1
|
Liu T, Zhuang XX, Li Zhu X, Wu X, Juan Qin X, Bing Wei L, Chen Gao Y, Rong Gao J. Inhibition of METTL3 promotes mesangial cell mitophagy and attenuates glomerular damage by alleviating FOSL1 m6A modifications via IGF2BP2-dependent mechanisms. Biochem Pharmacol 2025; 236:116867. [PMID: 40081768 DOI: 10.1016/j.bcp.2025.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/30/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Epigenetic changes are involved in many physiological and pathological processes. Mitophagy plays a critical role in chronic kidney disease (CKD); however, the role of N6-methyladenosine (m6A) modification in renal mitophagy remains unclear. In this research, we aim to elucidate the role of RNA methylation in modulating mitophagy and its involvement in the pathophysiology of chronic glomerulonephritis (CGN). We found that Methyltransferase-like 3 (METTL3) was significantly upregulated in biopsies from CKD patients, as well as in CGN mice and cultured mouse mesangial cells (MMCs), and was inversely correlated with glomerular filtration rate. Adeno-associated virus serotype 9 (AAV9)-mediated METTL3 silencing from mouse kidneys attenuated adenine-induced glomerular damage, and promoted renal mitophagy. METTL3 knockdown significantly reduced the oxidative stress and inflammation levels and promoted mitophagy in lipopolysaccharide (LPS)-stimulated MMCs, while its overexpression significantly aggravated these responses in vitro. Moreover, FOSL1 (Fos-like antigen 1) was identified as a target of METTL3 and the stability of FOSL1 was increased through binding of IGF2BP2 (Insulin-like Growth Factor 2 mRNA-binding Protein 2) to its m6A-modified regions. The mitophagy regulatory effects of FOSL1 were then explored both in vitro and in vivo. Mechanistically, METTL3 modulated AMPK (AMP-activated Protein Kinase)/mTOR (Mechanistic Target of Rapamycin) signaling via the m6A modification of FOSL1 in an IGF2BP2-dependent manner and exerted a mitophagy inhibitory effect. In summary, this study suggested that METTL3-mediated m6A modification is an important mechanism of mesangial cell (MCs) injury in CGN. Targeting m6A through the writer enzyme METTL3 is a potential approach for the treatment of CGN.
Collapse
Affiliation(s)
- Tao Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei 230011 Anhui, China
| | - Xing Xing Zhuang
- Department of Pharmacy, Chaohu Hospital of Anhui Medical University, Chaohu 238000 Anhui, China
| | - Xiao Li Zhu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012 Anhui, China
| | - Xi Wu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012 Anhui, China
| | - Xiu Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012 Anhui, China
| | - Liang Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012 Anhui, China
| | - Ya Chen Gao
- Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012 Anhui, China
| | - Jia Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei 230012 Anhui, China; Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei 230012 Anhui, China.
| |
Collapse
|
2
|
Bao Y, Ge YM, Wang Z, Wang HY, Wang Q, Yuan J. Safranal Ameliorates Renal Damage, Inflammation, and Podocyte Injury in Membranous Nephropathy via SIRT/NF-κB Signalling. Curr Med Sci 2025; 45:288-300. [PMID: 40035996 DOI: 10.1007/s11596-025-00020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 01/26/2025] [Indexed: 03/06/2025]
Abstract
OBJECTIVE Safranal is a natural product from saffron (Crocus sativus L.) with anti-inflammatory and nephroprotective potential. This study aimed to explore the role of safranal in a cationic bovine serum albumin (C-BSA)-induced rat model of membranous glomerulonephritis (MGN). METHODS After model establishment, Sprague-Dawley rats were administered 100 or 200 mg/kg safranal by gavage. A biochemical analyser was used to measure the urine protein levels and serum levels of renal function parameters. Hematoxylin-eosin and immunofluorescence staining of kidney tissues were performed to examine histopathological changes and assess the expression of IgG, C3, and Sirt1. Western blotting was performed to measure the protein levels of podocin, nephrin, Sirt1, and factors involved in the NF-κB/p65 pathway. Inflammatory cytokine levels in renal homogenates were determined by ELISA. RESULTS Safranal at 100 or 200 mg/kg reduced kidney weight (2.07 ± 0.15 g and 2.05 ± 0.15 g) and the kidney somatic index (0.83 ± 0.08% and 0.81 ± 0.08%) in MGN rats compared with those in the model group without drug administration (2.62 ± 0.17 g and 1.05 ± 0.1%). C-BSA increased the urine protein level to 117.68 ± 10.52 mg/day (compared with the sham group, 5.03 ± 0.45 mg/day), caused dysregulation of renal function indicators, and induced glomerular expansion and inflammatory cell infiltration in the rat kidney samples. All the biochemical and histological changes were improved by safranal administration. Safranal at two doses also increased the fluorescence intensities of IgG (0.1 ± 0.009 and 0.088 ± 0.008) and C3 (0.065 ± 0.006 and 0.048 ± 0.004) compared with those in the MGN group (0.15 ± 0.013 and 0.086 ± 0.008). Additionally, safranal reversed the downregulation of podocin, nephrin, and Wilms tumor protein-1 (WT1) levels and reversed the high inflammatory cytokine levels in MGN rats. Mechanistically, safranal activated Sirt1 signalling to interfere with NF-κB signalling in the kidney tissues of MGN rats. CONCLUSIONS Safranal ameliorates renal damage, inflammation, and podocyte injury in MGN by upregulating SIRT1 and inhibiting NF-κB signalling.
Collapse
Affiliation(s)
- Yan Bao
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ya-Mei Ge
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Zheng Wang
- BSc Biochemistry, University College London, London, WCIE 6BT, UK
| | - Hong-Yun Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Qiong Wang
- The First Clinical College, Hubei University of Chinese Medicine, Wuhan, 430065, China
| | - Jun Yuan
- Department of Nephrology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
3
|
Wu X, Li X, Chai Y, Tian Y, Wang H, Li X, Zhang J, Guang C, Hong E, Cheng H, Hu Q, Chen H, Hou H. Cordyceps Sinensis Reduces Inflammation and Protects BEAS-2B Cells From LPS-Induced THP-1 Cell Injury. J Inflamm Res 2025; 18:4143-4156. [PMID: 40125085 PMCID: PMC11930259 DOI: 10.2147/jir.s508098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/02/2025] [Indexed: 03/25/2025] Open
Abstract
Introduction Cordyceps sinensis, an entomogenous fungus with unique biological properties, has demonstrated significant anti-inflammatory potential. However, its effects on inflammation regulation need to be further investigated in detail. Methods In this study, we aimed to analyze the Cordyceps sinensis extract (CSE) obtained via ethanol extraction and to assess its effects on inflammation regulation. The secretion of pro-inflammatory cytokines (IL-6, TNF-α, IL-8, and IL-1β) and the level of MMP9, Nrf2/HO-1 and ROS were evaluated. A transwell system with THP-1 and BEAS-2B cells was used to explore the inflammatory damage. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) enrichment analyses were conducted on the differentially expressed genes. Results CSE exhibited no cytotoxicity to THP-1 cells at concentrations ≤ 1.6 mg/mL. Treatment of LPS-induced THP-1 cells with CSE significantly inhibited the secretion of pro-inflammatory cytokines. CSE reduced inflammation-related protein MMP9, while upregulating the anti-inflammatory Nrf2/HO-1 signaling pathway. Fluorescence assays using DCF and JC-1 further confirmed that CSE help mitigate oxidative stress-induced inflammation. CSE treatment protected BEAS-2B cells from inflammatory damage. Moreover, the immune system process was a shared GO term between LPS-only treatment and combined LPS and CSE treatment. KEGG enrichment analysis showed that CSE is capable of regulating genes associated with inflammatory and anti-inflammatory responses. Conclusion These findings highlight the potential of CSE as an immune-regulating agent in functional foods and health products.
Collapse
Affiliation(s)
- Xiaqing Wu
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Xin Li
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Ying Chai
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Yushan Tian
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Hongjuan Wang
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Xiao Li
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Jingzheng Zhang
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Chunmei Guang
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Enliang Hong
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Haoping Cheng
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Qingyuan Hu
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Huan Chen
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| | - Hongwei Hou
- Key Laboratory of Tobacco Biological Effects, China National Tobacco Quality Supervision & Test Center, Zhengzhou, Henan, People’s Republic of China
- Beijing Life Science Academy, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Saxena J, Agarwal G, Das S, Kumar A, Thakkar K, Kaushik S, Srivatsava VK, Siddiqui AJ, Jyoti A. Immunopharmacological Insights into Cordyceps spp.: Harnessing Therapeutic Potential for Sepsis. Curr Pharm Des 2025; 31:823-842. [PMID: 39694962 DOI: 10.2174/0113816128326301240920040036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/29/2024] [Accepted: 08/06/2024] [Indexed: 12/20/2024]
Abstract
Cordyceps spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds. The bioactive compounds and CS extract have antibacterial, antioxidant, immunomodulatory, and inflammatory properties in addition to organ protection properties across a range of disease states. The study aimed to review the potential of CS, a medicinal mushroom, as a treatment for sepsis. While current sepsis drugs have side effects, CS shows promise due to its anti-inflammatory, antioxidant, and antibacterial properties. We have performed an extensive literature search based on published original and review articles in Scopus and PubMed. The keywords used were Cordyceps, sepsis, and inflammation. Studies indicate that CS extract and bioactive compounds target free radicals including oxidative as well as nitrosative stress, lower inflammation, and modulate the immune system, all of which are critical components in sepsis. The brain, liver, kidneys, lungs, and heart are among the organs that CS extracts may be able to shield against harm during sepsis. Traditional remedies with anti-inflammatory and protective qualities, such as Cordyceps mushrooms, are promising in sepsis. However, more research including clinical trials is required to validate the usefulness of CS metabolites in terms of organ protection and fight infections in sepsis.
Collapse
Affiliation(s)
- Juhi Saxena
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Gaurang Agarwal
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Sarvjeet Das
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Anshu Kumar
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| | - Krish Thakkar
- Department of Biotechnology, Parul Institute of Technology, Parul University, Vadodara, Gujarat, India
| | - Sanket Kaushik
- Amity Institute of Biotechnology, Amity University, Jaipur, Rajasthan, India
| | | | - Arif Jamal Siddiqui
- Department of Biology, College of Science, University of Ha'il, Ha'il, P.O. Box 2440, Saudi Arabia
| | - Anupam Jyoti
- Department of Life Science, Parul Institute of Applied Science, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
5
|
Tao Y, Luo R, Xiang Y, Lei M, Peng X, Hu Y. Use of bailing capsules (cordyceps sinensis) in the treatment of chronic kidney disease: a meta-analysis and network pharmacology. Front Pharmacol 2024; 15:1342831. [PMID: 38645562 PMCID: PMC11026558 DOI: 10.3389/fphar.2024.1342831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
The Bailing Capsule is a commonly used traditional Chinese medicine for the treatment of chronic kidney disease (CKD). However, its therapeutic effects and pharmacological mechanisms have not been fully explored. In this study, we integrated meta-analysis and network pharmacology to provide scientific evidence for the efficacy and pharmacological mechanism of Bailing Capsule in treating CKD. We conducted searches for randomized controlled studies matching the topic in PubMed, the Cochrane Library, Embase, Web of Science, and the Wanfang Database, and screened them according to predefined inclusion and exclusion criteria. Dates from the included studies were extracted for meta-analysis, including renal function indicators, such as 24-h urinary protein (24UP), blood urea nitrogen (BUN), and serum creatinine (Scr), as well as inflammatory indicators like high-sensitivity C-reactive protein (hs-CRP), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α). Network pharmacology was employed to extract biological information, including active drug ingredients and potential targets of the drugs and diseases, for network construction and gene enrichment. Our findings indicated that 24UP, BUN, and Scr in the treatment group containing Bailing Capsule were lower than those in the control group. In terms of inflammatory indicators, hs-CRP, IL-6, and TNF-α, the treatment group containing Bailing Capsule also exhibited lower levels than the control group. Based on network pharmacology analysis, we identified 190 common targets of Bailing Capsule and CKD. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses suggested that the pharmacological mechanism of Bailing Capsule might be related to immune response, inflammatory response, vascular endothelial damage, cell proliferation, and fibrosis. This demonstrates that Bailing Capsule can exert therapeutic effects through multiple targets and pathways, providing a theoretical basis for its use.
Collapse
Affiliation(s)
- Yilin Tao
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Ruixiang Luo
- The Third Affiliated Hospital of Sun Yat Sen University, Guangzhou, China
| | - Yuanbing Xiang
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Min Lei
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Xuan Peng
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
| | - Yao Hu
- Department of Medicine Renal Division, Affiliated Hospital & Clinical Medical College of Chengdu University, Chengdu, China
- Department of Medicine Renal Division, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, China
| |
Collapse
|
6
|
Wang X, Peng Z, Wang L, Zhang J, Zhang K, Guo Z, Xu G, Li J. Cordyceps militaris Solid Medium Extract Alleviates Lipoteichoic Acid-Induced MH-S Inflammation by Inhibiting TLR2/NF-κB/NLRP3 Pathways. Int J Mol Sci 2023; 24:15519. [PMID: 37958501 PMCID: PMC10648577 DOI: 10.3390/ijms242115519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/19/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023] Open
Abstract
The aim of this study was to investigate the inhibitory effects of Cordyceps militaris solid medium extract (CME) and cordycepin (COR) on LTA-induced inflammation in MH-S cells and their mechanisms of action. In this study, the establishment of an LTA-induced MH-S inflammation model was determined, the CCK-8 method was used to determine the safe concentration range for a drug for COR and CME, the optimal concentration of COR and CME to exert anti-inflammatory effects was further selected, and the expression of inflammatory factors of TNF-α, IL-1β, IL-18, and IL-6 was detected using ELISA. The relative expression of TNF-α, IL-1β, IL-18, IL-6, IL-10, TLR2 and MyD88 mRNA was detected using RT-PCR, and the IL-1β, IL-18, TLR2, MyD88, NF-κB p-p65, NLRP3, pro-caspase-1, Caspase-1 and ASC protein expression in the cells were detected using Western blot; immunofluorescence assay detected the expression of Caspase-1 in MH-S cells. The results revealed that both CME and COR inhibited the levels of IL-1β, IL-18, IL-6, and TNF-α in the supernatants of LTA-induced MH-S cells and the mRNA expression levels of IL-1β, IL-18, IL-6, TNF-α, TLR2 and MyD88, down-regulated the LTA-induced IL-1β, IL-18, TLR2 in MH-S cells, MyD88, NF-κB p-p65/p65, NLRP3, ASC, pro-caspase-1, and caspase-1 protein expression levels, and inhibited LTA-induced caspase-1 activation in MH-S cells. In conclusion, CME can play a therapeutic role in LTA-induced inflammation in MH-S cells via TLR2/NF-κB/NLRP3, and may serve as a potential drug for bacterial pneumonia caused by Gram-positive bacteria.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jianxi Li
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China
| |
Collapse
|
7
|
Fu L, Ping J, Guo F, Song J, Luo M, Chen L. PLA2G12B Mediates Arachidonic Acid Metabolism through Activation of the NF-κB Pathway to Promote Membrane Nephropathy. Kidney Blood Press Res 2023; 48:652-665. [PMID: 37757774 DOI: 10.1159/000533805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
INTRODUCTION The disruption of podocyte structure and function are the main pathological mechanism of membranous nephropathy (MN). Phospholipases A2, Group XII B (PLA2G12B) was reported involved in the regulation of MN by interfering with arachidonic acid (AA) metabolism, but there is a lack of sufficient evidence. In this study, we investigated the role and molecular mechanism of PLA2G12B in MN. METHODS C57BL/6 mice were used to establish MN model to extract primary podocytes, then divided into control, model, si-phospholipases A2 receptor (PLA2R), PLA2G12B, PLA2G12B + si-PLA2R, PLA2G12B + nuclear factor kappa-B (NF-κB) inhibitor, PLA2G12B + NF-κB inhibitor + si-PLA2R groups. Hematoxylin-eosin staining and immunofluorescence were used to detect kidney histological arrangement, serum levels of cholesterol-related indices, and AA. Genes and proteins associated with metabolism and inflammatory factors were detected by quantitative real-time PCR and Western blot. RESULTS The results revealed that AA metabolites were activated in the MN model mice, and the expression of PLA2G12B and NF-κB pathway levels were elevated. Besides, cellular experiments demonstrated that prostaglandin I2 (PGI2), thromboxane A2 (TXA2), leukotriene B4 (LTB4), and NF-κB pathway were significantly increased in the PLA2G12B group. Also, PLA2G12B promotes apoptosis and suppresses cell activity in podocytes, and these effects could be antagonized by NF-κB inhibitors. Furthermore, with the inference of si-PLA2R, the NF-κB inhibitors' effects were reversed. CONCLUSION Promotional effects of PLA2G12B in primary MN are associated with the regulation of AA metabolism and NF-κB pathway.
Collapse
Affiliation(s)
- Linlin Fu
- Department of Pathology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Jinliang Ping
- Department of Pathology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Fei Guo
- Department of Traditional Chinese Medical Acupuncture, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Jiafeng Song
- Department of Pathology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Mingjun Luo
- Department of Hemodialysis Center, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| | - Lijing Chen
- Department of Nephrology, Huzhou Central Hospital and Affiliated Central Hospital Huzhou University, Huzhou, China
| |
Collapse
|
8
|
Ultrasound-Assisted Enzymatic Extraction and Bioactivity Analysis of Polypeptides from Cordyceps militaris. J CHEM-NY 2023. [DOI: 10.1155/2023/1233867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Cordyceps militaris is rich in protein, polysaccharide, cordycepin, and other active components, with anticancer and antioxidation functions. In order to improve the economic value of C. militaris, the protein was extracted from its fruiting body by alkali-soluble acid precipitation process, and the extraction technology was optimized by orthogonal test. The polypeptide was obtained by digesting those proteins with a complex enzyme. And the antimicrobial and anticancer activities of those polypeptides were evaluated by measuring inhibitory zone and cytotoxicity. The results showed that the optimal extraction conditions of protein were as follows: pH of 8.5, material-to-water ratio of 1 : 28, extraction time of 3.5 h, extraction three times, and the highest protein yield was 45.06%. The optimum enzymatic hydrolysis process of C. militaris polypeptide solution was as follows: the ratio of alkaline protease to papain was 4 : 3, the optimum temperature was 55°C, pH was 7.2, the enzyme dosage was 7000 U/mL, the enzymolysis time was 3.5 h, and the highest yield of peptide was 16.73%. Under those conditions, the polypeptides prepared from C. militaris (<3000 Da) showed good antibacterial activity against Escherichia coli, Bacillus subtilis, and Staphylococcus aureus, with inhibitory zones of (12.08 ± 0.22), (6.67 ± 0.12), and (10.32 ± 0.23) mm, respectively. The results showed that the SAO-S (IC50 = 0.49 mg/L) and T24 (IC50 = 0.23 mg/L) were significantly inhibited by C. militaris polypeptide. Results from this study suggest that polypeptides can be utilized as a new approach for bioactive compounds production from C. militaris.
Collapse
|
9
|
Zhao YL, Zhang XH, Guo F, Wei Y, Shang JH, Luo XD. Yi Shen An, a Chinese traditional prescription, ameliorates membranous glomerulonephritis induced by cationic bovine serum albumin in rats. PHARMACEUTICAL BIOLOGY 2022; 60:163-174. [PMID: 35001799 PMCID: PMC8745358 DOI: 10.1080/13880209.2021.2021947] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/15/2021] [Accepted: 12/19/2021] [Indexed: 06/14/2023]
Abstract
CONTEXT Yi Shen An (YSA) is an investigational composite of traditional Chinese medicine (Reference: 2010L000974) for the treatment of renal disease. OBJECTIVE To investigate the protective effects of YSA against membranous glomerulonephritis (MGN). MATERIALS AND METHODS Male Sprague-Dawley rats were injected with cationic bovine serum albumin (C-BSA) to create a model of MGN. Then, rats were orally treated with YSA at doses of 0.25, 0.5, 1 and 2 g/kg for 35 successive days; prednisone (5 mg/kg) was used as a positive control. At the end of the experimental period, we performed a series of tests, including 24 h urinary protein, and biochemical, immunological, antioxidative, coagulation indices, and histopathological examination. RESULTS YSA-1 g/kg significantly lowered urinary protein from 68.37 to 30.74 mg (p < 0.01). Meantime, total protein (TP) and albumin (ALB) recovered from 66.26 and 20.51 g/L to 76.08 and 35.64 g/L (p < 0.01), respectively. YSA removed the deposition of immunoglobulin G (IgG) and complement 3c (C3c), prevented inter-capillary cell hyperplasia on the glomerular basement membrane (GBM), and reduced electron-dense deposits and fusion of podocytes. In addition, serum IgG and superoxide dismutase were significantly elevated. In contrast, malondialdehyde, total cholesterol, triglyceride, circulating immune complex (CIC), and immunoglobulin M decreased in the YSA-treated group. Moreover, the blood coagulation dysfunction was adjusted. DISCUSSION AND CONCLUSIONS These findings indicate YSA may exert a therapeutic effect against MGN through the inhibition of CIC formation, and the removal of IgG and C3c deposition from the GBM, thus supporting the development of further clinical trials.
Collapse
Affiliation(s)
- Yun-Li Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
| | - Xiang-Hua Zhang
- New Drug R&D Department of Kunming Institute of Kidney Disease, Kunming, P. R. China
| | - Feng Guo
- New Drug R&D Department of Kunming Institute of Kidney Disease, Kunming, P. R. China
| | - Ying Wei
- Shang Hai University of Medicine & Health Sciences, Shang Hai, P. R. China
| | - Jian-Hua Shang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| | - Xiao-Dong Luo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, P. R. China
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, P. R. China
| |
Collapse
|
10
|
Tan W, Wang Y, Dai H, Deng J, Wu Z, Lin L, Yang J. Potential Therapeutic Strategies for Renal Fibrosis: Cordyceps and Related Products. Front Pharmacol 2022; 13:932172. [PMID: 35873549 PMCID: PMC9304961 DOI: 10.3389/fphar.2022.932172] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/01/2022] [Indexed: 12/02/2022] Open
Abstract
At present, there is no effective drug for the treatment of renal fibrosis; in particular, a safe and effective treatment for renal fibrosis should be established. Cordyceps has several medical effects, including immunoregulatory, antitumor, anti-inflammatory, and antioxidant effects, and may prevent kidney, liver, and heart diseases. Cordyceps has also been reported to be effective in the treatment of renal fibrosis. In this paper, we review the potential mechanisms of Cordyceps against renal fibrosis, focusing on the effects of Cordyceps on inflammation, oxidative stress, apoptosis, regulation of autophagy, reduction of extracellular matrix deposition, and fibroblast activation. We also discuss relevant published clinical trials and meta-analyses. Available clinical studies support the possibility that Cordyceps and related products provide benefits to patients with chronic kidney diseases as adjuvants to conventional drugs. However, the existing clinical studies are limited by low quality and significant heterogeneity. The use of Cordyceps and related products may be a potential strategy for the treatment of renal fibrosis. Randomized controlled trial studies with good methodological quality, favorable experimental design, and large sample size are needed to evaluate the efficacy and safety of Cordyceps.
Collapse
Affiliation(s)
- Wei Tan
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yunyan Wang
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hongmei Dai
- Nephrology, YunYang County People’s Hospital, Chongqing, China
| | - Junhui Deng
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifen Wu
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lirong Lin
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jurong Yang
- Nephrology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- *Correspondence: Jurong Yang,
| |
Collapse
|
11
|
Zheng H, Cao H, Zhang D, Huang J, Li J, Wang S, Lu J, Li X, Yang G, Shi X. Cordyceps militaris Modulates Intestinal Barrier Function and Gut Microbiota in a Pig Model. Front Microbiol 2022; 13:810230. [PMID: 35369439 PMCID: PMC8969440 DOI: 10.3389/fmicb.2022.810230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/26/2022] [Indexed: 12/13/2022] Open
Abstract
This study investigated the effects of Cordyceps militaris (CM) on intestinal barrier function and gut microbiota in a pig model. A total of 160 pigs were randomly allocated to either a control group (fed the basal diet) or a CM group (fed the basal diet supplemented with 300 mg/kg CM). CM improved intestinal morphology and increased the numbers of goblet cells and intraepithelial lymphocytes. CM also elevated the expression of zona occluden-1, claudin-1, mucin-2 and secretory immunoglobulin A. Furthermore, the mucosal levels of pro-inflammatory cytokines were downregulated while the levels of anti-inflammatory cytokines were upregulated in the CM group. Mechanistically, CM downregulated the expression of key proteins of the TLR4/MyD88/NF-κB signaling pathway. Moreover, CM altered the colonic microbial composition and increased the concentrations of acetate and butyrate. In conclusion, CM can modulate the intestinal barrier function and gut microbiota, which may provide a new strategy for improving intestinal health.
Collapse
|
12
|
Phull AR, Ahmed M, Park HJ. Cordyceps militaris as a Bio Functional Food Source: Pharmacological Potential, Anti-Inflammatory Actions and Related Molecular Mechanisms. Microorganisms 2022; 10:405. [PMID: 35208860 PMCID: PMC8875674 DOI: 10.3390/microorganisms10020405] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/03/2022] [Accepted: 02/08/2022] [Indexed: 12/11/2022] Open
Abstract
Cordyceps militaris (C. militaris) is a medicinal mushroom possessing a variety of biofunctionalities. It has several biologically important components such as polysaccharides and others. The diverse pharmacological potential of C. militaris has generated interest in reviewing the current scientific literature, with a particular focus on prevention and associated molecular mechanisms in inflammatory diseases. Due to rising global demand, research on C. militaris has continued to increase in recent years. C. militaris has shown the potential for inhibiting inflammation-related events, both in in vivo and in vitro experiments. Inflammation is a multifaceted biological process that contributes to the development and severity of diseases, including cancer, colitis, and allergies. These functions make C. militaris a suitable functional food for inhibiting inflammatory responses such as the regulation of proinflammatory cytokines. Therefore, on the basis of existing information, the current study provides insights towards the understanding of anti-inflammatory activity-related mechanisms. This article presents a foundation for clinical use, and analyzes the roadmap for future studies concerning the medical use of C. militaris and its constituents in the next generation of anti-inflammatory drugs.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| | - Madiha Ahmed
- Shifa College of Pharmaceutical Sciences, Shifa Tameer-e-Millat University, Islamabad 44000, Pakistan;
| | - Hye-Jin Park
- Department of Food Science and Biotechnology, College of BioNano Technology, Gachon University, Seongnam 13120, Korea;
| |
Collapse
|
13
|
Wang X, Dong Y, Bao Z, Lin S. Acidic Stigma maydis polysaccharides protect against podocyte injury in membranous nephropathy by maintenance of glomerular filtration barrier integrity and gut-kidney axis. Food Funct 2022; 13:11794-11810. [DOI: 10.1039/d2fo02652j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
MN mice models were induced by C-BSA, and we found that acidic stigma maydis polysaccharides maintained the integrity of the glomerular filtration barrier by promoting slit diaphragm proteins expression and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Xizhu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Yifei Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, Liaoning Province, China
| |
Collapse
|
14
|
Yan L. Folic acid-induced animal model of kidney disease. Animal Model Exp Med 2021; 4:329-342. [PMID: 34977484 PMCID: PMC8690981 DOI: 10.1002/ame2.12194] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
The kidneys are a vital organ that is vulnerable to both acute kidney injury (AKI) and chronic kidney disease (CKD) which can be caused by numerous risk factors such as ischemia, sepsis, drug toxicity and drug overdose, exposure to heavy metals, and diabetes. In spite of the advances in our understanding of the pathogenesis of AKI and CKD as well AKI transition to CKD, there is still no available therapeutics that can be used to combat kidney disease effectively, highlighting an urgent need to further study the pathological mechanisms underlying AKI, CKD, and AKI progression to CKD. In this regard, animal models of kidney disease are indispensable. This article reviews a widely used animal model of kidney disease, which is induced by folic acid (FA). While a low dose of FA is nutritionally beneficial, a high dose of FA is very toxic to the kidneys. Following a brief description of the procedure for disease induction by FA, major mechanisms of FA-induced kidney injury are then reviewed, including oxidative stress, mitochondrial abnormalities such as impaired bioenergetics and mitophagy, ferroptosis, pyroptosis, and increased expression of fibroblast growth factor 23 (FGF23). Finally, application of this FA-induced kidney disease model as a platform for testing the efficacy of a variety of therapeutic approaches is also discussed. Given that this animal model is simple to create and is reproducible, it should remain useful for both studying the pathological mechanisms of kidney disease and identifying therapeutic targets to fight kidney disease.
Collapse
Affiliation(s)
- Liang‐Jun Yan
- Department of Pharmaceutical SciencesCollege of PharmacyUniversity of North Texas Health Science CenterFort WorthTexasUSA
| |
Collapse
|
15
|
Wu J, Lei G, Wang T, Dong S, Zhan X. Esculentoside A exerts anti-oxidative stress and anti-apoptotic effects in rat experimental membranous nephropathy by regulating MAPK pathway. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00194-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Lin P, Yin F, Shen N, Liu N, Zhang B, Li Y, Guo S. Integrated bioinformatics analysis of the anti-atherosclerotic mechanisms of the polysaccharide CM1 from Cordyceps militaris. Int J Biol Macromol 2021; 193:1274-1285. [PMID: 34757129 DOI: 10.1016/j.ijbiomac.2021.10.175] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/11/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022]
Abstract
Cordyceps militaris is a well-known traditional Chinese medicine. Studies have demonstrated that the polysaccharides of C. militaris have various bioactivities. However, their mechanisms of action remain unclear. We previously purified a water-soluble polysaccharide CM1 from C. militaris and found that it has a cholesterol efflux improving capacity. This study further investigates the effect of CM1 in anti-atherosclerosis and its underlying mechanism in apolipoprotein E-deficient mice. Our data indicated that CM1 significantly decreased the total cholesterol and triglyceride in the plasma of mice, and decreased lipid deposition and formation of atherosclerotic plaque in a dose-dependent manner. Integrated bioinformatics analysis revealed that CM1 interacted with multiple signaling pathways, including those involved in lipid metabolism, inflammatory response, oxidoreductase activity and fluid shear stress, to exert its anti-atherosclerotic effect. Molecular technology analysis showed that CM1 enhanced the expression of proteins involved in lipid metabolism, reduced the expression of intercellular adhesion molecule-1 and tumor necrosis factor-α in the aorta, and decreased the content of oxidative products by enhancing the activities of antioxidant enzymes. Microarray analysis and biochemical data indicated that CM1 can improve lipid metabolism, reduce inflammation and oxidative stress. Taken together, CM1 could be used for the treatment of hyperlipidemia and atherosclerotic cardiovascular diseases.
Collapse
Affiliation(s)
- Ping Lin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Fan Yin
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Nuo Shen
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Na Liu
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Baihui Zhang
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Yuan Li
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Shoudong Guo
- Institute of Lipid Metabolism and Atherosclerosis, Innovative Drug Research Centre, School of Pharmacy, Weifang Medical University, Weifang 261053, China.
| |
Collapse
|
17
|
Wang X, Yuan L, Dong Y, Bao Z, Ma T, Lin S. Ameliorated membranous nephropathy activities of two ethanol extracts from corn silk and identification of flavonoid active compounds by LC-MS 2. Food Funct 2021; 12:9669-9679. [PMID: 34664605 DOI: 10.1039/d1fo01947c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The current study looks to evaluate the effect of corn silk flavonoids on membranous nephropathy (MN). Polyamide resin (PR) can be used to enrich corn silk ethanol extract (CSEE) to obtain flavonoid-rich extract (PR-CSEE), the total flavonoid content (TFC) of which we found to be 57.4%. The results of scanning electron microscope, Fourier-transform infrared, and high-performance liquid chromatography analyses determined that PR-CSEE and CSEE have different structural characteristics, but that PR-CSEE has higher TFC. MN mice models were induced by cationic bovine serum albumin, and we found that PR-CSEE administration reduced urine protein levels markedly, while renal function, glomerular atrophy, inflammatory infiltration, and in-serum immunoglobulin G and complement 3 content were improved. Through LC-MS2 spectrometry analysis, we pinpointed the 12 major flavonoid active compounds in PR-CSEE. These findings suggest that PR-CSEE can act as a potential functional food material by which to improve MN.
Collapse
Affiliation(s)
- Xizhu Wang
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Liyan Yuan
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Yifei Dong
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Zhijie Bao
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Tiecheng Ma
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| | - Songyi Lin
- National Engineering Research Center of Seafood, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, P. R. China.
| |
Collapse
|
18
|
Jiang N, Hu S, Peng B, Li Z, Yuan X, Xiao S, Fu Y. Genome of Ganoderma Species Provides Insights Into the Evolution, Conifers Substrate Utilization, and Terpene Synthesis for Ganoderma tsugae. Front Microbiol 2021; 12:724451. [PMID: 34603250 PMCID: PMC8481371 DOI: 10.3389/fmicb.2021.724451] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/16/2021] [Indexed: 12/30/2022] Open
Abstract
Ganoderma tsugae is an endemic medicinal mushroom in Northeast China, providing important source of pharmaceutical product. Comparing with other Ganoderma species, wild G. tsugae can utilize coniferous wood. However, functional genes related to medicinal component synthesis and the genetic mechanism of conifer substrate utilization is still obscure. Here, we assembled a high-quality G. tsugae genome with 18 contigs and 98.5% BUSCO genes and performed the comparative genomics with other Ganoderma species. G. tsugae diverged from their common ancestor of G. lingzhi and G. sinense about 21 million years ago. Genes in G. tsugae-specific and G. tsugae-expanded gene families, such as salh, phea, cyp53a1, and cyp102a, and positively selected genes, such as glpk and amie, were functionally enriched in plant-pathogen interaction, benzoate degradation, and fanconi anemia pathway. Those functional genes might contribute to conifer substrate utilization of G. tsugae. Meanwhile, gene families in the terpene synthesis were identified and genome-wide SNP variants were detected in population. Finally, the study provided valuable genomic resources and offered useful hints for the functional gene mapping and investigation of key gene contributing to conifer cultivation substrate utilization and medicinal component biosynthesis.
Collapse
Affiliation(s)
- Nan Jiang
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Shuang Hu
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Bing Peng
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Zhenhao Li
- Shouxiangu Botanical Drug Institute Co., Ltd., Jinhua, China
| | - Xiaohui Yuan
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China.,Jiaxing Key Laboratory for New Germplasm Breeding of Economic Mycology, Jiaxing, China
| | - Shijun Xiao
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| | - Yongping Fu
- International Cooperation Research Center of China for New Germplasm Breeding of Edible Mushrooms, Jilin Agricultural University, Changchun, China
| |
Collapse
|
19
|
Xu G, Yuan G, Lu X, An L, Sheng Y, Du P. Study on the effect of regulation of Cordyceps militaris polypeptide on the immune function of mice based on a transcription factor regulatory network. Food Funct 2021; 11:6066-6077. [PMID: 32558840 DOI: 10.1039/d0fo01043j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND The pathogenesis of the abnormality of the immune system is still not clear at present. Chemosynthetic drugs, human or animal immune products and microbiological drugs are used as the main drugs in clinics currently, but these drugs have different side effects. So researchers turned to safer natural products in order to find immunomodulatory active substances from natural products and their extracts. METHODS Immunosuppressed mice were induced by cyclophosphamide and administered with Cordyceps militaris polypeptide (CMP) for the study on the effect of CMP on the immune function of mice and its mechanism. Based on the 1748 differential gene sets selected in our previous work, the transcription factors and their corresponding target genes were screened by integrating the TRED (Transcriptional Regulatory Element Database), a transcriptional factor-target gene regulatory network was constructed, then the role of transcription factors in the regulatory network was elucidated by statistically analyzing the key nodes, and finally, the correlation of network genes with diseases was analyzed by using the DAVID database. RESULTS The results of animal experiments showed that CMP could increase the immune organ indexes, the number of white blood cells, the degree of delayed allergy and the content of hemolysin in the serum of mice. CMP was found to be involved in the regulation of immune function in mice through genes Kdr, Spp1, Ptgs2, Rel, and Smad3, and transcription factors Ets1, E2f2 and E2f1. E2F2 and E2F1 are members of the E2F family, so we speculated that the E2F family might play an important role, and its main regulatory pathways were the PI3K-Akt signaling pathway and TNF signaling pathway. CONCLUSION CMP can improve the immunity of mice. CMP can regulate the immune function of mice through multiple genes and transcription factors, and may also play a role in immune-related diseases, such as cancer.
Collapse
Affiliation(s)
- Guangyu Xu
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Guangxin Yuan
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Xuechun Lu
- The General Hospital of the People's Liberation Army, Beijing, 100039, China
| | - Liping An
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Yu Sheng
- College of Pharmacy, Beihua University, Jilin, 132013, China.
| | - Peige Du
- College of Medicine, Beihua University, Jilin, 132013, China.
| |
Collapse
|
20
|
Wu TF, Shi WY, Chiu YC, Chan YY. Investigation of the molecular mechanism underlying the inhibitory activities of ethanol extract of Bombyx mori pupa-incubated Cordyceps militaris fruiting bodies toward allergic rhinitis. Biomed Pharmacother 2021; 135:111248. [PMID: 33450505 DOI: 10.1016/j.biopha.2021.111248] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 12/22/2020] [Accepted: 01/03/2021] [Indexed: 12/30/2022] Open
Abstract
Cordyceps militaris has been widely studied for its various pharmacological activities such as antitumor, anti-inflammation, and immune regulation. The binding of an allergen to IgE-sensitized mast cells in nasal mucosa triggers allergic rhinitis. We found that oral administration of 300 mg/kg of the ethanol extract prepared from silkworm pupa-cultivated Cordyceps militaris fruiting bodies significantly alleviated the symptoms of ovalbumin-induced allergic rhinitis in mice, including sneeze/scratch, mast cell activation, eosinophil infiltration, and Syk activation. The treatment of ethanol extract significantly suppressed the release of β-hexosaminidase (a degranulation marker) and mRNA expression levels of various cytokines, including IL-3, IL-10, and IL-13 in activated RBL2H3 cells. The ethanol extract and β-sitostenone, which was purified from the extract, could respectively reduce the Ca2+ ion mobilization in activated RBL-2H3 cells. Furthermore, results collected from western immunoblotting demonstrated that ethanol extract significantly retarded Ca2+ ion mobilization-initiated signaling cascade, which provoked the expression of various allergic cytokines. Also, the extract incubation interfered with P38 as well as NF-kB activation and Nrf-2 translocation. Our study suggested that ethanol extract possessed some natural constituents which could inhibit immediate degranulation and de novo synthesis of allergic cytokines via inhibition of Ca2+ ion mobilization in mast cells in the nasal mucosa of allergic rhinitis mice.
Collapse
Affiliation(s)
- Ting-Feng Wu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Wan-Yin Shi
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Yi-Chen Chiu
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| | - Yu-Yi Chan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan.
| |
Collapse
|
21
|
Zhang C, Leng L, Li Z, Zhao Y, Jiao J. Identification of biomarkers and drug repurposing candidates based on an immune-, inflammation- and membranous glomerulonephritis-associated triplets network for membranous glomerulonephritis. BMC Med Genomics 2020; 13:5. [PMID: 31910852 PMCID: PMC6947948 DOI: 10.1186/s12920-019-0655-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 12/26/2019] [Indexed: 12/17/2022] Open
Abstract
Background Membranous glomerulonephritis (MGN) is a common kidney disease. Despite many evidences support that many immune and inflammation-related genes could serve as effective biomarkers and treatment targets for MGN patients, the potential associations among MGN-, immune- and inflammation-related genes have not been sufficiently understood. Methods Here, a global immune-, inflammation- and MGN-associated triplets (IIMATs) network is constructed and analyzed. An integrated and computational approach is developed to identify dysregulated IIMATs for MGN patients based on expression and interaction data. Results 45 dysregulated IIMATs are identified in MGN by above method. Dysregulated patterns of these dysregulated IIMATs are complex and various. We identify four core clusters from dysregulated IIMATs network and some of these clusters could distinguish MGN and normal samples. Specially, some anti-cancer drugs including Tamoxifen, Bosutinib, Ponatinib and Nintedanib could become candidate drugs for MGN based on drug repurposing strategy follow IIMATs. Functional analysis shows these dysregulated IIMATs are associated with some key functions and chemokine signaling pathway. Conclusions The present study explored the associations among immune, inflammation and MGN. Some effective candidate drugs for MGN were identified based on immune and inflammation. Overall, these comprehensive results provide novel insights into the mechanisms and treatment of MGN.
Collapse
Affiliation(s)
- Chengwei Zhang
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China
| | - Lei Leng
- The Second Hospital of Harbin, Heilongjiang, 150006, People's Republic of China
| | - Zhaozheng Li
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China
| | - Yao Zhao
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China
| | - Jundong Jiao
- Department of nephrology, the Second Affiliated Hospital of Harbin Medical University, 246 XueFu Road, Harbin, 150006, People's Republic of China.
| |
Collapse
|
22
|
Liu Y, Xu X, Xu R, Zhang S. Renoprotective Effects Of Isoliquiritin Against Cationic Bovine Serum Albumin-Induced Membranous Glomerulonephritis In Experimental Rat Model Through Its Anti-Oxidative And Anti-Inflammatory Properties. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:3735-3751. [PMID: 31802848 PMCID: PMC6826199 DOI: 10.2147/dddt.s213088] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/08/2019] [Indexed: 12/11/2022]
Abstract
Background Membranous glomerulonephritis (MGN) is a nephrotic syndrome which shows the symptoms of heavy proteinuria and immune complex deposition in glomerular sub-epithelial space and finally leads to chronic kidney disease. Isoliquiritin (ILQ) is a flavonoid with a wide range of pharmacological properties, including antioxidant and anti-inflammatory activity. The present study was undertaken to investigate the possible mechanisms by which ILQ ameliorates cationic bovine serum albumin (C-BSA) induced MGN in rat model. Methods The MGN condition was confirmed by the 24 hr proteinuria and ILQ (10 mg/kg/bw/day) or TPCA-1 (10 mg/kg/bw/day; IKKβ inhibitor) was administered to successfully induce rats for 4 weeks. Results The present study revealed that MGN rats treated with ILQ showed significantly ameliorated kidney dysfunction and histopathological changes in kidneys. ILQ treated MGN rats alleviated the oxidative stress and were presented with increased anti-oxidative status in kidneys. Furthermore, ILQ treatment to MGN rats showed anti-oxidative effects through the prominent stimulation of Nrf2 signaling pathway and inhibition of Keap1, which consequently increases the Nrf2 nuclear translocation and thereby induces expression of NQO1 and HO-1. In addition, ILQ-treated MGN rats demonstrated anti-inflammatory effects by inhibiting NF-κB signaling pathway through decreased mRNA and protein expressions of NF-κB p65, IKKβ, COX-2, iNOS, p38-MAPK, p-p38-MAPK, TNF-α, IL-1β, IL-8, ICAM-1, E-selectin and VCAM-1 and reduced the nuclear translocation of NF-κB p65. Conclusion The protective effect of ILQ on MGN can be explained by its anti-oxidative and anti-inflammatory activities, which in turn due to the activation of Nrf2 and downregulation of NF-κB pathway.
Collapse
Affiliation(s)
- Yingying Liu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Xiaohua Xu
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Ruisi Xu
- Endoscopy Center, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| | - Siqi Zhang
- Department of Nephrology, China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, People's Republic of China
| |
Collapse
|
23
|
Gai X, Jiang Z, Liu M, Li Q, Wang S, Li T, Pan W, Yang X. Therapeutic Effect of a Novel Nano-Drug Delivery System on Membranous Glomerulonephritis Rat Model Induced by Cationic Bovine Serum. AAPS PharmSciTech 2018; 19:2195-2202. [PMID: 29725902 DOI: 10.1208/s12249-018-1034-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 04/23/2018] [Indexed: 01/10/2023] Open
Abstract
In order to explore a novel high efficacy drug delivery system for membranous glomerulonephritis (MGN), a complex chronic inflammation, methylprednisolone bovine serum albumin nanoparticles (ME BSA NPs) were designed. The nanoparticles were prepared by desolvation-chemical crosslinking method and its physicochemical characterizations were conducted. The experimental MGN rat models induced by cationic bovine serum albumin were established by a modified Border's method and applied in the pharmacodynamics study of ME BSA NPs. The results showed that the particle size, particle dispersion index, and entrapment efficiency of ME BSA NPs were 131.1 ± 3.4 nm, 0.159 ± 0.036, and 71.51 ± 1.74%, respectively. In addition, the image of transmission electron microscopy showed that the ME BSA NPs were the relatively uniform spherical particles. In the in vivo pharmacodynamics study, compared with saline group and SOLU-MEDROL® group, that the ME BSA NPs group was significantly reduced the levels of 24 h urinary protein (P < 0.01) and serum creatinine (P < 0.05). Consequently, these outcomes indicated that the nanoparticles we studied were a promising drug delivery system for the MGN disease, and it may be also useful for other complex chronic inflammations.
Collapse
|
24
|
Kou L, Du M, Liu P, Zhang B, Zhang Y, Yang P, Shang M, Wang X. Anti-Diabetic and Anti-Nephritic Activities of Grifola frondosa Mycelium Polysaccharides in Diet-Streptozotocin-Induced Diabetic Rats Via Modulation on Oxidative Stress. Appl Biochem Biotechnol 2018; 187:310-322. [PMID: 29943275 DOI: 10.1007/s12010-018-2803-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Accepted: 06/03/2018] [Indexed: 01/22/2023]
Abstract
Grifola frondosa is an edible fungus with a variety of potential pharmacological activities. This study investigates the hypoglycemic, anti-diabetic nephritic, and antioxidant properties of G. frondosa polysaccharides in diet-streptozotocin-induced diabetic rats. After a 4-week treatment with 100 mg/kg of metformin and 200 mg/kg of one of four different G. frondosa polysaccharide mixtures (especially GFPS3 and GFPS4), diabetic rats had enhanced body weight and suppressed plasma glucose, indicating the hypoglycemic activities of the G. frondosa polysaccharides. G. frondosa polysaccharides regulated the level of serum creatinine, blood urea nitrogen, N-acetyl-β-D-glucosaminidase, and albuminuria; inhibited the serum levels of interleukin (IL)-2, IL-6, and TNF-α; and enhanced the serum levels of matrix metalloproteinase 9 and interferon-α, confirming their anti-diabetic nephritic activities. G. frondosa polysaccharides ameliorated the pathological alterations in the kidneys of diabetic rats. Moreover, G. frondosa polysaccharides modulated the serum levels of oxidant factors such as superoxide dismutase, glutathione peroxidase, catalase, malondialdehyde, and reactive oxygen species, revealing their antioxidant properties. Furthermore, the administration of G. frondosa polysaccharides inhibited nuclear factor kappa B activities in the serum and kidneys. All of the data revealed that the activation of nuclear factor kappa B plays a central role in G. frondosa polysaccharide-mediated anti-diabetic and anti-nephritic activities.
Collapse
Affiliation(s)
- Ling Kou
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Mingzhao Du
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China.
| | - Peijing Liu
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Baohai Zhang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Yizhi Zhang
- Department of Neurology, the Second Hospital of Jilin University, Jilin University, Changchun, 130041, China
| | - Ping Yang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Mengyuan Shang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Xiaodong Wang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
25
|
Improvement of Learning and Memory Induced by Cordyceps Polypeptide Treatment and the Underlying Mechanism. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:9419264. [PMID: 29736181 PMCID: PMC5874985 DOI: 10.1155/2018/9419264] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Revised: 01/25/2018] [Accepted: 02/12/2018] [Indexed: 11/18/2022]
Abstract
Our previous research revealed that Cordyceps militaris can improve the learning and memory, and although the main active ingredient should be its polypeptide complexes, the underlying mechanism of its activity remains poorly understood. In this study, we explored the mechanisms by which Cordyceps militaris improves learning and memory in a mouse model. Mice were given scopolamine hydrobromide intraperitoneally to establish a mouse model of learning and memory impairment. The effects of Cordyceps polypeptide in this model were tested using the Morris water maze test; serum superoxide dismutase activity; serum malondialdehyde levels; activities of acetyl cholinesterase, Na+-k+-ATPase, and nitric oxide synthase; and gamma aminobutyric acid and glutamate contents in brain tissue. Moreover, differentially expressed genes and the related cellular signaling pathways were screened using an mRNA expression profile chip. The results showed that the genes Pik3r5, Il-1β, and Slc18a2 were involved in the effects of Cordyceps polypeptide on the nervous system of these mice. Our findings suggest that Cordyceps polypeptide may improve learning and memory in the scopolamine-induced mouse model of learning and memory impairment by scavenging oxygen free radicals, preventing oxidative damage, and protecting the nervous system.
Collapse
|
26
|
Xu Q, Cao S, Rajapakse S, Matsubara JA. Understanding AMD by analogy: systematic review of lipid-related common pathogenic mechanisms in AMD, AD, AS and GN. Lipids Health Dis 2018; 17:3. [PMID: 29301530 PMCID: PMC5755337 DOI: 10.1186/s12944-017-0647-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 12/17/2017] [Indexed: 12/15/2022] Open
Abstract
RATIONALE Age-related macular degeneration (AMD) is one of the leading causes of blindness among the elderly. Due to its complex etiology, current treatments have been insufficient. Previous studies reveal three systems closely involved in AMD pathogenesis: lipid metabolism, oxidation and inflammation. These systems are also involved in Alzheimer's disease, atherosclerosis and glomerulonephritis. Understanding commonalities of these four diseases may provide insight into AMD etiology. OBJECTIVES To understand AMD pathogenesis by analogy and suggest ideas for future research, this study summarizes main commonalities in disease pathogenesis of AMD, Alzheimer's disease, atherosclerosis and glomerulonephritis. METHODS Articles were identified through PubMed, Ovid Medline and Google Scholar. We summarized the common findings and synthesized critical differences. RESULTS Oxidation, lipid deposition, complement activation, and macrophage recruitment are involved in all four diseases shown by genetic, molecular, animal and human studies. Shared genetic variations further strengthen their connection. Potential areas for future research are suggested throughout the review. CONCLUSIONS The four diseases share many steps of an overall framework of pathogenesis. Various oxidative sources cause oxidative stress. Oxidized lipids and related molecules accumulate and lead to complement activation, macrophage recruitment and pathology. Investigations that arise under this structure may aid us to better understand AMD pathology.
Collapse
Affiliation(s)
- Qinyuan Xu
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Sijia Cao
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Sanjeeva Rajapakse
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| | - Joanne A. Matsubara
- Department of Ophthalmology and Visual Sciences, Faculty of Medicine, University of British Columbia, Vancouver, BC V5Z 3N9 Canada
| |
Collapse
|
27
|
Protective Effects of Ophiocordyceps lanpingensis on Glycerol-Induced Acute Renal Failure in Mice. J Immunol Res 2017; 2017:2012585. [PMID: 29159186 PMCID: PMC5660786 DOI: 10.1155/2017/2012585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/09/2017] [Indexed: 12/12/2022] Open
Abstract
Objective Oxidative stress and immune response are associated with acute renal failure (ARF). Ophiocordyceps lanpingensis (OL) might be an antioxidant and immunopotentiator. In this study, we explored the protective effects of OL on glycerol-induced ARF. Methods Male mice were randomly divided into four groups, specifically, glycerol-induced ARF model group, low-dose OL-treated group (1.0 g/kg/d), high-dose OL-treated group (2.0 g/kg/d), and control group. Renal conditions were evaluated using kidney index, serum creatinine (Cr), blood urea nitrogen (BUN), and histological analysis. Rhabdomyolysis was monitored using creatine kinase (CK) level. Oxidative stress was determined using kidney tissue glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) levels. Immune status was evaluated using immune organ indices and immunoglobulin G (IgG) level. Results OL could relieve renal pathological injury and decrease the abnormal levels of kidney index, serum Cr, CK, BUN, and MDA, as well as increase the immune organ indices and the levels of IgG, GSH, and SOD. Treatment with a high dose of OL had more positive therapeutic effects on ARF than using a low dose of OL. Conclusion OL could ameliorate renal dysfunction in glycerol-induced ARF in mice by inhibiting oxidative stress and enhancing immune response.
Collapse
|
28
|
Kou L, Du M, Zhang C, Dai Z, Li X, Zhang B, Hu X. Polysaccharide purified from Lycium barbarum protects differentiated PC12 cells against L-Glu-induced toxicity via the mitochondria-associated pathway. Mol Med Rep 2017; 16:5533-5540. [DOI: 10.3892/mmr.2017.7289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 06/13/2017] [Indexed: 11/06/2022] Open
|
29
|
Li Q, Wang Y, Chen Y, Teng M, He J, Wang X, Kong F, Teng L, Wang D. Investigation of the immunomodulatory activity of Tricholoma matsutake mycelium in cyclophosphamide-induced immunosuppressed mice. Mol Med Rep 2017; 16:4320-4326. [DOI: 10.3892/mmr.2017.7090] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/10/2017] [Indexed: 11/06/2022] Open
|
30
|
Wang J, Hu W, Li L, Huang X, Liu Y, Wang D, Teng L. Antidiabetic activities of polysaccharides separated from Inonotus obliquus via the modulation of oxidative stress in mice with streptozotocin-induced diabetes. PLoS One 2017; 12:e0180476. [PMID: 28662169 PMCID: PMC5491251 DOI: 10.1371/journal.pone.0180476] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Accepted: 06/15/2017] [Indexed: 12/24/2022] Open
Abstract
This study evaluated the effects of Inonotus obliquus polysaccharides (IOs) on diabetes and other underlying mechanisms related to inflammatory factors and oxidative stress in a mouse model of streptozotocin (STZ)-induced diabetes. Four weeks administration of metformin (120 mg/kg) and IO1-4 (50%-80% alcohol precipitation), or IO5 (total 80% alcohol precipitation) at doses of 50 mg/kg reverses the abnormal changes of bodyweights and fasting blood glucose levels of diabetic mice. IOs significantly increased the insulin and pyruvate kinase levels in serum, and improved the synthesis of glycogen, especially for IO5. IOs restored the disturbed serum levels of superoxide dismutase, catalase, glutathione peroxidase, and malondialdehyde. The down-regulation of interleukin-2 receptor, matrix metalloproteinase-9, and the enhancement of interleukin-2 in serum of diabetic mice were significantly attenuated by IOs. Histologic and morphology examinations showed that IOs repaired the damage on kidney tissues, inhibited inflammatory infiltrate and extracellular matrix deposit injuries in diabetic mice. Compared with untreated diabetic mice, IOs decreased the expression of phosphor-NF-κB in the kidneys. These results show that IOs treatment attenuated diabetic and renal injure in STZ-induced diabetic mice, possibly through the modulation of oxidative stress and inflammatory factors. These results provide valuable evidences to support the use of I. obliquus as a hypoglycemic functional food and/or medicine.
Collapse
Affiliation(s)
- Juan Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Wenji Hu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Lanzhou Li
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Xinping Huang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Yange Liu
- School of Life Sciences, Jilin University, Changchun, Jilin, China
| | - Di Wang
- School of Life Sciences, Jilin University, Changchun, Jilin, China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, China
- * E-mail: (DW); (LT)
| | - Lirong Teng
- School of Life Sciences, Jilin University, Changchun, Jilin, China
- Zhuhai College of Jilin University, Zhuhai, Guangdong, China
- * E-mail: (DW); (LT)
| |
Collapse
|
31
|
Lee JY, Choi HY, Baik HH, Ju BG, Kim WK, Yune TY. Cordycepin-enriched WIB-801C from Cordyceps militaris improves functional recovery by attenuating blood-spinal cord barrier disruption after spinal cord injury. JOURNAL OF ETHNOPHARMACOLOGY 2017; 203:90-100. [PMID: 28363523 DOI: 10.1016/j.jep.2017.03.047] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/07/2017] [Accepted: 03/25/2017] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Cordyceps militaris is an ingredient of traditional Chinese medicine and have been widely used for inflammatory diseases and cancer. Cordycepin is one of the major bioactive components of Cordyceps militaris, and has been known to have anti-inflammatory and anti-oxidant effects. AIM OF THIS STUDY In the present study, we examined whether WIB-801C, a standardized and cordycepin-enriched extract of caterpillar fungus (Cordyceps militaris), would attenuate blood-spinal cord barrier (BSCB) disruption by inhibiting matrix metalloprotease (MMP)-9 activity, leading to improvement of functional outcomes after spinal cord injury (SCI). MATERIALS AND METHODS Male Sprague-Dawley rats were subjected to contusive SCI using a New York University (NYU) impactor, and WIB-801C (50mg/kg) was administered at 2h and 8h after injury orally and further treated once a day for indicated time points. BSCB disruption, MMP-9 activity, blood infiltration, inflammation, neuronal apoptosis, axonal loss, demyelination, and neurological deficit were evaluated. RESULTS We found that WIB-801C significantly attenuated BSCB disruption by inhibiting MMP-9 expression and activation after injury. The infiltration of neutrophils at 1 d and macrophage at 5 d after SCI was also ameliorated by WIB-801C as compared with vehicle control. In addition, the expression of inflammatory cytokines and mediators such as Tnf-α, IL-1β, IL-6, Cox-2, and inos as well as chemokines such as Gro-α and Mip-2α was significantly inhibited by WIB-801C. Furthermore, WIB-801C inhibits p38MAPK activation and proNGF production in microglia after injury. These events eventually led to the inhibition of apoptotic cell death of neurons and oligodendrocytes, improved functional recovery and attenuated demyelination and axon loss after SCI. CONCLUSION Our results suggest that WIB-801C can be used as a therapeutic agent after SCI by attenuating BSCB disruption followed inflammation.
Collapse
Affiliation(s)
- Jee Youn Lee
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hye Young Choi
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Hyung Hwan Baik
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| | - Bong G Ju
- Department of Life Science, Sogang University, Seoul 04107, Republic of Korea.
| | - Won-Ki Kim
- Department of Neuroscience, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
| | - Tae Young Yune
- Age-Related and Brain Diseases Research Center, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
32
|
Meng F, Xu P, Wang X, Huang Y, Wu L, Chen Y, Teng L, Wang D. Investigation on the immunomodulatory activities of Sarcodon imbricatus extracts in a cyclophosphamide (CTX)-induced immunosuppressanted mouse model. Saudi Pharm J 2017; 25:460-463. [PMID: 28579875 PMCID: PMC5447429 DOI: 10.1016/j.jsps.2017.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Aims: Sarcodon imbricatus, an edible fungus, is widely used in Asian medicine because of its significant pharmacological activities. In the present study, we investigated the immunomodulatory effects of polysaccharide-enriched S. imbricatus extracts (SP) in cyclophosphamide (CTX)-induced immunosuppressed mice. Results: Astragalus polysaccharide (AP) was used as a positive control. Compared with CTX-induced immunosuppressed mice, thirty-day SP treatment strongly enhanced the organ indexes of spleen and thymus and suppressed hind paw swelling. Both AP and SP increased the serum levels of immunoglobulin (IgA, IgG, and IgM), and suppressed the overproduction of interleukin-2 (IL-2). Moreover, SP reduced methane dicarboxylic aldehyde levels, and increased the total antioxidant capacity, superoxide dismutase, and glutathione peroxidase in both serum and liver tissues of CTX-induced immunosuppressed mice. Conclusion: S. imbricatus extracts significantly improved immune function in CTX-induced immunosuppressed mice via modulation of oxidative systems.
Collapse
Affiliation(s)
- Fanxin Meng
- Zhuhai College, Jilin University, Zhuhai 519041, China
| | - Panju Xu
- Zhuhai College, Jilin University, Zhuhai 519041, China
| | - Xue Wang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Yu Huang
- School of Life Sciences, Jilin University, Changchun 130012, China
| | - Liyan Wu
- Zhuhai College, Jilin University, Zhuhai 519041, China
| | - Yiling Chen
- Zhuhai College, Jilin University, Zhuhai 519041, China
| | - Lirong Teng
- Zhuhai College, Jilin University, Zhuhai 519041, China.,School of Life Sciences, Jilin University, Changchun 130012, China
| | - Di Wang
- Zhuhai College, Jilin University, Zhuhai 519041, China.,School of Life Sciences, Jilin University, Changchun 130012, China
| |
Collapse
|
33
|
Kou L, Du M, Zhang C, Dai Z, Li X, Zhang B. The Hypoglycemic, Hypolipidemic, and Anti-Diabetic Nephritic Activities of Zeaxanthin in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats. Appl Biochem Biotechnol 2017; 182:944-955. [PMID: 28058588 DOI: 10.1007/s12010-016-2372-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
Abstract
Zeaxanthin (ZA), an important compound found in Lycium barbarum, shows various pharmacodynamic effects. In our present study, a high-fat, high-sucrose diet and streptozotocin (STZ)-induced diabetic rat model was used to investigate the antidiabetic activities of ZA. After a 4-week administration of 200 and 400 mg/kg of ZA and 100 mg/kg of metformin hydrochloride, various blood biochemical indexes were detected. ZA strongly normalized the reduced bodyweight and enhanced fasting blood glucose in diabetic rats. The positive data obtained from the oral glucose tolerance test further confirmed its antidiabetic effects. ZA displayed significant hypolipidemic activities indicated by its modulation of serum levels of high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol. The antidiabetic nephropathy of ZA was confirmed by its regulation of pathological kidney structures, urine levels of n-acetyl-β-d-glucosaminidase and albuminuria, and serum levels of urea nitrogen. ZA inhibited the serum levels of inflammatory factors including interleukin-2 (IL-2), IL-6, tumor necrosis factor-α, and nuclear factor kappa B, further confirming its renal protection. Moreover, the serum imbalances in superoxide dismutase, glutathione peroxidase, methane dicarboxylic aldehyde, and catalase were normalized by ZA, suggesting its antioxidant properties. Altogether, ZA produced hypoglycemic, hypolipidemic, and antidiabetic nephritic effects in a diet-STZ-induced diabetic rat model.
Collapse
Affiliation(s)
- Ling Kou
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Mingzhao Du
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China.
| | - Chaopu Zhang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Zhiyin Dai
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Xuan Li
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| | - Baohai Zhang
- Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang, 212001, China
| |
Collapse
|
34
|
Lycium barbarum Polysaccharide Mediated the Antidiabetic and Antinephritic Effects in Diet-Streptozotocin-Induced Diabetic Sprague Dawley Rats via Regulation of NF-κB. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3140290. [PMID: 27200371 PMCID: PMC4856889 DOI: 10.1155/2016/3140290] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 04/06/2016] [Indexed: 12/21/2022]
Abstract
Lycium barbarum, extensively utilized as a medicinal plant in China for years, exhibits antitumor, immunoregulative, hepatoprotective, and neuroprotective properties. The present study aims to investigate the hyperglycemic and antidiabetic nephritic effects of polysaccharide which is separated from Lycium barbarum (LBPS) in high-fat diet-streptozotocin- (STZ-) induced rat models. The reduced bodyweight and enhanced blood glucose concentration in serum were observed in diabetic rats, and they were significantly normalized to the healthy level by 100 mg/kg of metformin (Met) and LBPS at doses of 100, 250, and 500 mg/kg. LBPS inhibited albuminuria and blood urea nitrogen concentration and serum levels of inflammatory factors including IL-2, IL-6, TNF-α, IFN-α, MCP-1, and ICAM-1 compared with diabetic rats, and it indicates the protection on renal damage. Furthermore, the activities of SOD and GSH-Px in serum were enhanced strikingly by LBPS which suggests its antioxidation effects. LBPS, compared with nontreated diabetic rats, inhibited the expression of phosphor-nuclear factors kappa B (NF-κB) and inhibitor kappa B alpha in kidney tissues. Collectively, LBPS possesses antidiabetic and antinephritic effects related to NF-κB-mediated antioxidant and antiinflammatory activities.
Collapse
|