1
|
Wang W, Cheng Y, Xie X. Design and applications of photochromic compounds for quantitative chemical analysis and sensing. Chem Commun (Camb) 2025. [PMID: 40377371 DOI: 10.1039/d5cc01830g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Photochromic compounds, capable of reversibly switching between distinct molecular states upon light irradiation, have emerged as powerful tools for quantitative chemical analysis and sensing. This feature reviews recent advancements in this developing field, focusing on the design principles and applications of photoswitchable sensors. We begin with a concise overview of the fundamental photophysics and photochromism of key compound classes, and then discuss the mechanisms of analyte recognition and signal transduction, showcasing how light-induced isomerization modulates analyte binding and enhances signal contrast compared to conventional optical sensors. The unique sensitivity of the photoswitching process to the microenvironment is also explored. Finally, we outline future research directions and challenges for realizing the full potential of photochromic compounds in analytical chemistry related fields, including diagnostics, environmental monitoring, and materials science.
Collapse
Affiliation(s)
- Wei Wang
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| | - Yu Cheng
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, 510085, China
| | - Xiaojiang Xie
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
2
|
Xie Y, Zheng L, Chen T, Ding Y. Hypoxia-responsive bilirubin supramolecular nanoprodrugs for targeted photothermal-chemotherapy. Chem Commun (Camb) 2025; 61:3512-3515. [PMID: 39903085 DOI: 10.1039/d4cc06433j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A bilirubin supramolecular nanoprodrug (SCBR/TPZ) with enhanced cellular uptake towards the HepG2 cell line was constructed based on host-guest recognition, which provided an innovative strategy to design a hypoxia-responsive BR supramolecular nanoprodrug for lactose-targeted photothermal-chemotherapy (PTT-CT) with a synergistic effect towards HepG2.
Collapse
Affiliation(s)
- Yu Xie
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China.
| | - Liangshun Zheng
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China.
| | - Tingting Chen
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, P. R. China.
| |
Collapse
|
3
|
Gu Y, Yang R, Chen J, Fan Y, Xie W, Wu H, Ding J. Design and Synthesis of an Azo Reductase Responsive Flavonol-Indomethacin Hybrid Used for the Diagnosis and Treatment of Colitis. Molecules 2024; 29:4244. [PMID: 39275092 PMCID: PMC11397019 DOI: 10.3390/molecules29174244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/17/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Human intestinal bacteria are the primary producers of azo reductase, and the content of azo reductase is closely associated with various intestinal diseases, including ulcerative colitis (UC). The rapid detection of changes in azo reductase levels is crucial for diagnosing and promptly intervening in UC. In this study, a therapeutic agent, FAI, specifically targeting UC, was designed and synthesized. This agent was developed by linking the anti-inflammatory drug indomethacin to flavonols with antioxidant activity via an azo bond (off-on). Breakage of the azo bond breaks results in the release of both fluorophores and drugs, achieving targeted tracing and integrated treatment effects. In vivo and in vitro fluorescence imaging experiments were used to demonstrate the potential of FAI in the diagnosis of UC, together with synergistic therapeutic effects through the release of both fluorophores and anti-inflammatory agents. Therefore, this diagnostic agent shows promise as a potential tool for diagnosing and treating UC.
Collapse
Affiliation(s)
- Yaqin Gu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Rui Yang
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jine Chen
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Yu Fan
- School of Pharmacy, Nantong University, Nantong 226019, China
| | - Wenna Xie
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Hongyan Wu
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| | - Jinfeng Ding
- School of Pharmacy, Jiangsu Vocational College of Medicine, Yancheng 224005, China
| |
Collapse
|
4
|
Sharma A, Verwilst P, Li M, Ma D, Singh N, Yoo J, Kim Y, Yang Y, Zhu JH, Huang H, Hu XL, He XP, Zeng L, James TD, Peng X, Sessler JL, Kim JS. Theranostic Fluorescent Probes. Chem Rev 2024; 124:2699-2804. [PMID: 38422393 PMCID: PMC11132561 DOI: 10.1021/acs.chemrev.3c00778] [Citation(s) in RCA: 95] [Impact Index Per Article: 95.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 03/02/2024]
Abstract
The ability to gain spatiotemporal information, and in some cases achieve spatiotemporal control, in the context of drug delivery makes theranostic fluorescent probes an attractive and intensely investigated research topic. This interest is reflected in the steep rise in publications on the topic that have appeared over the past decade. Theranostic fluorescent probes, in their various incarnations, generally comprise a fluorophore linked to a masked drug, in which the drug is released as the result of certain stimuli, with both intrinsic and extrinsic stimuli being reported. This release is then signaled by the emergence of a fluorescent signal. Importantly, the use of appropriate fluorophores has enabled not only this emerging fluorescence as a spatiotemporal marker for drug delivery but also has provided modalities useful in photodynamic, photothermal, and sonodynamic therapeutic applications. In this review we highlight recent work on theranostic fluorescent probes with a particular focus on probes that are activated in tumor microenvironments. We also summarize efforts to develop probes for other applications, such as neurodegenerative diseases and antibacterials. This review celebrates the diversity of designs reported to date, from discrete small-molecule systems to nanomaterials. Our aim is to provide insights into the potential clinical impact of this still-emerging research direction.
Collapse
Affiliation(s)
- Amit Sharma
- Amity
School of Chemical Sciences, Amity University
Punjab, Sector 82A, Mohali 140 306, India
| | - Peter Verwilst
- Rega
Institute for Medical Research, Medicinal Chemistry, KU Leuven, Herestraat 49, Box 1041, 3000 Leuven, Belgium
| | - Mingle Li
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
| | - Dandan Ma
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Nem Singh
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Jiyoung Yoo
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Yujin Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
| | - Ying Yang
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Jing-Hui Zhu
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Haiqiao Huang
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- College
of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xi-Le Hu
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiao-Peng He
- Key
Laboratory for Advanced Materials and Joint International Research
Laboratory of Precision Chemistry and Molecular Engineering, Feringa
Nobel Prize Scientist Joint Research Center, School of Chemistry and
Molecular Engineering, East China University
of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- National
Center for Liver Cancer, the International Cooperation Laboratory
on Signal Transduction, Eastern Hepatobiliary
Surgery Hospital, Shanghai 200438, China
| | - Lintao Zeng
- School of
Light Industry and Food Engineering, Guangxi
University, Nanning, Guangxi 530004, China
| | - Tony D. James
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
- School
of Chemistry and Chemical Engineering, Henan
Normal University, Xinxiang 453007, China
| | - Xiaojun Peng
- College
of Materials Science and Engineering, Shenzhen
University, Shenzhen 518060, China
- State
Key Laboratory of Fine Chemicals, Dalian
University of Technology, Dalian 116024, China
| | - Jonathan L. Sessler
- Department
of Chemistry, The University of Texas at
Austin, Texas 78712-1224, United
States
| | - Jong Seung Kim
- Department
of Chemistry, Korea University, Seoul 02841, Korea
- TheranoChem Incorporation, Seongbuk-gu, Seoul 02841, Korea
| |
Collapse
|
5
|
Qi F, Su H, Wang B, Qian L, Wang Y, Wang C, Hou Y, Chen P, Zhang Q, Li D, Tang H, Jiang J, Bian H, Chen Z, Zhang S. Hypoxia-activated ADCC-enhanced humanized anti-CD147 antibody for liver cancer imaging and targeted therapy with improved selectivity. MedComm (Beijing) 2024; 5:e512. [PMID: 38469549 PMCID: PMC10927247 DOI: 10.1002/mco2.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/20/2024] [Accepted: 02/21/2024] [Indexed: 03/13/2024] Open
Abstract
Therapeutic antibodies (Abs) improve the clinical outcome of cancer patients. However, on-target off-tumor toxicity limits Ab-based therapeutics. Cluster of differentiation 147 (CD147) is a tumor-associated membrane antigen overexpressed in cancer cells. Ab-based drugs targeting CD147 have achieved inadequate clinical benefits for liver cancer due to side effects. Here, by using glycoengineering and hypoxia-activation strategies, we developed a conditional Ab-dependent cellular cytotoxicity (ADCC)-enhanced humanized anti-CD147 Ab, HcHAb18-azo-PEG5000 (HAP18). Afucosylated ADCC-enhanced HcHAb18 Ab was produced by a fed-batch cell culture system. Azobenzene (Azo)-linked PEG5000 conjugation endowed HAP18 Ab with features of hypoxia-responsive delivery and selective targeting. HAP18 Ab potently inhibits the migration, invasion, and matrix metalloproteinase secretion, triggers the cytotoxicity and apoptosis of cancer cells, and induces ADCC, complement-dependent cytotoxicity, and Ab-dependent cellular phagocytosis under hypoxia. In xenograft mouse models, HAP18 Ab selectively targets hypoxic liver cancer tissues but not normal organs or tissues, and has potent tumor-inhibiting effects. HAP18 Ab caused negligible side effects and exhibited superior pharmacokinetics compared to those of parent HcHAb18 Ab. The hypoxia-activated ADCC-enhanced humanized HAP18 Ab safely confers therapeutic efficacy against liver cancer with improved selectivity. This study highlights that hypoxia activation is a promising strategy for improving the tumor targeting potential of anti-CD147 Ab drugs.
Collapse
Affiliation(s)
- Fang‐Zheng Qi
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Hui‐Shan Su
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Bo Wang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Luo‐Meng Qian
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Yang Wang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Chen‐Hui Wang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Ya‐Xin Hou
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| | - Ping Chen
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Qing Zhang
- National Clinical Research Center for CancerTianjin Medical University Cancer Institute and HospitalTianjinChina
| | - Dong‐Mei Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug ResearchNankai UniversityTianjinChina
| | - Hao Tang
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Jian‐Li Jiang
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Hui‐Jie Bian
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine, Department of Cell BiologyState Key Laboratory of Cancer BiologyAir Force Medical UniversityXi'anChina
| | - Si‐He Zhang
- Department of Cell Biology, School of MedicineNankai UniversityTianjinChina
| |
Collapse
|
6
|
Prange CJ, Hu X, Tang L. Smart chemistry for traceless release of anticancer therapeutics. Biomaterials 2023; 303:122353. [PMID: 37925794 DOI: 10.1016/j.biomaterials.2023.122353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/10/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
In the design of delivery strategies for anticancer therapeutics, the controlled release of intact cargo at the destined tumor and metastasis locations is of particular importance. To this end, stimuli-responsive chemical linkers have been extensively investigated owing to their ability to respond to tumor-specific physiological stimuli, such as lowered pH, altered redox conditions, increased radical oxygen species and pathological enzymatic activities. To prevent premature action and off-target effects, anticancer therapeutics are chemically modified to be transiently inactivated, a strategy known as prodrug development. Prodrugs are reactivated upon stimuli-dependent release at the sites of interest. As most drugs and therapeutic proteins have the optimal activity when released from carriers in their native and original forms, traceless release mechanisms are increasingly investigated. In this review, we summarize the chemical toolkit for developing innovative traceless prodrug strategies for stimuli-responsive drug delivery and discuss the applications of these chemical modifications in anticancer treatment including cancer immunotherapy.
Collapse
Affiliation(s)
- Céline Jasmin Prange
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Institute of Chemical Sciences and Engineering, EPFL, Lausanne, CH-1015, Switzerland
| | - Xile Hu
- Institute of Chemical Sciences and Engineering, EPFL, Lausanne, CH-1015, Switzerland.
| | - Li Tang
- Institute of Bioengineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, CH-1015, Switzerland; Institute of Materials Science & Engineering, EPFL, Lausanne, CH-1015, Switzerland.
| |
Collapse
|
7
|
Fan D, Wang S, Huang R, Liu X, He H, Zhang G. Light-Assisted "Nano-Neutrophils" with High Drug Loading for Targeted Cancer Therapy. Int J Nanomedicine 2023; 18:6487-6502. [PMID: 37965278 PMCID: PMC10642559 DOI: 10.2147/ijn.s432854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 11/16/2023] Open
Abstract
Background Nanomedicine presents a promising alternative for cancer treatment owing to its outstanding features. However, the therapeutic outcome is still severely compromised by low tumor targeting, loading efficiency, and non-specific drug release. Methods Light-assisted "nano-neutrophils (NMPC-NPs)", featuring high drug loading, self-amplified tumor targeting, and light-triggered specific drug release, were developed. NMPC-NPs were composed of neutrophil membrane-camouflaged PLGA nanoparticles (NPs) loaded with a hypoxia-responsive, quinone-modified PTX dimeric prodrug (hQ-PTX2) and photosensitizer (Ce6). Results hQ-PTX2 significantly enhanced the drug loading of NPs by preventing intermolecular π-π interactions, and neutrophil membrane coating imparted the biological characteristics of neutrophils to NMPC-NPs, thus improving the stability and inflammation-targeting ability of NMPC-NPs. Under light irradiation, extensive NMPC-NPs were recruited to tumor sites based on photodynamic therapy (PDT)-amplified intratumoral inflammatory signals for targeted drug delivery to inflammatory tumors. Besides, PDT could effectively eliminate tumor cells via reactive oxygen species (ROS) generation, while the PDT-aggravated hypoxic environment accelerated hQ-PTX2 degradation to realize the specific release of PTX, thus synergistically combining chemotherapy and PDT to suppress tumor growth and metastasis with minimal adverse effects. Conclusion This nanoplatform provides a prospective and effective avenue toward enhanced tumor-targeted delivery and synergistic cancer therapy.
Collapse
Affiliation(s)
- Daopeng Fan
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Shuqi Wang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Ran Huang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Xiaoning Liu
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Hua He
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
| | - Gaiping Zhang
- College of Veterinary Medicine, International Joint Research Center of National Animal Immunology, Henan Agricultural University, Zhengzhou, 450046, People’s Republic of China
- Longhu Laboratory, Zhengzhou, 450046, People’s Republic of China
- School of Advanced Agriculture Sciences, Peking University, Beijing, 100871, People’s Republic of China
| |
Collapse
|
8
|
Fu Y, Sun J, Wang Y, Li W. Glucose oxidase and metal catalysts combined tumor synergistic therapy: mechanism, advance and nanodelivery system. J Nanobiotechnology 2023; 21:400. [PMID: 37907972 PMCID: PMC10617118 DOI: 10.1186/s12951-023-02158-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/12/2023] [Indexed: 11/02/2023] Open
Abstract
Cancer has always posed a significant threat to human health, prompting extensive research into new treatment strategies due to the limitations of traditional therapies. Starvation therapy (ST) has garnered considerable attention by targeting the primary energy source, glucose, utilized by cancer cells for proliferation. Glucose oxidase (GOx), a catalyst facilitating glucose consumption, has emerged as a critical therapeutic agent for ST. However, mono ST alone struggles to completely suppress tumor growth, necessitating the development of synergistic therapy approaches. Metal catalysts possess enzyme-like functions and can serve as carriers, capable of combining with GOx to achieve diverse tumor treatments. However, ensuring enzyme activity preservation in normal tissue and activation specifically within tumors presents a crucial challenge. Nanodelivery systems offer the potential to enhance therapy effectiveness by improving the stability of therapeutic agents and enabling controlled release. This review primarily focuses on recent advances in the mechanism of GOx combined with metal catalysts for synergistic tumor therapy. Furthermore, it discusses various nanoparticles (NPs) constructs designed for synergistic therapy in different carrier categories. Finally, this review provides a summary of GOx-metal catalyst-based NPs (G-M) and offers insights into the challenges associated with G-M therapy, delivery design, and oxygen (O2) supply.
Collapse
Affiliation(s)
- Yuhan Fu
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
| | - Jialin Sun
- Postdoctoral Research Station, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China
- Biological Science and Technology Department, Heilongjiang Minzu College, Harbin, Heilongjiang Province, China
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| | - Weinan Li
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
- Key Laboratory of Basic and Application Research of Beiyao Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang Province, China.
| |
Collapse
|
9
|
Zhang W, Zhou H, Gong D, Wu H, Huang X, Miao Z, Peng H, Zha Z. AIPH-Encapsulated Thermo-Sensitive Liposomes for Synergistic Microwave Ablation and Oxygen-Independent Dynamic Therapy. Adv Healthc Mater 2023:e2202947. [PMID: 36829272 DOI: 10.1002/adhm.202202947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 02/12/2023] [Indexed: 02/26/2023]
Abstract
Microwave ablation (MWA) is a novel treatment modality that can lead to the death of tumor cells by heating the ions and polar molecules in the tissue through high-speed vibration and friction. However, the single hyperthermia is not sufficient to completely inhibit tumor growth. Herein, a thermodynamic cancer-therapeutic modality has been fabricated which could be able to overcome hypoxia's limitations in the tumor microenvironment. Using thermo-sensitive liposomes (TSLs) and oxygen-independent radical generators (2,2'-azobis[2-(2-imidazolin-2-yl)propane]dihydrochloride [AIPH]), a nano-drug delivery system denoted as ATSL is developed for efficient sequential cancer treatment. Under the microwave field, the temperature rise of local tissue could not only lead to the damage of tumor cells but also induce the release of AIPH encapsulated in ATSL to produce free radicals, eliciting tumor cell death. In addition, the ATSL developed here would avoid the side effects caused by the uncontrolled diffusion of AIPH to normal tissues. The ATSLs have shown excellent therapeutic effects both in vitro and in vivo, suggesting its highly promising potential for clinic.
Collapse
Affiliation(s)
- Wenjie Zhang
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hu Zhou
- Department of Gynecological Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430070, China
| | - Deyan Gong
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Haitao Wu
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiang Huang
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhaohua Miao
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hu Peng
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhengbao Zha
- School of Instrument Science and Opto-Electronics Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
10
|
Yang DC, Yang XZ, Luo CM, Wen LF, Liu JY, Lin Z. A promising strategy for synergistic cancer therapy by integrating a photosensitizer into a hypoxia-activated prodrug. Eur J Med Chem 2022; 243:114749. [PMID: 36115207 DOI: 10.1016/j.ejmech.2022.114749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 08/28/2022] [Accepted: 09/03/2022] [Indexed: 11/24/2022]
Abstract
Herein, we fabricate a multifunctional molecular prodrug BAC where the chemotherapeutical agent camptothecin (CPT) is linked with a boron dipyrromethene (BODIPY)-based photosensitizer by an azobenzene chain which is sensitive to over-expressed azoreductase in hypoxic tumor cells. This prodrug was further loaded into biodegradable monomethoxy poly(ethylene glycol)-b-poly(caprolactone) (mPEG-b-PCL) to improve its solubility and tumor accumulation. The formed BAC nanoparticles (BAC NPs) can destroy aerobic tumor cells with relatively short distance from blood vessels by photodynamic therapy (PDT) under illumination. The PDT action inevitably leads to consumption of O2, and subsequently acute hypoxia which can induce cleavage of azobenzene linkage to boost release of CPT killing the other hypoxic interior tumor cells survived from PDT. Both in vitro and in vivo studies have verified that BAC NPs possess remarkable antitumor activity by a synergistic action of PDT and chemotherapy.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiao-Zhen Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Cheng-Miao Luo
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lin-Feng Wen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China; Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou, 350108, China; State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108, China.
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
11
|
Yang DC, Wen LF, Du L, Luo CM, Lu ZY, Liu JY, Lin Z. A Hypoxia-Activated Prodrug Conjugated with a BODIPY-Based Photothermal Agent for Imaging-Guided Chemo-Photothermal Combination Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:40546-40558. [PMID: 36059107 DOI: 10.1021/acsami.2c09071] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hypoxia-activated prodrugs (HAPs) have drawn increasing attention for improving the antitumor effects while minimizing side effects. However, the heterogeneous distribution of the hypoxic region in tumors severely impedes the curative effect of HAPs. Additionally, most HAPs are not amenable to optical imaging, and it is difficult to precisely trace them in tissues. Herein, we carefully designed and synthesized a multifunctional therapeutic BAC prodrug by connecting the chemotherapeutic drug camptothecin (CPT) and the fluorescent photothermal agent boron dipyrromethene (BODIPY) via hypoxia-responsive azobenzene linkers. To enhance the solubility and tumor accumulation, the prepared BAC was further encapsulated into a human serum albumin (HSA)-based drug delivery system to form HSA@BAC nanoparticles. Since the CPT was caged by a BODIPY-based molecule at the active site, the BAC exhibited excellent biosafety. Importantly, the activated CPT could be quickly released from BAC and could perform chemotherapy in hypoxic cancer cells, which was ascribed to the cleavage of the azobenzene linker by overexpressed azoreductase. After irradiation with a 730 nm laser, HSA@BAC can efficiently generate hyperthermia to achieve irreversible cancer cell death by oxygen-independent photothermal therapy. Under fluorescence imaging-guided local irradiation, both in vitro and in vivo studies demonstrated that HSA@BAC exhibited superior antitumor effects with minimal side effects.
Collapse
Affiliation(s)
- De-Chao Yang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Lin-Feng Wen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Liyang Du
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Cheng-Miao Luo
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zi-Yao Lu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jian-Yong Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry, Fuzhou University, Fuzhou 350108, China
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Zhonghui Lin
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
12
|
Carrier free nanomedicine for synergistic cancer therapy by initiating apoptosis and paraptosis. J Colloid Interface Sci 2022; 622:298-308. [DOI: 10.1016/j.jcis.2022.04.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 02/06/2023]
|
13
|
Yuan J, Zhou Q, Xu S, Zuo Q, Li W, Zhang X, Ren T, Yuan L, Zhang X. Enhancing the Release Efficiency of a Molecular Chemotherapeutic Prodrug by Photodynamic Therapy. Angew Chem Int Ed Engl 2022; 61:e202206169. [DOI: 10.1002/anie.202206169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Jie Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
- Henan Key Laboratory of Green Chemical Media and Reactions Ministry of Education Key Laboratory of Green Chemical Media and Reactions School of Chemistry and Chemical Engineering Henan Normal University Xinxiang 453007 China
| | - Qian‐Hui Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Shuai Xu
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Qing‐Ping Zuo
- Department of Pharmacy The First Hospital of Changsha Changsha 410005 China
| | - Wei Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Xing‐Xing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Tian‐Bing Ren
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Lin Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| | - Xiao‐Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering Hunan University Changsha 410082 China
| |
Collapse
|
14
|
Yuan J, Zhou QH, Xu S, Zuo QP, Li W, Zhang XX, Ren TB, Yuan L, Zhang XB. Enhancing the Release Efficiency of Molecular Chemotherapeutic Prodrug by Photodynamic Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jie Yuan
- Hunan University chemistry CHINA
| | | | - Shuai Xu
- Hunan University chemistry CHINA
| | | | - Wei Li
- Hunan University chemistry CHINA
| | | | | | - Lin Yuan
- Hunan University College of Chemistry and Chemical Engineering NO372, Lushan Rd. Yuelu District. 410082 Changsha CHINA
| | | |
Collapse
|
15
|
Zhu J, Guo T, Wang Z, Zhao Y. Triggered azobenzene-based prodrugs and drug delivery systems. J Control Release 2022; 345:475-493. [PMID: 35339578 DOI: 10.1016/j.jconrel.2022.03.041] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/18/2022] [Accepted: 03/20/2022] [Indexed: 12/18/2022]
Abstract
Azobenzene-based molecules show unique trans-cis isomerization upon ultraviolet light irradiation, which induce the change of polarity, crystallinity, stability, and binding affinity with pharmacological target. Moreover, azobenzene is the substrate of azoreductase that is often overexpressed in many pathological sites, e.g. hypoxic solid tumor. Therefore, azobenzene can be a multifunctional molecule in material science, pharmaceutical science and biomedicine because of its sensitivity to light, hypoxia and certain enzymes, hence showing potential application in site-specific smart therapy. Herein we focus on the employment of azobenzene and its derivatives for engineering triggered prodrug and drug delivery systems, and provide an overview of photoswitchable azo-based prodrugs, the associated problems regarding ultraviolet light and reversible isomerization, as well as the potential solutions. We also present the advance of azo-bearing delivery vehicles wherein azobenzene act as the linker, capping agent, and building block, and discuss the corresponding mechanisms for controlled cargo release, endocytosis enhancement and sensitization of free radical cancer therapy.
Collapse
Affiliation(s)
- Jundong Zhu
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China
| | - Tao Guo
- Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin 300120, China
| | - Zheng Wang
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| | - Yanjun Zhao
- School of Pharmaceutical Science & Technology, Tianjin Key Laboratory for Modern Drug Delivery & High Efficiency, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
16
|
Shao K, Zhang W, Shen J, He Y. Hypoxia-Activated Fluorescent Probe Based on Self-Immolative Block Copolymer. Macromol Biosci 2022; 22:e2100417. [PMID: 34981893 DOI: 10.1002/mabi.202100417] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Indexed: 12/16/2022]
Abstract
This work reports a hypoxia-activated fluorescent probe for tumor imaging by using self-immolative block copolymer with azobenzene linkage. The water-soluble polymer composed of self-immolative building blocks shows no obvious fluorescence. Under the hypoxic microenvironment of tumor cells, the azobenzene is reduced by the overexpressed azoreductase, which will trigger a domino-like disassembly of the self-immolative polymer. The released building blocks from the self-immolative polymer emit strong fluorescence, which shows the potential application in tumor imaging.
Collapse
Affiliation(s)
- Kuanchun Shao
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| | - Wenlong Zhang
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| | - Jiajia Shen
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| | - Yaning He
- Department of Chemical Engineering, Key Laboratory of Advanced Materials (MOE), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
17
|
li X, Huo F, Zhang Y, Cheng F, Yin C. Enzyme-activated Prodrugs and Their Release Mechanisms for Treatment of Cancer. J Mater Chem B 2022; 10:5504-5519. [DOI: 10.1039/d2tb00922f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enzyme-activated prodrugs have received a lot of attention in recent years. These prodrugs have low toxicity to cells before they are activated, and when they interact with specific enzymes, they...
Collapse
|
18
|
Liu Q, Wang X, Li J, Wang J, Sun G, Zhang N, Ren T, Zhao L, Zhong R. Development and biological evaluation of AzoBGNU: A novel hypoxia-activated DNA crosslinking prodrug with AGT-inhibitory activity. Biomed Pharmacother 2021; 144:112338. [PMID: 34678728 DOI: 10.1016/j.biopha.2021.112338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 11/24/2022] Open
Abstract
Chloroethylnitrosoureas (CENUs) are an important family of chemotherapies in clinical treatment of cancers, which exert antitumor activity by inducing the formation of DNA interstrand crosslinks (dG-dC ICLs). However, the drug resistance mediated by O6-alkylguanine-DNA alkyltransferase (AGT) and absence of tumor-targeting ability largely decrease the antitumor efficacy of CENUs. In this study, we synthesized an azobenzene-based hypoxia-activated combi-nitrosourea prodrug, AzoBGNU, and evaluated its hypoxic selectivity and antitumor activity. The prodrug was composed of a CENU pharmacophore and an O6-benzylguanine (O6-BG) analog moiety masked by a N,N-dimethyl-4-(phenyldiazenyl)aniline segment as a hypoxia-activated trigger, which was designed to be selectively reduced via azo bond break in hypoxic tumor microenvironment, accompanied with releasing of an O6-BG analog to inhibit AGT and a chloroethylating agent to induce dG-dC ICLs. AzoBGNU exhibited significantly increased cytotoxicity and apoptosis-inducing ability toward DU145 cells under hypoxia compared with normoxia, indicating the hypoxia-responsiveness as expected. Predominant higher cytotoxicity was observed in the cells treated by AzoBGNU than those by traditional CENU chemotherapy ACNU and its combination with O6-BG. The levels of dG-dC ICLs in DU145 cells induced by AzoBGNU was remarkably enhanced under hypoxia, which was approximately 6-fold higher than those in the AzoBGNU-treated groups under normoxia and those in the ACNU-treated groups. The results demonstrated that azobenzene-based combi-nitrosourea prodrug possessed desirable tumor-hypoxia targeting ability and eliminated chemoresistance compared with the conventional CENUs.
Collapse
Affiliation(s)
- Qi Liu
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Xiaoli Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jun Li
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Jiaojiao Wang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Ting Ren
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| | - Lijiao Zhao
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China.
| | - Rugang Zhong
- Beijing Key Laboratory of Environmental & Viral Oncology, Faculty of Environment & Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
19
|
Liu J, Yang L, Xue C, Huang G, Chen S, Zheng J, Yang R. Reductase and Light Programmatical Gated DNA Nanodevice for Spatiotemporally Controlled Imaging of Biomolecules in Subcellular Organelles under Hypoxic Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33894-33904. [PMID: 34275283 DOI: 10.1021/acsami.1c08979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Monitoring hypoxia-related changes in subcellular organelles would provide deeper insights into hypoxia-related metabolic pathways, further helping us to recognize various diseases on subcellular level. However, there is still a lack of real-time, in situ, and controllable means for biosensing in subcellular organelles under hypoxic conditions. Herein, we report a reductase and light programmatical gated nanodevice via integrating light-responsive DNA probes into a hypoxia-responsive metal-organic framework for spatiotemporally controlled imaging of biomolecules in subcellular organelles under hypoxic conditions. A small-molecule-decorated strategy was applied to endow the nanodevice with the ability to target subcellular organelles. Dynamic changes of mitochondrial adenosine triphosphate under hypoxic conditions were chosen as a model physiological process. The assay was validated in living cells and tumor tissue slices obtained from mice models. Due to the highly integrated, easily accessible, and available for living cells and tissues, we envision that the concept and methodology can be further extended to monitor biomolecules in other subcellular organelles under hypoxic conditions with a spatiotemporal controllable approach.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Le Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Caoye Xue
- Hunan Institute of Sports Science, 410003 Changsha, China
| | - Ge Huang
- Department of Anesthesiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013 Hunan, China
| | - Shiya Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 Hunan, China
| | - Ronghua Yang
- College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, 410006 Hunan, China
| |
Collapse
|
20
|
Liu G, Jiang Z, Lovell JF, Zhang L, Zhang Y. Design of a Thiol-Responsive, Traceless Prodrug with Rapid Self-Immolation for Cancer Chemotherapy. ACS APPLIED BIO MATERIALS 2021; 4:4982-4989. [PMID: 35007046 DOI: 10.1021/acsabm.1c00247] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Prodrugs can be formed by chemical modification of the existing active pharmaceutical ingredients (APIs); however, this often sacrifices their functional efficacy. Self-immolative linkers have recently attracted attention, as they can be designed to release pristine APIs. Herein, we report a strategy to generate a self-immolative prodrug (SIP) that can release pristine doxorubicin (DOX). Compared to conventional linkers, the key SIP DOX (KSIP-DOX) developed here can rapidly and quantitatively release the API due to its strong leaving group after reduction by thiol groups, which are present in tumors. KSIP-DOX has enhanced cellular uptake and improved anticancer efficacy, demonstrating its utility for cancer treatment.
Collapse
Affiliation(s)
- Gengqi Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Zhen Jiang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Jonathan F Lovell
- Department of Biomedical Engineering, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Lei Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| | - Yumiao Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300350, P. R. China
| |
Collapse
|
21
|
Zheng RR, Zhao LP, Liu LS, Deng FA, Chen XY, Jiang XY, Wang C, Yu XY, Cheng H, Li SY. Self-delivery nanomedicine to overcome drug resistance for synergistic chemotherapy. Biomater Sci 2021; 9:3445-3452. [PMID: 33949456 DOI: 10.1039/d1bm00119a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Multidrug resistance (MDR) is one of the prime reasons for the failure of cancer chemotherapy, which continues to be a great challenge to be solved. In this work, α-tocopherol succinate (α-TOS) and doxorubicin (DOX)-based self-delivery nanomedicine (designated as α-TD) is prepared to combat drug resistance for cancer synergistic chemotherapy. Carrier-free α-TD possesses a fairly high drug loading rate and improves the cellular uptake via the endocytosis pathway. More importantly, the apoptotic inducer α-TOS could elevate the reactive oxygen species (ROS) generation, disrupt mitochondrial function and reduce adenosine 5'-triphosphate (ATP) production, which facilitate the intracellular drug retention while decreasing its efflux. As a result, α-TD achieves a considerable synergistic chemotherapeutic effect against drug resistant cancer cells. Moreover, it also exhibits a preferable inhibitory effect on tumor growth with a low system toxicity in vivo. This synergistic drug self-delivery strategy would open a new window for developing carrier-free nanomedicine for overcoming drug resistance in cancer therapy.
Collapse
Affiliation(s)
- Rong-Rong Zheng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Lin-Ping Zhao
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Ling-Shan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Fu-An Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Xia-Yun Chen
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Xue-Yan Jiang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Chang Wang
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Xi-Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, P. R. China
| | - Shi-Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| |
Collapse
|
22
|
Xue Y, Bai H, Peng B, Fang B, Baell J, Li L, Huang W, Voelcker NH. Stimulus-cleavable chemistry in the field of controlled drug delivery. Chem Soc Rev 2021; 50:4872-4931. [PMID: 33734247 DOI: 10.1039/d0cs01061h] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimulus-cleavable nanoscale drug delivery systems are receiving significant attention owing to their capability of achieving exquisite control over drug release via the exposure to specific stimuli. Central to the construction of such systems is the integration of cleavable linkers showing susceptibility to one stimulus or several stimuli with drugs, prodrugs or fluorogenic probes on the one hand, and nanocarriers on the other hand. This review summarises recent advances in stimulus-cleavable linkers from various research areas and the corresponding mechanisms of linker cleavage and biological applications. The feasibility of extending their applications to the majority of nanoscale drug carriers including nanomaterials, polymers and antibodies are further highlighted and discussed. This review also provides general design guidelines to incorporate stimulus-cleavable linkers into nanocarrier-based drug delivery systems, which will hopefully spark new ideas and applications.
Collapse
Affiliation(s)
- Yufei Xue
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Jonathan Baell
- Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China.
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (Nanjing Tech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Nicolas Hans Voelcker
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China. and Commonwealth Scientific and Industrial Research Organisation (CSIRO), Clayton, Victoria 3168, Australia and Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia. and Melbourne Centre for Nanofabrication, Victorian Node of the Australian National Fabrication Facility, Clayton, Victoria 3168, Australia and Department of Materials Science & Engineering, Monash University, Clayton, Victoria 3168, Australia
| |
Collapse
|
23
|
Zhou M, Xie Y, Xu S, Xin J, Wang J, Han T, Ting R, Zhang J, An F. Hypoxia-activated nanomedicines for effective cancer therapy. Eur J Med Chem 2020; 195:112274. [PMID: 32259703 DOI: 10.1016/j.ejmech.2020.112274] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 03/12/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022]
Abstract
Hypoxia, a common characteristic in solid tumors, is found in phenotypically aggressive cancers that display resistance to typical cancer interventions. Due to its important role in tumor progression, tumor hypoxia has been considered as a primary target for cancer diagnosis and treatment. An advantage of hypoxia-activated nanomedicines is that they are inactive in normoxic cells. In hypoxic tumor tissues and cells, these nanomedicines undergo reduction by activated enzymes (usually through 1 or 2 electron oxidoreductases) to produce cytotoxic substances. In this review, we will focus on approaches to design nanomedicines that take advantage of tumor hypoxia. These approaches include: i) inhibitors of hypoxia-associated signaling pathways; ii) prodrugs activated by hypoxia; iii) nanocarriers responsive to hypoxia, and iv) bacteria mediated hypoxia targeting therapy. These strategies have guided and will continue to guide nanoparticle design in the near future. These strategies have the potential to overcome tumor heterogeneity to improve the efficiency of radiotherapy, chemotherapy and diagnosis.
Collapse
Affiliation(s)
- Mengjiao Zhou
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Yuqi Xie
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Shujun Xu
- Department of Pharmacology, School of Pharmacy, Nantong University, 226000, Nantong, Jiangsu, PR China
| | - Jingqi Xin
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China
| | - Tao Han
- College of Chemistry and Life Science, Institute of Functional Molecules, Chengdu Normal University, Chengdu, 611130, PR China
| | - Richard Ting
- Department of Radiology, Weill Cornell Medicine, 413E, 69th St, New York, NY, 10065, USA
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, No. 76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| | - Feifei An
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Science, Health Science Center, Xi'an Jiaotong University, No.76 Yanta West Road, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
24
|
Xu Z, Pan C, Yuan W. Light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable micelles for synergistic photodynamic therapy and chemotherapy. Biomater Sci 2020; 8:3348-3358. [DOI: 10.1039/d0bm00328j] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The micelles self-assembled from POEGMA-b-PCL-Azo-PCL-b-POEGMA present light-enhanced hypoxia-responsive and azobenzene cleavage-triggered size-shrinkable properties for synergistic photodynamic therapy and chemotherapy.
Collapse
Affiliation(s)
- Zhangting Xu
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Chang Pan
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| | - Weizhong Yuan
- Department of Interventional and Vascular surgery
- Shanghai Tenth People's Hospital
- School of Materials Science and Engineering
- Tongji University
- Shanghai 201804
| |
Collapse
|
25
|
Fan JH, Fan GL, Yuan P, Deng FA, Liu LS, Zhou X, Yu XY, Cheng H, Li SY. A Theranostic Nanoprobe for Hypoxia Imaging and Photodynamic Tumor Therapy. Front Chem 2019; 7:868. [PMID: 31921785 PMCID: PMC6933523 DOI: 10.3389/fchem.2019.00868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a common feature for most malignant tumors, which was also closely related to the oxygen-dependent photodynamic therapy. Based on Förster resonance energy transfer (FRET), a smart nanoprobe (designated as H-Probe) was designed in this paper for hypoxia imaging and photodynamic tumor therapy. Due to the FRET process, H-Probe could respond to hypoxia with a significant fluorescence recovery. Moreover, abundant in vitro investigations demonstrated that the photosensitizer of PpIX in H-Probe could generate large amounts of singlet oxygen to kill cancer cells in the presence of oxygen and light with appropriate wavelength. Also, intravenously injected H-Probe with light irradiation achieved an effective tumor inhibition in vivo with a reduced side effect. This original strategy of integrating hypoxia imaging and tumor therapy in one nanoplatform would promote the development of theranostic nanoplatform for tumor precision therapy.
Collapse
Affiliation(s)
- Jing Hao Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gui Ling Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping Yuan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fu An Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ling Shan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xi Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Shi Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
26
|
An P, Gu D, Gao Z, Fan F, Jiang Y, Sun B. Hypoxia-augmented and photothermally-enhanced ferroptotic therapy with high specificity and efficiency. J Mater Chem B 2019; 8:78-87. [PMID: 31769461 DOI: 10.1039/c9tb02268f] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The rigorous reaction conditions (sufficient H2O2 and a low pH value) of an efficient Fenton reaction limit its further biomedical translation. Therefore, it is urgent to improve the efficacy of the Fenton reaction at the tumor site for efficient ferroptotic therapy. Herein, a hypoxia-responsive-Azo-BSA functionalized biomimetic nanoreactor (Fe(iii)-GA/GOx@ZIF-Azo), encapsulating ultrasmall ferric-gallic acid coordination polymer nanoparticles (Fe(iii)-GA) and glucose oxidase (GOx) into a zeolitic imidazolate framework (ZIF), was constructed for tumor ablation through an intensive Fenton reaction accelerated by not only sustained Fe2+ and H2O2 supply but also low pH and photothermal stimulation. Moreover, Azo achieved charge reversal in a hypoxia microenvironment caused by the sustained oxygen consumption by GOx, which resulted in selective and enhanced tumor accumulation based on the hypoxia-activated positive feedback cellular uptake. This rationally designed biomimetic nanoreactor might lay a foundation for the clinical translation of ferroptotic therapy.
Collapse
Affiliation(s)
- Peijing An
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, P. R. China.
| | - Dihai Gu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, P. R. China.
| | - Zhiguo Gao
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, P. R. China.
| | - Fengying Fan
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, P. R. China.
| | - Yong Jiang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, P. R. China.
| | - Baiwang Sun
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210089, P. R. China.
| |
Collapse
|
27
|
Koo S, Bobba KN, Cho MY, Park HS, Won M, Velusamy N, Hong KS, Bhuniya S, Kim JS. Molecular Theranostic Agent with Programmed Activation for Hypoxic Tumors. ACS APPLIED BIO MATERIALS 2019; 2:4648-4655. [DOI: 10.1021/acsabm.9b00722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyoung Koo
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Kondapa Naidu Bobba
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Mi Young Cho
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Hye Sun Park
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Miae Won
- Department of Chemistry, Korea University, Seoul 02841, Korea
| | - Nithya Velusamy
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Kwan Soo Hong
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju 28119, Korea
| | - Sankarprasad Bhuniya
- Amrita Centre for Industrial Research & Innovation, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Ettimadai, Coimbatore 641112, India
| | - Jong Seung Kim
- Department of Chemistry, Korea University, Seoul 02841, Korea
| |
Collapse
|
28
|
Huang J, Wu Y, Zeng F, Wu S. An Activatable Near-Infrared Chromophore for Multispectral Optoacoustic Imaging of Tumor Hypoxia and for Tumor Inhibition. Theranostics 2019; 9:7313-7324. [PMID: 31695770 PMCID: PMC6831286 DOI: 10.7150/thno.36755] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 08/20/2019] [Indexed: 12/15/2022] Open
Abstract
Hypoxia is a key hallmark of solid tumors and tumor hypoxia usually contributes to cancer progression, therapeutic resistance and poor outcome. Accurately detecting and imaging tumor hypoxia with high spatial resolution would be conducive to formulating optimized treatment plan and thus achieving better patient outcome. Methods: Tumor hypoxia can cleave the azo linker and release a NIR fluorophore (NR-NH2) and release the active drug as well. NR-NH2 shows a strong absorption band at around 680 nm and a strong fluorescence band at 710 nm, allowing for both multispectral optoacoustic tomography imaging (MSOT) and fluorescent imaging of tumor hypoxia in a tumor-bearing mouse model. Results: Liposome encapsulated with the activatable chromophore (NR-azo) for detecting/imaging tumor hypoxia and for tumor inhibition was demonstrated. For this chromophore, a xanthene-based NIR fluorophore acts as the optoacoustic and fluorescent reporter, an azo linker serves as the hypoxia-responsive moiety and a nitrogen mustard as the therapeutic drug. NR-azo shows an absorption at around 575 nm but exhibits negligible fluorescence due to the existence of the strong electron-withdrawing azo linker. Conclusion: We demonstrated an optoacoustic and fluorescent system for not only imaging tumor hypoxia in vivo but also achieving tumor inhibition.
Collapse
Affiliation(s)
| | | | - Fang Zeng
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shuizhu Wu
- State Key Laboratory of Luminescent Materials & Devices, College of Materials Science & Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
29
|
Zhu R, He H, Liu Y, Cao D, Yan J, Duan S, Chen Y, Yin L. Cancer-Selective Bioreductive Chemotherapy Mediated by Dual Hypoxia-Responsive Nanomedicine upon Photodynamic Therapy-Induced Hypoxia Aggravation. Biomacromolecules 2019; 20:2649-2656. [DOI: 10.1021/acs.biomac.9b00428] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rongying Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Hua He
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Yong Liu
- Department of Biomedical Engineering, University of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Desheng Cao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Jin Yan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| | - Shanzhou Duan
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yongbing Chen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Lichen Yin
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science & Technology, Soochow University, Suzhou 215123, China
| |
Collapse
|
30
|
Sharma A, Arambula JF, Koo S, Kumar R, Singh H, Sessler JL, Kim JS. Hypoxia-targeted drug delivery. Chem Soc Rev 2019; 48:771-813. [PMID: 30575832 PMCID: PMC6361706 DOI: 10.1039/c8cs00304a] [Citation(s) in RCA: 350] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hypoxia is a state of low oxygen tension found in numerous solid tumours. It is typically associated with abnormal vasculature, which results in a reduced supply of oxygen and nutrients, as well as impaired delivery of drugs. The hypoxic nature of tumours often leads to the development of localized heterogeneous environments characterized by variable oxygen concentrations, relatively low pH, and increased levels of reactive oxygen species (ROS). The hypoxic heterogeneity promotes tumour invasiveness, metastasis, angiogenesis, and an increase in multidrug-resistant proteins. These factors decrease the therapeutic efficacy of anticancer drugs and can provide a barrier to advancing drug leads beyond the early stages of preclinical development. This review highlights various hypoxia-targeted and activated design strategies for the formulation of drugs or prodrugs and their mechanism of action for tumour diagnosis and treatment.
Collapse
Affiliation(s)
- Amit Sharma
- Department of Chemistry, Korea University, Seoul, 02841, Korea.
| | | | | | | | | | | | | |
Collapse
|
31
|
Ding N, Li Z, Tian X, Zhang J, Guo K, Wang P. Azo-based near-infrared fluorescent theranostic probe for tracking hypoxia-activated cancer chemotherapy in vivo. Chem Commun (Camb) 2019; 55:13172-13175. [DOI: 10.1039/c9cc06727b] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel azo-based near-infrared fluorescent therabostic probe activated by hypoxia is applied to real-time visualization of drug delivery in vivo.
Collapse
Affiliation(s)
- Ning Ding
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Zhao Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Xinwei Tian
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Jiahang Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control
- College of Food Engineering and Nutritional Science
- Shaanxi Normal University
- Xi'an 710062
- China
| | - Kaili Guo
- Ministry of Education Key Laboratory of Medicinal Resources and Natural
- Pharmaceutical Chemistry
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| | - Pan Wang
- Ministry of Education Key Laboratory of Medicinal Resources and Natural
- Pharmaceutical Chemistry
- National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China
- College of Life Sciences
- Shaanxi Normal University
| |
Collapse
|
32
|
Song N, Li Y, Chen L, Hu X, Xie Z. BODIPY derivatives as light-induced free radical generators for hypoxic cancer treatment. J Mater Chem B 2019. [DOI: 10.1039/c9tb00694j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
NBDP can self-assemble into nanoparticles (NBDP NPs), which could be internalized by cells via endocytosis. After being irradiated with an 808 nm laser, the BODIPY unit could convert photons into heat and further initiates the production of alkyl radicals. The generated tumor hyperthermia and alkyl radicals synergistically kill cancer cells.
Collapse
Affiliation(s)
- Nan Song
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Yuanyuan Li
- The First Hospital of Jilin University
- Changchun
- P. R. China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- P. R. China
| | - Xiuli Hu
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
33
|
Zhu C, Zou Z, Huang C, Zheng J, Liu N, Li J, Yang R. Highly selective imaging of lysosomal azoreductase under hypoxia using pH-regulated and target-activated fluorescent nanoprobes. Chem Commun (Camb) 2019; 55:3235-3238. [DOI: 10.1039/c9cc00462a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A pH-regulated and target-activated nanoprobe for highly selective monitoring of lysosomal azoreductase under hypoxia.
Collapse
Affiliation(s)
- Cong Zhu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Zhen Zou
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
- Changsha
- China
| | - Caixia Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Na Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Jishan Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University
- Changsha
- China
| | - Ronghua Yang
- School of Chemistry and Biological Engineering, Changsha University of Science and Technology
- Changsha
- China
| |
Collapse
|