1
|
Ilich NL, Saifzadeh S, Hutmacher DW, Dargaville TR. Dynamic versus static testing and in vivo mechanical performance of poly(glycolide-trimethylene carbonate-ε-caprolactone) delayed release implants. J Control Release 2025; 380:175-184. [PMID: 39900226 DOI: 10.1016/j.jconrel.2025.01.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/10/2025] [Accepted: 01/31/2025] [Indexed: 02/05/2025]
Abstract
The manufacturing of millimeter-sized implants for delayed drug release presents several challenges. However, it allows for the encapsulation of a therapeutic agent within a single device, enabling precise control over factors such as geometry, polymer composition, and drug formulation. The relatively large size, however, means that when inserted into subcutaneous tissue the implants experience mechanical stresses that are not predicted by current in vitro methods consisting of incubation under static conditions. The absence of a suitable in vitro assay complicates the device development process, often resulting in unsuccessful preclinical testing. This study presents the fabrication of flexible implants of poly(glycolide-co-trimethylene carbonate-co-ε-caprolactone), in vitro degradation, and performance when implanted subcutaneously in rats. Predicting the in vivo behaviour is addressed by the development of a scalable, high-throughput, cyclic flexural testing system. Flexural loading of the implant demonstrates a clear impact on loss in mechanical properties compared to static conditions in lipoprotein lipase. Under static conditions, a lag time of 60 days is observed before sustained release of the model dye. Conversely, the flexural loading assay results in early fracture by 20 days consistent with what is observed in the animal model. Decisively, this study emphasizes the importance of tailoring in vitro assays according to the dosage form and intended mode of administration. Implementation of a dynamic in vitro assay is invaluable to efficiently evaluate device viability and release kinetics and will, in turn, allow a more streamlined workflow for translation into preclinical models.
Collapse
Affiliation(s)
- Norman L Ilich
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 1 George Street, Brisbane, QLD 4000, Australia; Centre for Materials Science, School of Chemistry & Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia
| | - Siamak Saifzadeh
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 1 George Street, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 20 Musk Avenue, Kelvin Grove, QLD 4059, Australia; Medical Engineering Research Facility, Queensland University of Technology, Chermside, QLD 4032, Australia
| | - Dietmar W Hutmacher
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 1 George Street, Brisbane, QLD 4000, Australia; Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 20 Musk Avenue, Kelvin Grove, QLD 4059, Australia; Max Planck Queensland Center (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Tim R Dargaville
- Australian Research Council Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology, 1 George Street, Brisbane, QLD 4000, Australia; Centre for Materials Science, School of Chemistry & Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, Queensland 4000, Australia; Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, 20 Musk Avenue, Kelvin Grove, QLD 4059, Australia; Max Planck Queensland Center (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4000, Australia.
| |
Collapse
|
2
|
Onyenso G, Vakamulla Raghu SN, Hartwich P, Killian MS. Modulated-Diameter Zirconia Nanotubes for Controlled Drug Release-Bye to the Burst. J Funct Biomater 2025; 16:37. [PMID: 39997571 PMCID: PMC11856647 DOI: 10.3390/jfb16020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/26/2025] Open
Abstract
The performance of an orthopedic procedure depends on several tandem functionalities. Such characteristics include materials' surface properties and subsequent responses. Implant surfaces are typically roughened; this roughness can further be optimized to a specific morphology such as nanotubular roughness (ZrNTs) and the surfaces can further be used as static drug reservoirs. ZrNTs coatings are attracting interest due to their potential to improve the success rate of implant systems, by means of better physical affixation and also micro/nano physio-chemical interaction with the extracellular matrix (ECM). Effective control over the drug release properties from such coatings has been the subject of several published reports. In this study, a novel and simple approach to extending drug release time and limiting the undesirable burst release from zirconia nanotubes (ZrNTs) via structural modification was demonstrated. The latter involved fabricating a double-layered structure with a modulated diameter and was achieved by varying the voltage and time during electrochemical anodization. The structurally modified ZrNTs and their homogenous equivalents were characterized via SEM and ToF-SIMS, and their drug release properties were monitored and compared using UV-Vis spectroscopy. We report a significant reduction in the initial burst release phenomenon and enhanced overall release time. The simple structural modification of ZrNTs can successfully enhance drug release performance, allowing for flexibility in designing drug delivery coatings for specific implant challenges, and offering a new horizon for smart biomaterials based on metal oxide nanostructures.
Collapse
Affiliation(s)
| | - Swathi Naidu Vakamulla Raghu
- Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany; (G.O.); (P.H.)
| | | | - Manuela Sonja Killian
- Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany; (G.O.); (P.H.)
| |
Collapse
|
3
|
Dini C, Borges MHR, Malheiros SS, Piazza RD, van den Beucken JJJP, de Avila ED, Souza JGS, Barão VAR. Progress in Designing Therapeutic Antimicrobial Hydrogels Targeting Implant-associated Infections: Paving the Way for a Sustainable Platform Applied to Biomedical Devices. Adv Healthc Mater 2025; 14:e2402926. [PMID: 39440583 DOI: 10.1002/adhm.202402926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Implantable biomedical devices have found widespread use in restoring lost functions or structures within the human body, but they face a significant challenge from microbial-related infections, which often lead to implant failure. In this context, antimicrobial hydrogels emerge as a promising strategy for treating implant-associated infections owing to their tunable physicochemical properties. However, the literature lacks a comprehensive analysis of antimicrobial hydrogels, encompassing their development, mechanisms, and effect on implant-associated infections, mainly in light of existing in vitro, in vivo, and clinical evidence. Thus, this review addresses the strategies employed by existing studies to tailor hydrogel properties to meet the specific needs of each application. Furthermore, this comprehensive review critically appraises the development of antimicrobial hydrogels, with a particular focus on solving infections related to metallic orthopedic or dental implants. Then, preclinical and clinical studies centering on providing quantitative microbiological results associated with the application of antimicrobial hydrogels are systematically summarized. Overall, antimicrobial hydrogels benefit from the tunable properties of polymers and hold promise as an effective strategy for the local treatment of implant-associated infections. However, future clinical investigations, grounded on robust evidence from in vitro and preclinical studies, are required to explore and validate new antimicrobial hydrogels for clinical use.
Collapse
Affiliation(s)
- Caroline Dini
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Maria Helena Rossy Borges
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Samuel Santana Malheiros
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| | - Rodolfo Debone Piazza
- Physical Chemistry Department, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, São Paulo, 14800-900, Brazil
| | | | - Erica Dorigatti de Avila
- Department of Dental Materials and Prosthodontics, School of Dentistry at Araçatuba, São Paulo State University (UNESP), Araçatuba, São Paulo, 16015-050, Brazil
| | - João Gabriel S Souza
- Dental Research Division, Guarulhos University (UNG), Guarulhos, São Paulo, 07023-070, Brazil
| | - Valentim A R Barão
- Department of Prosthodontics and Periodontology, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, 13414-903, Brazil
| |
Collapse
|
4
|
Huanbutta K, Puri V, Sharma A, Singh I, Sriamornsak P, Sangnim T. Rise of implantable drugs: A chronicle of breakthroughs in drug delivery systems. Saudi Pharm J 2024; 32:102193. [PMID: 39564378 PMCID: PMC11570717 DOI: 10.1016/j.jsps.2024.102193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
In recent years, implantable drug delivery systems (IDDSs) have undergone significant advancements because they offer many advantages to patients and health care professionals. Miniaturization has reduced the size of these devices, making them less invasive and easier to implant. Remote control provides more precise medication delivery and dosage. Biodegradable implants are an additional advancement in implantable drug delivery systems that eliminate the need for surgical removal. Smart implants can monitor a patient's condition and adjust their drug doses. Long-acting implants also provide sustained drug delivery for months or even years, eliminating the need for regular medication dosing, and wireless power and data transmission technology enables the use of devices that are more comfortable and less invasive. These innovations have enhanced patient outcomes by enabling more precise administration, sustained drug delivery, and improved health care monitoring. With continued research and development, it is anticipated that IDDSs will become more effective and provide patients with improved health outcomes. This review categorizes and discusses the benefits and limitations of recent novel IDDSs for their potential therapeutic use.
Collapse
Affiliation(s)
- Kampanart Huanbutta
- Department of Manufacturing Pharmacy, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Vivek Puri
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Ameya Sharma
- Chitkara University School of Pharmacy, Chitkara University, Himachal Pradesh 174103, India
| | - Inderbir Singh
- Chitkara College of Pharmacy, Chitkara University, Patiala 140401, Punjab, India
| | - Pornsak Sriamornsak
- Department of Industrial Pharmacy, Faculty of Pharmacy, Silpakorn University, Nakhon Pathom 73000, Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok 10300, Thailand
- Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Tanikan Sangnim
- Faculty of Pharmaceutical Sciences, Burapha University, Chonburi 20131, Thailand
| |
Collapse
|
5
|
Dedeloudi A, Martinez-Marcos L, Quinten T, Andersen S, Lamprou DA. Biopolymeric 3D printed implantable scaffolds as a potential adjuvant treatment for acute post-operative pain management. Expert Opin Drug Deliv 2024; 21:1651-1663. [PMID: 38555481 DOI: 10.1080/17425247.2024.2336492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Pain is characterized as a major symptom induced by tissue damage occurring from surgical procedures, whose potency is being experienced subjectively, while current pain relief strategies are not always efficient in providing individualized treatment. 3D printed implantable devices hold the potential to offer a precise and customized medicinal approach, targeting both tissue engineering and drug delivery. RESEARCH DESIGN AND METHODS Polycaprolactone (PCL) and PCL - chitosan (CS) composite scaffolds loaded with procaine (PRC) were fabricated by bioprinting. Geometrical features including dimensions, pattern, and infill of the scaffolds were mathematically optimized and digitally determined, aiming at developing structurally uniform 3D printed models. Printability studies based on thermal imaging of the bioprinting system were performed, and physicochemical, surface, and mechanical attributes of the extruded scaffolds were evaluated. The release rate of PRC was examined at different time intervals up to 1 week. RESULTS Physicochemical stability and mechanical integrity of the scaffolds were studied, while in vitro drug release studies revealed that CS contributes to the sustained release dynamic of PRC. CONCLUSIONS The printing extrusion process was capable of developing implantable devices for a local and sustained delivery of PRC as a 7-day adjuvant regimen in post-operative pain management.
Collapse
Affiliation(s)
| | - Laura Martinez-Marcos
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Thomas Quinten
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | - Sune Andersen
- Janssen Pharmaceutica, Oral Solids Development (OSD) Research & Development Department, Beerse, Belgium
| | | |
Collapse
|
6
|
Burkhanbayeva T, Ukhov A, Assylbekova D, Mussina Z, Kurzina I, Abilkasova S, Bakibaev A, Issabayeva M, Yerkassov R, Shaikhova Z. The Role of Methods for Applying Cucurbit[6]uril to Hydroxyapatite for the Morphological Tuning of Its Surface in the Process of Obtaining Composite Materials. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4995. [PMID: 39459700 PMCID: PMC11509702 DOI: 10.3390/ma17204995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024]
Abstract
In this work, composite materials were obtained for the first time using various methods and the dependences of the resulting surface morphologies were investigated. This involves modifying the surface with cucurbit[n]urils, which are highly promising macrocyclic compounds. The process includes applying cucurbit[6]uril to the hydroxyapatite surface in water using different modification techniques. The first method involved precipitating a dispersion of CB[6] in undissolved form in water. The second method involved using fully dissolved CB[6] in deionized water, after which the composite materials were dried to constant weight. The third method involved several steps: first, CB[6] was dissolved in deionized water, then, upon heating, a dispersion of CB[6] was formed on the surface of HA. The fourth method involved using ultrasonic treatment. All four methods yielded materials with different surface morphologies, which were studied and characterized using techniques such as infrared (IR) spectroscopy and scanning electron microscopy (SEM). Based on these results, it is possible to vary the properties and surface morphology of the obtained materials. Depending on the method of applying CB[6] to the surface and inside the HA scaffold, it is possible to adjust the composition and structure of the target composite materials. The methods for applying CB[6] to the hydroxyapatite surface enhance its versatility and compatibility with the body's environment, which is crucial for developing new functional composite materials. This includes leveraging supramolecular systems based on the CB[n] family. The obtained results can be used to model the processes of obtaining biocomposite materials, as well as to predict the properties of future materials with biological activity.
Collapse
Affiliation(s)
- Tolkynay Burkhanbayeva
- Chemistry Department, Faculty of Natural Sciences, L. N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Arthur Ukhov
- Chemistry Department, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (I.K.); (A.B.)
| | - Dina Assylbekova
- High School of Chemical Engineering and Biotechnology, M. Auezov South Kazakhstan University, Shymkent 160012, Kazakhstan;
| | - Zukhra Mussina
- Department of Chemistry, Chemical Technology and Ecology, Almaty Technological University, Almaty 050012, Kazakhstan; (Z.M.); (S.A.); (Z.S.)
| | - Irina Kurzina
- Chemistry Department, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (I.K.); (A.B.)
| | - Sandugash Abilkasova
- Department of Chemistry, Chemical Technology and Ecology, Almaty Technological University, Almaty 050012, Kazakhstan; (Z.M.); (S.A.); (Z.S.)
| | - Abdigali Bakibaev
- Chemistry Department, National Research Tomsk State University, Arkady Ivanov St. 49, 634028 Tomsk, Russia; (A.U.); (I.K.); (A.B.)
| | - Manar Issabayeva
- Department of Chemistry and Chemical Technology, “Toraighyrov University” NCJSC, Pavlodar 140008, Kazakhstan;
| | - Rakhmetulla Yerkassov
- Chemistry Department, Faculty of Natural Sciences, L. N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan;
| | - Zhanat Shaikhova
- Department of Chemistry, Chemical Technology and Ecology, Almaty Technological University, Almaty 050012, Kazakhstan; (Z.M.); (S.A.); (Z.S.)
| |
Collapse
|
7
|
Yi H, Yu H, Wang L, Wang Y, Ouyang C, Keshta BE. Microneedle transdermal drug delivery as a candidate for the treatment of gouty arthritis: Material structure, design strategies and prospects. Acta Biomater 2024; 187:20-50. [PMID: 39182801 DOI: 10.1016/j.actbio.2024.08.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/01/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Gouty arthritis (GA) is caused by monosodium urate (MSU) crystals deposition. GA is difficult to cure because of its complex disease mechanism and the tendency to reoccur. GA patients require long-term uric acid-lowering and anti-inflammatory treatments. In the past ten years, as a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles (MNs) administration has been continuously developed, which can realize various drug release modes to deal with various complex diseases. Compared with the traditional administration methods (oral and injection), MNs are more conducive to the long-term independent treatment of GA patients because of their safe, efficient and controllable drug delivery ability. In this review, the pathological mechanism of GA and common therapeutic drugs for GA are summarized. After that, MNs drug delivery mechanisms were summarized: dissolution release mechanism, swelling release mechanism and channel-assisted release mechanism. According to drug delivery patterns of MNs, the mechanisms and applications of rapid-release MNs, long-acting MNs, intelligent-release MNs and multiple-release MNs were reviewed. Additionally, existing problems and future trends of MNs in the treatment of GA were also discussed. STATEMENT OF SIGNIFICANCE: Gout is an arthritis caused by metabolic disease "hyperuricemia". Epidemiological studies show that the number of gouty patients is increasing rapidly worldwide. Due to the complex disease mechanism and recurrent nature of gout, gouty patients require long-term therapy. However, traditional drug delivery modes (oral and injectable) have poor adherence, low drug utilization, and lack of local localized targeting. They may lead to adverse effects such as rashes and gastrointestinal reactions. As a painless, convenient and well-tolerated new drug transdermal delivery method, microneedles have been continuously developed, which can realize various drug release modes to deal with gouty arthritis. In this review, the material structure, design strategy and future outlook of microneedles for treating gouty arthritis will be reviewed.
Collapse
Affiliation(s)
- Hong Yi
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China; Zhejiang-Russia Joint Laboratory of Photo-Electron-Megnetic Functional Materials, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China.
| | - Yu Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| | - Basem E Keshta
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
8
|
Elshebiney SA, Elgohary RA, El-Shamarka ME, Mabrouk M, Beheri HH. A novel tramadol-polycaprolactone implant could palliate heroin conditioned place preference and withdrawal in rats: behavioral and neurochemical study. Behav Pharmacol 2024; 35:280-292. [PMID: 38900102 DOI: 10.1097/fbp.0000000000000778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Drug dependence is a chronic brain disease characterized by craving and recurrent episodes of relapse. Tramadol HCl is a promising agent for withdrawal symptoms management, considering its relatively low abuse potential and safety. Oral administration, however, is not preferred in abstinence maintenance programs. Introducing an implantable, long-lasting formula is suggested to help outpatient abstinence programs achieve higher rates of treatment continuation. Tramadol implants (T350 and T650) were prepared on polycaprolactone polymer ribbons by the wet method. Male Wistar rats were adapted to heroin-conditioned place preference (CPP) at escalating doses (3-30 mg/kg, intraperitoneally, for 14 days). Implants were surgically implanted in the back skin of rats. After 14 days, the CPP score was recorded. Naloxone (1 mg/kg, intraperitoneally) was used to induce withdrawal on day 15, and symptoms were scored. Elevated plus maze and open field tests were performed for anxiety-related symptoms. Striata were analyzed for neurochemical changes reflected in dopamine, 3,4-dihydroxyphenyl acetic acid, gamma-aminobutyric acid, and serotonin levels. Brain oxidative changes including glutathione and lipid peroxides were assessed. The tramadol implants (T350 and T650) reduced heroin CPP and limited naloxone-induced withdrawal symptoms. The striata showed increased levels of 3,4-dihydroxyphenyl acetic acid, and serotonin and decreased levels of gamma-aminobutyric acid and dopamine after heroin withdrawal induction, which were reversed after implanting T350 and T650. Implants restore the brain oxidative state. Nonsignificant low naloxone-induced withdrawal score after the implant was used in naive subjects indicating low abuse potential of the implants. The presented tramadol implants were effective at diminishing heroin CPP and withdrawal in rats, suggesting further investigations for application in the management of opioid withdrawal.
Collapse
Affiliation(s)
- Shaimaa A Elshebiney
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Rania A Elgohary
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Marwa E El-Shamarka
- Narcotics, Ergogenics, and Poisons Department, Medical Research and Clinical Studies Institute, National Research Centre (NRC)
| | - Mostafa Mabrouk
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre (NRC), Giza, Egypt
| | - Hanan H Beheri
- Refractories, Ceramics and Building Materials Department, Advanced Materials, Technology and Mineral Resources Research Institute, National Research Centre (NRC), Giza, Egypt
| |
Collapse
|
9
|
Voznyuk AA, Makarets YA, Advakhova DY, Khafizov KA, Lugovoi ME, Zakharova VA, Senatov FS, Koudan EV. Biodegradable Local Chemotherapy Platform with Prolonged and Controlled Release of Doxorubicin for the Prevention of Local Tumor Recurrence. ACS APPLIED BIO MATERIALS 2024; 7:2472-2487. [PMID: 38480461 DOI: 10.1021/acsabm.4c00078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Local recurrence after surgical and therapeutic treatment remains a significant clinical problem in oncology. Recurrence may be due to imperfections in existing therapies, particularly chemotherapy. To improve antitumor activity and prevent local cancer recurrence while keeping toxicity at acceptable levels, we have developed and demonstrated a biodegradable local chemotherapy platform that provides controlled and prolonged drug release. The platform consists of a polycaprolactone (PCL) substrate, which provides the structural integrity of the platform and the predominant unidirectional drug release, and a thin multilayer coating (∼200 nm) containing doxorubicin (DOX). The coating is an electrostatic complex obtained by the layer-by-layer (LbL) assembly and consists of natural polyelectrolytes [poly-γ-glutamic acid (γ-PGA) and chitosan (CS) or poly-l-lysine (PLL)]. To improve the release stability, an ionic conjugate of DOX and γ-PGA was prepared and incorporated into the multilayer coating. By varying the structure of the coating by adding empty (without DOX) bilayers, we were able to control the kinetics of drug release. The resulting platforms contained equal numbers of empty bilayers and DOX-loaded bilayers (15 + 15 or 30 + 30 bilayers) with a maximum loading of 566 ng/cm2. The platforms demonstrated prolonged and fairly uniform drug release for more than 5 months while retaining antitumor activity in vitro on ovarian cancer cells (SKOV-3). The empty platforms (without DOX) showed good cytocompatibility and no cytotoxicity to human fibroblasts and SKOV-3 cells. This study presents the development of a local chemotherapy platform consisting of a PCL-based substrate which provides structural stability and a biodegradable polyelectrolyte layered coating which combines layers containing a polyanion ionic complex with DOX with empty bilayers to ensure prolonged and controlled drug release. Our results may provide a basis for improving the efficacy of chemotherapy using drug delivery systems.
Collapse
Affiliation(s)
- Amina A Voznyuk
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Yulia A Makarets
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Darya Yu Advakhova
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Krestina A Khafizov
- Haute École de la Province de Namur, Henri Blès st. 192, Namur 5000, Belgium
| | - Maksim E Lugovoi
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Vasilina A Zakharova
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Fedor S Senatov
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| | - Elizaveta V Koudan
- National University of Science and Technology MISIS, Leninskiy pr. 4, Moscow 119049, Russian Federation
| |
Collapse
|
10
|
Bhat K, Schlotterose L, Hanke L, Helmholz H, Quandt E, Hattermann K, Willumeit-Römer R. Magnesium-lithium thin films for neurological applications-An in vitro investigation of glial cytocompatibility and neuroinflammatory response. Acta Biomater 2024; 178:307-319. [PMID: 38382831 DOI: 10.1016/j.actbio.2024.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Lithium (Li), a widely used drug for bipolar disorder management, is associated with many side effects due to systemic exposure. The localized delivery of lithium through implants could be an approach to overcome this challenge, for which biodegradable magnesium (Mg)-based materials are a promising choice. In this study, we focus on Mg-Li thin film alloys as potential Li-releasing implants. Therefore, we investigated the in vitro short-term corrosion behavior and cytocompatibility of two alloys, Mg-1.6wt%Li and Mg-9.5wt%Li. As glial cells are the key players of foreign body responses to implants, we used human glial cell lines for cytocompatibility studies, and a murine brain slice model for a more holistic view at the neuroinflammatory response. We found that Mg-1.6wt%Li corrodes approximately six times slower than Mg-9.5wt%Li. Microscopic analysis showed that the material surface (Mg-1.6wt%Li) is suitable for cell adhesion. The cytocompatibility test with Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts revealed that both cell types proliferated well up to 10 mM Mg concentration, irrespective of the Li concentration. In the murine brain slice model, Mg-1.6wt%Li and Mg-9.5wt%Li alloy extracts did not provoke a significant upregulation of glial inflammatory/ reactivity markers (IL-1β, IL-6, FN1, TNC) after 24 h of exposure. Furthermore, the gene expression of IL-1β (up to 3-fold) and IL-6 (up to 16-fold) were significantly downregulated after 96 h, and IL-6 downregulation showed a Li concentration dependency. Together, these results indicate the acute cytocompatibility of two Mg-Li thin film alloys and provide basis for future studies to explore promising applications of the material. STATEMENT OF SIGNIFICANCE: We propose the idea of lithium delivery to the brain via biodegradable implants to reduce systemic side effects of lithium for bipolar disorder therapy and other neurological applications. This is the first in vitro study investigating Mg-xLi thin film degradation under physiological conditions and its influence on cellular responses such as proliferation, viability, morphology and inflammation. Utilizing human brain-derived cell lines, we showed that the material surface of such a thin film alloy is suitable for normal cell attachment. Using murine brain slices, which comprise a multicellular network, we demonstrated that the material extracts did not elicit a pro-inflammatory response. These results substantiate that degradable Mg-Li materials are biocompatible and support the further investigation of their potential as neurological implants.
Collapse
Affiliation(s)
- Krathika Bhat
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| | - Luise Schlotterose
- Institute of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Lisa Hanke
- Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Heike Helmholz
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eckhard Quandt
- Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kirsten Hattermann
- Institute of Anatomy, Kiel University, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Regine Willumeit-Römer
- Institute of Metallic Biomaterials, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
11
|
Muhammad T, Park B, Intisar A, Kim MS, Park JK, Kim S. An Ultrasoft and Flexible PDMS-Based Balloon-Type Implantable Device for Controlled Drug Delivery. Biomater Res 2024; 28:0012. [PMID: 38560578 PMCID: PMC10981933 DOI: 10.34133/bmr.0012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/12/2024] [Indexed: 04/04/2024] Open
Abstract
Non-biodegradable implants have undergone extensive investigation as drug delivery devices to enable advanced healthcare toward personalized medicine. However, fibroblast encapsulation is one of the major challenges in all non-biodegradable implants, besides other challenges such as high initial burst, risk of membrane rupture, high onset time, non-conformal contact with tissues, and tissue damage. To tackle such challenges, we propose a novel ultrasoft and flexible balloon-type drug delivery device for unidirectional and long-term controlled release. The ultrasoft balloon-type device (USBD) was fabricated by using selective bonding between 2 polydimethylsiloxane (PDMS) membranes and injecting a fluid into the non-bonded area between them. The balloon acted as a reservoir containing a liquid drug, and at the same time, the membrane of the balloon itself acted as the pathway for release based on diffusion. The release was modulated by tuning the thickness and composition of the PDMS membrane. Regardless of the thickness and composition, all devices exhibited zero-order release behavior. The longest zero-order release and nearly zero-order release were achieved for 30 days and 58 days at a release rate of 1.16 μg/day and 1.68 μg/day, respectively. In vivo evaluation was performed for 35 days in living rats, where the USBD maintained zero-order and nearly zero-order release for 28 days and 35 days, respectively. Thanks to the employment of ultrasoft and flexible membranes and device design, the USBD could achieve minimal tissue damage and foreign body responses. It is expected that the proposed device may provide a novel approach for long-term drug delivery with new therapeutic modalities.
Collapse
Affiliation(s)
- Tausif Muhammad
- Department of Robotics and Mechatronics Engineering,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Byungwook Park
- Department of Robotics and Mechatronics Engineering,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Aseer Intisar
- Department of New Biology,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Minseok S. Kim
- Department of New Biology,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Jin-Kyu Park
- Department of Veterinary Pathology, College of Veterinary Medicine,
Kyungpook National University, Daegu 41566, Republic of Korea
| | - Sohee Kim
- Department of Robotics and Mechatronics Engineering,
Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| |
Collapse
|
12
|
Zhang J, Tang K, Liu Z, Zhang Z, Duan S, Wang H, Yang H, Yang D, Fan W. Tumor microenvironment-responsive degradable silica nanoparticles: design principles and precision theranostic applications. NANOSCALE HORIZONS 2024; 9:186-214. [PMID: 38164973 DOI: 10.1039/d3nh00388d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Silica nanoparticles have emerged as promising candidates in the field of nanomedicine due to their remarkable versatility and customizable properties. However, concerns about their potential toxicity in healthy tissues and organs have hindered their widespread clinical translation. To address this challenge, significant attention has been directed toward a specific subset of silica nanoparticles, namely degradable silica nanoparticles, primarily because of their excellent biocompatibility and responsive biodegradability. In this review, we provide a comprehensive understanding of degradable silica nanoparticles, categorizing them into two distinct groups: inorganic species-doped and organic moiety-doped silica nanoparticles based on their framework components. Next, the recent progress of tumor microenvironment (TME)-responsive degradable silica nanoparticles for precision theranostic applications is summarized in detail. Finally, current bottlenecks and future opportunities of theranostic nanomedicines based on degradable silica nanoparticles in clinical applications are also outlined and discussed. The aim of this comprehensive review is to shed light on the potential of degradable silica nanoparticles in addressing current challenges in nanomedicine, offering insights into their design, applications in tumor diagnosis and treatment, and paving the way for future advancements in clinical theranostic nanomedicines.
Collapse
Affiliation(s)
- Junjie Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Kaiyuan Tang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zilu Liu
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Zhijing Zhang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Shufan Duan
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Wang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Hui Yang
- School of Fundamental Sciences, Bengbu Medical College, Bengbu 233030, P. R. China.
| | - Dongliang Yang
- Nanjing Polytechnic Institute, Nanjing 210048, P. R. China.
| | - Wenpei Fan
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing 211198, P. R. China.
| |
Collapse
|
13
|
Amani Hamedani H, Stegall T, Yang Y, Wang H, Menon A, Bhalotia A, Karathanasis E, Capadona JR, Hess-Dunning A. Flexible multifunctional titania nanotube array platform for biological interfacing. MRS BULLETIN 2023; 49:299-309. [PMID: 38645611 PMCID: PMC11026245 DOI: 10.1557/s43577-023-00628-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 10/19/2023] [Indexed: 04/23/2024]
Abstract
Abstract The current work presents a novel flexible multifunctional platform for biological interface applications. The use of titania nanotube arrays (TNAs) as a multifunctional material is explored for soft-tissue interface applications. In vitro biocompatibility of TNAs to brain-derived cells was first examined by culturing microglia cells-the resident immune cells of the central nervous system on the surface of TNAs. The release profile of an anti-inflammatory drug, dexamethasone from TNAs-on-polyimide substrates, was then evaluated under different bending modes. Flexible TNAs-on-polyimide sustained a linear release of anti-inflammatory dexamethasone up to ~11 days under different bending conditions. Finally, microfabrication processes for patterning and transferring TNA microsegments were developed to facilitate structural stability during device flexing and to expand the set of compatible polymer substrates. The techniques developed in this study can be applied to integrate TNAs or other similar nanoporous inorganic films onto various polymer substrates. Impact statement Titania nanotube arrays (TNAs) are highly tunable and biocompatible structures that lend themselves to multifunctional implementation in implanted devices. A particularly important aspect of titania nanotubes is their ability to serve as nano-reservoirs for drugs or other therapeutic agents that slowly release after implantation. To date, TNAs have been used to promote integration with rigid, dense tissues for dental and orthopedic applications. This work aims to expand the implant applications that can benefit from TNAs by integrating them onto soft polymer substrates, thereby promoting compatibility with soft tissues. The successful direct growth and integration of TNAs on polymer substrates mark a critical step toward developing mechanically compliant implantable systems with drug delivery from nanostructured inorganic functional materials. Diffusion-driven release kinetics and the high drug-loading efficiency of TNAs offer tremendous potential for sustained drug delivery for scientific investigations, to treat injury and disease, and to promote device integration with biological tissues. This work opens new opportunities for developing novel and more effective implanted devices that can significantly improve patient outcomes and quality of life. Graphical abstract Supplementary information The online version contains supplementary material available at 10.1557/s43577-023-00628-y.
Collapse
Affiliation(s)
- Hoda Amani Hamedani
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
- Department of Materials Science and Engineering, Case Western Reserve University, Cleveland, USA
| | - Thomas Stegall
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Yi Yang
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, USA
| | - Haochen Wang
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, USA
| | - Ashwin Menon
- Department of Mechanical Engineering, Case Western Reserve University, Cleveland, USA
| | - Anubhuti Bhalotia
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Efstathios Karathanasis
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Case Comprehensive Cancer Center, School of Medicine, Case Western Reserve University, Cleveland, USA
| | - Jeffrey R. Capadona
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
| | - Allison Hess-Dunning
- Advanced Platform Technology Center, Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, USA
- Department of Biomedical Engineering, Case Western Reserve University, Cleveland, USA
- Department of Electrical, Computer, and Systems Engineering, Case Western Reserve University, Cleveland, USA
| |
Collapse
|
14
|
Alrashdan M, Shraideh ZA, Abulateefeh SR. Optimizing formulation parameters for the development of carvedilol injectable in situ forming depots. Pharm Dev Technol 2023; 28:865-876. [PMID: 37795865 DOI: 10.1080/10837450.2023.2267673] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 10/03/2023] [Indexed: 10/06/2023]
Abstract
In situ forming depots (ISFDs) represent attractive alternatives to the conventional sustained drug delivery systems. Carvedilol, a short half-life drug used on a daily basis to manage chronic conditions, could benefit from this technology. The aim of this work was to develop, for the first time, a new injectable long-acting carvedilol-ISFD. Accordingly, 4 different grades of polyesters with varying properties as i) lactide-to glycolide ratio (polylactide-co-glycolide (PLGA) vs. polylactide (PLA)), and ii) end functionality (acid- vs. ester-capped) were utilized for the preparation of ISFD formulations. In addition, 4 different organic solvents with varying properties (i.e. N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), ethyl acetate, and benzyl benzoate) were also investigated. It was found that NMP and DMSO were more suitable for the formation of depots. Furthermore, all ISFD formulations demonstrated excellent encapsulation efficiency (i.e. 96-98%). Interestingly, both PLGA-based ISFDs (acid-capped and ester-capped) exhibited similar release behaviors and were able to extend carvedilol release over 30 days. On the other hand, acid-capped and ester-capped PLA-based ISFDs exhibited slower release over the 30 days with an average release of only 36% and 60%, respectively. In conclusion, the developed carvedilol-ISFDs resulted in a tunable extended-release behavior, simply by choosing the appropriate grade of polymer. These results open the door toward a novel injectable carvedilol-ISFD formulation.
Collapse
Affiliation(s)
- Majd Alrashdan
- School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Ziad A Shraideh
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | | |
Collapse
|
15
|
Vora LK, Sabri AH, Naser Y, Himawan A, Hutton ARJ, Anjani QK, Volpe-Zanutto F, Mishra D, Li M, Rodgers AM, Paredes AJ, Larrañeta E, Thakur RRS, Donnelly RF. Long-acting microneedle formulations. Adv Drug Deliv Rev 2023; 201:115055. [PMID: 37597586 DOI: 10.1016/j.addr.2023.115055] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
The minimally-invasive and painless nature of microneedle (MN) application has enabled the technology to obviate many issues with injectable drug delivery. MNs not only administer therapeutics directly into the dermal and ocular space, but they can also control the release profile of the active compound over a desired period. To enable prolonged delivery of payloads, various MN types have been proposed and evaluated, including dissolving MNs, polymeric MNs loaded or coated with nanoparticles, fast-separable MNs hollow MNs, and hydrogel MNs. These intricate yet intelligent delivery platforms provide an attractive approach to decrease side effects and administration frequency, thus offer the potential to increase patient compliance. In this review, MN formulations that are loaded with various therapeutics for long-acting delivery to address the clinical needs of a myriad of diseases are discussed. We also highlight the design aspects, such as polymer selection and MN geometry, in addition to computational and mathematical modeling of MNs that are necessary to help streamline and develop MNs with high translational value and clinical impact. Finally, up-scale manufacturing and regulatory hurdles along with potential avenues that require further research to bring MN technology to the market are carefully considered. It is hoped that this review will provide insight to formulators and clinicians that the judicious selection of materials in tandem with refined design may offer an elegant approach to achieve sustained delivery of payloads through the simple and painless application of a MN patch.
Collapse
Affiliation(s)
- Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Akmal H Sabri
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Yara Naser
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Achmad Himawan
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Science and Technology, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Aaron R J Hutton
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Fabiana Volpe-Zanutto
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Deepakkumar Mishra
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Mingshan Li
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Aoife M Rodgers
- The Wellcome-Wolfson Institute for Experimental Medicine, Queen's University of Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Alejandro J Paredes
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | | | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
16
|
Ponsar H, Quodbach J. Customizable 3D Printed Implants Containing Triamcinolone Acetonide: Development, Analysis, Modification, and Modeling of Drug Release. Pharmaceutics 2023; 15:2097. [PMID: 37631311 PMCID: PMC10459585 DOI: 10.3390/pharmaceutics15082097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 07/03/2023] [Accepted: 07/20/2023] [Indexed: 08/27/2023] Open
Abstract
Three-dimensional-printed customizable drug-loaded implants provide promising opportunities to improve the current therapy options. In this study, we present a modular implant in which shape, dosage, and drug release can be individualized independently of each other to patient characteristics to improve parenteral therapy with triamcinolone acetonide (TA) over three months. This study focused on the examination of release modification via fused deposition modeling and subsequent prediction. The filaments for printing consisted of TA, ethyl cellulose, hypromellose, and triethyl citrate. Two-compartment implants were successfully developed, consisting of a shape-adaptable shell and an embedded drug-loaded network. For the network, different strand widths and pore size combinations were printed and analyzed in long-term dissolution studies to evaluate their impact on the release performance. TA release varied between 8.58 ± 1.38 mg and 21.93 mg ± 1.31 mg over three months depending on the network structure and the resulting specific surface area. Two different approaches were employed to predict the TA release over time. Because of the varying release characteristics, applicability was limited, but successful in several cases. Using a simple Higuchi-based approach, good release predictions could be made for a release time of 90 days from the release data of the initial 15 days (RMSEP ≤ 3.15%), reducing the analytical effort and simplifying quality control. These findings are important to establish customizable implants and to optimize the therapy with TA for specific intra-articular diseases.
Collapse
Affiliation(s)
- Hanna Ponsar
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
- Drug Delivery Innovation Center (DDIC), INVITE GmbH, Chempark Building W 32, 51368 Leverkusen, Germany
| | - Julian Quodbach
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University, Universitaetsstr. 1, 40225 Duesseldorf, Germany;
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
17
|
Magill E, Demartis S, Gavini E, Permana AD, Thakur RRS, Adrianto MF, Waite D, Glover K, Picco CJ, Korelidou A, Detamornrat U, Vora LK, Li L, Anjani QK, Donnelly RF, Domínguez-Robles J, Larrañeta E. Solid implantable devices for sustained drug delivery. Adv Drug Deliv Rev 2023; 199:114950. [PMID: 37295560 DOI: 10.1016/j.addr.2023.114950] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 06/02/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Implantable drug delivery systems (IDDS) are an attractive alternative to conventional drug administration routes. Oral and injectable drug administration are the most common routes for drug delivery providing peaks of drug concentrations in blood after administration followed by concentration decay after a few hours. Therefore, constant drug administration is required to keep drug levels within the therapeutic window of the drug. Moreover, oral drug delivery presents alternative challenges due to drug degradation within the gastrointestinal tract or first pass metabolism. IDDS can be used to provide sustained drug delivery for prolonged periods of time. The use of this type of systems is especially interesting for the treatment of chronic conditions where patient adherence to conventional treatments can be challenging. These systems are normally used for systemic drug delivery. However, IDDS can be used for localised administration to maximise the amount of drug delivered within the active site while reducing systemic exposure. This review will cover current applications of IDDS focusing on the materials used to prepare this type of systems and the main therapeutic areas of application.
Collapse
Affiliation(s)
- Elizabeth Magill
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Sara Demartis
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Sassari, 07100, Italy
| | - Elisabetta Gavini
- Department of Medicine, Surgery and Pharmacy, University of Sassari, Sassari, 07100, Italy
| | - Andi Dian Permana
- Department of Pharmaceutics, Faculty of Pharmacy, Universitas Hasanuddin, Makassar 90245, Indonesia
| | - Raghu Raj Singh Thakur
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Muhammad Faris Adrianto
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Airlangga University, Surabaya, East Java 60115, Indonesia
| | - David Waite
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Re-Vana Therapeutics, McClay Research Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Katie Glover
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Camila J Picco
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Anna Korelidou
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Usanee Detamornrat
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Linlin Li
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Qonita Kurnia Anjani
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Fakultas Farmasi, Universitas Megarezky, Jl. Antang Raya No. 43, Makassar 90234, Indonesia
| | - Ryan F Donnelly
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK
| | - Juan Domínguez-Robles
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK; Department of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, Universidad de Sevilla, 41012 Seville, Spain.
| | - Eneko Larrañeta
- School of Pharmacy, Queen's University Belfast, 97, Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
18
|
Yuste I, Luciano FC, Anaya BJ, Sanz-Ruiz P, Ribed-Sánchez A, González-Burgos E, Serrano DR. Engineering 3D-Printed Advanced Healthcare Materials for Periprosthetic Joint Infections. Antibiotics (Basel) 2023; 12:1229. [PMID: 37627649 PMCID: PMC10451995 DOI: 10.3390/antibiotics12081229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 08/27/2023] Open
Abstract
The use of additive manufacturing or 3D printing in biomedicine has experienced fast growth in the last few years, becoming a promising tool in pharmaceutical development and manufacturing, especially in parenteral formulations and implantable drug delivery systems (IDDSs). Periprosthetic joint infections (PJIs) are a common complication in arthroplasties, with a prevalence of over 4%. There is still no treatment that fully covers the need for preventing and treating biofilm formation. However, 3D printing plays a major role in the development of novel therapies for PJIs. This review will provide a deep understanding of the different approaches based on 3D-printing techniques for the current management and prophylaxis of PJIs. The two main strategies are focused on IDDSs that are loaded or coated with antimicrobials, commonly in combination with bone regeneration agents and 3D-printed orthopedic implants with modified surfaces and antimicrobial properties. The wide variety of printing methods and materials have allowed for the manufacture of IDDSs that are perfectly adjusted to patients' physiognomy, with different drug release profiles, geometries, and inner and outer architectures, and are fully individualized, targeting specific pathogens. Although these novel treatments are demonstrating promising results, in vivo studies and clinical trials are required for their translation from the bench to the market.
Collapse
Affiliation(s)
- Iván Yuste
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Francis C. Luciano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Brayan J. Anaya
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
| | - Pablo Sanz-Ruiz
- Orthopaedic and Trauma Department, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
- Department of Surgery, Faculty of Medicine, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Almudena Ribed-Sánchez
- Hospital Pharmacy Unit, Hospital General Universitario Gregorio Marañón, 28029 Madrid, Spain;
| | - Elena González-Burgos
- Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| | - Dolores R. Serrano
- Pharmaceutics and Food Technology Department, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain; (I.Y.); (F.C.L.); (B.J.A.); (D.R.S.)
- Instituto Universitario de Farmacia Industrial, Faculty of Pharmacy, Universidad Complutense de Madrid (UCM), 28040 Madrid, Spain
| |
Collapse
|
19
|
Heydariyan Z, Soofivand F, Dawi EA, Abd Al-Kahdum SA, Hameed NM, Salavati-Niasari M. A comprehensive review: Different approaches for encountering of bacterial infection of dental implants and improving their properties. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
20
|
Baildya N, Mazumdar S, Mridha NK, Chattopadhyay AP, Khan AA, Dutta T, Mandal M, Chowdhury SK, Reza R, Ghosh NN. Comparative study of the efficiency of silicon carbide, boron nitride and carbon nanotube to deliver cancerous drug, azacitidine: A DFT study. Comput Biol Med 2023; 154:106593. [PMID: 36746115 DOI: 10.1016/j.compbiomed.2023.106593] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/17/2022] [Accepted: 01/22/2023] [Indexed: 01/31/2023]
Abstract
Herein we have made a comparative study of the efficiency of three different nanotubes viz. Carbon nanotube (CNT), boron nitride nanotube (BNNT) and silicon carbide nanotube (SiCNT) to deliver the cancerous drug, Azacitidine (AZD). The atomistic description of the encapsulation process of AZD in these nanotubes has been analyzed by evaluating parameters like adsorption energy, electrostatic potential map, reduced density gradient (RDG). Higher adsorption energy of AZD with BNNT (-0.66eV), SiCNT (-0.92eV) compared to CNT (-0.56eV) confirms stronger binding affinity of the drug for the former than the later. Charge density and electrostatic potential map suggest that charge separation involving BNNT and CNT is more prominent than SiCNT. Evaluation of different thermodynamic parameters like Gibbs free energy, enthalpy change revealed that the overall encapsulation process is spontaneous and exothermic in nature and much favorable with BNNT and SiCNT. Stabilizing interactions of the drug with BNNT and SiCNT has been confirmed from RDG analysis. ADMP molecular dynamics simulation supports that the encapsulation process of the drug within the NT at room temperature. These results open up unlimited opportunities for the applications of these NTs as a drug delivery system in the field of nanomedicine.
Collapse
Affiliation(s)
- Nabajyoti Baildya
- Department of Chemistry, Milki High School, Milki, Malda, West Bengal, 732209, India
| | - Sourav Mazumdar
- Department of Physics, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Asoke P Chattopadhyay
- Department of Chemistry, University of Kalyani, Kalyani, Nadia, West Bengal, 741235, India
| | - Abdul Ashik Khan
- Department of Chemistry, Darjeeling Government College, West Bengal, 734101, India
| | - Tanmoy Dutta
- Department of Chemistry, JIS College of Engineering, Kalyani, 741235, India
| | - Manab Mandal
- Department of Botany, Dukhulal Nibaran Chandra College, Suti, West Bengal, 742201, India
| | | | - Rahimasoom Reza
- Department of Chemistry, University of North Bengal, Darjeeling, West Bengal, 734013, India
| | | |
Collapse
|
21
|
Karacan I, Ben-Nissan B, Santos J, Yiu S, Bradbury P, Valenzuela SM, Chou J. In vitro testing and efficacy of poly-lactic acid coating incorporating antibiotic loaded coralline bioceramic on Ti6Al4V implant against Staphylococcus aureus. J Tissue Eng Regen Med 2022; 16:1149-1162. [PMID: 36205495 DOI: 10.1002/term.3353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 01/05/2023]
Abstract
Biofilm formation on an implant surface is most commonly caused by the human pathogenic bacteria Staphylococcus aureus, which can lead to implant related infections and failure. It is a major problem for both implantable orthopedic and maxillofacial devices. The current antibiotic treatments are typically delivered orally or in an injectable form. They are not highly effective in preventing or removing biofilms, and they increase the risk of antibiotic resistance of bacteria and have a dose-dependent negative biological effect on human cells. Our aim was to improve current treatments via a localized and controlled antibiotic delivery-based implant coating system to deliver the antibiotic, gentamicin (Gm). The coating contains coral skeleton derived hydroxyapatite powders (HAp) that act as antibiotic carrier particles and have a biodegradable poly-lactic acid (PLA) thin film matrix. The system is designed to prevent implant related infections while avoiding the deleterious effects of high concentration antibiotics in implants on local cells including primary human adipose derived stem cells (ADSCs). Testing undertaken in this study measured the rate of S. aureus biofilm formation and determined the growth rate and proliferation of ADSCs. After 24 h, S. aureus biofilm formation and the percentage of live cells found on the surfaces of all 5%-30% (w/w) PLA-Gm-(HAp-Gm) coated Ti6Al4V implants was lower than the control samples. Furthermore, Ti6Al4V implants coated with up to 10% (w/w) PLA-Gm-(HAp-Gm) did not have noticeable Gm related adverse effect on ADSCs, as assessed by morphological and surface attachment analyses. These results support the use and application of the antibacterial PLA-Gm-(HAp-Gm) thin film coating design for implants, as an antibiotic release control mechanism to prevent implant-related infections.
Collapse
Affiliation(s)
- Ipek Karacan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Besim Ben-Nissan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Jerran Santos
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Stanley Yiu
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Peta Bradbury
- Institut Curie, Paris Sciences et Lettres Research University, Mechanics and Genetics of Embryonic and Tumoral Development Group, Paris, France
| | - Stella M Valenzuela
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Broadway, Australia
| | - Joshua Chou
- School of Biomedical Engineering, Faculty of Engineering & Information Technology, University of Technology Sydney, Broadway, Australia
| |
Collapse
|
22
|
Benčina M, Junkar I, Vesel A, Mozetič M, Iglič A. Nanoporous Stainless Steel Materials for Body Implants-Review of Synthesizing Procedures. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2924. [PMID: 36079962 PMCID: PMC9457931 DOI: 10.3390/nano12172924] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Despite the inadequate biocompatibility, medical-grade stainless steel materials have been used as body implants for decades. The desired biological response of surfaces to specific applications in the body is a highly challenging task, and usually not all the requirements of a biomaterial can be achieved. In recent years, nanostructured surfaces have shown intriguing results as cell selectivity can be achieved by specific surface nanofeatures. Nanoporous structures can be fabricated by anodic oxidation, which has been widely studied for titanium and its alloys, while no systematic studies are so far available for stainless steel (SS) materials. This paper reviews the current state of the art in the anodisation of SS; correlations between the parameters of anodic oxidation and the surface morphology are drawn. The results reported by various authors are scattered because of a variety of experimental configurations. A linear correlation between the pores' diameter anodisation voltage was deduced, while no correlation with other processing parameters was found obvious. The analyses of available data indicated a lack of systematic experiments, which are recommended to understand the kinetics of pore formation and develop techniques for optimal biocompatibility of stainless steel.
Collapse
Affiliation(s)
- Metka Benčina
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Ita Junkar
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Alenka Vesel
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Miran Mozetič
- Department of Surface Engineering, Jožef Stefan Institute, Jamova Cesta 39, 1000 Ljubljana, Slovenia
| | - Aleš Iglič
- Laboratory of Physics, Faculty of Electrical Engineering, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
23
|
Gomes-Filho MS, Oliveira FA, Barbosa MAA. Modeling the diffusion-erosion crossover dynamics in drug release. Phys Rev E 2022; 105:044110. [PMID: 35590597 DOI: 10.1103/physreve.105.044110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 03/18/2022] [Indexed: 06/15/2023]
Abstract
A computational model is proposed to investigate drug delivery systems in which erosion and diffusion mechanisms are participating in the drug release process. Our approach allowed us to analytically estimate the crossover point between those mechanisms through the value of the parameter b (b_{c}=1) and the scaling behavior of parameter τ on the Weibull function, exp[-(t/τ)^{b}], used to adjust drug release data in pharmaceutical literature. Numerical investigations on the size dependence of the characteristic release time τ found it to satisfy either linear or quadratic scaling relations on either erosive or diffusive regimes. Along the crossover, the characteristic time scales with the average coefficient observed on the extreme regimes (i.e., τ∼L^{3/2}), and we show that this result can be derived analytically by assuming an Arrhenius relation for the diffusion coefficient inside the capsule. Based on these relations, a phenomenological expression for the characteristic release in terms of size L and erosion rate κ is proposed, which can be useful for predicting the crossover erosion rate κ_{c}. We applied this relation to the experimental literature data for the release of acetaminophen immersed in a wax matrix and found them to be consistent with our numerical results.
Collapse
Affiliation(s)
- Márcio Sampaio Gomes-Filho
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-580, Santo André, São Paulo, Brazil
| | - Fernando Albuquerque Oliveira
- Instituto de Física, Universidade de Brasília, 70919-970 Brasília-DF, Brazil
- Instituto de Física, Universidade Federal da Bahia, Campus Universitário da Federação, Rua Barão de Jeremoabo s/n, 40170-115 Salvador-BA, Brazil
| | | |
Collapse
|
24
|
Vashahi F, Martinez MR, Dashtimoghadam E, Fahimipour F, Keith AN, Bersenev EA, Ivanov DA, Zhulina EB, Popryadukhin P, Matyjaszewski K, Vatankhah-Varnosfaderani M, Sheiko SS. Injectable bottlebrush hydrogels with tissue-mimetic mechanical properties. SCIENCE ADVANCES 2022; 8:eabm2469. [PMID: 35061528 PMCID: PMC8782458 DOI: 10.1126/sciadv.abm2469] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Injectable hydrogels are desired in many biomedical applications due to their minimally invasive deployment to the body and their ability to introduce drugs. However, current injectables suffer from mechanical mismatch with tissue, fragility, water expulsion, and high viscosity. To address these issues, we design brush-like macromolecules that concurrently provide softness, firmness, strength, fluidity, and swellability. The synthesized linear-bottlebrush-linear (LBL) copolymers facilitate improved injectability as the compact conformation of bottlebrush blocks results in low solution viscosity, while the thermoresponsive linear blocks permit prompt gelation at 37°C. The resulting hydrogels mimic the deformation response of supersoft tissues such as adipose and brain while withstanding deformations of 700% and precluding water expulsion upon gelation. Given their low cytotoxicity and mild inflammation in vivo, the developed materials will have vital implications for reconstructive surgery, tissue engineering, and drug delivery applications.
Collapse
Affiliation(s)
- Foad Vashahi
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Michael R. Martinez
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | - Erfan Dashtimoghadam
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Farahnaz Fahimipour
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Andrew N. Keith
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
| | - Egor A. Bersenev
- Phystech School of Electronics, Photonics, and Molecular Physics, Moscow Institute of Physics and Technology, Institutskiy per. 9, Dolgoprudny 141700, Russia
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
| | - Dimitri A. Ivanov
- Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka 142432, Russia
- Institut de Sciences des Matériaux de Mulhouse-IS2M, CNRS UMR 7361, 15 rue Jean Starcky, F-68057 Mulhouse, France
- Faculty of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/51, Moscow 119991, Russia
| | - Ekaterina B. Zhulina
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Pavel Popryadukhin
- Institute of Macromolecular Compounds, Russian Academy of Sciences, St. Petersburg 199004, Russia
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
- Corresponding author. (S.S.S.); (M.V.-V.); (K.M.)
| | - Mohammad Vatankhah-Varnosfaderani
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
- Corresponding author. (S.S.S.); (M.V.-V.); (K.M.)
| | - Sergei S. Sheiko
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3290, USA
- Corresponding author. (S.S.S.); (M.V.-V.); (K.M.)
| |
Collapse
|
25
|
Fayzullin A, Bakulina A, Mikaelyan K, Shekhter A, Guller A. Implantable Drug Delivery Systems and Foreign Body Reaction: Traversing the Current Clinical Landscape. Bioengineering (Basel) 2021; 8:bioengineering8120205. [PMID: 34940358 PMCID: PMC8698517 DOI: 10.3390/bioengineering8120205] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/02/2023] Open
Abstract
Precise delivery of therapeutics to the target structures is essential for treatment efficiency and safety. Drug administration via conventional routes requires overcoming multiple transport barriers to achieve and maintain the local drug concentration and commonly results in unwanted off-target effects. Patients’ compliance with the treatment schedule remains another challenge. Implantable drug delivery systems (IDDSs) provide a way to solve these problems. IDDSs are bioengineering devices surgically placed inside the patient’s tissues to avoid first-pass metabolism and reduce the systemic toxicity of the drug by eluting the therapeutic payload in the vicinity of the target tissues. IDDSs present an impressive example of successful translation of the research and engineering findings to the patient’s bedside. It is envisaged that the IDDS technologies will grow exponentially in the coming years. However, to pave the way for this progress, it is essential to learn lessons from the past and present of IDDSs clinical applications. The efficiency and safety of the drug-eluting implants depend on the interactions between the device and the hosting tissues. In this review, we address this need and analyze the clinical landscape of the FDA-approved IDDSs applications in the context of the foreign body reaction, a key aspect of implant–tissue integration.
Collapse
Affiliation(s)
- Alexey Fayzullin
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Alesia Bakulina
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
| | - Karen Mikaelyan
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Anatoly Shekhter
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
| | - Anna Guller
- Department of Experimental Morphology and Biobanking, Institute for Regenerative Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia; (A.F.); (A.B.); (K.M.); (A.S.)
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
- Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW 2109, Australia
- Biomolecular Discovery Research Centre, Macquarie University, Sydney, NSW 2109, Australia
- Correspondence:
| |
Collapse
|
26
|
Vanmunster L, D'Haeyer C, Coucke P, Braem A, Van Hooreweder B. Mechanical behavior of Ti6Al4V produced by laser powder bed fusion with engineered open porosity for dental applications. J Mech Behav Biomed Mater 2021; 126:104974. [PMID: 34883458 DOI: 10.1016/j.jmbbm.2021.104974] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 01/14/2023]
Abstract
Implant failure due to biofilm formation is a substantial problem in the field of dental prosthetics. A solution has been proposed in the form of implants with a built-in drug reservoir, but combining sufficient strength and longevity with controlled release capability has proven difficult. This work investigates the feasibility of using laser powder bed fusion to create Ti6Al4V structures with open pore channels while maintaining their mechanical stability. These interconnected pore channels are generated by increasing the distance between consecutive melt pools, denominated as oversized hatch spacing. The impact of varying hatch spacing, laser power and scan speed on the degree of porosity was examined, with both an increase in hatch spacing and a decrease in energy density leading to higher porosity. The pore channels were found to be fully interconnected at total porosity values of 14% or more. The compressive modulus, yield strength and ultimate compressive strength are shown to be strongly related to the density of the structure. Based on the minimal strength and full interconnectivity requirements, the optimal additive manufacturing building conditions were determined. The fatigue properties of the resulting samples were investigated under uniaxial and under inclined compression-compression testing according to ISO 14801, which indicated an endurance limit of 217 MPa in the heat treated state. The results indicate that the use of an oversized hatch spacing is suitable for engineering open porous networks.
Collapse
Affiliation(s)
- Lars Vanmunster
- KU Leuven, Department of Mechanical Engineering - Celestijnenlaan 300, 3001 Leuven, Belgium.
| | - Camille D'Haeyer
- KU Leuven, Department of Materials Engineering - Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Pauline Coucke
- KU Leuven, Department of Materials Engineering - Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Annabel Braem
- KU Leuven, Department of Materials Engineering - Kasteelpark Arenberg 44, 3001 Leuven, Belgium
| | - Brecht Van Hooreweder
- KU Leuven, Department of Mechanical Engineering - Celestijnenlaan 300, 3001 Leuven, Belgium
| |
Collapse
|
27
|
Vijay R, Mendhi J, Prasad K, Xiao Y, MacLeod J, Ostrikov K(K, Zhou Y. Carbon Nanomaterials Modified Biomimetic Dental Implants for Diabetic Patients. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2977. [PMID: 34835740 PMCID: PMC8625459 DOI: 10.3390/nano11112977] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 01/14/2023]
Abstract
Dental implants are used broadly in dental clinics as the most natural-looking restoration option for replacing missing or highly diseased teeth. However, dental implant failure is a crucial issue for diabetic patients in need of dentition restoration, particularly when a lack of osseointegration and immunoregulatory incompetency occur during the healing phase, resulting in infection and fibrous encapsulation. Bio-inspired or biomimetic materials, which can mimic the characteristics of natural elements, are being investigated for use in the implant industry. This review discusses different biomimetic dental implants in terms of structural changes that enable antibacterial properties, drug delivery, immunomodulation, and osseointegration. We subsequently summarize the modification of dental implants for diabetes patients utilizing carbon nanomaterials, which have been recently found to improve the characteristics of biomimetic dental implants, including through antibacterial and anti-inflammatory capabilities, and by offering drug delivery properties that are essential for the success of dental implants.
Collapse
Affiliation(s)
- Renjini Vijay
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Jayanti Mendhi
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
| | - Karthika Prasad
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- School of Engineering, College of Engineering and Computer Science, Australian National University, Canberra, ACT 2600, Australia
| | - Yin Xiao
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Jennifer MacLeod
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Kostya (Ken) Ostrikov
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- School of Chemistry and Physics, Faculty of Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- Centre for Materials Science, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| | - Yinghong Zhou
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia; (R.V.); (J.M.); (K.P.); (Y.X.)
- Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia;
- The Australia-China Centre for Tissue Engineering and Regenerative Medicine (ACCTERM), Queensland University of Technology (QUT), Brisbane, QLD 4000, Australia
| |
Collapse
|
28
|
Bufton J, Jung S, Evans JC, Bao Z, Aguiar D, Allen C. Cross-linked valerolactone copolymer implants with tailorable biodegradation, loading and in vitro release of paclitaxel. Eur J Pharm Sci 2021; 162:105808. [DOI: 10.1016/j.ejps.2021.105808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/18/2021] [Accepted: 03/11/2021] [Indexed: 12/20/2022]
|
29
|
Alipal J, Lee T, Koshy P, Abdullah H, Idris M. Evolution of anodised titanium for implant applications. Heliyon 2021; 7:e07408. [PMID: 34296002 PMCID: PMC8281482 DOI: 10.1016/j.heliyon.2021.e07408] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/15/2021] [Accepted: 06/23/2021] [Indexed: 12/26/2022] Open
Abstract
Anodised titanium has a long history as a coating structure for implants due to its bioactive and ossified surface, which promotes rapid bone integration. In response to the growing literature on anodised titanium, this article is the first to revisit the evolution of anodised titanium as an implant coating. The review reports the process and mechanisms for the engineering of distinctive anodised titanium structures, the significant factors influencing the mechanisms of its formation, bioactivity, as well as recent pre- and post-surface treatments proposed to improve the performance of anodised titanium. The review then broadens the discussion to include future functional trends of anodised titanium, ranging from the provision of higher surface energy interactions in the design of biocomposite coatings (template stencil interface for mechanical interlock) to techniques for measuring the bone-to-implant contact (BIC), each with their own challenges. Overall, this paper provides up-to-date information on the impacts of the structure and function of anodised titanium as an implant coating in vitro and in/ex vivo tests, as well as the four key future challenges that are important for its clinical translations, namely (i) techniques to enhance the mechanical stability and (ii) testing techniques to measure the mechanical stability of anodised titanium, (iii) real-time/in-situ detection methods for surface reactions, and (iv) cost-effectiveness for anodised titanium and its safety as a bone implant coating.
Collapse
Affiliation(s)
- J. Alipal
- Department of Chemical Engineering Technology, Faculty of Engineering Technology, Universiti Tun Hussein Onn Malaysia (UTHM), Pagoh Higher Education Hub, 84600 Muar, Johor, Malaysia
| | - T.C. Lee
- Department of Production and Operation Management, Faculty of Technology Management and Business, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| | - P. Koshy
- School of Materials Science and Engineering, UNSW Sydney, Sydney, NSW 2052, Australia
| | - H.Z. Abdullah
- Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| | - M.I. Idris
- Department of Manufacturing Engineering, Faculty of Mechanical and Manufacturing Engineering, UTHM Parit Raja 86400, Batu Pahat, Johor, Malaysia
| |
Collapse
|
30
|
Losic D. Advancing of titanium medical implants by surface engineering: recent progress and challenges. Expert Opin Drug Deliv 2021; 18:1355-1378. [PMID: 33985402 DOI: 10.1080/17425247.2021.1928071] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Titanium (Ti) and their alloys are used as main implant materials in orthopedics and dentistry for decades having superior mechanical properties, chemical stability and biocompatibility. Their rejections due lack of biointegration and bacterial infection are concerning with considerable healthcare costs and impacts on patients. To address these limitations, conventional Ti implants need improvements where the use of surface nanoengineering approaches and the development of a new generation of implants are recognized as promising strategies.Areas covered:This review presents an overview of recent progress on the application of surface engineering methods to advance Ti implants enable to address their key limitations. Several promising surface engineering strategies are presented and critically discussed to generate advanced surface properties and nano-topographies (tubular, porous, pillars) able not only to improve their biointegration, antibacterial performances, but also to provide multiple functions such as drug delivery, therapy, sensing, communication and health monitoring underpinning the development of new generation and smart medical implants.Expert opinion:Recent advances in cell biology, materials science, nanotechnology and additive manufacturing has progressively influencing improvements of conventional Ti implants toward the development of the next generation of implants with improved performances and multifunctionality. Current research and development are in early stage, but progressing with promising results and examples of moving into in-vivo studies an translation into real applications.
Collapse
Affiliation(s)
- Dusan Losic
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia.,ARC Research Hub for Graphene Enabled Industry Transformation, The University of Adelaide, Engineering North Building, Adelaide, SA, Australia
| |
Collapse
|
31
|
Functional ferrocene polymer multilayer coatings for implantable medical devices: Biocompatible, antifouling, and ROS-sensitive controlled release of therapeutic drugs. Acta Biomater 2021; 125:242-252. [PMID: 33657454 DOI: 10.1016/j.actbio.2021.02.038] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 02/17/2021] [Accepted: 02/24/2021] [Indexed: 02/02/2023]
Abstract
Bacterial infections and the formation of biofilms on the surface of implantable medical devices are critical issues that cause device failure. Implantable medical devices, such as drug delivery technologies, offer promising benefits for targeted and prolonged drug release, but a number of common disadvantages arise that include inadequate release and side effects. Organic film coatings for antifouling and drug delivery are expected to overcome these challenges. Ferrocene polymer-based multifunctional multilayer films were prepared to control the reactive oxygen species (ROS)-responsive release of therapeutic agents while maintaining an antifouling effect and improving biocompatibility. Polymers based on ferrocene and polyethylene glycol were prepared by controlling the molar ratio of carboxylate and amine groups. Layer-by-layer deposition was optimized to achieve the linear growth and self-assembly of dense and stable films. Outstanding anti-biofilm activity (~91% decrease) could be achieved and the films were found to be blood compatible. Importantly, the films effectively incorporated hydrophobic drugs and exhibited dual-responsive drug release at low pH and under ROS conditions at physiological pH. Drug delivery to MCF-7 breast cancer cells was achieved using a Paclitaxel loaded film, which exhibited an anticancer efficacy of 62%. STATEMENT OF SIGNIFICANCE: Healthcare associated infection is caused by the formation of a biofilm by bacteria on the surface of a medical device. In order to solve this, extensive research has been conducted on many coating technologies. Also, a method of chemical treatment by releasing the drug when it enters the body by loading the drug into the coating film is being studied. However, there is still a lack of technology that can achieve both functions of preventing biofilm production and drug delivery. Therefore, in this study, a multilayer thin film that supports drug and inhibits biofilm formation was prepared through Layer-by-Layer coating of a polymer containing PEG to prevent adsorption. As such, it helps the design of multifunctional coatings for implantable medical devices.
Collapse
|
32
|
Garg D, Matai I, Sachdev A. Toward Designing of Anti-infective Hydrogels for Orthopedic Implants: From Lab to Clinic. ACS Biomater Sci Eng 2021; 7:1933-1961. [PMID: 33826312 DOI: 10.1021/acsbiomaterials.0c01408] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An alarming increase in implant failure incidence due to microbial colonization on the administered orthopedic implants has become a horrifying threat to replacement surgeries and related health concerns. In essence, microbial adhesion and its subsequent biofilm formation, antibiotic resistance, and the host immune system's deficiency are the main culprits. An advanced class of biomaterials termed anti-infective hydrogel implant coatings are evolving to subdue these complications. On this account, this review provides an insight into the significance of anti-infective hydrogels for preventing orthopedic implant associated infections to improve the bone healing process. We briefly discuss the clinical course of implant failure, with a prime focus on orthopedic implants. We identify the different anti-infective coating strategies and hence several anti-infective agents which could be incorporated in the hydrogel matrix. The fundamental design criteria to be considered while fabricating anti-infective hydrogels for orthopedic implants will be discussed. We highlight the different hydrogel coatings based on the origin of the polymers involved in light of their antimicrobial efficacy. We summarize the relevant patents reported in the prevention of implant infections, including orthopedics. Finally, the challenges concerning the clinical translation of the aforesaid hydrogels are described, and considerable solutions for improved clinical practice and better future prospects are proposed.
Collapse
Affiliation(s)
- Deepa Garg
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Ishita Matai
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| | - Abhay Sachdev
- Central Scientific Instruments Organisation (CSIR-CSIO), Chandigarh-160030, India.,Academy of Scientific and Innovative Research, CSIR-CSIO, Chandigarh-160030, India
| |
Collapse
|
33
|
Chen YC, Gad SF, Chobisa D, Li Y, Yeo Y. Local drug delivery systems for inflammatory diseases: Status quo, challenges, and opportunities. J Control Release 2021; 330:438-460. [PMID: 33352244 DOI: 10.1016/j.jconrel.2020.12.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 12/11/2020] [Accepted: 12/16/2020] [Indexed: 12/14/2022]
Abstract
Inflammation that is not resolved in due course becomes a chronic disease. The treatment of chronic inflammatory diseases involves a long-term use of anti-inflammatory drugs such as corticosteroids and nonsteroidal anti-inflammatory drugs, often accompanied by dose-dependent side effects. Local drug delivery systems have been widely explored to reduce their off-target side effects and the medication frequency, with several products making to the market or in development over the years. However, numerous challenges remain, and drug delivery technology is underutilized in some applications. This review showcases local drug delivery systems in different inflammatory diseases, including the targets well-known to drug delivery scientists (e.g., joints, eyes, and teeth) and other applications with untapped opportunities (e.g., sinus, bladder, and colon). In each section, we start with a brief description of the disease and commonly used therapy, introduce local drug delivery systems currently on the market or in the development stage, focusing on polymeric systems, and discuss the remaining challenges and opportunities in future product development.
Collapse
Affiliation(s)
- Yun-Chu Chen
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Sheryhan F Gad
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt
| | - Dhawal Chobisa
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Integrated product development organization, Innovation plaza, Dr. Reddy's Laboratories, Hyderabad 500090, India
| | - Yongzhe Li
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, PR China
| | - Yoon Yeo
- Department of Industrial and Physical Pharmacy, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
34
|
Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021; 159:21-35. [PMID: 33338604 PMCID: PMC7856224 DOI: 10.1016/j.ejpb.2020.12.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/19/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023]
Abstract
In the field of drug delivery, the most commonly used treatments have traditionally been systemically delivered using oral or intravenous administration. The problems associated with this type of delivery is that the drug concentration is controlled by first pass metabolism, and therefore may not always remain within the therapeutic window. Implantable drug delivery systems (IDDSs) are an excellent alternative to traditional delivery because they offer the ability to precisely control the drug release, deliver drugs locally to the target tissue, and avoid the toxic side effects often experienced with systemic administration. Since the creation of the first FDA-approved IDDS in 1990, there has been a surge in research devoted to fabricating and testing novel IDDS formulations. The versatility of these systems is evident when looking at the various biomedical applications that utilize IDDSs. This review provides an overview of the history of IDDSs, with examples of the different types of IDDS formulations, as well as looking at current and future biomedical applications for such systems. Though there are still obstacles that need to be overcome, ever-emerging new technologies are making the manufacturing of IDDSs a rewarding therapeutic endeavor with potential for further improvements.
Collapse
Affiliation(s)
- Juliana C Quarterman
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Sean M Geary
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States
| | - Aliasger K Salem
- University of Iowa College of Pharmacy, Department of Pharmaceutical Sciences and Experimental Therapeutics, 180 S. Grand Avenue, Iowa City, IA 52242, United States.
| |
Collapse
|
35
|
Bhattarai JK, Neupane D, Nepal B, Demchenko AV, Stine KJ. Nanoporous Gold Monolith for High Loading of Unmodified Doxorubicin and Sustained Co-Release of Doxorubicin-Rapamycin. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:208. [PMID: 33467416 PMCID: PMC7830488 DOI: 10.3390/nano11010208] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Nanoparticles (NPs) have been widely explored for delivering doxorubicin (DOX), an anticancer drug, to minimize cardiotoxicity. However, their efficiency is marred by a necessity to chemically modify DOX, NPs, or both and low deposition of the administered NPs on tumors. Therefore, alternative strategies should be developed to improve therapeutic efficacy and decrease toxicity. Here we report the possibility of employing a monolithic nanoporous gold (np-Au) rod as an implant for delivering DOX. The np-Au has very high DOX encapsulation efficiency (>98%) with maximum loading of 93.4 mg cm-3 without any chemical modification required of DOX or np-Au. We provide a plausible mechanism for the high loading of DOX in np-Au. The DOX sustained release for 26 days from np-Au in different pH conditions at 37 °C, which was monitored using UV-Vis spectroscopy. Additionally, we encased the DOX-loaded np-Au with rapamycin (RAPA)-trapped poly(D,L-lactide-co-glycolide) (PLGA) to fabricate an np-Au@PLGA/RAPA implant and optimized the combinatorial release of DOX and RAPA. Further exploiting the effect of the protein corona around np-Au and np-Au@PLGA/RAPA showed zero-order release kinetics of DOX. This work proves that the np-Au-based implant has the potential to be used as a DOX carrier of potential use in cancer treatment.
Collapse
Affiliation(s)
| | | | | | | | - Keith J. Stine
- Department of Chemistry and Biochemistry, University of Missouri—St. Louis, Saint Louis, MO 63121, USA; (J.K.B.); (D.N.); (B.N.); (A.V.D.)
| |
Collapse
|
36
|
Dhinasekaran D, Vimalraj S, Rajendran AR, Saravanan S, Purushothaman B, Subramaniam B. Bio-inspired multifunctional collagen/electrospun bioactive glass membranes for bone tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:111856. [PMID: 34082925 DOI: 10.1016/j.msec.2020.111856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/08/2020] [Accepted: 12/24/2020] [Indexed: 12/14/2022]
Abstract
Treatment of bone disease and disorders is often challenging due to its complex structure. Each year millions of people needs bone substitution materials with quick recovery from diseases conditions. Synthetic bone substitutes mimicking structural, chemical and biological properties of bone matrix structure will be very obliging and of copious need. In this work, we reported on the fabrication of bioinspired, biomimetic, multifunctional bone-like three-dimensional (3D) membranes made up of inorganic bioactive glass fibers matrixed organic collagen structure. The 3D structure is arranged as a stacked-layer similar to the order of apatite and neotissue formation. Comparative studies on collagen, collagen with hollow and solid bioactive glass fibers evidenced that, collagen/hollow bioactive glass is mechanically robust, has optimal hydrophilicity, simultaneously promotes bioactivity and in situ forming drug delivery. The 3D membrane displays outstanding mechanical properties apropos to the bioactive glass fibers arrangement, with its Youngs modulus approaching the modulus of cortical bone. The in vitro cell culture studies with fibroblast cells (3T3) on the membranes display enhanced cell adhesion and proliferation with the cell alignment similar to anisotropic cell alignment found in the native bone extracellular matrix. The membranes also support 3D cell culturing and exhibits cell proliferation on the membrane surface, which extends the possibility of its bone tissue engineering application. The alkaline phosphatase assessment and alizarin red staining of osteoblast cells (MG63) depicted an enhanced osteogenic activity of the membranes. Notable Runx2, Col-Type-1 mRNA, osteocalcin, and osteonectin levels were found to be significantly increased in cells grown on the collagen/hollow bioactive glass membrane. This membrane also promotes vascularization in the chick chorioallantoic membrane model. The results altogether evidence this multifunctional 3D membrane could potentially be utilized for treatment of bone defects.
Collapse
Affiliation(s)
| | - Selvaraj Vimalraj
- Centre for Biotechnology, Anna University, Chennai 600 025, Tamil Nadu, India; Department of Pharmacology, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai 600 077, Tamil Nadu, India.
| | - Ajay Rakkesh Rajendran
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur - 603 203, Tamil Nadu, India
| | - Sekaran Saravanan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Biotechnology, School of Chemical and Biotechnology, SASTRA University, Thanjavur 613 401, Tamil Nadu, India
| | - Bargavi Purushothaman
- National Centre for Nanoscience and Nanotechnology, University of Madras, 600 025, Tamil Nadu, India
| | - Balakumar Subramaniam
- National Centre for Nanoscience and Nanotechnology, University of Madras, 600 025, Tamil Nadu, India
| |
Collapse
|
37
|
Biocompatibility of α-Al 2O 3 Ceramic Substrates with Human Neural Precursor Cells. J Funct Biomater 2020; 11:jfb11030065. [PMID: 32947990 PMCID: PMC7563382 DOI: 10.3390/jfb11030065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/01/2020] [Accepted: 09/11/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Biocompatible materials-topography could be used for the construction of scaffolds allowing the three-dimensional (3D) organization of human stem cells into functional tissue-like structures with a defined architecture. METHODS Structural characterization of an alumina-based substrate was performed through XRD, Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), and wettability measurements. Biocompatibility of the substrate was assessed by measuring the proliferation and differentiation of human neural precursor stem cells (NPCs). RESULTS α-Al2O3 is a ceramic material with crystallite size of 40 nm; its surface consists of aggregates in the range of 8-22 μm which forms a rough surface in the microscale with 1-8 μm cavities. The non-calcined material has a surface area of 5.5 m2/gr and pore size distribution of 20 nm, which is eliminated in the calcined structure. Thus, the pore network on the surface and the body of the ceramic becomes more water proof, as indicated by wettability measurements. The alumina-based substrate supported the proliferation of human NPCs and their differentiation into functional neurons. CONCLUSIONS Our work indicates the potential use of alumina for the construction of 3D engineered biosystems utilizing human neurons. Such systems may be useful for diagnostic purposes, drug testing, or biotechnological applications.
Collapse
|
38
|
Mendes C, Andrzejewski RG, Pinto JMO, de Novais LMR, Barison A, Silva MAS, Parize AL. Impact of Drug-Polymer Interaction in Amorphous Solid Dispersion Aiming for the Supersaturation of Poorly Soluble Drug in Biorelevant Medium. AAPS PharmSciTech 2020; 21:189. [PMID: 32651739 DOI: 10.1208/s12249-020-01737-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/20/2020] [Indexed: 12/18/2022] Open
Abstract
The aim of this study was to investigate the influence of the production method and the polymeric carrier on the ability to generate and maintain the supersaturation of a poorly soluble drug in biorelevant medium. The amorphous solid dispersion of sulfamethoxazole, an antibacterial drug, was produced using two different polymers by spray-drying or hot melt extrusion methods. When Eudragit EPO was used, supersaturation was maintained up to 24 h for both techniques at all drug-polymer proportions. However, when Soluplus was employed in hot melt extrusion, a smaller amount of drug was dissolved when compared to the amorphous drug. The proportion of 3:7 drug-Eudragit EPO (w/w) produced by spray-drying presented a higher amount of drug dissolved in supersaturation studies and it was able to maintain the physical stability under different storage conditions throughout the 90-day evaluation. Supersaturation generation and system stability were found to be related to more effective chemical interaction between the polymer and the drug provided by the production method, as revealed by the 1D ROESY NMR experiment. Investigation of drug-polymer interaction is critical in supersaturating drug delivery systems to avoid crystallization of the drug and to predict the effectiveness of the system. Chemical compounds studied in this article: Sulfamethoxazole (PubChem CID: 4539) and Methacrylate copolymer - Eudragit EPO (PubChem CID: 65358).
Collapse
|
39
|
Xie Y, Hillmyer MA. Nanostructured Polymer Monoliths for Biomedical Delivery Applications. ACS APPLIED BIO MATERIALS 2020; 3:3236-3247. [PMID: 35025366 DOI: 10.1021/acsabm.0c00228] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Drug delivery systems are designed to control the release rate and location of therapeutic agents in the body to achieve enhanced drug efficacy and to mitigate adverse side effects. In particular, drug-releasing implants provide sustained and localized release. We report nanostructured polymer monoliths synthesized by polymerization-induced microphase separation (PIMS) as potential implantable delivery devices. As a model system, free poly(ethylene oxide) homopolymers were incorporated into the nanoscopic poly(ethylene oxide) domains contained within a cross-linked polystyrene matrix. The in vitro release of these poly(ethylene oxide) molecules from monoliths was investigated as a function of poly(ethylene oxide) loading and molar mass as well as the molar mass and weight fraction of poly(ethylene oxide) macro-chain transfer agent used in the PIMS process for forming the monoliths. We also developed nanostructured microneedles targeting efficient and long-term transdermal drug delivery by combining PIMS and microfabrication techniques. Finally, given the prominence of poly(lactide) in drug delivery devices, the degradation rate of microphase-separated poly(lactide) in PIMS monoliths was evaluated and compared with bulk poly(lactide).
Collapse
Affiliation(s)
- Yihui Xie
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
40
|
Controlled release of a model hydrophilic high molecular weight compound from injectable non-lamellar liquid crystal formulations containing different types of phospholipids. Int J Pharm 2020; 577:118944. [DOI: 10.1016/j.ijpharm.2019.118944] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 11/18/2019] [Accepted: 12/06/2019] [Indexed: 11/21/2022]
|
41
|
A Reactive Prodrug Ink Formulation Strategy for Inkjet 3D Printing of Controlled Release Dosage Forms and Implants. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.201900187] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
42
|
Bachhuka A, Madathiparambil Visalakshan R, Law CS, Santos A, Ebendorff-Heidepriem H, Karnati S, Vasilev K. Modulation of Macrophages Differentiation by Nanoscale-Engineered Geometric and Chemical Features. ACS APPLIED BIO MATERIALS 2020; 3:1496-1505. [DOI: 10.1021/acsabm.9b01125] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- A. Bachhuka
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - R. Madathiparambil Visalakshan
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| | - C. S. Law
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Chemical Engineering, University of Adelaide, Engineering North Building, Adelaide, South Australia 5005, Australia
| | - A. Santos
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
- School of Chemical Engineering, University of Adelaide, Engineering North Building, Adelaide, South Australia 5005, Australia
| | - H. Ebendorff-Heidepriem
- ARC Center of Excellence for Nanoscale BioPhotonics (CNBP), The University of Adelaide, Adelaide, South Australia 5005, Australia
- Institute for Photonics and Advanced Sensing (IPAS), The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - S. Karnati
- Institute for Anatomy and Cell Biology, Julius Maximilians University, Koellikerstrasse 6, Wuerzburg 97070, Germany
| | - K. Vasilev
- Future Industries Institute, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
- School of Engineering, University of South Australia, Mawson Lakes Campus, Adelaide, South Australia 5095, Australia
| |
Collapse
|
43
|
Tan F, Al-Rubeai M. A multifunctional dexamethasone-delivery implant fabricated using atmospheric plasma and its effects on apoptosis, osteogenesis and inflammation. Drug Deliv Transl Res 2020; 11:86-102. [PMID: 31898081 DOI: 10.1007/s13346-019-00700-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Implant-based local drug delivery is a unique surgical therapy with many clinical advantages. Atmospheric pressure plasma is a novel non-thermal surface biotechnology that has only recently been applied in enhancing a surgical implant. We are the first to use this technology to successfully create a dexamethasone-delivery metallic implant. Irrespective of the loaded medication, the surface of this novel implant possesses advantageous material features including homogeneity, hydrophilicity, and optimal roughness. UV-vis spectroscopy revealed much more sustainable drug release compared to the implants produced using simple drug attachment. In addition, our drug-releasing implant was found to have multiple biological benefits. As proven by the ELISA data, this multi-layer drug complex provides differential regulation on the cell apoptosis, as well as pro-osteogenic and anti-inflammatory effects on the peri-implant tissue. Furthermore, using the pathway-specific PCR array, our study discovered 28 and 26 upregulated and downregulated genes during osteogenesis and inflammation on our newly fabricated drug-delivery implant, respectively. The medication-induced change in molecular profile serves as a promising clue for designing future implant-based therapy. Collectively, we present atmospheric pressure plasma as a potent tool for creating a surgical implant-based drug-delivery system, which renders multiple therapeutic potentials. Graphical abstract Schematic of the APP-facilitated Dex-delivery implant. This layer-by-layer drug-releasing complex consisted of bottom plasma activation layer, middle medication layer, and top absorbable polymer layer.
Collapse
Affiliation(s)
- Fei Tan
- Department of Otorhinolaryngology and Head & Neck Surgery, Shanghai East Hospital, and School of Medicine, Tongji University, Shanghai, China. .,School of Chemical and Bioprocess Engineering, and Conway Institute of Biomolecular and Biomedical Research, University College Dublin-National University of Ireland, Dublin, Ireland. .,The Royal College of Surgeons of England, London, UK.
| | | |
Collapse
|
44
|
Gao J, Xu Y, Zheng Y, Wang X, Li S, Yan G, Wang J, Tang R. pH-sensitive carboxymethyl chitosan hydrogels via acid-labile ortho ester linkage as an implantable drug delivery system. Carbohydr Polym 2019; 225:115237. [DOI: 10.1016/j.carbpol.2019.115237] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 07/30/2019] [Accepted: 08/21/2019] [Indexed: 12/18/2022]
|
45
|
Yu HS, Lee ES. Honeycomb-like pH-responsive γ-cyclodextrin electrospun particles for highly efficient tumor therapy. Carbohydr Polym 2019; 230:115563. [PMID: 31887908 DOI: 10.1016/j.carbpol.2019.115563] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/31/2019] [Indexed: 01/06/2023]
Abstract
We report here the tumor-implantable microparticles with a honeycomb-like porous structure. These microparticles were prepared by electrospinning using γ-cyclodextrin (γ-CD) conjugated with 3-(diethylamino)propylamine (DEAP, as a pH-responsive moiety), named γ-CD-DEAP. The resulting microparticles had pore channels (constructed using γ-CD-DEAP) extending into the deep compartment of the microparticles and allowing efficient paclitaxel (PTX, as a chemotherapeutic model drug) entrapment by a simple hole-filling encapsulation process. Importantly, the hydrophobic DEAP (at pH 7.4) in the γ-CD-DEAP microparticles changed to hydrophilic DEAP (at pH 6.8) because of its acidic pH-induced protonation. This phenomenon resulted in an acidic pH-activated particle destruction by a charge-charge repulsion between the protonated DEAP moieties and allowed a pH-triggered release of the encapsulated PTX from the collapsed microparticles. Consequently, γ-CD-DEAP microparticles implanted at the tumor site caused a significant enhancement of the in vitro/in vivo tumor cell ablation, suggesting their significant potential as a chemotherapeutic implant for tumor therapy.
Collapse
Affiliation(s)
- Hyeong Sup Yu
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea
| | - Eun Seong Lee
- Department of Biotechnology, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea; Department of Biomedical Chemical Engineering, The Catholic University of Korea, 43 Jibong-ro, Gyeonggi-do 14662, Republic of Korea.
| |
Collapse
|
46
|
Di Trani N, Silvestri A, Bruno G, Geninatti T, Chua CYX, Gilbert A, Rizzo G, Filgueira CS, Demarchi D, Grattoni A. Remotely controlled nanofluidic implantable platform for tunable drug delivery. LAB ON A CHIP 2019; 19:2192-2204. [PMID: 31169840 DOI: 10.1039/c9lc00394k] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Chronic diseases such as hypertension and rheumatoid arthritis are persistent ailments that require personalized lifelong therapeutic management. However, the difficulty of adherence to strict dosing schedule compromises therapeutic efficacy and safety. Moreover, the conventional one-size-fits-all treatment approach is increasingly challenged due to the intricacies of inter- and intra-individual variabilities. While accelerated technological advances have led to sophisticated implantable drug delivery devices, flexibility in dosage and timing modulation to tailor precise treatment to individual needs remains an elusive goal. Here we describe the development of a subcutaneously implantable remote-controlled nanofluidic device capable of sustained drug release with adjustable dosing and timing. By leveraging a low intensity electric field to modify the concentration driven diffusion across a nanofluidic membrane, the rate of drug administration can be increased, decreased or stopped via Bluetooth remote command. We demonstrate in vitro the release modulation of enalapril and methotrexate, first-line therapeutics for treatment of hypertension and rheumatoid arthritis, respectively. Further, we show reliable remote communication and device biocompatibility via in vivo studies. Unlike a pulsatile release regimen typical of some conventional controlled delivery systems, our implant offers a continuous drug administration that avoids abrupt fluctuations, which could affect response and tolerability. Our system could set the foundation for an on-demand delivery platform technology for long term management of chronic diseases.
Collapse
Affiliation(s)
- Nicola Di Trani
- Nanomedicine Department, Houston Methodist Research Institute, Houston, TX, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zhang X, Zhang D, Peng Q, Lin J, Wen C. Biocompatibility of Nanoscale Hydroxyapatite Coating on TiO 2 Nanotubes. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1979. [PMID: 31226733 PMCID: PMC6630346 DOI: 10.3390/ma12121979] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/23/2022]
Abstract
In this study, a highly-ordered TiO2 nanotube array was successfully fabricated on the surface of a pure titanium foil using the anodization method, and a hydroxyapatite (HA) layer was electrochemically deposited on the vertically aligned titania (TiO2) nanotube array. The TiO2 nanotubes exhibited an inner diameter ranging from 44.5 to 136.8 nm, a wall thickness of 9.8 to 20 nm and a length of 1.25 to 3.94 µm, depending on the applied potential, and the anodization time and temperature. The TiO2 nanotubes provided a high number of nucleation sites for the HA precipitation during electrochemical deposition, resulting in the formation of a nanoscale HA layer with a particle size of about 50 nm. The bond strength between the HA coating and the nanotubular layer with an inner diameter of 136.8 nm was over 28.7 MPa, and the interlocking between the nanoscale HA and the TiO2 nanotubes may have been responsible for the high bond strength. The biocompatibility assessment was conducted on Ti foil with a composite coat of nanoscale HA and the TiO2 nanotube array by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) array with mesenchymal stem cells (MSCs). The mesenchymal stem cells adhered to and spread onto the nanoscale HA layer with plenty of extending filopodia, indicating excellent biocompatibility of the HA coat, the composite coat of nanoscale HA and the TiO2 nanotube array. The findings suggest that the nanoscale HA coating on the TiO2 nanotube array might be a promising way to improve the bond strength and the compatibility of the HA layer.
Collapse
Affiliation(s)
- Xiaokai Zhang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Dechuang Zhang
- Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China.
| | - Qing Peng
- Key Laboratory of Materials Design and Preparation Technology of Hunan Province, Xiangtan University, Xiangtan 411105, China.
| | - Jianguo Lin
- School of Materials Science and Engineering, Xiangtan University, Xiangtan 411105, China.
| | - Cuie Wen
- School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, Melbourne, Victoria 3083, Australia.
| |
Collapse
|
48
|
Heise S, Forster C, Heer S, Qi H, Zhou J, Virtanen S, Lu T, Boccaccini AR. Electrophoretic deposition of gelatine nanoparticle/chitosan coatings. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.03.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
49
|
Liu W, Zhu L, Ma Y, Ai L, Wen W, Zhou C, Luo B. Well-ordered chitin whiskers layer with high stability on the surface of poly(d,l-lactide) film for enhancing mechanical and osteogenic properties. Carbohydr Polym 2019; 212:277-288. [DOI: 10.1016/j.carbpol.2019.02.060] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 10/27/2022]
|
50
|
Maher S, Mazinani A, Barati MR, Losic D. Engineered titanium implants for localized drug delivery: recent advances and perspectives of Titania nanotubes arrays. Expert Opin Drug Deliv 2019; 15:1021-1037. [PMID: 30259776 DOI: 10.1080/17425247.2018.1517743] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Therapeutics delivery to bones to treat skeletal diseases or prevent postsurgical infections is challenging due to complex and solid bone structure that limits blood supply and diffusion of therapeutics administered by systemic routes to reach effective concentration. Titanium (Ti) and their alloys are employed as mainstream implant materials in orthopedics and dentistry; having superior mechanical/biocompatibility properties which could provide an alternative solution to address this problem. AREAS COVERED This review presents an overview of recent development of Ti drug-releasing implants, with emphasis on nanoengineered Titania nanotubes (TNTs) structures, for solving key problems to improve implants osseointegration, overcome inflammation and infection together with providing localized drug delivery (LDD) for bone diseases including cancer. Critical analysis of the advantages/disadvantages of developed concepts is discussed, their drug loading/releasing performances and specific applications. EXPERT OPINION LDD to bones can address many disorders and postsurgical conditions such as inflammation, implants rejection and infection. To this end, TNTs-Ti implants represent a potential promise for the development of new generation of multifunctional implants with drug release functions. Even this concept is extensively explored recently, there is a strong need for more preclinical studies using animal models to confirm the long-term safety and stability of TNTs-Ti implants for real-life medical applications.
Collapse
Affiliation(s)
- Shaheer Maher
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Arash Mazinani
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Mohammad Reza Barati
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| | - Dusan Losic
- a School of Chemical Engineering , The University of Adelaide , Adelaide , Australia
| |
Collapse
|