1
|
An J, Liu H, Yang F, Wei K, Yu C, Sun S, Sun Y, Guo Q, Wang J, Wang C, Liu J, Wang K, Li Y. Anionic regulation Fe/NiOOH electrocatalysts to boost electrooxidation performance of biomass derived 5-hydroxymethylfurfural. J Colloid Interface Sci 2025; 692:137510. [PMID: 40199175 DOI: 10.1016/j.jcis.2025.137510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/30/2025] [Accepted: 04/02/2025] [Indexed: 04/10/2025]
Abstract
Nickel-based catalysts show great potential as promising candidates for the electrocatalytic oxidation of 5-hydroxymethylfurfural (HMF). However, the limited adsorption capacity of nickel-based catalysts for OH- and HMF limits their further development. In this study, amorphous Fe/NiOOH-SOx was generated from nanosheets (Fe/NiOOH-Ni3S2), which was pre-fabricated on nickel foam via pre-reconstruction and anionic regulation strategy. The optimized catalyst Fe/NiOOH-Ni3S2 demonstrated exceptional activity in the HMF oxidation reaction (HMFOR) with a current density of 10 mA cm-2 at 1.32 V vs RHE, accompanying with the 98.9 % HMF conversion, 97.8 % 2,5-Furandicarboxylic acid (FDCA) selectivity, 96.8 % Faraday efficiency, and stability for ten cycles. The incorporating amorphous FeOOH reduces the electron density around Ni, promoting the formation of high-valent Ni spices. Meanwhile, the SOx combined with amorphous hydroxy nickel oxide provides unsaturated sites, which enhances the adsorption capacity of HMF. Density functional theory (DFT) computations reveal that the designed amorphous Fe/NiOOH and surface-adsorbed SOx collectively modulate the electronic structure of the catalyst, causing an upwards shift of the NiOOH d-band center and enhancing adsorption capacities for both HMF and OH-. This study proposes the adsorption enhancement mechanism of regulating electronic structure and offers a rational strategy for HMFOR electrocatalysts.
Collapse
Affiliation(s)
- Junpu An
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Hongchen Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Fan Yang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China.
| | - Kexin Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Chunhui Yu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Siyuan Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Yang Sun
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Qing Guo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Jianfeng Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Chenlin Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Jiahui Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Kuobo Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China
| | - Yongfeng Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, China.
| |
Collapse
|
2
|
Starck M, Fiandra EF, Binks J, Si G, Chilton R, Sivik M, Thompson RL, Li J, Wilson MR, Mahon CS. Surface Modification of Polyesters Using Biosourced Soil-Release Polymers. JACS AU 2025; 5:666-674. [PMID: 40017788 PMCID: PMC11862958 DOI: 10.1021/jacsau.4c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/27/2025] [Accepted: 01/28/2025] [Indexed: 03/01/2025]
Abstract
Soil-release polymers (SRPs) are important components of fabric care formulations, performing important roles in the cleaning of synthetic fabrics. SRPs modify the surface of textiles and render materials resistant to staining, while offering environmental benefits by enabling effective cleaning using shorter, cooler wash cycles. Most SRPs used in formulations contain petroleum-sourced terephthalic acid, limiting the environmental benefits presented by the use of these key additives. Here, we have prepared SRPs using a selection of pyridine dicarboxylate monomers that can be accessed from biomass and assessed their ability to modify polyester surfaces. Interestingly, a wide range of surface deposition behavior was observed, with soil-release performance significantly impacted by the pyridine dicarboxylate component in use. The performance of polymers containing 2,5-pyridine dicarboxylate units exceeded or was comparable to that of current industry-standard SRPs, while polymers constructed using 2,4- or 2,6-pyridine dicarboxylate units displayed poor performance. Through a range of studies including dynamic light scattering, contact angle analysis, scanning electron microscopy, and molecular modeling we have explored the solution and interfacial behavior of SRPs and propose the observed changes in performance to arise from a combination of differences in solution self-assembly and variation in affinities for polyester surfaces. Our work highlights the potential of using biosourced starting materials in the replacement of petroleum-derived polymers within formulated consumer products and presents a rationale for the design of SRPs.
Collapse
Affiliation(s)
- Matthieu Starck
- Department
of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| | | | - Josephine Binks
- Department
of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| | - Gang Si
- The
Procter & Gamble Newcastle Innovation Centre, Whitley Road, Newcastle
upon Tyne NE12 9BZ, United Kingdom
| | - Ruth Chilton
- The
Procter & Gamble Newcastle Innovation Centre, Whitley Road, Newcastle
upon Tyne NE12 9BZ, United Kingdom
| | - Mark Sivik
- Procter
& Gamble Company, Fabric & Home Care Innovation Centre, Cincinnati, Ohio 45217, United States
| | | | - Jing Li
- Department
of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| | - Mark R. Wilson
- Department
of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| | - Clare S. Mahon
- Department
of Chemistry, Durham University, Durham, DH1 3LE, United Kingdom
| |
Collapse
|
3
|
Ahmed S, Cardinaels R, Abu-Jdayil B, Munam A, Iqbal MZ. Toughening Brittle Poly(ethylene Furanoate) with Linear Low-Density Polyethylene via Interface Modulation Using Reactive Compatibilizers. ACS OMEGA 2025; 10:5756-5769. [PMID: 39989761 PMCID: PMC11840768 DOI: 10.1021/acsomega.4c09301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/25/2025]
Abstract
Among various biorenewable polymers, poly(2,5-ethylene furandicarboxylate) (PEF) has a large potential to replace fossil-based poly(ethylene terephthalate) (PET) for different applications. However, despite showing better gas barrier properties compared to PET, the inferior mechanical properties of PEF hinder its potential applications. This study reports the toughening of PEF with linear low-density polyethylene (PE) via melt blending by reactive compatibilization at the polymer-polymer interface and benchmarking against similar PET/PE blends. The wettability and spreading coefficient predictions indicate a preferable location of the ternary component (styrene-ethylene/butylene-styrene-graft-maleic anhydride (SEBS-g-MA) or polyethylene-graft-maleic anhydride (PE-g-MA)) along the PEF/PE interface. The interfacial ternary component (concentration and type) exhibited substantial effects on the PEF/PE morphology, altering it from a very coarse incompatible structure to a dispersed morphology for SEBS-g-MA, and fibrillar and cocontinuous morphologies for PE-g-MA. The morphology change in the blends is attributed to reactive compatibilization between the anhydride group of the compatibilizer and the hydroxyl end-group in PEF at the interface. The SEBS-g-MA compatibilized blends exhibited enhanced ductility, as the elongation at break substantially increased with increasing compatibilizer loading, resulting in an 800% increment in the elongation at break and 250% in the tensile toughness compared to those of the neat PEF. These improvements may open new applications of biobased PEF flexible materials for the packaging industry.
Collapse
Affiliation(s)
- Safa Ahmed
- Chemical
and Petroleum Engineering, United Arab Emirates
University (UAEU), PO Box 15551, Al Ain, UAE
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Box 2424, Leuven, 3000 Flanders ,Belgium
| | - Ruth Cardinaels
- Department
of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, Box 2424, Leuven, 3000 Flanders ,Belgium
- Department
of Mechanical Engineering, Eindhoven University
of Technology, P.O. Box
513, Eindhoven, MB 5600, The Netherlands
| | - Basim Abu-Jdayil
- Chemical
and Petroleum Engineering, United Arab Emirates
University (UAEU), PO Box 15551, Al Ain, UAE
| | - Abdul Munam
- Department
of Biomedical Sciences, University of Niagara
Falls, L2E 7J7 Ontario,Canada
| | - Muhammad Z. Iqbal
- Chemical
and Petroleum Engineering, United Arab Emirates
University (UAEU), PO Box 15551, Al Ain, UAE
| |
Collapse
|
4
|
Enomoto Y, Amanokura Y, Yagura K, Iwata T. Synthesis of divanillic acid-based aromatic polyamides with linear and branched side-chains and the effect of side-chain structure on thermal and mechanical properties. Sci Rep 2025; 15:5529. [PMID: 39953071 PMCID: PMC11828886 DOI: 10.1038/s41598-025-88808-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/30/2025] [Indexed: 02/17/2025] Open
Abstract
Divanillic acid (DVA)-based aromatic polyamides (PAs) consisting of DVA with linear (methyl, butyl, hexyl, and octyl groups) or branched (isopropyl and isobutyl groups) side chains and 4,4'-methyldianillin were synthesized as high-performance and ultra-high-performance biomass plastics. The DVA PAs were amorphous with high thermal stability (decomposition temperature of ca. 380 °C). The glass transition temperature (Tg) of the DVA PAs depended on the side-chain composition in a linear manner, indicating the PA main chain possessed a random structure. The polymers were pressed to form melt-pressed films. The DVA PAs with a higher content of shorter side chains exhibited both higher Tg and tensile strength than those of polymers with a lower content of shorter side chains. The PAs exhibited Tg in the range of ca. 150-253 °C. The branched PA with isopropyl side chains exhibited the highest Tg of 253 °C and highest tensile strength of 63 MPa among the DVA PAs. The PAs with isopropyl side chains and some linear side chains (methyl/hexyl combination) exhibited high tensile strength of approximately 60-70 MPa; however, their Tg varied from 170 to 253 °C. The branched PA exhibited the highest Tg, tensile strength, and Young's modulus of the polymers. The thermal stability and mechanical properties of the PAs were tuned by their side-chain structure and composition.
Collapse
Affiliation(s)
- Yukiko Enomoto
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113- 8657, Japan.
| | - Yuto Amanokura
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113- 8657, Japan
| | - Kazuma Yagura
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113- 8657, Japan
| | - Tadahisa Iwata
- Science of Polymeric Materials, Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113- 8657, Japan
| |
Collapse
|
5
|
Sanchez LAH, Woroch CP, Dumas DM, Waymouth RM, Kanan MW. Toughening Poly(lactic acid) without Compromise - Statistical Copolymerization with a Bioderived Bicyclic Lactone. J Am Chem Soc 2025; 147:5212-5219. [PMID: 39874214 DOI: 10.1021/jacs.4c15697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Poly(lactic acid) (PLA) offers a renewable and degradable alternative to petroleum-based plastic, but its mechanical properties are not ideal for many applications. Herein, we describe the synthesis and polymerization of 2-oxo-3,8-dioxabicyclo[3.2.1]octane (ODO), a bioderived bicyclic lactone, and show that copolymers of l-lactide (LA) with small amounts of ODO have improved mechanical properties over PLA. Homopolymerization of ODO to poly(oxo-3,8-dioxabicyclo[3.2.1]octane) (PODO) is optimized for both solution-phase, organocatalytic and melt-phase, metal-catalyzed conditions. In comparison to the monocyclic analog, ε-caprolactone (CL), ODO has a lower enthalpy of polymerization and faster rate of polymerization. PODO is an amorphous, elastomeric polyester that has a Tg 90 °C higher than poly(ε-caprolactone) (PCL). Statistical copolymerization of LA with small fractions of ODO yields tough and transparent thermoplastics that have over 12× elongation at break compared to native PLA, while maintaining Tg, Young's modulus (E), and yield strength. Together, these results describe how the incorporation of the tetrahydrofuran ring alters lactone polymerizability and the thermomechanical properties of the homopolymer and copolymer materials.
Collapse
Affiliation(s)
- Lucas A H Sanchez
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Cristian P Woroch
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - David M Dumas
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Robert M Waymouth
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
6
|
Li J, Qiu R, Zhang S, Peng L, Dong Y, Jiang Y, Li Y, Fang N, Yu J, Dong JC, Zheng H, Ding L, Wan J, Akpinar I, Kuang J, Chen G, Ye J, Sun Y, Lin L, Zheng S, Yang S, Li J, Li JF. Synergistically Enhanced Co-Adsorption of Reactant and Hydroxyl on Platinum-Modified Copper Oxide for High-Performance HMF Oxidation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2417684. [PMID: 39871644 DOI: 10.1002/adma.202417684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/17/2025] [Indexed: 01/29/2025]
Abstract
Electrochemical oxidation of biomass-derived 5-hydroxymethylfurfural (HMF) provides an environmentally friendly route for producing the sustainable polymer monomer 2,5-furandicarboxylic acid (FDCA). Thus, precisely adjusting the synergistic adsorption among key reactive species, such as HMF and OHads, on the carefully designed catalyst surface is essential for achieving satisfactory catalytic performance for HMF oxidation to FDCA as it is closely related to the adsorption strength and configuration of the reaction substrates. This kind of regulation will ultimately facilitate the improvement of HMF oxidation performance. In this work, Pt nanoparticles modified CuO nanowires (denoted as Pt/CuO@CF) are constructed for the selective electrooxidation of HMF to FDCA under alkaline conditions. The well-designed Pt/CuO@CF demonstrates highly impressive catalytic performance across a range of HMF concentrations, ranging from the commonly used concentrations to higher levels typically not explored (10, 25, 50, 75, and 100 mm) with high FEFDCA (all above 95%) and outstanding long-term stability (15 cycles). In situ experimental characterizations confirm that the designed heterogeneous interface between Pt and CuO enhances the enrichment of HMF and OHads species on the catalyst surface. Theoretical calculations reveal the anchored Pt nanoparticles reduce the adsorption barrier for HMF and OHads, thereby promoting the highly selective oxidation of HMF to FDCA.
Collapse
Affiliation(s)
- Jiaran Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Rongxing Qiu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Siwang Zhang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Li Peng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yangyang Dong
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yuan Jiang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Yin Li
- Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Nan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jia Yu
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Jin-Chao Dong
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Haohui Zheng
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Lingzhi Ding
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jinlong Wan
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Isil Akpinar
- Department of Chemistry and International Institute of Nanotechnology, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA
| | - Junhua Kuang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Gaofeng Chen
- College of Environmental Engineering, Henan University of Technology, Zhengzhou, Henan, 450001, P. R. China
| | - Jinyu Ye
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Yong Sun
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Lu Lin
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Shisheng Zheng
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Shuliang Yang
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
| | - Jian-Feng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, P. R. China
- College of Energy, Xiamen University, Xiamen, Fujian, 361102, P. R. China
| |
Collapse
|
7
|
Yao B, Liu M, Zhang J, Hu X, Wang B, Liang RJ, Chen Y. Effect of long-term exposure to non-biodegradable and biodegradable microplastics in continuous anoxic/aerobic bioreactors: Nitrogen removal performance, microbial communities and functional gene responses. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123712. [PMID: 39675334 DOI: 10.1016/j.jenvman.2024.123712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 11/13/2024] [Accepted: 12/10/2024] [Indexed: 12/17/2024]
Abstract
The environmental hazards caused by microplastics (MPs) have received widespread attention, but the effects of non-biodegradable and biodegradable MPs of long-term presence on continuously operating sewage treatment bioreactors are not well known. In this study, we investigated the effect of a representative non-biodegradable MP, polyethylene terephthalate (PET), and a biodegradable MP, polylactic acid (PLA), on the nitrogen removal performance of conventional anoxic/aerobic (A/O) process. The NH4+-N removal efficiencies were suppressed to 91.7 ± 5.5% and 80.8 ± 4.1% at concentrations of 10 and 100 mg/L PLA, significantly (p < 0.05) lower than 96.3 ± 1.0% and 95.0 ± 1.5% with the presence of PET. PLA resulted in a significant (p < 0.05) decrease in adenosine triphosphate of living cells (cATP) and dehydrogenase activities. PLA enhanced redox stress and induced a series of oxidative stress reactions that were detrimental to the normal growth and metabolism of microorganisms. The relative abundance of several functional microorganisms (Nitrosomonas,Nitrospira and Ellin6067) and genes (amoA, amoB and amoC) associated with NH4+-N conversion were reduced. The potential risk of biodegradable MPs to the long-term wastewater treatment process cannot be ignored and needs to be emphasized.
Collapse
Affiliation(s)
- Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jin Zhang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Xuan Hu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Bin Wang
- Sichuan Engineering Research Center for Municipal Wastewater Distributed Treatment Technology, Chengdu, 610200, China
| | - Ren-Jun Liang
- Sichuan Science City Tianren Environmental Protection Co., Ltd, Mianyang, 621900, China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
8
|
Vale AC, Leite L, Pais V, Bessa J, Cunha F, Fangueiro R. Extraction of Natural-Based Raw Materials Towards the Production of Sustainable Man-Made Organic Fibres. Polymers (Basel) 2024; 16:3602. [PMID: 39771455 PMCID: PMC11679467 DOI: 10.3390/polym16243602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 12/03/2024] [Indexed: 01/06/2025] Open
Abstract
Bioresources have been gaining popularity due to their abundance, renewability, and recyclability. Nevertheless, given their diverse composition and complex hierarchical structures, these bio-based sources must be carefully processed to effectively extract valuable raw polymeric materials suitable for producing man-made organic fibres. This review will first highlight the most relevant bio-based sources, with a particular focus on promising unconventional biomass sources (terrestrial vegetables, aquatic vegetables, fungi, and insects), as well as agroforestry and industrial biowaste (food, paper/wood, and textile). For each source, typical applications and the biopolymers usually extracted will also be outlined. Furthermore, acknowledging the challenging lignocellulosic structure and composition of these sources, an overview of conventional and emerging pre-treatments and extraction methods, namely physical, chemical, physicochemical, and biological methodologies, will also be presented. Additionally, this review aims to explore the applications of the compounds obtained in the production of man-made organic fibres (MMOFs). A brief description of their evolution and their distinct properties will be described, as well as the most prominent commercial MMOFs currently available. Ultimately, this review concludes with future perspectives concerning the pursuit of greener and sustainable polymeric sources, as well as effective extraction processes. The potential and main challenges of implementing these sources in the production of alternative man-made organic fibres for diverse applications will also be highlighted.
Collapse
Affiliation(s)
- Ana Catarina Vale
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Liliana Leite
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Vânia Pais
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - João Bessa
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Fernando Cunha
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
| | - Raul Fangueiro
- Fibrenamics, Institute of Innovation on Fiber-Based Materials and Composites, University of Minho, 4800-058 Guimarães, Portugal; (V.P.); (J.B.); (F.C.); (R.F.)
- Centre for Textile Science and Technology (2C2T), Department of Textile Engineering, University of Minho, 4800-058 Guimarães, Portugal
| |
Collapse
|
9
|
Lee J, Park C, Fai Tsang Y, Andrew Lin K. Towards Sustainable Production of Polybutylene Adipate Terephthalate: Non-Biological Catalytic Syntheses of Biomass-Derived Constituents. CHEMSUSCHEM 2024; 17:e202401070. [PMID: 38984837 PMCID: PMC11632578 DOI: 10.1002/cssc.202401070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Renewable chemicals, which are made from renewable resources such as biomass, have attracted significant interest as substitutes for natural gas- or petroleum-derived chemicals to enhance the sustainability of the chemical and petrochemical industries. Polybutylene adipate terephthalate (PBAT), which is a copolyester of 1,4-butanediol (1,4-BDO), adipic acid (AA), and dimethyl terephthalate (DMT) or terephthalic acid (TPA), has garnered significant interest as a biodegradable polymer. This study assesses the non-biological production of PBAT monomers from biomass feedstocks via heterogeneous catalytic reactions. The biomass-based catalytic routes to each monomer are analyzed and compared to conventional routes. Although no fully commercialized catalytic processes for direct conversion of biomass into 1,4-BDO, AA, DMT, and TPA are available, emerging and promising catalytic routes have been proposed. The proposed biomass-based catalytic pathways toward 1,4-BDO, AA, DMT, and TPA are not yet fully competitive with conventional fossil fuel-based pathways mainly due to high feedstock prices and the existence of other alternatives. However, given continuous technological advances in the renewable production of PBAT monomers, bio-based PBAT should be economically viable in the near future.
Collapse
Affiliation(s)
- Jechan Lee
- Department of Global Smart CitySungkyunkwan UniversitySuwon16419South Korea
- School of Civil, Architectural Engineering, and Landscape ArchitectureSungkyunkwan UniversitySuwon16419South Korea
| | - Chanyeong Park
- Department of Global Smart CitySungkyunkwan UniversitySuwon16419South Korea
| | - Yiu Fai Tsang
- Department of Science and Environmental Studies and State Key Laboratory in Marine PollutionThe Education University of Hong KongTai Po, New Territories999077Hong KongChina
| | - Kun‐Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable AgricultureNational Chung Hsing UniversityTaichungTaiwan
- Institute of Analytical and Environmental SciencesNational Tsing Hua UniversityHsinchuTaiwan
- Department of Chemical EngineeringChung Yuan Christian UniversityTaoyuanTaiwan
| |
Collapse
|
10
|
Kamran M, Kay A, Davidson MG. Facile Synthesis of a Novel Furanic Monomer and Its ADMET Polymerization toward Fully Renewable Functional Polymers. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:13798-13809. [PMID: 39301519 PMCID: PMC11409216 DOI: 10.1021/acssuschemeng.4c03498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/22/2024]
Abstract
Efficient and sustainable transformation of biomass-derived chemicals to materials with the potential to replace conventional fossil-derived polymers is considered a major challenge. In this work, we disclose the synthesis of a novel furan-based α,ω-diene monomer following a facile, green, and energy-efficient process from fully renewable starting materials. The multifunctional monomer was produced by the base-catalyzed cross-aldol condensation of 10-undecenal (UA) and 2,5-diformylfuran (DFF) under mild conditions, providing the desired product in good yields. By employing the new monomer, fully biobased polymers were prepared in good molecular weights (M n up to 31 kg/mol) by acyclic diene metathesis (ADMET) polymerization using Grubb's second-generation catalysts. The structure-property investigation of the polymers revealed T g in the range of -16 to 5 °C, high thermal stability, good hydrophobicity, and photoactive properties. Owning to the presence of amenable functional groups, the resultant polymer was also subjected to postpolymerization modifications. The effect of these modifications on the polymer properties showed enhanced crystallization attributed to hydrogen bonding interactions. This work demonstrates a scalable and environmentally benign approach to access structurally novel and versatile materials exhibiting interesting properties from 100% biobased resources.
Collapse
Affiliation(s)
- Muhammad Kamran
- Institute for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Andrew Kay
- Institute for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Matthew G Davidson
- Institute for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
11
|
Jiang X, Ma X, Yang Y, Liu Y, Liu Y, Zhao L, Wang P, Zhang Y, Lin Y, Wei Y. Enhancing the Electrocatalytic Oxidation of 5-Hydroxymethylfurfural Through Cascade Structure Tuning for Highly Stable Biomass Upgrading. NANO-MICRO LETTERS 2024; 16:275. [PMID: 39168930 PMCID: PMC11339012 DOI: 10.1007/s40820-024-01493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/27/2024] [Indexed: 08/23/2024]
Abstract
Electrocatalytic 5-hydroxymethylfurfural oxidation reaction (HMFOR) provides a promising strategy to convert biomass derivative to high-value-added chemicals. Herein, a cascade strategy is proposed to construct Pd-NiCo2O4 electrocatalyst by Pd loading on Ni-doped Co3O4 and for highly active and stable synergistic HMF oxidation. An elevated current density of 800 mA cm-2 can be achieved at 1.5 V, and both Faradaic efficiency and yield of 2,5-furandicarboxylic acid remained close to 100% over 10 consecutive electrolysis. Experimental and theoretical results unveil that the introduction of Pd atoms can modulate the local electronic structure of Ni/Co, which not only balances the competitive adsorption of HMF and OH- species, but also promote the active Ni3+ species formation, inducing high indirect oxidation activity. We have also discovered that Ni incorporation facilitates the Co2+ pre-oxidation and electrophilic OH* generation to contribute direct oxidation process. This work provides a new approach to design advanced electrocatalyst for biomass upgrading.
Collapse
Affiliation(s)
- Xiaoli Jiang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Xianhui Ma
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Yuanteng Yang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yang Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yanxia Liu
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Lin Zhao
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Penglei Wang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China
| | - Yagang Zhang
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu, 611731, People's Republic of China.
| | - Yue Lin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Yen Wei
- The Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, People's Republic of China.
- School of Materials Science and Engineering, North Minzu University, Yinchuan, 750021, People's Republic of China.
| |
Collapse
|
12
|
Blom M, van Putten RJ, van der Maas K, Wang B, van Klink GPM, Gruter GJM. Terephthalate Copolyesters Based on 2,3-Butanediol and Ethylene Glycol and Their Properties. Polymers (Basel) 2024; 16:2177. [PMID: 39125202 PMCID: PMC11314993 DOI: 10.3390/polym16152177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/23/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
This study explores the synthesis and performance of novel copolyesters containing 2,3-butanediol (2,3-BDO) as a biobased secondary diol. This presents an opportunity for improving their thermal properties and reducing crystallinity, while also being more sustainable. It is, however, a challenge to synthesize copolyesters of sufficient molecular weight that also have high 2,3-BDO content, due to the reduced reactivity of secondary diols compared to primary diols. Terephthalate-based polyesters were synthesized in combination with different ratios of 2,3-BDO and ethylene glycol (EG). With a 2,3-BDO to EG ratio of 28:72, an Mn of 31.5 kDa was reached with a Tg of 88 °C. The Mn dropped with increasing 2,3-BDO content to 18.1 kDa for a 2,3-BDO to EG ratio of 78:22 (Tg = 104 °C) and further to 9.8 kDa (Tg = 104 °C) for the homopolyester of 2,3-BDO and terephthalate. The water and oxygen permeability both increased significantly with increasing 2,3-BDO content and even the lowest content of 2,3-BDO (28% of total diol) performed significantly worse than PET. The incorporation of 2,3-BDO had little effect on the tensile properties of the polyesters, which were similar to PET. The results suggest that 2,3-BDO can be potentially applied for polyesters requiring higher Tg and lower crystallinity than existing materials (mainly PET).
Collapse
Affiliation(s)
- Marian Blom
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Robert-Jan van Putten
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Kevin van der Maas
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Bing Wang
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Gerard P. M. van Klink
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| | - Gert-Jan M. Gruter
- Industrial Sustainable Chemistry, Universiteit van Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands or (M.B.); (R.-J.v.P.); (G.P.M.v.K.)
- Avantium N.V., Zekeringstraat 29, 1014 BV Amsterdam, The Netherlands; (K.v.d.M.); (B.W.)
| |
Collapse
|
13
|
Walkowiak K, Paszkiewicz S. Modifications of Furan-Based Polyesters with the Use of Rigid Diols. Polymers (Basel) 2024; 16:2064. [PMID: 39065381 PMCID: PMC11280799 DOI: 10.3390/polym16142064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
The replacement of polymers derived from petrochemical resources has been a prominent area of focus in recent decades. Polymers used in engineering materials must exhibit mechanical strength and stiffness while maintaining performance through a broad temperature range. Most of the polyesters used as engineering materials are based on terephthalic acid (TPA) and its derivatives, which provide necessary rigidity to molecular chains due to an aromatic ring. Bio-based alternatives for TPA-based polyesters that are gaining popularity are the polyesters derived from 2,5-furandicarboxylic acid (FDCA). To broaden applicational possibilities, one effective way to achieve specific properties in targeted applications is to adjust the composition and structure of polymers using advanced polymer chemistry techniques. The incorporation of rigid diols such as isosorbide, 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (CBDO) should result in a greater stiffness of the molecular chains. This review extensively explores the effect of incorporating rigid diols on material properties through a review of research articles as well as patents. Moreover, this review mainly focuses on the polyesters and copolyesters synthesized via two-step melt polycondensation and its alterations due to the industrial importance of this method. Innovative synthesis strategies and the resulting material properties are presented.
Collapse
Affiliation(s)
- Konrad Walkowiak
- Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, 70-310 Szczecin, Poland;
| | | |
Collapse
|
14
|
Kumar V, Pellis A, Wimmer R, Popok V, Christiansen JDC, Varrone C. Efficient Depolymerization of Poly(ethylene 2,5-furanoate) Using Polyester Hydrolases. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:9658-9668. [PMID: 38966237 PMCID: PMC11220789 DOI: 10.1021/acssuschemeng.4c00915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 06/01/2024] [Accepted: 06/03/2024] [Indexed: 07/06/2024]
Abstract
Poly(ethylene 2,5-furanoate) (PEF) is considered to be the next-generation green polyester and is hailed as a rising star among novel plastics. It is biobased, is nontoxic, and has comparable or improved properties compared to polyethylene terephthalate (PET). Biobased PEF offers lower life-cycle greenhouse gas emissions than PET. However, with its industrial production starting soon, relatively little is known about its actual recyclability. This work reports on the near complete depolymerization of PEF using two efficient PET hydrolases, FastPETase and leaf compost-cutinase (LCC), at loadings 4.5-17 times lower than previously reported. FastPETase and LCC exhibited maximum depolymerization of PEF, measured by weight loss and 2,5-furandicarboxylic acid (FDCA) production, using potassium phosphate-NaOH buffer at 50 and 65 °C, respectively. The 98% depolymerization of 13 g L-1 PEF film was achieved by three additions of the LCC in 72 h, while 78% weight loss was obtained using FastPETase in controlled conditions. Nonetheless, 92% weight loss was obtained with FastPETase when using only 6 g L-1 PEF. The main reaction products were identified as FDCA, ethylene glycol, and mono(2-hydroxyethyl)-furanoate. LCC performed better than FastPETase, in terms of both FDCA release and weight loss. The effect of crystallinity was evident on the enzymes' performance, as only 4% to 7% weight loss of crystalline PEF (32%) was recorded. Microscopy studies of the treated PEF films provided information on the surface erosion processes and revealed higher resistance of the crystalline phase, explaining the low level of depolymerization. The study presents important insights into the enzymatic hydrolysis of biobased PEF material and paves the path toward more viable applications within biopolymer waste recycling.
Collapse
Affiliation(s)
- Virender Kumar
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Alessandro Pellis
- Dipartimento
di Chimica e Chimica Industriale, Universitá
degli Studi di Genova, Via Dodecaneso 31, Genova 16146, Italy
| | - Reinhard Wimmer
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| | - Vladimir Popok
- Department
of Materials and Production, Aalborg University, Fibigerstræde 16, 9220 Aalborg, Denmark
| | | | - Cristiano Varrone
- Department
of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, 9220 Aalborg, Denmark
| |
Collapse
|
15
|
Silvianti F, Maniar D, Agostinho B, de Leeuw TC, Woortman AJJ, van Dijken J, Thiyagarajan S, Sousa AF, Loos K. Enzymatic Synthesis of Copolyesters with the Heteroaromatic Diol 3,4-Bis(hydroxymethyl)furan and Isomeric Dimethyl Furandicarboxylate Substitutions. Biomacromolecules 2024; 25:2792-2802. [PMID: 38602263 PMCID: PMC11094730 DOI: 10.1021/acs.biomac.3c01433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/12/2024]
Abstract
Polyesters from furandicarboxylic acid derivatives, i.e., dimethyl 2,5-furandicarboxylate (2,5-DMFDCA) and 2,4-DMFDCA, show interesting properties among bio-based polymers. Another potential heteroaromatic monomer, 3,4-bis(hydroxymethyl)furan (3,4-BHMF), is often overlooked but holds promise for biopolymer synthesis. Cleaning and greening synthetic procedures, i.e., enzymatic polymerization, offer sustainable pathways. This study explores the Candida antarctica lipase B (CALB)-catalyzed copolymerization of 3,4-BHMF with furan dicarboxylate isomers and aliphatic diols. The furanic copolyesters (co-FPEs) with higher polymerization degrees are obtained using 2,4-isomer, indicating CALB's preference. Material analysis revealed semicrystalline properties in all synthesized 2,5-FDCA-based co-FPEs, with multiple melting temperatures (Tm) from 53 to 124 °C and a glass-transition temperature (Tg) of 9-10 °C. 2,4-FDCA-based co-FPEs showed multiple Tm from 43 to 61 °C and Tg of -14 to 12 °C; one of them was amorphous. In addition, all co-FPEs showed a two-step decomposition profile, indicating aliphatic and semiaromatic segments in the polymer chains.
Collapse
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Dina Maniar
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Beatriz Agostinho
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Albert Jan Jacob Woortman
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Jur van Dijken
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| | - Shanmugam Thiyagarajan
- Wageningen
Food & Biobased Research, Wageningen
University and Research, P.O. Box 17, Wageningen 6700 AA, The Netherlands
| | - Andreia F. Sousa
- CICECO—Aveiro
Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
- Centre
for Mechanical Engineering, Materials and Processes, Department of
Chemical Engineering, University of Coimbra
Rua Sílvio Lima—Polo II, Coimbra 3030-790, Portugal
| | - Katja Loos
- Macromolecular
Chemistry & New Polymeric Materials, Zernike Institute for Advanced
Materials, University of Groningen, Nijenborgh 4, Groningen 9747 AG, The Netherlands
| |
Collapse
|
16
|
Shi C, Quinn EC, Diment WT, Chen EYX. Recyclable and (Bio)degradable Polyesters in a Circular Plastics Economy. Chem Rev 2024; 124:4393-4478. [PMID: 38518259 DOI: 10.1021/acs.chemrev.3c00848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
Polyesters carrying polar main-chain ester linkages exhibit distinct material properties for diverse applications and thus play an important role in today's plastics economy. It is anticipated that they will play an even greater role in tomorrow's circular plastics economy that focuses on sustainability, thanks to the abundant availability of their biosourced building blocks and the presence of the main-chain ester bonds that can be chemically or biologically cleaved on demand by multiple methods and thus bring about more desired end-of-life plastic waste management options. Because of this potential and promise, there have been intense research activities directed at addressing recycling, upcycling or biodegradation of existing legacy polyesters, designing their biorenewable alternatives, and redesigning future polyesters with intrinsic chemical recyclability and tailored performance that can rival today's commodity plastics that are either petroleum based and/or hard to recycle. This review captures these exciting recent developments and outlines future challenges and opportunities. Case studies on the legacy polyesters, poly(lactic acid), poly(3-hydroxyalkanoate)s, poly(ethylene terephthalate), poly(butylene succinate), and poly(butylene-adipate terephthalate), are presented, and emerging chemically recyclable polyesters are comprehensively reviewed.
Collapse
Affiliation(s)
- Changxia Shi
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Ethan C Quinn
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Wilfred T Diment
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Eugene Y-X Chen
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
17
|
Bühler J, Muntwyler A, Roithmeyer H, Adams P, Besmer ML, Blacque O, Tilley SD. Immobilised Ruthenium Complexes for the Electrooxidation of 5-Hydroxymethylfurfural. Chemistry 2024; 30:e202304181. [PMID: 38285807 DOI: 10.1002/chem.202304181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 01/31/2024]
Abstract
Abundantly available biomass-based platform chemicals, including 5-hydroxymethylfurfural (HMF), are essential stepping stones in steering the chemical industry away from fossil fuels. The efficient catalytic oxidation of HMF to its diacid derivative, 2,5-furandicarboxylic acid (FDCA), is a promising research area with potential applications in the polymer industry. Currently, the most encouraging approaches are based on solid-state catalysts and are often conducted in basic aqueous media, conditions where HMF oxidation competes with its decomposition. Efficient molecular catalysts are practically unknown for this reaction. In this study, we report on the synthesis and electrocatalysis of surface-bound molecular ruthenium complexes for the transformation of HMF to FDCA under acidic conditions. Catalyst immobilisation on mesoporous indium tin oxide electrodes is achieved through the incorporation of phosphonic acid anchoring groups. Screening experiments with HMF and further reaction intermediates revealed the catalytic route and bottlenecks in the catalytic synthesis of FDCA. Utilising these immobilised electrocatalysts, FDCA yields of up to 85 % and faradaic efficiencies of 91 % were achieved, without any indication of substrate decomposition. Surface analysis by X-ray photoelectron spectroscopy (XPS) post-electrocatalysis unveiled the desorption of the catalyst from the electrode surface as a limiting factor in terms of catalytic performance.
Collapse
Affiliation(s)
- Jan Bühler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Alissa Muntwyler
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Helena Roithmeyer
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Pardis Adams
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Manuel Luca Besmer
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - Olivier Blacque
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| | - S David Tilley
- Department of Chemistry, University of Zurich Winterthurerstrasse 190, 8057, Zurich, Switzerland
| |
Collapse
|
18
|
Wu Y, Ma L, Wu J, Song M, Wang C, Lu J. High-Surface Area Mesoporous Sc 2O 3 with Abundant Oxygen Vacancies as New and Advanced Electrocatalyst for Electrochemical Biomass Valorization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311698. [PMID: 38224594 DOI: 10.1002/adma.202311698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/17/2023] [Indexed: 01/17/2024]
Abstract
Scandium oxide (Sc2O3) is considered as omnipotent "Industrial Ajinomoto" and holds promise in catalytic applications. However, rarely little attention is paid to its electrochemistry. Here, the first nanocasting design of high-surface area Sc2O3 with abundant oxygen vacancies (mesoporous VO-Sc2O3) for efficient electrochemical biomass valorization is reported. In the case of the electro-oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA), quantitative HMF conversion, high yield, and high faradic efficiency of FDCA via the hydroxymethylfurancarboxylic acid pathway are achieved by this advanced electrocatalyst. The beneficial effect of the VO on the electrocatalytic performance of the mesoporous VO-Sc2O3 is revealed by the enhanced adsorption of reactants and the reduced energy barrier in the electrochemical process. The concerted design, in situ and ex situ experimental studies and theoretical calculations shown in this work should shed light on the rational elaboration of advanced electrocatalysts, and contribute to the establishment of a circular carbon economy since the bio-plastic monomer and green hydrogen are efficiently synthesized.
Collapse
Affiliation(s)
- Yufeng Wu
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Liyao Ma
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Junxiu Wu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Minwei Song
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Changlong Wang
- Institute of Circular Economy, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Jun Lu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, P. R. China
| |
Collapse
|
19
|
Araya A, Guajardo N, Lienqueo ME. Control of selectivity in the oxidation of 5-hydroxymethylfurfural to 5- formyl-2-furancarboxylic acid catalyzed by laccase in a multiphasic gas-liquid microbioreactor. BIORESOURCE TECHNOLOGY 2024; 394:130154. [PMID: 38056680 DOI: 10.1016/j.biortech.2023.130154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/01/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023]
Abstract
The selectivity of 5-formyl-2-furancarboxylic acid (FFCA) was studied in a batch bioreactor and microbioreactors with different internal diameters (ID). Using microbioreactors, the effect of the flow rate of the liquid and gas phase on the yield, space time yield (STYFFCA), and gas-liquid mixture velocity (UM) of the reaction was evaluated. The biooxidation in flow microbioreactors, a selectivity of 100 % for FFCA was achieved, while with the batch bioreactor at the same substrate concentration a selectivity of 6.7 % was obtained. The highest yield (30 %) with 15 mM of 5-hydroxymethylfurfural (HMF) was reached at a gas-liquid flow rate of 0.5 µL/min and the highest STYFFCA (0.07 mol m-3 min-1) was achieved at a gas-liquid flow rate of 1.5 µL/min with the microbioreactor with an ID of 0.5 mm. The UM values (0.5 to 1.6 cm min1) indicated that the reaction takes place under a kinetic regime without mass transfer limitations.
Collapse
Affiliation(s)
- Aura Araya
- Magíster en Ciencias de la Ingeniería, mención Química, Universidad de Chile, Beauchef 851, Santiago, Chile
| | - Nadia Guajardo
- Departamento de Ingeniería Química y Bioprocesos, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Macul, Santiago, Chile.
| | - María Elena Lienqueo
- Centro de Biotecnología y Bioingeniería (CeBiB), Departamento de Ingeniería Química, Biotecnología y Materiales, Universidad de Chile, Beauchef 851, Santiago, Chile
| |
Collapse
|
20
|
Tu Z, Wang L, Lu Y, Li Y, Sang L, Zhang Y, Wei Z. Rapid marine degradable poly(butylene oxalate) by introducing promotion building blocks. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132791. [PMID: 37866142 DOI: 10.1016/j.jhazmat.2023.132791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/04/2023] [Accepted: 10/13/2023] [Indexed: 10/24/2023]
Abstract
The design and development of high-performance marine-degradable plastics have long been considered a superior strategy to address marine plastic pollution. To achieve a balance between rapid marine degradability and high performance of polyester plastics, this work designed two series of poly(butylene oxalate) (PBOx) copolymers with intrinsic hydrolysis ability using poly(ethylene oxalate) (PEOx) and poly(glycolic acid) (PGA) as promotion building blocks. The synthesis process, crystallization properties, barrier performance, and mechanical properties of copolymers were comparatively investigated. Additionally, the marine degradability of copolymers received specific focus. The theoretical calculation demonstrated that the introduction of promotion blocks reduced the hydrolysis energy barrier of the copolymers. In general, the results revealed the advantages of PBEOx copolymer in satisfying practicality and better regulating marine degradability. The high gas barrier performance, suitable thermal properties, tunable mechanical properties, and rapid marine degradability endow the copolymer as a promising candidate toward sustainable and marine-degradable plastics.
Collapse
Affiliation(s)
- Zhu Tu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lizheng Wang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Ying Lu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Lin Sang
- School of Automotive Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yu Zhang
- Hangzhou New Base Material Technology Co., Ltd., Hangzhou 310051, China
| | - Zhiyong Wei
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Polymer Science and Engineering, Department of Polymer Science and Engineering, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
21
|
van Strien N, Niskanen J, Berghuis A, Pöhler H, Rautiainen S. Production of 2,5-Furandicarboxylic Acid Methyl Esters from Pectin-Based Aldaric Acid: from Laboratory to Bench Scale. CHEMSUSCHEM 2024; 17:e202300732. [PMID: 37632359 DOI: 10.1002/cssc.202300732] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/14/2023] [Accepted: 08/25/2023] [Indexed: 08/28/2023]
Abstract
2,5-Furandicarboxylic acid (FDCA) is one of the most attractive emerging renewable monomers, which has gained interest especially in polyester applications, such as the production of polyethylene furanoate (PEF). Recently, the attention has shifted towards FDCA esters due to their better solubility as well as the easier purification and polymerisation compared to FDCA. In our previous work, we reported the synthesis of FDCA butyl esters by dehydration of aldaric acids as stable intermediates. Here, we present the synthesis of FDCA methyl esters in high yields from pectin-based galactaric acid using a solid acid catalyst. The process enables high substrate concentrations (up to 20 wt %) giving up to 50 mol % FDCA methyl esters with total furancarboxylates yields of up to 90 mol %. The synthesis was successfully scaled up from gram-scale to kilogram-scale in batch reactors showing the feasibility of the process. The stability of the catalyst was tested in re-use experiments. Purification of the crude product by vacuum distillation and precipitation gave furan-2,5-dimethylcarboxylate with a 98 % purity.
Collapse
Affiliation(s)
- Nicolaas van Strien
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Jukka Niskanen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Anneloes Berghuis
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Holger Pöhler
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| | - Sari Rautiainen
- VTT Technical Research Centre of Finland Ltd, P.O. Box 1000, FI-02044, VTT, Finland
| |
Collapse
|
22
|
Weng Y, Hong CB, Zhang Y, Liu H. Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling. GREEN CHEMISTRY 2024; 26:571-592. [DOI: 10.1039/d3gc04174c] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Catalytic depolymerization of polyester plastics toward closed-loop recycling and upcycling
Collapse
Affiliation(s)
- Yujing Weng
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Cheng-Bin Hong
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | - Yulong Zhang
- Henan Key Laboratory of Coal Green Conversion, College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo, Henan 454000, PR China
| | - Haichao Liu
- Beijing National Laboratory for Molecular Science, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
23
|
Afewerki S, Edlund U. Engineering an All-Biobased Solvent- and Styrene-Free Curable Resin. ACS POLYMERS AU 2023; 3:447-456. [PMID: 38107415 PMCID: PMC10722568 DOI: 10.1021/acspolymersau.3c00015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/07/2023] [Accepted: 09/08/2023] [Indexed: 12/19/2023]
Abstract
The sustainable production of polymers and materials derived from renewable feedstocks such as biomass is vital to addressing the current climate and environmental challenges. In particular, finding a replacement for current widely used curable resins containing undesired components with both health and environmental issues, such as bisphenol-A and styrene, is of great interest and vital for a sustainable society. In this work, we disclose the preparation and fabrication of an all-biobased curable resin. The devised resin consists of a polyester component based on fumaric acid, itaconic acid, 2,5-furandicarboxylic acid, 1,4-butanediol, and reactive diluents acting as both solvents and viscosity enhancers. Importantly, the complete process was performed solvent-free, thus promoting its industrial applications. The cured biobased resin demonstrates very good thermal properties (stable up to 415 °C), the ability to resist deformation based on the high Young's modulus of ∼775 MPa, and chemical resistance based on the swelling index and gel content. We envision the disclosed biobased resin having tailorable properties suitable for industrial applications.
Collapse
Affiliation(s)
- Samson Afewerki
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| | - Ulrica Edlund
- Fibre and Polymer Technology, KTH Royal Institute of Technology, SE 100 44 Stockholm, Sweden
| |
Collapse
|
24
|
Wang Q, Li J, Wang J, Hu H, Dong Y, O'Young DL, Hu D, Zhang X, Wei DQ, Zhu J. Biobased Biodegradable Copolyesters from 2,5-Thiophenedicarboxylic Acid: Effect of Aliphatic Diols on Barrier Properties and Degradation. Biomacromolecules 2023; 24:5884-5897. [PMID: 37956178 DOI: 10.1021/acs.biomac.3c00918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The demand for sustainable development has led to increasing attention in biobased polyesters due to their adjustable thermal and mechanical properties and biodegradability. In this study, we used a novel bioderived aromatic diacid, 2,5-thiophenedicarboxylic acid (TDCA) to synthesize a list of novel aromatic-aliphatic poly(alkylene adipate-co-thiophenedicarboxylate) (PAATh) copolyesters through a facile melt polycondensation method. PAAThs are random copolyesters with weight-average molecular weights of 58400 to 84200 g·mol-1 and intrinsic viscosities of 0.80 to 1.27 dL·g-1. All PAAThs exhibit sufficiently high thermal stability as well as the highest tensile strength of 6.2 MPa and the best gas barrier performances against CO2 and O2, 4.3- and 3.3-fold better than those of poly(butylene adipate-co-terephthalate) (PBAT). The biodegradability of PAAThs was fully evaluated through a degradation experiment and various experimental parameters, including residue weights, surface morphology, and molecular compositions. The state-of-the-art molecular dynamics (MD) simulations were applied to elucidate the different enzymatic degradation behaviors of PAAThs due to the effect of diols with different chain structures. The sterically hindered carbonyl carbon of the PHATh-enzyme complex was more susceptible to nucleophilic attack and exhibited a higher tendency to enter a prereaction state. This study has introduced a group of novel biobased copolyesters with their structure-property relationships investigated thoroughly, and the effect of diol components on the enzymatic degradation was revealed by computational analysis. These findings may lay the foundation for the development of promising substitutes for commercial biodegradable polyesters and shed light on their complicated degradation mechanisms.
Collapse
Affiliation(s)
- Qianfeng Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Jiayi Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Han Hu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Yunxiao Dong
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Drow Lionel O'Young
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Di Hu
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Ningbo China, Ningbo 315100, People's Republic of China
| | - Xiaoqin Zhang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| | - Dong-Qing Wei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
- Zhongjing Research and Industrialization Institute of Chinese Medicine, Nanyang 473006, People's Republic of China
- Peng Cheng Laboratory, Shenzhen 518055, People's Republic of China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, People's Republic of China
| |
Collapse
|
25
|
Fiandra EF, Shaw L, Starck M, McGurk CJ, Mahon CS. Designing biodegradable alternatives to commodity polymers. Chem Soc Rev 2023; 52:8085-8105. [PMID: 37885416 DOI: 10.1039/d3cs00556a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The development and widespread adoption of commodity polymers changed societal landscapes on a global scale. Without the everyday materials used in packaging, textiles, construction and medicine, our lives would be unrecognisable. Through decades of use, however, the environmental impact of waste plastics has become grimly apparent, leading to sustained pressure from environmentalists, consumers and scientists to deliver replacement materials. The need to reduce the environmental impact of commodity polymers is beyond question, yet the reality of replacing these ubiquitous materials with sustainable alternatives is complex. In this tutorial review, we will explore the concepts of sustainable design and biodegradability, as applied to the design of synthetic polymers intended for use at scale. We will provide an overview of the potential biodegradation pathways available to polymers in different environments, and highlight the importance of considering these pathways when designing new materials. We will identify gaps in our collective understanding of the production, use and fate of biodegradable polymers: from identifying appropriate feedstock materials, to considering changes needed to production and recycling practices, and to improving our understanding of the environmental fate of the materials we produce. We will discuss the current standard methods for the determination of biodegradability, where lengthy experimental timescales often frustrate the development of new materials, and highlight the need to develop better tools and models to assess the degradation rate of polymers in different environments.
Collapse
Affiliation(s)
- Emanuella F Fiandra
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Lloyd Shaw
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | - Matthieu Starck
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| | | | - Clare S Mahon
- Department of Chemistry, Durham University, South Road, Durham, DH1 3LE, UK.
| |
Collapse
|
26
|
Iswanto AH, Lubis MAR, Sutiawan J, Al-Edrus SSO, Lee SH, Antov P, Kristak L, Reh R, Mardawati E, Santoso A, Kusumah SS. Latest Advancements in the Development of High-Performance Lignin- and Tannin-Based Non-Isocyanate Polyurethane Adhesive for Wood Composites. Polymers (Basel) 2023; 15:3864. [PMID: 37835913 PMCID: PMC10575091 DOI: 10.3390/polym15193864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
The depletion of natural resources and increasing environmental apprehension regarding the reduction of harmful isocyanates employed in manufacturing polyurethanes (PUs) have generated significant attention from both industrial and academic sectors. This attention is focused on advancing bio-based non-isocyanate polyurethane (NIPU) resins as viable and sustainable substitutes, possessing satisfactory properties. This review presents a comprehensive analysis of the progress made in developing bio-based NIPU polymers for wood adhesive applications. The main aim of this paper is to conduct a comprehensive analysis of the latest advancements in the production of high-performance bio-based NIPU resins derived from lignin and tannin for wood composites. A comprehensive evaluation was conducted on scholarly publications retrieved from the Scopus database, encompassing the period from January 2010 to April 2023. In NIPU adhesive manufacturing, the exploration of substitute materials for isocyanates is imperative, due to their inherent toxicity, high cost, and limited availability. The process of demethylation and carbonation of lignin and tannin has the potential to produce polyphenolic compounds that possess hydroxyl and carbonyl functional groups. Bio-based NIPUs can be synthesized through the reaction involving diamine molecules. Previous studies have provided evidence indicating that NIPUs derived from lignin and tannin exhibit enhanced mechanical properties, decreased curing temperatures and shortened pressing durations, and are devoid of isocyanates. The characterization of NIPU adhesives based on lignin and tannin was conducted using various analytical techniques, including Fourier-transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), matrix-assisted laser desorption/ionization with time-of-flight (MALDI-TOF) mass spectrometry, and gel permeation chromatography (GPC). The adhesive performance of tannin-based NIPU resins was shown to be superior to that of lignin-based NIPUs. This paper elucidates the potential of lignin and tannin as alternate sources for polyols in the manufacturing of NIPUs, specifically for their application as wood adhesives.
Collapse
Affiliation(s)
- Apri Heri Iswanto
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
| | - Muhammad Adly Rahandi Lubis
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, National Research and Innovation Agency, Bandung 40600, Indonesia;
| | - Jajang Sutiawan
- Department of Forest Product, Faculty of Forestry, Universitas Sumatera Utara, Medan 20155, Indonesia;
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
| | | | - Seng Hua Lee
- Department of Wood Industry, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), Kampus Jengka, Pahang 26400, Malaysia;
| | - Petar Antov
- Faculty of Forest Industry, University of Forestry, 1797 Sofia, Bulgaria;
| | - Lubos Kristak
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (L.K.); (R.R.)
| | - Roman Reh
- Faculty of Wood Sciences and Technology, Technical University in Zvolen, 96001 Zvolen, Slovakia; (L.K.); (R.R.)
| | - Efri Mardawati
- Research Collaboration Center for Biomass and Biorefinery between BRIN and Universitas Padjadjaran, National Research and Innovation Agency, Bandung 40600, Indonesia;
- Department of Agro-Industrial Technology, Universitas Padjadjaran, Jatinangor 40600, Indonesia
| | - Adi Santoso
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
| | - Sukma Surya Kusumah
- Research Center for Biomass and Bioproducts, National Research and Innovation Agency, Cibinong 16911, Indonesia; (M.A.R.L.); (A.S.); (S.S.K.)
| |
Collapse
|
27
|
Rabaud D, Dussart P, Ducouret G, Albouy PA, Forté J, Isare B, Bouteiller L. Development of furan-2,5-dicarboxylic acid (FDCA)-based organogelators. SOFT MATTER 2023; 19:6958-6967. [PMID: 37665019 DOI: 10.1039/d3sm00771e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Organogels are used in a wide range of applications for which the development of new bio-based organogelators is highly desirable. While furan-2,5-dicarboxylic acid (FDCA) is a promising molecule for the synthesis of bio-based polyesters, it has never been used in the context of organogels. This study explores the possibility to design FDCA-based organogelators that self-assemble into fibrillar networks stabilized by hydrogen bonding. Gelation tests show the versatility of this gelator family with a wide variety of gelled liquids, especially apolar liquids. The structure of the gels was investigated by FTIR and CD spectroscopies, crystallography, powder X-ray diffraction and rheology.
Collapse
Affiliation(s)
- Dorian Rabaud
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| | - Paul Dussart
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| | - Guylaine Ducouret
- Sciences et Ingénierie de la Matière Molle, ESPCI Paris, Université PSL, CNRS, Sorbonne Université, 75005 Paris, France
| | - Pierre-Antoine Albouy
- Laboratoire de Physique des Solides, CNRS, Université Paris-Sud, Université Paris-Saclay, 91400 Orsay, France
| | - Jérémy Forté
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| | - Benjamin Isare
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| | - Laurent Bouteiller
- CNRS, Institut Parisien de Chimie Moléculaire, Equipe Chimie des Polymères, Sorbonne Université, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
28
|
Gidi L, Amalraj J, Tenreiro C, Ramírez G. Recent progress, trends, and new challenges in the electrochemical production of green hydrogen coupled to selective electrooxidation of 5-hydroxymethylfurfural (HMF). RSC Adv 2023; 13:28307-28336. [PMID: 37753399 PMCID: PMC10519153 DOI: 10.1039/d3ra05623f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
The production of clean electrical energy and the correct use of waste materials are two topics that currently concern humanity. In order to face both problems, extensive work has been done on the electrolytic production of green H2 coupled with the electrooxidative upgrading of biomass platform molecules. 5-Hydroxymethylfurfural (HMF) is obtained from forest waste biomass and can be selectively oxidized to 2,5-furandicarboxylic acid (FDCA) by electrochemical pathways. FDCA is an attractive precursor to polyethylene furanoate (PEF), with the potential to replace petroleum-based polyethylene terephthalate (PET). An integrated electrochemical system can simultaneously produce H2 and FDCA at a lower energy cost than that required for electrolytic water splitting. Here, the benefits of the electrochemical production of H2 and FDCA over other production methods are presented, as well as the innovative applications of each reaction product and the advantages of carrying out both reactions in a coupled system. The recently reported progress is disclosed, through an exploration of electrocatalyst materials used in simultaneous production, including the use of nickel foams (NF) as modification substrates, noble and non-noble metals, metal non-oxides, metal oxides, spinel oxides and the introduction of oxygen vacancies. Based on the latest trends, the next challenges associated with its large-scale production are proposed for its implementation in the industrial world. This work can offer a guideline for the detailed understanding of the electrooxidation of HMF towards FDCA with the production of H2, as well as the design of advanced electrocatalysts for the sustainable use of renewable resources.
Collapse
Affiliation(s)
- Leyla Gidi
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - John Amalraj
- Laboratory of Material Science, Chemistry Institute of Natural Resources, Universidad de Talca P.O. Box 747 Talca 3460000 Chile
| | - Claudio Tenreiro
- Industrial Technologies Department, Faculty of Engineering, Universidad de Talca Curicó 3340000 Chile
| | - Galo Ramírez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile Av. Vicuña Mackenna 4860 Santiago 7820436 Chile
- Millenium Institute on Green Ammonia as Energy Vector (MIGA) Av. Vicuña Mackenna 4860, Macul Santiago 7820436 Chile
| |
Collapse
|
29
|
Sokołowska M, Nowak-Grzebyta J, Stachowska E, Miądlicki P, Zdanowicz M, Michalkiewicz B, El Fray M. Enzymatically catalyzed furan-based copolyesters containing dilinoleic diol as a building block. RSC Adv 2023; 13:22234-22249. [PMID: 37492515 PMCID: PMC10363961 DOI: 10.1039/d3ra03885h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 07/17/2023] [Indexed: 07/27/2023] Open
Abstract
A more environmentally friendly method for creating sustainable alternatives to traditional aromatic-aliphatic polyesters is a valuable step towards resource-efficiency optimization. A library of furan-based block copolymers was synthesized via temperature-varied two-step polycondensation reaction in diphenyl ether using Candida antarctica lipase B (CAL-B) as a biocatalyst where dimethyl 2,5-furandicarboxylate (DMFDCA), α,ω-aliphatic linear diols (α,ω-ALD), and bio-based dilinoleic diol (DLD) were used as the starting materials. Nuclear magnetic spectroscopy (1H and 13C NMR), Fourier transform spectroscopy (FTIR) and size exclusion chromatography (SEC) were used to analyze the resulting copolymers. Additionally, crystallization behavior and thermal properties were studied using X-ray diffraction (XRD), digital holographic microscopy (DHM), and differential scanning microscopy (DSC). Finally, oxygen transmission rates (OTR) and dynamic mechanical analysis (DMTA) of furan-based copolyesters indicated their potential for medical packaging.
Collapse
Affiliation(s)
- Martyna Sokołowska
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| | - Jagoda Nowak-Grzebyta
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Ewa Stachowska
- Poznan University of Technology, Faculty of Mechanical Engineering Ul. Piotrowo 3 60-965 Poznan Poland
| | - Piotr Miądlicki
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Magdalena Zdanowicz
- West Pomeranian University of Technology in Szczecin, Faculty of Food Sciences, Center of Bioimmobilisation and Innovative Packaging Materials Ul. Janickiego 35 71-270 Szczecin Poland
| | - Beata Michalkiewicz
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Engineering of Catalytic and Sorbent Materials Department Al. Piastow 45 71-311 Szczecin Poland
| | - Miroslawa El Fray
- West Pomeranian University of Technology, Szczecin, Faculty of Chemical Technology and Engineering, Department of Polymer and Biomaterials Science Al. Piastow 45 71-311 Szczecin Poland
| |
Collapse
|
30
|
Kammoun M, Margellou A, Toteva VB, Aladjadjiyan A, Sousa AF, Luis SV, Garcia-Verdugo E, Triantafyllidis KS, Richel A. The key role of pretreatment for the one-step and multi-step conversions of European lignocellulosic materials into furan compounds. RSC Adv 2023; 13:21395-21420. [PMID: 37469965 PMCID: PMC10352963 DOI: 10.1039/d3ra01533e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 07/21/2023] Open
Abstract
Nowadays, an increased interest from the chemical industry towards the furanic compounds production, renewable molecules alternatives to fossil molecules, which can be transformed into a wide range of chemicals and biopolymers. These molecules are produced following hexose and pentose dehydration. In this context, lignocellulosic biomass, owing to its richness in carbohydrates, notably cellulose and hemicellulose, can be the starting material for monosaccharide supply to be converted into bio-based products. Nevertheless, processing biomass is essential to overcome the recalcitrance of biomass, cellulose crystallinity, and lignin crosslinked structure. The previous reports describe only the furanic compound production from monosaccharides, without considering the starting raw material from which they would be extracted, and without paying attention to raw material pretreatment for the furan production pathway, nor the mass balance of the whole process. Taking account of these shortcomings, this review focuses, firstly, on the conversion potential of different European abundant lignocellulosic matrices into 5-hydroxymethyl furfural and 2-furfural based on their chemical composition. The second line of discussion is focused on the many technological approaches reported so far for the conversion of feedstocks into furan intermediates for polymer technology but highlighting those adopting the minimum possible steps and with the lowest possible environmental impact. The focus of this review is to providing an updated discussion of the important issues relevant to bringing chemically furan derivatives into a market context within a green European context.
Collapse
Affiliation(s)
- Maroua Kammoun
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| | - Antigoni Margellou
- Department of Chemistry, Aristotle University of Thessaloniki 54124 Thessaloniki Greece
| | - Vesislava B Toteva
- Department of Textile, Leather and Fuels, University of Chemical Technology and Metallurgy Sofia Bulgaria
| | | | - Andreai F Sousa
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro 3810-193 Aveiro Portugal
- Centre for Mechanical Engineering, Materials and Processes, Department of Chemical Engineering, University of Coimbra Rua Sílvio Lima-Polo II 3030-790 Coimbra Portugal
| | - Santiago V Luis
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | - Eduardo Garcia-Verdugo
- Dpt. of Inorganic and Organic Chemistry, Supramolecular and Sustainable Chemistry Group, University Jaume I Avda Sos Baynat s/n E-12071-Castellon Spain
| | | | - Aurore Richel
- Laboratory of Biomass and Green Technologies, University of Liege Belgium
| |
Collapse
|
31
|
Siracusa C, Quartinello F, Soccio M, Manfroni M, Lotti N, Dorigato A, Guebitz GM, Pellis A. On the Selective Enzymatic Recycling of Poly(pentamethylene 2,5-furanoate)/Poly(lactic acid) Blends and Multiblock Copolymers. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9751-9760. [PMID: 37425282 PMCID: PMC10324456 DOI: 10.1021/acssuschemeng.3c01796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 06/07/2023] [Indexed: 07/11/2023]
Abstract
Among novel renewable furanoate-based polyesters, poly(pentamethylene 2,5-furandicarboxylate) (PPeF) shows outstanding gas barrier properties and high flexibility. PPeF blending/copolymerization with another well-known bio-based polymer, poly(lactic acid) (PLA), leads to considerably better mechanical and gas barrier properties of the latter, making it suitable for flexible food packaging applications. In this work, enzymatic depolymerization of PLA/PPeF blends with different compositions (1, 3, 5, 20, 30, and 50 wt % PPeF) and a PLA-PPeF block copolymer (50 wt % PPeF) by cutinase 1 from Thermobifida cellulositilytica (Thc_Cut1) was investigated as a possible recycling strategy. Based on quantification of weight loss and high-performance liquid chromatography (HPLC) analysis of released molecules, faster hydrolysis was seen for PLA/PPeF blends with increasing PPeF content when compared to neat PLA, while the block copolymer (P(LA50PeF50)) was significantly less susceptible to hydrolysis. Surface morphology analysis (via scanning electron microscopy), Fourier transform infrared spectroscopy, and NMR analysis confirmed preferential hydrolysis of the PPeF component. Through crystallization, 2,5-furandicarboxylic acid was selectively recovered from the depolymerized films and used for the resynthesis of the PPeF homopolymer, demonstrating the potential of enzymes for novel recycling concepts. The possibility of selective recovery of 2,5-furandicarboxylic acid from the completely depolymerized films with a 75% yield could bring further evidence of the high value of these materials, both in the form of blends and copolymers, for a sustainable whole packaging life cycle, where PPeF is potentially enzymatically recycled and PLA is mechanically recycled.
Collapse
Affiliation(s)
- Chiara Siracusa
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
| | - Felice Quartinello
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences Vienna Konrad-Lorenz-Strasse
20, 3430 Tulln, Donau, Austria
| | - Michelina Soccio
- Department
of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40138, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40138, Italy
| | - Mattia Manfroni
- Department
of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40138, Italy
| | - Nadia Lotti
- Department
of Civil, Chemical, Environmental and Materials Engineering (DICAM), University of Bologna, Bologna 40138, Italy
- Interdepartmental
Center for Industrial Research on Advanced Applications in Mechanical
Engineering and Materials Technology, CIRI-MAM, University of Bologna, Bologna 40138, Italy
- Interdepartmental
Center for Agro-Food Research, CIRI-AGRO, University of Bologna, Bologna 40126, Italy
| | - Andrea Dorigato
- Department
of Industrial Engineering and INSTM Research Unit, University of Trento, Trento 38123, Italy
| | - Georg M. Guebitz
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences Vienna Konrad-Lorenz-Strasse
20, 3430 Tulln, Donau, Austria
| | - Alessandro Pellis
- acib
GmbH, Konrad-Lorenz-Strasse 20, 3430 Tulln, Donau, Austria
- Institute
of Environmental Biotechnology, University
of Natural Resources and Life Sciences Vienna Konrad-Lorenz-Strasse
20, 3430 Tulln, Donau, Austria
- Department
of Chemistry and Industrial Chemistry, Università
degli Studi di Genova, Via Dodecaneso 31, 16146 Genova, Italy
| |
Collapse
|
32
|
Zaidi S, Bougarech A, Abid M, Abid S, Silvestre AJD, Sousa AF. Highly Flexible Poly(1,12-dodecylene 5,5'-isopropylidene-bis(ethyl 2-furoate)): A Promising Biobased Polyester Derived from a Renewable Cost-Effective Bisfuranic Precursor and a Long-Chain Aliphatic Spacer. Molecules 2023; 28:molecules28104124. [PMID: 37241868 DOI: 10.3390/molecules28104124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/06/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
The continuous search for novel biobased polymers with high-performance properties has highlighted the role of monofuranic-based polyesters as some of the most promising for future plastic industry but has neglected the huge potential for the polymers' innovation, relatively low cost, and synthesis easiness of 5,5'-isopropylidene bis-(ethyl 2-furoate) (DEbF), obtained from the platform chemical, worldwide-produced furfural. In this vein, poly(1,12-dodecylene 5,5'-isopropylidene -bis(ethyl 2-furoate)) (PDDbF) was introduced, for the first time, as a biobased bisfuranic long-chain aliphatic polyester with an extreme flexibility function, competing with fossil-based polyethylene. This new polyester in-depth characterization confirmed its expected structure (FTIR, 1H, and 13C NMR) and relevant thermal features (DSC, TGA, and DMTA), notably, an essentially amorphous character with a glass transition temperature of -6 °C and main maximum decomposition temperature of 340 °C. Furthermore, PDDbF displayed an elongation at break as high as 732%, around five times higher than that of the 2,5-furandicarboxylic acid counterpart, stressing the unique features of the bisfuranic class of polymers compared to monofuranic ones. The enhanced ductility combined with the relevant thermal properties makes PDDbF a highly promising material for flexible packaging.
Collapse
Affiliation(s)
- Sami Zaidi
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
| | - Abdelkader Bougarech
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
| | - Majdi Abid
- Chemistry Department, College of Science and Arts in Al-Qurayyat, Jouf University, Al-Qurayyat P.O. Box 756, Al Jouf, Saudi Arabia
| | - Souhir Abid
- Faculty des Sciences, Laboratory de Chimie Appliquée HCGP, Université de Sfax, Sfax 3038, Tunisia
- Chemistry Department, College of Science and Arts in Al-Qurayyat, Jouf University, Al-Qurayyat P.O. Box 756, Al Jouf, Saudi Arabia
| | - Armando J D Silvestre
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andreia F Sousa
- CICECO-Aveiro Institute of Materials and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
- CEMMPRE, Department of Chemical Engineering, University of Coimbra, 3030-790 Coimbra, Portugal
| |
Collapse
|
33
|
Bianchi E, Guidotti G, Soccio M, Siracusa V, Gazzano M, Salatelli E, Lotti N. Biobased and Compostable Multiblock Copolymer of Poly(l-lactic acid) Containing 2,5-Furandicarboxylic Acid for Sustainable Food Packaging: The Role of Parent Homopolymers in the Composting Kinetics and Mechanism. Biomacromolecules 2023; 24:2356-2368. [PMID: 37094251 DOI: 10.1021/acs.biomac.3c00216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
In the last years, the exponential growth in the demand of petroleum-based plastic materials, besides the extreme exploitation of nonrenewable resources, lead to the mismanagement of their disposal and to serious ecological issues related to their dispersion in the environment. Among the possible practical solutions, the design of biobased and biodegradable polymers represents one of the most innovative challenges. In such a context, the eco-design of an aromatic-aliphatic multiblock copolymer based on poly(lactic acid) and containing 2,5-furandicarboxylic acid was carried out with the aim of improving the properties of poly(l-lactic acid) for sustainable packaging applications. The synthetic method followed a novel top-down approach, starting from industrial high-molecular-weight poly(l-lactic acid) (PLLA), which was reacted with 1,5-pentanediol to get hydroxyl-terminated PLLA and then chain-extended with hydroxyl-terminated poly(pentamethylene furanoate) (PPeF-OH). The final copolymer, called P(LLA50PeF50)-CE, was subjected to molecular, structural, and thermal characterization. Tensile and gas permeability tests were also carried out. According to the results obtained, PLLA thermal stability was improved, being the range of processing temperatures widened, and its stiffness and brittleness were decreased, making the new material suitable for the realization of films for flexible packaging. The oxygen permeability of PLLA was decreased by 40% and a similar improvement was measured also for carbon dioxide. P(LLA50PeF50)-CE was found to be completely biodegraded within 60 days of composting treatment. In terms of mechanism, the blocks of PPeF and PLLA were demonstrated to undergo surface erosion and bulk hydrolysis, respectively. In terms of kinetics, PPeF blocks degraded slower than PLLA ones.
Collapse
Affiliation(s)
- Enrico Bianchi
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Giulia Guidotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
| | - Michelina Soccio
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40131 Bologna, Italy
| | - Valentina Siracusa
- Department of Chemical Science, University of Catania, Viale A. Doria 6, 95125 Catania, Italy
| | - Massimo Gazzano
- Institute for Organic Synthesis and Photoreactivity, ISOF-CNR, Via Gobetti 101, 40129 Bologna, Italy
| | - Elisabetta Salatelli
- Department of Industrial Chemistry "Toso Montanari", University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - Nadia Lotti
- Civil, Chemical, Environmental and Materials Engineering Department, University of Bologna, Via Terracini 28, 40131 Bologna, Italy
- Interdepartmental Center for Industrial Research on Advanced Applications in Mechanical Engineering and Materials Technology, CIRI-MAM, University of Bologna, 40131 Bologna, Italy
- Interdepartmental Center for Agro-Food Research, CIRI-AGRO, University of Bologna, 40131 Bologna, Italy
| |
Collapse
|
34
|
Zhao L, Akdim O, Huang X, Wang K, Douthwaite M, Pattisson S, Lewis RJ, Lin R, Yao B, Morgan DJ, Shaw G, He Q, Bethell D, McIntosh S, Kiely CJ, Hutchings GJ. Insights into the Effect of Metal Ratio on Cooperative Redox Enhancement Effects over Au- and Pd-Mediated Alcohol Oxidation. ACS Catal 2023; 13:2892-2903. [PMID: 36910870 PMCID: PMC9990151 DOI: 10.1021/acscatal.2c06284] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/30/2023] [Indexed: 02/12/2023]
Abstract
The aerobic oxidation of alcohols and aldehydes over supported heterogeneous catalysts can be considered as comprising two complementary and linked processes: dehydrogenation and oxygen reduction. Significant rate enhancements can be observed when these processes are catalyzed by independent active sites, coupled by electron transport between the two catalysts. This effect, termed cooperative redox enhancement (CORE), could significantly influence how researchers approach catalyst design, but a greater understanding of the factors which influence it is required. Herein, we demonstrate that the Au/Pd ratio used in physical mixtures of monometallic catalysts and phase-separated Au and Pd bimetallic catalysts dramatically influences the degree to which CORE effects can promote alcohol oxidation. Perhaps more interestingly, the roles of Au and Pd in this coupled system are determined to be interchangeable. Preliminarily, we hypothesize that this is attributed to the relative rates of the coupled reactions and demonstrate how physical properties can influence this. This deeper understanding of the factors which influence CORE is an important development in bimetallic catalysis.
Collapse
Affiliation(s)
- Liang Zhao
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Ouardia Akdim
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Xiaoyang Huang
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Kai Wang
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Mark Douthwaite
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Samuel Pattisson
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Richard J. Lewis
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Runjia Lin
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Bingqing Yao
- Department
of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 119077 Singapore
| | - David J. Morgan
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Greg Shaw
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Qian He
- Department
of Materials Science and Engineering, Faculty of Engineering, National University of Singapore, 119077 Singapore
| | - Donald Bethell
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| | - Steven McIntosh
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Christopher J. Kiely
- Department
of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, Pennsylvania 18015, United States
- Department
of Materials Science and Engineering, Lehigh
University, Bethlehem, Pennsylvania 18015, United States
| | - Graham J. Hutchings
- Max
Planck- Cardiff Centre on the Fundamentals of Heterogeneous Catalysis
FUNCAT, Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, U.K.
| |
Collapse
|
35
|
Zhou T, Meng XB, Du FS, Li ZC. Fully Bio-based Poly(ketal-ester)s by Ring-opening Polymerization of a Bicylcic Lactone from Glycerol and Levulinic Acid. Chem Asian J 2023; 18:e202201238. [PMID: 36756897 DOI: 10.1002/asia.202201238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/10/2023]
Abstract
A fully renewable bio-based bicyclic lactone containing a five-membered cyclic ketal moiety, 7-methyl-3,8,10-trioxabicyclo[5.2.1]decan-4-one (TOD), was synthesized through a two-step acid-catalyzed process from glycerol and levulinic acid. The ring-opening polymerization (ROP) of TOD at 30°C with benzyl alcohol (BnOH) as the initiator and 1,5,7-triazabicyclo[4.4.0]dec-5-ene (TBD) as the catalyst can afford high molar mass PTOD with a cis-2.4-disubstitued 2-methyl 1,3-dioxolane moiety in its repeating unit. PTOD is an amorphous polymer with a glass transition temperature (Tg ) of 13°C. It can be hydrolyzed into structurally defined small molecules under acidic or basic conditions by the selective cleavage of either the cyclic ketal or the ester linkage respectively. The TBD-catalyzed copolymerization of L-lactide (L-LA) and TOD at -20°C was investigated. It was confirmed that L-LA polymerized quickly with racemization to form PLA, followed by a slow incorporation of TOD into the formed PLA chains via transesterification. By varying the feed ratios of L-LA to TOD, a series of random copolymers (PLA-co-PTOD) with different TOD incorporation ratios and tunable Tg s were obtained. Under acidic conditions, PLA-co-PTOD degrades much faster than PLA via the selective cleavage of the cyclic ketal linkages. This work provides insights for the development of more sustainable and acid-accelerated degradable alternatives to aliphatic polyesters.
Collapse
Affiliation(s)
- Tong Zhou
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Xian-Bin Meng
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Polym. Chem. & Physics of Ministry of Education, Department of Polymer Science & Engineering, College of Chemistry and Molecular Engineering, Center for Soft Matter Science and Engineering, Peking University, Beijing, 100871, P. R. China
| |
Collapse
|
36
|
Jiang Y, Zhu H, Chen J, Liao S. Organocatalytic [2 + 2] Photopolymerization under Visible Light: Accessing Sustainable Polymers from Cinnamic Acids. Macromol Rapid Commun 2023; 44:e2200702. [PMID: 36404649 DOI: 10.1002/marc.202200702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/30/2022] [Indexed: 11/22/2022]
Abstract
Herein, the successful development of a metal-free, solution [2 + 2] photopolymerization of natural cinnamic acid-derived bisolefinic monomers is reported, which is enabled by a strategy based on direct triplet state access via energy transfer catalysis. 2,2'-Methoxythioxanthone has been identified as an effective organic photocatalyst for the [2 + 2] photopolymerization in solution, which can be excited by visible light and activate the biscinnamate monomers via triplet energy transfer. This method features its metal-free conditions, visible light utilization, solution polymerization, and abundant biomass-based feedstock, as well as processable polymer products, which is different from the rigid, insoluble products obtained from solid-state photopolymerization. This solution polymerization method also shows a good compatibility to monomer structures; cinnamic acid-derived bisolefinic monomers with different linkers, including diamine, natural diol, and bisphenol, can all readily undergo [2 + 2] photopolymerization, and be transformed into colorless, sustainable polymers.
Collapse
Affiliation(s)
- Yu Jiang
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Hui Zhu
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jianxu Chen
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery College of Chemistry, Fuzhou University, Fuzhou, 350108, China.,Beijing National Laboratory for Molecular Science, Beijing, 100190, China
| |
Collapse
|
37
|
Mechanical Behaviour and Induced Microstructural Development upon Simultaneous and Balanced Biaxial Stretching of Poly(ethylene furandicarboxylate), PEF. Polymers (Basel) 2023; 15:polym15030661. [PMID: 36771961 PMCID: PMC9919262 DOI: 10.3390/polym15030661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/03/2023] Open
Abstract
The biaxial behavior of PEF has been analyzed for equilibrated and simultaneous biaxial stretching. The ability of PEF to develop an organized microstructure through strain induced crystallization (SIC) has been described. Upon biaxial stretching, SIC can be difficult to perform because the stretching is performed in two perpendicular directions. However, thanks to the time/temperature superposition principle and an accurate heating protocol, relevant stretching settings have been chosen to stretch the material in its rubbery-like state and to reach high levels of deformation. By the protocol applied, the mechanical behavior is easily transposable to the industry. This work has shown that PEF can, as in uniaxial stretching, develop well-organized crystals and a defined microstructure upon biaxial stretching. This microstructure allows the obtention of improved mechanical properties and thermal stability of the biaxially stretched samples. The crystals induced upon biaxial stretching are similar to the one that has been developed and observed after uniaxial stretching and upon static crystallization. Moreover, the furan cycles seem to appear in a state similar to the one of a sample crystallized upon quiescent condition. The rigidity is increased, and the α-relaxation temperature is increased by 15 °C.
Collapse
|
38
|
Wang Z, Wang J, Pang Y, Yan M, Shao W, Zhu J, Zheng W. To Effectively Tune the Cell Structure of Poly(ethylene 2,5-furandicarboxylate- co-ethylene terephthalate) Copolyester Foams via Conducting a Prior Isothermal Melt Crystallization. Ind Eng Chem Res 2023. [DOI: 10.1021/acs.iecr.2c03896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhijun Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
- Faculty of Material Metallurgical and Chemistry, Jiangxi University of Science and Technology, Ganzhou, 341000Jiangxi Province, China
| | - Jinggang Wang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Yongyan Pang
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Ming Yan
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Weiwei Shao
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Jin Zhu
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| | - Wenge Zheng
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province, Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201Zhejiang Province, China
| |
Collapse
|
39
|
Woroch CP, Cox IW, Kanan MW. A Semicrystalline Furanic Polyamide Made from Renewable Feedstocks. J Am Chem Soc 2023; 145:697-705. [PMID: 36573894 DOI: 10.1021/jacs.2c11806] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Semi-aromatic polyamides (SAPs) synthesized from petrochemical diacids and diamines are high-performance polymers that often derive their desirable properties from a high degree of crystallinity. Attempts to develop partially renewable SAPs by replacing petrochemical diacids with biobased furan-2,5-dicarboxylic acid (FDCA) have resulted in amorphous materials or polymers with low melting temperatures. Herein, we report the development of poly(5-aminomethyl-2-furoic acid) (PAMF), a semicrystalline SAP synthesized by the polycondensation of CO2 and lignocellulose-derived monomer 5-aminomethyl-2-furoic acid (AMF). PAMF has glass-transition and melting temperatures comparable to that of commercial materials and higher than that of any previous furanic SAP. Additionally, PAMF can be copolymerized with conventional nylon 6 and is chemically recyclable. Molecular dynamics (MD) simulations suggest that differences in intramolecular hydrogen bonding explain why PAMF is semicrystalline but many FDCA-based SAPs are not.
Collapse
Affiliation(s)
- Cristian P Woroch
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - India W Cox
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| | - Matthew W Kanan
- Department of Chemistry, Stanford University, 337 Campus Drive, Stanford, California 94305, United States
| |
Collapse
|
40
|
Chen H, Nan LF, Chen XS, Wan YB, Hu XH, Wang XH, Hu XP. Efficient ruthenium-catalyzed hydrogenation of aromatic dicarboxylates supported by a 1-phenylethylamine-based P,N,N-ligand. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
41
|
Mohana AA, Islam MM, Rahman M, Pramanik SK, Haque N, Gao L, Pramanik BK. Generation and consequence of nano/microplastics from medical waste and household plastic during the COVID-19 pandemic. CHEMOSPHERE 2023; 311:137014. [PMID: 36328315 PMCID: PMC9619086 DOI: 10.1016/j.chemosphere.2022.137014] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 10/03/2022] [Accepted: 10/23/2022] [Indexed: 05/10/2023]
Abstract
Since the end of 2019, the world has faced a major crisis because of the outbreak of COVID-19 disease which has created a severe threat to humanity. To control this pandemic, the World Health Organization gave some guidelines like wearing PPE (personal protective equipment) (e.g., face masks, overshoes, gloves), social distancing, hand hygiene and shutting down all modes of public transport services. During this pandemic, plastic products (e.g., household plastics, PPE and sanitizer bottles) have substantially prevented the spread of this virus. Since the outbreak, approximately 1.6 million tons of plastic waste have been generated daily. However, single-use PPE like face masks (N95), surgical masks and hand gloves contain many non-biodegradable plastics materials. These abandoned products have created a huge number of plastic debris which ended up as microplastics (MPs) followed by nanoplastics (NPs) in nature that are hazardous to the eco-system. These MPs and NPs also act as vectors for the various pathogenic contaminants. The goal of this review is to offer an extensive discussion on the formation of NPs and MPs from all of these abandoned plastics and their long-term impact on the environment as well as human health. This review paper also attempts to assess the present global scenario and the main challenge of waste management to reduce the potential NP/MPs pollution to improve the eco-systems.
Collapse
Affiliation(s)
- Anika Amir Mohana
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia
| | - Md Monjurul Islam
- Department of Earth Resources and Environmental Engineering, Hanyang University, South Korea
| | - Mahbubur Rahman
- Department of Civil Engineering, Chittagong University of Engineering and Technology, Chittagong, Bangladesh
| | - Sagor Kumar Pramanik
- Department of Civil and Structural Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Nawshad Haque
- CSIRO Mineral Resources, Clayton South, Melbourne, VIC, 3169, Australia
| | - Li Gao
- South East Water, Frankston, Victoria, 3199, Australia
| | | |
Collapse
|
42
|
Al Qahtani S, Al Wuhayb F, Manaa H, Younis A, Sehar S. Environmental impact assessment of plastic waste during the outbreak of COVID-19 and integrated strategies for its control and mitigation. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:585-596. [PMID: 34592070 DOI: 10.1515/reveh-2021-0098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
During the COVID-19 pandemic, many positive shifts have been observed in the ecosystem, with a significant decrease in the greenhouse gas emissions and air pollution. On the other hand, there were unavoidable negative shifts due to a surge in demand for plastic products such as food and groceries' delivery packaging, single-use plastics, medical and personal protective equipment to prevent transmission of COVID-19. Plastic pollution can be considered as a key environmental issue in world due to the huge footprints of plastics on natural ecosystems and public health. Herein, we presented an overview on the rise of plastic pollution during the COVID-19 pandemic. The potential sources of plastic waste during COVID-19 with its negative effects on the environment such as marine ecosystems and the global economics are highlighted. We also suggested some strategies and recommendations to tackle plastic leakages by applying feedstock recycling, sterilization, and with the use of biodegradable plastics that have become a sustainable alternative to fossil fuel plastics. Also, the importance of elevating public awareness and some recommendations to mitigate plastic generated during the pandemic has been addressed as well.
Collapse
Affiliation(s)
| | - Fatimah Al Wuhayb
- College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Hacene Manaa
- Department of Physics, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Adnan Younis
- Department of Physics, College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| | - Shama Sehar
- College of Science, University of Bahrain, Sakhir, Kingdom of Bahrain
| |
Collapse
|
43
|
Synthesis of value-added furan compounds from biomass derived glucose via cascade catalysis using functionalized V2O5 catalysts. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Silvianti F, Maniar D, Boetje L, Woortman AJJ, van Dijken J, Loos K. Greener Synthesis Route for Furanic-Aliphatic Polyester: Enzymatic Polymerization in Ionic Liquids and Deep Eutectic Solvents. ACS POLYMERS AU 2022. [DOI: 10.1021/acspolymersau.2c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Fitrilia Silvianti
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Dina Maniar
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Laura Boetje
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Albert J. J. Woortman
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Jur van Dijken
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| | - Katja Loos
- Macromolecular Chemistry & New Polymeric Materials, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AGGroningen, The Netherlands
| |
Collapse
|
45
|
Awasthi G, Kumar P. Relative capability demonstration of luminescent Al-MOFs for ideal detection of nitroaromatic explosives. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3467-3473. [PMID: 36052824 DOI: 10.1039/d2ay01030e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Here, we have synthesised three luminescent Al MOFs i.e., Al-NTP, Al-FDA, and Al-TDA, using common metal ions (AlCl3·6H2O) with different carboxylic acid organic linkers (5-nitroisophthalic acid, 2,5-furan dicarboxylic acid, and 2,5-thiophenedicarboxylic acid) in a semi-aqueous medium. The structural analysis of Al-MOFs has been confirmed through powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy and absorption spectroscopy. Afterward, the optical properties of all three Al-MOFs were confirmed using photoluminescence spectroscopy and demonstrated for the detection of nitroaromatic explosives. We have observed host-guest interaction through a quenching mechanism. Among the three synthesised Al-MOFs, Al-NTP MOF exhibit 0.014 ppm lowest limit of detection in chloroform at room temperature. Our comparative study results reveal that the selection of the organic linker and solvent plays a critical role in MOF based sensing applications.
Collapse
Affiliation(s)
- Gaurav Awasthi
- Material Application Research Lab (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Jammu-181143, India.
| | - Pawan Kumar
- Material Application Research Lab (MARL), Department of Nano Sciences and Materials, Central University of Jammu, Jammu-181143, India.
| |
Collapse
|
46
|
Pal P, Saravanamurugan S. Enhanced Basicity of MnOx-Supported Ru for the Selective Oxidation of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid. CHEMSUSCHEM 2022; 15:e202200902. [PMID: 35713635 DOI: 10.1002/cssc.202200902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/13/2022] [Indexed: 06/15/2023]
Abstract
The present study focused on developing a stable basic MnOx support for Ru (RuMn) for the efficient oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) in water in the absence of an external base. A series of MnOx supports, synthesized via hydrothermal approach using urea as precipitant, was prepared by thermal treatment at various temperatures (300-800 °C) before doping with Ru. The RuMn-2 (1 wt % Ru, MnOx calcined at 400 °C) possessed a large number of basic sites (1.72 mmol g-1 ) based on CO2 temperature-programmed desorption analysis, affording an FDCA yield of 87 % with a turnover frequency of 22 h-1 . Transmission electron microscopy energy-dispersive X-ray spectroscopy elemental mapping of RuMn-2 showed a high dispersion of Ru over the surface of MnOx, contributing to the efficient HMF oxidation. Moreover, X-ray diffraction, X-ray photoelectron spectroscopy, and H2 temperature-programmed reduction indicated that the predominant MnO2 phase (ϵ-MnO2 ) played a vital role in HMF oxidation. RuMn-2 was recyclable for up to four runs without significant loss in the activity and retained its structural integrity.
Collapse
Affiliation(s)
- Priyanka Pal
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81(Knowledge City), Mohali, 140306, Punjab (India
| | - Shunmugavel Saravanamurugan
- Laboratory of Bioproduct Chemistry, Center of Innovative and Applied Bioprocessing (CIAB), Sector 81(Knowledge City), Mohali, 140306, Punjab (India
| |
Collapse
|
47
|
Yagura K, Enomoto Y, Iwata T. Synthesis of fully divanillic acid-based aromatic polyamides and their thermal and mechanical properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
48
|
Kamran M, Davidson MG, Tsanaktsis V, van Berkel S, de Vos S. Structure-property insights of semi-aromatic polyamides based on renewable furanic monomer and aliphatic diamines. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
49
|
Hofmann M, Garrido M, Machado M, Correia JR, Bordado JC. Development of high‐performance partially biobased thermoset polyester using renewable building blocks from isosorbide, 1,3‐propanediol, and fumaric acid. J Appl Polym Sci 2022. [DOI: 10.1002/app.53029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mateus Hofmann
- Civil Engineering Research and Innovation for Sustainability Instituto Superior Técnico Lisbon Portugal
| | - Mário Garrido
- Civil Engineering Research and Innovation for Sustainability Instituto Superior Técnico Lisbon Portugal
| | - Marina Machado
- Civil Engineering Research and Innovation for Sustainability Instituto Superior Técnico Lisbon Portugal
| | - João R Correia
- Civil Engineering Research and Innovation for Sustainability Instituto Superior Técnico Lisbon Portugal
| | - João C Bordado
- Centro de Recursos Naturais e Ambiente Instituto Superior Técnico Lisbon Portugal
| |
Collapse
|
50
|
Gupta NK, Reif P, Palenicek P, Rose M. Toward Renewable Amines: Recent Advances in the Catalytic Amination of Biomass-Derived Oxygenates. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Navneet Kumar Gupta
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Reif
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Phillip Palenicek
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| | - Marcus Rose
- Technical University of Darmstadt, Department of Chemistry, Alarich-Weiss-Straße 8, 64287 Darmstadt, Germany
| |
Collapse
|