1
|
Wang H, Yang L, Yang Y, Zhang D, Hao G. Multifunctional natural starch-based hydrogels: Critical characteristics, formation mechanisms, various applications, future perspectives. Carbohydr Polym 2025; 357:123458. [PMID: 40158989 DOI: 10.1016/j.carbpol.2025.123458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 02/26/2025] [Indexed: 04/02/2025]
Abstract
With the growth of the global population and increasing concern for environmental issues, the development of sustainable and eco-friendly materials has become increasingly important. Starch, as a renewable resource, is one of the most abundant polysaccharides in nature, with the advantages of good biocompatibility, high biodegradability, and low cost. Starch-based hydrogels (SBHs) have attracted widespread attention due to their unique physical and chemical properties. This article provides a comprehensive review of the latest research progress in SBHs, discussing their main characteristics, formation mechanisms, diverse applications, and future development trends. First, it outlines the biocompatibility, degradability, water absorption and retention, environmental responsiveness, and mechanical strength of SBHs. Then, it elaborates in detail on the formation mechanisms of SBHs, including physical crosslinking (hydrogen bonding, electrostatic interactions, host-guest and coordination interactions), chemical crosslinking (such as initiators, heat, light, radiation, and click reactions), and synergistic effects. Subsequently, it analyzes the applications of SBHs in cutting-edge fields such as flexible sensors, medical dressings, drug delivery, tissue engineering, soil protection, wastewater treatment, and food packaging. Finally, it summarizes the challenges in current research and provides an outlook on future development trends, emphasizing the importance of further optimizing the performance of SBHs to meet broader industrial needs and environmental protection goals. This review not only provides a systematic theoretical framework for the study of SBHs but also charts a course for their innovative applications in the field of sustainable materials, playing a significant role in advancing the continuous development of this area.
Collapse
Affiliation(s)
- Hong Wang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Liang Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China.
| | - Yanning Yang
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China; Shaanxi Key Laboratory of Intelligent Processing for Big Energy Data, Yan'an 716000, China
| | - Dongsheng Zhang
- School of Mechanical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Gangling Hao
- School of Physics and Electronic Information, Yan'an University, Yan'an 716000, China.
| |
Collapse
|
2
|
Dong Z, Zhu W, Ren Y, Xiao Y, Wu H. DNA logic nanomachine for the accurate identification of multiple microRNAs in tumor cells. Talanta 2025; 287:127590. [PMID: 39827482 DOI: 10.1016/j.talanta.2025.127590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/27/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
The use of dynamic DNA logic circuits for disease diagnosis at the molecular level plays a considerable role in biomedical fields. Nevertheless, how to create programmable nanomachines based on molecular logical gates to accurately identify multiple biomarkers from tumor cells remains a pivotal challenge. Herein, we developed a DNA-based nanomachine for analyzing and imaging multiple microRNAs (miRNAs) in cancerous cells with a logical AND operation. The triangular prism design of DNA nanomachine improved its performance in living cell research with high stability and served as a modularized framework for toehold-mediated strand displacement reactions and catalytic hairpin assembly circuits. The results suggested that the nanomachine could efficiently enter cells with great biocompatibility and rapidly recognize the correct biomolecules with high sensitivity. The well-designed DNA-logic gate nanomachine enabled accurate diagnosis on multiple miRNA patterns in different cell lines and differentiation of aberrant expression in target cells, which provided a novel possibility for intelligent disease diagnosis using smart nanomachines at the molecular level.
Collapse
Affiliation(s)
- Zhe Dong
- Department of Gastrointestinal Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Wenjun Zhu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yingjie Ren
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China
| | - Yuliang Xiao
- School of Pharmaceutical Sciences & Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| | - Han Wu
- School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China; Institute of Brain Science and Brain-inspired Research, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, 250117, China.
| |
Collapse
|
3
|
Pan M, Cao W, Zhai J, Zheng C, Xu Y, Zhang P. mRNA-based vaccines and therapies - a revolutionary approach for conquering fast-spreading infections and other clinical applications: a review. Int J Biol Macromol 2025; 309:143134. [PMID: 40233916 DOI: 10.1016/j.ijbiomac.2025.143134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/10/2025] [Accepted: 04/11/2025] [Indexed: 04/17/2025]
Abstract
Since the beginning of the COVID-19 pandemic, the development of messenger RNA (mRNA) vaccines has made significant progress in the pharmaceutical industry. The two COVID-19 mRNA vaccines from Moderna and Pfizer/BioNTech have been approved for marketing and have made significant contributions to preventing the spread of SARS-CoV-2. In addition, mRNA therapy has brought hope to some diseases that do not have specific treatment methods or are difficult to treat, such as the Zika virus and influenza virus infections, as well as the prevention and treatment of tumors. With the rapid development of in vitro transcription (IVT) technology, delivery systems, and adjuvants, mRNA therapy has also been applied to hereditary diseases such as Fabry's disease. This article reviews the recent development of mRNA vaccines for structural modification, treatment and prevention of different diseases; delivery carriers and adjuvants; and routes of administration to promote the clinical application of mRNA therapies.
Collapse
Affiliation(s)
- Mingyue Pan
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Weiling Cao
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China
| | - Jingbo Zhai
- Key Laboratory of Zoonose Prevention and Control at Universities of Inner Mongolia Autonomous Region, Medical College, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Chunfu Zheng
- Department of Microbiology, Immunology and Infectious Diseases, University of Calgary, Calgary, Alberta, Canada.
| | - Yingying Xu
- Department of Pharmaceutics, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China.
| | - Peng Zhang
- Department of Pharmacy, The Third Affiliated Hospital (The Affiliated Luohu Hospital) of Shenzhen University, Shenzhen 518001, China.
| |
Collapse
|
4
|
Li X, Yuan K, Yin Y, Tian Y, Guo Z, Qin Z, Zeng X. Docetaxel-Loaded Electrospun Nanofibrous Mats for Local Chemotherapy Targeting Positive Surgical Margins in Prostate Cancer. Mol Pharm 2025; 22:2213-2223. [PMID: 40073383 DOI: 10.1021/acs.molpharmaceut.4c01440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
Positive surgical margins following radical prostatectomy significantly contribute to tumor recurrence. While systemic chemotherapy demonstrates limited efficacy in this context, local chemotherapy drug delivery systems based on nanomaterials offer promising strategies to address this issue by modifying drug release kinetics and distribution, thereby enhancing antitumor effects while minimizing the toxicities associated with systemic chemotherapy. In this study, we utilized electrospun nanofibrous mats loaded with docetaxel for sustained drug delivery. In vitro experiments demonstrated that these implantable drug-loaded nanofibrous mats effectively inhibited prostate cancer cell growth, induced cell cycle arrest, and promoted apoptosis. In animal models, these drug-loaded nanofibrous mats exhibited prominent therapeutic effects on positive surgical margins postoperatively. Importantly, docetaxel-loaded nanofibrous mats modulated the tumor immune microenvironment by suppressing M2-like macrophages, increasing the ratio between M1- and M2-like macrophages, and enhancing CD8+ T-cell infiltration. Local administration significantly reduced systemic toxicity compared to systemic chemotherapy. In summary, we developed an implantable electrospun drug-loaded nanofibrous mat for localized docetaxel delivery, which offers a prospective strategy for managing positive surgical margins after surgery.
Collapse
Affiliation(s)
- Xing Li
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Kun Yuan
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yisheng Yin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yiqun Tian
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zihao Guo
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Zhenliang Qin
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoyong Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
5
|
Romero-Ben E, Goswami U, Soto-Cruz J, Mansoori-Kermani A, Mishra D, Martin-Saldaña S, Muñoz-Ugartemendia J, Sosnik A, Calderón M, Beloqui A, Larrañaga A. Polymer-based nanocarriers to transport therapeutic biomacromolecules across the blood-brain barrier. Acta Biomater 2025; 196:17-49. [PMID: 40032217 DOI: 10.1016/j.actbio.2025.02.065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/05/2025]
Abstract
Therapeutic biomacromolecules such as genetic material, antibodies, growth factors and enzymes represent a novel therapeutic alternative for neurological diseases and disorders. In comparison to traditional therapeutics, which are mainly based on small molecular weight drugs that address the symptoms of these disorders, therapeutic biomacromolecules can reduce undesired side effects and target specific pathological pathways, thus paving the way towards personalized medicine. However, these biomacromolecules undergo degradation/denaturation processes in the physiological environment and show poor capacity to cross the blood-brain barrier (BBB). Consequently, they rarely reach the central nervous system (CNS) in their active form. Herein, we critically overview several polymeric nanocarriers that can protect and deliver therapeutic biomacromolecules across the BBB. Polymeric nanocarriers are first categorized based on their architecture (biodegradable solid nanoparticles, nanogels, dendrimers, self-assembled nanoparticles) that ultimately determines their physico-chemical properties and function. The available polymeric formulations are then thoroughly analyzed, placing particular attention on those strategies that ensure the stability of the biomacromolecules during their encapsulation process and promote their passage across the BBB by controlling their physical (e.g., mechanical properties, size, surface charge) and chemical (e.g., surface functional groups, targeting motifs) properties. Accordingly, this review gives a unique perspective on polymeric nanocarriers for the delivery of therapeutic biomacromolecules across the BBB, representing a concise, complete and easy-to-follow guide, which will be of high interest for chemists, material scientists, pharmacologists, and biologists. Besides, it also provides a critical perspective about the limited clinical translation of these systems. STATEMENT OF SIGNIFICANCE: The increasing incidence of central nervous system disorders is a major health concern. The use of therapeutic biomacromolecules has been placed in the spotlight of many investigations. However, reaching therapeutic concentration levels of biomacromolecules in the central nervous system is restricted by the blood-brain barrier and, thus, this represents the main clinical challenge when developing efficient therapies. Herein, we provide a critical discussion about the use of polymeric nanocarriers to deliver therapeutic biomacromolecules into the central nervous system, highlighting potential future directions to overcome the current challenges.
Collapse
Affiliation(s)
- Elena Romero-Ben
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Upashi Goswami
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Jackeline Soto-Cruz
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Amirreza Mansoori-Kermani
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain; Istituto Italiano di Tecnologia, Smart Bio-Interfaces, Viale Rinaldo Piaggio 34, Pontedera 56025, Italy; Scuola Superiore Sant'Anna, The Biorobotics Institute, Viale Rinaldo PIaggio 34, Pontedera 56025, Italy
| | - Dhiraj Mishra
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Sergio Martin-Saldaña
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain
| | - Jone Muñoz-Ugartemendia
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain
| | - Alejandro Sosnik
- Laboratory of Pharmaceutical Nanomaterials Science, Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Marcelo Calderón
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Ana Beloqui
- POLYMAT, Applied Chemistry Department, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel de Lardizabal 3, Donostia-San Sebastián 20018, Spain; IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, Bilbao 48009, Spain
| | - Aitor Larrañaga
- Department of Mining-Metallurgy Engineering and Materials Science, POLYMAT, Bilbao School of Engineering, University of the Basque Country (UPV/EHU), Plaza Torres Quevedo 1, Bilbao 48013, Spain.
| |
Collapse
|
6
|
Liao L, Yuan R, Li Z, Zhou W. Nanocatalysts encapsulated in metal-organic frameworks: Size control and positive influences. Adv Colloid Interface Sci 2025; 341:103485. [PMID: 40147211 DOI: 10.1016/j.cis.2025.103485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 01/18/2025] [Accepted: 03/19/2025] [Indexed: 03/29/2025]
Abstract
Beyond traditional porous materials, metal-organic frameworks (MOFs) have attracted considerable attention for fabricating encapsulated nanocatalysts in the pores/cavities/channels of MOFs due to the high surface area, porous structure, and a large variety of organic linkers. As the host for nanocatalyst encapsulation, MOFs can provide uniform hierarchical pores and channels that can accelerate the mass transfer and migration of reactants or products and various metal‑oxygen clusters and organic linkers, which may interact strongly with nanocatalysts. Herein, state-of-the-art advancements in the encapsulation of nanocatalysts, including catalyst nanoparticles, clusters, quantum dots, and single-atom catalysts, have been summarized. The synthetic methods for nanocatalysts in MOFs and the enhanced properties are especially discussed. Then, positive effects upon the encapsulation of nanocatalysts in MOFs, including tunable chemical environment and encapsulation effects have been explored. Notably, the catalytic activity and product selectivity can be much improved by regulating the chemical environment around nanocatalysts and the interaction between the active nanocatalysts and metal nodes or organic linkers. Finally, challenges and future perspectives in encapsulated nanocatalysts in MOFs are proposed. This review could shed light on the construction of stable nanocatalysts encapsulation in MOFs with maximum exposed active sites and excellent activity in significant reactions.
Collapse
Affiliation(s)
- Lijun Liao
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China
| | - Ruting Yuan
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Zhenzi Li
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| | - Wei Zhou
- Shandong Provincial Key Laboratory of Molecular Engineering School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong 250353, PR China.
| |
Collapse
|
7
|
Pan Y, Zhao H, Huang W, Liu S, Qi Y, Huang Y. Metal-Protein Hybrid Materials: Unlocking New Frontiers in Biomedical Applications. Adv Healthc Mater 2025; 14:e2404405. [PMID: 39778029 DOI: 10.1002/adhm.202404405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/24/2024] [Indexed: 01/11/2025]
Abstract
Metal-protein hybrid materials represent a novel class of functional materials that exhibit exceptional physicochemical properties and tunable structures, rendering them remarkable applications in diverse fields, including materials engineering, biocatalysis, biosensing, and biomedicine. The design and development of multifunctional and biocompatible metal-protein hybrid materials have been the subject of extensive research and a key aspiration for practical applications in clinical settings. This review provides a comprehensive analysis of the design strategies, intrinsic properties, and biomedical applications of these hybrid materials, with a specific emphasis on their potential in cancer therapy, drug and vaccine delivery, antibacterial treatments, and tissue regeneration. Through rational design, stable metal-protein hybrid materials can be synthesized using straightforward methods, enabling them with therapeutic, delivery, immunomodulatory, and other desired functionalities. Finally, the review outlines the existing limitations and challenges associated with metal-protein hybrid materials and evaluates their potential for clinical translation, providing insights into their practical implementation within biomedical applications.
Collapse
Affiliation(s)
- Yong Pan
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Han Zhao
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Wenyong Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Siyang Liu
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yanxin Qi
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| | - Yubin Huang
- Faculty of Chemistry, Northeast Normal University, Changchun, 130024, P.R. China
| |
Collapse
|
8
|
Jiao Q, Huang Y, He J, Xu Y. Advances in Oral Biomacromolecule Therapies for Metabolic Diseases. Pharmaceutics 2025; 17:238. [PMID: 40006605 PMCID: PMC11859201 DOI: 10.3390/pharmaceutics17020238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/08/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Metabolic diseases like obesity and diabetes are on the rise, and therapies with biomacromolecules (such as proteins, peptides, antibodies, and oligonucleotides) play a crucial role in their treatment. However, these drugs are traditionally injected. For patients with chronic diseases (e.g., metabolic diseases), long-term injections are accompanied by inconvenience and low compliance. Oral administration is preferred, but the delivery of biomacromolecules is challenging due to gastrointestinal barriers. In this article, we introduce the available biomacromolecule drugs for the treatment of metabolic diseases. The gastrointestinal barriers to oral drug delivery and strategies to overcome these barriers are also explored. We then discuss strategies for alleviating metabolic defects, including glucose metabolism, lipid metabolism, and energy metabolism, with oral biomacromolecules such as insulin, glucagon-like peptide-1 receptor agonists, proprotein convertase subtilisin/kexin type 9 inhibitors, fibroblast growth factor 21 analogues, and peptide YY analogues.
Collapse
Affiliation(s)
- Qiuxia Jiao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuan Huang
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Jinhan He
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Herdiana Y. Polymeric rumen-stable delivery systems for delivering nutricines. Open Vet J 2025; 15:565-593. [PMID: 40201846 PMCID: PMC11974284 DOI: 10.5455/ovj.2025.v15.i2.7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/21/2025] [Indexed: 04/10/2025] Open
Abstract
Ruminants face unique drug and nutrient delivery challenges because of their symbiotic rumen microorganisms. Polymeric rumen-stable delivery systems (RDSs) have emerged as a promising solution for efficiently delivering nutrition and enhancing animal health and productivity. Traditional methods such as heat and chemical treatment have been improved with polymeric coatings that facilitate the slow postruminal release of bioactive substances. Polymeric coatings of nutrients offer significant potential for improving ruminant health, reducing farmer costs, and promoting sustainability in livestock. This paper explores the mechanisms of rumen protection and abomasal release provided by polymeric coatings, discusses other RSDs, and reviews methods for evaluating their performance in vitro and in vivo. Further research in this area could advance novel nutricine delivery solutions for ruminants.
Collapse
Affiliation(s)
- Yedi Herdiana
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
- Veterinary Pharmaceutical Development Group, Faculty of Pharmacy, Universitas Padjadjaran, Sumedang, Indonesia
| |
Collapse
|
10
|
Ciftci F, Özarslan AC, Kantarci İC, Yelkenci A, Tavukcuoglu O, Ghorbanpour M. Advances in Drug Targeting, Drug Delivery, and Nanotechnology Applications: Therapeutic Significance in Cancer Treatment. Pharmaceutics 2025; 17:121. [PMID: 39861768 PMCID: PMC11769154 DOI: 10.3390/pharmaceutics17010121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 01/01/2025] [Accepted: 01/04/2025] [Indexed: 01/27/2025] Open
Abstract
In the 21st century, thanks to advances in biotechnology and developing pharmaceutical technology, significant progress is being made in effective drug design. Drug targeting aims to ensure that the drug acts only in the pathological area; it is defined as the ability to accumulate selectively and quantitatively in the target tissue or organ, regardless of the chemical structure of the active drug substance and the method of administration. With drug targeting, conventional, biotechnological and gene-derived drugs target the body's organs, tissues, and cells that can be selectively transported to specific regions. These systems serve as drug carriers and regulate the timing of release. Despite having many advantageous features, these systems have limitations in thoroughly treating complex diseases such as cancer. Therefore, combining these systems with nanoparticle technologies is imperative to treat cancer at both local and systemic levels effectively. The nanocarrier-based drug delivery method involves encapsulating target-specific drug molecules into polymeric or vesicular systems. Various drug delivery systems (DDS) were investigated and discussed in this review article. The first part discussed active and passive delivery systems, hydrogels, thermoplastics, microdevices and transdermal-based drug delivery systems. The second part discussed drug carrier systems in nanobiotechnology (carbon nanotubes, nanoparticles, coated, pegylated, solid lipid nanoparticles and smart polymeric nanogels). In the third part, drug targeting advantages were discussed, and finally, market research of commercial drugs used in cancer nanotechnological approaches was included.
Collapse
Affiliation(s)
- Fatih Ciftci
- Department of Biomedical Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
- Department of Technology Transfer Office, Fatih Sultan Mehmet Vakıf University, Istanbul 34015, Turkey
| | - Ali Can Özarslan
- Department of Metallurgical and Materials Engineering, Istanbul University-Cerrahpasa, Istanbul 34320, Turkey;
| | - İmran Cagri Kantarci
- Department of Bioengineering, Faculty of Chemistry-Metallurgy, Yildiz Technical University, Istanbul 34210, Turkey;
| | - Aslihan Yelkenci
- Department of Pediatric Dentistry, Faculty of Dentistry, University of Health Sciences, Istanbul 34668, Turkey;
| | - Ozlem Tavukcuoglu
- Department of Biochemistry, Faculty of Hamidiye Pharmacy, University of Health Sciences, Istanbul 34668, Turkey;
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural Resources, Arak University, Arak 38156-8-8349, Iran;
| |
Collapse
|
11
|
Ma D, Xie A, Lv J, Min X, Zhang X, Zhou Q, Gao D, Wang E, Gao L, Cheng L, Liu S. Engineered extracellular vesicles enable high-efficient delivery of intracellular therapeutic proteins. Protein Cell 2024; 15:724-743. [PMID: 38518087 PMCID: PMC11443452 DOI: 10.1093/procel/pwae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Accepted: 02/19/2024] [Indexed: 03/24/2024] Open
Abstract
Developing an intracellular delivery system is of key importance in the expansion of protein-based therapeutics acting on cytosolic or nuclear targets. Recently, extracellular vesicles (EVs) have been exploited as next-generation delivery modalities due to their natural role in intercellular communication and biocompatibility. However, fusion of protein of interest to a scaffold represents a widely used strategy for cargo enrichment in EVs, which could compromise the stability and functionality of cargo. Herein, we report intracellular delivery via EV-based approach (IDEA) that efficiently packages and delivers native proteins both in vitro and in vivo without the use of a scaffold. As a proof-of-concept, we applied the IDEA to deliver cyclic GMP-AMP synthase (cGAS), an innate immune sensor. The results showed that cGAS-carrying EVs activated interferon signaling and elicited enhanced antitumor immunity in multiple syngeneic tumor models. Combining cGAS EVs with immune checkpoint inhibition further synergistically boosted antitumor efficacy in vivo. Mechanistically, scRNA-seq demonstrated that cGAS EVs mediated significant remodeling of intratumoral microenvironment, revealing a pivotal role of infiltrating neutrophils in the antitumor immune milieu. Collectively, IDEA, as a universal and facile strategy, can be applied to expand and advance the development of protein-based therapeutics.
Collapse
Affiliation(s)
- Ding Ma
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - An Xie
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Jiahui Lv
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xiaolin Min
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Xinye Zhang
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Qian Zhou
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Daxing Gao
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| | - Enyu Wang
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Lei Gao
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
| | - Linzhao Cheng
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
- School of Biomedical Engineering, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
| | - Senquan Liu
- Department of Hematology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
- Blood and Cell Therapy Institute, Anhui Provincial Key Laboratory of Blood Research and Applications, University of Science and Technology of China, Hefei 230036, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
12
|
Zou J, Xing X, Teng C, Zhao Q, He W, Wu X, Xia Y. Cocrystal@protein-anchoring nanococktail for combinatorially treating multidrug-resistant cancer. Acta Pharm Sin B 2024; 14:4509-4525. [PMID: 39525582 PMCID: PMC11544293 DOI: 10.1016/j.apsb.2024.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/17/2024] [Accepted: 07/10/2024] [Indexed: 11/16/2024] Open
Abstract
Multidrug resistance (MDR), the major mechanism by which various cancers develop specific resistance to therapeutic agents, has set up enormous obstacles to many forms of tumor chemotherapy. Traditional cocktail therapy administration, based on the combination of multiple drugs for anti-MDR chemotherapy, often suffers from inconsistent in vivo pharmacokinetic behaviors that cannot act synchronously on the lesions, leading to limited pharmacodynamic outcomes. Despite the emergence of nanomedicines, which has improved chemotherapeutic drugs' bioavailability and therapeutic effect on clinical application, these monotherapy-based nano-formulations still show poor progression in overcoming MDR. Herein, a "one stone and three birds" nanococktail integrated by a cocrystal@protein-anchoring strategy was purposed for triple-payload delivery, which paclitaxel-disulfiram cocrystal-like nanorods (NRs) were anchored with the basic protein drug Cytochrome c (Cyt C), followed by hyaluronic-acid modification. In particular, NRs were utilized as carrier-like particles to synchronously deliver biomacromolecule Cyt C into tumor cells and then promote cell apoptosis. Of note, on A549/Taxol drug-resistant tumor-bearing mice, the system with extraordinarily high encapsulation efficiency demonstrated prolonged in vivo circulation and increased tumor-targeting accumulation, significantly reversing tumor drug resistance and improving therapeutic efficacy. Our mechanistic study indicated that the system induced the apoptosis of Taxol-resistant tumor cells through the signal axis P-glycoprotein/Cyt C/caspase 3. Collectively, this nanococktail strategy offers a promising approach to improve the sensitivity of tumor cells to chemotherapeutic drugs and strengthen intractable drug-resistant oncotherapy.
Collapse
Affiliation(s)
- Jiahui Zou
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xuyang Xing
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Chao Teng
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Qingling Zhao
- School of Computer Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Xuri Wu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
| | - Yuanzheng Xia
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Bioactive Natural Product Research, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
13
|
Zhao R, Yu T, Li J, Niu R, Liu D, Wang W. Single-cell encapsulation systems for probiotic delivery: Armor probiotics. Adv Colloid Interface Sci 2024; 332:103270. [PMID: 39142064 DOI: 10.1016/j.cis.2024.103270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 05/28/2024] [Accepted: 08/03/2024] [Indexed: 08/16/2024]
Abstract
Functional foods or drugs based on probiotics have gained unprecedented attention and development due to the increasingly clear relationship between probiotics and human health. Probiotics can regulate intestinal microbiota, dynamically participating in various physiological activities to directly affect human health. Some probiotic-based functional preparations have shown great potential in treating multiple refractory diseases. Currently, the survival and activity of probiotic cells in complex environments in vitro and in vivo have taken priority, and various encapsulation systems based on food-derived materials have been designed and constructed to protect and deliver probiotics. However, traditional encapsulation technology cannot achieve precise protection for a single probiotic, which makes it unable to have a significant effect after release. In this case, single-cell encapsulation systems can be assembled based on biological interfaces to protect and functionalize individual probiotic cells, maximizing their physiological activity. This review discussed the arduous challenges of probiotics in food processing, storage, human digestion, and the commonly used probiotic encapsulation system. Besides, a novel technology of probiotic encapsulation was introduced based on single-cell coating, namely, "armor probiotics". We focused on the classification, structural design, and functional characteristics of armor coatings, and emphasized the essential functional characteristics of armor probiotics in human health regulation, including regulating intestinal health and targeted bioimaging and treatment of diseased tissues. Subsequently, the benefits, limitations, potential challenges, as well as future direction of armor probiotics were put forward. We hope this review may provide new insights and ideas for developing a single-cell probiotics encapsulating system.
Collapse
Affiliation(s)
- Runan Zhao
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ting Yu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Jiaheng Li
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China
| | - Ruihao Niu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China
| | - Donghong Liu
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China; Ningbo Research Institute, Zhejiang University, Ningbo 315100, China
| | - Wenjun Wang
- College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiashan 314100, China.
| |
Collapse
|
14
|
Fathi Kisomi M, Yadegar A, Shekari T, Amin M, Llopis-Lorente A, Liu C, Haririan I, Aghdaei HA, Shokrgozar MA, Zali MR, Rad-Malekshahi M, Miri AH, Hamblin MR, Wacker MG. Unveiling the potential role of micro/nano biomaterials in the treatment of Helicobacter pylori infection. Expert Rev Anti Infect Ther 2024; 22:613-630. [PMID: 39210553 DOI: 10.1080/14787210.2024.2391910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION Helicobacter pylori causes stubborn infections and leads to a variety of stomach disorders, such as peptic ulcer, chronic atrophic gastritis, and gastric cancer. Although antibiotic-based approaches have been widely used against H. pylori, some challenges such as antibiotic resistance are increasing in severity. Therefore, simpler but more effective strategies are needed. AREAS COVERED In this review, basic information on functionalized and non-functionalized micro/nano biomaterials and routes of administration for H. pylori inhibition are provided in an easy-to-understand format. Afterward, in vitro and in vivo studies of some promising bio-platforms including metal-based biomaterials, biopolymers, small-molecule saccharides, and vaccines for H. pylori inhibition are discussed in a holistic manner. EXPERT OPINION Functionalized or non-functionalized micro/nano biomaterials loaded with anti-H. pylori agents can show efficient bactericidal activity with no/slight negative influence on the host gastrointestinal microbiota. However, this claim needs to be substantiated with hard data such as assessment of the biopharmaceutical parameters of anti-H. pylori systems and the measurement of diversity/abundance of bacterial genera in the host gastric/gut microbiota before and after H. pylori eradication.
Collapse
Affiliation(s)
- Misagh Fathi Kisomi
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tara Shekari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Amin
- Department of Drug and Food Control, Faculty of Pharmacy, and the Institute of Pharmaceutical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Valencia, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Chenguang Liu
- College of Marine Life Science, Ocean University of China, Qingdao, P.R. China
| | - Ismaeil Haririan
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Asadzadeh Aghdaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mazda Rad-Malekshahi
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Hossein Miri
- Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Matthias G Wacker
- Department of Pharmacy, Faculty of Science, National University of Singapore, 4 Science Drive 2, Singapore 117545, Singapore
| |
Collapse
|
15
|
Mogheiseh M, Hasanzadeh Ghasemi R. Design and simulation of a wireframe DNA origami nanoactuator. J Chem Phys 2024; 161:045101. [PMID: 39037143 DOI: 10.1063/5.0214313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/30/2024] [Indexed: 07/23/2024] Open
Abstract
This paper explores the use of deoxyribonucleic acid (DNA) origami structures as nanorobot components. Investigating the functional properties of DNA origami structures can facilitate the fabrication of DNA origami-based nanorobots. The wireframe structure stands out as one of the most interesting DNA origami structures. Hence, the present study aims to employ these structures to create DNA origami nanoactuators. The research delves into the design of DNA origami structures with the aim of opening under specific temperature conditions. Short DNA strands (staples) are one of the crucial parts of DNA origami structures, and the appropriate design of these strands can lead to the creation of structures with different properties. Thus, the components of the DNA origami nanoactuator are tailored to enable intentional opening at specific temperatures while maintaining stability at lower temperatures. This structural modification showcases the functional property of the DNA origami structure. The engineered DNA origami nanoactuator holds potential applications in medicine. By carrying drugs under specific temperature conditions and releasing them under different temperature conditions, it can serve as a platform for smart drug delivery purposes.
Collapse
Affiliation(s)
- Maryam Mogheiseh
- Department of Mechanical Engineering, Hakim Sabzevari University, Sabzevar, Iran
| | | |
Collapse
|
16
|
Fan CY, Wang SW, Chung C, Chen JY, Chang CY, Chen YC, Hsu TL, Cheng TJR, Wong CH. Synthesis of a dendritic cell-targeted self-assembled polymeric nanoparticle for selective delivery of mRNA vaccines to elicit enhanced immune responses. Chem Sci 2024; 15:11626-11632. [PMID: 39055027 PMCID: PMC11268467 DOI: 10.1039/d3sc06575h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/23/2024] [Indexed: 07/27/2024] Open
Abstract
Recent development of SARS-CoV-2 spike mRNA vaccines to control the pandemic is a breakthrough in the field of vaccine development. mRNA vaccines are generally formulated with lipid nanoparticles (LNPs) which are composed of several lipids with specific ratios; however, they generally lack selective delivery. To develop a selective delivery method for mRNA vaccine formulation, we reported here the synthesis of polymeric nanoparticles (PNPs) composed of a guanidine copolymer containing zwitterionic groups and a dendritic cell (DC)-targeted aryl-trimannoside ligand for encapsulation and selective delivery of an mRNA to dendritic cells. A DC-targeted SARS-CoV-2 spike mRNA-PNP vaccine was shown to elicit a stronger protective immune response in mice compared to the traditional mRNA-LNP vaccine and those without the selective delivery design. It is anticipated that this technology is generally applicable to other mRNA vaccines for DC-targeted delivery with enhanced immune response.
Collapse
Affiliation(s)
- Chen-Yo Fan
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Szu-Wen Wang
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Cinya Chung
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Jia-Yan Chen
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Chia-Yen Chang
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Yu-Chen Chen
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | - Tsui-Ling Hsu
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
| | | | - Chi-Huey Wong
- Genomics Research Center, Academia Sinica Taipei 115 Taiwan
- Department of Chemistry, The Scripps Research Institute La Jolla California 92037 USA
| |
Collapse
|
17
|
Dou J, Yu S, Zhang Y. A facile and scalable method to synthesize PEGylated PDMAEMA for gene delivery. Biopolymers 2024; 115:e23584. [PMID: 38695839 DOI: 10.1002/bip.23584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 07/16/2024]
Abstract
In recent years, cationic polymer vectors have been viewed as a promising method for delivering nucleic acids. With the advancement of synthetic polymer chemistry, we can control chemical structures and properties to enhance the efficacy of gene delivery. Herein, a facile, cost-effective, and scalable method was developed to synthesize PEGylated PDMAEMA polymers (PEO-PDMAEMA-PEO), where PEGylation could enable prolonged polyplexes circulation time in the blood stream. Two polymers of different molecular weights were synthesized, and polymer/eGFP polyplexes were prepared and characterized. The correlation between polymers' molecular weight and physicochemical properties (size and zeta potential) of polyplexes was investigated. Lipofectamine 2000, a commercial non-viral transfection reagent, was used as a standard control. PEO-PDMAEMA-PEO with higher molecular weight exhibited slightly better transfection efficiency than Lipofectamine 2000, and the cytotoxicity study proved that it could function as a safe gene vector. We believe that PEO-PDMAEMA-PEO could serve as a model to investigate more potential in the gene delivery area.
Collapse
Affiliation(s)
- Jie Dou
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Shupei Yu
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Yuanwei Zhang
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, New Jersey, USA
| |
Collapse
|
18
|
Chen H, Xiang J, Liu Y, Pi W, Zhang H, Wu L, Liu Y, Ji S, Li Y, Cui S, Liu K, Fu X, Sun X. Customized Proteinaceous Nanoformulation for In Vivo Chemical Reprogramming. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311845. [PMID: 38720198 DOI: 10.1002/adma.202311845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 04/30/2024] [Indexed: 05/16/2024]
Abstract
Sweat gland (SwG) regeneration is crucial for the functional rehabilitation of burn patients. In vivo chemical reprogramming that harnessing the patient's own cells in damaged tissue is of substantial interest to regenerate organs endogenously by pharmacological manipulation, which could compensate for tissue loss in devastating diseases and injuries, for example, burns. However, achieving in vivo chemical reprogramming is challenging due to the low reprogramming efficiency and an unfavorable tissue environment. Herein, this work has developed a functionalized proteinaceous nanoformulation delivery system containing prefabricated epidermal growth factor structure for on-demand delivery of a cocktail of seven SwG reprogramming components to the dermal site. Such a chemical reprogramming system can efficiently induce the conversion of epidermal keratinocytes into SwG myoepithelial cells, resulting in successful in situ regeneration of functional SwGs. Notably, in vivo chemical reprogramming of SwGs is achieved for the first time with an impressive efficiency of 30.6%, surpassing previously reported efficiencies. Overall, this proteinaceous nanoformulation provides a platform for coordinating the target delivery of multiple pharmacological agents and facilitating in vivo SwG reprogramming by chemicals. This advancement greatly improves the clinical accessibility of in vivo reprogramming and offers a non-surgical, non-viral, and cell-free strategy for in situ SwG regeneration.
Collapse
Affiliation(s)
- Huating Chen
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine Peking Union Medical College, Beijing, 100730, P. R. China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 163 Xianlin Avenue, Nanjing, 210093, China
| | - Yawei Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Wei Pi
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences School of Basic Medicine Peking Union Medical College, Beijing, 100730, P. R. China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Lu Wu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Shaoyuan Cui
- Department of Nephrology, the First Medical Center, Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, 100048, P. R. China
| | - Kai Liu
- State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- Engineering Research Center of Advanced Rare Earth Materials (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, State Key Laboratory of Trauma and Chemical Poisoning, PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| |
Collapse
|
19
|
Khodadadi Yazdi M, Zarrintaj P, Saeb MR, Mozafari M, Bencherif SA. Progress in ATRP-derived materials for biomedical applications. PROGRESS IN MATERIALS SCIENCE 2024; 143:101248. [DOI: 10.1016/j.pmatsci.2024.101248] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/07/2025]
|
20
|
Liu J, Du C, Chen H, Huang W, Lei Y. Nano-Micron Combined Hydrogel Microspheres: Novel Answer for Minimal Invasive Biomedical Applications. Macromol Rapid Commun 2024; 45:e2300670. [PMID: 38400695 DOI: 10.1002/marc.202300670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/05/2024] [Indexed: 02/25/2024]
Abstract
Hydrogels, key in biomedical research for their hydrophilicity and versatility, have evolved with hydrogel microspheres (HMs) of micron-scale dimensions, enhancing their role in minimally invasive therapeutic delivery, tissue repair, and regeneration. The recent emergence of nanomaterials has ushered in a revolutionary transformation in the biomedical field, which demonstrates tremendous potential in targeted therapies, biological imaging, and disease diagnostics. Consequently, the integration of advanced nanotechnology promises to trigger a new revolution in the realm of hydrogels. HMs loaded with nanomaterials combine the advantages of both hydrogels and nanomaterials, which enables multifaceted functionalities such as efficient drug delivery, sustained release, targeted therapy, biological lubrication, biochemical detection, medical imaging, biosensing monitoring, and micro-robotics. Here, this review comprehensively expounds upon commonly used nanomaterials and their classifications. Then, it provides comprehensive insights into the raw materials and preparation methods of HMs. Besides, the common strategies employed to achieve nano-micron combinations are summarized, and the latest applications of these advanced nano-micron combined HMs in the biomedical field are elucidated. Finally, valuable insights into the future design and development of nano-micron combined HMs are provided.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Hong Chen
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
21
|
Chen R, Zhang H, Tang B, Luo Y, Yang Y, Zhong X, Chen S, Xu X, Huang S, Liu C. Macrophages in cardiovascular diseases: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:130. [PMID: 38816371 PMCID: PMC11139930 DOI: 10.1038/s41392-024-01840-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 04/02/2024] [Accepted: 04/21/2024] [Indexed: 06/01/2024] Open
Abstract
The immune response holds a pivotal role in cardiovascular disease development. As multifunctional cells of the innate immune system, macrophages play an essential role in initial inflammatory response that occurs following cardiovascular injury, thereby inducing subsequent damage while also facilitating recovery. Meanwhile, the diverse phenotypes and phenotypic alterations of macrophages strongly associate with distinct types and severity of cardiovascular diseases, including coronary heart disease, valvular disease, myocarditis, cardiomyopathy, heart failure, atherosclerosis and aneurysm, which underscores the importance of investigating macrophage regulatory mechanisms within the context of specific diseases. Besides, recent strides in single-cell sequencing technologies have revealed macrophage heterogeneity, cell-cell interactions, and downstream mechanisms of therapeutic targets at a higher resolution, which brings new perspectives into macrophage-mediated mechanisms and potential therapeutic targets in cardiovascular diseases. Remarkably, myocardial fibrosis, a prevalent characteristic in most cardiac diseases, remains a formidable clinical challenge, necessitating a profound investigation into the impact of macrophages on myocardial fibrosis within the context of cardiac diseases. In this review, we systematically summarize the diverse phenotypic and functional plasticity of macrophages in regulatory mechanisms of cardiovascular diseases and unprecedented insights introduced by single-cell sequencing technologies, with a focus on different causes and characteristics of diseases, especially the relationship between inflammation and fibrosis in cardiac diseases (myocardial infarction, pressure overload, myocarditis, dilated cardiomyopathy, diabetic cardiomyopathy and cardiac aging) and the relationship between inflammation and vascular injury in vascular diseases (atherosclerosis and aneurysm). Finally, we also highlight the preclinical/clinical macrophage targeting strategies and translational implications.
Collapse
Affiliation(s)
- Runkai Chen
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Hongrui Zhang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Botao Tang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yukun Luo
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Yufei Yang
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Xin Zhong
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China
| | - Sifei Chen
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China
| | - Xinjie Xu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Shengkang Huang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100037, China.
| | - Canzhao Liu
- Department of Cardiology, Laboratory of Heart Center, Heart Center, Translational Medicine Research Center, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510280, China.
| |
Collapse
|
22
|
Biny L, Gerasimovich E, Karaulov A, Sukhanova A, Nabiev I. Functionalized Calcium Carbonate-Based Microparticles as a Versatile Tool for Targeted Drug Delivery and Cancer Treatment. Pharmaceutics 2024; 16:653. [PMID: 38794315 PMCID: PMC11124899 DOI: 10.3390/pharmaceutics16050653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/02/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
Nano- and microparticles are increasingly widely used in biomedical research and applications, particularly as specific labels and targeted delivery vehicles. Silica has long been considered the best material for such vehicles, but it has some disadvantages limiting its potential, such as the proneness of silica-based carriers to spontaneous drug release. Calcium carbonate (CaCO3) is an emerging alternative, being an easily available, cost-effective, and biocompatible material with high porosity and surface reactivity, which makes it an attractive choice for targeted drug delivery. CaCO3 particles are used in this field in the form of either bare CaCO3 microbeads or core/shell microparticles representing polymer-coated CaCO3 cores. In addition, they serve as removable templates for obtaining hollow polymer microcapsules. Each of these types of particles has its specific advantages in terms of biomedical applications. CaCO3 microbeads are primarily used due to their capacity for carrying pharmaceutics, whereas core/shell systems ensure better protection of the drug-loaded core from the environment. Hollow polymer capsules are particularly attractive because they can encapsulate large amounts of pharmaceutical agents and can be so designed as to release their contents in the target site in response to specific stimuli. This review focuses first on the chemistry of the CaCO3 cores, core/shell microbeads, and polymer microcapsules. Then, systems using these structures for the delivery of therapeutic agents, including drugs, proteins, and DNA, are outlined. The results of the systematic analysis of available data are presented. They show that the encapsulation of various therapeutic agents in CaCO3-based microbeads or polymer microcapsules is a promising technique of drug delivery, especially in cancer therapy, enhancing drug bioavailability and specific targeting of cancer cells while reducing side effects. To date, research in CaCO3-based microparticles and polymer microcapsules assembled on CaCO3 templates has mainly dealt with their properties in vitro, whereas their in vivo behavior still remains poorly studied. However, the enormous potential of these highly biocompatible carriers for in vivo applications is undoubted. This last issue is addressed in depth in the Conclusions and Outlook sections of the review.
Collapse
Affiliation(s)
- Lara Biny
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Evgeniia Gerasimovich
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
| | - Alexander Karaulov
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| | - Alyona Sukhanova
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
| | - Igor Nabiev
- Université de Reims Champagne-Ardenne, BIOSPECT, 51100 Reims, France;
- Life Improvement by Future Technologies (LIFT) Center, Laboratory of Optical Quantum Sensors, Skolkovo, 143025 Moscow, Russia;
- Laboratory of Nano-Bioengineering, National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), 115409 Moscow, Russia
- Department of Clinical Immunology and Allergology, Institute of Molecular Medicine, Sechenov First Moscow State Medical University (Sechenov University), 119146 Moscow, Russia;
| |
Collapse
|
23
|
Yan R, Zhan M, Xu J, Peng Q. Functional nanomaterials as photosensitizers or delivery systems for antibacterial photodynamic therapy. BIOMATERIALS ADVANCES 2024; 159:213820. [PMID: 38430723 DOI: 10.1016/j.bioadv.2024.213820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/05/2024]
Abstract
Bacterial infection is a global health problem that closely related to various diseases threatening human life. Although antibiotic therapy has been the mainstream treatment method for various bacterial infectious diseases for decades, the increasing emergence of bacterial drug resistance has brought enormous challenges to the application of antibiotics. Therefore, developing novel antibacterial strategies is of great importance. By producing reactive oxygen species (ROS) with photosensitizers (PSs) under light irradiation, antibacterial photodynamic therapy (aPDT) has emerged as a non-invasive and promising approach for treating bacterial infections without causing drug resistance. However, the insufficient therapeutic penetration, poor hydrophilicity, and poor biocompatibility of traditional PSs greatly limit the efficacy of aPDT. Recently, studies have found that nanomaterials with characteristics of favorable photocatalytic activity, surface plasmonic resonance, easy modification, and high drug loading capacity can improve the therapeutic efficacy of aPDT. In this review, we aim to provide a comprehensive understanding of the mechanism of nanomaterials-mediated aPDT and summarize the representative nanomaterials in aPDT, either as PSs or carriers for PSs. In addition, the combination of advanced nanomaterials-mediated aPDT with other therapies, including targeted therapy, gas therapy, and multidrug resistance (MDR) therapy, is reviewed. Also, the concerns and possible solutions of nanomaterials-based aPDT are discussed. Overall, this review may provide theoretical basis and inspiration for the development of nanomaterials-based aPDT.
Collapse
Affiliation(s)
- Ruijiao Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Meijun Zhan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jingchen Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, China.
| | - Qiang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
24
|
Eusébio D, Paul M, Biswas S, Cui Z, Costa D, Sousa Â. Mannosylated polyethylenimine-cholesterol-based nanoparticles for targeted delivery of minicircle DNA vaccine against COVID-19 to antigen-presenting cells. Int J Pharm 2024; 654:123959. [PMID: 38430949 DOI: 10.1016/j.ijpharm.2024.123959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 01/25/2024] [Accepted: 02/28/2024] [Indexed: 03/05/2024]
Abstract
DNA vaccines can be a potential solution to protect global health, triggering both humoral and cellular immune responses. DNA vaccines are valuable in preventing intracellular pathogen infections, and therefore can be explored against coronavirus disease (COVID-19) caused by severe acute respiratory syndrome coronavirus (SARS-CoV-2). This work explored different systems based on polyethylenimine (PEI), functionalized for the first time with both cholesterol (CHOL) and mannose (MAN) to deliver parental plasmid (PP) and minicircle DNA (mcDNA) vectors encoding the receptor-binding domain (RBD) of SARS-CoV-2 to antigen-presenting cells (APCs). For comparative purposes, three different systems were evaluated: PEI, PEI-CHOL and PEI-CHOL-MAN. The systems were prepared at various nitrogen-to-phosphate group (N/P) ratios and characterized in terms of encapsulation efficiency, surface charge, size, polydispersity index (PDI), morphology, and stability over time. Moreover, in vitro transfection studies of dendritic cells (JAWS II) and human fibroblast cells were performed. Viability studies assured the biocompatibility of all nanocarriers. Confocal microscopy studies confirmed intracellular localization of systems, resulting in enhanced cellular uptake using PEI-CHOL and PEI-CHOL-MAN systems when compared with the PEI system. Regarding the RBD expression, PEI-CHOL-MAN was the system that led to the highest levels of transcripts and protein expression in JAWS II cells. Furthermore, the nanosystems significantly stimulated pro-inflammatory cytokines production and dendritic cell maturation in vitro. Overall, mannosylated systems can be considered a valuable tool in the delivery of plasmid DNA or mcDNA vaccines to APCs.
Collapse
Affiliation(s)
- Dalinda Eusébio
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Milan Paul
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Medchal, Hyderabad 500078, India
| | - Swati Biswas
- Nanomedicine Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus. Jawahar Nagar, Medchal, Hyderabad 500078, India
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, Austin, TX 78712, USA
| | - Diana Costa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal
| | - Ângela Sousa
- CICS-UBI - Health Sciences Research Centre, University of Beira Interior, Covilhã, Portugal.
| |
Collapse
|
25
|
Chen Y, Song Y, Zhu X, Dong CM, Chen M. Design and Update of Multifunctional Polypeptides and Their Applications for the Prevention of Viral Infections and Cancer Immunotherapies. POLYM REV 2024; 64:528-574. [DOI: 10.1080/15583724.2023.2281462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/07/2023] [Accepted: 11/04/2023] [Indexed: 01/06/2025]
Affiliation(s)
- Yanzheng Chen
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Yingying Song
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Mingsheng Chen
- Shanghai Public Health Clinic Center, Fudan University, Shanghai, P. R. China
| |
Collapse
|
26
|
Mohan A, Santhamoorthy M, Phan TTV, Kim SC. pNIPAm-Based pH and Thermoresponsive Copolymer Hydrogel for Hydrophobic and Hydrophilic Drug Delivery. Gels 2024; 10:184. [PMID: 38534602 DOI: 10.3390/gels10030184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/28/2024] Open
Abstract
The regulated and targeted administration of hydrophobic and hydrophilic drugs is both promising and challenging in the field of drug delivery. Developing a hydrogel which is responsive to dual stimuli is considered a promising and exciting research area of study. In this work, melamine functionalized poly-N-isopropyl acrylamide-co-glycidyl methacrylate copolymer has been developed by copolymerizing glycidyl methacrylate (GMA) monomer with N-isopropyl acrylamide (NIPAm) and further functionalized with melamine units (pNIPAm-co-pGMA-Mela). The prepared pNIPAm-co-pGMA-Mela copolymer hydrogel was characterized using various characterization techniques, including 1H NMR, FTIR, SEM, zeta potential, and particle size analysis. A hydrophobic drug (ibuprofen, Ibu) and hydrophilic drug (5-fluorouracil, 5-Fu) were selected as model drugs. Dual pH and temperature stimuli-responsive drug release behavior of the pNIPAm-co-pGMA-Mela hydrogel was evaluated under different pH (pH 7.4 and 4.0) and temperature (25 °C, 37 °C, and 45 °C) conditions. Furthermore, the in vitro biocompatibility of the developed pNIPAm-co-pGMA-Mela copolymer hydrogel was determined on MDA-MB-231 cells. The pH and temperature-responsive drug delivery study results reveal that the pNIPAm-co-pGMA-Mela hydrogel system is responsive to both pH and temperature stimuli and exhibits about ~100% of Ibu and 5-Fu, respectively, released at pH 4.0/45 °C. Moreover, the MTT assay and hemocompatibility analysis results proved that the pNIPAm-co-pGMA-Mela hydrogel system is biocompatible and hemocompatible, suggesting that that it could be used for drug delivery applications. The experimental results suggest that the proposed pNIPAm-co-pGMA-Mela hydrogel system is responsive to dual pH and temperature stimuli, and could be a promising drug carrier system for both hydrophilic and hydrophobic drug delivery applications.
Collapse
Affiliation(s)
- Anandhu Mohan
- Department of Nano Science and Technology Convergence, General Graduate School, Gachon University, 1342 Seongnam-Daero, Sujeong-gu, Seongnam-si 13120, Gyeonggi-do, Republic of Korea
| | - Madhappan Santhamoorthy
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Thi Tuong Vy Phan
- Center for Advanced Chemistry, Institute of Research and Development, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
- Faculty of Environmental and Chemical Engineering, Duy Tan University, 03 Quang Trung, Hai Chau, Danang 550000, Vietnam
| | - Seong-Cheol Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
27
|
Brugnoli B, Perna G, Alfano S, Piozzi A, Galantini L, Axioti E, Taresco V, Mariano A, Scotto d'Abusco A, Vecchio Ciprioti S, Francolini I. Nanostructured Poly-l-lactide and Polyglycerol Adipate Carriers for the Encapsulation of Usnic Acid: A Promising Approach for Hepatoprotection. Polymers (Basel) 2024; 16:427. [PMID: 38337316 DOI: 10.3390/polym16030427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/23/2024] [Accepted: 01/31/2024] [Indexed: 02/12/2024] Open
Abstract
The present study investigates the utilization of nanoparticles based on poly-l-lactide (PLLA) and polyglycerol adipate (PGA), alone and blended, for the encapsulation of usnic acid (UA), a potent natural compound with various therapeutic properties including antimicrobial and anticancer activities. The development of these carriers offers an innovative approach to overcome the challenges associated with usnic acid's limited aqueous solubility, bioavailability, and hepatotoxicity. The nanosystems were characterized according to their physicochemical properties (among others, size, zeta potential, thermal properties), apparent aqueous solubility, and in vitro cytotoxicity. Interestingly, the nanocarrier obtained with the PLLA-PGA 50/50 weight ratio blend showed both the lowest size and the highest UA apparent solubility as well as the ability to decrease UA cytotoxicity towards human hepatocytes (HepG2 cells). This research opens new avenues for the effective utilization of these highly degradable and biocompatible PLLA-PGA blends as nanocarriers for reducing the cytotoxicity of usnic acid.
Collapse
Affiliation(s)
- Benedetta Brugnoli
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Greta Perna
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Sara Alfano
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Antonella Piozzi
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Luciano Galantini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| | - Eleni Axioti
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Vincenzo Taresco
- School of Chemistry, University of Nottingham, Nottingham NG7 2RD, UK
| | - Alessia Mariano
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Anna Scotto d'Abusco
- Department of Biochemical Sciences, Sapienza University of Rome, P.le A. Moro, 5, 00185 Rome, Italy
| | - Stefano Vecchio Ciprioti
- Department of Basic and Applied Science for Engineering, Sapienza University of Rome, Via del Castro Laurenziano 7, 00161 Rome, Italy
| | - Iolanda Francolini
- Department of Chemistry, Sapienza University of Rome, P.le A. Moro, 00185 Rome, Italy
| |
Collapse
|
28
|
Trucillo P. Biomaterials for Drug Delivery and Human Applications. MATERIALS (BASEL, SWITZERLAND) 2024; 17:456. [PMID: 38255624 PMCID: PMC10817481 DOI: 10.3390/ma17020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/12/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
Biomaterials embody a groundbreaking paradigm shift in the field of drug delivery and human applications. Their versatility and adaptability have not only enriched therapeutic outcomes but also significantly reduced the burden of adverse effects. This work serves as a comprehensive overview of biomaterials, with a particular emphasis on their pivotal role in drug delivery, classifying them in terms of their biobased, biodegradable, and biocompatible nature, and highlighting their characteristics and advantages. The examination also delves into the extensive array of applications for biomaterials in drug delivery, encompassing diverse medical fields such as cancer therapy, cardiovascular diseases, neurological disorders, and vaccination. This work also explores the actual challenges within this domain, including potential toxicity and the complexity of manufacturing processes. These challenges emphasize the necessity for thorough research and the continuous development of regulatory frameworks. The second aim of this review is to navigate through the compelling terrain of recent advances and prospects in biomaterials, envisioning a healthcare landscape where they empower precise, targeted, and personalized drug delivery. The potential for biomaterials to transform healthcare is staggering, as they promise treatments tailored to individual patient needs, offering hope for improved therapeutic efficacy, fewer side effects, and a brighter future for medical practice.
Collapse
Affiliation(s)
- Paolo Trucillo
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Piazzale V. Tecchio, 80, 80125 Naples, Italy
| |
Collapse
|
29
|
Kang JH, Kim J, Lee JY, Kang D, Kim HJ, Kim K, Jeong WJ. Self-Assembled Skin-Penetrating Peptides with Controlled Supramolecular Properties for Enhanced Transdermal Delivery. Biomacromolecules 2024; 25:436-443. [PMID: 38146913 DOI: 10.1021/acs.biomac.3c01065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The use of nanocarriers decorated with penetration-enhancing agents (PEAs) is considered to be a promising approach for efficient transdermal delivery. In this study, we developed short amphiphilic skin-penetrating peptides (17 amino acids) that functioned not only as PEAs but also as building blocks of nanocarriers without the incorporation of additional macromolecules for self-assembly and guest molecule encapsulation. Interestingly, varying only two amino acids in the hydrophobic moiety of the peptides resulted in significantly different self-assembly behavior, thermal stability, protease resistance, and skin-penetration efficiency in a human skin model. The analysis of the peptide secondary structure revealed that such characteristic changes arose due to the sequence variation-mediated conformational change in the hydrophobic block. These findings hold significant promise for the development of simple and effective delivery systems exhibiting controllable supramolecular properties.
Collapse
Affiliation(s)
- Jeon Hyeong Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Jieun Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Jae Yun Lee
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - DongHyun Kang
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Hyun Jin Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Kyobum Kim
- Department of Chemical and Biochemical Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul 22012, Republic of Korea
| | - Woo-Jin Jeong
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
- Department of Biological Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
30
|
Nikam AN, Roy A, Raychaudhuri R, Navti PD, Soman S, Kulkarni S, Shirur KS, Pandey A, Mutalik S. Organogels: "GelVolution" in Topical Drug Delivery - Present and Beyond. Curr Pharm Des 2024; 30:489-518. [PMID: 38757691 DOI: 10.2174/0113816128279479231231092905] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 11/02/2023] [Indexed: 05/18/2024]
Abstract
Topical drug delivery holds immense significance in dermatological treatments due to its non-invasive nature and direct application to the target site. Organogels, a promising class of topical drug delivery systems, have acquired substantial attention for enhancing drug delivery efficiency. This review article aims to explore the advantages of organogels, including enhanced drug solubility, controlled release, improved skin penetration, non-greasy formulations, and ease of application. The mechanism of organogel permeation into the skin is discussed, along with formulation strategies, which encompass the selection of gelling agents, cogelling agents, and additives while considering the influence of temperature and pH on gel formation. Various types of organogelators and organogels and their properties, such as viscoelasticity, non-birefringence, thermal stability, and optical clarity, are presented. Moreover, the biomedical applications of organogels in targeting skin cancer, anti-inflammatory drug delivery, and antifungal drug delivery are discussed. Characterization parameters, biocompatibility, safety considerations, and future directions in optimizing skin permeation, ensuring long-term stability, addressing regulatory challenges, and exploring potential combination therapies are thoroughly examined. Overall, this review highlights the immense potential of organogels in redefining topical drug delivery and their significant impact on the field of dermatological treatments, thus paving the way for exciting prospects in the domain.
Collapse
Affiliation(s)
- Ajinkya Nitin Nikam
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Amrita Roy
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Ruchira Raychaudhuri
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Prerana D Navti
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Soji Soman
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Sanjay Kulkarni
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Krishnaraj Somayaji Shirur
- Department of Conservative Dentistry and Endodontics, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Abhijeet Pandey
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| | - Srinivas Mutalik
- Department of Pharmaceutics, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka State, India
| |
Collapse
|
31
|
Xiao Z, Lin H, Drake HF, Diaz J, Zhou HC, Pellois JP. Investigating the Cell Entry Mechanism, Disassembly, and Toxicity of the Nanocage PCC-1: Insights into Its Potential as a Drug Delivery Vehicle. J Am Chem Soc 2023; 145:27690-27701. [PMID: 38069810 PMCID: PMC10863074 DOI: 10.1021/jacs.3c09918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/21/2023]
Abstract
The porous coordination cage PCC-1 represents a new platform potentially useful for the cellular delivery of drugs with poor cell permeability and solubility. PCC-1 is a metal-organic polyhedron constructed from zinc metal ions and organic ligands through coordination bonds. PCC-1 possesses an internal cavity that is suitable for drug encapsulation. To better understand the biocompatibility of PCC-1 with human cells, the cell entry mechanism, disassembly, and toxicity of the nanocage were investigated. PCC-1 localizes in the nuclei and cytoplasm within minutes upon incubation with cells, independent of endocytosis and cargo, suggesting direct plasma membrane translocation of the nanocage carrying its guest in its internal cavity. Furthermore, the rates of cell entry correlate to extracellular concentrations, indicating that PCC-1 is likely diffusing passively through the membrane despite its relatively large size. Once inside cells, PCC-1 disintegrates into zinc metal ions and ligands over a period of several hours, each component being cleared from cells within 1 day. PCC-1 is relatively safe for cells at low micromolar concentrations but becomes inhibitory to cell proliferation and toxic above a concentration or incubation time threshold. However, cells surviving these conditions can return to homeostasis 3-5 days after exposure. Overall, these findings demonstrate that PCC-1 enters live cells by crossing biological membranes spontaneously. This should prove useful to deliver drugs that lack this capacity on their own, provided that the dosage and exposure time are controlled to avoid toxicity.
Collapse
Affiliation(s)
- Zhifeng Xiao
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hengyu Lin
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hannah F. Drake
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Joshua Diaz
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jean-Philippe Pellois
- Department
of Biochemistry and Biophysics, Texas A&M
University, College
Station, Texas 77843, United States
- Department
of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
32
|
Xu X, Moreno S, Gentzel M, Zhang K, Wang D, Voit B, Appelhans D. Biomimetic Protocells Featuring Macrophage-Like Capture and Digestion of Protein Pathogens. SMALL METHODS 2023; 7:e2300257. [PMID: 37599260 DOI: 10.1002/smtd.202300257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/11/2023] [Indexed: 08/22/2023]
Abstract
Modern medical research develops interest in sophisticated artificial nano- and microdevices for future treatment of human diseases related to biological dysfunctions. This covers the design of protocells capable of mimicking the structure and functionality of eukaryotic cells. The authors use artificial organelles based on trypsin-loaded pH-sensitive polymeric vesicles to provide macrophage-like digestive functions under physiological conditions. Herein, an artificial cell is established where digestive artificial organelles (nanosize) are integrated into a protocell (microsize). With this method, mimicking crossing of different biological barriers, capture of model protein pathogens, and compartmentalized digestive function are possible. This allows the integration of different components (e.g., dextran as stabilizing block) and the diffusion of pathogens in simulated cytosolic environment under physiological conditions. An integrated characterization approach is carried out, with identifying electrospray ionization mass spectrometry as an excellent detection method for the degradation of a small peptide such as β-amyloid. The degradation of model enzymes is measured by enzyme activity assays. This work is an important contribution to effective biomimicry with the design of cell-like functions having potential for therapeutic action.
Collapse
Affiliation(s)
- Xiaoying Xu
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Silvia Moreno
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| | - Marc Gentzel
- Center for Molecular and Cellular Bioengineering (CMCB), Core Facility Mass Spectrometry & Proteomics, Technische Universität Dresden, 01307, Dresden, Germany
| | - Kehu Zhang
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Dishi Wang
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Brigitte Voit
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
- Organic Chemistry of Polymers, Technische Universität Dresden, D-01062, Dresden, Germany
| | - Dietmar Appelhans
- Leibniz-Institut für Polymerforschung Dresden e.V., D-01069, Dresden, Germany
| |
Collapse
|
33
|
Chen C, Beloqui A, Xu Y. Oral nanomedicine biointeractions in the gastrointestinal tract in health and disease. Adv Drug Deliv Rev 2023; 203:115117. [PMID: 37898337 DOI: 10.1016/j.addr.2023.115117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/03/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Oral administration is the preferred route of administration based on the convenience for and compliance of the patient. Oral nanomedicines have been developed to overcome the limitations of free drugs and overcome gastrointestinal (GI) barriers, which are heterogeneous across healthy and diseased populations. This review aims to provide a comprehensive overview and comparison of the oral nanomedicine biointeractions in the gastrointestinal tract (GIT) in health and disease (GI and extra-GI diseases) and highlight emerging strategies that exploit these differences for oral nanomedicine-based treatment. We introduce the key GI barriers related to oral delivery and summarize their pathological changes in various diseases. We discuss nanomedicine biointeractions in the GIT in health by describing the general biointeractions based on the type of oral nanomedicine and advanced biointeractions facilitated by advanced strategies applied in this field. We then discuss nanomedicine biointeractions in different diseases and explore how pathological characteristics have been harnessed to advance the development of oral nanomedicine.
Collapse
Affiliation(s)
- Cheng Chen
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials, 1200 Brussels, Belgium; WEL Research Institute, avenue Pasteur, 6, 1300 Wavre, Belgium.
| | - Yining Xu
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, West China Hospital, Sichuan University, Chengdu 610041, China; Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Department of Clinical Pharmacy and Pharmacy Administration, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
34
|
El Fawal G, Abu-Serie MM, Ali SM, Elessawy NA. Nanocomposite fibers based on cellulose acetate loaded with fullerene for cancer therapy: preparation, characterization and in-vitro evaluation. Sci Rep 2023; 13:21045. [PMID: 38030752 PMCID: PMC10687030 DOI: 10.1038/s41598-023-48302-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023] Open
Abstract
The current prevalence of cancerous diseases necessitates the exploration of materials that can effectively treat these conditions while minimizing the occurrence of adverse side effects. This study aims to identify materials with the potential to inhibit the metastasis of cancerous diseases within the human body while concurrently serving as therapeutic agents for their treatment. A novel approach was employed to enhance the anti-cancer properties of electrospun cellulose fibers by incorporating fullerene nanoparticles (NPs) into cellulose acetate (CA) fibers, resulting in a composite material called Fullerene@CA. This development aimed at utilizing the anti-cancer properties of fullerenes for potential therapeutic applications. This process has been demonstrated in vitro against various types of cancer, and it was found that Fullerene@CA nanocomposite fibers displayed robust anticancer activity. Cancer cells (Caco-2, MDA-MB 231, and HepG-2 cells) were inhibited by 0.3 and 0.5 mg.g-1 fullerene doses by 58.62-62.87%, 47.86-56.43%, and 48.60-57.73%, respectively. The tested cancer cells shrink and lose their spindle shape due to morphological changes. The investigation of the prepared nanocomposite reveals its impact on various genes, such as BCL2, NF-KB, p53, Bax, and p21, highlighting the therapeutic compounds' effectiveness. The experimental results demonstrated that the incorporation of NPs into CA fibers resulted in a significant improvement in their anti-cancer efficacy. Therefore, it is suggested that these modified fibers could be utilized as a novel therapeutic approach for the treatment and prevention of cancer metastasis.
Collapse
Affiliation(s)
- Gomaa El Fawal
- Polymer Materials Research Department, SRTA-City), Advanced Technology and New Materials Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg EL-Arab City, Alexandria, 21934, Egypt
| | - Safaa M Ali
- Nucleic Acid Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt
| | - Noha A Elessawy
- Computer Based Engineering Applications Department, Informatics Research Institute IRI, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria, 21934, Egypt.
| |
Collapse
|
35
|
Lima ES, dos Santos D, Souza AL, Macedo ME, Bandeira ME, Junior SSS, Fiuza BSD, Rocha VPC, dos Santos Fonseca LM, Nunes DDG, Hodel KVS, Machado BAS. RNA Combined with Nanoformulation to Advance Therapeutic Technologies. Pharmaceuticals (Basel) 2023; 16:1634. [PMID: 38139761 PMCID: PMC10745936 DOI: 10.3390/ph16121634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Nucleic acid-based therapies have the potential to address numerous diseases that pose significant challenges to more traditional methods. RNA-based therapies have emerged as a promising avenue, utilizing nanoformulation treatments to target a range of pathologies. Nanoformulation offers several advantages compared to other treatment modalities, including targeted delivery, low toxicity, and bioactivity suitable for drug loading. At present, various types of nanoformulations are available, such as liposomes, polymeric nanoparticles (NPs), magnetic NPs, nanoshells, and solid lipid nanoparticles (SLNs). RNA-based therapy utilizes intracellular gene nanoparticles with messenger RNA (mRNA) emerging prominently in cancer therapy and immunotechnology against infectious diseases. The approval of mRNA-based technology opens doors for future technological advancements, particularly self-amplifying replicon RNA (repRNA). RepRNA is a novel platform in gene therapy, comprising viral RNA with a unique molecular property that enables the amplification of all encoded genetic information countless times. As a result, repRNA-based therapies have achieved significant levels of gene expression. In this context, the primary objective of this study is to furnish a comprehensive review of repRNA and its applications in nanoformulation treatments, with a specific focus on encapsulated nanoparticles. The overarching goal is to provide an extensive overview of the use of repRNA in conjunction with nanoformulations across a range of treatments and therapies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Bruna Aparecida Souza Machado
- SENAI Institute of Innovation (ISI) in Health Advanced Systems (CIMATEC ISI SAS), University Center SENAI/CIMATEC (Integrated Manufacturing and Technology Campus), Salvador 41650-010, Brazil; (E.S.L.); (D.d.S.); (A.L.S.); (M.E.M.); (M.E.B.); (S.S.S.J.); (B.S.D.F.); (V.P.C.R.); (L.M.d.S.F.); (D.D.G.N.); (K.V.S.H.)
| |
Collapse
|
36
|
You J, Yang C, Han J, Wang H, Zhang W, Zhang Y, Lu Z, Wang S, Cai R, Li H, Yu J, Gao J, Zhang Y, Gu Z. Ultrarapid-Acting Microneedles for Immediate Delivery of Biotherapeutics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2304582. [PMID: 37547966 DOI: 10.1002/adma.202304582] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/19/2023] [Indexed: 08/08/2023]
Abstract
Subcutaneous (SC) injection is a common administration route for rapid and efficient delivery of biotherapeutics. However, syringe-based injections usually require professional assistance and are associated with pain and potential risks of infections, thus leading to undesired patient compliance and poor life quality. Herein, this work presents an ultrarapid-acting microneedle (URA-MN) patch for immediate transdermal delivery of therapeutics in a minimally invasive manner. Effervescent agents are incorporated into the tip of URA-MN for rapid generation of CO2 bubbles upon insertion into the skin, immediately powering the biotherapeutics release within a few minutes. The release kinetics of diverse agents including liraglutide (LRT), insulin, and heparin from the URA-MN patches are evaluated in three different mouse models, and the rapid release of biotherapeutics and potent therapeutic effects are achieved with only 5 min administration. Noteworthily, attributed to the short application duration and negligible residuals of MN matrix remaining in the skin, the URA-MN patch shows desirable biocompatibility after six-week administration.
Collapse
Affiliation(s)
- Jiahuan You
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Changwei Yang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jinpeng Han
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hao Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wentao Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ying Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Care Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Ziyi Lu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
| | - Shiqi Wang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ruisi Cai
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Hongjun Li
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jicheng Yu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Jianqing Gao
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Yuqi Zhang
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of Burns and Wound Care Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Zhen Gu
- Key Laboratory of Advanced Drug Delivery Systems of Zhejiang Province, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310016, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, 311121, China
- Jinhua Institute of Zhejiang University, Jinhua, 321299, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
37
|
Wei K, He M, Zhang J, Zhao C, Nie C, Zhang T, Liu Y, Chen T, Jiang J, Chu X. A DNA Logic Circuit Equipped with a Biological Amplifier Loaded into Biomimetic ZIF-8 Nanoparticles Enables Accurate Identification of Specific Cancers In Vivo. Angew Chem Int Ed Engl 2023; 62:e202307025. [PMID: 37615278 DOI: 10.1002/anie.202307025] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 08/11/2023] [Accepted: 08/23/2023] [Indexed: 08/25/2023]
Abstract
DNA logic circuits (DLC) enable the accurate identification of specific cell types, such as cancer cells, but they face the challenges of weak output signals and a lack of competent platforms that can efficiently deliver DLC components to the target site in the living body. To address these issues, we rationally introduced a cascaded biological amplifier module based on the Primer Exchange Reaction inspired by electronic circuit amplifier devices. As a paradigm, three abnormally expressed Hela cell microRNAs (-30a, -17, and -21) were chosen as "AND" gate inputs. DLC response to these inputs was boosted by the amplifier markedly enhancing the output signal. More importantly, the encapsulation of DLC and amplifier components into ZIF-8 nanoparticles resulted in their efficient delivery to the target site, successfully distinguishing the Hela tumor subtype from other tumors in vivo. Thus, we envision that this strategy has great potential for clinical cancer diagnosis.
Collapse
Affiliation(s)
- Kaiji Wei
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mengyun He
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juan Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chuan Zhao
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cunpeng Nie
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tong Zhang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yi Liu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Tingting Chen
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jianhui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Xia Chu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
38
|
Ge X, Hu J, Peng Y, Zeng Z, He D, Li X, Chen Y, Luo G, Deng J, Xu Z, He S. Atmosphere-inspired multilayered nanoarmor with modulable protection and delivery of Interleukin-4 for inflammatory microenvironment modulation. Biomaterials 2023; 301:122254. [PMID: 37531774 DOI: 10.1016/j.biomaterials.2023.122254] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/26/2023] [Accepted: 07/23/2023] [Indexed: 08/04/2023]
Abstract
Inflammatory bowel disease (IBD) has been closely associated with immune disorders and excessive M1 macrophage activation, which can be reversed by the M2-polarizing effect of interleukin-4 (IL-4). However, maintaining native IL-4 activity with its specific release in the inflammatory microenvironment and efficient biological performance remain a challenge. Inspired by the multilayered defense mechanism of the earth's atmosphere, we constructed a multilayered protective nanoarmor (NA) for IL-4 delivery (termed as IL-4@PEGRA NAs) into an intricate inflammatory microenvironment. The poly(ethylene glycol) (PEG)-ylated phenolic rosmarinic acid (RA)-grafted copolymer contains two protective layers-the intermediate polyphenol (RA molecules) and outermost shield (PEG) layers-to protect the biological activity of IL-4 and prolong its circulation in blood. Moreover, IL-4@PEGRA NAs scavenge reactive oxygen species with the specific release of IL-4 and maximize its biofunction at the site of inflammation, leading to M2 macrophage polarization and downregulation of inflammatory mediators. Simultaneously, gut microbiota dysbiosis can improve to amplify the M2-polarizing effect and inhibit the phosphatidylinositol 3 kinase/Akt signaling pathway, thereby attenuating inflammation and promoting colitis tissue repair. It provides a nature-inspired strategy for constructing an advanced multilayered NA delivery system with protective characteristics and potential for IBD management.
Collapse
Affiliation(s)
- Xin Ge
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China
| | - Junfeng Hu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China
| | - Yuan Peng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China; Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Zhuo Zeng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Danfeng He
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xilan Li
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Yajie Chen
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Gaoxing Luo
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Jun Deng
- Institute of Burn Research, Southwest Hospital, State Key Lab of Trauma, Burn and Combined Injury, Chongqing Key Laboratory for Disease Proteomics, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| | - Zhigang Xu
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, School of Materials and Energy & Chongqing Engineering Research Center for Micro-Nano Biomedical Materials and Devices, Southwest University, Chongqing, 400715, China.
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing Medical University, Chongqing, 400010, China.
| |
Collapse
|
39
|
Han S, Xin P, Guo Q, Cao Z, Huang H, Wu J. Oral Delivery of Protein Drugs via Lysine Polymer-Based Nanoparticle Platforms. Adv Healthc Mater 2023; 12:e2300311. [PMID: 36992627 DOI: 10.1002/adhm.202300311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Indexed: 03/31/2023]
Abstract
Oral delivery of proteins has opened a new perspective for the treatment of different diseases. However, advances of oral protein formulation are usually hindered by protein susceptibility and suboptimal absorption in the gastrointestinal tract (GIT). Polymeric nano drug delivery systems are considered revolutionary candidates to solve these issues, which can be preferably tunable against specific delivery challenges. Herein, a tailored family of lysine-based poly(ester amide)s (Lys-aaPEAs) is designed as a general oral protein delivery platform for efficient protein loading and protection from degradation. Insulin, as a model protein, can achieve effective internalization by epithelial cells and efficient transport across the intestinal epithelium layer into the systemic circulation, followed by controlled release in physiological environments. After the oral administration of insulin carried by Lys-aaPEAs with ornamental hyaluronic acid (HA), mice with type 1 diabetes mellitus showed an acceptable hypoglycemic effect with alleviated complications. A successful oral insulin delivery is associated with patient comfort and convenience and simultaneously avoids the risk of hypoglycemia compared with injections, which is of great feasibility for daily diabetes therapy. More importantly, this versatile Lys-aaPEAs polymeric library can be recognized as a universal vehicle for oral biomacromolecule delivery, providing more possibilities for treating various diseases.
Collapse
Affiliation(s)
- Shuyan Han
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Peikun Xin
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Qilun Guo
- Department of Orthopedics, the Seventh Affiliated Hospital of Sun Yet-sen University, 5181107, Shenzhen, P. R. China
| | - Zhong Cao
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, 510120, Guangzhou, P. R. China
| | - Jun Wu
- School of Biomedical Engineering, State Key Laboratory of Oncology in South China, Sun Yat-sen University, 518107, Shenzhen, P. R. China
- Bioscience and Biomedical Engineering Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
- Division of Life Science, The Hong Kong Univeristy of Science and Technology, Hongkong SAR,, China
| |
Collapse
|
40
|
Karges J. Encapsulation of Ru(II) Polypyridine Complexes for Tumor-Targeted Anticancer Therapy. BME FRONTIERS 2023; 4:0024. [PMID: 37849670 PMCID: PMC10392611 DOI: 10.34133/bmef.0024] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 07/02/2023] [Indexed: 10/19/2023] Open
Abstract
Ru(II) polypyridine complexes have attracted much attention as anticancer agents because of their unique photophysical, photochemical, and biological properties. Despite their promising therapeutic profile, the vast majority of compounds are associated with poor water solubility and poor cancer selectivity. Among the different strategies employed to overcome these pharmacological limitations, many research efforts have been devoted to the physical or covalent encapsulation of the Ru(II) polypyridine complexes into nanoparticles. This article highlights recent developments in the design, preparation, and physicochemical properties of Ru(II) polypyridine complex-loaded nanoparticles for their potential application in anticancer therapy.
Collapse
Affiliation(s)
- Johannes Karges
- Faculty of Chemistry and Biochemistry, Ruhr-University Bochum, Universitätsstrasse 150, 44780 Bochum, Germany
| |
Collapse
|
41
|
Zhu Y, Cao S, Huo M, van Hest JCM, Che H. Recent advances in permeable polymersomes: fabrication, responsiveness, and applications. Chem Sci 2023; 14:7411-7437. [PMID: 37449076 PMCID: PMC10337762 DOI: 10.1039/d3sc01707a] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023] Open
Abstract
Polymersomes are vesicular nanostructures enclosed by a bilayer-membrane self-assembled from amphiphilic block copolymers, which exhibit higher stability compared with their biological analogues (e.g. liposomes). Due to their versatility, polymersomes have found various applications in different research fields such as drug delivery, nanomedicine, biological nanoreactors, and artificial cells. However, polymersomes prepared with high molecular weight components typically display low permeability to molecules and ions. It hence remains a major challenge to balance the opposing features of robustness and permeability of polymersomes. In this review, we focus on the design and strategies for fabricating permeable polymersomes, including polymersomes with intrinsic permeability, the formation of nanopores in the membrane bilayers by protein insertion, and the construction of stimuli-responsive polymersomes. Then, we highlight the applications of permeable polymersomes in the fields of biomimetic nanoreactors, artificial cells and organelles, and nanomedicine, to underline the challenges in the development of polymersomes as soft matter with biomedical utilities.
Collapse
Affiliation(s)
- Yanyan Zhu
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| | - Shoupeng Cao
- Max Planck Institute for Polymer Research Mainz 55128 Germany
| | - Meng Huo
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang, Zhejiang Sci-Tech University Hangzhou 310018 China
| | - Jan C M van Hest
- Department of Chemical Engineering and Chemistry, Department of Biomedical Engineering, Institute for Complex Molecular Systems, Eindhoven University of Technology Eindhoven 5600 MB The Netherlands
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineerin, Shanghai University Shanghai 200444 China
| |
Collapse
|
42
|
Ghosal S, Bag S, Bhowmik S. Unravelling the Drug Encapsulation Ability of Functional DNA Origami Nanostructures: Current Understanding and Future Prospects on Targeted Drug Delivery. Polymers (Basel) 2023; 15:1850. [PMID: 37111997 PMCID: PMC10144338 DOI: 10.3390/polym15081850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/10/2023] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Rapid breakthroughs in nucleic acid nanotechnology have always driven the creation of nano-assemblies with programmable design, potent functionality, good biocompatibility, and remarkable biosafety during the last few decades. Researchers are constantly looking for more powerful techniques that provide enhanced accuracy with greater resolution. The self-assembly of rationally designed nanostructures is now possible because of bottom-up structural nucleic acid (DNA and RNA) nanotechnology, notably DNA origami. Because DNA origami nanostructures can be organized precisely with nanoscale accuracy, they serve as a solid foundation for the exact arrangement of other functional materials for use in a number of applications in structural biology, biophysics, renewable energy, photonics, electronics, medicine, etc. DNA origami facilitates the creation of next-generation drug vectors to help in the solving of the rising demand on disease detection and therapy, as well as other biomedicine-related strategies in the real world. These DNA nanostructures, generated using Watson-Crick base pairing, exhibit a wide variety of properties, including great adaptability, precise programmability, and exceptionally low cytotoxicity in vitro and in vivo. This paper summarizes the synthesis of DNA origami and the drug encapsulation ability of functionalized DNA origami nanostructures. Finally, the remaining obstacles and prospects for DNA origami nanostructures in biomedical sciences are also highlighted.
Collapse
Affiliation(s)
- Souvik Ghosal
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry 607402, India
| | - Sagar Bag
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| | - Sudipta Bhowmik
- Mahatma Gandhi Medical Advanced Research Institute (MGMARI), Sri Balaji Vidyapeeth (Deemed to Be University), Pondy-Cuddalore Main Road, Pillayarkuppam, Pondicherry 607402, India
- Department of Biophysics, Molecular Biology and Bioinformatics, University of Calcutta, 92, A.P.C. Road, Kolkata 700009, India
| |
Collapse
|
43
|
Ruan H, Li Y, Zheng D, Deng L, Chen G, Zhang X, Tang Y, Cui W. Engineered extracellular vesicles for ischemic stroke treatment. Innovation (N Y) 2023; 4:100394. [PMID: 36923027 PMCID: PMC10009523 DOI: 10.1016/j.xinn.2023.100394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/13/2023] [Indexed: 02/17/2023] Open
Affiliation(s)
- Huitong Ruan
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yongfang Li
- Department of Rehabilitation Medicine, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Dandan Zheng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Lianfu Deng
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Gang Chen
- Jiaxing Key Laboratory of Basic Research and Clinical Translation on Orthopedic Biomaterials, Department of Orthopaedics, The Second Affiliated Hospital of Jiaxing University, Jiaxing 314000, China
| | - Xingcai Zhang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Yaohui Tang
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| |
Collapse
|
44
|
Recent Advances in the Application of ATRP in the Synthesis of Drug Delivery Systems. Polymers (Basel) 2023; 15:polym15051234. [PMID: 36904474 PMCID: PMC10007417 DOI: 10.3390/polym15051234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Advances in atom transfer radical polymerization (ATRP) have enabled the precise design and preparation of nanostructured polymeric materials for a variety of biomedical applications. This paper briefly summarizes recent developments in the synthesis of bio-therapeutics for drug delivery based on linear and branched block copolymers and bioconjugates using ATRP, which have been tested in drug delivery systems (DDSs) over the past decade. An important trend is the rapid development of a number of smart DDSs that can release bioactive materials in response to certain external stimuli, either physical (e.g., light, ultrasound, or temperature) or chemical factors (e.g., changes in pH values and/or environmental redox potential). The use of ATRPs in the synthesis of polymeric bioconjugates containing drugs, proteins, and nucleic acids, as well as systems applied in combination therapies, has also received considerable attention.
Collapse
|
45
|
Bi F, Yu D, Wei Z, Wei H, Ren H, Wang Y, Ren D, Hua Z, Huang B, Yang G. Core-Shell Polymeric Nanostructures with Intracellular ATP-Fueled dsRNA Delivery toward Genetic Control of Insect Pests. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2762-2772. [PMID: 36745409 DOI: 10.1021/acs.jafc.2c05737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transgenic RNA interference (RNAi) represents a burgeoning and promising alternative avenue to manage plant diseases and insect pests in plants. Nonviral nanostructured dsRNA carriers have been demonstrated to possess great potential to facilitate the application of RNAi. However, it remains a critical challenge to achieve the targeted and effective release of dsRNA into the pest cells, limiting the efficiency of the biological control of pests and diseases in practical applications. In this study, we designed and constructed a new type of core-shell polymeric nanostructure (CSPN) with controllable structure, eco-friendliness, and good biocompatibility, on which dsRNA can be efficiently loaded. Once loaded into CSPNs, the dsRNA can be effectively prevented from nonsense degradation by enzymes before entering cells, and it shows targeted and image-guided release triggered by intracellular ATP, which significantly increases the efficiency of gene transfection. Significantly, the in vivo study of the typical lepidoptera silkworm after oral feeding demonstrates the potential of dsCHT10 in CSPNs for a much better knockdown efficiency than that of naked dsCHT10. This innovation enables the nanotechnology developed for the disease microenvironment-triggered release of therapeutic genes for application in sustainable crop protection.
Collapse
Affiliation(s)
- Feihu Bi
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Deshui Yu
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zengming Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hanchen Wei
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Hui Ren
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Yulong Wang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Dalong Ren
- Anhui Province Key Laboratory of Local Livestock and Poultry Genetic Resource Conservation and Bio-breeding, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Zan Hua
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Bo Huang
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| | - Guang Yang
- Biomass Molecular Engineering Center and Department of Materials Science and Engineering, Anhui Agricultural University, Hefei 230036, Anhui, China
- Anhui Provincial Key Laboratory of Microbial Pest Control, Anhui Agricultural University, Hefei 230036, Anhui, China
| |
Collapse
|
46
|
Giona RM, Vitorazi L, Loh W. Assessing the Contribution of the Neutral Blocks in DNA/Block-Copolymer Polyplexes: Poly(acrylamide) vs. Poly(ethylene Oxide). Molecules 2023; 28:molecules28010398. [PMID: 36615592 PMCID: PMC9824764 DOI: 10.3390/molecules28010398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/24/2022] [Accepted: 12/26/2022] [Indexed: 01/04/2023] Open
Abstract
The interaction of DNA with different block copolymers, namely poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(acrylamide), i.e., (PTEA)-b-(PAm), and poly (trimethylammonium chloride methacryloyoxy)ethyl)-block-poly(ethylene oxide), i.e., (PTEA)-b-(PEO), was studied. The nature of the cationic block was maintained fixed (PTEA), whereas the neutral blocks contained varying amounts of acrylamide or (ethylene oxide) units. According to results from isothermal titration microcalorimetry measurements, the copolymers interaction with DNA is endothermic with an enthalpy around 4.0 kJ mol−1 of charges for (PTEA)-b-(PAm) and 5.5 kJ mol−1 of charges for (PTEA)-b-(PEO). The hydrodynamic diameters of (PTEA)-b-(PEO)/DNA and (PTEA)-b-(PAm)/DNA polyplexes prepared by titration were around 200 nm at charge ratio (Z+/−) < 1. At Z+/− close and above 1, the (PTEA)50-b-(PAm)50/DNA and (PTEA)50-b-(PAm)200/DNA polyplexes precipitated. Interestingly, (PTEA)50-b-(PAm)1000/DNA polyplexes remained with a size of around 300 nm even after charge neutralization, probably due to the size of the neutral block. Conversely, for (PTEA)96-b-(PEO)100/DNA polyplexes, the size distribution was broad, indicating a more heterogeneous system. Polyplexes were also prepared by direct mixture at Z+/− of 2.0, and they displayed diameters around 120−150 nm, remaining stable for more than 10 days. Direct and reverse titration experiments showed that the order of addition affects both the size and charge of the resulting polyplexes.
Collapse
Affiliation(s)
- Renata Mello Giona
- LaMaFI—Laboratório de Materiais e Fenômenos de Interface, Chemistry Department, Universidade Tecnológica Federal do Paraná (UTFPR), Medianeira, Curitiba 85884-000, Paraná (PR), Brazil
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
| | - Letícia Vitorazi
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
- Laboratório de Materiais Poliméricos, EEIMVR, Universidade Federal Fluminense, Volta Redonda 27255-125, Rio de Janeiro (RJ), Brazil
| | - Watson Loh
- Institute of Chemistry, Universidade Estadual de Campinas (UNICAMP), Caixa Postal 6154, Campinas 13083-970, São Paulo State (SP), Brazil
- Correspondence:
| |
Collapse
|
47
|
Naki T, Matshe WMR, Balogun MO, Sinha Ray S, Egieyeh SA, Aderibigbe BA. Polymer drug conjugates containing memantine, tacrine and cinnamic acid: promising nanotherapeutics for the treatment of Alzheimer's disease. J Microencapsul 2023; 40:15-28. [PMID: 36622880 DOI: 10.1080/02652048.2023.2167011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
AIM To prepare polymer-drug conjugates containing a combination of memantine, tacrine, and E)-N-(3-aminopropyl)cinnamide, promising therapeutics for the treatment of neurodegenerative disorders. METHODS The conjugates were characterised by 1HNMR, particle size analysis, SEM, LC-MS, TEM/EDX, and XRD, followed by in vitro anti-acetylcholinesterase and drug release studies. RESULTS 1H NMR analysis revealed successful drug conjugation with drug mass percentages in the range of 1.3-6.0% w/w. The drug release from the conjugates was sustained for 10 h in the range of 20-36%. The conjugates' capability to inhibit acetylcholinesterase (AChE) activity was significant with IC50 values in the range of 13-44.4 µm which was more effective than tacrine (IC50 =1698.8 µm). The docking studies further confirmed that the conjugation of the drugs into the polymer improved their anti-acetylcholinesterase activity. CONCLUSION The drug release profile, particle sizes, and in vitro studies revealed that the conjugates are promising therapeutics for treating neurodegenerative disorders.
Collapse
Affiliation(s)
- Tobeka Naki
- Department of Chemistry, University of Fort Hare, Alice, South Africa
| | | | | | - Suprakas Sinha Ray
- DST/CSIR National Centre for Nanostructured Materials, Council for Scientific and Industrial Research, Pretoria, South Africa
| | | | | |
Collapse
|
48
|
Fabrication of amino acid conjugated polymeric micelles for controlled anticancer drug delivery using radiation and pH-stimuli-triggering systems. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
49
|
Responsive Hyaluronic Acid–Ethylacrylamide Microgels Fabricated Using Microfluidics Technique. Gels 2022; 8:gels8090588. [PMID: 36135299 PMCID: PMC9498840 DOI: 10.3390/gels8090588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Volume changes of responsive microgels can probe interactions between polyelectrolytes and species of opposite charges such as peptides and proteins. We have investigated a microfluidics method to synthesize highly responsive, covalently crosslinked, hyaluronic acid microgels for such purposes. Sodium hyaluronate (HA), pre-modified with ethylacrylamide functionalities, was crosslinked in aqueous droplets created with a microfluidic technique. We varied the microgel properties by changing the degree of modification and concentration of HA in the reaction mixture. The degree of modification was determined by 1H NMR. Light microscopy was used to investigate the responsiveness of the microgels to osmotic stress in aqueous saline solutions by simultaneously monitoring individual microgel species in hydrodynamic traps. The permeability of the microgels to FITC-dextrans of molecular weights between 4 and 250 kDa was investigated using confocal laser scanning microscopy. The results show that the microgels were spherical with diameters between 100 and 500 µm and the responsivity tunable by changing the degree of modification and the HA concentration. Microgels were fully permeable to all investigated FITC-dextran probes. The partitioning to the microgel from an aqueous solution decreased with the increasing molecular weight of the probe, which is in qualitative agreement with theories of homogeneous gel networks.
Collapse
|
50
|
Zheng J, Song X, Yang Z, Yin C, Luo W, Yin C, Ni Y, Wang Y, Zhang Y. Self-assembly hydrogels of therapeutic agents for local drug delivery. J Control Release 2022; 350:898-921. [PMID: 36089171 DOI: 10.1016/j.jconrel.2022.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 10/14/2022]
Abstract
Advanced drug delivery systems are of vital importance to enhance therapeutic efficacy. Among various recently developed formulations, self-assembling hydrogels composed of therapeutic agents have shown promising potential for local drug delivery owing to their excellent biocompatibility, high drug-loading efficiency, low systemic toxicity, and sustained drug release behavior. In particular, therapeutic agents self-assembling hydrogels with well-defined nanostructures are beneficial for direct delivery to the target site via injection, not only improving drug availability, but also extending their retention time and promoting cellular uptake. In brief, the self-assembly approach offers better opportunities to improve the precision of pharmaceutical treatment and achieve superior treatment efficacies. In this review, we intend to cover the recent developments in therapeutic agent self-assembling hydrogels. First, the molecular structures, self-assembly mechanisms, and application of self-assembling hydrogels are systematically outlined. Then, we summarize the various self-assembly strategies, including the single therapeutic agent, metal-coordination, enzyme-instruction, and co-assembly of multiple therapeutic agents. Finally, the potential challenges and future perspectives are discussed. We hope that this review will provide useful insights into the design and preparation of therapeutic agent self-assembling hydrogels.
Collapse
Affiliation(s)
- Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoyu Yang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chao Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chunyang Yin
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yaqiong Ni
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha 410008, China.
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|