1
|
Zhang WY, Liao JS, Qi JR. Citrus endogenous components as prebiotics: Advances in extraction, digestion, mechanisms, and delivery. Food Res Int 2025; 208:116141. [PMID: 40263823 DOI: 10.1016/j.foodres.2025.116141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/13/2025] [Accepted: 03/05/2025] [Indexed: 04/24/2025]
Abstract
The large number of by-products during the processing of citrus fruits exert significant pressure on the environment. Citrus by-products contain a variety of bioactive compounds that promote gut health and maintain microbial homeostasis. Therefore, recycling and reuse of these by-products is considered an excellent way to reduce environmental pressure. The purification and characterization methods of bioactive compounds (such as pectin, dietary fiber, polyphenols, essential oils, and limonin) extracted from citrus by-products in recent years are summarised. Subsequently, we summarize the digestive behavior (digestion, absorption, metabolism, and excretion) of these components, focusing on the mechanisms of action through which they exert prebiotic activity. This highlights the interactions between citrus by-product bioactives and gut microbiota, as well as the health effects on the host gut. Additionally, we provide a brief overview of the delivery systems for the active ingredients based on pectin from citrus sources. The results show that extraction methods can significantly affect the composition and structure of citrus by-products, which in turn affects digestive properties and eventually leads to differences in prebiotic activity. Notably, gut microbiota plays a key role in the metabolism and bioactivity of citrus actives. Besides, the innovative embedding methods can markedly enhance their prebiotic potential. Therefore, a comprehensive understanding of the relationship between the extraction, structure, and prebiotic activity of citrus by-products, as well as their delivery methods, is essential to advancing the use of citrus by-products in human health.
Collapse
Affiliation(s)
- Wei-Yun Zhang
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China
| | - Jin-Song Liao
- School of Life Sciences, South China Normal University, Guangzhou 510640, PR China; Lemon (Guangzhou City) Biotechnology Co. Ltd, Guangzhou 510640, PR China
| | - Jun-Ru Qi
- Research and Development Center of Food Proteins, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, PR China.
| |
Collapse
|
2
|
Lin WS, Lin YL, Koh YC, Ho PY, Lin YC, Ho CT, Pan MH. 5-Demethyl-Polymethoxyflavones Mitigate Obesity by Reducing Adipose Tissue Inflammation, Promoting Browning, and Modulating Gut Microbiota in High-Fat Diet-Fed Mice. Mol Nutr Food Res 2025:e70069. [PMID: 40277157 DOI: 10.1002/mnfr.70069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/24/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
Given the escalating prevalence of obesity worldwide, identifying efficacious dietary components is crucial. This study investigated whether citrus-derived 5-demethyl-polymethoxyflavones (5-DPMFs) protect against obesity in high-fat diet (HFD)-induced obese mice. Male C57BL/6 mice were fed an HFD and supplemented with a citrus-derived powder (CP) containing 5-DPMFs as the main bioactive components. Two doses of CP (0.25% and 1% in the diet) were tested, corresponding to approximately 36 and 145 mg/kg body weight of 5-DPMFs, respectively. Key adipose tissue parameters were assessed, including inflammatory cytokines and browning markers associated with p38 MAPK signaling. Treatment with 5-DPMFs significantly attenuated adipose tissue inflammation, as evidenced by reduced levels of MCP-1, TNF-α, IL-6, and IL-1β. Concurrently, fat browning was enhanced by upregulating thermogenic and mitochondrial proteins. Gut microbiota analysis revealed that 5-DPMFs increased the relative abundance of beneficial probiotic species, such as Lactobacillus and Limosilactobacillus reuteri, which have been linked to improved metabolic profiles. These findings demonstrate that 5-DPMFs mitigate obesity-associated adipose inflammation, promote the browning of white adipose tissue (WAT), and favorably regulate gut microbiota composition in HFD-fed mice. Our results suggest that 5-DPMFs could serve as a functional food ingredient for obesity prevention and management.
Collapse
Affiliation(s)
- Wei-Sheng Lin
- Department of Food Science, National Quemoy University, Kinmen, Taiwan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Lu Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yen-Chun Koh
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Pin-Yu Ho
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Yu-Cheng Lin
- Greenyn Biotechnology Co Ltd Taichung City, Taichung City, Taiwan
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, New Jersey, USA
| | - Min-Hsiung Pan
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung City, Taiwan
| |
Collapse
|
3
|
Wang J, Wang H, Kang X, Wang X, Li X, Guo J, Jing X, Chu X, Han X. Integrated network pharmacology, molecular docking, and animal experiments to reveal the potential mechanism of hesperetin on COPD. Sci Rep 2025; 15:11024. [PMID: 40164657 PMCID: PMC11958725 DOI: 10.1038/s41598-025-95810-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025] Open
Abstract
Hesperetin (HE), a natural flavonoid exhibiting anti-inflammatory and antioxidant properties, holds significant potential in treating chronic obstructive pulmonary disease (COPD). Nonetheless, the precise mechanisms underlying its effects are yet to be fully elucidated. In this study, we aim to explore the role and potential mechanism of HE in treating COPD using network pharmacology, molecular docking and experimental validation. We screened for HE and COPD-related targets from public databases, and then imported potential targets into a STRING database to establish a protein-protein interaction network. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes enrichment analysis were performed to obtain key signaling pathways. We then predicted the binding interactions between HE and core targets using molecular docking. The animal model of COPD was established through lipopolysaccharide and cigarette smoke induction in mice to observe lung function, inflammatory factors, pathology, and the expression of related proteins. Network pharmacology findings unveiled that HE and COPD shared 105 common targets. MAPKs and NF-κB signaling pathways were selected for further validation. In animal experiment, HE enhanced lung function and histopathological morphology, while reducing inflammation levels. The results of Western blot tests indicated that HE treatment considerably inhibited the expression of MAPKs and NF-κB. HE effectively reduced lung inflammation and improved lung function in mice. This mechanism may be achieved by inhibition of MAPKs and NF-κB signaling pathways.
Collapse
Affiliation(s)
- Jingxi Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China
| | - Hongyang Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xin Kang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiaotian Wang
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xi Li
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Jie Guo
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xuan Jing
- The First Affiliated Hospital, Hebei University of Chinese Medicine, Shijiazhuang, China.
- Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang, China.
| | - Xi Chu
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China.
| | - Xue Han
- School of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China.
| |
Collapse
|
4
|
Hu J, Wang X, Guo X, Wen W, Xue J, Liao Z, Chen L. Network analysis and experimental validation to investigate chenpi against functional dyspepsia through TLR4/MyD88 by regulating the gut microbial structure. Front Pharmacol 2025; 16:1495799. [PMID: 40017602 PMCID: PMC11865038 DOI: 10.3389/fphar.2025.1495799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 03/01/2025] Open
Abstract
Functional dyspepsia (FD) is a prevalent functional gastrointestinal disorder characterized by the absence of organic lesions; it affects nearly one-fifth of the global population. There is currently no specific drug for treating it. Citri reticulatae Pericarpium (CRP) has been utilized in China for millennia as a therapeutic agent for alleviating bloating and spleen-stomach disharmony. Nonetheless, the curative efficacy and precise molecular mechanisms implicated in FD warrant further investigation. This study aims to address this gap by investigating the potential mechanisms of CRP against FD using HPLC-ESI-QTOF-MS, network analysis prediction, and experimental validation. In this study, 90 CRP metabolites were identified by HPLC-ESI-QTOF-MS; 70 common targets of CRP and FD were extracted, and the top ten overlapped targets included MAPK1, MAPK2, and MAPK3. KEGG enrichment analysis revealed that the MAPK pathways were predominant and involved the TLR4 signaling pathway. In vivo experiments demonstrated that after 14 days of treatment, CRP improved body weight, gastric emptying rate, intestinal transit rate, and the pathological structure of the gastric tissue. Serum IL-6, TNF-α, and IL-1β were downregulated, and the expressions of TLR4, MyD88, p-NF-κB, and MAPKs were suppressed in gastric tissue. Furthermore, CRP increased the relative abundance of Patescibateria and Bacteroidota, accompanied by a reduction in the relative abundance of Verrucomicrobota and Proteobacteria. In brief, CRP could attenuate dyspepsia by reducing the activation of inflammation-related TLR4/MyD88 and MAPK signaling pathways and by mediating gut microbial structure and composition. This study provides a unique perspective for further research on drugs for treating FD.
Collapse
Affiliation(s)
- Jinfang Hu
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xu Wang
- Center for Experimental Medicine, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoqiu Guo
- Department of Pharmacy, the Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Wen Wen
- Jiangxi Center for Drug Certification and Evaluation, Nanchang, Jiangxi, China
| | - Jin Xue
- Formula-pattern Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Zhengzheng Liao
- Department of Pharmacy, the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- State Key Laboratory of Food Science and Technology, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, Nanchang, Jiangxi, China
| | - Lihua Chen
- Key Laboratory of Modern Preparation of Traditional Chinese Medicines, Ministry of Education, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
5
|
Ju Y, Qi L, Hu Y, Huang L, Li L, Luo Y, Shi X, Liu X, Jiang M. Effects of graded levels Citri Reticulatae Pericarpium (Chenpi) on growth performance, serum biochemical indices, meat quality, and caecal microbiota and metabolite in yellow-feathered broilers. Anim Sci J 2025; 96:e70025. [PMID: 39791280 DOI: 10.1111/asj.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 09/26/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The Citri Reticulatae Pericarpium (CRP), is the aged peel of Citrus fruit, which contains phenols, flavonoids, and polysaccharides. This study aims to investigate dietary CRP supplementation on the growth performance, serum biochemical indices, meat quality, intestinal morphology, microbiota, and metabolite of yellow-feathered broilers. A total of 240 yellow-feathered broilers (1.00 ± 0.22 kg, 9 weeks old) were randomly allotted into 4 treatments feeding a basal diet (control), the basal diet containing antibiotics (positive control), and the control diet containing 1.5% and 3% CRP, respectively. At the end of a 56-day trial, one broiler from each replicate was selected, and samples of ileal tissue and cecal digesta were collected to analyze intestinal morphology, microbial composition, and metabolites. The results revealed that 3% CRP decreased average daily feed intake (ADFI), serum total cholesterol (TC), and low-density lipoprotein (LDL). The CRP supplementation could increase serum superoxide dismutase (SOD) and meat pH. Broilers fed CRP had elevated antioxidant and liquid-regulated metabolites. Together, the results suggested that incorporating a moderate level of CRP has a minor impact on growth performance and could benefit health to some extent by enhancing antioxidants, regulating serum liquid, and changing microbial composition and metabolites.
Collapse
Affiliation(s)
- Ying Ju
- Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liangliang Qi
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yongqiang Hu
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liling Huang
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Liying Li
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Yi Luo
- Guangxi Institute for Drug Control, Nanning, China
| | | | - Xuzhou Liu
- Institute of Microbiology, Guangxi Academy of Agricultural Sciences, Nanning, China
| | - Mingguo Jiang
- Guangxi Key Laboratory for Polysaccharide Materials and Modifications, School of Marine Sciences and Biotechnology, Guangxi Minzu University, Nanning, China
| |
Collapse
|
6
|
Gao C, Gong N, Chen F, Hu S, Zhou Q, Gao X. The Effects of Astaxanthin on Metabolic Syndrome: A Comprehensive Review. Mar Drugs 2024; 23:9. [PMID: 39852511 PMCID: PMC11766962 DOI: 10.3390/md23010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/26/2025] Open
Abstract
Metabolic syndrome (MS) represents a complex cluster of metabolic disorders primarily characterized by obesity, insulin resistance, hyperglycemia, dyslipidemia, hypertension, and hyperuricemia. Diet and functional ingredients play a pivotal role in seeking non-pharmacological strategies to prevent and ameliorate MS. Astaxanthin (AST), a carotenoid found in various marine organisms, exhibits exceptional antioxidant properties and holds great promise as a natural compound that improves MS. This article introduces the basic properties of AST, including its absorptance and metabolic pathways, along with various isomers. Most importantly, we comprehensively review the effects and mechanisms of AST on improving the primary components of MS. These mechanisms primarily involve regulating signal transduction, transport, or metabolic pathways within the body, as well as influencing intestinal microbiota and metabolites, thereby exerting positive effects on metabolism and inhibiting the occurrence of MS. This review emphasizes the potential efficacy of AST in managing MS. However, more studies are needed to confirm the clinical effect of AST on MS and reveal potential molecular mechanisms.
Collapse
Affiliation(s)
- Chunhao Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Nengyun Gong
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Fangtian Chen
- Department of Marine Technology, Rizhao Polytechnic, Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization, Shandong Engineering Research Center for Efficient Utilization Technology of Marine Food Resources, Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources, Rizhao 276826, China;
| | - Shiran Hu
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| | - Qingxin Zhou
- Department of Marine Technology, Rizhao Polytechnic, Shandong Engineering and Technology Research Center for Marine Crustacean Resources Comprehensive Utilization, Shandong Engineering Research Center for Efficient Utilization Technology of Marine Food Resources, Rizhao Key Laboratory of Efficient Utilization of Marine Food Resources, Rizhao 276826, China;
| | - Xiang Gao
- College of Life Sciences, Qingdao University, Qingdao 266071, China; (C.G.); (N.G.); (S.H.)
| |
Collapse
|
7
|
Xiao J, Sun T, Jiang S, Xiao Z, Shan Y, Li T, Pan Z, Li Q, Fu F. Antioxidant Effects and Potential Mechanisms of Citrus reticulata 'Chachi' Components: An Integrated Approach of Network Pharmacology and Metabolomics. Foods 2024; 13:4018. [PMID: 39766961 PMCID: PMC11675786 DOI: 10.3390/foods13244018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/05/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Citrus reticulata 'Chachi' (CRC), recognized for its considerable edible and medicinal significance, is a valuable source of metabolites beneficial to human health. This research investigates the metabolic distinctions and antioxidant properties across four different parts of CRC, using multivariate statistical analysis to interpret metabolomic data and network pharmacology to identify potential antioxidant targets and relevant signaling pathways. The results indicate considerable metabolic differences in different parts of the sample, with 1622 metabolites showing differential expression, including 816 secondary metabolites, primarily consisting of terpenoids (31.02%) and flavonoids (25.22%). The dried mature citrus peel (CP) section demonstrates the highest level of total phenolics (6.8 mg/g), followed by the pulp without seed (PU) (4.52 mg/g), pulp with seed (PWS) (4.26 mg/g), and the seed (SE) (2.16 mg/g). Interestingly, targeted high-performance liquid chromatography of flavonoids reveals the highest level of nobiletin and tangeretin in CP, whereas PU has the highest level of hesperidin, narirutin, and didymin. Furthermore, all four sections of CRC exhibit robust antioxidant properties in in vitro assessments (CP > PU > PWS > SE). Lastly, the network pharmacology uncovered potential antioxidant mechanisms in CRC. This research offers deeper insights into the development and utilization of byproducts in the CRC processing industry.
Collapse
Affiliation(s)
- Jiahao Xiao
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Tian Sun
- Zheng Gan Hui (Jiang Men Xin Hui) Dried Tangerine Peel, Ltd., Jiangmen 529100, China
| | - Shengyu Jiang
- Zheng Gan Hui (Jiang Men Xin Hui) Dried Tangerine Peel, Ltd., Jiangmen 529100, China
| | - Zhiqiang Xiao
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Yang Shan
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| | - Tao Li
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Zhaoping Pan
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Qili Li
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
| | - Fuhua Fu
- Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (J.X.)
- Longping Branch, College of Biology, Hunan University, Changsha 410125, China
| |
Collapse
|
8
|
Sun KX, Tan WS, Wang HY, Gao JM, Wang SY, Xie ML, Deng WL. Hesperidin Suppressed Colorectal Cancer through Inhibition of Glycolysis. Chin J Integr Med 2024:10.1007/s11655-024-4113-x. [PMID: 39581935 DOI: 10.1007/s11655-024-4113-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 11/26/2024]
Abstract
OBJECTIVE To explore the role of the natural compound hesperidin in glycolysis, the key ratelimiting enzyme, in colorectal cancer (CRC) cell lines. METHODS In vitro, HCT116 and SW620 were treated with different doses of hesperidin (0-500 µmol/L), cell counting kit-8 and colone formation assays were utilized to detected inhibition effect of hesperidin on CRC cell lines. Transwell and wound healing assays were performed to detect the ability of hesperidin (0, 25, 50 and 75 µmol/L) to migrate CRC cells. To confirm the apoptotic-inducing effect of hesperidin, apoptosis and cycle assays were employed. Western blot, glucose uptake, and lactate production determination measurements were applied to determine inhibitory effects of hesperidin (0, 25 and 50 µmol/L) on glycolysis. In vivo, according to the random number table method, nude mice with successful tumor loading were randomly divided into vehicle, low-dose hesperidin (20 mg/kg) and high-dose hesperidin (60 mg/kg) groups, with 6 mice in each group. The body weights and tumor volumes of mice were recorded during 4-week treatment. The expression of key glycolysis rate-limiting enzymes was determined using Western blot, and glucose uptake and lactate production were assessed. Finally, protein interactions were probed with DirectDIA Quantitative Proteomics, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. RESULTS Hesperidin could inhibit CRC cell line growth (P<0.05 or P<0.01). Moreover, hesperidin presented an inhibitory effect on the migrating abilities of CRC cells. Hesperidin also promoted apoptosis and cell cycle alterations (P<0.05). The immunoblotting results manifested that hesperidin decreased the levels of hexokinase 2, glucose transporter protein 1 (GLUT1), GLUT3, L-lactate dehydrogenase A, 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 2 (PFKFB2), PFKFB3, and pyruvate kinase isozymes M2 (P<0.01). It remarkably suppressed tumor xenograft growth in nude mice. GO and KEGG analyses showed that hesperidin treatment altered metabolic function. CONCLUSION Hesperidin inhibits glycolysis and is a potential therapeutic choice for CRC treatment.
Collapse
Affiliation(s)
- Ke-Xiang Sun
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wei-Shan Tan
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Hao-Yue Wang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Jia-Min Gao
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Shu-Yun Wang
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Man-Li Xie
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China
| | - Wan-Li Deng
- Department of Medical Oncology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
9
|
Liu Y, Yan N, Chen Q, Dong L, Li Y, Weng P, Wu Z, Pan D, Liu L, Farag MA, Wang L, Liu L. Research advances in citrus polyphenols: green extraction technologies, gut homeostasis regulation, and nano-targeted delivery system application. Crit Rev Food Sci Nutr 2024; 64:11493-11509. [PMID: 37552798 DOI: 10.1080/10408398.2023.2239350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Citrus polyphenols can modulate gut microbiota and such bi-directional interaction that can yield metabolites such as short-chain fatty acids (SCFAs) to aid in gut homeostasis. Such interaction provides citrus polyphenols with powerful prebiotic potential, contributing to guts' health status and metabolic regulation. Citrus polyphenols encompass unique polymethoxy flavonoids imparting non-polar nature that improve their bioactivities and ability to penetrate the blood-brain barrier. Green extraction technology targeting recovery of these polyphenols has received increasing attention due to its advantages of high extraction yield, short extraction time, low solvent consumption, and environmental friendliness. However, the low bioavailability of citrus polyphenols limits their applications in extraction from citrus by-products. Meanwhile, nano-encapsulation technology may serve as a promising approach to improve citrus polyphenols' bioavailability. As citrus polyphenols encompass multiple hydroxyl groups, they are potential to interact with bio-macromolecules such as proteins and polysaccharides in nano-encapsulated systems that can improve their bioavailability. This multifaceted review provides a research basis for the green and efficient extraction techniques of citrus polyphenols, as well as integrated mechanisms for its anti-inflammation, alleviating metabolic syndrome, and regulating gut homeostasis, which is more capitalized upon using nano-delivery systems as discussed in that review to maximize their health and food applications.
Collapse
Affiliation(s)
- Yahui Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ning Yan
- Plant Functional Component Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Laoshan District, Qingdao, China
| | - Qin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lezhen Dong
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Ying Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Peifang Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Zufang Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Daodong Pan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| | - Lingyi Liu
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lei Wang
- School of Liquor and Food Engineering, Guizhou University, Guiyang, Guizhou, China
| | - Lianliang Liu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Animal Protein Deep Processing Technology of Zhejiang, Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, School of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
10
|
Aslan MN, Sukan-Karaçağıl B, Acar-Tek N. Roles of citrus fruits on energy expenditure, body weight management, and metabolic biomarkers: a comprehensive review. Nutr Rev 2024; 82:1292-1307. [PMID: 37702528 PMCID: PMC11317776 DOI: 10.1093/nutrit/nuad116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023] Open
Abstract
Citrus fruits are widely consumed for their nutritional and health benefits. They belong to the Rutaceae and have many varieties, such as sweet orange (Citrus sinensis), which is the most popular. Citrus fruits are rich in water (>80%), dietary fiber, and vitamins. They also contain bioactive components, which may modulate energy metabolism and lipid oxidation through various mechanisms. These mechanisms include stimulating β3-adrenergic receptors, increasing mitochondrial biogenesis and thermogenesis, activating AMP kinase and peroxisome proliferator-activated receptor-gamma coactivator-1α pathways, inhibiting lipogenesis and lipid accumulation, and inducing browning of white adipose tissue. This review summarizes the mechanisms and outcomes of citrus fruits and their metabolites on energy metabolism and body weight in different experimental models. The literature was searched for in vitro and in vivo animal and human studies that investigated the effects of citrus consumption on energy expenditure, thermogenesis, adipogenesis, and lipid accumulation. Citrus fruits and their metabolites have shown promising effects on energy metabolism and lipid oxidation in in vitro and in vivo animal studies. However, the evidence from human studies is limited and inconsistent. Possible reasons for the discrepancy are briefly discussed, and knowledge gaps and research needs are identified for future studies. Citrus fruits may have beneficial effects on energy metabolism and body weight, but more rigorous and well-designed human trials are needed to confirm their efficacy and safety.
Collapse
Affiliation(s)
- Merve Nur Aslan
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Bolu Abant Izzet Baysal University, Bolu, Turkey
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Betül Sukan-Karaçağıl
- Department of Nutrition and Dietetics, Institute of Health Sciences, Gazi University, Ankara, Turkey
| | - Nilüfer Acar-Tek
- Faculty of Health Sciences, Department of Nutrition and Dietetics, Gazi University, Ankara, Turkey
| |
Collapse
|
11
|
Qin Y, Yang J, Li H, Li J. Recent advances in the therapeutic potential of nobiletin against respiratory diseases. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155506. [PMID: 38522319 DOI: 10.1016/j.phymed.2024.155506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 02/04/2024] [Accepted: 02/28/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Nobiletin is a natural polymethoxylated flavonoid widely present in citrus fruit peels. It has been demonstrated to exert the effects of anti-tumor, anti-inflammation, anti-oxidative, anti-apoptotic and improve cardiovascular function. Increasing evidences suggest that nobiletin plays an important role in respiratory diseases (RDs) treatment. OBJECTIVE This review aimed to investigate the therapeutic potential of nobiletin against RDs, such as lung cancer, COPD, pulmonary fibrosis, asthma, pulmonary infection, acute lung injury, coronavirus disease 2019, and pulmonary arterial hypertension. METHODS We retrieved extensive literature of relevant literatures in English until June 26, 2023 from the database of PubMed, Web of Science, and Scopus databases. The keywords of "nobiletin and lung", "nobiletin and respiratory disease", "nobiletin and chronic respiratory diseases", "nobiletin and metabolites", "nobiletin and pharmacokinetics", "nobiletin and toxicity" were searched in pairs. A total of 298 literatures were retrieved from the above database. After excluding the duplicates and reviews, 53 were included in the current review. RESULTS We found that the therapeutic mechanisms are based on different signaling pathways. Firstly, nobiletin inhibited the proliferation and suppressed the invasion and migration of cancer cells by regulating the related pathway or key target, like Bcl-2, PD-L1, PARP, and Akt/GSK3β/β-catenin in lung cancer treatment. Secondly, nobiletin treats COPD and ALI by targeting classical signaling pathway mediating inflammation. Besides, the available findings show that nobiletin exerts the effect of PF treatment via regulating mTOR pathway. CONCLUSIONS With the wide range of pharmacological activities, high efficiency and low toxicity, nobiletin can be used as a potential agent for preventing and treating RDs. These findings will contribute to further research on the molecular mechanisms of nobiletin and facilitate in-depth studies on nobiletin at both preclinical and clinical levels for the treatment of RDs.
Collapse
Affiliation(s)
- Yanqin Qin
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China; Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan Province, China
| | - Jingfan Yang
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China
| | - Haibo Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China
| | - Jiansheng Li
- Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan and Education Ministry of P.R. China, Henan Key Laboratory of Chinese Medicine for Respiratory Disease, Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China; Department of Respiratory Disease, The first Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou, 450046, Henan province, China.
| |
Collapse
|
12
|
Im ST, Kang H, Kim J, Kim SR, Kim KN, Lee SH. Narirutin-Rich Celluclast Extract from Mandarin ( Citrus unshiu) Peel Alleviates High-Fat Diet-Induced Obesity and Promotes Energy Metabolism in C57BL/6 Mice. Int J Mol Sci 2024; 25:4475. [PMID: 38674060 PMCID: PMC11049868 DOI: 10.3390/ijms25084475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Mandarin peel, a main by-product from the processing of citrus juice, has been highlighted for its various bioactivities and functional ingredients. Our previous study proved the inhibitory effects of Celluclast extract from mandarin peel (MPCE) on lipid accumulation and differentiation in 3T3-L1 adipocytes. Therefore, the current study aimed to evaluate the anti-obesity effect of MPCE in high-fat diet (HFD)-induced obese mice. The high-performance liquid chromatography (HPLC) analysis exhibited that narirutin and hesperidin are the main active components of MPCE. Our current results showed that MPCE supplementation decreased adiposity by reducing body and organ weights in HFD-induced obese mice. MPCE also reduced triglyceride (TG), alanine transaminase (ALT), aspartate transaminase (AST), and leptin contents in the serum of HFD-fed mice. Moreover, MPCE significantly inhibited hepatic lipid accumulation by regulating the expression levels of proteins associated with lipid metabolism, including sterol regulatory element-binding protein (SREBP1c), fatty acid synthase (FAS), and acetyl-CoA carboxylase (ACC). Furthermore, MPCE administration significantly inhibited both adipogenesis and lipogenesis, with modulation of energy metabolism by activating 5' adenosine monophosphate-activated protein kinase (AMPK) and lipolytic enzymes such as hormone-sensitive lipase (HSL) in the white adipose tissue (WAT). Altogether, our findings indicate that MPCE improves HFD-induced obesity and can be used as a curative agent in pharmaceuticals and nutraceuticals to alleviate obesity and related disorders.
Collapse
Affiliation(s)
- Seung Tae Im
- Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea;
| | - Heejoo Kang
- ILHAE Co., Ltd., Jeju 695962, Republic of Korea; (H.K.); (J.K.)
| | - Jusang Kim
- ILHAE Co., Ltd., Jeju 695962, Republic of Korea; (H.K.); (J.K.)
| | - Song-Rae Kim
- Metropolitan Seoul Center, Korea Basic Science Institute, Seoul 02841, Republic of Korea;
| | - Kil-Nam Kim
- Gwangju Center, Korea Basic Science Institute, Gwangju 61751, Republic of Korea;
| | - Seung-Hong Lee
- Department of Medical Science, Soonchunhyang University, Asan 31538, Republic of Korea;
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| |
Collapse
|
13
|
Zhao Y, Yu S, Zhao H, Li L, Li Y, Liu M, Jiang L. Integrated multi-omics analysis reveals the positive leverage of citrus flavonoids on hindgut microbiota and host homeostasis by modulating sphingolipid metabolism in mid-lactation dairy cows consuming a high-starch diet. MICROBIOME 2023; 11:236. [PMID: 37880759 PMCID: PMC10598921 DOI: 10.1186/s40168-023-01661-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 09/03/2023] [Indexed: 10/27/2023]
Abstract
BACKGROUND Modern dairy diets have shifted from being forage-based to grain and energy dense. However, feeding high-starch diets can lead to a metabolic disturbance that is linked to dysregulation of the gastrointestinal microbiome and systemic inflammatory response. Plant flavonoids have recently attracted extensive interest due to their anti-inflammatory effects in humans and ruminants. Here, multi-omics analysis was conducted to characterize the biological function and mechanisms of citrus flavonoids in modulating the hindgut microbiome of dairy cows fed a high-starch diet. RESULTS Citrus flavonoid extract (CFE) significantly lowered serum concentrations of lipopolysaccharide (LPS) proinflammatory cytokines (TNF-α and IL-6), acute phase proteins (LPS-binding protein and haptoglobin) in dairy cows fed a high-starch diet. Dietary CFE supplementation increased fecal butyrate production and decreased fecal LPS. In addition, dietary CFE influenced the overall hindgut microbiota's structure and composition. Notably, potentially beneficial bacteria, including Bacteroides, Bifidobacterium, Alistipes, and Akkermansia, were enriched in CFE and were found to be positively correlated with fecal metabolites and host metabolites. Fecal and serum untargeted metabolomics indicated that CFE supplementation mainly emphasized the metabolic feature "sphingolipid metabolism." Metabolites associated with the sphingolipid metabolism pathway were positively associated with increased microorganisms in dairy cows fed CFE, particularly Bacteroides. Serum lipidomics analysis showed that the total contents of ceramide and sphingomyelin were decreased by CFE addition. Some differentially abundant sphingolipid species were markedly associated with serum IL-6, TNF-α, LPS, and fecal Bacteroides. Metaproteomics revealed that dietary supplementation with CFE strongly impacted the overall fecal bacterial protein profile and function. In CFE cows, enzymes involved in carbon metabolism, sphingolipid metabolism, and valine, leucine, and isoleucine biosynthesis were upregulated. CONCLUSIONS Our research indicates the importance of bacterial sphingolipids in maintaining hindgut symbiosis and homeostasis. Dietary supplementation with CFE can decrease systemic inflammation by maintaining hindgut microbiota homeostasis and regulating sphingolipid metabolism in dairy cows fed a high-starch diet. Video Abstract.
Collapse
Affiliation(s)
- Yuchao Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Shiqiang Yu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Huiying Zhao
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Liuxue Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuqin Li
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Ming Liu
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
| | - Linshu Jiang
- Beijing Key Laboratory of Dairy Cow Nutrition, College of Animal Science and Technology, Beijing University of Agriculture, Beijing, 102206, China.
| |
Collapse
|
14
|
Zuo WF, Pang Q, Yao LP, Zhang Y, Peng C, Huang W, Han B. Gut microbiota: A magical multifunctional target regulated by medicine food homology species. J Adv Res 2023; 52:151-170. [PMID: 37269937 PMCID: PMC10555941 DOI: 10.1016/j.jare.2023.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/27/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023] Open
Abstract
BACKGROUND The relationship between gut microbiota and human health has gradually been recognized. Increasing studies show that the disorder of gut microbiota is related to the occurrence and development of many diseases. Metabolites produced by the gut microbiota are responsible for their extensive regulatory roles. In addition, naturally derived medicine food homology species with low toxicity and high efficiency have been clearly defined owing to their outstanding physiological and pharmacological properties in disease prevention and treatment. AIM OF REVIEW Based on supporting evidence, the current review summarizes the representative work of medicine food homology species targeting the gut microbiota to regulate host pathophysiology and discusses the challenges and prospects in this field. It aims to facilitate the understanding of the relationship among medicine food homology species, gut microbiota, and human health and further stimulate the advancement of more relevant research. KEY SCIENTIFIC CONCEPTS OF REVIEW As this review reveals, from the initial practical application to more mechanism studies, the relationship among medicine food homology species, gut microbiota, and human health has evolved into an irrefutable interaction. On the one hand, through affecting the population structure, metabolism, and function of gut microbiota, medicine food homology species maintain the homeostasis of the intestinal microenvironment and human health by affecting the population structure, metabolism, and function of gut microbiota. On the other hand, the gut microbiota is also involved in the bioconversion of the active ingredients from medicine food homology species and thus influences their physiological and pharmacological properties.
Collapse
Affiliation(s)
- Wei-Fang Zuo
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qiwen Pang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Lai-Ping Yao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yang Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Huang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Hassan MA, Elmageed GMA, El-Qazaz IG, El-Sayed DS, El-Samad LM, Abdou HM. The Synergistic Influence of Polyflavonoids from Citrus aurantifolia on Diabetes Treatment and Their Modulation of the PI3K/AKT/FOXO1 Signaling Pathways: Molecular Docking Analyses and In Vivo Investigations. Pharmaceutics 2023; 15:2306. [PMID: 37765275 PMCID: PMC10535482 DOI: 10.3390/pharmaceutics15092306] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
This study was aimed at probing the modulatory influence of polyflavonoids extracted from Citrus aurantifolia, lemon peel extract (LPE-polyflavonoids), on attenuating diabetes mellitus (DM) and its complications. HPLC investigations of the LPE exhibited the incidence of five flavonoids, including diosmin, biochanin A, hesperidin, quercetin, and hesperetin. The in silico impact on ligand-phosphatidylinositol 3-kinase (PI3K) interaction was investigated in terms of polyflavonoid class to explore the non-covalent intakes and binding affinity to the known protein active site. The drug likeness properties and pharmacokinetic parameters of the LPE-polyflavonoids were investigated to assess their bioavailability in relation to Myricetin as a control. Remarkably, the molecular docking studies demonstrated a prominent affinity score of all these agents together with PI3K, implying the potency of the extract to orchestrate PI3K, which is the predominant signal for lessening the level of blood glucose. To verify these findings, in vivo studies were conducted, utilizing diabetic male albino rats treated with LPE-polyflavonoids and other groups treated with hesperidin and diosmin as single flavonoids. Our findings demonstrated that the LPE-polyflavonoids significantly ameliorated the levels of glucose, insulin, glycogen, liver function, carbohydrate metabolizing enzymes, G6Pd, and AGEs compared to the diabetic rats and those exposed to hesperidin and diosmin. Furthermore, the LPE-polyflavonoids regulated the TBARS, GSH, CAT, TNF-α, IL-1β, IL-6, and AFP levels in the pancreatic and hepatic tissues, suggesting their antioxidant and anti-inflammatory properties. In addition, the pancreatic and hepatic GLUT4 and GLUT2 were noticeably increased in addition to the pancreatic p-AKT in the rats administered with the LPE-polyflavonoids compared to the other diabetic rats. Remarkably, the administration of LPE-polyflavonoids upregulated the expression of the pancreatic and hepatic PI3K, AMPK, and FOXO1 genes, emphasizing the efficiency of the LPE in orchestrating all the signaling pathways necessitated to reduce the diabetes mellitus. Notably, the histopathological examinations of the pancreatic and hepatic tissues corroborated the biochemical results. Altogether, our findings accentuated the potential therapeutic role of LPE-polyflavonoids in controlling diabetes mellitus.
Collapse
Affiliation(s)
- Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City 21934, Egypt
| | - Ghada M. Abd Elmageed
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Ibtehal G. El-Qazaz
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Doaa S. El-Sayed
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| | - Heba M. Abdou
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (G.M.A.E.); (I.G.E.-Q.); (L.M.E.-S.)
| |
Collapse
|
16
|
Chen X, Ran J, Mazhar M, Zhu Y, Lin Y, Qin L, Miao S. The balanced unsaturated fatty acid supplement constituted by woody edible oils improved lipid metabolism and gut microbiota in high-fat diet mice. Front Nutr 2023; 10:1203932. [PMID: 37545586 PMCID: PMC10399753 DOI: 10.3389/fnut.2023.1203932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 08/08/2023] Open
Abstract
The dietary intervention has demonstrated effectiveness in improving hyperlipidemia and obesity. Woody edible oils are rich in unsaturated fatty acids (UFAs) that could positively affect lipid metabolism. In this study, the blended oil (BLO), a balanced UFA supplement, constituted by Zanthoxylum bungeanum (Chinese Red Pepper) seed oil, walnut (Juglans regia) oil, camellia (Camema oleifera) seed oil and perilla (Perilla frutescens) seed oil was established referring to the Chinese dietary reference intakes, in which the ratios of monounsaturated/polyunsaturated fatty acids and ω-6/ω-3 polyunsaturated fatty acids were 1:1 and 4:1, respectively. The BLO was administrated to KM mice fed a high-fat diet (HFD) by gavage every day at a dose of 3.0 mL/kg·bw for 10 weeks to assess its effects on serum lipid levels, liver antioxidant activities and gut microbial composition. The results showed that the BLO improved hepatic steatosis, liver oxidative stress, and serum lipid levels. Additionally, there was an increased abundance of Lactobacillus, Allobaculum, and Blautia, along with a decreased abundance of Staphylococcus in cecal contents. These changes were found to be positively correlated with the metabolic improvements, as indicated by Spearman's correlation analysis. These findings implied the practicality of the balanced unsaturated fatty acid consumption in preventing hyperlipidemia and obesity.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- Department of Laboratory Medicine, Affiliated Jinyang Hospital of Guizhou Medical University, Guiyang, China
| | - Jingqi Ran
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Muhammad Mazhar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yong Zhu
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Yichen Lin
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Likang Qin
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-Bioengineering, Guizhou University, Guiyang, China
- School of Liquor and Food Engineering, Guizhou University, Guiyang, China
| | - Song Miao
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| |
Collapse
|
17
|
Sheykhsaran E, Abbasi A, Ebrahimzadeh Leylabadlo H, Sadeghi J, Mehri S, Naeimi Mazraeh F, Feizi H, Bannazadeh Baghi H. Gut microbiota and obesity: an overview of microbiota to microbial-based therapies. Postgrad Med J 2023; 99:384-402. [PMID: 35140178 DOI: 10.1136/postgradmedj-2021-141311] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/15/2022] [Indexed: 12/14/2022]
Abstract
The increasing prevalence of obesity and overweight is a significant public concern throughout the world. Obesity is a complex disorder involving an excessive amount of body fat. It is not just a cosmetic concern. It is a medical challenge that increases the risk of other diseases and health circumstances, such as diabetes, heart disease, high blood pressure and certain cancers. Environmental and genetic factors are involved in obesity as a significant metabolic disorder along with diabetes. Gut microbiota (GM) has a high potential for energy harvesting from the diet. In the current review, we aim to consider the role of GM, gut dysbiosis and significant therapies to treat obesity. Dietary modifications, probiotics, prebiotics, synbiotics compounds, using faecal microbiota transplant, and other microbial-based therapies are the strategies to intervene in obesity reducing improvement. Each of these factors serves through various mechanisms including a variety of receptors and compounds to control body weight. Trial and animal investigations have indicated that GM can affect both sides of the energy-balancing equation; first, as an influencing factor for energy utilisation from the diet and also as an influencing factor that regulates the host genes and energy storage and expenditure. All the investigated articles declare the clear and inevitable role of GM in obesity. Overall, obesity and obesity-relevant metabolic disorders are characterised by specific modifications in the human microbiota's composition and functions. The emerging therapeutic methods display positive and promising effects; however, further research must be done to update and complete existing knowledge.
Collapse
Affiliation(s)
- Elham Sheykhsaran
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Student Research Committee, Department of Food Sciences and Technology Research Institute, Faculty of Nutrition Sciences and food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Javid Sadeghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Samaneh Mehri
- Department of Biochemistry and structural Biology, University of Alabama, Birmingham, Alabama, USA
| | - Fariba Naeimi Mazraeh
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hadi Feizi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Students' Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Zhang M, Jiang H, Ou S, Qian M, Qi H, Chen J, Zeng X, Bai W, Xiao G. Dietary sinensetin and polymethoxyflavonoids: Bioavailability and potential metabolic syndrome-related bioactivity. Crit Rev Food Sci Nutr 2023; 64:9992-10008. [PMID: 37283048 DOI: 10.1080/10408398.2023.2219758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Sinensetin is among the most ubiquitous polyphenols in citrus fruit and recently has been extensively studied for its ability to prevent or treat diseases. The current literature on the bioavailability of sinensetin and its derivatives was reviewed and the potential ameliorative effects of metabolic syndrome in humans were evaluated. Sinensetin and its derivatives mainly aggregated in the large intestine and extensively metabolized through gut microbiota (GM) and the liver. So intestinal microorganisms had a significant influence on the absorption and metabolism of sinensetin. Interestingly, not only GM acted on sinensetin to metabolize them, but sinensetin also regulated the composition of GM. Thus, sinensetin was metabolized as methyl, glucuronide and sulfate metabolites in the blood and urine. Furthermore, sinensetin was reported to have the beneficial effect of ameliorating metabolic syndromes, including disorders of lipid metabolism (obesity, NAFLD, atherosclerosis), glucose metabolism disorder (insulin resistant) and inflammation, in terms of improving the composition of intestinal flora and modulating metabolic pathway factors in relevant tissues. The present work strongly elucidated the potential mechanism of sinensetin in improving metabolic disorders and supported the contribution of sinensetin to health benefits, thus offering a better perspective in understanding the role played by sinensetin in human health.
Collapse
Affiliation(s)
- Mutang Zhang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Hao Jiang
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Shaobi Ou
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Min Qian
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Heming Qi
- Science and Technology Research Center of China Customs, Beijing, China
| | | | - Xiaofang Zeng
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Weidong Bai
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- College of Light Industry and Food Sciences, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Key Laboratory of Green Processing and Intelligent Manufacturing of Lingnan Specialty Food, Ministry of Agriculture, Academy of Contemporary Agricultural Engineering Innovations, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
19
|
Chen J, Liu Y, Wang H, Liang X, Ji S, Wang Y, Li X, Sun C. Polymethoxyflavone-Enriched Fraction from Ougan ( Citrus reticulata cv. Suavissima) Attenuated Diabetes and Modulated Gut Microbiota in Diabetic KK-A y Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6944-6955. [PMID: 37127840 DOI: 10.1021/acs.jafc.2c08607] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Diabetes mellitus is a serious, chronic disease worldwide; yet it is largely preventable through physical activity and healthy diets. Ougan (Citrus reticulata cv. Suavissima) is a characteristic citrus variety rich in polymethoxyflavones. In the present study, the anti-diabetic effects of the polymethoxyflavone-enriched fraction from Ougan (OG-PMFs) were investigated. Diabetic KK-Ay mice were supplemented with different doses of OG-PMFs for 5 weeks. Our results demonstrated that OG-PMFs exhibited robust protective effects against diabetes symptoms in KK-Ay mice. The potential mechanisms may partially be attributed to the restoration of hepatic GLUT2 and catalase expression. Notably, OG-PMF administration significantly altered the gut microbiota composition in diabetic KK-Ay, indicated by the suppression of metabolic disease-associated genera Desulfovibrio, Lachnoclostridium, Enterorhabdus, and Ralstonia, implying that the gut microbiota might be another target for OG-PMFs to show effects. Taken together, our results provided a supplementation for the metabolic-protective effects of PMFs and highlighted that OG-PMFs hold great potential to be developed as a functional food ingredient.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yang Liu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Huixin Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xiao Liang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Shiyu Ji
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, People's Republic of China
| |
Collapse
|
20
|
Zhan M, Liang X, Chen J, Yang X, Han Y, Zhao C, Xiao J, Cao Y, Xiao H, Song M. Dietary 5-demethylnobiletin prevents antibiotic-associated dysbiosis of gut microbiota and damage to the colonic barrier. Food Funct 2023; 14:4414-4429. [PMID: 37097253 DOI: 10.1039/d3fo00516j] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
5-Demethylnobiletin (5DN) is an important ingredient of citrus extract that is rich in polymethoxyflavones (PMFs). In this study, we systemically investigated the preventive effects of 5DN on antibiotic-associated intestinal disturbances. Experimental mice were gavaged 0.2 mL per day of the antibiotic cocktail (12.5 g L-1 cefuroxime and 10 g L-1 levofloxacin) for 10 days, accompanied by dietary 0.05% 5DN for 10 and 20 days. The results showed that the combination of cefuroxime and levofloxacin caused swelling of the cecum and injury to the colon tissue. Meanwhile, the balance of intestinal oxidative stress and the barrier function of mice was also damaged by the antibiotics through upregulation of the relative mRNA levels of superoxide dismutase 3 (SOD3), quinine oxidoreductase 1 (NQO1) and glutathione peroxidase 1 (GPX1), and downregulation of the relative protein levels of tight junction proteins (TJs). Moreover, antibiotic exposure led to disorder of the gut microbiota, particularly increased harmful bacteria (Proteobacteria) and decreased beneficial bacteria (Bacteroideta). However, dietary 5DN could reduce antibiotic-associated intestinal damage, evidenced by the results that 5DN alleviated gut oxidative damage and attenuated intestinal barrier injury via increasing the expression of TJs including occludin and zonula occluden1 (ZO1). Additionally, dietary 5DN modulated the composition of the gut microbiota in antibiotic-treated mice by increasing the relative levels of beneficial bacteria, such as Dubosiella and Lactobacillus. Moreover, PMFs increased the contents of isobutyric acid and butyric acid, which were almost eliminated by antibiotic exposure. In conclusion, 5DN could alleviate antibiotic-related imbalance of intestinal oxidative stress, barrier function damage, intestinal flora disorders and the reduction of short-chain fatty acids (SCFAs), which lays a foundation for exploring safer and more effective ways to prevent or mitigate antibiotic-associated intestinal damage.
Collapse
Affiliation(s)
- Minmin Zhan
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xinyan Liang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Jiaqi Chen
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Xiaoshuang Yang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yanhui Han
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Chenxi Zhao
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Jie Xiao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mingyue Song
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Sciences, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
21
|
Zhang X, Zhao L, Xiao J, Wang Y, Li Y, Zhu C, Zhang H, Zhang Y, Zhu X, Dong Y. 5-Demethylnobiletin mediates cell cycle arrest and apoptosis via the ERK1/2/AKT/STAT3 signaling pathways in glioblastoma cells. Front Oncol 2023; 13:1143664. [PMID: 37139163 PMCID: PMC10149914 DOI: 10.3389/fonc.2023.1143664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 04/04/2023] [Indexed: 05/05/2023] Open
Abstract
5-Demethylnobiletin is the active ingredient in citrus polymethoxyflavones that could inhibit the proliferation of several tumor cells. However, the anti-tumor effect of 5-Demethylnobiletin on glioblastoma and the underlying molecular mechanisms are remains unknown. In our study, 5-Demethylnobiletin markedly inhibited the viability, migration and invasion of glioblastoma U87-MG, A172 and U251 cells. Further research revealed that 5-Demethylnobiletin induces cell cycle arrest at the G0/G1 phase in glioblastoma cells by downregulating Cyclin D1 and CDK6 expression levels. Furthermore, 5-Demethylnobiletin significantly induced glioblastoma cells apoptosis by upregulating the protein levels of Bax and downregulating the protein level of Bcl-2, subsequently increasing the expression of cleaved caspase-3 and cleaved caspase-9. Mechanically, 5-Demethylnobiletin trigged G0/G1 phase arrest and apoptosis by inhibiting the ERK1/2, AKT and STAT3 signaling pathway. Furthermore, 5-Demethylnobiletin inhibition of U87-MG cell growth was reproducible in vivo model. Therefore, 5-Demethylnobiletin is a promising bioactive agent that might be used as glioblastoma treatment drug.
Collapse
Affiliation(s)
- Xuehua Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Leilei Zhao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Jinlong Xiao
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yudi Wang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Yunmeng Li
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Chaoqun Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - He Zhang
- Department of Immunology, Qiqihar Medical University, Qiqihar, China
| | - Yurui Zhang
- Department of Immunology, Binzhou Medical University, Yantai, China
| | - Xiao Zhu
- School of Computer and Control Engineering, Yantai University, Yantai, China
| | - Yucui Dong
- Department of Immunology, Binzhou Medical University, Yantai, China
| |
Collapse
|
22
|
García-Nicolás M, Ledesma-Escobar CA, Priego-Capote F. Spatial Distribution and Antioxidant Activity of Extracts from Citrus Fruits. Antioxidants (Basel) 2023; 12:antiox12040781. [PMID: 37107156 PMCID: PMC10135098 DOI: 10.3390/antiox12040781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 04/29/2023] Open
Abstract
Citrus fruits are recommended components of the human diet because of their enriched composition in bioactive compounds and health benefits. Among their notable components are phenols, with a special emphasis on flavonoids, limonoids, and carboxylic acids. In this research, we have carried out a spatial metabolomics analysis for the characterization of these bioactive families in three citrus fruits, namely, lemons, limes, and mandarins. Sampling was undertaken, for which the juices and three fruit tissues, namely, albedo, flavedo, and segments, were analyzed. This characterization allowed for the determination of 49 bioactive compounds in all the samples. The composition of the different extracts was correlated with the antioxidant capacity measured by the DPPH radical scavenging activity and β-carotene bleaching assays. Flavonoids, found in the albedo and flavedo at higher concentrations, were the main components responsible for DPPH radical scavenging activity. On the other hand, the combined action of flavonoids and limonoids contributed to explaining the antioxidant activity measured by the β-carotene bleaching assay. Generally, the antioxidant capacity of juices was lower than that estimated for extracts from citrus tissues.
Collapse
Affiliation(s)
- María García-Nicolás
- Department of Analytical Chemistry, Faculty of Chemistry, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, E-30100 Murcia, Spain
| | - Carlos A Ledesma-Escobar
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Feliciano Priego-Capote
- Department of Analytical Chemistry, Annex Marie Curie Building, Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- Maimónides Institute of Biomedical Research (IMIBIC), Reina Sofía University Hospital, University of Córdoba, 14004 Córdoba, Spain
- Nanochemistry University Institute (IUNAN), Campus of Rabanales, University of Córdoba, E-14014 Córdoba, Spain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
23
|
Wu CC, Huang YW, Hou CY, Chen YT, Dong CD, Chen CW, Singhania RR, Leang JY, Hsieh SL. Lemon fermented products prevent obesity in high-fat diet-fed rats by modulating lipid metabolism and gut microbiota. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2023; 60:1036-1044. [PMID: 36908372 PMCID: PMC9998762 DOI: 10.1007/s13197-022-05445-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 03/16/2022] [Accepted: 03/19/2022] [Indexed: 10/18/2022]
Abstract
Citrus limon (lemon) possesses immunoregulatory, antioxidant, and lipid-lowering effects. Our previous study showed that lemon fermented products (LFP) which were lemon fermented with Lactobacillus OPC1 had the ability to avert obesity. However, the LFP effects on the pathway of lipid metabolism by gut microbiota were still unclear. This study was aimed to investigate the LFP effects on liver lipid metabolism and gut microbiota in a rat model of obesity caused by a high-calorie diet. LFP effectively reduced the total triglyceride (49.7%) and total cholesterol (53.3%) contents of the liver. Additionally, the mRNA levels of genes related to triglyceride metabolism (SREBP-1c, PPARγ, and ACC), cholesterol metabolism (HMG-CoA reductase, ACAT, and LCAT), and lipid β-oxidation (PPARα, and CPT-1) were regulated by LFP. Furthermore, LFP reduced the ratio of Firmicutes/Bacteroidetes and enhanced the ratio of Firmicutes Clostridia. Overall, these findings suggested that LFP might use as a potential dietary supplement for preventing obesity by modulating the lipid metabolism and improving the gut microbiota.
Collapse
Affiliation(s)
- Chih-Chung Wu
- Department of Food and Nutrition, Providence University, Taichung, 43301 Taiwan
| | - Yu-Wen Huang
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Ya-Ting Chen
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| | - Jie-Yin Leang
- Department of Food Science, National Pingtung University of Science and Technology, Pingtung, 91201 Taiwan
| | - Shu-Ling Hsieh
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung, 81157 Taiwan
| |
Collapse
|
24
|
Akram N, Saeed F, Afzaal M, Shah YA, Qamar A, Faisal Z, Ghani S, Ateeq H, Akhtar MN, Tufail T, Hussain M, Asghar A, Rasheed A, Jbawi EA. Gut microbiota and synbiotic foods: Unveiling the relationship in COVID-19 perspective. Food Sci Nutr 2023; 11:1166-1177. [PMID: 36911846 PMCID: PMC10002946 DOI: 10.1002/fsn3.3162] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 11/14/2022] [Accepted: 11/18/2022] [Indexed: 01/13/2023] Open
Abstract
The Coronavirus disease 2019 (COVID-19) has spread across the globe and is causing widespread disaster. The impact of gut microbiota on lung disease has been widely documented. Diet, environment, and genetics all play a role in shaping the gut microbiota, which can influence the immune system. Improving the gut microbiota profile through customized diet, nutrition, and supplementation has been shown to boost immunity, which could be one of the preventative methods for reducing the impact of various diseases. Poor nutritional status is frequently linked to inflammation and oxidative stress, both of which can affect the immune system. This review emphasizes the necessity of maintaining an adequate level of important nutrients to effectively minimize inflammation and oxidative stress, moreover to strengthen the immune system during the COVID-19 severity. Furthermore, the purpose of this review is to present information and viewpoints on the use of probiotics, prebiotics, and synbiotics as adjuvants for microbiota modification and its effects on COVID-19 prevention and treatment.
Collapse
Affiliation(s)
- Noor Akram
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | - Farhan Saeed
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Afzaal
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Yasir Abbas Shah
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aiza Qamar
- Department of Nutrition and Health PromotionUniversity of Home Economics LahoreLahorePakistan
| | - Zargham Faisal
- Institute of Food Science and NutritionBahauddin Zakariya University MultanMultanPakistan
| | - Samia Ghani
- Faculty of Pharmaceutical SciencesGovernment College University FaisalabadPunjabPakistan
| | - Huda Ateeq
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Muhammad Nadeem Akhtar
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Tabassum Tufail
- University Institute of Diet and Nutritional SciencesThe University of LahoreLahorePakistan
| | - Muzzamal Hussain
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Aasma Asghar
- Department of Food ScienceGovernment College UniversityFaisalabadPakistan
| | - Ammara Rasheed
- Department of Food and NutritionGovernment College UniversityFaisalabadPakistan
| | | |
Collapse
|
25
|
Huang CH, Hsiao SY, Lin YH, Tsai GJ. Effects of Fermented Citrus Peel on Ameliorating Obesity in Rats Fed with High-Fat Diet. Molecules 2022; 27:8966. [PMID: 36558098 PMCID: PMC9786243 DOI: 10.3390/molecules27248966] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/01/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Although citrus peel is a waste material, it contains a variety of bioactive components. As our preliminary findings showed that citrus peels fermented with Saccharomyces cerevisiae T1 contained increased levels of anti-obesity flavonoids, the objective of this study was to prepare fermented citrus peel and to investigate its effect on ameliorating obesity in Sprague Dawley (SD) rats fed with a high-fat diet (HFD). After fermentation, the amounts of limonene, nobiletin and 3-methoxynobiletin in citrus peel were markedly increased. SD rats were fed with an HFD for 10 weeks, followed by fermented citrus peel-containing HFD (0.3% or 0.9% w/w) for 6 weeks. Compared with those fed with an HFD alone, lower levels of body weight, visceral fat, body fat percentage, blood triglyceride, total cholesterol, low-density lipoprotein, malondialdehyde and hepatic adipose accumulation were observed in rats fed with fermented citrus peel. In parallel, hepatic levels of acetyl-CoA carboxylase and fatty acid synthase were diminished, and the level of hormone sensitivity lipase in visceral fat was elevated. These results reveal fermented citrus peel is a promising natural product with beneficial effects of alleviating HFD-induced obesity.
Collapse
Affiliation(s)
- Chung-Hsiung Huang
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Shun-Yuan Hsiao
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
| | - Yung-Hsiang Lin
- Research and Design Center, TCI Co., Ltd., Taipei 11494, Taiwan
| | - Guo-Jane Tsai
- Department of Food Science, National Taiwan Ocean University, Keelung 20224, Taiwan
- Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University, Keelung 20224, Taiwan
| |
Collapse
|
26
|
Youn HY, Seo KH, Kim HJ, Kim YS, Kim H. Effect of postbiotics derived from kefir lactic acid bacteria-mediated bioconversion of citrus pomace extract and whey on high-fat diet-induced obesity and gut dysbiosis. Food Res Int 2022; 162:111930. [DOI: 10.1016/j.foodres.2022.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/29/2022]
|
27
|
Zhu Y, Wei YL, Karras I, Cai PJ, Xiao YH, Jia CL, Qian XL, Zhu SY, Zheng LJ, Hu X, Sun AD. Modulation of the gut microbiota and lipidomic profiles by black chokeberry ( Aronia melanocarpa L.) polyphenols via the glycerophospholipid metabolism signaling pathway. Front Nutr 2022; 9:913729. [PMID: 35990329 PMCID: PMC9387202 DOI: 10.3389/fnut.2022.913729] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Black chokeberry (Aronia melanocarpa L.) is rich in polyphenols with various physiological and pharmacological activities. However, the relationship between the modulation effect of black chokeberry polyphenols on obesity and the alteration of lipid metabolism is not clearly understood. This study aimed to investigate the beneficial effects of the black chokeberry polyphenols (BCPs) treatment on the structure of gut microbiota, lipid metabolism, and associated mechanisms in high-fat diet (HFD)-induced obese rats. Here, we found that a high-fat diet promoted body weight gain and lipid accumulation in rats, while oral BCPs supplementation reduced body weight, liver, and white adipose tissue weight and alleviated dyslipidemia and hepatic steatosis in HFD-induced obese rats. In addition, BCPs supplementation prevented gut microbiota dysbiosis by increasing the relative abundance of Bacteroides, Prevotella, Romboutsia, and Akkermansia and decreasing the relative abundance of Desulfovibrio and Clostridium. Furthermore, 64 lipids were identified as potential lipid biomarkers through lipidomics analysis after BCPs supplementation, especially PE (16:0/22:6), PE (18:0/22:6), PC (20:3/19:0), LysoPE (24:0), LysoPE (24:1), and LysoPC (20:0). Moreover, our studies provided new evidence that composition of gut microbiota was closely related to the alteration of lipid profiles after BCPs supplementation. Additionally, BCPs treatment could ameliorate the disorder of lipid metabolism by regulating the mRNA and protein expression of genes related to the glycerophospholipid metabolism signaling pathway in HFD-induced obese rats. The mRNA and protein expression of PPARα, CPT1α, EPT1, and LCAT were significantly altered after BCPs treatment. In conclusion, the results of this study indicated that BCPs treatment alleviated HFD-induced obesity by modulating the composition and function of gut microbiota and improving the lipid metabolism disorder via the glycerophospholipid metabolism signaling pathway.
Collapse
Affiliation(s)
- Yue Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yu-Long Wei
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ioanna Karras
- College of Agricultural, Consumer and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Peng-Ju Cai
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Yu-Hang Xiao
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Cheng-Li Jia
- Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xiao-Lin Qian
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Shi-Yu Zhu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Lu-Jie Zheng
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Xin Hu
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| | - Ai-Dong Sun
- College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.,Beijing Key Laboratory of Forest Food Processing and Safety, Beijing Forestry University, Beijing, China
| |
Collapse
|
28
|
The Role of Gut Microbiota Modulation Strategies in Obesity: The Applications and Mechanisms. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8080376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Nowadays, obesity is a leading public health problem worldwide. The growing prevalence of obesity significantly accounts for other cardio-metabolic diseases, including hypertension and diabetes. Several studies have shown that obesity is strongly associated with genetic, environmental, lifestyle, and dietary factors, especially the disordered profiles of gut microbiota (GM). The present review concluded mechanistic studies and potential correspondent treatments for obesity. Specifically, the anti-obesity effects of food-derived compounds manipulating GM were highlighted. The potential limitations of bioactive compounds on absorption in the intestinal tract were also discussed. Thus, the future direction of fecal microbiota transplantation (FMT) as an approach to support modulating host GM (considered to be a potential therapeutic target for obesity) was discussed. This review shed light on the role of GM modulation strategies for the prevention/treatment of obesity.
Collapse
|
29
|
Lopes de Oliveira F, Yanka Portes Arruda T, Caldeira Morzelle M, Paula Aparecida Pereira A, Neves Casarotti S. Fruit by-products as potential prebiotics and promising functional ingredients to produce fermented milk. Food Res Int 2022; 161:111841. [PMID: 36192971 DOI: 10.1016/j.foodres.2022.111841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/18/2022] [Accepted: 08/21/2022] [Indexed: 11/04/2022]
|
30
|
Wedamulla NE, Fan M, Choi YJ, Kim EK. Citrus peel as a renewable bioresource: Transforming waste to food additives. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
31
|
Beneficial effects of Gynostemma pentaphyllum honey paste on obesity via counteracting oxidative stress and inflammation: An exploration of functional food developed from two independent foods rich in saponins and phenolics. Food Res Int 2022; 157:111483. [PMID: 35761708 DOI: 10.1016/j.foodres.2022.111483] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/20/2022] [Accepted: 06/05/2022] [Indexed: 11/20/2022]
Abstract
The development of functional foods that possess a combination of biological functions and good sensory properties is an emerging topic in the field of food and function. Gynostemma pentaphyllum (G. pentaphyllum) is widely considered to exert anti-obesity effect owing to its abundant saponins and other bioactive components, but bitter and unacceptable taste limit its utilization. While honey, a natural sweetener, not only has the pleasure sense but is also usually used as the carrier of functional food due to its phenolic oligosaccharide, etc. In the present study, we proposed the preparation method of a G. pentaphyllum honey paste (GH) and its beneficial effects on obese mice. The results showed that GH contented 0.055 mg/g Gypenoside XLIX, 0.01 mg/g Gypenoside A, and 11 kinds of phenolics. It could down-regulate 23.3% of liver TC level, increase serum ALT activity, improve liver tissue damage and epididymal adipocyte hypertrophy than obese mice. Besides, GH regulated enzyme activities such as SOD and GSH to enhance oxidative stress defense and exerted anti-inflammatory activity via IL-6 (52.4%), TNF-α (38.7%), IFN-γ (32%) and NF-κB (28%) genes down-regulation, which also reshaped the gut microbiota structure, exerting anti-obesity effects. More importantly, GH promoted obese mice appetite with orexin-A compared to G. pentaphyllum alone. This study provided a new perspective on the development of G. pentaphyllum functional foods with both good organoleptic performance and obesity therapy.
Collapse
|
32
|
Peng M, Gao Z, Liao Y, Guo J, Shan Y. Development of Functional Kiwifruit Jelly with chenpi (FKJ) by 3D Food Printing Technology and Its Anti-Obesity and Antioxidant Potentials. Foods 2022; 11:foods11131894. [PMID: 35804710 PMCID: PMC9265498 DOI: 10.3390/foods11131894] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
With the growing popularity of the concept of healthy diet, modern obesity treatment is gradually shifting from surgical or pharmacological treatment to nutritional intervention. As a safe and effective measure, natural product interventions are a potential strategy of obesity management. The present study aimed to develop a kind of functional food rich in bioactive compounds (chenpi, kiwifruit, and pectin as raw materials) and investigate their bioactive effects on a mouse model. For development of functional kiwifruit jelly with chenpi (FKJ), the results of single-factor and response surface experiments showed that the optimized formulation was composed of a 30.26% addition of chenpi, 35% addition of kiwifruit juice, and 2.88% addition of pectin. The FKJ obtained with the optimal formulation could be used as a 3D printing raw material to print the desired food shapes successfully. For bioactivity evaluation of FKJ, the results with a mouse model showed that the food intake, liver weight, and adipose tissue weight were significantly decreased after administration of FKJ with dose-dependent effect compared to the CON group (p < 0.05). Meanwhile, the serum levels of several inflammatory factors (TG, IL-6, and TNF-α) were decreased and the activities of several antioxidant-related enzymes (SOD, GSH-PX, and CAT) were increased. In short, a functional kiwifruit jelly with chenpi was developed in this study. It is a functional snack food rich in active phenolic compounds, low in calories, with antioxidant and anti-inflammatory activity, and prevents fat accumulation. FKJ could well meet the needs of modern people for nutrition and health and also promote the processing and utilization of natural products, and has good development prospects in the functional food industry.
Collapse
Affiliation(s)
- Mingfang Peng
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China;
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha 410128, China;
| | - Yanfang Liao
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
| | - Jiajing Guo
- Key Laboratory of Agro-Products Processing, Key Laboratory of Agro-Products Quality and Safety Control in Storage and Transport Process, Ministry of Agriculture and Rural Affairs of China, Beijing 100193, China;
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Correspondence: (J.G.); (Y.S.)
| | - Yang Shan
- International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China;
- Longping Branch, Graduate School of Hunan University, Changsha 410125, China
- Correspondence: (J.G.); (Y.S.)
| |
Collapse
|
33
|
Cheng H, Liu J, Zhang D, Tan Y, Feng W, Peng C. Gut microbiota, bile acids, and nature compounds. Phytother Res 2022; 36:3102-3119. [PMID: 35701855 DOI: 10.1002/ptr.7517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 05/09/2022] [Accepted: 05/17/2022] [Indexed: 11/09/2022]
Abstract
Natural compounds (NPs) have historically made a major contribution to pharmacotherapy in various diseases and drug discovery. In the past decades, studies on gut microbiota have shown that the efficacy of NPs can be affected by the interactions between gut microbiota and NPs. On one hand, gut microbiota can metabolize NPs. On the other hand, NPs can influence the metabolism and composition of gut microbiota. Among gut microbiota metabolites, bile acids (BAs) have attracted widespread attention due to their effects on the body homeostasis and the development of diseases. Studies have also confirmed that NPs can regulate the metabolism of BAs and ultimately regulate the physiological function of the body and disease progresses. In this review, we comprehensively summarize the interactions among NPs, gut microbiota, and BAs. In addition, we also discuss the role of microbial BAs metabolism in understanding the toxicity and efficacy of NPs. Furthermore, we present personal insights into the future research directions of NPs and BAs.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juan Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.,The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Li P, Yao X, Zhou Q, Meng X, Zhou T, Gu Q. Citrus Peel Flavonoid Extracts: Health-Beneficial Bioactivities and Regulation of Intestinal Microecology in vitro. Front Nutr 2022; 9:888745. [PMID: 35685878 PMCID: PMC9171401 DOI: 10.3389/fnut.2022.888745] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 12/23/2022] Open
Abstract
Citrus peel and its extracts are rich in flavonoids, which are beneficial to human health. In this study, the extraction, component analysis, biological activity and intestinal microbiota regulation of citrus peel flavonoid extracts (CPFEs) were investigated. CPFEs from 14 Chinese cultivars were purified by ultrasound-assisted extraction and XAD-16 macroporous resin. The total flavonoid content of lemon was greatest at 103.48 ± 0.68 mg/g dry weight (DW) by NaNO2-Al(NO3)3-NaOH spectrophotometry. Using high-performance liquid chromatography–diode array detection, the highest concentrations of naringin, hesperidin and eriocitrin were found in grapefruit (52.03 ± 0.51 mg/g DW), chachiensis (43.02 ± 0.37 mg/g DW) and lemon (27.72 ± 0.47 mg/g DW), respectively. Nobiletin was the most polymethoxylflavone in chachiensis at 16.91 ± 0.14 mg/g DW. CPFEs from chachiensis and grapefruit had better antioxidant activity, α-glucosidase inhibitory and sodium glycocholate binding ability. In addition, chachiensis and grapefruit CPFEs had positive effects on intestinal microecology, as evidenced by a significant increase in the relative abundance of Bifidobacterium spp., and production of short-chain fatty acids, especially acetic acid, by a simulated human intestinal model. Collectively, our results highlight the biological function of CPFEs as prebiotic agents, indicating their potential use in food and biomedical applications.
Collapse
|
35
|
Chen J, Shu Y, Chen Y, Ge Z, Zhang C, Cao J, Li X, Wang Y, Sun C. Evaluation of Antioxidant Capacity and Gut Microbiota Modulatory Effects of Different Kinds of Berries. Antioxidants (Basel) 2022; 11:1020. [PMID: 35624885 PMCID: PMC9137550 DOI: 10.3390/antiox11051020] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 12/19/2022] Open
Abstract
Berries are fairly favored by consumers. Phenolic compounds are the major phytochemicals in berries, among which anthocyanins are one of the most studied. Phenolic compounds are reported to have prebiotic-like effects. In the present study, we identified the anthocyanin profiles, evaluated and compared the antioxidant capacities and gut microbiota modulatory effects of nine common berries, namely blackberry, black goji berry, blueberry, mulberry, red Chinese bayberry, raspberry, red goji berry, strawberry and white Chinese bayberry. Anthocyanin profiles were identified by UPLC-Triple-TOF/MS. In vitro antioxidant capacity was evaluated by four chemical assays (DPPH, ABTS, FRAP and ORAC). In vivo antioxidant capacity and gut microbiota modulatory effects evaluation was carried out by treating healthy mice with different berry extracts for two weeks. The results show that most berries could improve internal antioxidant status, reflected by elevated serum or colonic T-AOC, GSH, T-SOD, CAT, and GSH-PX levels, as well as decreased MDA content. All berries significantly altered the gut microbiota composition. The modulatory effects of the berries were much the same, namely by the enrichment of beneficial SCFAs-producing bacteria and the inhibition of potentially harmful bacteria. Our study shed light on the gut microbiota modulatory effect of different berries and may offer consumers useful consumption guidance.
Collapse
Affiliation(s)
- Jiebiao Chen
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yichen Shu
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yanhong Chen
- Laboratory Animal Center of Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Zhiwei Ge
- Analysis Center of Agrobiology and Environmental Sciences, Zhejiang University, Zijingang Campus, Hangzhou 310058, China;
| | - Changfeng Zhang
- Shandong Key Laboratory of Storage and Transportation Technology of Agricultural Products, Shandong Institute of Commerce and Technology, Jinan 250103, China;
- National Engineering Research Center for Agricultural Products Logistics, Jinan 250103, China
| | - Jinping Cao
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Xian Li
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Yue Wang
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| | - Chongde Sun
- Laboratory of Fruit Quality Biology/Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, China; (J.C.); (Y.S.); (J.C.); (X.L.); (C.S.)
| |
Collapse
|
36
|
Wang M, Xu W, Yu J, Liu Y, Ma H, Ji C, Zhang C, Xue J, Li R, Cui H. Astaxanthin From Haematococcus pluvialis Prevents High-Fat Diet-Induced Hepatic Steatosis and Oxidative Stress in Mice by Gut-Liver Axis Modulating Properties. Front Nutr 2022; 9:840648. [PMID: 35495929 PMCID: PMC9039660 DOI: 10.3389/fnut.2022.840648] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/01/2022] [Indexed: 12/12/2022] Open
Abstract
Scope Evidence is mounting that astaxanthin (ATX), a xanthophyll carotenoid, used as a nutritional supplement to prevent chronic metabolic diseases. The present study aims to identify the potential function of ATX supplementation in preventing steatohepatitis and hepatic oxidative stress in diet-induced obese mice. Methods and Results In this study, ATX as dose of 0.25, 0.5, and 0.75% have orally administered to mice along with a high-fat diet (HFD) to investigate the role of ATX in regulating liver lipid metabolism and gut microbiota. The study showed that ATX dose-dependently reduces body weight, lipid droplet formation, hepatic triglycerides and ameliorated hepatic steatosis and oxidative stress. 0.75% ATX altered the levels of 34 lipid metabolites related to hepatic cholesterol and fatty acid metabolism which might be associated with downregulation of lipogenesis-related genes and upregulation of bile acid biosynthesis-related genes. The result also revealed that ATX alleviates HFD-induced gut microbiota dysbiosis by significantly inhibiting the growth of obesity-related Parabacteroides and Desulfovibrio while promoting the growth of Allobaculum and Akkermansia. Conclusion The study results suggested that dietary ATX may prevent the development of hepatic steatosis and oxidative stress with the risk of metabolic disease by gut-liver axis modulating properties.
Collapse
Affiliation(s)
- Meng Wang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Wenxin Xu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Jie Yu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Yingying Liu
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Haotian Ma
- Health Science Center, College of Forensic Sciences, Xi'an Jiaotong University, Xi'an, China
| | - Chunli Ji
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Chunhui Zhang
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Jinai Xue
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China
| | - Runzhi Li
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| | - Hongli Cui
- College of Agriculture, Institute of Molecular Agriculture and Bioenergy, Shanxi Agricultural University, Jinzhong, China.,State Key Laboratory of Integrative Sustainable Dryland Agriculture, Shanxi Agricultural University, Taiyuan, China
| |
Collapse
|
37
|
Hu Q, Liao W, Zhang Z, Shi S, Hou S, Ji N, Zhang X, Zhang Q, Liao Y, Li L, Zhu Z, Chen Y, Chen J, Yu F, Yang Q, Xiao H, Fu C, Du H, Wang Q, Cao H, Xiao H, Li R. The hepatoprotective effects of plant-based foods based on the "gut-liver axis": a prospective review. Crit Rev Food Sci Nutr 2022; 63:9136-9162. [PMID: 35466839 DOI: 10.1080/10408398.2022.2064423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The importance of the "gut-liver axis" in the pathogenesis of liver diseases has been revealed recently; which promotes the process of developing preventive and therapeutic strategies. However, considering that there are still many challenges in the medical treatment of liver diseases, potential preventive dietary intervention may be a good alternative choice. Plant-based foods have received much attention due to their reported health-promoting effects in targeting multiple pathways involved in the pathogenesis of liver diseases as well as the relative safety for general use. Based on the PubMed and Web of Science databases, this review emphatically summarizes the plant-based foods and their chemical constituents with reported effects to impact the LPS/TLR4 signaling pathway of gut-liver axis of various liver diseases, reflecting their health benefits in preventing/alleviating liver diseases. Moreover, some plant-based foods with potential gut-liver effects are specifically analyzed from the reported studies and conclusions. This review intends to provide readers an overview of the current progress in the field of this research topic. We expect to see more hepatoprotective measures for alleviating the current prevalence of liver diseases.
Collapse
Affiliation(s)
- Qiongdan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wan Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zhen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Sanjun Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Shuguang Hou
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Ningping Ji
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Xinjie Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qian Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yangyang Liao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Linghui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Zongping Zhu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Yi Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jiao Chen
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Fangkun Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Qingsong Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hongtao Xiao
- Department of Clinical Pharmacy, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China
| | - Chaomei Fu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Qi Wang
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Heping Cao
- U.S. Department of Agriculture, Agricultural Research Service, Southern Regional Research Center, New Orleans, LA, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, MA, USA
| | - Rui Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| |
Collapse
|
38
|
Li X, Zhang Y, Wang S, Shi C, Wang S, Wang X, Lü X. A review on the potential use of natural products in overweight and obesity. Phytother Res 2022; 36:1990-2015. [DOI: 10.1002/ptr.7426] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 01/21/2022] [Accepted: 02/05/2022] [Indexed: 12/22/2022]
Affiliation(s)
- Xin Li
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Yu Zhang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuxuan Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Caihong Shi
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Shuang Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Wang
- College of Food Science and Engineering Northwest A&F University Yangling China
| | - Xin Lü
- College of Food Science and Engineering Northwest A&F University Yangling China
| |
Collapse
|
39
|
Falduto M, Smedile F, Zhang M, Zheng T, Zhu J, Huang Q, Weeks R, Ermakov AM, Chikindas ML. Anti-obesity effects of Chenpi: an artificial gastrointestinal system study. Microb Biotechnol 2022; 15:874-885. [PMID: 35170866 PMCID: PMC8913872 DOI: 10.1111/1751-7915.14005] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/19/2023] Open
Abstract
The gut microbiota plays a significant role in human health; however, the complex relationship between gut microbial communities and host health is still to be thoroughly studied and understood. Microbes in the distal gut contribute to host health through the biosynthesis of vitamins and essential amino acids and the generation of important metabolic by-products from dietary components that are left undigested by the small intestine. Aged citrus peel (Chenpi) is used in traditional Chinese medicine to lower cholesterol, promote weight loss and treat various gastrointestinal symptoms. This study investigated how the microbial community changes during treatment with Chenpi using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Two preparations of Chenpi extract were tested: Chenpi suspended in oil only and Chenpi in a viscoelastic emulsion. Short-chain fatty acids (SCFAs) were measured during treatment to monitor changes in the microbial community of the colon presenting a decrease in production for acetic, propionic and butyric acid (ANOVA (P < 0.001) during the 15 days of treatment. 16S rRNA sequencing of microbial samples showed a clear difference between the two treatments at the different sampling times (ANOSIM P < 0.003; ADOSIM P < 0.002 [R2 = 69%]). Beta diversity analysis by PcoA showed differences between the two Chenpi formulations for treatment day 6. These differences were no longer detectable as soon as the Chenpi treatment was stopped, showing a reversible effect of Chenpi on the human microbiome. 16S rRNA sequencing of microbial samples from the descending colon showed an increase in Firmicutes for the treatment with the viscoelastic emulsion. At the genus level, Roseburia, Blautia, Subdoligranulum and Eubacterium increased in numbers during the viscoelastic emulsion treatment. This study sheds light on the anti-obesity effect of a polymethoxyflavone (PMFs)-enriched Chenpi extract and creates a foundation for the identification of 'obesity-prevention' biomarkers in the gut microbiota.
Collapse
Affiliation(s)
- Maria Falduto
- New Jersey Institute for Food, Nutrition and Health, Rutgers State University, New Brunswick, NJ, USA
| | - Francesco Smedile
- Department of Marine and Coastal Sciences, Rutgers State University, New Brunswick, NJ, USA.,Institute of Polar Science, Italian National Research Council, Messina, Italy
| | - Man Zhang
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Ting Zheng
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Jieyu Zhu
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Qingrong Huang
- Department of Food Science, Rutgers State University, New Brunswick, NJ, USA
| | - Richard Weeks
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA
| | - Alexey M Ermakov
- Agrobiotechnology Center, Don State Technical University, Rostov-on-Don, Russia
| | - Michael L Chikindas
- Health Promoting Naturals Laboratory, School of Environmental and Biological Sciences, Rutgers State University, New Brunswick, NJ, USA.,Agrobiotechnology Center, Don State Technical University, Rostov-on-Don, Russia.,I.M. Sechenov First Moscow State Medical University, Moscow, Russia
| |
Collapse
|
40
|
Bioactive Compounds of Citrus Fruits: A Review of Composition and Health Benefits of Carotenoids, Flavonoids, Limonoids, and Terpenes. Antioxidants (Basel) 2022; 11:antiox11020239. [PMID: 35204122 PMCID: PMC8868476 DOI: 10.3390/antiox11020239] [Citation(s) in RCA: 126] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 02/07/2023] Open
Abstract
The increased consumption of fruits, vegetables, and whole grains contributes to the reduced risk of many diseases related to metabolic syndrome, including neurodegenerative diseases, cardiovascular disease (CVD), diabetes, and cancer. Citrus, the genus Citrus L., is one of the most important fruit crops, rich in carotenoids, flavonoids, terpenes, limonoids, and many other bioactive compounds of nutritional and nutraceutical value. Moreover, polymethoxylated flavones (PMFs), a unique class of bioactive flavonoids, abundantly occur in citrus fruits. In addition, citrus essential oil, rich in limonoids and terpenes, is an economically important product due to its potent antioxidant, antimicrobial, and flavoring properties. Mechanistic, observational, and intervention studies have demonstrated the health benefits of citrus bioactives in minimizing the risk of metabolic syndrome. This review provides a comprehensive view of the composition of carotenoids, flavonoids, terpenes, and limonoids of citrus fruits and their associated health benefits.
Collapse
|
41
|
Lu H, You Y, Zhou X, He Q, Wang M, Chen L, Zhou L, Sun X, Liu Y, Jiang P, Dai J, Fu X, Kwan HY, Zhao X, Lou L. Citrus reticulatae pericarpium Extract Decreases the Susceptibility to HFD-Induced Glycolipid Metabolism Disorder in Mice Exposed to Azithromycin in Early Life. Front Immunol 2021; 12:774433. [PMID: 34868039 PMCID: PMC8640250 DOI: 10.3389/fimmu.2021.774433] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/03/2021] [Indexed: 12/17/2022] Open
Abstract
Background Studies have shown that gut microbe disorder in mice due to early-life antibiotic exposure promotes glycolipid metabolism disorder in adulthood. However, the underlying mechanism remains unclear and there is not yet an effective intervention or treatment for this process. Purpose The study investigated whether early-life azithromycin (AZT) exposure in mice could promote high-fat diet (HFD)-induced glycolipid metabolism disorder in adulthood. Moreover, the effect of citrus reticulata pericarpium (CRP) extract on glycolipid metabolism disorder via regulation of gut microbiome in mice exposed to antibodies early in life were investigated. Methods and Results Three-week-old mice were treated with AZT (50 mg/kg/day) via drinking water for two weeks and then were fed a CRP diet (1% CRP extract) for four weeks and an HFD for five weeks. The results showed that early-life AZT exposure promoted HFD-induced glycolipid metabolism disorder, increased the levels of inflammatory factors, promoted the flora metabolism product trimethylamine N-oxide (TMAO), and induced microbial disorder in adult mice. Importantly, CRP extract mitigated these effects. Conclusion Taken together, these findings suggest that early-life AZT exposure increases the susceptibility to HFD-induced glycolipid metabolism disorder in adult mice, and CRP extract can decrease this susceptibility by regulating gut microbiome.
Collapse
Affiliation(s)
- Hanqi Lu
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Yanting You
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Xinghong Zhou
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Qiuxing He
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Ming Wang
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| | - Liqian Chen
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Lin Zhou
- Endocrinology Department, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaomin Sun
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yanyan Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Pingping Jiang
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Jiaojiao Dai
- School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xiuqiong Fu
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Hiu Yee Kwan
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Xiaoshan Zhao
- Department of Traditional Chinese Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China.,School of Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Linjie Lou
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
42
|
Lu X, Zhao C, Shi H, Liao Y, Xu F, Du H, Xiao H, Zheng J. Nutrients and bioactives in citrus fruits: Different citrus varieties, fruit parts, and growth stages. Crit Rev Food Sci Nutr 2021; 63:2018-2041. [PMID: 34609268 DOI: 10.1080/10408398.2021.1969891] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Citrus fruits are consumed in large quantities worldwide due to their attractive aromas and taste, as well as their high nutritional values and various health-promoting effects, which are due to their abundance of nutrients and bioactives. In addition to water, carbohydrates, vitamins, minerals, and dietary fibers are important nutrients in citrus, providing them with high nutritional values. Citrus fruits are also rich in various bioactives such as flavonoids, essential oils, carotenoids, limonoids, and synephrines, which protect from various ailments, including cancer and inflammatory, digestive, and cardiovascular diseases. The composition and content of nutrients and bioactives differ significantly among citrus varieties, fruit parts, and growth stages. To better understand the nutrient and bioactive profiles of citrus fruits and provide guidance for the utilization of high-value citrus resources, this review systematically summarizes the nutrients and bioactives in citrus fruit, including their contents, structural characteristics, and potential health benefits. We also explore the composition variation in different citrus varieties, fruits parts, and growth stages, as well as their health-promoting effects and applications.
Collapse
Affiliation(s)
- Xingmiao Lu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chengying Zhao
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Huan Shi
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Yongcheng Liao
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Fei Xu
- Department of science and technology catalyze, Nestlé R&D (China) Ltd, Beijing, China
| | - Hengjun Du
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Hang Xiao
- Department of Food Science, University of Massachusetts, Amherst, Massachusetts, USA
| | - Jinkai Zheng
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
43
|
Wang Y, Zhou Y, Fu J. Advances in antiobesity mechanisms of capsaicin. Curr Opin Pharmacol 2021; 61:1-5. [PMID: 34537583 DOI: 10.1016/j.coph.2021.08.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023]
Abstract
Obesity is a global epidemic that affects the lives and health of millions of people. The prevention and treatment of obesity have become a significant public health challenge worldwide. Numerous studies showed that the gut microbiota is associated with the development of obesity, and the regulatory mechanisms mediating the relationship between gut microbiota and obesity have become an intense research area. Capsaicin is a vanilla amide alkaloid that is an active ingredient in pepper. Much research demonstrated the antiobesity activity of capsaicin. This article reviews recent research on the antiobesity mechanisms of capsaicin involving alterations of the gut microbial composition, reduction of intestinal permeability, and regulation of the microbiome-gut-brain axis. This summary will establish a basis for further developing capsaicin as an ingredient in medications and health products.
Collapse
Affiliation(s)
- Yuanwei Wang
- College of Animal and Veterinary Sciences, Southwest Minzu University, Chengdu 610041, PR China.
| | - Yahan Zhou
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, PR China
| | - Jia Fu
- School of Basic Medical Sciences, Chengdu University, Chengdu 610106, PR China.
| |
Collapse
|
44
|
Zhang M, Pan Y, Dong Q, Tang X, Xin Y, Yin B, Zhu J, Kou X, Ho CT, Huang Q. Development of organogel-based emulsions to enhance the loading and bioaccessibility of 5-demethylnobiletin. Food Res Int 2021; 148:110592. [PMID: 34507737 DOI: 10.1016/j.foodres.2021.110592] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/08/2021] [Accepted: 07/05/2021] [Indexed: 10/20/2022]
Abstract
5-Demethylnobiletin (5-DMN), identified in the aged citrus peels, has received increasing attentions due to its outstanding bioactivity among citrus polymethoxyflavones (PMFs). However, the poor water solubility and high crystallinity limit its oral bioavailability. Besides, the solubility of 5-DMN in the oil is very limited, which restricts its loading capacity in emulsions for bioavailability enhancement. In this study, an organogel formulation was developed to improve the solubility of 5-DMN in medium-chain triacylglycerols by 3.5 times higher without crystal formation during 5-day storage at room temperature. Increasing the gelator (i.e., sugar ester) concentration led to the increase of viscosity and a gel-like structure of the organogel. The ternary phase diagram of organogel-based emulsions was explored, and 40% organogel was selected as the oil phase for emulsion preparation. Increasing the concentration of Tween 80 from 0% to 6% decreased the droplet size and viscoelasticity of the emulsions. Two in vitro models, the pH-stat lipolysis model and TNO gastro-intestinal model (TIM-1), were applied to investigate the bioaccessibility of 5-DMN in different delivery systems. Compared with the conventional emulsion and oil suspension, the pH-stat lipolysis demonstrated that the organogel-based emulsion was the most efficient tool to enhance 5-DMN bioacccessibility. Moreover, TIM-1 digestive study indicated that 5-DMN bioaccessibility delivered by organogel-based emulsions was about 3.26-fold higher than that of oil suspension. Our results suggested that the organogel-based emulsion was an effective delivery route to enhance the loading and bioaccessibility of lipophilic compounds of high crystallinity.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yijun Pan
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Qiaoru Dong
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xudong Tang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Yanping Xin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong 529020, China
| | - Baoer Yin
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Jieyu Zhu
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA
| | - Xingran Kou
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, NJ 08901, USA.
| |
Collapse
|
45
|
Qian Y, Gao Z, Wang C, Ma J, Li G, Fu F, Guo J, Shan Y. Effects of Different Treatment Methods of Dried Citrus Peel ( Chenpi) on Intestinal Microflora and Short-Chain Fatty Acids in Healthy Mice. Front Nutr 2021; 8:702559. [PMID: 34434953 PMCID: PMC8381872 DOI: 10.3389/fnut.2021.702559] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/21/2021] [Indexed: 12/12/2022] Open
Abstract
Chenpi is a kind of dried citrus peel from Citrus reticulata, and it is often used as traditional Chinese medicine to treat dyspepsia and respiratory tract inflammation. In this study, to determine which way of chenpi treatment plays a better effect on the prevention of obesity in healthy mice, we conducted 16S ribosomal RNA (rRNA) gene sequencing for intestinal microbiota and gas chromatography-mass spectrometry detector (GC/MSD) analysis for short-chain fatty acids (SCFAs) of female rats fed with either chenpi decoction or chenpi powder-based diet (n = 10 per group) for 3 weeks. Chenpi powder (CP) group significantly reduced abdominal adipose tissues, subcutaneous adipose tissue, and the serum level of total triacylglycerol (TG). At a deeper level, chenpi powder has a better tendency to increase the ratio of Bacteroidetes to Firmicutes. It alters the Muribaculaceae and Muribaculum in intestinal microbiota, though it is not significant. The concentrations of acetic acid, valeric acid, and butyric acid increased slightly but not significantly in the CP group. Chenpi decoction just reduced perirenal adipose tissues, but it shows better antioxidant activity. It has little effect on intestinal microbiota. No differences were found for SCFAs in the chenpi decoction (CD) group. The results indicated that chenpi powder has a better effect in preventing obesity in mice. It can provide a basis for the development of functional products related to chenpi powder.
Collapse
Affiliation(s)
- Yujiao Qian
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Zhipeng Gao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Chen Wang
- Longping Branch, Graduate School of Hunan University, Changsha, China
| | - Jie Ma
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, China
| | - Gaoyang Li
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Fuhua Fu
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Jiajing Guo
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Yang Shan
- Longping Branch, Graduate School of Hunan University, Changsha, China.,International Joint Lab on Fruits & Vegetables Processing, Quality and Safety, Hunan Key Lab of Fruits & Vegetables Storage, Processing, Quality and Safety, Hunan Agriculture Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| |
Collapse
|
46
|
Zhao T, Zhan L, Zhou W, Chen W, Luo J, Zhang L, Weng Z, Zhao C, Liu S. The Effects of Erchen Decoction on Gut Microbiota and Lipid Metabolism Disorders in Zucker Diabetic Fatty Rats. Front Pharmacol 2021; 12:647529. [PMID: 34366839 PMCID: PMC8339961 DOI: 10.3389/fphar.2021.647529] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 07/13/2021] [Indexed: 12/12/2022] Open
Abstract
Obesity is a chronic metabolic disease caused by genetic and environmental factors that has become a serious global health problem. There is evidence that gut microbiota is closely related to the occurrence and development of obesity. Erchen Decoction (ECD), a traditional Chinese medicine, has been widely used for clinical treatment and basic research of obesity and related metabolic diseases in recent years. It can significantly improve insulin resistance (IR) and lipid metabolism disorders. However, there is no microbiological study on its metabolic regulation. In this study, we investigated the effects of ECD on obesity, especially lipid metabolism and the composition and function of gut microbiota in Zucker diabetic fatty (ZDF) rats, and explored the correlation between the biomarkers of gut microbiota and metabolite and host phenotype. The results showed that ECD could reduce body weight, improve IR and lipid metabolism, and reduce the concentration of free fatty acids (FFA) released from white adipose tissue (WAT) due to excessive lipolysis by interfering with the insulin receptor substrate 1 (IRS1)/protein kinase B (AKT)/protein kinase A (PKA)/hormone-sensitive triglyceride lipase (HSL) signaling pathway in ZDF rats. Additionally, ECD gradually adjusted the overall structure of changed gut microbiota, reversed the relative abundance of six genera, and changed the function of gut microbiota by reducing the content of propionic acid, a metabolite of gut microbiota, in ZDF rats. A potentially close relationship between biomarkers, especially Prevotella, Blautia, and Holdemania, propionic acid and host phenotypes were demonstrated through correlation analysis. The results suggested that the beneficial effects of ECD on obesity, especially lipid metabolism disorders, are related to the regulation of gut microbiota in ZDF rats. This provides a basis for further research on the mechanism and clinical application of ECD to improve obesity via gut microbiota.
Collapse
Affiliation(s)
- Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wanxin Chen
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jintong Luo
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zebin Weng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chunyan Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shenlin Liu
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, China
| |
Collapse
|
47
|
Zhang M, Zhang X, Zhu J, Zhao DG, Ma YY, Li D, Ho CT, Huang Q. Bidirectional interaction of nobiletin and gut microbiota in mice fed with a high-fat diet. Food Funct 2021; 12:3516-3526. [PMID: 33900329 DOI: 10.1039/d1fo00126d] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nobiletin is abundant in citrus peels and demonstrates good anti-obesity bioactivity. However, its anti-obesity mechanisms still remain unclear. This study aims to explore the bidirectional interaction between nobiletin and gut microbiota in mice fed with a high-fat diet. For the colonic bioconversion, more demethylated metabolites with higher biological activity were found in feces than nobiletin in the 48 h excretion study and 8 week consecutive dosing study. Moreover, long-term oral intake of nobiletin would modify the gut microbiota with improved demethylation ability and enhanced production of short chain fatty acids. The comparison of metabolite profiles in mouse liver and feces indicated that gut microbiota might have a higher biotransformation activity on nobiletin than the host. Two bacteria at the genus level, Allobaculum and Roseburia, remained enriched by nobiletin after the 4- and 8-week feedings. They might correlate with the enhanced nobiletin biotransformation and actively contribute to the health benefits of nobiletin in vivo. These results suggested that the bidirectional interaction of nobiletin and gut microbiota played an important role on the anti-obesity effect of nobiletin.
Collapse
Affiliation(s)
- Man Zhang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Jieyu Zhu
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Deng-Gao Zhao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Yan-Yan Ma
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, Guangdong, China
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| | - Qingrong Huang
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA.
| |
Collapse
|
48
|
Zhou L, Gu W, Kui F, Gao F, Niu Y, Li W, Zhang Y, Guo L, Wang J, Guo Z, Du G. The mechanism and candidate compounds of aged citrus peel ( chenpi) preventing chronic obstructive pulmonary disease and its progression to lung cancer. Food Nutr Res 2021; 65:7526. [PMID: 34262419 PMCID: PMC8254466 DOI: 10.29219/fnr.v65.7526] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 02/09/2021] [Accepted: 03/03/2021] [Indexed: 12/12/2022] Open
Abstract
Background Chronic obstructive pulmonary disease (COPD) is an important risk factor for developing lung cancer. Aged citrus peel (chenpi) has been used as a dietary supplement for respiratory diseases in China. Objective To explore the mechanism and candidate compounds of chenpi preventing COPD and its progression to lung cancer. Methods The active components and potential targets of chenpi were retrieved from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database. Disease-associated targets of COPD and lung cancer were collected in the Gene Cards and TTD database. The component-target network and PPI network were constructed using the Cytoscape 3.8.0 software. David database was used for GO and KEGG enrichment analysis. The main active components were verified by using the autodock Vina 1.1.2 software. Mouse lung cancer with COPD was induced by cigarette smoking (CS) combined with urethane injection to confirm preventing the effect of hesperetin (the candidate compound of chenpi) on COPD progression to lung cancer and its underlying mechanisms. Results The network analysis revealed that the key active components of chenpi (nobiletin, naringenin, hesperetin) regulate five core targets (AKT1, TP53, IL6, VEGFA, MMP9). In addition, 103 potential pathways of chenpi were identified. Chenpi can prevent COPD and its progression to lung cancer by getting involved in the PI3K-Akt signaling pathway and MAPK signaling pathway. Molecular docking indicated that hesperetin had better binding activity for core targets. In mouse lung cancer with COPD, treatment with hesperetin dose-dependently improved not only lung tissue injury in COPD but also carcinoma lesions in lung cancer. Meanwhile, hesperetin could suppress the protein expression of AKT1, IL6, VEGFA, MMP9 and up-regulate the protein expression of TP53, and thus reduced the risk of COPD progression to lung cancer. Conclusion Hesperetin is a candidate compound of chenpi that helps in preventing COPD and its progression to lung cancer by regulating AKT1, IL6, VEGFA, MMP9 and TP53.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Wenwen Gu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fuguang Kui
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Fan Gao
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yuji Niu
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Wenwen Li
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Yaru Zhang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Lijuan Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Junru Wang
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Zhenzhen Guo
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China
| | - Gangjun Du
- Institute of Pharmacy, Pharmaceutical College of Henan University, Kaifeng, China.,School of Pharmacy and Chemical Engineering, Zhengzhou University of Industry Technology, Xinzheng, China
| |
Collapse
|
49
|
Li J, Wang T, Liu P, Yang F, Wang X, Zheng W, Sun W. Hesperetin ameliorates hepatic oxidative stress and inflammation via the PI3K/AKT-Nrf2-ARE pathway in oleic acid-induced HepG2 cells and a rat model of high-fat diet-induced NAFLD. Food Funct 2021; 12:3898-3918. [PMID: 33977953 DOI: 10.1039/d0fo02736g] [Citation(s) in RCA: 239] [Impact Index Per Article: 59.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is considered the most common liver disease. Dietary supplementation has become a promising strategy for managing NAFLD. Hesperetin, a citrus flavonoid, is mainly found in citrus fruits (oranges, grapefruit, and lemons) and possesses multiple pharmacological properties, including anti-cancer, anti-Alzheimer and anti-diabetic effects. However, the anti-NAFLD effect and mechanisms of hesperetin remain unclear. In this study, we investigated the therapeutic effect of hesperetin against NAFLD and the underlying mechanism in vitro and in vivo. In oleic acid (OA)-induced HepG2 cells, hesperetin upregulated antioxidant levels (SOD/GPx/GR/GCLC/HO-1) by triggering the PI3 K/AKT-Nrf2 pathway, alleviating OA-induced reactive oxygen species (ROS) overproduction and hepatotoxicity. Furthermore, hesperetin suppressed NF-κB activation and reduced inflammatory cytokine secretion (TNF-α and IL-6). More importantly, we revealed that this anti-inflammatory effect is attributed to reduced ROS overproduction by the Nrf2 pathway, as pre-treatment with Nrf2 siRNA or an inhibitor of superoxide dismutase (SOD) or/and glutathione peroxidase (GPx) abolished hesperetin-induced NF-κB inactivation and reductions in inflammatory cytokine secretion. In a rat model of high-fat diet (HFD)-induced NAFLD, we confirmed that hesperetin relieved hepatic steatosis, oxidative stress, inflammatory cell infiltration and fibrosis. Moreover, hesperetin activated the PI3 K/AKT-Nrf2 pathway in the liver, increasing antioxidant expression and inhibiting NF-κB activation and inflammatory cytokine secretion. In summary, our results demonstrate that hesperetin ameliorates hepatic oxidative stress through the PI3 K/AKT-Nrf2 pathway and that this antioxidative effect further suppresses NF-κB-mediated inflammation during NAFLD progression. Thus, our study suggests that hesperetin may be an effective dietary supplement for improving NAFLD by suppressing hepatic oxidative stress and inflammation.
Collapse
Affiliation(s)
- Jingda Li
- College of Life Science, Yangtze University, Jingzhou, Hubei, China.
| | - Tianqi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, China
| | - Panpan Liu
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| | - Fuyuan Yang
- Health Science Center, Yangtze University, Jingzhou, Hubei, China
| | - Xudong Wang
- College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Weilong Zheng
- Institute of Biomass Resources, Taizhou University, Taizhou, Zhejiang, China
| | - Wenlong Sun
- Institute of Biomedical Research, School of Life Sciences, Shandong University of Technology, Zibo, Shandong, China.
| |
Collapse
|
50
|
Panwar D, Saini A, Panesar PS, Chopra HK. Unraveling the scientific perspectives of citrus by-products utilization: Progress towards circular economy. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.03.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|