre
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - James Elhindi
- Research and Education Network, Western Sydney Local Health District, Westmead, New South Wales, Australia
| | - Elisabeth Elder
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Westmead Breast Cancer Institute, Westmead, New South Wales, Australia
| | - James French
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Westmead Breast Cancer Institute, Westmead, New South Wales, Australia
| | - Farid Meybodi
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
- The Westmead Breast Cancer Institute, Westmead, New South Wales, Australia
| | | | - Arnaud M. Didierlaurent
- Center of Vaccinology, Department of Pathology and Immunology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Kerrie J. Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Anthony L. Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
11
|
Quan Y, Liu C, Lu X, Kong X, Yang S, Kong J, Wan W, Wang K, Xu K, Peng L. Comparison of the Immunogenicity of the LZ901 Vaccine and HZ/su Vaccine in a Mouse Model. Vaccines (Basel) 2024; 12:775. [PMID: 39066412 PMCID: PMC11281325 DOI: 10.3390/vaccines12070775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Herpes zoster (HZ) is an infectious disease caused by the reactivation of varicella zoster virus (VZV), with 68% of cases occurring in adults over 50 years of age. HZ/su (Shingrix®) was approved by the Food and Drug Administration in 2017 for the prevention of HZ in individuals ≥ 50 years of age and showed very good protection from HZ. However, due to the use of the adjuvant AS01B, adverse reactions caused by Shingrix are a concern. Aluminum hydroxide is the most commonly used adjuvant and is widely used in a variety of vaccines. We developed a recombinant zoster vaccine (code: LZ901) consisting of a tetramer of VZV glycoprotein E (gE) and a human Fc fusion protein expressed in CHO cells, an immune complex-like molecule that can be adsorbed with an aluminum hydroxide adjuvant. We compared the immunogenicity of LZ901 with that of HZ/su in BALB/c mice. The results showed that LZ901 induced levels of gE-specific IgG antibodies comparable to those induced by HZ/su, and the results of FAMA titers further demonstrated their similar neutralizing antibody abilities. Most importantly, LZ901 induced higher levels of cell-mediated immunity (CMI) (which plays a decisive role in the efficacy of zoster vaccines) than HZ/su in BALB/c mice. The numbers of cytokine-producing T cells in LZ901-vaccinated mice were significantly greater than those in v-vaccinated mice, and the proportions of CD4+ and CD8+ T cells producing at least two types of cytokines in LZ901-vaccinated mice were significantly greater than those in HZ/su-vaccinated mice.
Collapse
Affiliation(s)
- Yaru Quan
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing 102629, China; (Y.Q.)
| | - Chunxia Liu
- Beijing Luzhu Biotechnology Co., Ltd., Beijing 101100, China
| | - Xu Lu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing 102629, China; (Y.Q.)
| | - Xi Kong
- Beijing Luzhu Biotechnology Co., Ltd., Beijing 101100, China
| | - Shuai Yang
- Beijing Luzhu Biotechnology Co., Ltd., Beijing 101100, China
| | - Jian Kong
- Beijing Luzhu Biotechnology Co., Ltd., Beijing 101100, China
| | - Wenyan Wan
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing 102629, China; (Y.Q.)
| | - Kaiqin Wang
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing 102629, China; (Y.Q.)
| | - Kangwei Xu
- NHC Key Laboratory of Research on Quality and Standardization of Biotech Products, NMPA Key Laboratory for Quality Research and Evaluation of Biological Products, National Institutes for Food and Drug Control, Beijing 102629, China; (Y.Q.)
| | - Ling Peng
- Beijing Luzhu Biotechnology Co., Ltd., Beijing 101100, China
| |
Collapse
|
12
|
Wang C, Geng Y, Wang H, Ren Z, Hou Q, Fang A, Wu Q, Wu L, Shi X, Zhou M, Fu ZF, Lovell JF, Jin H, Zhao L. A broadly applicable protein-polymer adjuvant system for antiviral vaccines. EMBO Mol Med 2024; 16:1451-1483. [PMID: 38750307 PMCID: PMC11178928 DOI: 10.1038/s44321-024-00076-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 06/16/2024] Open
Abstract
Although protein subunit vaccines generally have acceptable safety profiles with precise antigenic content, limited immunogenicity can lead to unsatisfactory humoral and cellular immunity and the need for vaccine adjuvants and delivery system. Herein, we assess a vaccine adjuvant system comprising Quillaja Saponaria-21(QS-21) and cobalt porphyrin polymeric micelles that enabling the display of His-tagged antigen on its surface. The nanoscale micelles promote antigen uptake and dendritic cell activation to induce robust cytotoxic T lymphocyte response and germinal center formation. Using the recombinant protein antigens from influenza A and rabies virus, the micelle adjuvant system elicited robust antiviral responses and protected mice from lethal challenge. In addition, this system could be combined with other antigens to induce high titers of neutralizing antibodies in models of three highly pathogenic viral pathogens: Ebola virus, Marburg virus, and Nipah virus. Collectively, our results demonstrate this polymeric micelle adjuvant system can be used as a potent nanoplatform for developing antiviral vaccine countermeasures that promote humoral and cellular immunity.
Collapse
Affiliation(s)
- Caiqian Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuanyuan Geng
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haoran Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zeheng Ren
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingxiu Hou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - An Fang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qiong Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Liqin Wu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiujuan Shi
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ming Zhou
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhen F Fu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, NY, 14260, USA.
| | - Honglin Jin
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Ling Zhao
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine of Hubei Province, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Bai D, Kim H, Wang P. Development of semisynthetic saponin immunostimulants. Med Chem Res 2024; 33:1292-1306. [PMID: 39132259 PMCID: PMC11315725 DOI: 10.1007/s00044-024-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 04/20/2024] [Indexed: 08/13/2024]
Abstract
Many natural saponins demonstrate immunostimulatory adjuvant activities, but they also have some inherent drawbacks that limit their clinical use. To overcome these limitations, extensive structure-activity-relationship (SAR) studies have been conducted. The SAR studies of QS-21 and related saponins reveal that their respective fatty side chains are crucial for potentiating a strong cellular immune response. Replacing the hydrolytically unstable ester side chain in the C28 oligosaccharide domain with an amide side chain in the same domain or in the C3 branched trisaccharide domain is a viable approach for generating robust semisynthetic saponin immunostimulants. Given the striking resemblance of natural momordica saponins (MS) I and II to the deacylated Quillaja Saponaria (QS) saponins (e.g., QS-17, QS-18, and QS-21), incorporating an amide side chain into the more sustainable MS, instead of deacylated QS saponins, led to the discovery of MS-derived semisynthetic immunostimulatory adjuvants VSA-1 and VSA-2. This review focuses on the authors' previous work on SAR studies of QS and MS saponins.
Collapse
Affiliation(s)
- Di Bai
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Hyunjung Kim
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| | - Pengfei Wang
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL AL35294 USA
| |
Collapse
|
14
|
Lv X, Martin J, Hoover H, Joshi B, Wilkens M, Ullisch DA, Leibold T, Juchum JS, Revadkar S, Kalinovska B, Keith J, Truby A, Liu G, Sun E, Haserick J, DeGnore J, Conolly J, Hill AV, Baldoni J, Kensil C, Levey D, Spencer AJ, Gorr G, Findeis M, Tanne A. Chemical and biological characterization of vaccine adjuvant QS-21 produced via plant cell culture. iScience 2024; 27:109006. [PMID: 38361610 PMCID: PMC10867646 DOI: 10.1016/j.isci.2024.109006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 09/07/2023] [Accepted: 01/19/2024] [Indexed: 02/17/2024] Open
Abstract
Many vaccines, including those using recombinant antigen subunits, rely on adjuvant(s) to enhance the efficacy of the host immune responses. Among the few adjuvants clinically approved, QS-21, a saponin-based immunomodulatory molecule isolated from the tree bark of Quillaja saponaria (QS) is used in complex formulations in approved effective vaccines. High demand of the QS raw material as well as manufacturing scalability limitation has been barriers here. We report for the first-time successful plant cell culture production of QS-21 having structural, chemical, and biologic, properties similar to the bark extracted product. These data ensure QS-21 and related saponins are broadly available and accessible to drug developers.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - John S. Juchum
- Phyton Biotech LLC, 1503 Cliveden Avenue, Delta, BC V3M 6P7, Canada
| | | | | | | | - Adam Truby
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | | | | | - Adrian V.S. Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | | | - Alexandra J. Spencer
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Hunter Medical Research Institute, School of Biomedical Sciences and Pharmacy, College of Health, Medicine & Wellbeing; Immune Health Program, New Lambton Heights, NSW, Australia
| | | | | | | |
Collapse
|
15
|
Kubara K, Yamazaki K, Miyazaki T, Kondo K, Kurotaki D, Tamura T, Suzuki Y. Lymph node macrophages drive innate immune responses to enhance the anti-tumor efficacy of mRNA vaccines. Mol Ther 2024; 32:704-721. [PMID: 38243602 PMCID: PMC10928146 DOI: 10.1016/j.ymthe.2024.01.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/11/2023] [Accepted: 01/12/2024] [Indexed: 01/21/2024] Open
Abstract
mRNA vaccines are promising for cancer treatment. Efficient delivery of mRNAs encoding tumor antigens to antigen-presenting cells (APCs) is critical to elicit anti-tumor immunity. Herein, we identified a novel lipid nanoparticle (LNP) formulation, L17-F05, for mRNA vaccines by screening 34 ionizable lipids and 28 LNP formulations using human primary APCs. Subcutaneous delivery of L17-F05 mRNA vaccine encoding Gp100 and Trp2 inhibited tumor growth and prolonged the survival of mice bearing B16F10 melanoma. L17-F05 efficiently delivered mRNAs to conventional dendritic cells (cDCs) and macrophages in draining lymph nodes (dLNs). cDCs functioned as the main APCs by presenting antigens along with enhanced expression of co-stimulatory molecules. Macrophages triggered innate immune responses centered on type-I interferon (IFN-I) in dLNs. Lymph node (LN) macrophage depletion attenuated APC maturation and anti-tumor activity of L17-F05 mRNA vaccines. Loss-of-function studies revealed that L17-F05 works as a self-adjuvant by activating the stimulator of interferon genes (STING) pathway in macrophages. Collectively, the self-adjuvanticity of L17-F05 triggered innate immune responses in LN macrophages via the STING-IFN-I pathway, contributing to APC maturation and potent anti-tumor activity of L17-F05 mRNA vaccines. Our findings provide strategies for further optimization of mRNA vaccines based on the innate immune response driven by LN macrophages.
Collapse
Affiliation(s)
- Kenji Kubara
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan; Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan.
| | - Kazuto Yamazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Takayuki Miyazaki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Keita Kondo
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| | - Daisuke Kurotaki
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan; Laboratory of Chromatin Organization in Immune Cell Development, International Research Center for Medical Sciences (IRCMS), Kumamoto University, 2-2-1 Honjo, Chuo-ku, Kumamoto 860-0811, Japan
| | - Tomohiko Tamura
- Department of Immunology, Yokohama City University Graduate School of Medicine, 3-9, Fukuura, Kanazawa-ku, Yokohama 236-0004, Japan
| | - Yuta Suzuki
- Tsukuba Research Laboratories, Eisai Co., Ltd., 5-1-3, Tokodai, Tsukuba, Ibaraki 300-2635, Japan
| |
Collapse
|
16
|
Lin YJ, Zimmermann J, Schülke S. Novel adjuvants in allergen-specific immunotherapy: where do we stand? Front Immunol 2024; 15:1348305. [PMID: 38464539 PMCID: PMC10920236 DOI: 10.3389/fimmu.2024.1348305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/05/2024] [Indexed: 03/12/2024] Open
Abstract
Type I hypersensitivity, or so-called type I allergy, is caused by Th2-mediated immune responses directed against otherwise harmless environmental antigens. Currently, allergen-specific immunotherapy (AIT) is the only disease-modifying treatment with the potential to re-establish clinical tolerance towards the corresponding allergen(s). However, conventional AIT has certain drawbacks, including long treatment durations, the risk of inducing allergic side effects, and the fact that allergens by themselves have a rather low immunogenicity. To improve AIT, adjuvants can be a powerful tool not only to increase the immunogenicity of co-applied allergens but also to induce the desired immune activation, such as promoting allergen-specific Th1- or regulatory responses. This review summarizes the knowledge on adjuvants currently approved for use in human AIT: aluminum hydroxide, calcium phosphate, microcrystalline tyrosine, and MPLA, as well as novel adjuvants that have been studied in recent years: oil-in-water emulsions, virus-like particles, viral components, carbohydrate-based adjuvants (QS-21, glucans, and mannan) and TLR-ligands (flagellin and CpG-ODN). The investigated adjuvants show distinct properties, such as prolonging allergen release at the injection site, inducing allergen-specific IgG production while also reducing IgE levels, as well as promoting differentiation and activation of different immune cells. In the future, better understanding of the immunological mechanisms underlying the effects of these adjuvants in clinical settings may help us to improve AIT.
Collapse
Affiliation(s)
- Yen-Ju Lin
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| | | | - Stefan Schülke
- Section Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
- Section Research Allergology (ALG 5), Division of Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
17
|
Aung A, Irvine DJ. Modulating Antigen Availability in Lymphoid Organs to Shape the Humoral Immune Response to Vaccines. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:171-178. [PMID: 38166252 PMCID: PMC10768795 DOI: 10.4049/jimmunol.2300500] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 09/06/2023] [Indexed: 01/04/2024]
Abstract
Primary immune responses following vaccination are initiated in draining lymph nodes, where naive T and B cells encounter Ag and undergo coordinated steps of activation. For humoral immunity, the amount of Ag present over time, its localization to follicles and follicular dendritic cells, and the Ag's structural state all play important roles in determining the subsequent immune response. Recent studies have shown that multiple elements of vaccine design can impact Ag availability in lymphoid tissues, including the choice of adjuvant, physical form of the immunogen, and dosing kinetics. These vaccine design elements affect the transport of Ag to lymph nodes, Ag's localization in the tissue, the duration of Ag availability, and the structural integrity of the Ag. In this review, we discuss these findings and their implications for engineering more effective vaccines, particularly for difficult to neutralize pathogens.
Collapse
Affiliation(s)
- Aereas Aung
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Consortium for HIV/AIDS Vaccine Development, The Scripps Research Institute, La Jolla, CA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Cambridge, MA, USA
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
18
|
Smith CL, Richardson B, Rubsamen M, Cameron MJ, Cameron CM, Canaday DH. Adjuvant AS01 activates human monocytes for costimulation and systemic inflammation. Vaccine 2024; 42:229-238. [PMID: 38065772 DOI: 10.1016/j.vaccine.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 11/16/2023] [Accepted: 12/01/2023] [Indexed: 01/01/2024]
Abstract
BACKGROUND The adjuvanted recombinant zoster vaccine (RZV) is highly effective even in adults over 80 years old. The high efficacy of RZV is attributed to its highly reactogenic adjuvant, AS01, but limited studies have been done on AS01's activation of human immune cells. METHODS We stimulated peripheral blood mononuclear cells (PBMC) with AS01 and used flow cytometry and RNA Sequencing (RNAseq) to analyze the impacts on human primary cells. RESULTS We found that incubation of PBMC with AS01 activated monocytes to a greater extent than any other cell population, including dendritic cells. Both classical and non-classical monocytes demonstrated this activation. RNASeq showed that TNF-ɑ and IL1R pathways were highly upregulated in response to AS01 exposure, even in older adults. CONCLUSIONS In a PBMC co-culture, AS01 strongly activates human monocytes to upregulate costimulation markers and induce cytokines that mediate systemic inflammation. Understanding AS01's impacts on human cells opens possibilities to further address the reduced vaccine response associated with aging.
Collapse
Affiliation(s)
- Carson L Smith
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Brian Richardson
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Michael Rubsamen
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - Mark J Cameron
- Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Cheryl M Cameron
- Department of Nutrition, Case Western Reserve University School of Medicine, Cleveland, OH USA
| | - David H Canaday
- Case Western Reserve University School of Medicine, Cleveland, OH, USA; Geriatric Research, Education, and Clinical Center, Louis Stokes VA Northeast Ohio Healthcare System, Cleveland, OH, USA.
| |
Collapse
|
19
|
Roman F, Burny W, Ceregido MA, Laupèze B, Temmerman ST, Warter L, Coccia M. Adjuvant system AS01: from mode of action to effective vaccines. Expert Rev Vaccines 2024; 23:715-729. [PMID: 39042099 DOI: 10.1080/14760584.2024.2382725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/17/2024] [Indexed: 07/24/2024]
Abstract
INTRODUCTION The use of novel adjuvants in human vaccines continues to expand as their contribution to preventing disease in challenging populations and caused by complex pathogens is increasingly understood. AS01 is a family of liposome-based vaccine Adjuvant Systems containing two immunostimulants: 3-O-desacyl-4'-monophosphoryl lipid A and the saponin QS-21. AS01-containing vaccines have been approved and administered to millions of individuals worldwide. AREAS COVERED Here, we report advances in our understanding of the mode of action of AS01 that contributed to the development of efficacious vaccines preventing disease due to malaria, herpes zoster, and respiratory syncytial virus. AS01 induces early innate immune activation that induces T cell-mediated and antibody-mediated responses with optimized functional characteristics and induction of immune memory. AS01-containing vaccines appear relatively impervious to baseline immune status translating into high efficacy across populations. Currently licensed AS01-containing vaccines have shown acceptable safety profiles in clinical trials and post-marketing settings. EXPERT OPINION Initial expectations that adjuvantation with AS01 could support effective vaccine responses and contribute to disease control have been realized. Investigation of the utility of AS01 in vaccines to prevent other challenging diseases, such as tuberculosis, is ongoing, together with efforts to fully define its mechanisms of action in different vaccine settings.
Collapse
|
20
|
Reinke S, Pantazi E, Chappell GR, Sanchez-Martinez A, Guyon R, Fergusson JR, Salman AM, Aktar A, Mukhopadhyay E, Ventura RA, Auderset F, Dubois PM, Collin N, Hill AVS, Bezbradica JS, Milicic A. Emulsion and liposome-based adjuvanted R21 vaccine formulations mediate protection against malaria through distinct immune mechanisms. Cell Rep Med 2023; 4:101245. [PMID: 37913775 PMCID: PMC10694591 DOI: 10.1016/j.xcrm.2023.101245] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 09/22/2023] [Indexed: 11/03/2023]
Abstract
Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.
Collapse
Affiliation(s)
- Sören Reinke
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Eirini Pantazi
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Gabrielle R Chappell
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | | | - Romain Guyon
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Joannah R Fergusson
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Ahmed M Salman
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Anjum Aktar
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK
| | - Ekta Mukhopadhyay
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Roland A Ventura
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Floriane Auderset
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Patrice M Dubois
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Nicolas Collin
- Vaccine Formulation Institute, Rue du Champ-Blanchod 4, 1228 Plan-Les-Ouates, Switzerland
| | - Adrian V S Hill
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Jelena S Bezbradica
- Kennedy Institute of Rheumatology Research, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Medical Sciences Division, University of Oxford, Oxford OX3 7FY, UK.
| | - Anita Milicic
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK.
| |
Collapse
|
21
|
Azevedo IR, Amamura TA, Isaac L. Human leptospirosis: In search for a better vaccine. Scand J Immunol 2023; 98:e13316. [PMID: 39008520 DOI: 10.1111/sji.13316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/17/2024]
Abstract
Leptospirosis is a neglected disease caused by bacteria of the genus Leptospira and is more prevalent in tropical and subtropical countries. This pathogen infects humans and other animals, responsible for the most widespread zoonosis in the world, estimated to be responsible for 60 000 deaths and 1 million cases per year. To date, commercial vaccines against human leptospirosis are available only in some countries such as Japan, China, Cuba and France. These vaccines prepared with inactivated Leptospira (bacterins) induce a short-term and serovar-specific immune response, with strong adverse side effects. To circumvent these limitations, several research groups are investigating new experimental vaccines in order to ensure that they are safe, efficient, and protect against several pathogenic Leptospira serovars, inducing sterilizing immunity. Most of these protocols use attenuated cultures, preparations after LPS removal, recombinant proteins or DNA from pathogenic Leptospira spp. The aim of this review was to highlight several promising vaccine candidates, considering their immunogenicity, presence in different pathogenic Leptospira serovars, their role in virulence or immune evasion and other factors.
Collapse
Affiliation(s)
- Isabela Resende Azevedo
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Thais Akemi Amamura
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
22
|
Brai A, Poggialini F, Pasqualini C, Trivisani CI, Vagaggini C, Dreassi E. Progress towards Adjuvant Development: Focus on Antiviral Therapy. Int J Mol Sci 2023; 24:9225. [PMID: 37298177 PMCID: PMC10253057 DOI: 10.3390/ijms24119225] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/12/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In recent decades, vaccines have been extraordinary resources to prevent pathogen diffusion and cancer. Even if they can be formed by a single antigen, the addition of one or more adjuvants represents the key to enhance the response of the immune signal to the antigen, thus accelerating and increasing the duration and the potency of the protective effect. Their use is of particular importance for vulnerable populations, such as the elderly or immunocompromised people. Despite their importance, only in the last forty years has the search for novel adjuvants increased, with the discovery of novel classes of immune potentiators and immunomodulators. Due to the complexity of the cascades involved in immune signal activation, their mechanism of action remains poorly understood, even if significant discovery has been recently made thanks to recombinant technology and metabolomics. This review focuses on the classes of adjuvants under research, recent mechanism of action studies, as well as nanodelivery systems and novel classes of adjuvants that can be chemically manipulated to create novel small molecule adjuvants.
Collapse
Affiliation(s)
- Annalaura Brai
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Federica Poggialini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Pasqualini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Claudia Immacolata Trivisani
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
- Department of Pharmaceutical Sciences, University of Vienna, 1090 Vienna, Austria
| | - Chiara Vagaggini
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| | - Elena Dreassi
- Department of Biotechnologies, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, I-53100 Siena, Italy; (A.B.); (F.P.); (C.P.); (C.V.)
| |
Collapse
|
23
|
Reyes C, Patarroyo MA. Adjuvants approved for human use: What do we know and what do we need to know for designing good adjuvants? Eur J Pharmacol 2023; 945:175632. [PMID: 36863555 DOI: 10.1016/j.ejphar.2023.175632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/04/2023]
Abstract
Adjuvants represent one of the most significant biotechnological solutions regarding vaccine development, thereby broadening the amount of candidates which can now be used and tested in vaccine formulations targeting various pathogens, as antigens which were previously discarded due to their low or null immunogenicity can now be included. Adjuvant development research has grown side-by-side with an increasing body of knowledge regarding immune systems and their recognition of foreign microorganisms. Alum-derived adjuvants were used in human vaccines for many years, even though complete understanding of their vaccination-related mechanism of action was lacking. The amount of adjuvants approved for human use has increased recently in line with attempts to interact with and stimulate the immune system. This review is aimed at summarising what is known about adjuvants, focusing on those approved for use in humans, their mechanism of action and why they are so necessary for vaccine candidate formulations; it also discusses what the future may hold in this growing research field.
Collapse
Affiliation(s)
- César Reyes
- PhD Programme in Biotechnology, Faculty of Sciences, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá, DC 111321, Colombia; Three-dimensional Structures Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC 111321, Colombia; Animal Science Faculty, Universidad de Ciencias Aplicadas y Ambientales (U.D.C.A), Calle 222#55-37, Bogotá, DC 111166, Colombia.
| | - Manuel A Patarroyo
- Microbiology Department, Faculty of Medicine, Universidad Nacional de Colombia, Carrera 45#26-85, Bogotá, DC 111321, Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Carrera 50#26-20, Bogotá, DC 111321, Colombia.
| |
Collapse
|
24
|
Chen K, Wang N, Zhang X, Wang M, Liu Y, Shi Y. Potentials of saponins-based adjuvants for nasal vaccines. Front Immunol 2023; 14:1153042. [PMID: 37020548 PMCID: PMC10067588 DOI: 10.3389/fimmu.2023.1153042] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 03/07/2023] [Indexed: 03/22/2023] Open
Abstract
Respiratory infections are a major public health concern caused by pathogens that colonize and invade the respiratory mucosal surface. Nasal vaccines have the advantage of providing protection at the primary site of pathogen infection, as they induce higher levels of mucosal secretory IgA antibodies and antigen-specific T and B cell responses. Adjuvants are crucial components of vaccine formulation that enhance the immunogenicity of the antigen to confer long-term and effective protection. Saponins, natural glycosides derived from plants, shown potential as vaccine adjuvants, as they can activate the mammalian immune system. Several licensed human vaccines containing saponins-based adjuvants administrated through intramuscular injection have demonstrated good efficacy and safety. Increasing evidence suggests that saponins can also be used as adjuvants for nasal vaccines, owing to their safety profile and potential to augment immune response. In this review, we will discuss the structure-activity-relationship of saponins, their important role in nasal vaccines, and future prospects for improving their efficacy and application in nasal vaccine for respiratory infection.
Collapse
Affiliation(s)
- Kai Chen
- Department of Radiology and National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaomin Zhang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Meng Wang
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yanyu Liu
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Shi
- West China Biopharmaceutical Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- *Correspondence: Yun Shi,
| |
Collapse
|
25
|
Wu F, Qin M, Wang H, Sun X. Nanovaccines to combat virus-related diseases. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1857. [PMID: 36184873 DOI: 10.1002/wnan.1857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/08/2022] [Indexed: 11/05/2022]
Abstract
The invention and application of vaccines have made tremendous contributions to fight against pandemics for human beings. However, current vaccines still have shortcomings such as insufficient cellular immunity, the lack of cross-protection, and the risk of antibody-dependent enhancement (ADE). Thus, the prevention and control of pandemic viruses including Ebola Virus, human immunodeficiency virus (HIV), Influenza A viruses, Zika, and current SARS-CoV-2 are still extremely challenging. Nanoparticles with unique physical, chemical, and biological properties, hold promising potentials for the development of ideal vaccines against these viral infections. Moreover, the approval of the first nanoparticle-based mRNA vaccine BNT162b has established historic milestones that greatly inspired the clinical translation of nanovaccines. Given the safety and extensive application of subunit vaccines, and the rapid rise of mRNA vaccines, this review mainly focuses on these two vaccine strategies and provides an overview of the nanoparticle-based vaccine delivery platforms to tackle the current and next global health challenges. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Infectious Disease Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Fuhua Wu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Hairui Wang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
26
|
Verma SK, Mahajan P, Singh NK, Gupta A, Aggarwal R, Rappuoli R, Johri AK. New-age vaccine adjuvants, their development, and future perspective. Front Immunol 2023; 14:1043109. [PMID: 36911719 PMCID: PMC9998920 DOI: 10.3389/fimmu.2023.1043109] [Citation(s) in RCA: 84] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/26/2023] [Indexed: 02/26/2023] Open
Abstract
In the present scenario, immunization is of utmost importance as it keeps us safe and protects us from infectious agents. Despite the great success in the field of vaccinology, there is a need to not only develop safe and ideal vaccines to fight deadly infections but also improve the quality of existing vaccines in terms of partial or inconsistent protection. Generally, subunit vaccines are known to be safe in nature, but they are mostly found to be incapable of generating the optimum immune response. Hence, there is a great possibility of improving the potential of a vaccine in formulation with novel adjuvants, which can effectively impart superior immunity. The vaccine(s) in formulation with novel adjuvants may also be helpful in fighting pathogens of high antigenic diversity. However, due to the limitations of safety and toxicity, very few human-compatible adjuvants have been approved. In this review, we mainly focus on the need for new and improved vaccines; the definition of and the need for adjuvants; the characteristics and mechanisms of human-compatible adjuvants; the current status of vaccine adjuvants, mucosal vaccine adjuvants, and adjuvants in clinical development; and future directions.
Collapse
Affiliation(s)
| | - Pooja Mahajan
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Nikhlesh K. Singh
- Integrative Biosciences Center, Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University, School of Medicine, Detroit, MI, United States
| | - Ankit Gupta
- Microbiology Division, Defence Research and Development Establishment, Gwalior, India
| | - Rupesh Aggarwal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
27
|
Han Z, Jin J, Chen X, He Y, Sun H. Adjuvant activity of tubeimosides by mediating the local immune microenvironment. Front Immunol 2023; 14:1108244. [PMID: 36845089 PMCID: PMC9950507 DOI: 10.3389/fimmu.2023.1108244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Rhizoma Bolbostemmatis, the dry tuber of Bolbostemma paniculatum, has being used for the treatment of acute mastitis and tumors in traditional Chinese medicine. In this study, tubeimoside (TBM) I, II, and III from this drug were investigated for the adjuvant activities, structure-activity relationships (SAR), and mechanisms of action. Three TBMs significantly boosted the antigen-specific humoral and cellular immune responses and elicited both Th1/Th2 and Tc1/Tc2 responses towards ovalbumin (OVA) in mice. TBM I also remarkably facilitated mRNA and protein expression of various chemokines and cytokines in the local muscle tissues. Flow cytometry revealed that TBM I promoted the recruitment and antigen uptake of immune cells in the injected muscles, and augmented the migration and antigen transport of immune cells to the draining lymph nodes. Gene expression microarray analysis manifested that TBM I modulated immune, chemotaxis, and inflammation-related genes. The integrated analysis of network pharmacology, transcriptomics, and molecular docking predicted that TBM I exerted adjuvant activity by interaction with SYK and LYN. Further investigation verified that SYK-STAT3 signaling axis was involved in the TBM I-induced inflammatory response in the C2C12 cells. Our results for the first time demonstrated that TBMs might be promising vaccine adjuvant candidates and exert the adjuvant activity through mediating the local immune microenvironment. SAR information contributes to developing the semisynthetic saponin derivatives with adjuvant activities.
Collapse
Affiliation(s)
- Ziyi Han
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Junjie Jin
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,College of Animal Sciences, Wenzhou Vocational College of Science and Technology, Wenzhou, Zhejiang, China
| | - Xiangfeng Chen
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, China
| | - Yanfei He
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, China,*Correspondence: Hongxiang Sun,
| |
Collapse
|
28
|
Yousefpour P, Ni K, Irvine DJ. Targeted modulation of immune cells and tissues using engineered biomaterials. NATURE REVIEWS BIOENGINEERING 2023; 1:107-124. [PMID: 37772035 PMCID: PMC10538251 DOI: 10.1038/s44222-022-00016-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/28/2022] [Indexed: 09/30/2023]
Abstract
Therapies modulating the immune system offer the prospect of treating a wide range of conditions including infectious diseases, cancer and autoimmunity. Biomaterials can promote specific targeting of immune cell subsets in peripheral or lymphoid tissues and modulate the dosage, timing and location of stimulation, thereby improving safety and efficacy of vaccines and immunotherapies. Here we review recent advances in biomaterials-based strategies, focusing on targeting of lymphoid tissues, circulating leukocytes, tissue-resident immune cells and immune cells at disease sites. These approaches can improve the potency and efficacy of immunotherapies by promoting immunity or tolerance against different diseases.
Collapse
Affiliation(s)
- Parisa Yousefpour
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kaiyuan Ni
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Darrell J. Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Materials Science & Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
29
|
Mieres-Castro D, Mora-Poblete F. Saponins: Research Progress and Their Potential Role in the Post-COVID-19 Pandemic Era. Pharmaceutics 2023; 15:pharmaceutics15020348. [PMID: 36839670 PMCID: PMC9964560 DOI: 10.3390/pharmaceutics15020348] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
In the post-COVID-19 pandemic era, the new global situation and the limited therapeutic management of the disease make it necessary to take urgent measures in more effective therapies and drug development in order to counteract the negative global impacts caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and its new infectious variants. In this context, plant-derived saponins-glycoside-type compounds constituted from a triterpene or steroidal aglycone and one or more sugar residues-may offer fewer side effects and promising beneficial pharmacological activities. This can then be used for the development of potential therapeutic agents against COVID-19, either as a therapy or as a complement to conventional pharmacological strategies for the treatment of the disease and its prevention. The main objective of this review was to examine the primary and current evidence in regard to the therapeutic potential of plant-derived saponins against the COVID-19 disease. Further, the aim was to also focus on those studies that highlight the potential use of saponins as a treatment against SARS-CoV-2. Saponins are antiviral agents that inhibit different pharmacological targets of the virus, as well as exhibit anti-inflammatory and antithrombotic activity in relieving symptoms and clinical complications related to the disease. In addition, saponins also possess immunostimulatory effects, which improve the efficacy and safety of vaccines for prolonging immunogenicity against SARS-CoV-2 and its infectious variants.
Collapse
|
30
|
Madi S, Xie F, Farhangi K, Hsu CY, Cheng SH, Aweda T, Radaram B, Slania S, Lambert T, Rambo M, Skedzielewski T, Cole A, Sherina V, McKearnan S, Tran H, Alsaid H, Doan M, Stokes AH, O’Hagan DT, Maruggi G, Bertholet S, Temmerman ST, Johnson R, Jucker BM. MRI/PET multimodal imaging of the innate immune response in skeletal muscle and draining lymph node post vaccination in rats. Front Immunol 2023; 13:1081156. [PMID: 36713458 PMCID: PMC9874296 DOI: 10.3389/fimmu.2022.1081156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 12/23/2022] [Indexed: 01/13/2023] Open
Abstract
The goal of this study was to utilize a multimodal magnetic resonance imaging (MRI) and positron emission tomography (PET) imaging approach to assess the local innate immune response in skeletal muscle and draining lymph node following vaccination in rats using two different vaccine platforms (AS01 adjuvanted protein and lipid nanoparticle (LNP) encapsulated Self-Amplifying mRNA (SAM)). MRI and 18FDG PET imaging were performed temporally at baseline, 4, 24, 48, and 72 hr post Prime and Prime-Boost vaccination in hindlimb with Cytomegalovirus (CMV) gB and pentamer proteins formulated with AS01, LNP encapsulated CMV gB protein-encoding SAM (CMV SAM), AS01 or with LNP carrier controls. Both CMV AS01 and CMV SAM resulted in a rapid MRI and PET signal enhancement in hindlimb muscles and draining popliteal lymph node reflecting innate and possibly adaptive immune response. MRI signal enhancement and total 18FDG uptake observed in the hindlimb was greater in the CMV SAM vs CMV AS01 group (↑2.3 - 4.3-fold in AUC) and the MRI signal enhancement peak and duration were temporally shifted right in the CMV SAM group following both Prime and Prime-Boost administration. While cytokine profiles were similar among groups, there was good temporal correlation only between IL-6, IL-13, and MRI/PET endpoints. Imaging mass cytometry was performed on lymph node sections at 72 hr post Prime and Prime-Boost vaccination to characterize the innate and adaptive immune cell signatures. Cell proximity analysis indicated that each follicular dendritic cell interacted with more follicular B cells in the CMV AS01 than in the CMV SAM group, supporting the stronger humoral immune response observed in the CMV AS01 group. A strong correlation between lymph node MRI T2 value and nearest-neighbor analysis of follicular dendritic cell and follicular B cells was observed (r=0.808, P<0.01). These data suggest that spatiotemporal imaging data together with AI/ML approaches may help establish whether in vivo imaging biomarkers can predict local and systemic immune responses following vaccination.
Collapse
Affiliation(s)
| | - Fang Xie
- Bioimaging, GSK, Collegeville, PA, United States
| | | | | | | | | | | | | | - Tammy Lambert
- Non Clinical Safety, GSK, Collegeville, PA, United States
| | - Mary Rambo
- Bioimaging, GSK, Collegeville, PA, United States
| | | | - Austin Cole
- Research Statistics, GSK, Collegeville, PA, United States
| | | | | | - Hoang Tran
- Research Statistics, GSK, Collegeville, PA, United States
| | - Hasan Alsaid
- Bioimaging, GSK, Collegeville, PA, United States
| | - Minh Doan
- Bioimaging, GSK, Collegeville, PA, United States
| | - Alan H. Stokes
- Non Clinical Safety, GSK, Collegeville, PA, United States
| | - Derek T. O’Hagan
- Vaccines Research & Development, GSK, Rockville, MD, United States
| | | | - Sylvie Bertholet
- Vaccines Research & Development, GSK, Rockville, MD, United States
| | | | - Russell Johnson
- Vaccines Research & Development, GSK, Rockville, MD, United States
| | - Beat M. Jucker
- Clinical Imaging, GSK, Collegeville, PA, United States,*Correspondence: Beat M. Jucker,
| |
Collapse
|
31
|
Grigoryan L, Lee A, Walls AC, Lai L, Franco B, Arunachalam PS, Feng Y, Luo W, Vanderheiden A, Floyd K, Wrenn S, Pettie D, Miranda MC, Kepl E, Ravichandran R, Sydeman C, Brunette N, Murphy M, Fiala B, Carter L, Coffman RL, Novack D, Kleanthous H, O’Hagan DT, van der Most R, McLellan JS, Suthar M, Veesler D, King NP, Pulendran B. Adjuvanting a subunit SARS-CoV-2 vaccine with clinically relevant adjuvants induces durable protection in mice. NPJ Vaccines 2022; 7:55. [PMID: 35606518 PMCID: PMC9126867 DOI: 10.1038/s41541-022-00472-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 02/03/2022] [Indexed: 01/27/2023] Open
Abstract
Adjuvants enhance the magnitude and the durability of the immune response to vaccines. However, there is a paucity of comparative studies on the nature of the immune responses stimulated by leading adjuvant candidates. In this study, we compared five clinically relevant adjuvants in mice-alum, AS03 (a squalene-based adjuvant supplemented with α-tocopherol), AS37 (a TLR7 ligand emulsified in alum), CpG1018 (a TLR9 ligand emulsified in alum), O/W 1849101 (a squalene-based adjuvant)-for their capacity to stimulate immune responses when combined with a subunit vaccine under clinical development. We found that all four of the adjuvant candidates surpassed alum with respect to their capacity to induce enhanced and durable antigen-specific antibody responses. The TLR-agonist-based adjuvants CpG1018 (TLR9) and AS37 (TLR7) induced Th1-skewed CD4+ T cell responses, while alum, O/W, and AS03 induced a balanced Th1/Th2 response. Consistent with this, adjuvants induced distinct patterns of early innate responses. Finally, vaccines adjuvanted with AS03, AS37, and CpG1018/alum-induced durable neutralizing-antibody responses and significant protection against the B.1.351 variant 7 months following immunization. These results, together with our recent results from an identical study in non-human primates (NHPs), provide a comparative benchmarking of five clinically relevant vaccine adjuvants for their capacity to stimulate immunity to a subunit vaccine, demonstrating the capacity of adjuvanted SARS-CoV-2 subunit vaccines to provide durable protection against the B.1.351 variant. Furthermore, these results reveal differences between the widely-used C57BL/6 mouse strain and NHP animal models, highlighting the importance of species selection for future vaccine and adjuvant studies.
Collapse
Affiliation(s)
- Lilit Grigoryan
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Audrey Lee
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Alexandra C. Walls
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Present Address: Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Lilin Lai
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Benjamin Franco
- Veterinary Service Center, Department of Comparative Medicine, Stanford, CA USA
| | - Prabhu S. Arunachalam
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Yupeng Feng
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Wei Luo
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| | - Abigail Vanderheiden
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Katharine Floyd
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - Samuel Wrenn
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Deleah Pettie
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Marcos C. Miranda
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Elizabeth Kepl
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Rashmi Ravichandran
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Claire Sydeman
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Natalie Brunette
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Michael Murphy
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Brooke Fiala
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Lauren Carter
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Robert L. Coffman
- grid.418630.80000 0004 0409 1245Dynavax Technologies Corporation, Emeryville, CA USA
| | - David Novack
- grid.418630.80000 0004 0409 1245Dynavax Technologies Corporation, Emeryville, CA USA
| | - Harry Kleanthous
- grid.418309.70000 0000 8990 8592Bill and Melinda Gates Foundation, Seattle, WA 98102 USA
| | | | | | - Jason S. McLellan
- grid.55460.320000000121548364Department of Molecular Biosciences, University of Texas, Austin, TX USA
| | - Mehul Suthar
- grid.189967.80000 0001 0941 6502Emory Vaccine Center, 954 Gatewood Road, Atlanta, GA 30329 USA
| | - David Veesler
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA ,grid.34477.330000000122986657Present Address: Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195 USA
| | - Neil P. King
- grid.34477.330000000122986657Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, WA USA
| | - Bali Pulendran
- grid.168010.e0000000419368956Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA USA ,grid.168010.e0000000419368956Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA USA
| |
Collapse
|
32
|
Facciolà A, Visalli G, Laganà A, Di Pietro A. An Overview of Vaccine Adjuvants: Current Evidence and Future Perspectives. Vaccines (Basel) 2022; 10:vaccines10050819. [PMID: 35632575 PMCID: PMC9147349 DOI: 10.3390/vaccines10050819] [Citation(s) in RCA: 114] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/18/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
Vaccinations are one of the most important preventive tools against infectious diseases. Over time, many different types of vaccines have been developed concerning the antigen component. Adjuvants are essential elements that increase the efficacy of vaccination practises through many different actions, especially acting as carriers, depots, and stimulators of immune responses. For many years, few adjuvants have been included in vaccines, with aluminium salts being the most commonly used adjuvant. However, recent research has focused its attention on many different new compounds with effective adjuvant properties and improved safety. Modern technologies such as nanotechnologies and molecular biology have forcefully entered the production processes of both antigen and adjuvant components, thereby improving vaccine efficacy. Microparticles, emulsions, and immune stimulators are currently in the spotlight for their huge potential in vaccine production. Although studies have reported some potential side effects of vaccine adjuvants such as the recently recognised ASIA syndrome, the huge worth of vaccines remains unquestionable. Indeed, the recent COVID-19 pandemic has highlighted the importance of vaccines, especially in regard to managing future potential pandemics. In this field, research into adjuvants could play a leading role in the production of increasingly effective vaccines.
Collapse
Affiliation(s)
- Alessio Facciolà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Correspondence:
| | - Giuseppa Visalli
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| | - Antonio Laganà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
- Multi-Specialist Clinical Institute for Orthopaedic Trauma Care (COT), 98124 Messina, Italy
| | - Angela Di Pietro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (G.V.); (A.L.); (A.D.P.)
| |
Collapse
|
33
|
An adjuvanted zoster vaccine elicits potent cellular immune responses in mice without QS21. NPJ Vaccines 2022; 7:45. [PMID: 35459225 PMCID: PMC9033770 DOI: 10.1038/s41541-022-00467-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/18/2022] [Indexed: 11/23/2022] Open
Abstract
Herpes zoster (HZ) is caused by reactivation of latent varicella-zoster virus (VZV) when VZV-specific cellular immunity is insufficient to control reactivation. Currently, Shingrix, which contains the VZV gE protein and GSK’s AS01B adjuvant composed of liposomes formulated with cholesterol, monophosphoryl lipid A (MPL) and QS21, is used for prevention of HZ. However, reactogenicity to Shingrix is common leading to poor patient compliance in receiving one or both shots. Here, we evaluated the immunogenicity of a newly formulated gE protein-based HZ vaccine containing Second-generation Lipid Adjuvant (SLA), a synthetic TLR4 ligand, formulated in an oil-in-water emulsion (SLA-SE) without QS21 (gE/SLA-SE). In VZV-primed mouse models, gE/SLA-SE-induced gE-specific humoral and cellular immune responses at comparable levels to those elicited by Shingrix in young mice, as both gE/SLA-SE and Shingrix induce polyfunctional CD4+ T-cell responses. In aged mice, gE/SLA-SE elicited more robust gE-specific T-cell responses than Shingrix. Furthermore, gE/SLA-SE-induced T-cell responses were sustained until 5 months after immunization. Thus, QS21-free, gE/SLA-SE is a promising candidate for development of gE-based HZ vaccines with high immunogenicity—particularly when targeting an older population.
Collapse
|
34
|
Bell MR, Kutzler MA. An old problem with new solutions: Strategies to improve vaccine efficacy in the elderly. Adv Drug Deliv Rev 2022; 183:114175. [PMID: 35202770 DOI: 10.1016/j.addr.2022.114175] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/01/2022]
Abstract
Vaccination is the most effective measure to protect against infections. However, with increasing age, there is a progressive decline in the ability of the immune system to both protect against infection and develop protective immunity from vaccination. This age-related decline of the immune system is due to age-related changes in both the innate and adaptive immune systems. With an aging world population and increased risk of pandemics, there is a need to continue to develop strategies to increase vaccine responses in the elderly. Here, the major age-related changes that occur in both the innate and adaptive immune responses that impair the response to vaccination in the elderly will be highlighted. Existing and future strategies to improve vaccine efficacy in the elderly will then be discussed, including adjuvants, delivery methods, and formulation. These strategies provide mechanisms to improve the efficacy of existing vaccines and develop novel vaccines for the elderly.
Collapse
|
35
|
Li J, Fu L, Yang Y, Wang G, Zhao A. Enhanced Potency and Persistence of Immunity to Varicella-Zoster Virus Glycoprotein E in Mice by Addition of a Novel BC02 Compound Adjuvant. Vaccines (Basel) 2022; 10:vaccines10040529. [PMID: 35455278 PMCID: PMC9029549 DOI: 10.3390/vaccines10040529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 01/27/2023] Open
Abstract
Herpes zoster (HZ) is one of two distinct syndromes caused by Varicella-zoster virus (VZV). A primary infection with VZV causes varicella in susceptible young children. After resolution of the primary infection, VZV establishes a lifelong latency within the cranial or dorsal root ganglia. With increasing age, family history of shingles, immunosuppression or other risk factors, there is a decline in the virus-specific T-cell-mediated immune (CMI) response which allows reactivation of latent VZV in the root ganglia resulting in HZ. There are currently two vaccines that have been approved to prevent HZ and postherpetic neuralgia (PHN) but one is a live attenuated vaccine, the protective effect of which is considered to decrease significantly with the age of the recipient. However, a recombinant subunit vaccine may provide targeted VZV-specific cellular and humoral immunity, giving it a more potent and longer-lasting protective effect against HZ. The current study reports the development of a novel adjuvant, BC02 (BCG CpG DNA compound adjuvants system 02), composed of Al(OH)3 inorganic salt adjuvant and BC01 (BCG CpG DNA compound adjuvants system 01), a Toll-like receptor 9 (TLR9) agonist. Immunogenicity and compatibility with recombinant VZV glycoprotein E (gE) in mice were studied. The BC02-adjuvanted gE experimental vaccine was highly effective in eliciting both humoral and cellular immune responses to the recombinant gE glycoprotein and VZV-Oka in a mouse model. The efficient production and long-term persistence of gE and VZV-Oka-specific IFN-γ, IL-2-specific T cells and memory B cells in the early (1W), middle (7W), middle-late (15W), and final (27W) immune stages were established. Results of fluorescent antibody to membrane antigen (FAMA) and serum antibody plaque reduction tests also showed that the BC02 adjuvanted-gE experimental vaccine induced mice to secrete neutralizing antibodies against clinically isolated VZV strains. In combination, the current data suggest that the BC02 compound adjuvant offers a strategy to induce an appropriately strong cellular and humoral immunity against the VZV gE protein subunit to improve vaccine efficacy.
Collapse
Affiliation(s)
- Junli Li
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (L.F.); (Y.Y.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Lili Fu
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (L.F.); (Y.Y.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Yang Yang
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (L.F.); (Y.Y.); (G.W.)
- School of Life Science and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guozhi Wang
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (L.F.); (Y.Y.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
| | - Aihua Zhao
- Division of Tuberculosis Vaccine and Allergen Products, Institute of Biological Product Control, National Institutes for Food and Drug Control, Beijing 102629, China; (J.L.); (L.F.); (Y.Y.); (G.W.)
- Key Laboratory for Quality Research and Evaluation of Biological Products, National Medical Products Administration (NMPA), Beijing 102629, China
- Key Laboratory of Research on Quality and Standardization of Biotech Products, National Health Commission (NHC), Beijing 102629, China
- Correspondence: ; Tel.: +86-010-53851766
| |
Collapse
|
36
|
Larsen SE, Williams BD, Rais M, Coler RN, Baldwin SL. It Takes a Village: The Multifaceted Immune Response to Mycobacterium tuberculosis Infection and Vaccine-Induced Immunity. Front Immunol 2022; 13:840225. [PMID: 35359957 PMCID: PMC8960931 DOI: 10.3389/fimmu.2022.840225] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/08/2022] [Indexed: 11/18/2022] Open
Abstract
Despite co-evolving with humans for centuries and being intensely studied for decades, the immune correlates of protection against Mycobacterium tuberculosis (Mtb) have yet to be fully defined. This lapse in understanding is a major lag in the pipeline for evaluating and advancing efficacious vaccine candidates. While CD4+ T helper 1 (TH1) pro-inflammatory responses have a significant role in controlling Mtb infection, the historically narrow focus on this cell population may have eclipsed the characterization of other requisite arms of the immune system. Over the last decade, the tuberculosis (TB) research community has intentionally and intensely increased the breadth of investigation of other immune players. Here, we review mechanistic preclinical studies as well as clinical anecdotes that suggest the degree to which different cell types, such as NK cells, CD8+ T cells, γ δ T cells, and B cells, influence infection or disease prevention. Additionally, we categorically outline the observed role each major cell type plays in vaccine-induced immunity, including Mycobacterium bovis bacillus Calmette-Guérin (BCG). Novel vaccine candidates advancing through either the preclinical or clinical pipeline leverage different platforms (e.g., protein + adjuvant, vector-based, nucleic acid-based) to purposefully elicit complex immune responses, and we review those design rationales and results to date. The better we as a community understand the essential composition, magnitude, timing, and trafficking of immune responses against Mtb, the closer we are to reducing the severe disease burden and toll on human health inflicted by TB globally.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Brittany D. Williams
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States
| | - Maham Rais
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States
| | - Rhea N. Coler
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,Department of Global Health, University of Washington, Seattle, WA, United States,Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan L. Baldwin
- Center for Global Infectious Disease Research, Seattle Children's Research Institute, Seattle Children's Hospital, Seattle, WA, United States,*Correspondence: Susan L. Baldwin,
| |
Collapse
|
37
|
Yang JX, Tseng JC, Yu GY, Luo Y, Huang CYF, Hong YR, Chuang TH. Recent Advances in the Development of Toll-like Receptor Agonist-Based Vaccine Adjuvants for Infectious Diseases. Pharmaceutics 2022; 14:pharmaceutics14020423. [PMID: 35214155 PMCID: PMC8878135 DOI: 10.3390/pharmaceutics14020423] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Vaccines are powerful tools for controlling microbial infections and preventing epidemic diseases. Efficient inactive, subunit, or viral-like particle vaccines usually rely on a safe and potent adjuvant to boost the immune response to the antigen. After a slow start, over the last decade there has been increased developments on adjuvants for human vaccines. The development of adjuvants has paralleled our increased understanding of the molecular mechanisms for the pattern recognition receptor (PRR)-mediated activation of immune responses. Toll-like receptors (TLRs) are a group of PRRs that recognize microbial pathogens to initiate a host’s response to infection. Activation of TLRs triggers potent and immediate innate immune responses, which leads to subsequent adaptive immune responses. Therefore, these TLRs are ideal targets for the development of effective adjuvants. To date, TLR agonists such as monophosphoryl lipid A (MPL) and CpG-1018 have been formulated in licensed vaccines for their adjuvant activity, and other TLR agonists are being developed for this purpose. The COVID-19 pandemic has also accelerated clinical research of vaccines containing TLR agonist-based adjuvants. In this paper, we reviewed the agonists for TLR activation and the molecular mechanisms associated with the adjuvants’ effects on TLR activation, emphasizing recent advances in the development of TLR agonist-based vaccine adjuvants for infectious diseases.
Collapse
Affiliation(s)
- Jing-Xing Yang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Jen-Chih Tseng
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
| | - Guann-Yi Yu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Miaoli 35053, Taiwan;
| | - Yunping Luo
- Department of Immunology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine, Peking Union Medical College, Beijing 100005, China;
| | - Chi-Ying F. Huang
- Institute of Biopharmaceutical Sciences, College of Pharmaceutical Sciences, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan;
| | - Yi-Ren Hong
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan;
| | - Tsung-Hsien Chuang
- Immunology Research Center, National Health Research Institutes, Miaoli 35053, Taiwan; (J.-X.Y.); (J.-C.T.)
- Department of Life Sciences, National Central University, Taoyuan City 32001, Taiwan
- Program in Environmental and Occupational Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
- Correspondence: ; Tel.: +886-37-246166 (ext. 37611)
| |
Collapse
|
38
|
Carmen JM, Shrivastava S, Lu Z, Anderson A, Morrison EB, Sankhala RS, Chen WH, Chang WC, Bolton JS, Matyas GR, Michael NL, Joyce MG, Modjarrad K, Currier JR, Bergmann-Leitner E, Malloy AMW, Rao M. SARS-CoV-2 ferritin nanoparticle vaccine induces robust innate immune activity driving polyfunctional spike-specific T cell responses. NPJ Vaccines 2021; 6:151. [PMID: 34903722 PMCID: PMC8668928 DOI: 10.1038/s41541-021-00414-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 11/09/2021] [Indexed: 12/23/2022] Open
Abstract
The emergence of variants of concern, some with reduced susceptibility to COVID-19 vaccines underscores consideration for the understanding of vaccine design that optimizes induction of effective cellular and humoral immune responses. We assessed a SARS-CoV-2 spike-ferritin nanoparticle (SpFN) immunogen paired with two distinct adjuvants, Alhydrogel® or Army Liposome Formulation containing QS-21 (ALFQ) for unique vaccine evoked immune signatures. Recruitment of highly activated multifaceted antigen-presenting cells to the lymph nodes of SpFN+ALFQ vaccinated mice was associated with an increased frequency of polyfunctional spike-specific memory CD4+ T cells and Kb spike-(539-546)-specific long-lived memory CD8+ T cells with effective cytolytic function and distribution to the lungs. The presence of this epitope in SARS-CoV, suggests that generation of cross-reactive T cells may be induced against other coronavirus strains. Our study reveals that a nanoparticle vaccine, combined with a potent adjuvant that effectively engages innate immune cells, enhances SARS-CoV-2-specific durable adaptive immune T cell responses.
Collapse
Affiliation(s)
- Joshua M Carmen
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Shikha Shrivastava
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- US Military HIV Research Program, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Zhongyan Lu
- Department of Pediatrics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Alexander Anderson
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Oak Ridge Institute of Science and Education, Oak Ridge, TN, USA
| | - Elaine B Morrison
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Rajeshwer S Sankhala
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Wei-Hung Chen
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - William C Chang
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jessica S Bolton
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Gary R Matyas
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Nelson L Michael
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - M Gordon Joyce
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
- Emerging Infectious Diseases Branch, Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Kayvon Modjarrad
- Emerging Infectious Diseases Branch, Center of Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Jeffrey R Currier
- Viral Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Elke Bergmann-Leitner
- Malaria Biologics Branch, Walter Reed Army Institute of Research, Silver Spring, MD, USA
| | - Allison M W Malloy
- Department of Pediatrics, F. Edward Hebert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| | - Mangala Rao
- Laboratory of Adjuvant and Antigen Research, US Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, USA.
| |
Collapse
|
39
|
Silva M, Kato Y, Melo MB, Phung I, Freeman BL, Li Z, Roh K, Van Wijnbergen JW, Watkins H, Enemuo CA, Hartwell BL, Chang JYH, Xiao S, Rodrigues KA, Cirelli KM, Li N, Haupt S, Aung A, Cossette B, Abraham W, Kataria S, Bastidas R, Bhiman J, Linde C, Bloom NI, Groschel B, Georgeson E, Phelps N, Thomas A, Bals J, Carnathan DG, Lingwood D, Burton DR, Alter G, Padera TP, Belcher AM, Schief WR, Silvestri G, Ruprecht RM, Crotty S, Irvine DJ. A particulate saponin/TLR agonist vaccine adjuvant alters lymph flow and modulates adaptive immunity. Sci Immunol 2021; 6:eabf1152. [PMID: 34860581 DOI: 10.1126/sciimmunol.abf1152] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Murillo Silva
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yu Kato
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Mariane B Melo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Ivy Phung
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Brian L Freeman
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Zhongming Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kangsan Roh
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jan W Van Wijnbergen
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Hannah Watkins
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chiamaka A Enemuo
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Brittany L Hartwell
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jason Y H Chang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuhao Xiao
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kristen A Rodrigues
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Harvard-MIT Health Sciences and Technology Program, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kimberly M Cirelli
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Na Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sonya Haupt
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Aereas Aung
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Benjamin Cossette
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wuhbet Abraham
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Swati Kataria
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Raiza Bastidas
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Jinal Bhiman
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Caitlyn Linde
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Nathaniel I Bloom
- Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Bettina Groschel
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Erik Georgeson
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicole Phelps
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA.,IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ayush Thomas
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Julia Bals
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Diane G Carnathan
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Daniel Lingwood
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Dennis R Burton
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Galit Alter
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA
| | - Timothy P Padera
- Edwin L. Steele Laboratories for Tumor Biology, Department of Radiation Oncology, MGH Cancer Center, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Angela M Belcher
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William R Schief
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Guido Silvestri
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Yerkes National Primate Research Center, Emory University, Atlanta, GA 30322, USA.,Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ruth M Ruprecht
- Texas Biomedical Research Institute, San Antonio, TX 78227, USA
| | - Shane Crotty
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA 92037, USA.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California, San Diego (UCSD), La Jolla, CA 92093, USA
| | - Darrell J Irvine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA.,Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02139, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
40
|
Didierlaurent AM, Desssart C, Cunningham AL. Clarification regarding the statement of the association between the recombinant zoster vaccine (RZV) and gout flares. Ann Rheum Dis 2021; 80:e200. [PMID: 31791949 DOI: 10.1136/annrheumdis-2019-216639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 11/17/2019] [Indexed: 11/04/2022]
Affiliation(s)
| | | | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, University of Sydney, Australia, Westmead, New South Wales, Australia
| |
Collapse
|
41
|
Role of Damage-Associated Molecular Pattern/Cell Death Pathways in Vaccine-Induced Immunity. Viruses 2021; 13:v13122340. [PMID: 34960608 PMCID: PMC8708515 DOI: 10.3390/v13122340] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/18/2022] Open
Abstract
Immune responses induced by natural infection and vaccination are known to be initiated by the recognition of microbial patterns by cognate receptors, since microbes and most vaccine components contain pathogen-associated molecular patterns. Recent discoveries on the roles of damage-associated molecular patterns (DAMPs) and cell death in immunogenicity have improved our understanding of the mechanism underlying vaccine-induced immunity. DAMPs are usually immunologically inert, but can transform into alarming signals to activate the resting immune system in response to pathogenic infection, cellular stress and death, or tissue damage. The activation of DAMPs and cell death pathways can trigger local inflammation, occasionally mediating adaptive immunity, including antibody- and cell-mediated immune responses. Emerging evidence indicates that the components of vaccines and adjuvants induce immunogenicity via the stimulation of DAMP/cell death pathways. Furthermore, strategies for targeting this pathway to enhance immunogenicity are being investigated actively. In this review, we describe various DAMPs and focus on the roles of DAMP/cell death pathways in the context of vaccines for infectious diseases and cancer.
Collapse
|
42
|
ISCOM-like Nanoparticles Formulated with Quillaja brasiliensis Saponins Are Promising Adjuvants for Seasonal Influenza Vaccines. Vaccines (Basel) 2021; 9:vaccines9111350. [PMID: 34835281 PMCID: PMC8621233 DOI: 10.3390/vaccines9111350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/28/2022] Open
Abstract
Vaccination is the most effective public health intervention to prevent influenza infections, which are responsible for an important burden of respiratory illnesses and deaths each year. Currently, licensed influenza vaccines are mostly split inactivated, although in order to achieve higher efficacy rates, some influenza vaccines contain adjuvants. Although split-inactivated vaccines induce mostly humoral responses, tailoring mucosal and cellular immune responses is crucial for preventing influenza infections. Quillaja brasiliensis saponin-based adjuvants, including ISCOM-like nanoparticles formulated with the QB-90 saponin fraction (IQB90), have been studied in preclinical models for more than a decade and have been demonstrated to induce strong humoral and cellular immune responses towards several viral antigens. Herein, we demonstrate that a split-inactivated IQB90 adjuvanted influenza vaccine triggered a protective immune response, stronger than that induced by a commercial unadjuvanted vaccine, when applied either by the subcutaneous or the intranasal route. Moreover, we reveal that this novel adjuvant confers up to a ten-fold dose-sparing effect, which could be crucial for pandemic preparedness. Last but not least, we assessed the role of caspase-1/11 in the generation of the immune response triggered by the IQB90 adjuvanted influenza vaccine in a mouse model and found that the cellular-mediated immune response triggered by the IQB90-Flu relies, at least in part, on a mechanism involving the casp-1/11 pathway but not the humoral response elicited by this formulation.
Collapse
|
43
|
Ong GH, Lian BSX, Kawasaki T, Kawai T. Exploration of Pattern Recognition Receptor Agonists as Candidate Adjuvants. Front Cell Infect Microbiol 2021; 11:745016. [PMID: 34692565 PMCID: PMC8526852 DOI: 10.3389/fcimb.2021.745016] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/21/2021] [Indexed: 12/26/2022] Open
Abstract
Adjuvants are used to maximize the potency of vaccines by enhancing immune reactions. Components of adjuvants include pathogen-associated molecular patterns (PAMPs) and damage-associate molecular patterns (DAMPs) that are agonists for innate immune receptors. Innate immune responses are usually activated when pathogen recognition receptors (PRRs) recognize PAMPs derived from invading pathogens or DAMPs released by host cells upon tissue damage. Activation of innate immunity by PRR agonists in adjuvants activates acquired immune responses, which is crucial to enhance immune reactions against the targeted pathogen. For example, agonists for Toll-like receptors have yielded promising results as adjuvants, which target PRR as adjuvant candidates. However, a comprehensive understanding of the type of immunological reaction against agonists for PRRs is essential to ensure the safety and reliability of vaccine adjuvants. This review provides an overview of the current progress in development of PRR agonists as vaccine adjuvants, the molecular mechanisms that underlie activation of immune responses, and the enhancement of vaccine efficacy by these potential adjuvant candidates.
Collapse
Affiliation(s)
- Guang Han Ong
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Benedict Shi Xiang Lian
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Takumi Kawasaki
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| | - Taro Kawai
- Laboratory of Molecular Immunobiology, Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, Japan
| |
Collapse
|
44
|
Weinberger B. Vaccination of older adults: Influenza, pneumococcal disease, herpes zoster, COVID-19 and beyond. Immun Ageing 2021; 18:38. [PMID: 34627326 PMCID: PMC8501352 DOI: 10.1186/s12979-021-00249-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/21/2021] [Indexed: 12/11/2022]
Abstract
Preserving good health in old age is of utmost importance to alleviate societal, economic and health care-related challenges caused by an aging society. The prevalence and severity of many infectious diseases is higher in older adults, and in addition to the acute disease, long-term sequelae, such as exacerbation of underlying chronic disease, onset of frailty or increased long-term care dependency, are frequent. Prevention of infections e.g. by vaccination is therefore an important measure to ensure healthy aging and preserve quality of life. Several vaccines are specifically recommended for older adults in many countries, and in the current SARS-CoV-2 pandemic older adults were among the first target groups for vaccination due to their high risk for severe disease. This review highlights clinical data on the influenza, Streptococcus pneumoniae and herpes zoster vaccines, summarizes recent developments to improve vaccine efficacy, such as the use of adjuvants or higher antigen dose for influenza, and gives an overview of SARS-CoV-2 vaccine development for older adults. Substantial research is ongoing to further improve vaccines, e.g. by developing universal influenza and pneumococcal vaccines to overcome the limitations of the current strain-specific vaccines, and to develop novel vaccines against pathogens, which cause considerable morbidity and mortality in older adults, but for which no vaccines are currently available. In addition, we need to improve uptake of the existing vaccines and increase awareness for life-long vaccination in order to provide optimal protection for the vulnerable older age group.
Collapse
Affiliation(s)
- Birgit Weinberger
- Institute for Biomedical Aging Research, Universität Innsbruck, Rennweg 10, 6020, Innsbruck, Austria.
| |
Collapse
|
45
|
Bonam SR, Rénia L, Tadepalli G, Bayry J, Kumar HMS. Plasmodium falciparum Malaria Vaccines and Vaccine Adjuvants. Vaccines (Basel) 2021; 9:1072. [PMID: 34696180 PMCID: PMC8541031 DOI: 10.3390/vaccines9101072] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/10/2021] [Accepted: 09/22/2021] [Indexed: 12/02/2022] Open
Abstract
Malaria-a parasite vector-borne disease-is a global health problem, and Plasmodium falciparum has proven to be the deadliest among Plasmodium spp., which causes malaria in humans. Symptoms of the disease range from mild fever and shivering to hemolytic anemia and neurological dysfunctions. The spread of drug resistance and the absence of effective vaccines has made malaria disease an ever-emerging problem. Although progress has been made in understanding the host response to the parasite, various aspects of its biology in its mammalian host are still unclear. In this context, there is a pressing demand for the development of effective preventive and therapeutic strategies, including new drugs and novel adjuvanted vaccines that elicit protective immunity. The present article provides an overview of the current knowledge of anti-malarial immunity against P. falciparum and different options of vaccine candidates in development. A special emphasis has been made on the mechanism of action of clinically used vaccine adjuvants.
Collapse
Affiliation(s)
- Srinivasa Reddy Bonam
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
| | - Laurent Rénia
- A*STAR Infectious Diseases Labs, 8A Biomedical Grove, Singapore 138648, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 308232, Singapore
| | - Ganesh Tadepalli
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| | - Jagadeesh Bayry
- Institut National de la Santé et de la Recherche Médicale, Centre de Recherche des Cordeliers, Equipe-Immunopathologie et Immunointervention Thérapeutique, Sorbonne Université, Université de Paris, F-75006 Paris, France;
- Biological Sciences & Engineering, Indian Institute of Technology Palakkad, Palakkad 678623, India
| | - Halmuthur Mahabalarao Sampath Kumar
- Vaccine Immunology Laboratory, Organic Synthesis and Process Chemistry Division, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, India;
| |
Collapse
|
46
|
Fischer FA, Mies LFM, Nizami S, Pantazi E, Danielli S, Demarco B, Ohlmeyer M, Lee MSJ, Coban C, Kagan JC, Di Daniel E, Bezbradica JS. TBK1 and IKKε act like an OFF switch to limit NLRP3 inflammasome pathway activation. Proc Natl Acad Sci U S A 2021; 118:2009309118. [PMID: 34518217 PMCID: PMC8463895 DOI: 10.1073/pnas.2009309118] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2021] [Indexed: 12/11/2022] Open
Abstract
NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome activation is beneficial during infection and vaccination but, when uncontrolled, is detrimental and contributes to inflammation-driven pathologies. Hence, discovering endogenous mechanisms that regulate NLRP3 activation is important for disease interventions. Activation of NLRP3 is regulated at the transcriptional level and by posttranslational modifications. Here, we describe a posttranslational phospho-switch that licenses NLRP3 activation in macrophages. The ON switch is controlled by the protein phosphatase 2A (PP2A) downstream of a variety of NLRP3 activators in vitro and in lipopolysaccharide-induced peritonitis in vivo. The OFF switch is regulated by two closely related kinases, TANK-binding kinase 1 (TBK1) and I-kappa-B kinase epsilon (IKKε). Pharmacological inhibition of TBK1 and IKKε, as well as simultaneous deletion of TBK1 and IKKε, but not of either kinase alone, increases NLRP3 activation. In addition, TBK1/IKKε inhibitors counteract the effects of PP2A inhibition on inflammasome activity. We find that, mechanistically, TBK1 interacts with NLRP3 and controls the pathway activity at a site distinct from NLRP3-serine 3, previously reported to be under PP2A control. Mutagenesis of NLRP3 confirms serine 3 as an important phospho-switch site but, surprisingly, reveals that this is not the sole site regulated by either TBK1/IKKε or PP2A, because all retain the control over the NLRP3 pathway even when serine 3 is mutated. Altogether, a model emerges whereby TLR-activated TBK1 and IKKε act like a "parking brake" for NLRP3 activation at the time of priming, while PP2A helps remove this parking brake in the presence of NLRP3 activating signals, such as bacterial pore-forming toxins or endogenous danger signals.
Collapse
Affiliation(s)
- Fabian A Fischer
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda F M Mies
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Sohaib Nizami
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom
| | - Eirini Pantazi
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Sara Danielli
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Benjamin Demarco
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Michael Ohlmeyer
- Icahn School of Medicine at Mount Sinai, New York, NY 10029
- Atux Iskay LLC, Plainsboro, NJ 08536
| | - Michelle Sue Jann Lee
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Cevayir Coban
- Division of Malaria Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115
| | - Elena Di Daniel
- Alzheimer's Research UK Oxford Drug Discovery Institute, University of Oxford, Oxford OX3 7FZ, United Kingdom;
| | - Jelena S Bezbradica
- The Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom;
| |
Collapse
|
47
|
Pulendran B, S Arunachalam P, O'Hagan DT. Emerging concepts in the science of vaccine adjuvants. Nat Rev Drug Discov 2021; 20:454-475. [PMID: 33824489 PMCID: PMC8023785 DOI: 10.1038/s41573-021-00163-y] [Citation(s) in RCA: 812] [Impact Index Per Article: 203.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Adjuvants are vaccine components that enhance the magnitude, breadth and durability of the immune response. Following its introduction in the 1920s, alum remained the only adjuvant licensed for human use for the next 70 years. Since the 1990s, a further five adjuvants have been included in licensed vaccines, but the molecular mechanisms by which these adjuvants work remain only partially understood. However, a revolution in our understanding of the activation of the innate immune system through pattern recognition receptors (PRRs) is improving the mechanistic understanding of adjuvants, and recent conceptual advances highlight the notion that tissue damage, different forms of cell death, and metabolic and nutrient sensors can all modulate the innate immune system to activate adaptive immunity. Furthermore, recent advances in the use of systems biology to probe the molecular networks driving immune response to vaccines ('systems vaccinology') are revealing mechanistic insights and providing a new paradigm for the vaccine discovery and development process. Here, we review the 'known knowns' and 'known unknowns' of adjuvants, discuss these emerging concepts and highlight how our expanding knowledge about innate immunity and systems vaccinology are revitalizing the science and development of novel adjuvants for use in vaccines against COVID-19 and future pandemics.
Collapse
Affiliation(s)
- Bali Pulendran
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- Chemistry, Engineering & Medicine for Human Health, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
| | - Prabhu S Arunachalam
- Institute for Immunity, Transplantation and Infection, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | | |
Collapse
|
48
|
Paston SJ, Brentville VA, Symonds P, Durrant LG. Cancer Vaccines, Adjuvants, and Delivery Systems. Front Immunol 2021; 12:627932. [PMID: 33859638 PMCID: PMC8042385 DOI: 10.3389/fimmu.2021.627932] [Citation(s) in RCA: 113] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 03/12/2021] [Indexed: 12/11/2022] Open
Abstract
Vaccination was first pioneered in the 18th century by Edward Jenner and eventually led to the development of the smallpox vaccine and subsequently the eradication of smallpox. The impact of vaccination to prevent infectious diseases has been outstanding with many infections being prevented and a significant decrease in mortality worldwide. Cancer vaccines aim to clear active disease instead of aiming to prevent disease, the only exception being the recently approved vaccine that prevents cancers caused by the Human Papillomavirus. The development of therapeutic cancer vaccines has been disappointing with many early cancer vaccines that showed promise in preclinical models often failing to translate into efficacy in the clinic. In this review we provide an overview of the current vaccine platforms, adjuvants and delivery systems that are currently being investigated or have been approved. With the advent of immune checkpoint inhibitors, we also review the potential of these to be used with cancer vaccines to improve efficacy and help to overcome the immune suppressive tumor microenvironment.
Collapse
Affiliation(s)
| | | | - Peter Symonds
- Biodiscovery Institute, Scancell Limited, Nottingham, United Kingdom
| | - Lindy G. Durrant
- Biodiscovery Institute, University of Nottingham, Faculty of Medicine and Health Sciences, Nottingham, United Kingdom
| |
Collapse
|
49
|
Natural and Synthetic Saponins as Vaccine Adjuvants. Vaccines (Basel) 2021; 9:vaccines9030222. [PMID: 33807582 PMCID: PMC8001307 DOI: 10.3390/vaccines9030222] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/20/2022] Open
Abstract
Saponin adjuvants have been extensively studied for their use in veterinary and human vaccines. Among them, QS-21 stands out owing to its unique profile of immunostimulating activity, inducing a balanced Th1/Th2 immunity, which is valuable to a broad scope of applications in combating various microbial pathogens, cancers, and other diseases. It has recently been approved for use in human vaccines as a key component of combination adjuvants, e.g., AS01b in Shingrix® for herpes zoster. Despite its usefulness in research and clinic, the cellular and molecular mechanisms of QS-21 and other saponin adjuvants are poorly understood. Extensive efforts have been devoted to studies for understanding the mechanisms of QS-21 in different formulations and in different combinations with other adjuvants, and to medicinal chemistry studies for gaining mechanistic insights and development of practical alternatives to QS-21 that can circumvent its inherent drawbacks. In this review, we briefly summarize the current understandings of the mechanism underlying QS-21’s adjuvanticity and the encouraging results from recent structure-activity-relationship (SAR) studies.
Collapse
|
50
|
Bouazzaoui A, Abdellatif AAH, Al-Allaf FA, Bogari NM, Al-Dehlawi S, Qari SH. Strategies for Vaccination: Conventional Vaccine Approaches Versus New-Generation Strategies in Combination with Adjuvants. Pharmaceutics 2021; 13:pharmaceutics13020140. [PMID: 33499096 PMCID: PMC7911318 DOI: 10.3390/pharmaceutics13020140] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/08/2023] Open
Abstract
The current COVID-19 pandemic, caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), has raised significant economic, social, and psychological concerns. The rapid spread of the virus, coupled with the absence of vaccines and antiviral treatments for SARS-CoV-2, has galvanized a major global endeavor to develop effective vaccines. Within a matter of just a few months of the initial outbreak, research teams worldwide, adopting a range of different strategies, embarked on a quest to develop effective vaccine that could be effectively used to suppress this virulent pathogen. In this review, we describe conventional approaches to vaccine development, including strategies employing proteins, peptides, and attenuated or inactivated pathogens in combination with adjuvants (including genetic adjuvants). We also present details of the novel strategies that were adopted by different research groups to successfully transfer recombinantly expressed antigens while using viral vectors (adenoviral and retroviral) and non-viral delivery systems, and how recently developed methods have been applied in order to produce vaccines that are based on mRNA, self-amplifying RNA (saRNA), and trans-amplifying RNA (taRNA). Moreover, we discuss the methods that are being used to enhance mRNA stability and protein production, the advantages and disadvantages of different methods, and the challenges that are encountered during the development of effective vaccines.
Collapse
Affiliation(s)
- Abdellatif Bouazzaoui
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Correspondence: or
| | - Ahmed A. H. Abdellatif
- Department of Pharmaceutics, College of Pharmacy, Qassim University, Qassim 51452, Saudi Arabia;
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Al-Azhar University, Assiut 71524, Egypt
| | - Faisal A. Al-Allaf
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
- Science and Technology Unit, Umm Al Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia
- Department of Laboratory and Blood Bank, Molecular Diagnostics Unit, King Abdullah Medical City, Makkah 21955, Saudi Arabia
| | - Neda M. Bogari
- Department of Medical Genetics, Faculty of Medicine, Umm Al-Qura University, P.O. Box 715, Makkah 21955, Saudi Arabia; (F.A.A.-A.); (N.M.B.)
| | | | - Sameer H. Qari
- Biology Department, Aljumum University College, Umm Al-Qura University, Makkah 21955, Saudi Arabia;
| |
Collapse
|