1
|
Midekssa FS, Davidson CD, Wieger ME, Kamen JL, Hanna KM, Jayco DKP, Hu MM, Friend NE, Putnam AJ, Helms AS, Shikanov A, Baker BM. Semi-synthetic fibrous fibrin composites promote 3D microvascular assembly, survival, and host integration of endothelial cells without mesenchymal cell support. Bioact Mater 2025; 49:652-669. [PMID: 40235652 PMCID: PMC11999628 DOI: 10.1016/j.bioactmat.2025.02.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 01/14/2025] [Accepted: 02/19/2025] [Indexed: 04/17/2025] Open
Abstract
Vasculogenic assembly of 3D capillary networks remains a promising approach to vascularizing tissue-engineered grafts, a significant outstanding challenge in tissue engineering and regenerative medicine. Current approaches for vasculogenic assembly rely on the inclusion of supporting mesenchymal cells alongside endothelial cells, co-encapsulated within vasculo-conducive materials such as low-density fibrin hydrogels. Here, we established a material-based approach to circumvent the need for supporting mesenchymal cells and report that the inclusion of synthetic matrix fibers in dense (>3 mg mL-1) 3D fibrin hydrogels can enhance vasculogenic assembly in endothelial cell monocultures. Surprisingly, we found that the addition of non-cell-adhesive synthetic matrix fibers compared to cell-adhesive synthetic fibers best encouraged vasculogenic assembly, proliferation, lumenogenesis, a vasculogenic transcriptional program, and additionally promoted cell-matrix interactions and intercellular force transmission. Implanting fiber-reinforced prevascularized constructs to assess graft-host vascular integration, we demonstrate additive effects of enhanced vascular network assembly during in vitro pre-culture, fiber-mediated improvements in endothelial cell survival and vascular maintenance post-implantation, and enhanced host cell infiltration that collectively enabled graft vessel integration with host circulation. This work establishes synthetic matrix fibers as an inexpensive alternative to sourcing and expanding secondary supporting cell types for the prevascularization of tissue constructs.
Collapse
Affiliation(s)
- Firaol S. Midekssa
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Christopher D. Davidson
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Megan E. Wieger
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Jordan L. Kamen
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Kaylin M. Hanna
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Danica Kristen P. Jayco
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Michael M. Hu
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Nicole E. Friend
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Andrew J. Putnam
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| | - Adam S. Helms
- Division of Cardiovascular Medicine, University of Michigan Ann Arbor, MI 48109, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
- Program in Cellular and Molecular Biology, University of Michigan, Ann Arbor, MI, 48109, United States
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI, 48109, United States
| |
Collapse
|
2
|
Han H, Lee S, Gao G, Yi HG, Paek SH, Jang J. Cerebrovascular-Specific Extracellular Matrix Bioink Promotes Blood-Brain Barrier Properties. Biomater Res 2024; 28:0115. [PMID: 39641002 PMCID: PMC11617618 DOI: 10.34133/bmr.0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/14/2024] [Accepted: 11/11/2024] [Indexed: 12/07/2024] Open
Abstract
Chronic neuroinflammation is a principal cause of neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease. The blood-brain barrier predominantly comprises endothelial cells, and their intercellular communication with pericytes and other cell types regulates neuroinflammation. Here, we develop a tubular, perfusable model of human cerebrovascular tissues to study neurodegenerative diseases using cerebrovascular-specific extracellular matrix bioink, derived from a complementary blend of brain- and blood-vessel-derived extracellular matrices. The endothelial cells and pericytes in the bioprinted constructs spontaneously self-assemble into a dual-layered structure, closely mimicking the anatomy of the blood-brain barrier. Moreover, the mature cerebrovascular tissue shows physiological barrier functions and neuroinflammatory responses, indicating its potential for developing models of neuroinflammation-related pathologies. Collectively, our study demonstrates that furnishing a cerebrovascular-specific microenvironment can guide the cells to have native-like anatomical relevance and functional recapitulation in vitro.
Collapse
Affiliation(s)
- Hohyeon Han
- Division of Interdisciplinary Bioscience and Bioengineering,
Pohang University of Science and Technology (POSTECH), Pohang 37666, Republic of Korea
| | - Sooyeon Lee
- Department of Convergence IT Engineering,
POSTECH, Pohang 37666, Republic of Korea
| | - Ge Gao
- School of Medical Technology,
Beijing Institute of Technology, Beijing 100081, China
| | - Hee-Gyeong Yi
- Department of Convergence Biosystems Engineering, College of Agriculture and Life Sciences,
Chonnam National University, Gwangju 61186, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Hypoxia Ischemia Disease Institute,
Seoul National University, Seoul 03080, Republic of Korea
- Advanced Institutes of Convergence Technology,
Seoul National University, Suwon-si, Republic of Korea
| | - Jinah Jang
- Division of Interdisciplinary Bioscience and Bioengineering,
Pohang University of Science and Technology (POSTECH), Pohang 37666, Republic of Korea
- Department of Convergence IT Engineering,
POSTECH, Pohang 37666, Republic of Korea
- Department of Mechanical Engineering,
Pohang University of Science and Technology, Pohang 37673, Republic of Korea
- Institute of Convergence Science,
Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
3
|
Tronolone JJ, Mohamed N, Chaftari CP, Sun Y, Mathur T, Jain A. Engineering and Evaluating Vascularized Organotypic Spheroids On-Chip. Curr Protoc 2024; 4:e70058. [PMID: 39570194 DOI: 10.1002/cpz1.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
Organotypic spheroids are evolving as a mainstream in vitro modeling platform, but it is crucial to integrate vascular tissue and perfusion for maintaining their longevity, stability, and physiological relevance. Current vascularization methods remain underdeveloped, and several protocols are poorly reproducible and are limited to use by a few select groups who have designed these methods. To achieve standardization, we offer a step-by-step guide to vascularize organotypic spheroids in case studies of pancreatic islets and cancer spheroids. Our systematic approach spans microfluidic chip design, spheroid fabrication, and vascularization techniques (vasculogenesis and angiogenesis) while describing critical tissue engineering methods. We also include additional insights and operating guidelines within our protocols that characterize and quantitate these models with molecular assays as well as our integrated computational algorithms of mass transport through formed capillary vessels. These protocols contribute to establishing reproducibility, standardization, and enhanced adoption by other contemporary organ-chip researchers, who want to engineer vascularized organoid-based microphysiological platforms. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Design and fabrication of microfluidic chips for vascularized spheroids Basic Protocol 2: Organotypic spheroid fabrication Basic Protocol 3: Vascularized spheroids on-chip Basic Protocol 4: Functionality assays Support Protocol 1: Cell Culture Support Protocol 2: Immunocytochemistry.
Collapse
Affiliation(s)
- James J Tronolone
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Nadin Mohamed
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Christopher P Chaftari
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Yuxiang Sun
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, Texas
| | - Tanmay Mathur
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, Texas
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, Texas
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, Texas
| |
Collapse
|
4
|
Agarwal SS, Cortes-Medina M, Holter JC, Avendano A, Tinapple JW, Barlage JM, Menyhert MM, Onua LM, Song JW. Rapid low-cost assembly of modular microvessel-on-a-chip with benchtop xurography. LAB ON A CHIP 2024; 24:5065-5076. [PMID: 39397763 PMCID: PMC11472271 DOI: 10.1039/d4lc00565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/06/2024] [Indexed: 10/15/2024]
Abstract
Blood and lymphatic vessels in the body are central to molecular and cellular transport, tissue repair, and pathophysiology. Several approaches have been employed for engineering microfabricated blood and lymphatic vessels in vitro, yet traditionally these approaches require specialized equipment, facilities, and research training beyond the capabilities of many biomedical laboratories. Here we present xurography as an inexpensive, accessible, and versatile rapid prototyping technique for engineering cylindrical and lumenized microvessels. Using a benchtop xurographer, or a cutting plotter, we fabricated modular multi-layer poly(dimethylsiloxane) (PDMS)-based microphysiological systems (MPS) that house endothelial-lined microvessels approximately 260 μm in diameter embedded within a user-defined 3-D extracellular matrix (ECM). We validated the vascularized MPS (or vessel-on-a-chip) by quantifying changes in blood vessel permeability due to the pro-angiogenic chemokine CXCL12. Moreover, we demonstrated the reconfigurable versatility of this approach by engineering a total of four distinct vessel-ECM arrangements, which were obtained by only minor adjustments to a few steps of the fabrication process. Several of these arrangements, such as ones that incorporate close-ended vessel structures and spatially distinct ECM compartments along the same microvessel, have not been widely achieved with other microfabrication strategies. Therefore, we anticipate that our low-cost and easy-to-implement fabrication approach will facilitate broader adoption of MPS with customizable vascular architectures and ECM components while reducing the turnaround time required for iterative designs.
Collapse
Affiliation(s)
- Shashwat S Agarwal
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
| | - Marcos Cortes-Medina
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jacob C Holter
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Alex Avendano
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph W Tinapple
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Joseph M Barlage
- Department of Biomedical Education and Anatomy, The Ohio State University, Columbus, OH 43210, USA
| | - Miles M Menyhert
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Lotanna M Onua
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, OH 43210, USA.
- The Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Mote N, Kubik S, Polacheck WJ, Baker BM, Trappmann B. A nanoporous hydrogel-based model to study chemokine gradient-driven angiogenesis under luminal flow. LAB ON A CHIP 2024; 24:4892-4906. [PMID: 39308400 DOI: 10.1039/d4lc00460d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The growth of new blood vessels through angiogenesis is a highly coordinated process, which is initiated by chemokine gradients that activate endothelial cells within a perfused parent vessel to sprout into the surrounding 3D tissue matrix. While both biochemical signals from pro-angiogenic factors, as well as mechanical cues originating from luminal fluid flow that exerts shear stress on the vessel wall, have individually been identified as major regulators of endothelial cell sprouting, it remains unclear whether and how both types of cues synergize. To fill this knowledge gap, here, we created a 3D biomimetic model of chemokine gradient-driven angiogenic sprouting, in which a micromolded tube inside a hydrogel matrix is seeded with endothelial cells and connected to a perfusion system to control fluid flow rates and resulting shear forces on the vessel wall. To allow for the formation of chemokine gradients despite the presence of luminal flow, a nanoporous synthetic hydrogel that supports angiogenesis but limits the interstitial flow proved crucial. Using this system, we find that luminal flow and resulting shear stress is a major regulator of the speed and morphogenesis of angiogenic sprouting, whose action is mediated through changes in vascular permeability.
Collapse
Affiliation(s)
- Nidhi Mote
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
| | - Sarah Kubik
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, 27514 USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, 2174 Lurie BME Building, 1101 Beal Avenue, Ann Arbor, MI, 48109 USA
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Röntgenstraße 20, 48149 Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn-Straße 6, 44227 Dortmund, Germany.
| |
Collapse
|
6
|
Yrjänäinen A, Mesiä E, Lampela E, Kreutzer J, Vihinen J, Tornberg K, Vuorenpää H, Miettinen S, Kallio P, Mäki AJ. Barrier-free, open-top microfluidic chip for generating two distinct, interconnected 3D microvascular networks. Sci Rep 2024; 14:22916. [PMID: 39358415 PMCID: PMC11447027 DOI: 10.1038/s41598-024-74493-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024] Open
Abstract
Developing microphysiological cell culture platforms with a three-dimensional (3D) microenvironment has been a significant advancement from traditional monolayer cultures. Still, most of the current microphysiological platforms are limited in closed designs, i.e. are not accessible after 3D cell culture loading. Here, we report an open-top microfluidic chip which enables the generation of two sequentially loaded 3D cell cultures without physical barriers restricting the nurture, gas exchange and cellular communication. As a proof-of-concept, we demonstrated the formation of two 3D vasculatures, one in the upper and the other in the lower compartment, under three distinct flow conditions: asymmetric side-to-center, symmetric side-to-center and symmetric center-to-side. We used computational modelling to characterize initial flow pressures in cell culture compartments. We showed prominent vessel formation and branched vasculatures in upper and lower cell culture compartments with interconnecting, lumenized vessels with in vivo-relevant diameter in all flow conditions. With advanced image processing, we quantified and compared the overall vascular network volume and the total length formed in asymmetric side-to-center, symmetric side-to-center and symmetric center-to-side flow conditions. Our results indicate that the developed chip can house two distinct 3D cell cultures with merging vessels between compartments and by providing asymmetric side-to-center or symmetric center-to-side flow vascular morphogenesis is enhanced in terms of overall network length. The developed open-top microfluidic chip may find various applications in generation of tissue-specific 3D-3D co-cultures for studying cellular interactions in vascularized tissues and organs.
Collapse
Grants
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
- 9AB043, 9AC057 Wellbeing services county of Pirkanmaa
Collapse
Affiliation(s)
- Alma Yrjänäinen
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland.
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland.
| | - Elina Mesiä
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Ella Lampela
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland
| | - Joose Kreutzer
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Jorma Vihinen
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Pirkanmaa, Finland
| | - Kaisa Tornberg
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Hanna Vuorenpää
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland
| | - Susanna Miettinen
- Adult Stem Cell Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
- Tays Research Services, Wellbeing Services County of Pirkanmaa, Tampere University Hospital, Tampere, Pirkanmaa, Finland
| | - Pasi Kallio
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| | - Antti-Juhana Mäki
- Micro- and Nanosystems Research Group, Faculty of Medicine and Health Technology, Tampere University, Tampere, Pirkanmaa, Finland
| |
Collapse
|
7
|
Kumar R, Vitvitsky V, Sethaudom A, Singhal R, Solanki S, Alibeckoff S, Hiraki HL, Bell HN, Andren A, Baker BM, Lyssiotis CA, Shah YM, Banerjee R. Sulfide oxidation promotes hypoxic angiogenesis and neovascularization. Nat Chem Biol 2024; 20:1294-1304. [PMID: 38509349 PMCID: PMC11584973 DOI: 10.1038/s41589-024-01583-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 02/20/2024] [Indexed: 03/22/2024]
Abstract
Angiogenic programming in the vascular endothelium is a tightly regulated process for maintaining tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Here, we report that hypoxic upregulation of ·NO in endothelial cells reprograms the transsulfuration pathway to increase biogenesis of hydrogen sulfide (H2S), a proangiogenic metabolite. However, decreased H2S oxidation due to sulfide quinone oxidoreductase (SQOR) deficiency synergizes with hypoxia, inducing a reductive shift and limiting endothelial proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body (WBCreSqorfl/fl) and endothelial-specific (VE-cadherinCre-ERT2Sqorfl/fl) Sqor-knockout mice exhibit lower mass and angiogenesis than control mice. WBCreSqorfl/fl mice also exhibit decreased muscle angiogenesis following femoral artery ligation compared to control mice. Collectively, our data reveal the molecular intersections between H2S, O2 and ·NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization.
Collapse
Affiliation(s)
- Roshan Kumar
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Victor Vitvitsky
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Apichaya Sethaudom
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Rashi Singhal
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sumeet Solanki
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Sydney Alibeckoff
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Hannah N Bell
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Anthony Andren
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Yatrik M Shah
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI, USA
| | - Ruma Banerjee
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
8
|
Jung S, Cheong S, Lee Y, Lee J, Lee J, Kwon MS, Oh YS, Kim T, Ha S, Kim SJ, Jo DH, Ko J, Jeon NL. Integrating Vascular Phenotypic and Proteomic Analysis in an Open Microfluidic Platform. ACS NANO 2024; 18:24909-24928. [PMID: 39208278 PMCID: PMC11394367 DOI: 10.1021/acsnano.4c05537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
This research introduces a vascular phenotypic and proteomic analysis (VPT) platform designed to perform high-throughput experiments on vascular development. The VPT platform utilizes an open-channel configuration that facilitates angiogenesis by precise alignment of endothelial cells, allowing for a 3D morphological examination and protein analysis. We study the effects of antiangiogenic agents─bevacizumab, ramucirumab, cabozantinib, regorafenib, wortmannin, chloroquine, and paclitaxel─on cytoskeletal integrity and angiogenic sprouting, observing an approximately 50% reduction in sprouting at higher drug concentrations. Precise LC-MS/MS analyses reveal global protein expression changes in response to four of these drugs, providing insights into the signaling pathways related to the cell cycle, cytoskeleton, cellular senescence, and angiogenesis. Our findings emphasize the intricate relationship between cytoskeletal alterations and angiogenic responses, underlining the significance of integrating morphological and proteomic data for a comprehensive understanding of angiogenesis. The VPT platform not only advances our understanding of drug impacts on vascular biology but also offers a versatile tool for analyzing proteome and morphological features across various models beyond blood vessels.
Collapse
Affiliation(s)
- Sangmin Jung
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Sunghun Cheong
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Yoonho Lee
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jungseub Lee
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Jihye Lee
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Min-Seok Kwon
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
- Department
of Public Health Science, Graduate School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Sun Oh
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Target
Link Therapeutics, Inc., Seoul 04545, Republic
of Korea
| | - Taewan Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sungjae Ha
- ProvaLabs,
Inc., Seoul 08826, Republic of Korea
| | - Sung Jae Kim
- Department
of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
- SOFT
Foundry, Seoul National University, Seoul 08826, Republic of Korea
- Inter-university
Semiconductor Research Center, Seoul National
University, Seoul 08826, Republic
of Korea
| | - Dong Hyun Jo
- Department
of Anatomy and Cell Biology, Seoul National
University College of Medicine, Seoul 03080, Republic of Korea
| | - Jihoon Ko
- Department
of BioNano Technology, Gachon University, Seongnam-si, Gyeonggi-do 13120, Republic
of Korea
| | - Noo Li Jeon
- Department
of Mechanical Engineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Interdisciplinary
Program in Bioengineering, Seoul National
University, Seoul 08826, Republic
of Korea
- Institute
of Advanced Machines and Design, Seoul National
University, Seoul 08826, Republic
of Korea
- Qureator, Inc., San
Diego, California 92121, United States
| |
Collapse
|
9
|
Al-Nuaimi DA, Rütsche D, Abukar A, Hiebert P, Zanetti D, Cesarovic N, Falk V, Werner S, Mazza E, Giampietro C. Hydrostatic pressure drives sprouting angiogenesis via adherens junction remodelling and YAP signalling. Commun Biol 2024; 7:940. [PMID: 39097636 PMCID: PMC11297954 DOI: 10.1038/s42003-024-06604-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 07/17/2024] [Indexed: 08/05/2024] Open
Abstract
Endothelial cell physiology is governed by its unique microenvironment at the interface between blood and tissue. A major contributor to the endothelial biophysical environment is blood hydrostatic pressure, which in mechanical terms applies isotropic compressive stress on the cells. While other mechanical factors, such as shear stress and circumferential stretch, have been extensively studied, little is known about the role of hydrostatic pressure in the regulation of endothelial cell behavior. Here we show that hydrostatic pressure triggers partial and transient endothelial-to-mesenchymal transition in endothelial monolayers of different vascular beds. Values mimicking microvascular pressure environments promote proliferative and migratory behavior and impair barrier properties that are characteristic of a mesenchymal transition, resulting in increased sprouting angiogenesis in 3D organotypic model systems ex vivo and in vitro. Mechanistically, this response is linked to differential cadherin expression at the adherens junctions, and to an increased YAP expression, nuclear localization, and transcriptional activity. Inhibition of YAP transcriptional activity prevents pressure-induced sprouting angiogenesis. Together, this work establishes hydrostatic pressure as a key modulator of endothelial homeostasis and as a crucial component of the endothelial mechanical niche.
Collapse
Affiliation(s)
| | - Dominic Rütsche
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland
| | - Asra Abukar
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland
| | - Paul Hiebert
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
- Centre for Biomedicine, Hull York Medical School, The University of Hull, Hull, HU6 7RX, UK
| | - Dominik Zanetti
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Nikola Cesarovic
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Volkmar Falk
- Department of Cardiothoracic and Vascular Surgery, German Heart Center Berlin, 13353, Berlin, Germany
- Department of Health Sciences and Technology, ETH Zürich, 8093, Zürich, Switzerland
| | - Sabine Werner
- Department of Biology, ETH Zürich, Institute of Molecular Health Sciences, 8093, Zürich, Switzerland
| | - Edoardo Mazza
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| | - Costanza Giampietro
- ETH Zürich, DMAVT, Experimental Continuum Mechanics, Zürich, 8092, Switzerland.
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Experimental Continuum Mechanics, Dübendorf, 8600, Switzerland.
| |
Collapse
|
10
|
Tronolone JJ, Mohamed N, Jain A. Engineering Lymphangiogenesis-On-Chip: The Independent and Cooperative Regulation by Biochemical Factors, Gradients, and Interstitial Fluid Flow. Adv Biol (Weinh) 2024; 8:e2400031. [PMID: 38400704 DOI: 10.1002/adbi.202400031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Indexed: 02/25/2024]
Abstract
Despite the crucial role of lymphangiogenesis during development and in several diseases with implications for tissue regeneration, immunity, and cancer, there are significantly fewer tools to understand this process relative to angiogenesis. While there has been a major surge in modeling angiogenesis with microphysiological systems, they have not been rigorously optimized or standardized to enable the recreation of the dynamics of lymphangiogenesis. Here, a Lymphangiogenesis-Chip (L-Chip) is engineered, within which new sprouts form and mature depending upon the imposition of interstitial flow, growth factor gradients, and pre-conditioning of endothelial cells with growth factors. The L-Chip reveals the independent and combinatorial effects of these mechanical and biochemical determinants of lymphangiogenesis, thus ultimately resulting in sprouts emerging from a parent vessel and maturing into tubular structures up to 1 mm in length within 4 days, exceeding prior art. Further, when the constitution of the pre-conditioning cocktail and the growth factor cocktail used to initiate and promote lymphangiogenesis are dissected, it is found that endocan (ESM-1) results in more dominant lymphangiogenesis relative to angiogenesis. Therefore, The L-Chip provides a foundation for standardizing the microfluidics assays specific to lymphangiogenesis and for accelerating its basic and translational science at par with angiogenesis.
Collapse
Affiliation(s)
- James J Tronolone
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Nadin Mohamed
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
| | - Abhishek Jain
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX, 77843, USA
- Department of Medical Physiology, School of Medicine, Texas A&M Health Science Center, Bryan, TX, 77807, USA
- Department of Cardiovascular Sciences, Houston Methodist Academic Institute, Houston, TX, 77030, USA
| |
Collapse
|
11
|
Kang TY, Bocci F, Nie Q, Onuchic JN, Levchenko A. Spatial-temporal order-disorder transition in angiogenic NOTCH signaling controls cell fate specification. eLife 2024; 12:RP89262. [PMID: 38376371 PMCID: PMC10942579 DOI: 10.7554/elife.89262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2024] Open
Abstract
Angiogenesis is a morphogenic process resulting in the formation of new blood vessels from pre-existing ones, usually in hypoxic micro-environments. The initial steps of angiogenesis depend on robust differentiation of oligopotent endothelial cells into the Tip and Stalk phenotypic cell fates, controlled by NOTCH-dependent cell-cell communication. The dynamics of spatial patterning of this cell fate specification are only partially understood. Here, by combining a controlled experimental angiogenesis model with mathematical and computational analyses, we find that the regular spatial Tip-Stalk cell patterning can undergo an order-disorder transition at a relatively high input level of a pro-angiogenic factor VEGF. The resulting differentiation is robust but temporally unstable for most cells, with only a subset of presumptive Tip cells leading sprout extensions. We further find that sprouts form in a manner maximizing their mutual distance, consistent with a Turing-like model that may depend on local enrichment and depletion of fibronectin. Together, our data suggest that NOTCH signaling mediates a robust way of cell differentiation enabling but not instructing subsequent steps in angiogenic morphogenesis, which may require additional cues and self-organization mechanisms. This analysis can assist in further understanding of cell plasticity underlying angiogenesis and other complex morphogenic processes.
Collapse
Affiliation(s)
- Tae-Yun Kang
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| | - Federico Bocci
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California IrvineIrvineUnited States
- Department of Mathematics, University of California IrvineIrvineUnited States
| | - José N Onuchic
- Center for Theoretical Biological Physics, Rice UniversityHoustonUnited States
| | - Andre Levchenko
- Department of Biomedical Engineering, Yale UniversityNew HavenUnited States
- Yale UniversityNew HavenUnited States
| |
Collapse
|
12
|
Kmiotek-Wasylewska K, Łabędź-Masłowska A, Bobis-Wozowicz S, Karnas E, Noga S, Sekuła-Stryjewska M, Woźnicka O, Madeja Z, Dawn B, Zuba-Surma EK. Induced pluripotent stem cell-derived extracellular vesicles enriched with miR-126 induce proangiogenic properties and promote repair of ischemic tissue. FASEB J 2024; 38:e23415. [PMID: 38243682 DOI: 10.1096/fj.202301836r] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/15/2023] [Accepted: 12/27/2023] [Indexed: 01/21/2024]
Abstract
Emerging evidence suggests that stem cell-derived extracellular vesicles (EVs) may induce pro-regenerative effects in ischemic tissues by delivering bioactive molecules, including microRNAs. Recent studies have also shown pro-regenerative benefits of EVs derived from induced pluripotent stem (iPS) cells. However, the underlying mechanisms of EV benefits and the role of their transferred regulatory molecules remain incompletely understood. Accordingly, we investigated the effects of human iPS-derived EVs (iPS-EVs) enriched in proangiogenic miR-126 (iPS-miR-126-EVs) on functional properties of human endothelial cells (ECs) in vitro. We also examined the outcomes following EV injection in a murine model of limb ischemia in vivo. EVs were isolated from conditioned media from cultures of unmodified and genetically modified human iPS cells overexpressing miR-126. The iPS-miR-126-EVs were enriched in miR-126 when compared with control iPS-EVs and effectively transferred miR-126 along with other miRNAs to recipient ECs improving their functional properties essential for ischemic tissue repair, including proliferation, metabolic activity, cell survival, migration, and angiogenic potential. Injection of iPS-miR-126-EVs in vivo in a murine model of acute limb ischemia promoted angiogenesis, increased perfusion, and enhanced functional recovery. These observations corresponded with elevated expression of genes for several proangiogenic factors in ischemic tissues following iPS-miR-126-EV transplantation. These results indicate that innate pro-regenerative properties of iPS-EVs may be further enhanced by altering their molecular composition via controlled genetic modifications. Such iPS-EVs overexpressing selected microRNAs, including miR-126, may represent a novel acellular tool for therapy of ischemic tissues in vivo.
Collapse
Affiliation(s)
- Katarzyna Kmiotek-Wasylewska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Anna Łabędź-Masłowska
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Sylwia Bobis-Wozowicz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Elżbieta Karnas
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Sylwia Noga
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
- Malopolska Centre of Biotechnology, Laboratory of Stem Cell Biotechnology, Jagiellonian University, Kraków, Poland
| | - Małgorzata Sekuła-Stryjewska
- Malopolska Centre of Biotechnology, Laboratory of Stem Cell Biotechnology, Jagiellonian University, Kraków, Poland
| | - Olga Woźnicka
- Faculty of Biology, Institute of Zoology and Biomedical Research, Department of Cell Biology and Imaging, Jagiellonian University, Kraków, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| | - Buddhadeb Dawn
- Department of Internal Medicine, Kirk Kerkorian School of Medicine, University of Nevada, Las Vegas, Las Vegas, Nevada, USA
| | - Ewa K Zuba-Surma
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
13
|
Palomo M, Moreno-Castaño AB, Salas MQ, Escribano-Serrat S, Rovira M, Guillen-Olmos E, Fernandez S, Ventosa-Capell H, Youssef L, Crispi F, Nomdedeu M, Martinez-Sanchez J, De Moner B, Diaz-Ricart M. Endothelial activation and damage as a common pathological substrate in different pathologies and cell therapy complications. Front Med (Lausanne) 2023; 10:1285898. [PMID: 38034541 PMCID: PMC10682735 DOI: 10.3389/fmed.2023.1285898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
The endothelium is a biologically active interface with multiple functions, some of them common throughout the vascular tree, and others that depend on its anatomical location. Endothelial cells are continually exposed to cellular and humoral factors, and to all those elements (biological, chemical, or hemodynamic) that circulate in blood at a certain time. It can adapt to different stimuli but this capability may be lost if the stimuli are strong enough and/or persistent in time. If the endothelium loses its adaptability it may become dysfunctional, becoming a potential real danger to the host. Endothelial dysfunction is present in multiple clinical conditions, such as chronic kidney disease, obesity, major depression, pregnancy-related complications, septic syndromes, COVID-19, and thrombotic microangiopathies, among other pathologies, but also in association with cell therapies, such as hematopoietic stem cell transplantation and treatment with chimeric antigen receptor T cells. In these diverse conditions, evidence suggests that the presence and severity of endothelial dysfunction correlate with the severity of the associated disease. More importantly, endothelial dysfunction has a strong diagnostic and prognostic value for the development of critical complications that, although may differ according to the underlying disease, have a vascular background in common. Our multidisciplinary team of women has devoted many years to exploring the role of the endothelium in association with the mentioned diseases and conditions. Our research group has characterized some of the mechanisms and also proposed biomarkers of endothelial damage. A better knowledge would provide therapeutic strategies either to prevent or to treat endothelial dysfunction.
Collapse
Affiliation(s)
- Marta Palomo
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Hematology External Quality Assessment Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Ana Belén Moreno-Castaño
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - María Queralt Salas
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Silvia Escribano-Serrat
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Montserrat Rovira
- Hematopoietic Stem Cell Transplantation Unit, Hematology Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, Barcelona, Spain
| | - Elena Guillen-Olmos
- Department of Nephrology and Kidney Transplantation, Hospital Clínic de Barcelona, Centro de Referencia en Enfermedad Glomerular Compleja del Sistema Nacional de Salud (CSUR), University of Barcelona, Barcelona, Spain
| | - Sara Fernandez
- Medical Intensive Care Unit, Hospital Clínic de Barcelona, Barcelona, Spain
| | | | - Lina Youssef
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Fatima Crispi
- BCNatal – Barcelona Center for Maternal Fetal and Neonatal Medicine, Hospital Clínic de Barcelona and Hospital Sant Joan de Déu, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Centre for Biomedical Research on Rare Diseases (CIBER-ER), Madrid, Spain
| | - Meritxell Nomdedeu
- Hemostasis and Hemotherapy Department, Institute of Cancer and Blood Diseases, Hospital Clínic de Barcelona, Barcelona, Spain
| | - Julia Martinez-Sanchez
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| | - Blanca De Moner
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
- Josep Carreras Leukaemia Research Institute, Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Maribel Diaz-Ricart
- Hemostasis and Erythropathology Laboratory, Centre de Diagnòstic Biomèdic, Hospital Clínic de Barcelona, Institut de Recerca August Pi Sunyer, University of Barcelona, Barcelona, Spain
| |
Collapse
|
14
|
White MJ, Singh T, Wang E, Smith Q, Kutys ML. 'Chip'-ing away at morphogenesis - application of organ-on-chip technologies to study tissue morphogenesis. J Cell Sci 2023; 136:jcs261130. [PMID: 37795818 PMCID: PMC10565497 DOI: 10.1242/jcs.261130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023] Open
Abstract
Emergent cell behaviors that drive tissue morphogenesis are the integrated product of instructions from gene regulatory networks, mechanics and signals from the local tissue microenvironment. How these discrete inputs intersect to coordinate diverse morphogenic events is a critical area of interest. Organ-on-chip technology has revolutionized the ability to construct and manipulate miniaturized human tissues with organotypic three-dimensional architectures in vitro. Applications of organ-on-chip platforms have increasingly transitioned from proof-of-concept tissue engineering to discovery biology, furthering our understanding of molecular and mechanical mechanisms that operate across biological scales to orchestrate tissue morphogenesis. Here, we provide the biological framework to harness organ-on-chip systems to study tissue morphogenesis, and we highlight recent examples where organ-on-chips and associated microphysiological systems have enabled new mechanistic insight in diverse morphogenic settings. We further highlight the use of organ-on-chip platforms as emerging test beds for cell and developmental biology.
Collapse
Affiliation(s)
- Matthew J. White
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Tania Singh
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| | - Eric Wang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
| | - Quinton Smith
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California Irvine, Irvine, CA 92697, USA
| | - Matthew L. Kutys
- Department of Cell and Tissue Biology, University of California San Francisco, San Francisco, CA 94143, USA
- UCSF-UC Berkeley Joint Program in Bioengineering, University of California San Francisco, San Francisco, CA 94143, USA
| |
Collapse
|
15
|
Wang H, Lu J, Rathod M, Aw WY, Huang SA, Polacheck WJ. A facile fluid pressure system reveals differential cellular response to interstitial pressure gradients and flow. BIOMICROFLUIDICS 2023; 17:054103. [PMID: 37781136 PMCID: PMC10539030 DOI: 10.1063/5.0165119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/09/2023] [Indexed: 10/03/2023]
Abstract
Interstitial fluid pressure gradients and interstitial flow have been shown to drive morphogenic processes that shape tissues and influence progression of diseases including cancer. The advent of porous media microfluidic approaches has enabled investigation of the cellular response to interstitial flow, but questions remain as to the critical biophysical and biochemical signals imparted by interstitial fluid pressure gradients and resulting flow on resident cells and extracellular matrix (ECM). Here, we introduce a low-cost method to maintain physiological interstitial fluid pressures that is built from commonly accessible laboratory equipment, including a laser pointer, camera, Arduino board, and a commercially available linear actuator. We demonstrate that when the system is connected to a microfluidic device containing a 3D porous hydrogel, physiologic pressure is maintained with sub-Pascal resolution and when basic feedback control is directed using an Arduino, constant pressure and pressure gradient can be maintained even as cells remodel and degrade the ECM hydrogel over time. Using this model, we characterized breast cancer cell growth and ECM changes to ECM fibril structure and porosity in response to constant interstitial fluid pressure or constant interstitial flow. We observe increased collagen fibril bundling and the formation of porous structures in the vicinity of cancer cells in response to constant interstitial fluid pressure as compared to constant interstitial flow. Collectively, these results further define interstitial fluid pressure as a driver of key pathogenic responses in cells, and the systems and methods developed here will allow for future mechanistic work investigating mechanotransduction of interstitial fluid pressures and flows.
Collapse
Affiliation(s)
- Hao Wang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Jingming Lu
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Mitesh Rathod
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Wen Yih Aw
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | - Stephanie A. Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina 27514, USA
| | | |
Collapse
|
16
|
Abstract
Angiogenic sprouting, the formation of new blood vessels from pre-existing vasculature, is tightly regulated by the properties of the surrounding tissue microenvironment. Although the extracellular matrix has been shown to be a major regulator of this process, it is not clear how individual biochemical and mechanical properties influence endothelial cell sprouting. This information gap is largely due to the lack of suitable in vitro models that recapitulate angiogenic sprouting in a 3D environment with independent control over matrix properties. Here, we present protocols for the preparation of endothelial cell spheroid-laden synthetic, dextran-based hydrogels, which serve as a highly tunable 3D scaffold. The adjustment of the hydrogels' adhesiveness, stiffness, and degradability is demonstrated in detail. Finally, we describe assays to elucidate how individual matrix properties regulate angiogenic sprouting, including their analysis by immunofluorescence staining and imaging. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Synthesis of methacrylated dextran (DexMA) Basic Protocol 2: Generation of endothelial cell spheroids in microwells Basic Protocol 3: Endothelial cell sprouting in hydrogels of tunable stiffness Basic Protocol 4: Endothelial cell sprouting in hydrogels of tunable adhesiveness Basic Protocol 5: Endothelial cell sprouting in hydrogels of tunable degradability Basic Protocol 6: Imaging of endothelial cell spheroid-laden hydrogels Support Protocol 1: Preparation of pro-angiogenic cocktail for endothelial cell sprouting.
Collapse
Affiliation(s)
- Giuseppe Trapani
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Martin Sebastian Weiß
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
| | - Britta Trappmann
- Bioactive Materials Laboratory, Max Planck Institute for Molecular Biomedicine, Münster, Germany
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
17
|
Ruan Q, Tan S, Guo L, Ma D, Wen J. Prevascularization techniques for dental pulp regeneration: potential cell sources, intercellular communication and construction strategies. Front Bioeng Biotechnol 2023; 11:1186030. [PMID: 37274160 PMCID: PMC10232868 DOI: 10.3389/fbioe.2023.1186030] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/10/2023] [Indexed: 06/06/2023] Open
Abstract
One of the difficulties of pulp regeneration is the rapid vascularization of transplanted engineered tissue, which is crucial for the initial survival of the graft and subsequent pulp regeneration. At present, prevascularization techniques, as emerging techniques in the field of pulp regeneration, has been proposed to solve this challenge and have broad application prospects. In these techniques, endothelial cells and pericytes are cocultured to induce intercellular communication, and the cell coculture is then introduced into the customized artificial vascular bed or induced to self-assembly to simulate the interaction between cells and extracellular matrix, which would result in construction of a prevascularization system, preformation of a functional capillary network, and rapid reconstruction of a sufficient blood supply in engineered tissue after transplantation. However, prevascularization techniques for pulp regeneration remain in their infancy, and there remain unresolved problems regarding cell sources, intercellular communication and the construction of prevascularization systems. This review focuses on the recent advances in the application of prevascularization techniques for pulp regeneration, considers dental stem cells as a potential cell source of endothelial cells and pericytes, discusses strategies for their directional differentiation, sketches the mechanism of intercellular communication and the potential application of communication mediators, and summarizes construction strategies for prevascularized systems. We also provide novel ideas for the extensive application and follow-up development of prevascularization techniques for dental pulp regeneration.
Collapse
Affiliation(s)
| | | | | | - Dandan Ma
- *Correspondence: Dandan Ma, ; Jun Wen,
| | - Jun Wen
- *Correspondence: Dandan Ma, ; Jun Wen,
| |
Collapse
|
18
|
Kumar R, Vitvitsky V, Seth P, Hiraki HL, Bell H, Andren A, Singhal R, Baker BM, Lyssiotis CA, Shah YM, Banerjee R. Sulfide oxidation promotes hypoxic angiogenesis and neovascularization. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.14.532677. [PMID: 36993187 PMCID: PMC10055101 DOI: 10.1101/2023.03.14.532677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Angiogenic programming in the vascular endothelium is a tightly regulated process to maintain tissue homeostasis and is activated in tissue injury and the tumor microenvironment. The metabolic basis of how gas signaling molecules regulate angiogenesis is elusive. Herein, we report that hypoxic upregulation of NO synthesis in endothelial cells reprograms the transsulfuration pathway and increases H 2 S biogenesis. Furthermore, H 2 S oxidation by mitochondrial sulfide quinone oxidoreductase (SQOR) rather than downstream persulfides, synergizes with hypoxia to induce a reductive shift, limiting endothelial cell proliferation that is attenuated by dissipation of the mitochondrial NADH pool. Tumor xenografts in whole-body WB Cre SQOR fl/fl knockout mice exhibit lower mass and reduced angiogenesis compared to SQOR fl/fl controls. WB Cre SQOR fl/fl mice also exhibit reduced muscle angiogenesis following femoral artery ligation, compared to controls. Collectively, our data reveal the molecular intersections between H 2 S, O 2 and NO metabolism and identify SQOR inhibition as a metabolic vulnerability for endothelial cell proliferation and neovascularization. Highlights Hypoxic induction of •NO in endothelial cells inhibits CBS and switches CTH reaction specificity Hypoxic interruption of the canonical transsulfuration pathway promotes H 2 S synthesis Synergizing with hypoxia, SQOR deficiency induces a reductive shift in the ETC and restricts proliferationSQOR KO mice exhibit lower neovascularization in tumor xenograft and hind limb ischemia models.
Collapse
|
19
|
Hu Q, Chen C, Lin Z, Zhang L, Guan S, Zhuang X, Dong G, Shen J. The Antimicrobial Peptide Esculentin-1a(1-21)NH 2 Stimulates Wound Healing by Promoting Angiogenesis through the PI3K/AKT Pathway. Biol Pharm Bull 2023; 46:382-393. [PMID: 36385013 DOI: 10.1248/bpb.b22-00098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Delayed wound healing is a persistent medical problem mainly caused by decreased angiogenesis. Esculentin-1a(1-21)NH2 [Esc-1a(1-21)NH2], has broad-spectrum antibacterial properties which comes from frog skins. It has shown promise as a treatment for wound healing. However, its effects on angiogenesis as well as the mechanism by which esc-1a(1-21)NH2 enhanced wound healing remained unclear. In this study, we analyzed the structural properties and biocompatibility of esc-1a(1-21)NH2 and evaluated its effect on wound closure using a full-thickness excision model in mice. Our results showed that esc-1a(1-21)NH2 significantly accelerated wound healing by increasing collagen deposition and angiogenesis, characterized by elevated expression levels of platelet, endothelial cell adhesion molecule-1 (CD31) and proliferating cell nuclear antigen (PCNA). Furthermore, the angiogenic activity of esc-1a(1-21)NH2 was confirmed in vitro by various assays. Esc-1a(1-21)NH2 significantly promoted cell migration and cell proliferation in human umbilical vein vascular endothelial cells (HUVECs) via activation of the phosphatidylinositol 3'-kinase (PI3K)/protein kinase B (AKT) pathway, and upregulated the expression of CD31 at both mRNA and protein levels. The effect of esc-1a(1-21)NH2 on angiogenesis was diminished by LY294002, a PI3K pathway inhibitor. Taken together, this study demonstrates that esc-1a(1-21)NH2 accelerates wound closure in mice by promoting angiogenesis via the PI3K/AKT signaling pathway, suggesting its effective application in the treatment of wound healing.
Collapse
Affiliation(s)
- Qiong Hu
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Chujun Chen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Zhenming Lin
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Liyao Zhang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Sujiuan Guan
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Xiaoyan Zhuang
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| | - Guangfu Dong
- Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences
| | - Juan Shen
- Guangdong Provincial Key Laboratory of Pharmaceutical Bioactive Substances, Guangdong Pharmaceutical University
| |
Collapse
|
20
|
Ruliffson BNK, Whittington CF. Regulating Lymphatic Vasculature in Fibrosis: Understanding the Biology to Improve the Modeling. Adv Biol (Weinh) 2023; 7:e2200158. [PMID: 36792967 DOI: 10.1002/adbi.202200158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 12/19/2022] [Indexed: 02/17/2023]
Abstract
Fibrosis occurs in many chronic diseases with lymphatic vascular insufficiency (e.g., kidney disease, tumors, and lymphedema). New lymphatic capillary growth can be triggered by fibrosis-related tissue stiffening and soluble factors, but questions remain for how related biomechanical, biophysical, and biochemical cues affect lymphatic vascular growth and function. The current preclinical standard for studying lymphatics is animal modeling, but in vitro and in vivo outcomes often do not align. In vitro models can also be limited in their ability to separate vascular growth and function as individual outcomes, and fibrosis is not traditionally included in model design. Tissue engineering provides an opportunity to address in vitro limitations and mimic microenvironmental features that impact lymphatic vasculature. This review discusses fibrosis-related lymphatic vascular growth and function in disease and the current state of in vitro lymphatic vascular models while highlighting relevant knowledge gaps. Additional insights into the future of in vitro lymphatic vascular models demonstrate how prioritizing fibrosis alongside lymphatics will help capture the complexity and dynamics of lymphatics in disease. Overall, this review aims to emphasize that an advanced understanding of lymphatics within a fibrotic disease-enabled through more accurate preclinical modeling-will significantly impact therapeutic development toward restoring lymphatic vessel growth and function in patients.
Collapse
Affiliation(s)
- Brian N K Ruliffson
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| | - Catherine F Whittington
- Department of Biomedical Engineering, Worcester Polytechnic Institute, 100 Institute Rd., Worcester, MA, 01609, USA
| |
Collapse
|
21
|
Kazakova A, Sudarskikh T, Kovalev O, Kzhyshkowska J, Larionova I. Interaction of tumor‑associated macrophages with stromal and immune components in solid tumors: Research progress (Review). Int J Oncol 2023; 62:32. [PMID: 36660926 PMCID: PMC9851132 DOI: 10.3892/ijo.2023.5480] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 12/07/2022] [Indexed: 01/18/2023] Open
Abstract
Tumor‑associated macrophages (TAMs) are crucial cells of the tumor microenvironment (TME), which belong to the innate immune system and regulate primary tumor growth, immunosuppression, angiogenesis, extracellular matrix remodeling and metastasis. The review discusses current knowledge of essential cell‑cell interactions of TAMs within the TME of solid tumors. It summarizes the mechanisms of stromal cell (including cancer‑associated fibroblasts and endothelial cells)‑mediated monocyte recruitment and regulation of differentiation, as well as pro‑tumor and antitumor polarization of TAMs. Additionally, it focuses on the perivascular TAM subpopulations that regulate angiogenesis and lymphangiogenesis. It describes the possible mechanisms of reciprocal interactions of TAMs with other immune cells responsible for immunosuppression. Finally, it highlights the perspectives for novel therapeutic approaches to use combined cellular targets that include TAMs and other stromal and immune cells in the TME. The collected data demonstrated the importance of understanding cell‑cell interactions in the TME to prevent distant metastasis and reduce the risk of tumor recurrence.
Collapse
Affiliation(s)
- Anna Kazakova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Tatiana Sudarskikh
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
| | - Oleg Kovalev
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| | - Julia Kzhyshkowska
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Institute of Transfusion Medicine and Immunology, Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, D-68167 Mannheim, Germany
| | - Irina Larionova
- Laboratory of Translational Cellular and Molecular Biomedicine, National Research Tomsk State University, Tomsk 634050, Russian Federation
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634009, Russian Federation
| |
Collapse
|
22
|
Zhang Q, Wang C, Li R, Liu J, Wang J, Wang T, Wang B. The BAP31/miR-181a-5p/RECK axis promotes angiogenesis in colorectal cancer via fibroblast activation. Front Oncol 2023; 13:1056903. [PMID: 36895489 PMCID: PMC9989165 DOI: 10.3389/fonc.2023.1056903] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 02/03/2023] [Indexed: 02/25/2023] Open
Abstract
Background B-cell receptor-associated protein 31 (BAP31) has been recognized as a tumor-associated protein and has largely been shown to promote metastasis in a variety of cancers. Cancer metastasis arises through multistep pathways, and the induction of angiogenesis is shown to be a rate-limiting step in the process of tumor metastasis. Methods and results This study explored the effect of BAP31 on colorectal cancer (CRC) angiogenesis by regulating the tumor microenvironment. First, exosomes from BAP31-regulated CRCs affected the transition of normal fibroblasts to proangiogenic cancer-associated fibroblasts (CAFs) in vivo and in vitro. Next, microRNA sequencing was performed to analyze the microRNA expression profile of exosomes secreted from BAP31- overexpressing CRCs. The results indicated that the expression of BAP31 in CRCs significantly altered the levels of exosomal microRNAs, such as miR-181a- 5p. Meanwhile, an in vitro tube formation assay showed that fibroblasts with high levels of miR-181a-5p significantly promoted endothelial cell angiogenesis. Critically, we first identified that miR-181a-5p directly targeted the 3'-untranslated region (3'UTR) of reversion-inducing cysteine-rich protein with kazal motifs (RECK) using the dual-luciferase activity assay, which drove fibroblast transformation into proangiogenic CAFs by upregulating matrix metalloproteinase-9 (MMP-9) and phosphorylation of mothers against decapentaplegic homolog 2/Mothers against decapentaplegic homolog 3 (Smad2/3). Conclusion Exosomes from BAP31-overexpressing/BAP31-knockdown CRCs are found to manipulate the transition of fibroblasts into proangiogenic CAFs by the miR-181a-5p/RECK axis.
Collapse
Affiliation(s)
- Qi Zhang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Changli Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Ruijia Li
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jingjing Liu
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Jiyu Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Tianyi Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| | - Bing Wang
- College of Life Science and Health, Northeastern University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
Sano T, Nakajima T, Senda KA, Nakano S, Yamato M, Ikeda Y, Zeng H, Kawabe JI, Matsunaga YT. Image-based crosstalk analysis of cell-cell interactions during sprouting angiogenesis using blood-vessel-on-a-chip. Stem Cell Res Ther 2022; 13:532. [PMID: 36575469 PMCID: PMC9795717 DOI: 10.1186/s13287-022-03223-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/15/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sprouting angiogenesis is an important mechanism for morphogenetic phenomena, including organ development, wound healing, and tissue regeneration. In regenerative medicine, therapeutic angiogenesis is a clinical solution for recovery from ischemic diseases. Mesenchymal stem cells (MSCs) have been clinically used given their pro-angiogenic effects. MSCs are reported to promote angiogenesis by differentiating into pericytes or other vascular cells or through cell-cell communication using multiple protein-protein interactions. However, how MSCs physically contact and move around ECs to keep the sprouting angiogenesis active remains unknown. METHODS We proposed a novel framework of EC-MSC crosstalk analysis using human umbilical vein endothelial cells (HUVECs) and MSCs obtained from mice subcutaneous adipose tissue on a 3D in vitro model, microvessel-on-a-chip, which allows cell-to-tissue level study. The microvessels were fabricated and cultured for 10 days in a collagen matrix where MSCs were embedded. RESULTS Immunofluorescence imaging using a confocal laser microscope showed that MSCs smoothed the surface of the microvessel and elongated the angiogenic sprouts by binding to the microvessel's specific microstructures. Additionally, three-dimensional modeling of HUVEC-MSC intersections revealed that MSCs were selectively located around protrusions or roots of angiogenic sprouts, whose surface curvature was excessively low or high, respectively. CONCLUSIONS The combination of our microvessel-on-a-chip system for 3D co-culture and image-based crosstalk analysis demonstrated that MSCs are selectively localized to concave-convex surfaces on scaffold structures and that they are responsible for the activation and stabilization of capillary vessels.
Collapse
Affiliation(s)
- Takanori Sano
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Tadaaki Nakajima
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan ,grid.268441.d0000 0001 1033 6139Department of Science, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa 236-0027 Japan
| | - Koharu Alicia Senda
- Hiroo Gakuen Junior and Senior High School, 5-1-14 Minami Azabu, Minato-ku, Tokyo, 106-0047 Japan
| | - Shizuka Nakano
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Mizuho Yamato
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Yukinori Ikeda
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Hedele Zeng
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| | - Jun-ichi Kawabe
- grid.252427.40000 0000 8638 2724Department of Biochemistry, Asahikawa Medical University, 2-1-1 Midorigaoka-higashi, Asahikawa, Hokkaido 078-8510 Japan
| | - Yukiko T. Matsunaga
- grid.26999.3d0000 0001 2151 536XInstitute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505 Japan
| |
Collapse
|
24
|
Barrasa-Ramos S, Dessalles CA, Hautefeuille M, Barakat AI. Mechanical regulation of the early stages of angiogenesis. J R Soc Interface 2022; 19:20220360. [PMID: 36475392 PMCID: PMC9727679 DOI: 10.1098/rsif.2022.0360] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Favouring or thwarting the development of a vascular network is essential in fields as diverse as oncology, cardiovascular disease or tissue engineering. As a result, understanding and controlling angiogenesis has become a major scientific challenge. Mechanical factors play a fundamental role in angiogenesis and can potentially be exploited for optimizing the architecture of the resulting vascular network. Largely focusing on in vitro systems but also supported by some in vivo evidence, the aim of this Highlight Review is dual. First, we describe the current knowledge with particular focus on the effects of fluid and solid mechanical stimuli on the early stages of the angiogenic process, most notably the destabilization of existing vessels and the initiation and elongation of new vessels. Second, we explore inherent difficulties in the field and propose future perspectives on the use of in vitro and physics-based modelling to overcome these difficulties.
Collapse
Affiliation(s)
- Sara Barrasa-Ramos
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Claire A. Dessalles
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| | - Mathieu Hautefeuille
- Laboratoire de Biologie du Développement (UMR7622), Institut de Biologie Paris Seine, Sorbonne Université, Paris, France,Facultad de Ciencias, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Abdul I. Barakat
- LadHyX, CNRS, Ecole Polytechnique, Institut Polytechnique de Paris, Palaiseau, France
| |
Collapse
|
25
|
Kent RN, Said M, Busch ME, Poupard ER, Tsai A, Xia J, Matera DL, Wang WY, DePalma SJ, Hiraki HL, Killian ML, Abraham AC, Shin JW, Huang AH, Shikanov A, Baker BM. Physical and Soluble Cues Enhance Tendon Progenitor Cell Invasion into Injectable Synthetic Hydrogels. ADVANCED FUNCTIONAL MATERIALS 2022; 32:2207556. [PMID: 39257859 PMCID: PMC11382351 DOI: 10.1002/adfm.202207556] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 08/15/2022] [Indexed: 09/12/2024]
Abstract
Synthetic hydrogels represent an exciting avenue in the field of regenerative biomaterials given their injectability, orthogonally tunable mechanical properties, and potential for modular inclusion of cellular cues. Separately, recent advances in soluble factor release technology have facilitated control over the soluble milieu in cell microenvironments via tunable microparticles. A composite hydrogel incorporating both of these components can robustly mediate tendon healing following a single injection. Here, a synthetic hydrogel system with encapsulated electrospun fiber segments and a novel microgel-based soluble factor delivery system achieves precise control over topographical and soluble features of an engineered microenvironment, respectively. It is demonstrated that three-dimensional migration of tendon progenitor cells can be enhanced via combined mechanical, topographical, and microparticle-delivered soluble cues in both a tendon progenitor cell spheroid model and an ex vivo murine Achilles tendon model. These results indicate that fiber reinforced hydrogels can drive the recruitment of endogenous progenitor cells relevant to the regeneration of tendon and, likely, a broad range of connective tissues.
Collapse
Affiliation(s)
- Robert N Kent
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Mohamed Said
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan E Busch
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ethan R Poupard
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Ariane Tsai
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Jingyi Xia
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Daniel L Matera
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - William Y Wang
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Samuel J DePalma
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Harrison L Hiraki
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Megan L Killian
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Adam C Abraham
- Department of Orthopedic Surgery University of Michigan Ann Arbor MI 48109 USA
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine, Department of Biomedical Engineering University of Illinois Chicago Chicago IL 60607 USA
| | - Alice H Huang
- Department of Orthopedic Surgery Columbia University New York NY 10032 USA
| | - Ariella Shikanov
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
| | - Brendon M Baker
- Department of Biomedical Engineering University of Michigan 2174 Lurie BME Building, 1101 Beal Avenue Ann Arbor MI 48109 USA
- Department of Chemical Engineering University of Michigan Ann Arbor MI 48109 USA
| |
Collapse
|
26
|
Hassan S, Gomez-Reyes E, Enciso-Martinez E, Shi K, Campos JG, Soria OYP, Luna-Cerón E, Lee MC, Garcia-Reyes I, Steakelum J, Jeelani H, García-Rivera LE, Cho M, Cortes SS, Kamperman T, Wang H, Leijten J, Fiondella L, Shin SR. Tunable and Compartmentalized Multimaterial Bioprinting for Complex Living Tissue Constructs. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51602-51618. [PMID: 36346873 PMCID: PMC10822051 DOI: 10.1021/acsami.2c12585] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Recapitulating inherent heterogeneity and complex microarchitectures within confined print volumes for developing implantable constructs that could maintain their structure in vivo has remained challenging. Here, we present a combinational multimaterial and embedded bioprinting approach to fabricate complex tissue constructs that can be implanted postprinting and retain their three-dimensional (3D) shape in vivo. The microfluidics-based single nozzle printhead with computer-controlled pneumatic pressure valves enables laminar flow-based voxelation of up to seven individual bioinks with rapid switching between various bioinks that can solve alignment issues generated during switching multiple nozzles. To improve the spatial organization of various bioinks, printing fidelity with the z-direction, and printing speed, self-healing and biodegradable colloidal gels as support baths are introduced to build complex geometries. Furthermore, the colloidal gels provide suitable microenvironments like native extracellular matrices (ECMs) for achieving cell growths and fast host cell invasion via interconnected microporous networks in vitro and in vivo. Multicompartment microfibers (i.e., solid, core-shell, or donut shape), composed of two different bioink fractions with various lengths or their intravolume space filled by two, four, and six bioink fractions, are successfully printed in the ECM-like support bath. We also print various acellular complex geometries such as pyramids, spirals, and perfusable branched/linear vessels. Successful fabrication of vascularized liver and skeletal muscle tissue constructs show albumin secretion and bundled muscle mimic fibers, respectively. The interconnected microporous networks of colloidal gels result in maintaining printed complex geometries while enabling rapid cell infiltration, in vivo.
Collapse
Affiliation(s)
- Shabir Hassan
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Department of Biology, Main Campus, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Eduardo Gomez-Reyes
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Eduardo Enciso-Martinez
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Kun Shi
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu 610041, P. R. China
| | - Jorge Gonzalez Campos
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Oscar Yael Perez Soria
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Eder Luna-Cerón
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Isaac Garcia-Reyes
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Joshua Steakelum
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Department of Electrical and Computer Engineering, University of Massachusetts, Dartmouth, Massachusetts 02747, United States
| | - Haziq Jeelani
- Institute of Electrical and Electronics Engineers (IEEE), New York 10016, United States
| | - Luis Enrique García-Rivera
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Minsung Cho
- AltrixBio inc., Cambridge, Massachusetts 02139, United States
| | - Stephanie Sanchez Cortes
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Tecnológico de Monterrey at Monterrey, Monterrey, Nuevo León CP 64849, Mexico
| | - Tom Kamperman
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede 7522 NB, Netherlands
| | - Haihang Wang
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Jeroen Leijten
- Department of Developmental Bioengineering, Faculty of Science and Technology, TechMed Centre, University Twente, Enschede 7522 NB, Netherlands
| | - Lance Fiondella
- Department of Electrical and Computer Engineering, University of Massachusetts, Dartmouth, Massachusetts 02747, United States
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
27
|
Ahmed A, Joshi IM, Goulet MR, Vidas JA, Byerley AM, Mansouri M, Day SW, Abhyankar VV. Microengineering 3D Collagen Hydrogels with Long-Range Fiber Alignment. J Vis Exp 2022:10.3791/64457. [PMID: 36156068 PMCID: PMC10203374 DOI: 10.3791/64457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Aligned collagen I (COL1) fibers guide tumor cell motility, influence endothelial cell morphology, control stem cell differentiation, and are a hallmark of cardiac and musculoskeletal tissues. To study cell response to aligned microenvironments in vitro, several protocols have been developed to generate COL1 matrices with defined fiber alignment, including magnetic, mechanical, cell-based, and microfluidic methods. Of these, microfluidic approaches offer advanced capabilities such as accurate control over fluid flows and the cellular microenvironment. However, the microfluidic approaches to generate aligned COL1 matrices for advanced in vitro culture platforms have been limited to thin "mats" (<40 µm in thickness) of COL1 fibers that extend over distances less than 500 µm and are not conducive to 3D cell culture applications. Here, we present a protocol to fabricate 3D COL1 matrices (130-250 µm in thickness) with millimeter-scale regions of defined fiber alignment in a microfluidic device. This platform provides advanced cell culture capabilities to model structured tissue microenvironments by providing direct access to the micro-engineered matrix for cell culture.
Collapse
Affiliation(s)
- Adeel Ahmed
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Indranil M Joshi
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Madeleine R Goulet
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Justin A Vidas
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Ann M Byerley
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Mehran Mansouri
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Steven W Day
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology
| | - Vinay V Abhyankar
- Department of Biomedical Engineering, Kate Gleason College of Engineering, Rochester Institute of Technology;
| |
Collapse
|
28
|
Zarubova J, Hasani-Sadrabadi MM, Ardehali R, Li S. Immunoengineering strategies to enhance vascularization and tissue regeneration. Adv Drug Deliv Rev 2022; 184:114233. [PMID: 35304171 PMCID: PMC10726003 DOI: 10.1016/j.addr.2022.114233] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/07/2022] [Accepted: 03/11/2022] [Indexed: 12/11/2022]
Abstract
Immune cells have emerged as powerful regulators of regenerative as well as pathological processes. The vast majority of regenerative immunoengineering efforts have focused on macrophages; however, growing evidence suggests that other cells of both the innate and adaptive immune system are as important for successful revascularization and tissue repair. Moreover, spatiotemporal regulation of immune cells and their signaling have a significant impact on the regeneration speed and the extent of functional recovery. In this review, we summarize the contribution of different types of immune cells to the healing process and discuss ways to manipulate and control immune cells in favor of vascularization and tissue regeneration. In addition to cell delivery and cell-free therapies using extracellular vesicles, we discuss in situ strategies and engineering approaches to attract specific types of immune cells and modulate their phenotypes. This field is making advances to uncover the extraordinary potential of immune cells and their secretome in the regulation of vascularization and tissue remodeling. Understanding the principles of immunoregulation will help us design advanced immunoengineering platforms to harness their power for tissue regeneration.
Collapse
Affiliation(s)
- Jana Zarubova
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Biomaterials and Tissue Engineering, Institute of Physiology of the Czech Academy of Sciences, Prague 14220, Czech Republic
| | | | - Reza Ardehali
- Division of Cardiology, Department of Internal Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Song Li
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Eli and Edythe Broad Stem Cell Research Center, University of California, Los Angeles, CA 90095, USA; Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|
29
|
Virumbrales-Muñoz M, Ayuso JM, Loken JR, Denecke KM, Rehman S, Skala MC, Abel EJ, Beebe DJ. Microphysiological model of the renal cell carcinoma to inform anti-angiogenic therapy. Biomaterials 2022; 283:121454. [PMID: 35299086 PMCID: PMC9254636 DOI: 10.1016/j.biomaterials.2022.121454] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 02/18/2022] [Accepted: 03/03/2022] [Indexed: 12/18/2022]
Abstract
Renal cell carcinomas are common genitourinary tumors characterized by high vascularization and strong reliance on glycolysis. Despite the many available therapies for renal cell carcinomas, first-line targeted therapies, such as cabozantinib, and durable reaponses are seen in only a small percentage of patients. Yet, little is known about the mechanisms that drive response (or lack thereof). This dearth of knowledge can be explained by the dynamic and complex microenvironment of renal carcinoma, which remains challenging to recapitulate in vitro. Here, we present a microphysiological model of renal cell carcinoma, including a tubular blood vessel model of induced pluripotent stem cell-derived endothelial cells and an adjacent 3D carcinoma model. Our model recapitulated hypoxia, glycolic metabolism, and sprouting angiogenesis. Using our model, we showed that cabozantinib altered cancer cell metabolism and decreased sprouting angiogenesis but did not restore barrier function. This microphysiological model could be helpful to elucidate, through multiple endpoints, the contributions of the relevant environmental components in eliciting a functional response or resistance to therapy in renal cell carcinoma.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Cell and Regenerative Biology, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jose M Ayuso
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Dermatology, University of Wisconsin School of Medicine and Public Health, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Jack R Loken
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Kathryn M Denecke
- Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA
| | - Shujah Rehman
- Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - Melissa C Skala
- University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; Morgridge Institute for Research, 330 N Orchard Street, Madison, WI, 53715, USA
| | - E Jason Abel
- Department of Urology University of Wisconsin School of Medicine and Public Health, Madison, 1111 Highland Ave, Madison, WI, 53705, USA
| | - David J Beebe
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, WI, 53705, USA; University of Wisconsin Carbone Cancer Center, Wisconsin Institutes for Medical Research, 1111 Highland Ave, Madison, WI, 53705, USA; Department of Biomedical Engineering, Wisconsin Institutes for Medical Research, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, 53705, USA.
| |
Collapse
|
30
|
Maternal high-fat diet in mice induces cerebrovascular, microglial and long-term behavioural alterations in offspring. Commun Biol 2022; 5:26. [PMID: 35017640 PMCID: PMC8752761 DOI: 10.1038/s42003-021-02947-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Various environmental exposures during pregnancy, like maternal diet, can compromise, at critical periods of development, the neurovascular maturation of the offspring. Foetal exposure to maternal high-fat diet (mHFD), common to Western societies, has been shown to disturb neurovascular development in neonates and long-term permeability of the neurovasculature. Nevertheless, the effects of mHFD on the offspring’s cerebrovascular health remains largely elusive. Here, we sought to address this knowledge gap by using a translational mouse model of mHFD exposure. Three-dimensional and ultrastructure analysis of the neurovascular unit (vasculature and parenchymal cells) in mHFD-exposed offspring revealed major alterations of the neurovascular organization and metabolism. These alterations were accompanied by changes in the expression of genes involved in metabolism and immunity, indicating that neurovascular changes may result from abnormal brain metabolism and immune regulation. In addition, mHFD-exposed offspring showed persisting behavioural alterations reminiscent of neurodevelopmental disorders, specifically an increase in stereotyped and repetitive behaviours into adulthood. In order to advance our understanding of the effects of maternal high-fat diet (mHFD) on the cerebrovascular health of offspring, Bordeleau et al. use a translational mouse model of mHFD exposure. They demonstrate that mHFD induces cerebrovascular and microglial changes in the offspring as well as behavioural alterations that are reminiscent of neurodevelopmental disorders associated with repetitive behaviours at adulthood.
Collapse
|
31
|
Russo M, Cejas CM, Pitingolo G. Advances in microfluidic 3D cell culture for preclinical drug development. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2022; 187:163-204. [PMID: 35094774 DOI: 10.1016/bs.pmbts.2021.07.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Drug development is often a very long, costly, and risky process due to the lack of reliability in the preclinical studies. Traditional current preclinical models, mostly based on 2D cell culture and animal testing, are not full representatives of the complex in vivo microenvironments and often fail. In order to reduce the enormous costs, both financial and general well-being, a more predictive preclinical model is needed. In this chapter, we review recent advances in microfluidic 3D cell culture showing how its development has allowed the introduction of in vitro microphysiological systems, laying the foundation for organ-on-a-chip technology. These findings provide the basis for numerous preclinical drug discovery assays, which raise the possibility of using micro-engineered systems as emerging alternatives to traditional models, based on 2D cell culture and animals.
Collapse
Affiliation(s)
- Maria Russo
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France.
| | - Cesare M Cejas
- Microfluidics, MEMS, Nanostructures (MMN), CNRS UMR 8231, Institut Pierre Gilles de Gennes (IPGG) ESPCI Paris, PSL Research University, Paris France
| | - Gabriele Pitingolo
- Bioassays, Microsystems and Optical Engineering Unit, BIOASTER, Paris France
| |
Collapse
|
32
|
Advances in 3D Vascularized Tumor-on-a-Chip Technology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1379:231-256. [DOI: 10.1007/978-3-031-04039-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
33
|
Vakhrushev IV, Nezhurina EK, Karalkin PA, Tsvetkova AV, Sergeeva NS, Majouga AG, Yarygin KN. Heterotypic Multicellular Spheroids as Experimental and Preclinical Models of Sprouting Angiogenesis. BIOLOGY 2021; 11:18. [PMID: 35053016 PMCID: PMC8772844 DOI: 10.3390/biology11010018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/18/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022]
Abstract
Sprouting angiogenesis is the common response of live tissues to physiological and pathological angiogenic stimuli. Its accurate evaluation is of utmost importance for basic research and practical medicine and pharmacology and requires adequate experimental models. A variety of assays for angiogenesis were developed, none of them perfect. In vitro approaches are generally less physiologically relevant due to the omission of essential components regulating the process. However, only in vitro models can be entirely non-xenogeneic. The limitations of the in vitro angiogenesis assays can be partially overcome using 3D models mimicking tissue O2 and nutrient gradients, the influence of the extracellular matrix (ECM), and enabling cell-cell interactions. Here we present a review of the existing models of sprouting angiogenesis that are based on the use of endothelial cells (ECs) co-cultured with perivascular or other stromal cells. This approach provides an excellent in vitro platform for further decoding of the cellular and molecular mechanisms of sprouting angiogenesis under conditions close to the in vivo conditions, as well as for preclinical drug testing and preclinical research in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Igor V. Vakhrushev
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| | - Elizaveta K. Nezhurina
- P.A. Hertsen Moscow Oncology Research Center, National Medical Research Radiological Center, 125284 Moscow, Russia;
| | - Pavel A. Karalkin
- Institute for Cluster Oncology, Sechenov University, 119435 Moscow, Russia;
| | | | - Nataliya S. Sergeeva
- Department of Biology, Pirogov Russian National Research Medical University, 117997 Moscow, Russia;
| | - Alexander G. Majouga
- Faculty of Chemical and Pharmaceutical Technologies and Biomedical Products, D. Mendeleev University of Chemical Technology of Russia, 125047 Moscow, Russia;
| | - Konstantin N. Yarygin
- Laboratory of Cell Biology, Institute of Biomedical Chemistry, 119121 Moscow, Russia;
| |
Collapse
|
34
|
Liang QQ, Liu L. Application of vascular endothelial cells in stem cell medicine. World J Clin Cases 2021; 9:10765-10780. [PMID: 35047589 PMCID: PMC8678855 DOI: 10.12998/wjcc.v9.i35.10765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/02/2021] [Accepted: 10/27/2021] [Indexed: 02/06/2023] Open
Abstract
Stem cell medicine is gaining momentum in the development of therapy for various end-stage diseases. The search for new seed cells and exploration of their application prospects are topics of interest in stem cell medicine. In recent years, vascular endothelial cells (VECs) have attracted wide attention from scholars. VECs, which form the inner lining of blood vessels, are critically involved in many physiological functions, including permeability, angiogenesis, blood pressure regulation, immunity, and pathological development, such as atherosclerosis and malignant tumors. VECs have significant therapeutic effects and broad application prospects in stem cell medicine for the treatment of various refractory diseases, including atherosclerosis, myocardial infarction, diabetic complications, hypertension, coronavirus disease 2019, and malignant tumors. On the one hand, VECs and their extracellular vesicles can be directly used for the treatment of these diseases. On the other hand, VECs can be used as therapeutic targets for some diseases. However, there are still some obstacles to the use of VECs in stem cell medicine. In this review, advances in the applications and challenges that come with the use of these cells are discussed.
Collapse
Affiliation(s)
- Qing-Qing Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| | - Lei Liu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan Province, China
| |
Collapse
|
35
|
Zheng Z, Wang X, Wang Y, King JAC, Xie P, Wu S. CaMK4 is a downstream effector of the α 1G T-type calcium channel to determine the angiogenic potential of pulmonary microvascular endothelial cells. Am J Physiol Cell Physiol 2021; 321:C964-C977. [PMID: 34586897 DOI: 10.1152/ajpcell.00216.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 09/27/2021] [Indexed: 01/25/2023]
Abstract
Pulmonary microvascular endothelial cells (PMVECs) uniquely express an α1G-subtype of voltage-gated T-type Ca2+ channel. We have previously revealed that the α1G channel functions as a background Ca2+ entry pathway that is critical for the cell proliferation, migration, and angiogenic potential of PMVECs, a novel function attributed to the coupling between α1G-mediated Ca2+ entry and constitutive Akt phosphorylation and activation. Despite this significance, mechanism(s) that link the α1G-mediated Ca2+ entry to Akt phosphorylation remain incompletely understood. In this study, we demonstrate that Ca2+/calmodulin-dependent protein kinase (CaMK) 4 serves as a downstream effector of the α1G-mediated Ca2+ entry to promote the angiogenic potential of PMVECs. Notably, CaMK2 and CaMK4 are both expressed in PMVECs. Pharmacological blockade or genetic knockdown of the α1G channel led to a significant reduction in the phosphorylation level of CaMK4 but not the phosphorylation level of CaMK2. Pharmacological inhibition as well as genetic knockdown of CaMK4 significantly decreased cell proliferation, migration, and network formation capacity in PMVECs. However, CaMK4 inhibition or knockdown did not alter Akt phosphorylation status in PMVECs, indicating that α1G/Ca2+/CaMK4 is independent of the α1G/Ca2+/Akt pathway in sustaining the cells' angiogenic potential. Altogether, these findings suggest a novel α1G-CaMK4 signaling complex that regulates the Ca2+-dominated angiogenic potential in PMVECs.
Collapse
Affiliation(s)
- Zhen Zheng
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Xuelin Wang
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, Zhengzhou, China
| | - Yuxia Wang
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Judy A C King
- Department of Pathology and Translational Pathobiology, Louisiana State University Health Sciences Center - Shreveport, Shreveport, Louisiana
| | - Peilin Xie
- Department of Anesthesiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Songwei Wu
- Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|
36
|
Wang WY, Kent RN, Huang SA, Jarman EH, Shikanov EH, Davidson CD, Hiraki HL, Lin D, Wall MA, Matera DL, Shin JW, Polacheck WJ, Shikanov A, Baker BM. Direct comparison of angiogenesis in natural and synthetic biomaterials reveals that matrix porosity regulates endothelial cell invasion speed and sprout diameter. Acta Biomater 2021; 135:260-273. [PMID: 34469789 PMCID: PMC8595798 DOI: 10.1016/j.actbio.2021.08.038] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 07/30/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022]
Abstract
Vascularization of large, diffusion-hindered biomaterial implants requires an understanding of how extracellular matrix (ECM) properties regulate angiogenesis. Sundry biomaterials assessed across many disparate angiogenesis assays have highlighted ECM determinants that influence this complex multicellular process. However, the abundance of material platforms, each with unique parameters to model endothelial cell (EC) sprouting presents additional challenges of interpretation and comparison between studies. In this work we directly compared the angiogenic potential of commonly utilized natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels in a multiplexed angiogenesis-on-a-chip platform. Modulating matrix density of collagen and fibrin hydrogels confirmed prior findings that increases in matrix density correspond to increased EC invasion as connected, multicellular sprouts, but with decreased invasion speeds. Angiogenesis in synthetic DexVS hydrogels, however, resulted in fewer multicellular sprouts. Characterizing hydrogel Young's modulus and permeability (a measure of matrix porosity), we identified matrix permeability to significantly correlate with EC invasion depth and sprout diameter. Although microporous collagen and fibrin hydrogels produced lumenized sprouts in vitro, they rapidly resorbed post-implantation into the murine epididymal fat pad. In contrast, DexVS hydrogels proved comparatively stable. To enhance angiogenesis within DexVS hydrogels, we incorporated sacrificial microgels to generate cell-scale pores throughout the hydrogel. Microporous DexVS hydrogels resulted in lumenized sprouts in vitro and enhanced cell invasion in vivo. Towards the design of vascularized biomaterials for long-term regenerative therapies, this work suggests that synthetic biomaterials offer improved size and shape control following implantation and that tuning matrix porosity may better support host angiogenesis. STATEMENT OF SIGNIFICANCE: Understanding how extracellular matrix properties govern angiogenesis will inform biomaterial design for engineering vascularized implantable grafts. Here, we utilized a multiplexed angiogenesis-on-a-chip platform to compare the angiogenic potential of natural (collagen and fibrin) and synthetic dextran vinyl sulfone (DexVS) hydrogels. Characterization of matrix properties and sprout morphometrics across these materials points to matrix porosity as a critical regulator of sprout invasion speed and diameter, supported by the observation that nanoporous DexVS hydrogels yielded endothelial cell sprouts that were not perfusable. To enhance angiogenesis into synthetic hydrogels, we incorporated sacrificial microgels to generate microporosity. We find that microporosity increased sprout diameter in vitro and cell invasion in vivo. This work establishes a composite materials approach to enhance the vascularization of synthetic hydrogels.
Collapse
Affiliation(s)
- William Y Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Robert N Kent
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Stephanie A Huang
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States
| | - Evan H Jarman
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Eve H Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Christopher D Davidson
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Harrison L Hiraki
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daphne Lin
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Monica A Wall
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Daniel L Matera
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States
| | - Jae-Won Shin
- Department of Pharmacology and Regenerative Medicine & Department of Bioengineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - William J Polacheck
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27514, United States; McAllister Heart Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27514, United States
| | - Ariella Shikanov
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Macromolecular Science & Engineering, University of Michigan, Ann Arbor, MI, 48109, United States; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Brendon M Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, United States; Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
37
|
Dellaquila A, Le Bao C, Letourneur D, Simon‐Yarza T. In Vitro Strategies to Vascularize 3D Physiologically Relevant Models. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100798. [PMID: 34351702 PMCID: PMC8498873 DOI: 10.1002/advs.202100798] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/23/2021] [Indexed: 05/04/2023]
Abstract
Vascularization of 3D models represents a major challenge of tissue engineering and a key prerequisite for their clinical and industrial application. The use of prevascularized models built from dedicated materials could solve some of the actual limitations, such as suboptimal integration of the bioconstructs within the host tissue, and would provide more in vivo-like perfusable tissue and organ-specific platforms. In the last decade, the fabrication of vascularized physiologically relevant 3D constructs has been attempted by numerous tissue engineering strategies, which are classified here in microfluidic technology, 3D coculture models, namely, spheroids and organoids, and biofabrication. In this review, the recent advancements in prevascularization techniques and the increasing use of natural and synthetic materials to build physiological organ-specific models are discussed. Current drawbacks of each technology, future perspectives, and translation of vascularized tissue constructs toward clinics, pharmaceutical field, and industry are also presented. By combining complementary strategies, these models are envisioned to be successfully used for regenerative medicine and drug development in a near future.
Collapse
Affiliation(s)
- Alessandra Dellaquila
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Elvesys Microfluidics Innovation CenterParis75011France
- Biomolecular PhotonicsDepartment of PhysicsUniversity of BielefeldBielefeld33615Germany
| | - Chau Le Bao
- Université de ParisINSERM U1148X Bichat HospitalParisF‐75018France
- Université Sorbonne Paris NordGalilée InstituteVilletaneuseF‐93430France
| | | | | |
Collapse
|
38
|
Tan ML, Ling L, Fischbach C. Engineering strategies to capture the biological and biophysical tumor microenvironment in vitro. Adv Drug Deliv Rev 2021; 176:113852. [PMID: 34197895 PMCID: PMC8440401 DOI: 10.1016/j.addr.2021.113852] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/11/2022]
Abstract
Despite decades of research and advancements in diagnostic and treatment modalities, cancer remains a major global healthcare challenge. This is due in part to a lack of model systems that allow investigating the mechanisms underlying tumor development, progression, and therapy resistance under relevant conditions in vitro. Tumor cell interactions with their surroundings influence all stages of tumorigenesis and are shaped by both biological and biophysical cues including cell-cell and cell-extracellular matrix (ECM) interactions, tissue architecture and mechanics, and mass transport. Engineered tumor models provide promising platforms to elucidate the individual and combined contributions of these cues to tumor malignancy under controlled and physiologically relevant conditions. This review will summarize current knowledge of the biological and biophysical microenvironmental cues that influence tumor development and progression, present examples of in vitro model systems that are presently used to study these interactions and highlight advancements in tumor engineering approaches to further improve these technologies.
Collapse
Affiliation(s)
- Matthew L Tan
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lu Ling
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Claudia Fischbach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, 14853, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
39
|
Al Halawani A, Wang Z, Liu L, Zhang M, Weiss AS. Applications of Engineering Techniques in Microvasculature Design. Front Cardiovasc Med 2021; 8:660958. [PMID: 33981737 PMCID: PMC8107229 DOI: 10.3389/fcvm.2021.660958] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 03/30/2021] [Indexed: 11/17/2022] Open
Abstract
Achieving successful microcirculation in tissue engineered constructs in vitro and in vivo remains a challenge. Engineered tissue must be vascularized in vitro for successful inosculation post-implantation to allow instantaneous perfusion. To achieve this, most engineering techniques rely on engineering channels or pores for guiding angiogenesis and capillary tube formation. However, the chosen materials should also exhibit properties resembling the native extracellular matrix (ECM) in providing mechanical and molecular cues for endothelial cells. This review addresses techniques that can be used in conjunction with matrix-mimicking materials to further advance microvasculature design. These include electrospinning, micropatterning and bioprinting. Other techniques implemented for vascularizing organoids are also considered for their potential to expand on these approaches.
Collapse
Affiliation(s)
- Aleen Al Halawani
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Ziyu Wang
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Linyang Liu
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Miao Zhang
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- School of Biomedical Engineering, University of Sydney, Sydney, NSW, Australia
| | - Anthony S. Weiss
- School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, Australia
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
- Sydney Nano Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
40
|
Liu C, Yang G, Zhou M, Zhang X, Wu X, Wu P, Gu X, Jiang X. Magnesium Ammonium Phosphate Composite Cell-Laden Hydrogel Promotes Osteogenesis and Angiogenesis In Vitro. ACS OMEGA 2021; 6:9449-9459. [PMID: 33869925 PMCID: PMC8047646 DOI: 10.1021/acsomega.0c06083] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/22/2021] [Indexed: 05/08/2023]
Abstract
Injectable hydrogels provide an effective strategy for minimally invasive treatment on irregular bony defects in the maxillofacial region. To improve the osteoinduction of gelatin methacrylate (GelMA), we fabricated a three-dimensional (3D) culture system based on the incorporation of magnesium ammonium phosphate hexahydrate (struvite) into GelMA. The optimal concentration of struvite was investigated using the struvite extracts, and 500 μg mL-1 was found to be the most suitable concentration for the osteogenesis of dental pulp stem cells (DPSCs) and angiogenesis of human umbilical vein endothelial cells (HUVECs). We prepared the GelMA composite (MgP) with 500 μg mL-1 struvite. Struvite did not affect the cross-linking of GelMA and released Mg2+ during degradation. The cell delivery system using MgP improved the laden-cell viability, upregulated the expression of osteogenic and angiogenic-differentiation-related genes, and promoted cell migration. Overall, the modifications made to the GelMA in this study improved osteoinduction and demonstrated great potential for application in vascularized bone tissue regeneration.
Collapse
Affiliation(s)
- Chang Liu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Guangzheng Yang
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Mingliang Zhou
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xiangkai Zhang
- Department
of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Engineering
Research Center of Advanced Dental Technology and Materials, Shanghai
Key Laboratory of Stomatology & Shanghai Research Institute of
Stomatology, National Clinical Research Center for Oral Diseases,
Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xiaolin Wu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Peishi Wu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
- Department
of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Engineering
Research Center of Advanced Dental Technology and Materials, Shanghai
Key Laboratory of Stomatology & Shanghai Research Institute of
Stomatology, National Clinical Research Center for Oral Diseases,
Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xiaoyu Gu
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| | - Xinquan Jiang
- Department
of Prosthodontics, Shanghai Engineering Research Center of Advanced
Dental Technology and Materials, Shanghai Key Laboratory of Stomatology
& Shanghai Research Institute of Stomatology, National Clinical
Research Center for Oral Diseases, Shanghai Ninth People’s
Hospital, College of Stomatology, Shanghai
Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai 200011, China
| |
Collapse
|
41
|
Tronolone JJ, Jain A. Engineering new microvascular networks on-chip: ingredients, assembly, and best practices. ADVANCED FUNCTIONAL MATERIALS 2021; 31:2007199. [PMID: 33994903 PMCID: PMC8114943 DOI: 10.1002/adfm.202007199] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Indexed: 05/23/2023]
Abstract
Tissue engineered grafts show great potential as regenerative implants for diseased or injured tissues within the human body. However, these grafts suffer from poor nutrient perfusion and waste transport, thus decreasing their viability post-transplantation. Graft vascularization is therefore a major area of focus within tissue engineering because biologically relevant conduits for nutrient and oxygen perfusion can improve viability post-implantation. Many researchers utilize microphysiological systems as testing platforms for potential grafts due to an ability to integrate vascular networks as well as biological characteristics such as fluid perfusion, 3D architecture, compartmentalization of tissue-specific materials, and biophysical and biochemical cues. While many methods of vascularizing these systems exist, microvascular self-assembly has great potential for bench-to-clinic translation as it relies on naturally occurring physiological events. In this review, we highlight the past decade of literature and critically discuss the most important and tunable components yielding a self-assembled vascular network on chip: endothelial cell source, tissue-specific supporting cells, biomaterial scaffolds, biochemical cues, and biophysical forces. This article discusses the bioengineered systems of angiogenesis, vasculogenesis, and lymphangiogenesis, and includes a brief overview of multicellular systems. We conclude with future avenues of research to guide the next generation of vascularized microfluidic models and future tissue engineered grafts.
Collapse
Affiliation(s)
- James J Tronolone
- Department of Biomedical Engineering, College of Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Abhishek Jain
- Department of Medical Physiology, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77808, USA
| |
Collapse
|
42
|
Margolis EA, Cleveland DS, Kong YP, Beamish JA, Wang WY, Baker BM, Putnam AJ. Stromal cell identity modulates vascular morphogenesis in a microvasculature-on-a-chip platform. LAB ON A CHIP 2021; 21:1150-1163. [PMID: 33538719 PMCID: PMC7990720 DOI: 10.1039/d0lc01092h] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Supportive stromal cells of mesenchymal origins regulate vascular morphogenesis in developmental, pathological, and regenerative contexts, contributing to vessel formation, maturation, and long-term stability, in part via the secretion of bioactive molecules. In this work, we adapted a microfluidic lab-on-a-chip system that enables the formation and perfusion of microvascular capillary beds with connections to arteriole-scale endothelialized channels to explore how stromal cell (SC) identity influences endothelial cell (EC) morphogenesis. We compared and contrasted lung fibroblasts (LFs), dermal fibroblasts (DFs), and bone marrow-derived mesenchymal stem cells (MSCs) for their abilities to support endothelial morphogenesis and subsequent perfusion of microvascular networks formed in fibrin hydrogels within the microfluidic device. We demonstrated that while all 3 SC types supported EC morphogenesis, LFs in particular resulted in microvascular morphologies with the highest total network length, vessel diameter, and vessel interconnectivity across a range of SC-EC ratio and density conditions. Not only did LFs support robust vascular morphology, but also, they were the only SC type to support functional perfusion of the resultant capillary beds. Lastly, we identified heightened traction stress produced by LFs as a possible mechanism by which LFs enhance endothelial morphogenesis in 3D compared to other SC types examined. This study provides a unique comparison of three different SC types and their role in supporting the formation of microvasculature that could provide insights for the choice of cells for vascular cell-based therapies and the regulation of tissue-specific vasculature.
Collapse
Affiliation(s)
- Emily A Margolis
- Department of Biomedical Engineering, University of Michigan, 1101 Beal Ave., Ann Arbor, MI 48109, USA.
| | | | | | | | | | | | | |
Collapse
|
43
|
Wang WY, Jarman EH, Lin D, Baker BM. Dynamic Endothelial Stalk Cell-Matrix Interactions Regulate Angiogenic Sprout Diameter. Front Bioeng Biotechnol 2021; 9:620128. [PMID: 33869150 PMCID: PMC8044977 DOI: 10.3389/fbioe.2021.620128] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/22/2021] [Indexed: 12/20/2022] Open
Abstract
Angiogenesis is a complex, multicellular process that involves bidirectional interactions between extracellular matrix (ECM) and collectively invading endothelial cell (EC) sprouts that extend the microvasculature during development, wound healing, and disease processes. While many aspects of angiogenesis have been well studied, the relationship between endothelial sprout morphology and subsequent neovessel function remains relatively unknown. Here, we investigated how various soluble and physical matrix cues that regulate endothelial sprouting speed and proliferation correspond to changes in sprout morphology, namely, sprout stalk diameter. We found that sprout stalk cells utilize a combination of cytoskeletal forces and proteolysis to physically compact and degrade the surrounding matrix, thus creating sufficient space in three-dimensional (3D) ECM for lateral expansion. As increasing sprout diameter precedes lumenization to generate perfusable neovessels, this work highlights how dynamic endothelial stalk cell-ECM interactions promote the generation of functional neovessels during sprouting angiogenesis to provide insight into the design of vascularized, implantable biomaterials.
Collapse
Affiliation(s)
| | | | | | - Brendon M. Baker
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
44
|
Link PA, Heise RL, Weinberg SH. Cellular mitosis predicts vessel stability in a mechanochemical model of sprouting angiogenesis. Biomech Model Mechanobiol 2021; 20:1195-1208. [PMID: 33715101 DOI: 10.1007/s10237-021-01442-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 02/22/2021] [Indexed: 11/28/2022]
Abstract
Angiogenesis, the formation of new vessels, occurs in both developmental and pathological contexts. Prior research has investigated vessel formation to identify cellular phenotypes and dynamics associated with angiogenic disease. One major family of proteins involved in angiogenesis are the Rho GTPases, which govern function related to cellular elongation, migration, and proliferation. Using a mechanochemical model coupling Rho GTPase activity and cellular and intercellular mechanics, we investigate the role of cellular mitosis on sprouting angiogenesis. Mitosis-GTPase synchronization was not a strong predictor of GTPase and thus vessel signaling instability, whereas the location of mitotic events was predicted to alter GTPase cycling instabilities. Our model predicts that middle stalk cells undergoing mitosis introduce irregular dynamics in GTPase cycling and may provide a source of aberrant angiogenesis. We also find that cellular and junctional tension exhibit spatial heterogeneity through the vessel, and that tension feedback, specifically in stalk cells, tends to increase the maximum forces generated in the vessel.
Collapse
Affiliation(s)
- Patrick A Link
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Rebecca L Heise
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA, USA
| | - Seth H Weinberg
- Department of Biomedical Engineering, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
45
|
Angiogenesis regulation by microRNAs and long non-coding RNAs in human breast cancer. Pathol Res Pract 2021; 219:153326. [PMID: 33601152 DOI: 10.1016/j.prp.2020.153326] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/18/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are capable of regulating gene expression post-transcriptionally. Since the past decade, a number of in vitro, in vivo, and clinical studies reported the roles of these non-coding RNAs (ncRNAs) in regulating angiogenesis, an important cancer hallmark that is associated with metastases and poor prognosis. The specific roles of various miRNAs and lncRNAs in regulating angiogenesis in breast cancer, with particular focus on the downstream targets and signalling pathways regulated by these ncRNAs will be discussed in this review. In light of the recent trend in exploiting ncRNAs as cancer therapeutics, the potential use of miRNAs and lncRNAs as biomarkers and novel therapeutic agent against angiogenesis was also discussed.
Collapse
|
46
|
Doherty EL, Aw WY, Hickey AJ, Polacheck WJ. Microfluidic and Organ-on-a-Chip Approaches to Investigate Cellular and Microenvironmental Contributions to Cardiovascular Function and Pathology. Front Bioeng Biotechnol 2021; 9:624435. [PMID: 33614613 PMCID: PMC7890362 DOI: 10.3389/fbioe.2021.624435] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/08/2021] [Indexed: 01/06/2023] Open
Abstract
Over the past decade, advances in microfabrication and biomaterials have facilitated the development of microfluidic tissue and organ models to address challenges with conventional animal and cell culture systems. These systems have largely been developed for human disease modeling and preclinical drug development and have been increasingly used to understand cellular and molecular mechanisms, particularly in the cardiovascular system where the characteristic mechanics and architecture are difficult to recapitulate in traditional systems. Here, we review recent microfluidic approaches to model the cardiovascular system and novel insights provided by these systems. Key features of microfluidic approaches include the ability to pattern cells and extracellular matrix (ECM) at cellular length scales and the ability to use patient-derived cells. We focus the review on approaches that have leveraged these features to explore the relationship between genetic mutations and the microenvironment in cardiovascular disease progression. Additionally, we discuss limitations and benefits of the various approaches, and conclude by considering the role further advances in microfabrication technology and biochemistry techniques play in establishing microfluidic cardiovascular disease models as central tools for understanding biological mechanisms and for developing interventional strategies.
Collapse
Affiliation(s)
- Elizabeth L. Doherty
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Wen Yih Aw
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Anthony J. Hickey
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- University of North Carolina Catalyst for Rare Diseases, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- RTI International, Durham, NC, United States
| | - William J. Polacheck
- Joint Department of Biomedical Engineering, University of Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States
- Cell Biology and Physiology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, United States
- McAllister Heart Institute, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
47
|
Meijer EM, van Dijk CGM, Kramann R, Verhaar MC, Cheng C. Implementation of Pericytes in Vascular Regeneration Strategies. TISSUE ENGINEERING PART B-REVIEWS 2021; 28:1-21. [PMID: 33231500 DOI: 10.1089/ten.teb.2020.0229] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
For the survival and integration of complex large-sized tissue-engineered (TE) organ constructs that exceed the maximal nutrients and oxygen diffusion distance required for cell survival, graft (pre)vascularization to ensure medium or blood supply is crucial. To achieve this, the morphology and functionality of the microcapillary bed should be mimicked by incorporating vascular cell populations, including endothelium and mural cells. Pericytes play a crucial role in microvascular function, blood vessel stability, angiogenesis, and blood pressure regulation. In addition, tissue-specific pericytes are important in maintaining specific functions in different organs, including vitamin A storage in the liver, renin production in the kidneys and maintenance of the blood-brain-barrier. Together with their multipotential differentiation capacity, this makes pericytes the preferred cell type for application in TE grafts. The use of a tissue-specific pericyte cell population that matches the TE organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)-vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts. Impact statement The use of a tissue-specific pericyte cell population that matches the tissue-engineered (TE) organ may benefit organ function. In this review, we provide an overview of the literature for graft (pre)vascularization strategies and highlight the possible advantages of using tissue-specific pericytes for specific TE organ grafts.
Collapse
Affiliation(s)
- Elana M Meijer
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Christian G M van Dijk
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rafael Kramann
- Division of Nephrology and Institute of Experimental Medicine and Systems Biology, University Hospital RWTH Aachen, Aachen, Germany.,Department of Internal Medicine, Nephrology and Transplantation, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Caroline Cheng
- Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht, The Netherlands.,Experimental Cardiology, Department of Cardiology, Thorax Center Erasmus University Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
48
|
Turner A, Aggarwal P, Matter A, Olson B, Gu CC, Hunt SC, Lewis CE, Arnett DK, Lorier R, Broeckel U. Donor-specific phenotypic variation in hiPSC cardiomyocyte-derived exosomes impacts endothelial cell function. Am J Physiol Heart Circ Physiol 2021; 320:H954-H968. [PMID: 33416449 DOI: 10.1152/ajpheart.00463.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exosomes are an important mechanism of cell-cell interaction in the cardiovascular system, both in maintaining homeostasis and in stress response. Interindividual differences that alter content in exosomes may play a role in cardiovascular disease pathology. To study the effect of interindividual cardiomyocyte (CM) variation, we characterized exosomal content in phenotypically diverse human induced pluripotent stem cell-derived CMs (hiPSC-CMs). Cell lines were generated from six participants in the HyperGEN cohort: three with left ventricular hypertrophy (LVH) and three with normal left ventricular mass (LVM). Sequence analysis of the intracellular and exosomal RNA populations showed distinct expression pattern differences between hiPSC-CM lines derived from individuals with LVH and those with normal LVM. Functional analysis of hiPSC-endothelial cells (hiPSC-ECs) treated with exosomes from both hiPSC-CM groups showed significant variation in response, including differences in tube formation, migration, and proliferation. Overall, treatment of hiPSC-ECs with exosomes resulted in significant expression changes associated with angiogenesis and endothelial cell vasculogenesis. However, the hiPSC-ECs treated with exosomes from the LVH-affected donors exhibited significantly increased proliferation but decreased tube formation and migration, suggesting angiogenic dysregulation.NEW & NOTEWORTHY The intracellular RNA and the miRNA content in exosomes are significantly different in hiPSC-CMs derived from LVH-affected individuals compared with those from unaffected individuals. Treatment of endothelial cells with these exosomes functionally affects cellular phenotypes in a donor-specific manner. These findings provide novel insight into underlying mechanisms of hypertrophic cell signaling between different cell types. With a growing interest in stem cells and exosomes for cardiovascular therapeutic use, this also provides information important for regenerative medicine.
Collapse
Affiliation(s)
- Amy Turner
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Praful Aggarwal
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Andrea Matter
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Benjamin Olson
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin.,Department of Molecular Genetics and Genomics, Washington University, St. Louis, Missouri
| | - C Charles Gu
- Division of Biostatistics, Washington University School of Medicine, St. Louis, Missouri
| | - Steven C Hunt
- Department of Genetic Medicine, Weill Cornell Medicine, Doha, Qatar.,Division of Epidemiology, University of Utah School of Medicine, Salt Lake City, Utah
| | - Cora E Lewis
- Division of Preventive Medicine, Department of Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Donna K Arnett
- Department of Epidemiology, College of Public Health, University of Kentucky, Lexington, Kentucky
| | - Rachel Lorier
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ulrich Broeckel
- Section of Genomic Pediatrics, Department of Pediatrics, Medicine and Physiology, Children's Research Institute and Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
49
|
Moses SR, Adorno JJ, Palmer AF, Song JW. Vessel-on-a-chip models for studying microvascular physiology, transport, and function in vitro. Am J Physiol Cell Physiol 2021; 320:C92-C105. [PMID: 33176110 PMCID: PMC7846973 DOI: 10.1152/ajpcell.00355.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/20/2020] [Accepted: 11/08/2020] [Indexed: 12/15/2022]
Abstract
To understand how the microvasculature grows and remodels, researchers require reproducible systems that emulate the function of living tissue. Innovative contributions toward fulfilling this important need have been made by engineered microvessels assembled in vitro with microfabrication techniques. Microfabricated vessels, commonly referred to as "vessels-on-a-chip," are from a class of cell culture technologies that uniquely integrate microscale flow phenomena, tissue-level biomolecular transport, cell-cell interactions, and proper three-dimensional (3-D) extracellular matrix environments under well-defined culture conditions. Here, we discuss the enabling attributes of microfabricated vessels that make these models more physiological compared with established cell culture techniques and the potential of these models for advancing microvascular research. This review highlights the key features of microvascular transport and physiology, critically discusses the strengths and limitations of different microfabrication strategies for studying the microvasculature, and provides a perspective on current challenges and future opportunities for vessel-on-a-chip models.
Collapse
Affiliation(s)
- Savannah R Moses
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan J Adorno
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
| | - Andre F Palmer
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, Ohio
| | - Jonathan W Song
- Department of Mechanical and Aerospace Engineering, The Ohio State University, Columbus, Ohio
- The Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
| |
Collapse
|
50
|
Virumbrales-Muñoz M, Chen J, Ayuso J, Lee M, Abel EJ, Beebe DJ. Organotypic primary blood vessel models of clear cell renal cell carcinoma for single-patient clinical trials. LAB ON A CHIP 2020; 20:4420-4432. [PMID: 33103699 PMCID: PMC8743028 DOI: 10.1039/d0lc00252f] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Clear cell renal cell carcinoma (ccRCC) is a common genitourinary cancer associated with the development of abnormal tumor angiogenesis. Although multiple anti-angiogenic therapies have been developed, responses to individual treatment are highly variable between patients. Thus, the use of one-patient clinical trials has been suggested as an alternative to standard trials. We used a microfluidic device to generate organotypic primary patient-specific blood vessel models using normal (NEnC) and tumor-associated primary CD31+ selected cells (TEnC). Our model was able to recapitulate differences in angiogenic sprouting and vessel permeability that characterize normal and tumor-associated vessels. We analyzed the expression profile of vessel models to define vascular normalization in a patient-specific manner. Using this data, we identified actionable targets to normalize TEnC vessel function to a more NEnC-like phenotype. Finally, we tested two of these drugs in our patient-specific models to determine the efficiency in restoring vessel function showing the potential of the model for single-patient clinical trials.
Collapse
Affiliation(s)
- María Virumbrales-Muñoz
- Department of Pathology and Laboratory Medicine, University of Wisconsin, Madison, 1111 Highland Avenue, Madison, Wisconsin 53705, USA.
| | | | | | | | | | | |
Collapse
|