1
|
Mizanur Rahaman M, Wangchuk P, Sarker S. A systematic review on the role of gut microbiome in inflammatory bowel disease: Spotlight on virome and plant metabolites. Microb Pathog 2025:107608. [PMID: 40250496 DOI: 10.1016/j.micpath.2025.107608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/20/2025]
Abstract
Inflammatory bowel diseases (IBD), including ulcerative colitis and Crohn's disease, arise from various factors such as dietary, genetic, immunological, and microbiological influences. The gut microbiota plays a crucial role in the development and treatment of IBD, though the exact mechanisms remain uncertain. Current research has yet to definitively establish the beneficial effects of the microbiome on IBD. Bacteria and viruses (both prokaryotic and eukaryotic) are key components of the microbiome uniquely related to IBD. Numerous studies suggest that dysbiosis of the microbiota, including bacteria, viruses, and bacteriophages, contributes to IBD pathogenesis. Conversely, some research indicates that bacteria and bacteriophages may positively impact IBD outcomes. Additionally, plant metabolites play a crucial role in alleviating IBD due to their anti-inflammatory and microbiome-modulating properties. This systematic review discusses the role of the microbiome in IBD patients and evaluates the potential connection between plant metabolites and the microbiome in the context of IBD pathophysiology.
Collapse
Affiliation(s)
- Md Mizanur Rahaman
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia
| | - Phurpa Wangchuk
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia
| | - Subir Sarker
- Biomedical Sciences and Molecular Biology, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, QLD 4811, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, QLD 4811, Australia.
| |
Collapse
|
2
|
Perumal SK, Arumugam MK, Osna NA, Rasineni K, Kharbanda KK. Betaine regulates the gut-liver axis: a therapeutic approach for chronic liver diseases. Front Nutr 2025; 12:1478542. [PMID: 40196019 PMCID: PMC11973089 DOI: 10.3389/fnut.2025.1478542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 03/03/2025] [Indexed: 04/09/2025] Open
Abstract
Chronic liver disease is defined by persistent harm to the liver that might result in decreased liver function. The two prevalent chronic liver diseases are alcohol-associated liver disease (ALD) and metabolic dysfunction-associated steatotic liver disease (MASLD). There is ample evidence that the pathogenesis of these two chronic liver diseases is closely linked to gastrointestinal dysfunctions that alters the gut-liver crosstalk. These alterations are mediated through the imbalances in the gut microbiota composition/function that combined with disruption in the gut barrier integrity allows for harmful gut microbes and their toxins to enter the portal circulation and reach the liver to elicit an inflammatory response. This leads to further recruitment of systemic inflammatory cells, such as neutrophils, T-cells, and monocytes into the liver, which perpetuate additional inflammation and the development of progressive liver damage. Many therapeutic modalities, currently used to prevent, attenuate, or treat chronic liver diseases are aimed at modulating gut dysbiosis and improving intestinal barrier function. Betaine is a choline-derived metabolite and a methyl group donor with antioxidant, anti-inflammatory and osmoprotectant properties. Studies have shown that low betaine levels are associated with higher levels of organ damage. There have been several publications demonstrating the role of betaine supplementation in preventing the development of ALD and MASLD. This review explores the protective effects of betaine through its role as a methyl donor and its capacity to regulate the protective gut microbiota and maintain intestinal barrier integrity to prevent the development of these chronic liver diseases. Further studies are needed to enhance our understanding of its therapeutic potential that could pave the way for targeted interventions in the management of not only chronic liver diseases, but other inflammatory bowel diseases or systemic inflammatory conditions.
Collapse
Affiliation(s)
- Sathish Kumar Perumal
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Madan Kumar Arumugam
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Cancer Biology Lab, Centre for Molecular and Nanomedical Sciences, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Natalia A. Osna
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, United States
| | - Karuna Rasineni
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| | - Kusum K. Kharbanda
- Research Service, Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, United States
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
3
|
Wang Y, Sheng Z, Li H, Tan X, Liu Y, Zhang W, Ma W, Ma L, Fan Y. The effects of Fraxini cortex and Andrographis herba on Escherichia coli-induced diarrhea in chicken. Poult Sci 2025; 104:104824. [PMID: 39874706 PMCID: PMC11810841 DOI: 10.1016/j.psj.2025.104824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/15/2025] [Indexed: 01/30/2025] Open
Abstract
Escherichia coli (E. coli) is a type of pathogenic bacteria that often causes diarrhea in poultry. While antibiotics can control E. coli-induced diarrhea in chickens, it can lead the ongoing proliferation of antibiotic resistance. Traditional Chinese medicines (TCMs) that effectively protect against and treat chicken diarrhea caused by E. coli are an encouraging alternative. That enhance poultry immunity, curtail antibiotic resistance, and provide a secure, eco-friendly, and efficacious option for the livestock and poultry industry. In this study, the model of chicken diarrhea induced by E. coli was established, and different TCM formulas were used for treatment, and finally the formula with the best effect was screened out. The research also investigated the impact of these formulas on gut microbiota and serum metabolites in chickens, using 16S rRNA sequencing technology and metabolomics. Mass spectrometry technology and network pharmacology were used to analyze the optimal TCM formula corroborated by molecular docking and qPCR for further explore mechanism exploration. The findings indicated that Fraxini cortex and Andrographis herba dramatically lowered mortality rates and alleviated pathologic changes in cases of avian E. coli diarrhea (P < 0.05). Fraxini cortex and Andrographis herba significantly boosted the abundance of Bacteroidetes (P < 0.05) and mainly enhanced cysteine and methionine metabolic pathways. Moreover, 97 active ingredients in Fraxini cortex and Andrographis herba were identified, along with 1425 diarrhea-related targets, primarily enriched in the MAPK signaling pathway. Molecular docking and qPCR revealed that the crucial active ingredients in Fraxini cortex and Andrographis herba bonded effectively with disease targets and treated diarrhea by regulating the MAPK signaling pathway. This suggests that Fraxini cortex and Andrographis herba exerts an optimal effect on diarrhea by multi-target and multi-pathway regulation of metabolic pathways and gut microbiota.
Collapse
Affiliation(s)
- Yunying Wang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Zhenwei Sheng
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Huicong Li
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Xuewen Tan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Yingqiu Liu
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Weimin Zhang
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Wuren Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China
| | - Lin Ma
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| | - Yunpeng Fan
- College of Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China; Institute of Traditional Chinese Veterinary Medicine, Northwest A&F University, 712100, Yangling, PR China.
| |
Collapse
|
4
|
Zhang R, Huangfu B, Xu T, Opatola VO, Ban Q, Huang K, He X. Zearalenone enhances TSST-1 production by intestinal Staphylococcus and increases uterine immune stress in rats. Food Chem Toxicol 2025; 196:115140. [PMID: 39586525 DOI: 10.1016/j.fct.2024.115140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/27/2024]
Abstract
Zearalenone (ZEA), a mycotoxin prevalent in food crops, poses significant health risks, particularly through its impact on the gut-uterus axis. This study assessed the effects of a 5 mg/kg body weight ZEA dosage in female SD rats, focusing on gut microbiota alterations, inflammatory responses, and uterine changes. Our findings revealed substantial shifts in microbial composition, including significant reductions in beneficial genera such as Akkermansia and Ruminococcaceae and marked increases in pathogenic staphylococci, which correlated with elevated levels of toxic shock syndrome toxin-1 (TSST-1) in serum and uterine tissue. RNA sequencing of uterine samples indicated activation of the extracellular matrix (ECM) pathway, along with significant upregulation of MMP-2 and TIMP-2, enzymes associated with ECM remodelling. Correlation analysis showed a strong link between staphylococcal proliferation and ECM pathway activation, suggesting that ZEA-induced gut dysbiosis contributes to uterine inflammation and structural alterations. These results reveal how ZEA disrupts gut and uterine health, highlighting critical pathways that could serve as targets for future preventive and therapeutic strategies against mycotoxin exposure.
Collapse
Affiliation(s)
- Ruiqi Zhang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Bingxin Huangfu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Tongxiao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Victor Olusola Opatola
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Qiushi Ban
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Kunlun Huang
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China
| | - Xiaoyun He
- Key Laboratory of Precision Nutrition and Food Quality, Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 100083, PR China.
| |
Collapse
|
5
|
Xu MR, Lin CH, Wang CH, Wang SY. Investigate the metabolic changes in intestinal diseases by employing a 1H-NMR-based metabolomics approach on Caco-2 cells treated with cedrol. Biofactors 2025; 51:e2132. [PMID: 39415440 DOI: 10.1002/biof.2132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/01/2024] [Indexed: 10/18/2024]
Abstract
Mitochondrial dysfunction may precipitate intestinal dysfunction, while inflammatory bowel disease manifests as a chronic inflammatory ailment affecting the gastrointestinal tract. This condition disrupts the barrier function of the intestinal epithelium and alters metabolic products. Increasing mitochondrial adenosine triphosphate (ATP) synthesis in intestinal epithelial cells presents a promising avenue for colitis treatments. Nevertheless, the impact of cedrol on ATP and the intestinal barrier remains unexplored. Hence, this study is dedicated to examining the cedrol's protective effect on an inflammatory cocktail (IC)-induced intestinal epithelial barrier dysfunction in Caco-2 cells. The finding reveals that cedrol enhances ATP content and the transepithelial electrical resistance value in the intestinal epithelial barrier. Moreover, cedrol mitigates the IC-induced decrease in the messenger ribonucleic acid (mRNA) expression of tight junction proteins (ZO-1, Occludin, and Claudin-1), thereby ameliorating intestinal epithelial barrier dysfunction. Furthermore, nuclear magnetic resonance (NMR)-based metabolomic analysis indicated that IC-exposed Caco-2 cells are restored by cedrol treatments. Notably, cedrol elevates metabolites such as amino acids, thereby enhancing the intestinal barrier. In conclusion, cedrol alleviates IC-induced intestinal epithelial barrier dysfunction by promoting ATP-dependent proliferation of Caco-2 cells and bolstering amino acid levels to sustain tight junction messenger ribonucleic acid expression.
Collapse
Affiliation(s)
- Mo-Rong Xu
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chia-Hsin Lin
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
| | - Chung Hsuan Wang
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
| | - Sheng-Yang Wang
- Doctoral Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung, Taiwan
- Department of Forestry, National Chung Hsing University, Taichung, Taiwan
- Special Crop and Metabolome Discipline Cluster, Academy Circle Economy, National Chung Hsing University, Taichung, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
6
|
Deskur A, Ambrożkiewicz F, Samborowska E, Błogowski W, Sulikowski T, Białek A, Zawada I, Dąbkowski K, Mitrus J, Karczmarski J, Cybula P, Paziewska A, Starzyńska T. Plasma Bacterial Metabolites in Crohn's Disease Pathogenesis and Complications. Nutrients 2024; 17:74. [PMID: 39796508 PMCID: PMC11722665 DOI: 10.3390/nu17010074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/23/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
BACKGROUND/OBJECTIVES Crohn's disease is known for being associated with an abnormal composition of the bacterial flora, dysbiosis and intestinal function disorders. Metabolites produced by gut microbiota play a pivotal role in the pathogenesis of CD, and the presence of unspecific extraintestinal manifestations. METHODS The aim of this study was a determination of the level of bacterial metabolites in blood plasma in patients with Crohn's disease. CD patients (29) and healthy individuals (30) were recruited for this study. Bacterial metabolites (SCFAs and TMAO panel) were measured by a liquid chromatography-mass spectrometry system. RESULTS A significant correlation (p-value < 0.05) between CD and bacterial metabolites was obtained for three of eight tested SCFAs; acetic acid (reduced in CD; FC 1.7; AUC = 0.714), butyric acid (increased; FC 0.68; AUC = 0.717), 2MeBA (FC 1.168; AUC = 0.702), and indoxyl (FC 0.624). The concentration of CA (FC 0.82) and choline (FC 0.78) in plasma was significantly disturbed according to the biological treatment. Choline level (FC 1.28) was also significantly disturbed in the patients treated with glucocorticoids. In total, 68.97% of Crohn's patients presented extraintestinal manifestations (EIMs) of Crohn's disease, mainly osteoarticular complications. The level of BA was statistically significantly elevated in patients with extraintestinal (FC 0.602) manifestations, while in the group of patients with osteoarticular complications, a significant difference in the level of betaine (FC 1.647) was observed. CONCLUSIONS The analyzed bacterial metabolites of plasma may significantly help in the diagnostic process, and in the monitoring of the disease course and treatment, in a lowly invasive way, as biomarkers after additional research on a larger group of patients.
Collapse
Affiliation(s)
- Anna Deskur
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Filip Ambrożkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1665/76, 32300 Pilsen, Czech Republic;
| | - Emilia Samborowska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (J.K.)
| | - Wojciech Błogowski
- Institute of Medical Sciences, University of Zielona Góra, ul. Zyty 28, 65-046 Zielona Gora, Poland;
| | - Tadeusz Sulikowski
- Department of General, Minimally Invasive, and Gastroenterological Surgery, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland;
| | - Andrzej Białek
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Iwona Zawada
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Krzysztof Dąbkowski
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| | - Joanna Mitrus
- Institute of Biological Sciences, University of Siedlce, Prusa 14, 08-110 Siedlce, Poland;
| | - Jakub Karczmarski
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 02-106 Warsaw, Poland; (E.S.); (J.K.)
| | - Patrycja Cybula
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland;
- Molecular Biology Laboratory, Department of Diagnostic Hematology, Institute of Hematology and Transfusion Medicine, 02-776 Warsaw, Poland
| | - Agnieszka Paziewska
- Institute of Health Sciences, Faculty of Medical and Health Sciences, University of Siedlce, 08-110 Siedlce, Poland;
- Warsaw Genomics Inc., 01-682 Warszawa, Poland
| | - Teresa Starzyńska
- Department of Gastroenterology and Hepatology, Pomeranian Medical University in Szczecin, 70-204 Szczecin, Poland; (A.B.); (I.Z.); (K.D.); (T.S.)
| |
Collapse
|
7
|
Hu D, Wu X, Song P, Hou M, Pan L, Yang X, Sun Q, Ni Y. Dietary Supplementation with Multi-strain Probiotic Formulation (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, and Enterococcus SF9301), Betaine or their Combination Promotes Growth Performance Via Improving Intestinal Development in Broilers. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10434-w. [PMID: 39715924 DOI: 10.1007/s12602-024-10434-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2024] [Indexed: 12/25/2024]
Abstract
This study aimed to investigate the effect of a multi-strain probiotic (Bifidobacterium B8101, Lactobacillus L8603, Saccharomyces bayanus S9308, Enterococcus SF9301), betaine, and their combination on intestinal epithelial development and growth performance in broilers. A total of 2800 one-day-old Ross 308 chickens were randomly divided into four groups: control (Ctrl) fed with a basal diet, multi-strain probiotic (Pb) group fed with basal diet + 100 mg/day/bird probiotic (1-14 d), betaine (Bet) fed with basal diet + 0.1% betaine (1-35 d), and a combination (Pb&Bet) fed with both probiotics and betaine. Each group was set with 10 replicates, with 70 chickens in each replicate. Result showed that betaine significantly increased the body weight (BW) of broilers at 14 d of age and decreased the feed conversion ratio (FCR) from 1 to 14 d of age. Multi-strain probiotic significantly increased BW at 21 and 35 d of age, and decreased FCR from 15 to 21 d of age. Pb&Bet group exhibited a higher BW but lower FCR than Ctrl throughout entire experiment (p < 0.05). Consistently, Pb&Bet group had a higher pectoralis muscle weight, fiber diameter and cross-sectional area compared to Ctrl group (p < 0.05). Pb&Bet group also increased villus height and the ratio of villus height to crypt depth (V/C) in duodenum at both 21 d and 35 d of age. Moreover, at 35 d of age, the mucin 2 (MUC2) expression in duodenum and jejunum was significantly increased in Pb&Bet group, and the interaction of betaine and probiotics was observed on claudin 1 (CLDN1), zonula occludens 1 (ZO1), and junctional adhesion molecule 2 (JAM2) expression in the ileum (p < 0.05). In conclusion, the combination of probiotics and betaine shows better potential for improving growth performance and promoting small intestinal development.
Collapse
Affiliation(s)
- Dan Hu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoting Wu
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pin Song
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Manman Hou
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li'an Pan
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoran Yang
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qinwei Sun
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yingdong Ni
- Key Laboratory of Animal Physiology & Biochemistry, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Kacemi R, Campos MG. Bee Pollen as a Source of Biopharmaceuticals for Neurodegeneration and Cancer Research: A Scoping Review and Translational Prospects. Molecules 2024; 29:5893. [PMID: 39769981 PMCID: PMC11677910 DOI: 10.3390/molecules29245893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/18/2024] [Accepted: 11/20/2024] [Indexed: 01/03/2025] Open
Abstract
Bee Pollen (BP) has many advantageous properties relying on its multitargeting potential, a new tendency in managing many challenging illnesses. In cancer and neurodegeneration, the multiple effects of BP could be of unequaled importance and need further investigation. Although still limited, available data interestingly spotlights some floral sources with promising activities in line with this investigation. Adopting scoping review methodology, we have identified many crucial bioactivities that are widely recognized to individual BP compounds but remain completely untapped in this valuable bee cocktail. A wide range of these compounds have been recently found to be endowed with great potential in modulating pivotal processes in neurodegeneration and cancer pathophysiology. In addition, some ubiquitous BP compounds have only been recently isolated, while the number of studied BPs remains extremely limited compared to the endless pool of plant species worldwide. We have also elucidated that clinical profits from these promising perspectives are still impeded by challenging hurdles such as limited bioavailability of the studied phytocompounds, diversity and lack of phytochemical standardization of BP, and the difficulty of selective targeting in some pathophysiological mechanisms. We finally present interesting insights to guide future research and pave the way for urgently needed and simplified clinical investigations.
Collapse
Affiliation(s)
- Rachid Kacemi
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
| | - Maria G. Campos
- Observatory of Drug-Herb Interactions, Faculty of Pharmacy, Heath Sciences Campus, University of Coimbra, Azinhaga de Santa Comba, 3000-548 Coimbra, Portugal;
- Coimbra Chemistry Centre (CQC, FCT Unit 313) (FCTUC), University of Coimbra, Rua Larga, 3004-531 Coimbra, Portugal
| |
Collapse
|
9
|
Liu Z, Wang M, Li J, Liang Y, Jiang K, Hu Y, Gong W, Guo X, Guo Q, Zhu B. Hizikia fusiforme polysaccharides synergized with fecal microbiota transplantation to alleviate gut microbiota dysbiosis and intestinal inflammation. Int J Biol Macromol 2024; 283:137851. [PMID: 39566790 DOI: 10.1016/j.ijbiomac.2024.137851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/10/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Ulcerative colitis (UC) is closely associated with disruptions in gut microbiota. Restoring balance to gut microbiota and reducing intestinal inflammation has become a promising therapeutic approach for UC. However, challenges remain, including limited efficacy in some treatments. This study explores the synergistic effects and underlying mechanisms of Hizikia fusiforme polysaccharides (HFP) combined with fecal microbiota transplantation (FMT) to improve UC symptoms. Seven-week-old C57/BL6J mice were induced with UC using dextran sodium sulfate (DSS). Supplementation with either FMT alone or in combination with HFP effectively alleviated UC symptoms, reduced colonic inflammation, and corrected gut microbiota imbalance. Notably, HFP combined with FMT yielded showed better effects in ameliorating DSS-induced UC in mice than did FMT alone. Enrichment of probiotics, such as Bifidobacterium, and upregulation of beneficial metabolites, such as betaine, were identified as potential mechanisms for the enhanced effects of HFP combined with FMT against DSS-induced UC. These findings suggest that the combination of Hizikia fusiforme polysaccharides with FMT has potential applications in rectifying dysbiosis and ameliorating inflammatory bowel diseases.
Collapse
Affiliation(s)
- Zhengqi Liu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China
| | - Menghui Wang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Jinjin Li
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuxuan Liang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Kaiyu Jiang
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Yuanyuan Hu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Wei Gong
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Xiaoming Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China
| | - Qingbin Guo
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| | - Beiwei Zhu
- Shenzhen Key Laboratory of Food Nutrition and Health, College of Chemistry and Environmental Engineering, Institute for Innovative Development of Food Industry, Shenzhen University, Shenzhen 518060, PR China; National Engineering Research Center of Seafood, National & Local Joint Engineering Laboratory for Marine Bioactive Polysaccharide Development and Application, School of Food Science and Technology, Dalian Polytechnic University, Dalian 116034, PR China.
| |
Collapse
|
10
|
Van Den Ham KM, Bower LK, Li S, Lorenzi H, Doumbo S, Doumtabe D, Kayentao K, Ongoiba A, Traore B, Crompton PD, Schmidt NW. The gut microbiome is associated with susceptibility to febrile malaria in Malian children. Nat Commun 2024; 15:9525. [PMID: 39500866 PMCID: PMC11538534 DOI: 10.1038/s41467-024-52953-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024] Open
Abstract
Malaria is a major public health problem, but many of the factors underlying the pathogenesis of this disease are not well understood, including protection from the development of febrile symptoms, which is observed in individuals residing in areas with moderate-to-high transmission by early adolescence. Here, we demonstrate that susceptibility to febrile malaria following Plasmodium falciparum infection is associated with the composition of the gut microbiome prior to the malaria season in 10-year-old Malian children, but not in younger children. Gnotobiotic mice colonized with the fecal samples of malaria-susceptible children were shown to have a significantly higher parasite burden following Plasmodium infection compared to gnotobiotic mice colonized with the fecal samples of malaria-resistant children. The fecal microbiome of the susceptible children was determined to be enriched for bacteria associated with inflammation, mucin degradation and gut permeability, and to have increased levels of nitric oxide-derived DNA adducts and lower levels of mucus phospholipids compared to the resistant children. Overall, these results indicate that the composition of the gut microbiome is associated with the prospective risk of febrile malaria in Malian children and suggest that modulation of the gut microbiome could decrease malaria morbidity in endemic areas.
Collapse
Affiliation(s)
- Kristin M Van Den Ham
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Layne K Bower
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Shanping Li
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Hernan Lorenzi
- Infectious Diseases Group, J. Craig Venter Institute, Bethesda, MD, USA
| | - Safiatou Doumbo
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Didier Doumtabe
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Kassoum Kayentao
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Aissata Ongoiba
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Boubacar Traore
- Mali International Center of Excellence in Research; Malaria Research and Training Center, University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Peter D Crompton
- Malaria Infection Biology and Immunity Section, Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, USA
| | - Nathan W Schmidt
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Herman B Wells Center for Pediatric Research, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
11
|
Ma Y, Zhou W, Wang H, Wu M, Jiang S, Li Y, Ma C, Zhang R, He J. The double-layer emulsions loaded with bitter melon (Momordica charantia L.) seed oil protect against dextran sulfate sodium-induced ulcerative colitis in mice. Int J Biol Macromol 2024; 278:134279. [PMID: 39084441 DOI: 10.1016/j.ijbiomac.2024.134279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
In this study, a whey protein isolate (WPI)-chitooligosaccharide (COS) stabilized bitter melon (Momordica charantia L.) seed oil emulsions (WC-BSOE) were prepared using the electrostatic layer-by-layer self-assembly technique, and their modulating effects on ulcerative colitis (UC) were investigated in dextran sulfate sodium (DSS)-induced UC mice model. The stability and releasing ability of WC-BSOE under simulated gastrointestinal digestion condition and their acute toxicity were also investigated. The results showed that WC-BSOE was stable to droplet aggregation in the simulated gastric and intestinal fluids and exhibited sustained release profile during gastrointestinal transit, evidenced by the measurement of particle size, polydispersity index, zeta-potential and released free fatty acids contents. Moreover, WC-BSOE had no toxic effects on BALB/c mice within the dose range of 40,000 mg/kg body weight (BW), and treatment with WC-BSOE at a dosage of 15 mg/kg BW effectively relieved DSS-induced UC symptoms in mice. Furthermore, WC-BSOE could improve the IL-4 and IgA contents in serum, as well as up-regulate the occludin and ZO-1 expressions and down-regulate MPO, MDA and ROS levels in colon tissues of colitis mice, and it also elevated the diversity and relative abundances of Firmicutes, Bacteroides, and Lactobacillus in the intestinal microbiota. These findings indicated that WC-BSOE exerted protective effects in UC through decreasing proinflammatory cytokines, increasing tight junction proteins, suppressing oxidative stress, and regulating intestinal microbiota. Collectively, this study suggested WC-BSOE might be developed as a promising dietary supplement for UC protection.
Collapse
Affiliation(s)
- Yan Ma
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Wangting Zhou
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Huiling Wang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Muci Wu
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Sijia Jiang
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Yubao Li
- Hubei Province enterprise technology center of Yun-Hong Group Co. Ltd, Wuxue 435400, PR China
| | - Chengjie Ma
- State Key Laboratory of Dairy Biotechnology, Bright Dairy & Food Co., Ltd., Shanghai 200436, PR China
| | - Rui Zhang
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| | - Jingren He
- National R & D Center for Se-rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China; Hubei Key Laboratory for Processing and Transformation of Agricultural Products, Wuhan Polytechnic University, Wuhan 430023, PR China.
| |
Collapse
|
12
|
Tang W, Luo X, Fan F, Sun X, Jiang X, Li P, Ding J, Lin Q, Zhao S, Cheng Y, Fang Y. Zein and gum arabic nanoparticles: potential enhancers of immunomodulatory functional activity of selenium-containing peptides. Food Funct 2024; 15:9972-9982. [PMID: 39268750 DOI: 10.1039/d4fo02572e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Food-derived nanomaterials optimizing bioactive peptides is an emerging route in the functional food field. Zein and gum arabic (GA) possess favorable encapsulation properties for controlled release, targeted delivery and stabilization of food bioactive ingredients, and thus are considered as promising carriers for delivery systems. In order to improve the bioavailability of rice selenium-containing peptide TSeMMM (T), the nanoparticles (ZTGNs) containing peptide T, zein and GA have been previously prepared. This study focused on evaluating the immunomodulatory capacity of ZTGNs. The results showed that ZTGNs significantly alleviated cyclophosphamide-induced reduction in immune organ indices and liver glutathione content of mice. There was a significant upregulation observed in the levels of immune-related cytokines IL-6, TNF-α, and IFN-γ as well as their mRNA expression. Moreover, ZTGNs enriched the diversity of the intestinal flora and promoted the proportion of beneficial bacteria. In conclusion, ZTGNs have potential as immunomodulatory enhancers for food bioactive ingredients, providing prospects for further optimization of dietary supplements.
Collapse
Affiliation(s)
- Wenqian Tang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xieqi Luo
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Fengjiao Fan
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xinyang Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Xiaoyi Jiang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Peng Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Jian Ding
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| | - Qinlu Lin
- College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China
| | - Siming Zhao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunhui Cheng
- School of Food Science and Bioengineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Yong Fang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China.
| |
Collapse
|
13
|
Cheng WW, Liu BH, Hou XT, Meng H, Wang D, Zhang CH, Yuan S, Zhang QG. Natural Products on Inflammatory Bowel Disease: Role of Gut Microbes. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:1275-1301. [PMID: 39192679 DOI: 10.1142/s0192415x24500514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Inflammatory bowel disease (IBD) refers to long-term medical conditions that involve inflammation of the digestive tract, and the global incidence and prevalence of IBD are on the rise. Gut microbes play an important role in maintaining the intestinal health of the host, and the occurrence, development, and therapeutic effects of IBD are closely related to the structural and functional changes of gut microbes. Published studies have shown that the natural products from traditional Chinese medicine have direct or indirect regulatory impacts on the composition and metabolism of the gut microbes. In this review, we summarize the research progress of several groups of natural products, i.e., flavonoids, alkaloids, saponins, polysaccharides, polyphenols, and terpenoids, for the therapeutic activities in relieving IBD symptoms. The role of gut microbes and their intestinal metabolites in managing the IBD is presented, with focusing on the mechanism of action of those natural products. Traditional Chinese medicine alleviated IBD symptoms by regulating gut microbes, providing important theoretical and practical basis for the treatment of variable inflammatory intestinal diseases.
Collapse
Affiliation(s)
- Wen-Wen Cheng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Bao-Hong Liu
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Xiao-Ting Hou
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Huan Meng
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Dan Wang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| | - Cheng-Hao Zhang
- Department of Oral Teaching and Research, Yanbian University College of Medicine, Yanji, Jilin Province 133002, P. R. China
| | - Shuo Yuan
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, P. R. China
| | - Qing-Gao Zhang
- Chronic Diseases Research Center, Dalian University College of Medicine, Dalian, Liaoning 116622, P. R. China
| |
Collapse
|
14
|
Wang N, Li Z, Cao L, Cui Z. Trilobatin ameliorates dextran sulfate sodium-induced ulcerative colitis in mice via the NF-κB pathway and alterations in gut microbiota. PLoS One 2024; 19:e0305926. [PMID: 38913606 PMCID: PMC11195961 DOI: 10.1371/journal.pone.0305926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/06/2024] [Indexed: 06/26/2024] Open
Abstract
OBJECTIVE This study aimed to evaluate the effects of trilobatin (TLB) on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) in mice and further explore the underlying mechanisms from the perspectives of signaling pathway and gut microbiota. METHODS A mouse model of UC was established using DSS. Trilobatin was administered via oral gavage. Disease severity was assessed based on body weight, disease activity index (DAI), colon length, histological detection, inflammation markers, and colonic mucosal barrier damage. Alternations in the NF-κB and PI3K/Akt pathways were detected by marker proteins. High-throughput 16S rRNA sequencing was performed to investigate the gut microbiota of mice. RESULTS In the DSS-induced UC mice, TLB (30 μg/g) treatment significantly increased the body weight, reduced the DAI score, alleviated colon length shortening, improved histopathological changes in colon tissue, inhibited the secretion and expression of inflammation factors (TNF-α, IL-1β, and IL-6), and increased the expression of tight-junction proteins (ZO-1 and occludin). Furthermore, TLB (30 μg/g) treatment significantly suppressed the activation of NF-κB pathway and altered the composition and diversity of the gut microbiota, as observed in the variations of the relative abundances of Proteobacteria, Actinobacteriota, and Bacteroidota, in UC mice. CONCLUSION TLB effectively alleviates DSS-induced UC in mice. Regulation of the NF-κB pathway and gut microbiota contributes to TLB-mediated therapeutic effects. Our study not only identified a novel drug candidate for the treatment of UC, but also enhanced our understanding of the biological functions of TLB.
Collapse
Affiliation(s)
- Nanbo Wang
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaohui Li
- Changchun People’s Hospital of Jilin Province, Changchun, China
| | - Lingling Cao
- School of Clinical Medical, Changchun University of Chinese Medicine, Changchun, China
| | - Zhihua Cui
- The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
15
|
Schmidt N, Van Den Ham K, Bower L, Li S, Lorenzi H, Doumbo S, Doumtabe D, Kayentao K, Ongoiba A, Traore B, Crompton P. Susceptibility to febrile malaria is associated with an inflammatory gut microbiome. RESEARCH SQUARE 2024:rs.3.rs-3974068. [PMID: 38645126 PMCID: PMC11030534 DOI: 10.21203/rs.3.rs-3974068/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Malaria is a major public health problem, but many of the factors underlying the pathogenesis of this disease are not well understood. Here, we demonstrate in Malian children that susceptibility to febrile malaria following infection with Plasmodium falciparum is associated with the composition of the gut microbiome prior to the malaria season. Gnotobiotic mice colonized with the fecal samples of malaria-susceptible children had a significantly higher parasite burden following Plasmodium infection compared to gnotobiotic mice colonized with the fecal samples of malaria-resistant children. The fecal microbiome of the susceptible children was enriched for bacteria associated with inflammation, mucin degradation, gut permeability and inflammatory bowel disorders (e.g., Ruminococcus gauvreauii, Ruminococcus torques, Dorea formicigenerans, Dorea longicatena, Lachnoclostridium phocaeense and Lachnoclostridium sp. YL32). However, the susceptible children also had a greater abundance of bacteria known to produce anti-inflammatory short-chain fatty acids and those associated with favorable prognosis and remission following dysbiotic intestinal events (e.g., Anaerobutyricum hallii, Blautia producta and Sellimonas intestinalis). Metabolomics analysis of the human fecal samples corroborated the existence of inflammatory and recovery-associated features within the gut microbiome of the susceptible children. There was an enrichment of nitric oxide-derived DNA adducts (deoxyinosine and deoxyuridine) and long-chain fatty acids, the absorption of which has been shown to be inhibited by inflamed intestinal epithelial cells, and a decrease in the abundance of mucus phospholipids. Nevertheless, there were also increased levels of pseudouridine and hypoxanthine, which have been shown to be regulated in response to cellular stress and to promote recovery following injury or hypoxia. Overall, these results indicate that the gut microbiome may contribute malaria pathogenesis and suggest that therapies targeting intestinal inflammation could decrease malaria susceptibility.
Collapse
|
16
|
Wu M, Wang Q, Li X, Yu S, Zhao F, Wu X, Fan L, Liu X, Zhao Q, He X, Li W, Zhang Q, Hu X. Gut microbiota-derived 5-hydroxyindoleacetic acid from pumpkin polysaccharides supplementation alleviates colitis via MAPKs-PPARγ/NF-κB inhibition. Int J Biol Macromol 2024; 264:130385. [PMID: 38395290 DOI: 10.1016/j.ijbiomac.2024.130385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/16/2024] [Accepted: 02/20/2024] [Indexed: 02/25/2024]
Abstract
Polysaccharides from Pumpkin (Cucurbita moschata Duchesne) (PPs) have many pharmacological activities, including anti-oxidant, immune, and intestinal microbiota regulation. These activities have provided some reminders of its potential therapeutic effect on ulcerative colitis (UC), but this has not yet been confirmed. This study preliminarily confirmed its significant anti-UC activity superior to Salicylazosulfapyridine. The average molecular weight of PPs was 3.10 × 105 Da, and PPs mainly comprised Mannose, Rhamnose, Galacturonic acid, Galactosamine, Glucose, and Xylose with molar ratios of 1.58:3.51:34.54:1.00:3.25:3.02. PPs (50, 100 mg/kg) could significantly resist dextran sodium sulfate induced UC on C57BL/6 mice by improving gut microbiota dysbiosis, such as the changes of relative abundance of Bacteroides, Culturomica, Mucispirillum, Escherichia-Shigella, Alistipes and Helicobacter. PPs also reverse the abnormal inflammatory reaction, including abnormal level changes of TNF-α, IFN-γ, IL-1β, IL-4, IL-6, IL-10, and IL-18. Metabolomic profiling showed that PPs supplementation resulted in the participation of PPAR and MAPK pathways, as well as the increase of 5-hydroxyindole acetic acid (5-HIAA) level. 5-HIAA also exhibited individual and synergistic anti-UC activities in vivo. Furthermore, combination of PPs and 5-HIAA could also elevate the levels of PPARγ in nuclear and inhibit MAPK/NF-ĸB pathway in the colon. This study revealed that PPs and endogenous metabolite 5-HIAA might be developed to treat UC.
Collapse
Affiliation(s)
- Minglan Wu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qi Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Xiaodong Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China
| | - Songxia Yu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Fan Zhao
- Department of General Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xia Wu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Li Fan
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xueling Liu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Qingwei Zhao
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Qiao Zhang
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| | - Xingjiang Hu
- Zhejiang Provincial Key Laboratory of Traditional Chinese Medicine for Clinical Evaluation and Translational Research, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, Department of Clinical Pharmacy, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.
| |
Collapse
|
17
|
Lu W, Jiang C, Chen Y, Lu Z, Xu X, Zhu L, Xi H, Ye G, Yan C, Chen J, Zhang J, Zuo L, Huang Q. Altered metabolome and microbiome associated with compromised intestinal barrier induced hepatic lipid metabolic disorder in mice after subacute and subchronic ozone exposure. ENVIRONMENT INTERNATIONAL 2024; 185:108559. [PMID: 38461778 DOI: 10.1016/j.envint.2024.108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 02/05/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Exposure to ozone has been associated with metabolic disorders in humans, but the underlying mechanism remains unclear. In this study, the role of the gut-liver axis and the potential mechanism behind the metabolic disorder were investigated by histological examination, microbiome and metabolome approaches in mice during the subacute (4-week) and subchronic (12-week) exposure to 0.5 ppm and 2.5 ppm ozone. Ozone exposure resulted in slowed weight gain and reduced hepatic lipid contents in a dose-dependent manner. After exposure to ozone, the number of intestinal goblet cells decreased, while the number of tuft cells increased. Tight junction protein zonula occludens-1 (ZO-1) was significantly downregulated, and the apoptosis of epithelial cells increased with compensatory proliferation, indicating a compromised chemical and physical layer of the intestinal barrier. The hepatic and cecal metabolic profiles were altered, primarily related to lipid metabolism and oxidative stress. The abundance of Muribaculaceae increased dose-dependently in both colon and cecum, and was associated with the decrease of metabolites such as bile acids, betaine, and L-carnitine, which subsequently disrupted the intestinal barrier and lipid metabolism. Overall, this study found that subacute and subchronic exposure to ozone induced metabolic disorder via disturbing the gut-liver axis, especially the intestinal barrier. These findings provide new mechanistic understanding of the health risks associated with environmental ozone exposure and other oxidative stressors.
Collapse
Affiliation(s)
- Wenjia Lu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chonggui Jiang
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China
| | - Yajie Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Zhonghua Lu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueli Xu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liting Zhu
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haotong Xi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China
| | - Guozhu Ye
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Changzhou Yan
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jinsheng Chen
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Jie Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Innovation Platform for Industry-Education Integration in Vaccine Research, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Li Zuo
- Innovation and Entrepreneurship Laboratory for college students, Department of Biochemistry and Molecular Biology, Metabolic Disease Research Center, School of Basic Medicine, Anhui Medical University, Hefei 230032, China.
| | - Qiansheng Huang
- Xiamen Key Laboratory of Indoor Air and Health, Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; National Basic Science Data Center, Beijing 100190, China.
| |
Collapse
|
18
|
Kathrani A, Yen S, Hall EJ, Swann JR. The effects of a hydrolyzed protein diet on the plasma, fecal and urine metabolome in cats with chronic enteropathy. Sci Rep 2023; 13:19979. [PMID: 37968311 PMCID: PMC10652014 DOI: 10.1038/s41598-023-47334-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 11/12/2023] [Indexed: 11/17/2023] Open
Abstract
Hydrolyzed protein diets are extensively used to treat chronic enteropathy (CE) in cats. However, the biochemical effects of such a diet on feline CE have not been characterized. In this study an untargeted 1H nuclear magnetic resonance spectroscopy-based metabolomic approach was used to compare the urinary, plasma, and fecal metabolic phenotypes of cats with CE to control cats with no gastrointestinal signs recruited at the Royal Veterinary College (RVC). In addition, the biomolecular consequences of a hydrolyzed protein diet in cats with CE was also separately determined in cats recruited from the RVC (n = 16) and the University of Bristol (n = 24) and whether these responses differed between dietary responders and non-responders. Here, plasma metabolites related to energy and amino acid metabolism significantly varied between CE and control cats in the RVC cohort. The hydrolyzed protein diet modulated the urinary metabolome of cats with CE (p = 0.005) in both the RVC and Bristol cohort. In the RVC cohort, the urinary excretion of phenylacetylglutamine, p-cresyl-sulfate, creatinine and taurine at diagnosis was predictive of dietary response (p = 0.025) although this was not observed in the Bristol cohort. Conversely, in the Bristol cohort plasma betaine, glycerol, glutamine and alanine at diagnosis was predictive of outcome (p = 0.001), but these same results were not observed in the RVC cohort. The biochemical signature of feline CE in the RVC cohort was consistent with that identified in human and animal models of inflammatory bowel disease. The hydrolyzed protein diet had the same effect on the urinary metabolome of cats with CE at both sites. However, biomarkers that were predictive of dietary response at diagnosis differed between the 2 sites. This may be due to differences in disease severity, disease heterogeneity, factors unrelated to the disease or small sample size at both sites. As such, further studies utilizing larger number of cats are needed to corroborate these findings.
Collapse
Affiliation(s)
- Aarti Kathrani
- Royal Veterinary College, Hawkshead Lane, Hertfordshire, AL9 7TA, UK.
| | - Sandi Yen
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, OX3 7FY, UK
| | - Edward J Hall
- Bristol Veterinary School, University of Bristol, Langford, Bristol, BS40 5DU, UK
| | - Jonathan R Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
- Department of Metabolism, Digestion, and Reproduction, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
19
|
Zhou F, Mai T, Wang Z, Zeng Z, Shi J, Zhang F, Kong N, Jiang H, Guo L, Xu M, Lin J. The improvement of intestinal dysbiosis and hepatic metabolic dysfunction in dextran sulfate sodium-induced colitis mice: effects of curcumin. J Gastroenterol Hepatol 2023; 38:1333-1345. [PMID: 37210613 DOI: 10.1111/jgh.16205] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 04/13/2023] [Accepted: 04/20/2023] [Indexed: 05/22/2023]
Abstract
BACKGROUND AND AIM Curcumin may have promising application in the prevention and amelioration of inflammatory bowel disease (IBD). However, the underlying mechanisms underpinning the ability of curcumin to interact with the gut and liver in IBD remains to be defined, which is the exploration aim of this study. METHODS Mice with dextran sulfate sodium salt (DSS)-induced acute colitis were treated either with 100 mg/kg of curcumin or phosphate buffer saline (PBS). Hematoxylin-eosin (HE) staining, 16S rDNA Miseq sequencing, proton nuclear magnetic resonance (1 H NMR) spectroscopy, and liquid chromatography-tandem mass spectrometry (LC-MS/MS) were applied for analysis. Spearman's correlation coefficient (SCC) was utilized to assess the correlation between the modification of intestinal bacteria and hepatic metabolite parameters. RESULTS Curcumin supplementation not only prevented further loss of body weight and colon length in IBD mice but also improved diseases activity index (DAI), colonic mucosal injury, and inflammatory infiltration. Meanwhile, curcumin restored the composition of the gut microbiota, significantly increased Akkermansia, Muribaculaceae_unclassified, and Muribaculum, and significantly elevated the concentration of propionate, butyrate, glycine, tryptophan, and betaine in the intestine. For hepatic metabolic disturbances, curcumin intervention altered 14 metabolites, including anthranilic acid and 8-amino-7-oxononanoate while enriching pathways related to the metabolism of bile acids, glucagon, amino acids, biotin, and butanoate. Furthermore, SCC analysis revealed a potential correlation between the upregulation of intestinal probiotics and alterations in liver metabolites. CONCLUSION The therapeutic mechanism of curcumin against IBD mice occurs by improving intestinal dysbiosis and liver metabolism disorders, thus contributing to the stabilization of the gut-liver axis.
Collapse
Affiliation(s)
- Feini Zhou
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ting Mai
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Ziren Wang
- The Third School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhaolong Zeng
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jingjing Shi
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang, Hangzhou, 310006, China
| | - Ning Kong
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Hao Jiang
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Lingnan Guo
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Maosheng Xu
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Jiangnan Lin
- The First School of Clinical Medicine of Zhejiang Chinese Medical University, Hangzhou, China
- Department of Radiology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| |
Collapse
|
20
|
Hu Q, Yu L, Zhai Q, Zhao J, Tian F. Anti-Inflammatory, Barrier Maintenance, and Gut Microbiome Modulation Effects of Saccharomyces cerevisiae QHNLD8L1 on DSS-Induced Ulcerative Colitis in Mice. Int J Mol Sci 2023; 24:ijms24076721. [PMID: 37047694 PMCID: PMC10094816 DOI: 10.3390/ijms24076721] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 03/24/2023] [Accepted: 03/29/2023] [Indexed: 04/07/2023] Open
Abstract
The use of probiotics has been considered as a new therapy option for ulcerative colitis (UC), and yeast has recently received widespread recommendation for human health. In this study, the probiotic characteristics of four yeast strains, Saccharomyces boulardii CNCMI-745, Kluyveromyces marxianus QHBYC4L2, Saccharomyces cerevisiae QHNLD8L1, and Debaryomyces hansenii QSCLS6L3, were evaluated in vitro; their ability to ameliorate dextran sulfate sodium (DSS)-induced colitis was investigated. Among these, S. cerevisiae QHNLD8L1 protected against colitis, which was reflected by increased body weight, colon length, histological injury relief, decreased gut inflammation markers, and intestinal barrier restoration. The abundance of the pathogenic bacteria Escherichia–Shigella and Enterococcaceae in mice with colitis decreased after S. cerevisiae QHNLD8L1 treatment. Moreover, S. cerevisiae QHNLD8L1 enriched beneficial bacteria Lactobacillus, Faecalibaculum, and Butyricimonas, enhanced carbon metabolism and fatty acid biosynthesis function, and increased short chain fatty acid (SCFAs) production. Taken together, our results indicate the great potential of S. cerevisiae QHNLD8L1 supplementation for the prevention and alleviation of UC.
Collapse
Affiliation(s)
- Qianjue Hu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|