1
|
Pommiès L, Boutal H, Fras D, Volland H. Establishment of Sample-to-Answer Loop-Mediated Isothermal Amplification-Based Nucleic Acid Testing Using the Sampling, Processing, Incubation, Detection and Lateral Flow Immunoassay Platforms. BIOSENSORS 2024; 14:609. [PMID: 39727874 DOI: 10.3390/bios14120609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/06/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024]
Abstract
Diagnostics often require specialized equipment and trained personnel in laboratory settings, creating a growing need for point-of-care tests (POCTs). Among the genetic testing methods available, Loop-mediated Isothermal Amplification (LAMP) offers a viable solution for developing genetic POCT due to its compatibility with simplified devices. This study aimed to create a genetic test that integrates all steps from sample processing to analyzing results while minimizing the complexity, handling, equipment, and time required. Several challenges were addressed to achieve this goal: (1) the development of a buffer for bacterial DNA extraction that is compatible with both LAMP and immunochromatographic tests; (2) the adaption of the LAMP protocol for use with the SPID device; and (3) the optimization of the detection protocol for specific test conditions, with a lateral flow immunoassay format selected for its POCT compatibility. Following these developments, the test was validated using Escherichia coli (E. coli) and non-E. coli strains. A portable heating station was also developed to enable amplification without costly equipment. The resulting genetic POCT achieved 100% sensitivity and 85% specificity, with results available in 60 to 75 min. This study demonstrated that our POCT efficiently performs DNA extraction, amplification, and detection for bacterial identification. The test's simplicity and cost-effectiveness will support its implementation in various settings.
Collapse
Affiliation(s)
- Lilas Pommiès
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - Hervé Boutal
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| | - David Fras
- CEA/DRT/LIST/DIN/SIMRI, 91191 Gif-Sur-Yvette, France
| | - Hervé Volland
- CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), Université Paris-Saclay, SPI, 91191 Gif-sur-Yvette, France
| |
Collapse
|
2
|
Kyung K, Lee H, Kim SK, Kim DE. Nucleic Acid Lateral Flow Assay Implemented with Isothermal Gene Amplification of SARS-CoV-2 RNA. BIOSENSORS 2024; 14:585. [PMID: 39727850 DOI: 10.3390/bios14120585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 11/28/2024] [Accepted: 11/30/2024] [Indexed: 12/28/2024]
Abstract
We developed a rapid and sensitive diagnostic platform that integrates isothermal viral gene amplification with a nucleic acid lateral flow assay (NALFA) to detect SARS-CoV-2 RNA. Isothermal gene amplification was performed by combining reverse transcription of viral RNA with recombinase polymerase amplification (RPA). In our diagnostic platform, DNA primers for the RPA reaction were modified by appending DNA tails, enabling the synthesis of tailed amplicon DNAs. These tailed amplicon DNAs were subsequently annealed to the complementary capture DNA probe affixed to the lateral flow strip during the NALFA of the reaction samples. The other side of each amplicon DNA tail was annealed to the reporter probe DNA conjugated with gold nanoparticles to visually detect the test line in the strip. This diagnostic platform reduces the time required to obtain readouts to within 1 h and can detect viral RNA concentrations as low as 3.1 cp/μL. Furthermore, when applied to nasopharyngeal clinical samples, our NALFA diagnostic platform yielded highly reliable molecular diagnostic readouts that were 100% consistent with the results of conventional RT-qPCR.
Collapse
Affiliation(s)
- Kangwuk Kyung
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Hyojin Lee
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo-Kyung Kim
- Department of Laboratory Medicine, Ewha Womans University Mokdong Hospital, 1071 Anyangcheon-ro, Yangcheon-gu, Seoul 07985, Republic of Korea
| | - Dong-Eun Kim
- Department of Bioscience and Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- Uniwon PharmGene Inc., 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
3
|
Adedokun G, Alipanah M, Fan ZH. Sample preparation and detection methods in point-of-care devices towards future at-home testing. LAB ON A CHIP 2024; 24:3626-3650. [PMID: 38952234 PMCID: PMC11270053 DOI: 10.1039/d3lc00943b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Timely and accurate diagnosis is critical for effective healthcare, yet nearly half the global population lacks access to basic diagnostics. Point-of-care (POC) testing offers partial solutions by enabling low-cost, rapid diagnosis at the patient's location. At-home POC devices have the potential to advance preventive care and early disease detection. Nevertheless, effective sample preparation and detection methods are essential for accurate results. This review surveys recent advances in sample preparation and detection methods at POC. The goal is to provide an in-depth understanding of how these technologies can enhance at-home POC devices. Lateral flow assays, nucleic acid tests, and virus detection methods are at the forefront of POC diagnostic technology, offering rapid and sensitive tools for identifying and measuring pathogens, biomarkers, and viral infections. By illuminating cutting-edge research on assay development for POC diagnostics, this review aims to accelerate progress towards widely available, user-friendly, at-home health monitoring tools that empower individuals in personalized healthcare in the future.
Collapse
Affiliation(s)
- George Adedokun
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Morteza Alipanah
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
| | - Z Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical and Aerospace Engineering, University of Florida, P.O. Box 116250, Gainesville, FL 32611, USA.
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, P.O. Box 116131, Gainesville, FL 32611, USA
- Department of Chemistry, University of Florida, P.O. Box 117200, Gainesville, FL 32611, USA
| |
Collapse
|
4
|
Prado NO, Marin AM, Lalli LA, Sanchuki HBS, Wosniaki DK, Nardin JM, Morales HMP, Blanes L, Zanette DL, Aoki MN. Development and evaluation of a lyophilization protocol for colorimetric RT-LAMP diagnostic assay for COVID-19. Sci Rep 2024; 14:10612. [PMID: 38719936 PMCID: PMC11078981 DOI: 10.1038/s41598-024-61163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/02/2024] [Indexed: 05/12/2024] Open
Abstract
Molecular diagnostics involving nucleic acids (DNA and RNA) are regarded as extremely functional tools. During the 2020 global health crisis, efforts intensified to optimize the production and delivery of molecular diagnostic kits for detecting SARS-CoV-2. During this period, RT-LAMP emerged as a significant focus. However, the thermolability of the reagents used in this technique necessitates special low-temperature infrastructure for transport, storage, and conservation. These requirements limit distribution capacity and necessitate cost-increasing adaptations. Consequently, this report details the development of a lyophilization protocol for reagents in a colorimetric RT-LAMP diagnostic kit to detect SARS-CoV-2, facilitating room-temperature transport and storage. We conducted tests to identify the ideal excipients that maintain the molecular integrity of the reagents and ensure their stability during room-temperature storage and transport. The optimal condition identified involved adding 5% PEG 8000 and 75 mM trehalose to the RT-LAMP reaction, which enabled stability at room temperature for up to 28 days and yielded an analytical and diagnostic sensitivity and specificity of 83.33% and 90%, respectively, for detecting SARS-CoV-2. This study presents the results of a lyophilized colorimetric RT-LAMP COVID-19 detection assay with diagnostic sensitivity and specificity comparable to RT-qPCR, particularly in samples with high viral load.
Collapse
Affiliation(s)
- Nayra Oliveira Prado
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil
| | - Anelis Maria Marin
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil
| | - Larissa Araujo Lalli
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil
| | - Heloisa Bruna Soligo Sanchuki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil
| | - Denise Kusma Wosniaki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil
| | - Jeanine Marie Nardin
- Erasto Gaertner Hospital, Dr. Ovande Do Amaral 201 Street, Curitiba, Paraná, 81520-060, Brazil
| | - Hugo Manoel Paz Morales
- Erasto Gaertner Hospital, Dr. Ovande Do Amaral 201 Street, Curitiba, Paraná, 81520-060, Brazil
| | - Lucas Blanes
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil
| | - Dalila Luciola Zanette
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil
| | - Mateus Nóbrega Aoki
- Laboratory for Applied Science and Technology in Health, Carlos Chagas Institute, Oswaldo Cruz Foundation (Fiocruz), Prof. Algacyr Munhoz Mader 3775 Street, Curitiba, 81350-010, Brazil.
| |
Collapse
|
5
|
Wax N, Pförtner LS, Holz N, Sterzl S, Melnik M, Kappel K, Bade P, Schröder U, Haase I, Fritsche J, Fischer M. Fast and User-Friendly Detection of Flatfish Species ( Pleuronectes platessa and Solea solea) via Loop-Mediated Isothermal Amplification (LAMP). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:14795-14805. [PMID: 37751470 DOI: 10.1021/acs.jafc.3c03917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
The detection of a Cytochrome b gene (cytb) for species differentiation in fish is intensively used. A fast alternative to expensive and time-consuming DNA barcoding is loop-mediated isothermal amplification (LAMP) in combination with efficient readout systems. For this reason, we developed LAMP assays for rapid species detection of Pleuronectes platessa and Solea solea, two economically important flatfish species in Europe that are prone to mislabeling. Species-specific primer sets targeting cytb were designed, and LAMP assays were optimized. With the optimized LAMP assays, we were able to detect up to 0.1 and 0.01 ng of target DNA of P. platessa and S. solea, respectively, and in each case up to 1% (w/w) of target species in mixtures with nontarget species. For future on-site detection, a lateral flow assay and a pocket-sized lab-on-phone assay were used as readout systems. The lab-on-phone assay with the S. solea specific primer set revealed cross-reactivity to Solea senegalensis. The assay targeting P. platessa proved to be highly specific. Both assays could be performed within 45 min and provided rapid and easy detection of fish species.
Collapse
Affiliation(s)
- Nils Wax
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Laura Sophie Pförtner
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Nathalie Holz
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Svenja Sterzl
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Melina Melnik
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Kristina Kappel
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Patrizia Bade
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Ute Schröder
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Ilka Haase
- National Reference Centre for Authentic Food, Max Rubner-Institut (MRI), E.-C.-Baumann-Straße 20, 95326 Kulmbach, Germany
| | - Jan Fritsche
- Department of Safety and Quality of Milk and Fish Products, Max Rubner-Institut (MRI), Hermann-Weigmann-Straße 1, 24103 Kiel, Germany
| | - Markus Fischer
- Hamburg School of Food Science, Institute of Food Chemistry, University of Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| |
Collapse
|
6
|
Jawla J, Kumar RR, Mendiratta SK, Agarwal RK, Singh P, Saxena V, Kumari S, Kumar D. A novel paper based loop mediated isothermal amplification and lateral flow assay (LAMP‐LFA) for point‐of‐care detection of buffalo tissue origin in diverse foods. J Food Saf 2023. [DOI: 10.1111/jfs.13038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jyoti Jawla
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Rajiv Ranjan Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Sanjod Kumar Mendiratta
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Ravi Kant Agarwal
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Praveen Singh
- Division of Veterinary Biotechnology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Vikas Saxena
- Center for Vascular & Inflammatory Diseases, School of Medicine University of Maryland Baltimore Maryland USA
| | - Sarita Kumari
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| | - Dhananjay Kumar
- Division of Livestock Products Technology ICAR—Indian Veterinary Research Institute, Izatnagar Bareilly India
| |
Collapse
|
7
|
Saisuk W, Suksamai C, Srisawat C, Yoksan S, Dharakul T. The helper oligonucleotides enable detection of folded single-stranded DNA by lateral flow immunoassay after HCR signal amplification. Talanta 2022; 248:123588. [PMID: 35661000 DOI: 10.1016/j.talanta.2022.123588] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 09/03/2021] [Accepted: 05/24/2022] [Indexed: 01/21/2023]
Abstract
A combination of Hybridization Chain Reaction (HCR) and Lateral Flow Immunoassay (LFIA) is an attractive strategy for a simple signal amplification DNA/RNA detection. The present study aimed to report a strategy used to solve a problem encountered when the target DNA contained folded secondary structure during HCR, enabling HCR hairpin probes to easily access the target site. The 24-nt conserved sequence within 3'-UTR, present only in dengue virus genome but not in other species, is an ideal target to use as a probe binding site for pan-dengue virus detection. Thus, the 105-nt target containing the 24-nt target sequence was chosen as a target with secondary structures. The 24-nucleotide (nt) synthetic target DNA successfully induced HCR reaction within 5 min at room temperature. However, the HCR detection of the 105-nt synthetic target DNA with secondary structures was problematic. The probe hybridization was prevented by the secondary structures of the target, resulting in a failure to generate HCR product. To solve this problem, two helper oligonucleotides (helper1 and helper2) were designed to linearize the folded structure of the 105-nt target through strand-displacement mechanism, allowing the HCR hairpin probes to easily access the target site. The HCR product with the labeled helper oligonucleotides and the labeled probes were successfully detected by LFIA. With this strategy, the combination of the helper-enhanced HCR and LFIA exhibited a limit of detection (LOD) in a nanomolar range of the 105-nt DENV synthetic target DNA. Our study demonstrated that signal amplification by the combination of HCR and LFIA could successfully detect the target DNA with secondary structure, but not target RNA with secondary structure. In summary, this work provided a proof of concept of two main issues including probe hybridization enhancement by helper oligonucleotide for the target with complicated secondary structure and the advantage of a combination of labeled helper and HCR probes design for LFIA to overcome the false positive result from HCR probe leakage. Our findings on the use of helper oligonucleotides may be beneficial for the development of other isothermal amplification, since the secondary structure of the target is one of the major obstacles among hybridization-based methods.
Collapse
Affiliation(s)
- Wachira Saisuk
- Department of Research, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatsuree Suksamai
- Graduate Program in Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchawan Srisawat
- Department of Biochemistry, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Sutee Yoksan
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Tararaj Dharakul
- Department of Immunology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
8
|
Investigation and validation of labelling loop mediated isothermal amplification (LAMP) products with different nucleotide modifications for various downstream analysis. Sci Rep 2022; 12:7137. [PMID: 35504953 PMCID: PMC9062634 DOI: 10.1038/s41598-022-11320-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/08/2022] Open
Abstract
Loop mediated isothermal amplification (LAMP) is one of the best known and most popular isothermal amplification methods. It's simplicity and speed make the method particularly suitable for point-of-care diagnostics. Nevertheless, false positive results remain a major drawback. Many (downstream) applications are known for the detection of LAMP amplicons like colorimetric assays, in-situ LAMP or CRISPR-Cas systems. Often, modifications of the LAMP products are necessary for different detection applications such as lateral flow assays. This is usually achieved with pre-modified primer. The aim of this study is to evaluate amplicon labelling with different modified nucleotides such as Cy5-dUTP, biotin-dUTP and aminoallyl-dUTP as an alternative to pre-labelled primers. To realise this, the effects on amplification and labelling efficiency were studied as a function of molecule size and nucleotide amount as well as target concentration. This research shows that diverse labelling of LAMP amplicons can be achieved using different, modified nucleotides during LAMP and that these samples can be analysed by a wide range of downstream applications such as fluorescence spectroscopy, gel electrophoresis, microarrays and lateral flow systems. Furthermore, microarray-based detection and the ability to identify and distinguish false positives were demonstrated as proof of concept.
Collapse
|
9
|
Bengtson M, Bharadwaj M, Franch O, van der Torre J, Meerdink V, Schallig H, Dekker C. CRISPR-dCas9 based DNA detection scheme for diagnostics in resource-limited settings. NANOSCALE 2022; 14:1885-1895. [PMID: 35044397 PMCID: PMC8812997 DOI: 10.1039/d1nr06557b] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 01/04/2022] [Indexed: 05/17/2023]
Abstract
Nucleic-acid detection is crucial for basic research as well as for applications in medicine such as diagnostics. In resource-limited settings, however, most DNA-detection diagnostic schemes are inapplicable since they rely on expensive machinery, electricity, and trained personnel. Here, we present an isothermal DNA detection scheme for the diagnosis of pathogenic DNA in resource-limited settings. DNA was extracted from urine and blood samples using two different instrument-free methods, and amplified using Recombinase Polymerase Amplification with a sensitivity of <10 copies of DNA within 15 minutes. Target DNA was bound by dCas9/sgRNA that was labelled with a DNA oligomer to subsequently induce Rolling Circle Amplification. This second amplification step produced many copies of a G-quadruplex DNA structure that facilitates a colorimetric readout that is visible to the naked eye. This isothermal DNA-detection scheme can be performed at temperatures between 20-45 °C. As an example of the applicability of the approach, we isothermally (23 °C) detected DNA from a parasite causing visceral leishmaniasis that was spiked into buffer and resulted in a sensitivity of at least 1 zeptomole. For proof of principle, DNA spiked into blood was coupled to the CRISPR-dCas9-based detection scheme yielding a colorimetric readout visible to the naked eye. Given the versatility of the guide-RNA programmability of targets, we envision that this DNA detection scheme can be adapted to detect any DNA with minimal means, which facilitates applications such as point-of-care diagnostics in resource-limited settings.
Collapse
Affiliation(s)
- Michel Bengtson
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Mitasha Bharadwaj
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Oskar Franch
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Jaco van der Torre
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Veronique Meerdink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| | - Henk Schallig
- Amsterdam University Medical Centers, Academic Medical Centre at the University of Amsterdam, Department of Medical Microbiology and Infection Prevention, Laboratory for Experimental Parasitology, Amsterdam institute for Infection and Immunity, Amsterdam, the Netherlands
| | - Cees Dekker
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, the Netherlands.
| |
Collapse
|
10
|
Wilson S, Steele S, Adeli K. Innovative technological advancements in laboratory medicine: Predicting the lab of the future. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2021.2011413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022] Open
Affiliation(s)
- Siobhan Wilson
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Shannon Steele
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Khosrow Adeli
- Clinical Biochemistry, Pediatric Laboratory Medicine and Molecular Medicine, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Lee HN, Lee J, Kang YK, Lee JH, Yang S, Chung HJ. A Lateral Flow Assay for Nucleic Acid Detection Based on Rolling Circle Amplification Using Capture Ligand-Modified Oligonucleotides. BIOCHIP JOURNAL 2022; 16:441-450. [PMID: 36091642 PMCID: PMC9446602 DOI: 10.1007/s13206-022-00080-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/26/2022] [Accepted: 08/22/2022] [Indexed: 12/29/2022]
Abstract
We introduce a lateral flow assay (LFA) integrated with a modified isothermal nucleic acid amplification procedure for rapid and simple genetic testing. Padlock probes specific for the target DNA were designed for ligation, followed by rolling circle amplification (RCA) using capture ligand-modified oligonucleotides as primers. After hybridization with detection linker probes, the amplified target DNA is flowed through an LFA membrane strip for binding of gold nanoparticles as the substrate for colorimetric detection. We established and validated the "RCA-LFA" method for detection of mecA, the antibiotic resistance gene for methicillin-resistant Staphylococcus aureus (MRSA). The assay was optimized using various concentrations of primers and probes for RCA and LFA, respectively. The sensitivity was determined by performing RCA-LFA using various amounts of mecA target DNA, showing a detection limit of ~ 1.3 fmol. The specificity of the assay was examined using target DNAs for other resistance genes as the controls, which demonstrated positive detection signals only for mecA DNA, when added either individually or in combinations with the control targets. Furthermore, applying the RCA-LFA method using specifically designed probes for RNA-dependent RNA polymerase (RdRp) and receptor binding domain (RBD) gene for SARS-CoV-2, which demonstrated feasibility of the method for viral gene targets. The current method suggests a useful platform which can be universally applied for various nucleic acid targets, allowing rapid and sensitive diagnosis at point-of-care. Supplementary Information The online version contains supplementary material available at 10.1007/s13206-022-00080-1.
Collapse
Affiliation(s)
- Ha Neul Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Juhee Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yoo Kyung Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Joo Hoon Lee
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seungju Yang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
12
|
Kang J, Kang D, Yeom G, Park CJ. Molecular Diagnostic System Using Engineered Fusion Protein-Conjugated Magnetic Nanoparticles. Anal Chem 2021; 93:16804-16812. [PMID: 34886672 DOI: 10.1021/acs.analchem.1c03247] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To effectively control the spread of new infectious diseases, there is a need for highly sensitive diagnostic methods to detect viral nucleic acids rapidly. This study outlines a universal and simple detection strategy that uses magnetic nanoparticles (MNPs) and a novel MagR-MazE fusion protein for molecular diagnostics to facilitate sensitive detection. This study has engineered a novel MNP conjugate that can be generated easily, without using many chemical reagents. The technique is a nucleic acid detection method, using MagR-MazE fusion protein-conjugated MNPs, where the results can be visualized with the naked eye, regardless of the oligonucleotide sequences of the target in the lateral flow assay. This method could sensitively detect polymerase chain reaction (PCR) products of 16S ribosomal RNA (rRNA) and the 2019-nCoV-N-positive control gene in 5 min. It shows a low limit of detection (LoD) of 0.013 ng/μL for dsDNA. It is simpler and more rapid, sensitive, and versatile than other techniques, making it suitable for point-of-care testing. The proposed detection system and MNP conjugation strategy using a fusion protein can be widely applied to various fields requiring rapid on-site diagnosis.
Collapse
Affiliation(s)
- Juyoung Kang
- SB BIOSCIENCE Co., Ltd., Daejeon34141, South Korea
| | - Donguk Kang
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| | - Gyuho Yeom
- SB BIOSCIENCE Co., Ltd., Daejeon34141, South Korea
| | - Chin-Ju Park
- Department of Chemistry, Gwangju Institute of Science and Technology, Gwangju61005, South Korea
| |
Collapse
|
13
|
|
14
|
Davidson JL, Wang J, Maruthamuthu MK, Dextre A, Pascual-Garrigos A, Mohan S, Putikam SVS, Osman FOI, McChesney D, Seville J, Verma MS. A paper-based colorimetric molecular test for SARS-CoV-2 in saliva. BIOSENSORS & BIOELECTRONICS: X 2021; 9:100076. [PMID: 34423284 PMCID: PMC8364207 DOI: 10.1016/j.biosx.2021.100076] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 04/16/2023]
Abstract
Herein, we describe the development of a paper-based device to detect nucleic acids of pathogens of interest in complex samples using loop-mediated isothermal amplification (LAMP) by producing a colorimetric response visible to the human eye. To demonstrate the utility of this device in emerging public health emergencies, we developed and optimized our device to detect SARS-CoV-2 in human saliva without preprocessing. The resulting device was capable of detecting the virus within 60 min and had an analytical sensitivity of 97% and a specificity of 100% with a limit of detection of 200 genomic copies/μL of patient saliva using image analysis. The device consists of a configurable number of reaction zones constructed of Grade 222 chromatography paper separated by 20 mil polystyrene spacers attached to a Melinex® backing via an ARclean® double-sided adhesive. The resulting device is easily configurable to detect multiple targets and has the potential to detect a variety of pathogens simply by changing the LAMP primer sets.
Collapse
Affiliation(s)
- Josiah Levi Davidson
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Jiangshan Wang
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Murali Kannan Maruthamuthu
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Andres Dextre
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Ana Pascual-Garrigos
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Suraj Mohan
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Sai Venkata Sravan Putikam
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | - Fujr Osman Ibrahim Osman
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | - Mohit S Verma
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, 47907, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, 47907, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, 47907, USA
| |
Collapse
|
15
|
Lee D, Chu CH, Sarioglu AF. Point-of-Care Toolkit for Multiplex Molecular Diagnosis of SARS-CoV-2 and Influenza A and B Viruses. ACS Sens 2021; 6:3204-3213. [PMID: 34523904 PMCID: PMC8456773 DOI: 10.1021/acssensors.1c00702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 08/24/2021] [Indexed: 12/23/2022]
Abstract
Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) is still spreading around the globe causing immense public health and socioeconomic problems. As the infection can progress with mild symptoms that can be misinterpreted as the flu, self-testing methods that can positively identify SARS-CoV-2 are needed to effectively track and prevent the transmission of the virus. In this work, we report a point-of-care toolkit for multiplex molecular diagnosis of SARS-CoV-2 and influenza A and B viruses in saliva samples. Our assay is physically programmed to run a sequence of chemical reactions on a paper substrate and internally generate heat to drive these reactions for an autonomous extraction, purification, and amplification of the viral RNA. Using our assay, we could reliably detect SARS-CoV-2 and influenza viruses at concentrations as low as 50 copies/μL visually from a colorimetric analysis. The capability to autonomously perform a traditionally labor-intensive genetic assay on a disposable platform will enable frequent, on-demand self-testing, a critical need to track and contain this and future outbreaks.
Collapse
Affiliation(s)
- Dohwan Lee
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Chia-Heng Chu
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - A. Fatih Sarioglu
- School
of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Parker
H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- Institute
for Electronics and Nanotechnology, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
16
|
Perju A, Wongkaew N. Integrating high-performing electrochemical transducers in lateral flow assay. Anal Bioanal Chem 2021. [PMID: 33913001 DOI: 10.1007/s00216-021-03301-y/published] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Lateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA's performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance. Graphical abstract.
Collapse
Affiliation(s)
- Antonia Perju
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
17
|
Jawla J, Kumar RR, Mendiratta S, Agarwal R, Singh P, Saxena V, Kumari S, Boby N, Kumar D, Rana P. On-site paper-based Loop-Mediated Isothermal Amplification coupled Lateral Flow Assay for pig tissue identification targeting mitochondrial CO I gene. J Food Compost Anal 2021. [DOI: 10.1016/j.jfca.2021.104036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
|
19
|
Naseri M, Ziora ZM, Simon GP, Batchelor W. ASSURED‐compliant point‐of‐care diagnostics for the detection of human viral infections. Rev Med Virol 2021. [DOI: 10.1002/rmv.2263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mahdi Naseri
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| | - Zyta M Ziora
- Institute for Molecular Bioscience The University of Queensland St Lucia QLD Australia
| | - George P Simon
- Department of Materials Science and Engineering Monash University Clayton VIC Australia
| | - Warren Batchelor
- Department of Chemical Engineering Bioresource Processing Research Institute of Australia (BioPRIA) Monash University Clayton VIC Australia
| |
Collapse
|
20
|
Wang L, Wang X, Cheng L, Ding S, Wang G, Choo J, Chen L. SERS-based test strips: Principles, designs and applications. Biosens Bioelectron 2021; 189:113360. [PMID: 34051383 DOI: 10.1016/j.bios.2021.113360] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 10/21/2022]
Abstract
Test strips represent a class of point-of-care testing (POCT) tools for analysis of a variety of biomarkers towards diagnostics. Conventional test strips offer benefits of simple operation, visualization, and short detection time, along with the drawbacks of relatively low sensitivity and unavailability of quantitative analysis. Recently, the combination of surface-enhanced Raman scattering (SERS) and test strips have evolved to provide a powerful platform capable of ultrasensitive and multiplex detection of extensive analytes of interest. In this review, we focus on the working principles, design strategies and POCT applications of SERS-based test strips. Initially, both lateral and vertical flow test strips are briefly introduced, followed by presentation of various strategies for reforming SERS-based test strips with better detection performance. Applications of SERS-based test strips in diagnosis of disease biomarkers, nucleic acids and toxins are reviewed, with an emphasis on SERS tag design, sensitivity and analytical applicability. Finally, conclusions are made and perspectives on futuristic research directions are given.
Collapse
Affiliation(s)
- Luyang Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Xiaokun Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Lu Cheng
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Shansen Ding
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China
| | - Guoqing Wang
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Jaebum Choo
- Department of Chemistry, Chung-Ang University, Seoul, 06974, South Korea.
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China; College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
21
|
Figueredo F, Stolowicz F, Vojnov A, Coltro WKT, Larocca L, Carrillo C, Cortón E. Towards a versatile and economic Chagas Disease point-of-care testing system, by integrating loop-mediated isothermal amplification and contactless/label-free conductivity detection. PLoS Negl Trop Dis 2021; 15:e0009406. [PMID: 33989282 PMCID: PMC8153438 DOI: 10.1371/journal.pntd.0009406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 05/26/2021] [Accepted: 04/25/2021] [Indexed: 01/17/2023] Open
Abstract
Rapid diagnosis by using small, simple, and portable devices could represent one of the best strategies to limit the damage and contain the spread of viral, bacterial or protozoa diseases, principally when they can be transmitted by air and are highly contagious, as some respiratory viruses are. The presence of antibodies in blood or serum samples is not the best option for deciding when a person must be quarantined to stop transmission of disease, given that cured patients have antibodies, so the best diagnosis methods rely on the use of nucleic acid amplification procedures. Here we present a very simple device and detection principle, based on paper discs coupled to contactless conductivity (C4D) sensors, can provide fast and easy diagnostics that are needed when an epidemic outbreak develops. The paper device presented here solves one of the main drawbacks that nucleic acid amplification tests have when they are performed outside of central laboratories. As the device is sealed before amplification and integrally disposed in this way, amplimers release cannot occur, allowing repetitive testing in the physician’s practice, ambulances, or other places that are not prepared to avoid cross-contamination of new samples. The use of very low volume samples allows efficient reagent use and the development of low cost, simple, and disposable point-of-care diagnostic systems. In 2005, the World Health Organization (WHO) recognized Chagas Disease as a neglected tropical disease. Meanwhile the serological tests, recommended by WHO, can be performed for chronic disease diagnosis, the nucleic acid amplification tests must be performed for the detection of the acute phase of the disease. Although the existing laboratory diagnosis tests for Chagas Disease are sensitive and highly reproducible, they cannot be performed in rural, low infrastructure environments, where this disease prevails. In this sense, the use of simple and portable analytical devices may be able to offer an affordable solution to this problem, allowing fast sampling, diagnosis and treatment prescription in one simple and fast intervention, as the performed by short term medical missions. In this study we show for the first time a diagnosis test comprising low cost materials and employing a contactless and label-free conductivity detection system that is used to read the result of a nucleic acid amplification reaction. The test showed high sensitivity for Chagas Disease diagnosis showing the potential to be used in rural and low income places.
Collapse
Affiliation(s)
- Federico Figueredo
- Biological Chemistry Department, Science School and IQUIBICEN (FCEN–UBA-CONICET), Argentine
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Fabiana Stolowicz
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Adrián Vojnov
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Wendell K. T. Coltro
- Chemistry Institute, Federal University of Goiás, Campus Samambaia, Goiânia, Brazil
- National Institute of Science and Technology in Bioanalytics, Campinas, Brazil
| | - Luciana Larocca
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Carolina Carrillo
- Science and Technology Institute Cesar Milstein (ICT–Milstein–CONICET), Argentine
| | - Eduardo Cortón
- Biological Chemistry Department, Science School and IQUIBICEN (FCEN–UBA-CONICET), Argentine
- * E-mail:
| |
Collapse
|
22
|
Hoang TX, Phan LMT, Vo TAT, Cho S. Advanced Signal-Amplification Strategies for Paper-Based Analytical Devices: A Comprehensive Review. Biomedicines 2021; 9:540. [PMID: 34066112 PMCID: PMC8150371 DOI: 10.3390/biomedicines9050540] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/05/2021] [Accepted: 05/10/2021] [Indexed: 11/21/2022] Open
Abstract
Paper-based analytical devices (PADs) have emerged as a promising approach to point-of-care (POC) detection applications in biomedical and clinical diagnosis owing to their advantages, including cost-effectiveness, ease of use, and rapid responses as well as for being equipment-free, disposable, and user-friendly. However, the overall sensitivity of PADs still remains weak, posing a challenge for biosensing scientists exploiting them in clinical applications. This review comprehensively summarizes the current applicable potential of PADs, focusing on total signal-amplification strategies that have been applied widely in PADs involving colorimetry, luminescence, surface-enhanced Raman scattering, photoacoustic, photothermal, and photoelectrochemical methods as well as nucleic acid-mediated PAD modifications. The advances in signal-amplification strategies in terms of signal-enhancing principles, sensitivity, and time reactions are discussed in detail to provide an overview of these approaches to using PADs in biosensing applications. Furthermore, a comparison of these methods summarizes the potential for scientists to develop superior PADs. This review serves as a useful inside look at the current progress and prospective directions in using PADs for clinical diagnostics and provides a better source of reference for further investigations, as well as innovations, in the POC diagnostics field.
Collapse
Affiliation(s)
- Thi Xoan Hoang
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Le Minh Tu Phan
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- School of Medicine and Pharmacy, The University of Danang, Danang 550000, Vietnam
| | - Thuy Anh Thu Vo
- Department of Life Science, Gachon University, Seongnam 13120, Gyeonggi-do, Korea; (T.X.H.); (T.A.T.V.)
| | - Sungbo Cho
- Department of Electronic Engineering, Gachon University, Seongnam 13120, Gyeonggi-do, Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Korea
| |
Collapse
|
23
|
Perju A, Wongkaew N. Integrating high-performing electrochemical transducers in lateral flow assay. Anal Bioanal Chem 2021; 413:5535-5549. [PMID: 33913001 PMCID: PMC8410735 DOI: 10.1007/s00216-021-03301-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/14/2021] [Accepted: 03/17/2021] [Indexed: 12/04/2022]
Abstract
Lateral flow assays (LFAs) are the best-performing and best-known point-of-care tests worldwide. Over the last decade, they have experienced an increasing interest by researchers towards improving their analytical performance while maintaining their robust assay platform. Commercially, visual and optical detection strategies dominate, but it is especially the research on integrating electrochemical (EC) approaches that may have a chance to significantly improve an LFA’s performance that is needed in order to detect analytes reliably at lower concentrations than currently possible. In fact, EC-LFAs offer advantages in terms of quantitative determination, low-cost, high sensitivity, and even simple, label-free strategies. Here, the various configurations of EC-LFAs published are summarized and critically evaluated. In short, most of them rely on applying conventional transducers, e.g., screen-printed electrode, to ensure reliability of the assay, and additional advances are afforded by the beneficial features of nanomaterials. It is predicted that these will be further implemented in EC-LFAs as high-performance transducers. Considering the low cost of point-of-care devices, it becomes even more important to also identify strategies that efficiently integrate nanomaterials into EC-LFAs in a high-throughput manner while maintaining their favorable analytical performance. Graphical abstract ![]()
Collapse
Affiliation(s)
- Antonia Perju
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
24
|
Zheng C, Wang K, Zheng W, Cheng Y, Li T, Cao B, Jin Q, Cui D. Rapid developments in lateral flow immunoassay for nucleic acid detection. Analyst 2021; 146:1514-1528. [PMID: 33595550 DOI: 10.1039/d0an02150d] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Recently, lateral flow assay (LFA) for nucleic acid detection has drawn increasing attention in the point-of-care testing fields. Due to its rapidity, easy implementation, and low equipment requirement, it is well suited for use in rapid diagnosis, food authentication, and environmental monitoring under source-limited conditions. This review will discuss two main research directions of lateral flow nucleic acid tests. The first one is the incorporation of isothermal amplification methods with LFA, which ensures an ultra-high testing sensitivity under non-laboratory conditions. The two most commonly used methodologies will be discussed, namely Loop-mediated Isothermal Amplification (LAMP) and Recombinase Polymerase Amplification (RPA), and some novel methods with special properties will also be introduced. The second research direction is the development of novel labeling materials. It endeavors to increase the sensitivity and quantifiability of LFA testing, where signals can be read and analyzed by portable devices. These methods are compared in terms of limits of detection, detection times, and quantifiabilities. It is anticipated that future research on lateral flow nucleic acid tests will focus on the integration of the whole testing process into a microfluidic system and the combination with molecular diagnostic tools such as clustered regularly interspaced short palindromic repeats to facilitate a rapid and accurate test.
Collapse
Affiliation(s)
- Chujun Zheng
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center for Intelligent diagnosis and treatment instrument, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai 200240, China.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang C, Zheng T, Wang H, Chen W, Huang X, Liang J, Qiu L, Han D, Tan W. Rapid One-Pot Detection of SARS-CoV-2 Based on a Lateral Flow Assay in Clinical Samples. Anal Chem 2021; 93:3325-3330. [PMID: 33570399 PMCID: PMC7885334 DOI: 10.1021/acs.analchem.0c05059] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/05/2021] [Indexed: 01/01/2023]
Abstract
Rapid tests for pathogen identification and spread assessment are critical for infectious disease control and prevention. The control of viral outbreaks requires a nucleic acid diagnostic test that is sensitive and simple and delivers fast and reliable results. Here, we report a one-pot direct reverse transcript loop-mediated isothermal amplification (RT-LAMP) assay of SARS-CoV-2 based on a lateral flow assay in clinical samples. The entire contiguous sample-to-answer workflow takes less than 40 min from a clinical swab sample to a diagnostic result without professional instruments and technicians. The assay achieved an accuracy of 100% in 12 synthetic and 12 clinical samples compared to the data from PCR-based assays. We anticipate that our method will provide a universal platform for rapid and point-of-care detection of emerging infectious diseases.
Collapse
Affiliation(s)
- Chao Zhang
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Tingting Zheng
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Hua Wang
- Department
of Laboratory Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Wei Chen
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Xiaoye Huang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Jianqi Liang
- Clinical
Laboratory, Central Hospital of Loudi, Loudi, Hunan 417099, China
| | - Liping Qiu
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Da Han
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Weihong Tan
- Institute
of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid
Chemistry and Nanomedicine, State Key Laboratory of Oncogenes and
Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
- Molecular
Science and Biomedicine Laboratory (MBL), State Key Laboratory of
Chemo/Bio- Sensing and Chemometrics, College of Chemistry and Chemical
Engineering, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute
of Cancer and Basic Medicine (ICBM), Chinese Academy of Sciences, The Cancer Hospital of the University of Chinese Academy
of Sciences, Hangzhou, Zhejiang 310018, China
| |
Collapse
|
26
|
Xia G, Wang J, Liu Z, Bai L, Ma L. Effect of sample volume on the sensitivity of lateral flow assays through computational modeling. Anal Biochem 2021; 619:114130. [PMID: 33600781 DOI: 10.1016/j.ab.2021.114130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/17/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022]
Abstract
Lateral flow assays (LFAs) are extensively used in qualitative detection because of their convenience, low cost, fast results, and ease of operation. However, the sample volume used in a lateral flow assay is usually determined experimentally. We test and find that the flow velocity is influenced by sample volume, using fluorescent microspheres as label particles, when analyte concentration is fixed in a sandwich LFA. A model is developed based on mass-action kinetics and advection-diffusion-reaction equation, combing the conjugate pad and nitrocellulose membrane. The model shows predictions from 10 to 120 μL, and predicts accurately the experimental results from 50 to 120 μL where the fluid can flow to the test line. Over all, the model can provide predictions over a wide range of sample volumes for sensitivity analysis. On the basis of the model, the sensitivity of the LFA can be improved according to the sample volume added in the experiment.
Collapse
Affiliation(s)
- Guo Xia
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China.
| | - Jiangtao Wang
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Zhijian Liu
- School of Instrument Science and Opto-electronic Engineering, Hefei University of Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Lihao Bai
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| | - Long Ma
- Academy of Opto-electric Technology, Hefei University of Technology, Special Display and Imaging Technology Innovation Center of Anhui Province, State Key Laboratory of Advanced Display Technology, 193 Tunxi Road, Hefei, 230009, China
| |
Collapse
|
27
|
Jawla J, Kumar RR, Mendiratta SK, Agarwal RK, Kumari S, Saxena V, Kumar D, Singh P, Boby N, Rana P. Paper-based loop-mediated isothermal amplification and lateral flow (LAMP-LF) assay for identification of tissues of cattle origin. Anal Chim Acta 2021; 1150:338220. [PMID: 33583554 DOI: 10.1016/j.aca.2021.338220] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 01/15/2021] [Indexed: 11/24/2022]
Abstract
The present study was made with the objectives of development and standardization of cattle specific paper-based loop-mediated isothermal amplification cum lateral flow assay (LAMP-LFA), as a Point-of-care test (POCT) for identification of tissue of cattle origin. The components of standardized LAMP reaction utilizing cattle specific primer sets were lyophilized over paper buttons, identified best as the carrier of LAMP reagents. Based on probable LAMP amplicon, a pair of probes was designed, tagged and its hybridization with the amplified product of paper LAMP reaction was optimized. The components of lateral flow assay for detection of probe hybridized LAMP products were standardized. Analysis of successful amplification was made by using HNB dye, LAMP-LFA strip, and also by the typical ladder-like pattern on gel electrophoresis. The assay was found highly specific for cattle with an analytical sensitivity of 0.1 pg of absolute DNA. Laboratory validation carried out on samples from different individuals of cattle, coded samples, binary meat admixture, and heat-processed cattle tissues substantiated the accuracy of the assay. Comparison with pre-standardized species-specific PCR assay taken as gold standards revealed 100% conformity. The field utility of the developed assay was further established by its compatibility with the commercial kit eliminating the lengthy DNA extraction step and storage stability of LAMP reagent carrier buttons for 4 months under refrigeration. Thus, the developed assay capable of the result within 3 h in resource-limited settings can be used as POCT for identification of tissue of cattle origin.
Collapse
Affiliation(s)
- Jyoti Jawla
- Department of Livestock Products Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Rajiv Ranjan Kumar
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatnagar, India.
| | - S K Mendiratta
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatnagar, India.
| | - R K Agarwal
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatnagar, India.
| | - Sarita Kumari
- Department of Livestock Products Technology, PGIVER, RAJUVAS, Jaipur, India.
| | - Vikas Saxena
- Center for Vascular & Inflammatory Diseases, School of Medicine, University of Maryland, Baltimore, MD, USA.
| | - Dhananjay Kumar
- Division of Livestock Products Technology, Indian Veterinary Research Institute, Izatnagar, India.
| | - Praveen Singh
- I/C CIF Bioengineering, Division of Vet Biotechnology, Indian Veterinary Research Institute, Izatnagar, India.
| | - Nongthombam Boby
- Division of Veterinary Biotechnology, Indian Veterinary Research Institute, Izatnagar, India.
| | - Preeti Rana
- Department of Livestock Products Technology, CVASc, DUVASU, Mathura, India.
| |
Collapse
|
28
|
Kaewjua K, Nakthong P, Chailapakul O, Siangproh W. Flow-based System: A Highly Efficient Tool Speeds Up Data Production and Improves Analytical Performance. ANAL SCI 2021; 37:79-92. [PMID: 32981899 DOI: 10.2116/analsci.20sar02] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In this review, we cite references from the period between 2015 and 2020 related to the use of a flow-based system as a tool to obtain a modern analytical system for speeding up data production and improving performance. Based on a great deal of concepts for automatic systems, there are several research groups introduced in the development of flow-based systems to increase sample throughput while retaining the reproducibility and repeatability as well as to propose new platforms of flow-based systems, such as microfluidic chip and paper-based devices. Additionally, to apply a developed system for on-site analysis is one of the key features for development. We believe that this review will be very interested and useful for readers because of its impact on developing novel analytical systems. The content of the review is categorized following their applications including quality control and food safety, clinical diagnostics, environmental monitoring and miscellaneous.
Collapse
Affiliation(s)
- Kantima Kaewjua
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Prangthip Nakthong
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand
| | - Orawon Chailapakul
- Electrochemistry and Optical Spectroscopy Center of Excellence, Department of Chemistry, Faculty of Science, Bangkok, 10330, Thailand
| | - Weena Siangproh
- Department of Chemistry, Faculty of Science, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok, 10110, Thailand.
| |
Collapse
|
29
|
Paper-Based Molecular Diagnostics. Bioanalysis 2021. [DOI: 10.1007/978-981-15-8723-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
30
|
Ahn G, Lee S, Lee SH, Baek YH, Song MS, Kim YH, Ahn JY. Zika virus lateral flow assays using reverse transcription-loop-mediated isothermal amplification. RSC Adv 2021; 11:17800-17808. [PMID: 35480212 PMCID: PMC9033246 DOI: 10.1039/d1ra01227d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Our study suggest that ZIKV RT-LAMP combined with LFA could serve as a rapid, accurate, and independent point-of-care detection method for ZIKV outbreaks.
Collapse
Affiliation(s)
- Gna Ahn
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - SeonHyung Lee
- Department of Biological Sciences and Biotechnology
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Se Hee Lee
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Yun Hee Baek
- College of Medicine
- Medical Research Institute
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Min-Suk Song
- College of Medicine
- Medical Research Institute
- Chungbuk National University
- Cheongju 28644
- South Korea
| | - Yang-Hoon Kim
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
- Department of Biological Sciences and Biotechnology
| | - Ji-Young Ahn
- Department of Microbiology
- Chungbuk National University
- Cheongju 28644
- South Korea
- Department of Biological Sciences and Biotechnology
| |
Collapse
|
31
|
Recent advances in sensitivity enhancement for lateral flow assay. Mikrochim Acta 2021; 188:379. [PMID: 34647157 PMCID: PMC8513549 DOI: 10.1007/s00604-021-05037-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/25/2021] [Indexed: 12/04/2022]
Abstract
Conventional lateral flow assay (LFA) is typically performed by observing the color changes in the test lines by naked eyes, which achieves considerable commercial success and has a significant impact on the fields of food safety, environment monitoring, disease diagnosis, and other applications. However, this qualitative detection method is not very suitable for low levels of disease biomarkers' detection. Although many nanomaterials are used as new labels for LFA, additional readers limit their application to some extent. Fortunately, a lot of work has been done for improving the sensitivity of LFA. In this review, currently reported LFA sensitivity enhancement methods with an objective evaluation are summarized, such as sample pretreatment, the change of flow rate, and label evolution, and future development direction and challenges of LFAs are discussed.
Collapse
|
32
|
Li Z, Bai Y, You M, Hu J, Yao C, Cao L, Xu F. Fully integrated microfluidic devices for qualitative, quantitative and digital nucleic acids testing at point of care. Biosens Bioelectron 2020; 177:112952. [PMID: 33453463 PMCID: PMC7774487 DOI: 10.1016/j.bios.2020.112952] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 02/06/2023]
Abstract
Benefiting from emerging miniaturized and equipment-free nucleic acid testing (NAT) technologies, fully integrated NAT devices at point of care (POC) with the capability of "sample-in-answer-out" are proceeding at a break-neck speed to eliminate complex operations and reduce the risk of contamination. Like the development of polymerase chain reaction (PCR) technology (the standard technique for NAT), the detection signal of fully integrated NAT devices has evolved from qualitative to quantitative and recently to digital readout, aiming at expanding their extensive applications through gradually improving detection sensitivity and accuracy. This review firstly introduces the existing commercial products, and then illustrates recent fully integrated microfluidic devices for NAT at POC from the aspect of detection signals (i.e., qualitative, quantitative and digital). Importantly, the key issues of existing commercial products and the main challenges between scientific research and product development are discussed. On this basis, we envision that the MARCHED (miniaturized, automatic, reagent-preloaded, commercializable, high-throughput, environment-independent and disposable) NAT devices are expected to be realized in the near future.
Collapse
Affiliation(s)
- Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Yuemeng Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Minli You
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Jie Hu
- Suzhou DiYinAn Biotechnology Co., Ltd, Suzhou, 215010, PR China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, PR China.
| | - Lei Cao
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, PR China.
| |
Collapse
|
33
|
Tutorial: design and fabrication of nanoparticle-based lateral-flow immunoassays. Nat Protoc 2020; 15:3788-3816. [PMID: 33097926 DOI: 10.1038/s41596-020-0357-x] [Citation(s) in RCA: 277] [Impact Index Per Article: 55.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 05/12/2020] [Indexed: 12/20/2022]
Abstract
Lateral-flow assays (LFAs) are quick, simple and cheap assays to analyze various samples at the point of care or in the field, making them one of the most widespread biosensors currently available. They have been successfully employed for the detection of a myriad of different targets (ranging from atoms up to whole cells) in all type of samples (including water, blood, foodstuff and environmental samples). Their operation relies on the capillary flow of the sample throughout a series of sequential pads, each with different functionalities aiming to generate a signal to indicate the absence/presence (and, in some cases, the concentration) of the analyte of interest. To have a user-friendly operation, their development requires the optimization of multiple, interconnected parameters that may overwhelm new developers. In this tutorial, we provide the readers with: (i) the basic knowledge to understand the principles governing an LFA and to take informed decisions during lateral flow strip design and fabrication, (ii) a roadmap for optimal LFA development independent of the specific application, (iii) a step-by-step example procedure for the assembly and operation of an LF strip for the detection of human IgG and (iv) an extensive troubleshooting section addressing the most frequent issues in designing, assembling and using LFAs. By changing only the receptors, the provided example procedure can easily be adapted for cost-efficient detection of a broad variety of targets.
Collapse
|
34
|
Tang D, Hu J, Liu H, Li Z, Shi Q, Zhao G, Gao B, Lou J, Yao C, Xu F. Diagnosis and prognosis for exercise-induced muscle injuries: from conventional imaging to emerging point-of-care testing. RSC Adv 2020; 10:38847-38860. [PMID: 35518400 PMCID: PMC9057463 DOI: 10.1039/d0ra07321k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/11/2020] [Indexed: 12/02/2022] Open
Abstract
With the development of modern society, we have witnessed a significant increase of people who join in sport exercises, which also brings significantly increasing exercise-induced muscle injuries, resulting in reduction and even cessation of participation in sports and physical activities. Although severely injured muscles can hardly realize full functional restoration, skeletal muscles subjected to minor muscle injuries (e.g., tears, lacerations, and contusions) hold remarkable regeneration capacity to be healed without therapeutic interventions. However, delayed diagnosis or inappropriate prognosis will cause exacerbation of the injuries. Therefore, timely diagnosis and prognosis of muscle injuries is important to the recovery of injured muscles. Here, in this review, we discuss the definition and classification of exercise-induced muscle injuries, and then analyze their underlying mechanism. Subsequently, we provide detailed introductions to both conventional and emerging techniques for evaluation of exercise-induced muscle injuries with focus on emerging portable and wearable devices for point-of-care testing (POCT). Finally, we point out existing challenges and prospects in this field. We envision that an integrated system that combines physiological and biochemical analyses is anticipated to be realized in the future for assessing muscle injuries.
Collapse
Affiliation(s)
- Deding Tang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Maanshan Teachers College Ma Anshan 243041 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Jie Hu
- Suzhou DiYinAn Biotech Co., Ltd., Suzhou Innovation Center for Life Science and Technology Suzhou 215129 P. R. China
| | - Hao Liu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Zedong Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| | - Qiang Shi
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
- Anhui College of Traditional Chinese Medicine Wuhu 241000 P. R. China
| | - Guoxu Zhao
- School of Material Science and Chemical Engineering, Xi'an Technological University Xi'an 710021 P. R. China
| | - Bin Gao
- Department of Endocrinology, Tangdu Hospital, Air Force Military Medical University Xi'an 710038 P. R. China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University Shanghai 200030 P. R. China
| | - Chunyan Yao
- Department of Transfusion Medicine, Southwest Hospital, Third Military Medical University Chongqing 400038 P. R. China
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University Xi'an 710049 P. R. China
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University Xi'an 710049 P. R. China
| |
Collapse
|
35
|
Research Progress of Nucleic Acid Detection Technology Platforms for New Coronavirus SARS-CoV-2. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2020. [PMCID: PMC7535797 DOI: 10.1016/s1872-2040(20)60048-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
Kamber T, Koekemoer LL, Mathis A. Loop-mediated isothermal amplification (LAMP) assays for Anopheles funestus group and Anopheles gambiae complex species. MEDICAL AND VETERINARY ENTOMOLOGY 2020; 34:295-301. [PMID: 32154608 DOI: 10.1111/mve.12437] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 02/18/2020] [Accepted: 02/19/2020] [Indexed: 06/10/2023]
Abstract
Species of the genus Anopheles vary with regard to their vector capacity for Plasmodium spp., the causative agent of malaria, and their accurate identification is often required. Loop-mediated isothermal amplification (LAMP) is a rapid, simple and low-cost method for specific DNA amplification. Primers for LAMP assays specific for the Anopheles funestus group and Anopheles gambiae complex species as well as for the species Anopheles arabiensis, An. funestus, An. gambiae s.s/Anopheles coluzzii (major vectors) and Anopheles rivulorum (minor vector) were designed targeting specific genome or rDNA internal transcribed spacer regions. Reaction conditions (buffer composition, primer concentrations, incubation time) were evaluated and the specificities of the assays confirmed with DNA from non-target Anopheles species. DNA release from the mosquitoes is achieved simply by heating them for 5 min in water. An aliquot of the DNA solutions is transferred to the reaction tube using disposable inoculation loops. The outcome of the LAMP amplifications after 1 h incubation at 65 °C can easily be visualized by a colour change visible to the naked eye. The assays are operable under field conditions requiring only basic equipment (portable heat block programmable at 65 and 80 °C, cooler for master mixes).
Collapse
Affiliation(s)
- T Kamber
- Institute of Parasitology, National Centre for Vector Entomology, Zürich, Switzerland
| | - L L Koekemoer
- Wits Research Institute for Malaria, SAMRC Collaborating Centre for Multidisciplinary Research on Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, Johannesburg, South Africa
| | - A Mathis
- Institute of Parasitology, National Centre for Vector Entomology, Zürich, Switzerland
| |
Collapse
|
37
|
Andryukov BG. Six decades of lateral flow immunoassay: from determining metabolic markers to diagnosing COVID-19. AIMS Microbiol 2020; 6:280-304. [PMID: 33134745 PMCID: PMC7595842 DOI: 10.3934/microbiol.2020018] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/20/2020] [Indexed: 01/10/2023] Open
Abstract
Technologies based on lateral flow immunoassay (LFIA), known in some countries of the world as immunochromatographic tests, have been successfully used for the last six decades in diagnostics of many diseases and conditions as they allow rapid detection of molecular ligands in biosubstrates. The popularity of these diagnostic platforms is constantly increasing in healthcare facilities, particularly those facing limited budgets and time, as well as in household use for individual health monitoring. The advantages of these low-cost devices over modern laboratory-based analyzers come from their availability, opportunity of rapid detection, and ease of use. The attractiveness of these portable diagnostic tools is associated primarily with their high analytical sensitivity and specificity, as well as with the easy visual readout of results. These qualities explain the growing popularity of LFIA in developing countries, when applied at small hospitals, in emergency situations where screening and monitoring health condition is crucially important, and as well as for self-testing of patients. These tools have passed the test of time, and now LFIA test systems are fully consistent with the world's modern concept of ‘point-of-care testing’, finding a wide range of applications not only in human medicine, but also in ecology, veterinary medicine, and agriculture. The extensive opportunities provided by LFIA contribute to the continuous development and improvement of this technology and to the creation of new-generation formats. This review will highlight the modern principles of design of the most widely used formats of test-systems for clinical laboratory diagnostics, summarize the main advantages and disadvantages of the method, as well as the current achievements and prospects of the LFIA technology. The latest innovations are aimed at improving the analytical performance of LFIA platforms for the diagnosis of bacterial and viral infections, including COVID-19.
Collapse
Affiliation(s)
- Boris G Andryukov
- Somov Research Institute of Epidemiology and Microbiology, Vladivostok, Russian Federation.,Far Eastern Federal University (FEFU), Vladivostok, Russian Federation
| |
Collapse
|
38
|
Naik P, Jaitpal S, Paul D. The Resurgence of Paperfluidics: A new technology for cell, DNA, and blood analysis. IEEE NANOTECHNOLOGY MAGAZINE 2020. [DOI: 10.1109/mnano.2020.2966063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
39
|
Zhu H, Fohlerová Z, Pekárek J, Basova E, Neužil P. Recent advances in lab-on-a-chip technologies for viral diagnosis. Biosens Bioelectron 2020; 153:112041. [PMID: 31999560 PMCID: PMC7126858 DOI: 10.1016/j.bios.2020.112041] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/13/2020] [Accepted: 01/20/2020] [Indexed: 12/12/2022]
Abstract
The global risk of viral disease outbreaks emphasizes the need for rapid, accurate, and sensitive detection techniques to speed up diagnostics allowing early intervention. An emerging field of microfluidics also known as the lab-on-a-chip (LOC) or micro total analysis system includes a wide range of diagnostic devices. This review briefly covers both conventional and microfluidics-based techniques for rapid viral detection. We first describe conventional detection methods such as cell culturing, immunofluorescence or enzyme-linked immunosorbent assay (ELISA), or reverse transcription polymerase chain reaction (RT-PCR). These methods often have limited speed, sensitivity, or specificity and are performed with typically bulky equipment. Here, we discuss some of the LOC technologies that can overcome these demerits, highlighting the latest advances in LOC devices for viral disease diagnosis. We also discuss the fabrication of LOC systems to produce devices for performing either individual steps or virus detection in samples with the sample to answer method. The complete system consists of sample preparation, and ELISA and RT-PCR for viral-antibody and nucleic acid detection, respectively. Finally, we formulate our opinions on these areas for the future development of LOC systems for viral diagnostics.
Collapse
Affiliation(s)
- Hanliang Zhu
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China
| | - Zdenka Fohlerová
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Jan Pekárek
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic
| | - Evgenia Basova
- Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic
| | - Pavel Neužil
- Ministry of Education Key Laboratory of Micro/Nano Systems for Aerospace, Department of Microsystem Engineering, School of Mechanical Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi, 710072, PR China; Central European Institute of Technology, Brno University of Technology, 612 00, Brno, Czech Republic; Department of Microelectronics, Faculty of Electrical Engineering and Communication, Brno University of Technology, 616 00, Brno, Czech Republic.
| |
Collapse
|
40
|
Mao K, Min X, Zhang H, Zhang K, Cao H, Guo Y, Yang Z. Paper-based microfluidics for rapid diagnostics and drug delivery. J Control Release 2020; 322:187-199. [PMID: 32169536 DOI: 10.1016/j.jconrel.2020.03.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/13/2020] [Accepted: 03/07/2020] [Indexed: 02/07/2023]
Abstract
Paper is a common material that is promising for constructing microfluidic chips (lab-on-a-paper) for diagnostics and drug delivery for biomedical applications. In the past decade, extensive research on paper-based microfluidics has accumulated a large number of scientific publications in the fields of biomedical diagnosis, food safety, environmental health, drug screening and delivery. This review focuses on the recent progress on paper-based microfluidic technology with an emphasis on the design, optimization and application of the technology platform, in particular for medical diagnostics and drug delivery. Novel advances have concentrated on engineering paper devices for point-of-care (POC) diagnostics, which could be integrated with nucleic acid-based tests and isothermal amplification experiments, enabling rapid sample-to-answer assays for field testing. Among the isothermal amplification experiments, loop-mediated isothermal amplification (LAMP), an extremely sensitive nucleic acid test, specifically identifies ultralow concentrations of DNA/RNA from practical samples for diagnosing diseases. We thus mainly focus on the paper device-based LAMP assay for the rapid infectious disease diagnosis, foodborne pathogen analysis, veterinary diagnosis, plant diagnosis, and environmental public health evaluation. We also outlined progress on paper microfluidic devices for drug delivery. The paper concludes with a discussion on the challenges of this technology and our insights into how to advance science and technology towards the development of fully functional paper devices in diagnostics and drug delivery.
Collapse
Affiliation(s)
- Kang Mao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Xiaocui Min
- Guangzhou Huali Science and Technology Vocational College, Guangzhou 511325, China
| | - Hua Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Kuankuan Zhang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Haorui Cao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Yongkun Guo
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Zhugen Yang
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom.
| |
Collapse
|
41
|
Kim TH, Hahn YK, Kim MS. Recent Advances of Fluid Manipulation Technologies in Microfluidic Paper-Based Analytical Devices (μPADs) toward Multi-Step Assays. MICROMACHINES 2020; 11:mi11030269. [PMID: 32143468 PMCID: PMC7142896 DOI: 10.3390/mi11030269] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022]
Abstract
Microfluidic paper-based analytical devices (μPADs) have been suggested as alternatives for developing countries with suboptimal medical conditions because of their low diagnostic cost, high portability, and disposable characteristics. Recently, paper-based diagnostic devices enabling multi-step assays have been drawing attention, as they allow complicated tests, such as enzyme-linked immunosorbent assay (ELISA) and polymerase chain reaction (PCR), which were previously only conducted in the laboratory, to be performed on-site. In addition, user convenience and price of paper-based diagnostic devices are other competitive points over other point-of-care testing (POCT) devices, which are more critical in developing countries. Fluid manipulation technologies in paper play a key role in realizing multi-step assays via μPADs, and the expansion of biochemical applications will provide developing countries with more medical benefits. Therefore, we herein aimed to investigate recent fluid manipulation technologies utilized in paper-based devices and to introduce various approaches adopting several principles to control fluids on papers. Fluid manipulation technologies are classified into passive and active methods. While passive valves are structurally simple and easy to fabricate, they are difficult to control in terms of flow at a specific spatiotemporal condition. On the contrary, active valves are more complicated and mostly require external systems, but they provide much freedom of fluid manipulation and programmable operation. Both technologies have been revolutionized in the way to compensate for their limitations, and their advances will lead to improved performance of μPADs, increasing the level of healthcare around the world.
Collapse
Affiliation(s)
| | - Young Ki Hahn
- Biomedical Convergence Science & Technology, Industrial Technology Advances, Kyungpook National University, 80 Daehakro, Bukgu, Daegu 41566, Korea
- Correspondence: (Y.K.H.); (M.S.K.); Tel.: +82-53-950-2338 (Y.K.H.); +82-53-785-1740 (M.S.K.)
| | - Minseok S. Kim
- Department of New Biology, Daegu Gyeongbuk Institute of Science & Technology (DGIST), 333 Techno jungang-daero, Daegu 42988, Korea
- Correspondence: (Y.K.H.); (M.S.K.); Tel.: +82-53-950-2338 (Y.K.H.); +82-53-785-1740 (M.S.K.)
| |
Collapse
|
42
|
Yee EH, Sikes HD. Polymerization-Based Amplification for Target-Specific Colorimetric Detection of Amplified Mycobacterium tuberculosis DNA on Cellulose. ACS Sens 2020; 5:308-312. [PMID: 31970983 DOI: 10.1021/acssensors.9b02424] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Loop-mediated isothermal amplification (LAMP) is an appealing method for low-cost, point-of-care nucleic acid diagnostic assays due to high sensitivity, minimal equipment requirements, and compatibility with user-friendly colorimetric detection methods. The enhanced sensitivity LAMP offers comes with vulnerability to cross-contamination, where negative samples are exposed to minute amounts of nucleic acids from positive samples. These amounts are insignificant in less sensitive amplification methods, but visible when LAMP is paired with common colorimetric methods. Here, we examined the use of eosin photopolymerization, a tunable reaction, for colorimetric detection of LAMP products to reduce this false positive risk. Using eosin and biotin end-labeled primers, we successfully amplified target regions of the Mycobacterium tuberculosis (MTB) genome using PCR and LAMP, captured amplicons on streptavidin-coated cellulose, and detected DNA targets via eosin photopolymerization, producing a bright pink color only if MTB DNA was present in the sample. Consistent with previous reports, the LAMP-based method exhibited high background signal, but tuning the illumination time for the photopolymerization reaction allowed readouts from samples with no added MTB DNA to remain blank and visually distinct from pink positives. This method yielded limits of detection of 30 and 300 copies/μL for LAMP and PCR amplification, respectively. When confronted with boiled MTB culture samples, this method gave clear positive readouts, compared to negligible signal from other Mycobacterium boiled culture samples. This new method of LAMP colorimetric detection has the potential to increase the utility of LAMP as a nucleic acid assay technique by mitigating sensitivity to cross-contamination.
Collapse
Affiliation(s)
| | - Hadley D. Sikes
- Singapore-MIT Alliance for Research and Technology (SMART) Centre, 1 CREATE Way, Singapore 138602
| |
Collapse
|
43
|
Wu H, He JS, Zhang F, Ping J, Wu J. Contamination-free visual detection of CaMV35S promoter amplicon using CRISPR/Cas12a coupled with a designed reaction vessel: Rapid, specific and sensitive. Anal Chim Acta 2020; 1096:130-137. [PMID: 31883579 DOI: 10.1016/j.aca.2019.10.042] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/21/2022]
Abstract
An ultrafast and convenient method for visually detecting CaMV35S promoter amplicon (amplified products) was established by using CRISPR/Cas12a system coupled with a designed reaction vessel. Genetically modified (GM) soybean (Roundup Ready®) powders containing CaMV35S promoter were employed as detection targets, which were amplified by loop-mediated isothermal amplification (LAMP). The CRISPR/Cas12a system directly mixed with amplified products at 37 °C for 5 min and detection results could be clearly identified by the naked eye under UV light (254 nm). A designed reaction vessel was employed to make operation easier and could effectively prevent contamination at the source. The CRISPR/Cas12a detection system was optimized in our study and the concentration of magnesium ions was proved to be important for the work of CRISPR/Cas12a system. The optimized concentration range of magnesium ions was between 10 mM and 12 mM. Besides, the activated Bst DNA polymerase also had little effects on CRISPR/Cas12a system. The developed method could significantly distinguish the specific and non-specific amplification. And as low as 0.05% transgenic contents in soybean powders could be detected. It would have the potential to be complementary to instrument-based ultrahigh sensitive method and provide a new solution for on-site rapid detection.
Collapse
Affiliation(s)
- Hui Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jin-Song He
- College of Food Science and Technology, Yunnan Agricultural University, Kunming, 650201, China.
| | - Fang Zhang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Jianfeng Ping
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jian Wu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
44
|
Wang LX, Fu JJ, Zhou Y, Chen G, Fang C, Lu ZS, Yu L. On-chip RT-LAMP and colorimetric detection of the prostate cancer 3 biomarker with an integrated thermal and imaging box. Talanta 2020; 208:120407. [DOI: 10.1016/j.talanta.2019.120407] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 10/25/2022]
|
45
|
He T, Li J, Liu L, Ge S, Yan M, Liu H, Yu J. Origami-based “Book” shaped three-dimensional electrochemical paper microdevice for sample-to-answer detection of pathogens. RSC Adv 2020; 10:25808-25816. [PMID: 35518615 PMCID: PMC9055359 DOI: 10.1039/d0ra03833d] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 06/21/2020] [Indexed: 01/14/2023] Open
Abstract
Herein, an ease-of-use and highly sensitive origami-based “book” shaped three-dimensional electrochemical paper microdevice based on nucleic acid testing (NAT) methodology was developed for sample-to-answer detection of pathogens from whole blood and food samples. The whole steps of NAT, including sample preparation, amplification and detection, were performed by alternately folding the panels of the microdevice, just like flipping a book. The screen-printing electrodes were combined with wax-printing technology to construct a paper-based electrochemical unit to monitor Loop-mediated isothermal amplification (LAMP) reaction with an electrochemical strategy. After nucleic acid extraction and purification with the glass fiber, the LAMP reaction was performed for 45 min to amplify the extracted nucleic acid sequence, followed by the execution of the electrochemical interrogation reaction based on methylene blue (MB) and double-stranded LAMP amplicons. Starting with whole blood and food samples spiked with Salmonella typhimurium, this microdevice was successfully applied to identify pathogens from biological samples with satisfactory sensitivity and specificity. Therefore, the proposed origami-based “book” shaped three-dimensional paper microdevice has great potential for disease diagnosis, food safety analysis applications in the future. Herein, an ease-of-use and highly sensitive origami-based “book” shaped three-dimensional electrochemical paper microdevice based on nucleic acid testing (NAT) methodology was developed for sample-to-answer detection of pathogens from whole blood and food samples.![]()
Collapse
Affiliation(s)
- Tao He
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jingwen Li
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Lisheng Liu
- Key Laboratory of Animal Resistance Research
- College of Life Science
- Shandong Normal University
- Jinan
- P. R. China
| | - Shenguang Ge
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Mei Yan
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Haiyun Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| | - Jinghua Yu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong
- Institute for Advanced Interdisciplinary Research (IAIR)
- University of Jinan
- Jinan 250022
- P. R. China
| |
Collapse
|
46
|
Batule BS, Seok Y, Kim MG. Paper-based nucleic acid testing system for simple and early diagnosis of mosquito-borne RNA viruses from human serum. Biosens Bioelectron 2019; 151:111998. [PMID: 31999593 DOI: 10.1016/j.bios.2019.111998] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 12/23/2019] [Accepted: 12/25/2019] [Indexed: 12/11/2022]
Abstract
The recent outbreaks of mosquito-borne diseases (e.g., zika, dengue, and chikungunya) increased public health burden in developing countries. To control the spread of these infectious diseases, a simple, economic, reliable, sensitive, and selective diagnostic platform is required. Considering demand for affordable and accessible methods, we have demonstrated a two-step strategy for extraction and detection of viral RNAs of infectious diseases within 1 h. Ready-to-use devices for viral RNA extraction and detection were successfully fabricated using paper as a substrate. Viral RNA (e.g., zika, dengue, and chikungunya) was captured and eluted using a handheld RNA extraction paper-strip device, and another paper-chip device was used for reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay with a detection limit of a single copy and 10 copies of viral RNA in phosphate buffer solution (PBS) and serum, respectively. With these proposed devices, we have detected viral RNAs of zika and dengue in clinical human serum samples. The proposed paper-based extraction and detection platforms could be employed for detection of infectious viral diseases from complex clinical samples in resource-limited settings.
Collapse
Affiliation(s)
- Bhagwan S Batule
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju, 61005, Republic of Korea
| | - Youngung Seok
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju, 61005, Republic of Korea
| | - Min-Gon Kim
- Department of Chemistry, School of Physics and Chemistry, Gwangju Institute of Science and Technology, 261 Cheomdan-gwagiro, Gwangju, 61005, Republic of Korea.
| |
Collapse
|
47
|
Ma YD, Li KH, Chen YH, Lee YM, Chou ST, Lai YY, Huang PC, Ma HP, Lee GB. A sample-to-answer, portable platform for rapid detection of pathogens with a smartphone interface. LAB ON A CHIP 2019; 19:3804-3814. [PMID: 31620745 DOI: 10.1039/c9lc00797k] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Emerging and re-emerging infectious diseases pose global threats to human health. Although several conventional diagnostic methods have been widely adopted in the clinic, the long turn-around times of "gold standard" culture-based techniques, as well as the limited sensitivity of lateral-flow strip assays, thwart medical progress. In this study, a smartphone-controlled, automated, and portable system was developed for rapid molecular diagnosis of pathogens (including viruses and bacteria) via the use of a colorimetric loop-mediated isothermal amplification (LAMP) approach on a passive, self-driven microfluidic device. The system was capable of 1) purifying viral or bacterial samples with specific affinity reagents that had been pre-conjugated to magnetic beads, 2) lysing pathogens at low temperatures, 3) executing isothermal nucleic acid amplification, and 4) quantifying the results of colorimetric assays for detection of pathogens with an integrated color sensor. The entire, 40 min analytical process was automatically performed with a novel punching-press mechanism that could be controlled and monitored by a smartphone. As a proof of concept, the influenza A (H1N1) virus and methicillin-resistant Staphylococcus aureus bacteria were used to characterize and optimize the device, and the limits of detection were experimentally found to be 3.2 × 10-3 hemagglutinating units (HAU) per reaction and 30 colony-forming units (CFU) per reaction, respectively; both such values represent high enough sensitivity for clinical adoption. Moreover, the colorimetric assay could be both qualitative and quantitative for detection of pathogens. This is the first instance of an easy-to-use, automated, and portable system for accurate and sensitive molecular diagnosis of either viruses or bacteria, and it is envisioned that this smartphone-controlled apparatus may serve as a platform for clinical, point-of-care pathogen detection, particularly in resource-limited settings.
Collapse
Affiliation(s)
- Yu-Dong Ma
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Kuang-Hsien Li
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yi-Hong Chen
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yung-Mao Lee
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Shang-Ta Chou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Yue-Yuan Lai
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Po-Chiun Huang
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Hsi-Pin Ma
- Department of Electrical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan.
| | - Gwo-Bin Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan. and Institute of NanoEngineering and Microsystems, National Tsing Hua University, Hsinchu, 30013 Taiwan and Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013 Taiwan
| |
Collapse
|
48
|
Liu L, Yang D, Liu G. Signal amplification strategies for paper-based analytical devices. Biosens Bioelectron 2019; 136:60-75. [DOI: 10.1016/j.bios.2019.04.043] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 12/26/2022]
|
49
|
Abstract
Specific nucleic acid detection in vitro or in vivo has become increasingly important in the discovery of genetic diseases, diagnosing pathogen infection and monitoring disease treatment. One challenge, however, is that the amount of target nucleic acid in specimens is limited. Furthermore, direct sensing methods are also unable to provide sufficient sensitivity and specificity. Fortunately, due to advances in nanotechnology and nanomaterials, nanotechnology-based bioassays have emerged as powerful and promising approaches providing ultra-high sensitivity and specificity in nucleic acid detection. This chapter presents an overview of strategies used in the development and integration of nanotechnology for nucleic acid detection, including optical and electrical detection methods, and nucleic acid assistant recycling amplification strategies. Recent 5 years representative examples are reviewed to demonstrate the proof-of-concept with promising applications for DNA/RNA detection and the underlying mechanism for detection of DNA/RNA with the higher sensitivity and selectivity. Furthermore, a brief discussion of common unresolved issues and future trends in this field is provided both from fundamental and practical point of view.
Collapse
Affiliation(s)
- Hong Zhou
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing Liu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China
| | - Jing-Juan Xu
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China.
| | - Shusheng Zhang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi, China.
| | - Hong-Yuan Chen
- Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| |
Collapse
|
50
|
Trinh TND, Lee NY. A foldable isothermal amplification microdevice for fuchsin-based colorimetric detection of multiple foodborne pathogens. LAB ON A CHIP 2019; 19:1397-1405. [PMID: 30847458 DOI: 10.1039/c8lc01389f] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In this study, we have developed a foldable microdevice fully integrating DNA purification, amplification, and detection processes for detecting multiple foodborne pathogens. Specifically, the loop-mediated isothermal amplification (LAMP) technique was combined with a fuchsin-based direct DNA colorimetric detection method. The microdevice was composed of three parts: a sample zone, reaction zone, and detection zone. A sealing film attached to the sample, reaction, and detection zones served as a bottom layer to make the microdevice foldable. The detection zone was made up of paper strips attached to the sticky side of the sealing film, and fuchsin-stained lines were drawn on the paper strips. The microdevice can be folded to directly transfer the DNA template solution from the sample chambers to the reaction chambers. In this manner, fluid manipulation was readily realized and the use of a bulky instrument such as a pump or rotator was completely dispensed with. After the LAMP reaction, the detection zone was folded so that the fuchsin-stained lines were completely soaked into the reaction chambers. Genomic DNAs of Salmonella spp. and Escherichia coli O157:H7 were first successfully purified from thermally-lysed milk using polydopamine-coated paper, amplified by LAMP, and directly identified by the naked eye using fuchsin within 65 min. Using this microdevice, approximately 102 CFU per mL of Salmonella spp. was detected. These results indicate the significant potential of this microdevice for the sample-in-answer-out genetic analysis of multiple foodborne pathogens in resource-limited environments.
Collapse
Affiliation(s)
- Thi Ngoc Diep Trinh
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea.
| | | |
Collapse
|