1
|
Wu J, Zuo J, Dou W, Wang K, Long J, Yu C, Miao Y, Liao Y, Li Y, Cao Y, Lu L, Jin Y, Zhang B, Yang J. Rapidly separable bubble microneedle-patch system present superior transdermal mRNA delivery efficiency. Int J Pharm 2025; 674:125427. [PMID: 40074159 DOI: 10.1016/j.ijpharm.2025.125427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/20/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Traditional mRNA vaccine formulation loaded by lipid nanoparticle (mRNA-LNP) has several shortcomings in clinical application, including the need for cryopreservation, discomfort associated with intramuscular injections, and the risk of liver aggregation. Dissolvable microneedles (DMNs), as a novel transdermal drug delivery platform, can overcome the skin barrier to deliver drugs directly into the skin in a minimally invasive manner. However, mRNA-LNP is unstable and easily degraded during the solidification of DMN. In this study, we proposed to establish a rapidly dissolvable bubble microneedle patch (bMNP) system for the transdermal delivery of mRNA-LNP. We explored to use polyvinyl alcohol (PVA) and trehalose for the first time as matrix material for preparing microneedles. Our results demonstrate that the stability of the mRNA-LNP was obviously improved. The mRNA in this bMNP system can be stored at room temperature for at least one month. Furthermore, the existence of air bubbles between the needle tip and the dorsal scale of bMNP can achieve dorsal scale separation by applying shear force after inserting into subcutaneous tissue, and effectively target lymph nodes in vivo after releasing mRNA-LNP. Using mRNA that encodes the spike protein from SARS-CoV-2 as a test case, the rapidly separable bMNP system induced the production of significant levels of spike-specific IgG antibodies, neutralizing antibodies, and a Th1-polarized T cell response, providing an alternative route for mRNA delivery. Our research is expected to provide a promising transdermal drug delivery strategy that can improve mRNA vaccine accessibility.
Collapse
Affiliation(s)
- Jiayu Wu
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China; Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Jun Zuo
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Wei Dou
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China; Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Ke Wang
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China
| | - Jinrong Long
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Changxiao Yu
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yiqi Miao
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yuqin Liao
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yanyan Li
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Yiming Cao
- Bioinformatics Center of AMMS, Beijing, People's Republic of China
| | - Lu Lu
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China
| | - Yiguang Jin
- Beijing Institute of Radiation Medicine, Beijing, People's Republic of China.
| | - Bo Zhang
- Department of Pharmacy & State Key Laboratory of Complex Severe and Rare Disease, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, People's Republic of China.
| | - Jing Yang
- Bioinformatics Center of AMMS, Beijing, People's Republic of China.
| |
Collapse
|
2
|
Van Engeland C, Haut B, Debaste F. A Closer Look at the Potential Mechanisms of Action of Protective Agents Used in the Drying of Microorganisms: A Review. Microorganisms 2025; 13:435. [PMID: 40005799 PMCID: PMC11858741 DOI: 10.3390/microorganisms13020435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 02/10/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Yeast, bacteria and sourdough are widely used in our daily lives, yet their drying and storage remains a significant challenge. A variety of techniques are used to improve the resistance of cells to thermal, dehydration, oxidative and osmotic stresses, which can occur at different stages of the process. The addition of protective agents prior to drying is a commonly used method, but the mechanisms that may lead to a change in viability following the addition of these agents, or more generally, the interaction between a protective agent and the drying process, are not yet fully understood. This review outlines seven main potential mechanisms, as highlighted in the literature, which can lead to internal or external modifications of the cells. The mechanisms in question are change of membrane fluidity, accumulation of compounds for osmoregulation, prior osmotic dehydration, prevention of oxidation, coating or encapsulation, enhancement in thermal resistance and change in drying kinetics. A comprehensive explanation of these mechanisms is provided. This review also highlights the connection between the mechanisms and the influence of the stresses occurring during drying and storage, which depend on the drying technique used and the operating conditions, the strains and the protective agents involved, on the importance of the different protection mechanisms. By gaining a deeper understanding of the mechanisms of action of protective agents, strategies to improve the quality of the microorganisms obtained after drying can be developed. One such strategy would be to combine several agents to achieve a synergistic effect.
Collapse
Affiliation(s)
| | | | - Frédéric Debaste
- Transfers, Interfaces and Processes (TIPs), Université libre de Bruxelles (ULB), Avenue F.D. Roosevelt, 50 CP165/67, 1050 Bruxelles, Belgium; (C.V.E.); (B.H.)
| |
Collapse
|
3
|
Mohamed AH, Abaza T, Youssef YA, Rady M, Fahmy SA, Kamel R, Hamdi N, Efthimiado E, Braoudaki M, Youness RA. Extracellular vesicles: from intracellular trafficking molecules to fully fortified delivery vehicles for cancer therapeutics. NANOSCALE ADVANCES 2025; 7:934-962. [PMID: 39823046 PMCID: PMC11733735 DOI: 10.1039/d4na00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 12/22/2024] [Indexed: 01/19/2025]
Abstract
Extracellular vesicles (EVs) are emerging as viable tools in cancer treatment due to their ability to carry a wide range of theranostic activities. This review summarizes different forms of EVs such as exosomes, microvesicles, apoptotic bodies, and oncosomes. It also sheds the light onto isolation methodologies, characterization techniques and therapeutic applications of all discussed EVs. Evidence indicates that EVs are particularly effective in delivering chemotherapeutic medications, and immunomodulatory agents. However, the advancement of EV-based therapies into clinical practice is hindered by challenges including EVs heterogeneity, cargo loading efficiency, and in vivo stability. Overall, EVs have the potential to change cancer therapeutic paradigms. Continued research and development activities are critical for improving EV-based medications and increasing their therapeutic impact.
Collapse
Affiliation(s)
- Adham H Mohamed
- Department of Chemistry, Faculty of Science, Cairo University 12613 Giza Egypt
| | - Tasneem Abaza
- Biotechnology and Biomolecular Chemistry Program, Faculty of Science, Cairo University 12613 Giza Egypt
- Université Paris-Saclay, Université d'Evry Val D'Essonne 91000 Évry-Courcouronnes Île-de-France France
| | - Yomna A Youssef
- Department of Physiology, Faculty of Physical Therapy, German International University (GIU) 11835 Cairo Egypt
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| | - Mona Rady
- Microbiology, Immunology and Biotechnology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
- Faculty of Biotechnology, German International University New Administrative Capital 11835 Cairo Egypt
| | - Sherif Ashraf Fahmy
- Department of Pharmaceutics and Biopharmaceutics, University of Marburg Robert-Koch-Str. 4 35037 Marburg Germany
| | - Rabab Kamel
- Pharmaceutical Technology Department, National Research Centre 12622 Cairo Egypt
| | - Nabila Hamdi
- Pharmacology and Toxicology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo (GUC) 11835 Cairo Egypt
| | - Eleni Efthimiado
- Inorganic Chemistry Laboratory, Chemistry Department, National and Kapodistrian University of Athens Athens Greece
| | - Maria Braoudaki
- Department of Clinical, Pharmaceutical, and Biological Science, School of Life and Medical Sciences, University of Hertfordshire Hatfield AL10 9AB UK
| | - Rana A Youness
- Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU) 11835 Cairo Egypt
| |
Collapse
|
4
|
Vorländer K, Kwade A, Finke JH, Kampen I. Influence of multiple compression phases during tableting of spray dried Saccharomyces cerevisiae on microbial survival and physical-mechanical tablet properties. Int J Pharm 2024; 667:124948. [PMID: 39542120 DOI: 10.1016/j.ijpharm.2024.124948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/25/2024] [Accepted: 11/10/2024] [Indexed: 11/17/2024]
Abstract
The viability of probiotic microorganisms is essential for their health-promoting effects and must be preserved in the best possible way during the production of the final dosage form, such as tablets. This applies to both drying and tableting. Saccharomyces cerevisiae is spray-dried with suitable protective additives, which were identified in a previous study in which also the influence of the formulation during tableting was investigated. One aspect that has not yet been addressed is the effect of multiple compression, as it is typical with pre- and main compression when using rotary tablet presses. To investigate this, tablets are compressed up to five times. It is shown that when tablet strength and survival are considered together, the application of a pre- and main pressure does not have a significant effect. This facilitates the transferability of findings of compaction studies with a single compression phase. In addition, the data allow to consolidate the mechanism of inactivation of microorganisms during tableting found in previous studies by the same authors. This is based on the porosity reduction, whereby it is shown in the present study that it is irrelevant how this reduction is achieved (change in compression stress or the number of compression cycles).
Collapse
Affiliation(s)
- Karl Vorländer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, Braunschweig 38104, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, Braunschweig 38106, Germany.
| | - Arno Kwade
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, Braunschweig 38104, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, Braunschweig 38106, Germany
| | - Jan Henrik Finke
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, Braunschweig 38104, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, Braunschweig 38106, Germany
| | - Ingo Kampen
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, Braunschweig 38104, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, Braunschweig 38106, Germany
| |
Collapse
|
5
|
Gowthami R, Rajasekharan PE, Chander S, Shankar M, Srivastava V, Agrawal A. Cryopreservation of two-celled pollen: a model system for studying the cellular mechanisms of cryoinjury and recovery. 3 Biotech 2024; 14:304. [PMID: 39568796 PMCID: PMC11574238 DOI: 10.1007/s13205-024-04140-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 10/25/2024] [Indexed: 11/22/2024] Open
Abstract
Cryopreservation serves as an invaluable technique for safeguarding the genetic diversity of plants and various organisms, while also facilitating fundamental biological research. Despite notable advancements in this field, the cryopreservation of certain cell types and tissues remains challenging, particularly those that exhibit sensitivity to low temperatures. Two-celled pollen is a promising model system for the study of cryopreservation. By exploring the cryopreservation of two-celled pollen, deeper insights can be gained into the cellular and molecular mechanisms of cryoinjury and recovery. This knowledge can be used to develop new and improved cryopreservation protocols for a wider range of cell types and tissues. It is relatively simple, consisting of only two cells, and it is relatively easy to cryopreserve and culture. In addition to its potential for improving cryopreservation technologies, the study of two-celled pollen cryopreservation can also shed light on fundamental biological processes such as cell division, development, and stress tolerance. By unlocking the mysteries of two-celled pollen cryopreservation, we can gain a deeper understanding of nature's inner workings. This article reviews examples of studies that have successfully used two-celled pollen cryopreservation, highlighting key findings and discoveries enabled by this technique as case studies.
Collapse
Affiliation(s)
- Ravi Gowthami
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Pusa Campus, New Delhi, India
| | - P E Rajasekharan
- ICAR-Indian Institute of Horticultural Research, Bengaluru, India
| | - Subhash Chander
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Pusa Campus, New Delhi, India
| | - Muthusamy Shankar
- Division of Plant Genetic Resources, ICAR-Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Vartika Srivastava
- ICAR-National Bureau of Plant Genetic Resources (NBPGR), Pusa Campus, New Delhi, India
| | - Anuradha Agrawal
- National Agricultural Higher Education Project (NAHEP), Krishi Anusandhan Bhawan-II, Indian Council of Agricultural Research (ICAR), Pusa Campus, New Delhi, 110012 India
| |
Collapse
|
6
|
Yan Y, Zhu X, Qi H, Wang Y, Zhang H, He J. Rice seed storability: From molecular mechanisms to agricultural practices. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112215. [PMID: 39151802 DOI: 10.1016/j.plantsci.2024.112215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/24/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024]
Abstract
The storability of rice seeds is crucial for ensuring flexible planting options, agricultural seed security, and global food safety. With the intensification of global climate change and the constant fluctuations in agricultural production conditions, enhancing the storability of rice seeds has become particularly important. Seed storability is a complex quantitative trait regulated by both genetic and environmental factors. This article reviews the main regulatory mechanisms of rice seed storability, including the accumulation of seed storage proteins, late embryogenesis abundant (LEA) proteins, heat shock proteins, sugar signaling, hormonal regulation by gibberellins and abscisic acid, and the role of the ubiquitination pathway. Additionally, this article explores the improvement of storability using wild rice genes, molecular marker-assisted selection, and gene editing techniques such as CRISPR/Cas9 in rice breeding. By providing a comprehensive scientific foundation and practical guidance, this review aims to promote the development of rice varieties with enhanced storability to meet evolving agricultural demands.
Collapse
Affiliation(s)
- Yuntao Yan
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Xiaoya Zhu
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Hui Qi
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China; Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yan Wang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Haiqing Zhang
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China
| | - Jiwai He
- College of Agronomy, Hunan Agricultural University, Changsha 420128, China.
| |
Collapse
|
7
|
Auffray J, Hsein H, Biteau N, Velours C, Noël T, Tchoreloff P. Development of monoclonal antibodies in tablet form: A new approach for local delivery. Int J Pharm 2024; 661:124423. [PMID: 38971511 DOI: 10.1016/j.ijpharm.2024.124423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
Among the various pharmaceutical forms, tablets offer numerous advantages, like ease of administration, cost-effectiveness in production, and better stability of biomolecules. Beyond these benefits, the tablet form opens up possibilities for alternative routes for the local delivery of biopharmaceuticals such as oral or vaginal administration, thereby expanding the therapeutic applications of these biomolecules and overcoming the inconvenients associated with parenteral administration. However, to date there is limited information on the feasibility of developing biomolecules in the tablet form. In this study, we have evaluated the feasibility of developing monoclonal antibodies in the tablet form while preserving their biological properties. Different excipients and process parameters were studied to assess their impact on the antibody's integrity during tableting. ELISA results show that applying compression pressure up to 100 MPa is not detrimental to the antibody's binding properties when formulated from a lyophilized powder containing trehalose or sucrose as the major excipient. This observation was confirmed with SPR and ultracentrifugation experiments, which demonstrated that neither the binding affinity for both Fc and Fab antibody fragments nor its aggregation rate are affected by the tableting process. After compression, the tablets containing the antibodies have been shown to be stable for 6 months at room temperature.
Collapse
Affiliation(s)
- Julie Auffray
- Univ. Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France; Arts et Metiers Institute of Technology, CNRS, Bordeaux INP, Hesam Universite, I2M, UMR 5295, F-33400 Talence, France; Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Hassana Hsein
- Univ. Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France; Arts et Metiers Institute of Technology, CNRS, Bordeaux INP, Hesam Universite, I2M, UMR 5295, F-33400 Talence, France.
| | - Nicolas Biteau
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Christophe Velours
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Thierry Noël
- Univ. Bordeaux, CNRS, Microbiologie Fondamentale et Pathogénicité, UMR 5234, F-33000 Bordeaux, France
| | - Pierre Tchoreloff
- Univ. Bordeaux, CNRS, Bordeaux INP, I2M, UMR 5295, F-33400 Talence, France; Arts et Metiers Institute of Technology, CNRS, Bordeaux INP, Hesam Universite, I2M, UMR 5295, F-33400 Talence, France
| |
Collapse
|
8
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans: A target for antifungals. Proc Natl Acad Sci U S A 2024; 121:e2314087121. [PMID: 39083421 PMCID: PMC11317593 DOI: 10.1073/pnas.2314087121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 06/25/2024] [Indexed: 08/02/2024] Open
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement toward the catalytic pocket by the N terminus upon ligand binding and identifies residues required for substrate binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved among Cryptococcal species and closely related basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto, these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes.
Collapse
Affiliation(s)
- Erica J. Washington
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - Ye Zhou
- Department of Computer Science, Duke University, Durham, NC27708
| | - Allen L. Hsu
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Matthew Petrovich
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Jennifer L. Tenor
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Dena L. Toffaletti
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| | - John R. Perfect
- Division of Infectious Diseases, Department of Medicine, Duke University School of Medicine, Durham, NC27710
| | - Mario J. Borgnia
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, Department of Health and Human Services, NIH, Research Triangle Park, NC27709
| | - Alberto Bartesaghi
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
- Department of Computer Science, Duke University, Durham, NC27708
| | - Richard G. Brennan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC27710
| |
Collapse
|
9
|
Fardelli E, Di Gioacchino M, Lucidi M, Capecchi G, Bruni F, Sodo A, Visca P, Capellini G. Evidence of Correlation between Membrane Phase Transition and Clonogenicity in Dehydrating Acinetobacter baumannii: A Combined Micro-Raman and AFM Study. J Phys Chem B 2024; 128:6806-6815. [PMID: 38959442 DOI: 10.1021/acs.jpcb.4c01246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The Gram-negative bacterium Acinetobacter baumannii is one of the most resilient multidrug-resistant pathogens in hospitals. Among Gram-negative bacteria, it is particularly resistant to dehydration (anhydrobiosis), and this feature allows A. baumannii to persist in hospital environments for long periods, subjected to unfavorable conditions. We leverage the combination of μ-Raman spectroscopy and atomic force microscopy (AFM) to investigate the anhydrobiotic mechanisms in A. baumannii cells by monitoring the membrane (both inner and outer membranes) properties of four A. baumannii strains during a 16-week dehydration period and in response to temperature excursions. We noted that the membranes of A. baumannii remained intact during the dehydration period despite undergoing a liquid-crystal-to-gel-phase transition, accompanied by changes in the mechanical properties of the membrane. This was evident from the AFM images, which showed the morphology of the bacterial cells alongside modifications of their superficial mechanical properties, and from the alteration in the intensity ratio of μ-Raman features linked to the CH3 and CH2 symmetric stretching modes. Furthermore, employing a universal power law revealed a significant correlation between this ratio and bacterial fitness across all tested strains. Additionally, we subjected dry A. baumannii to a temperature-dependent experiment, the results of which supported the correlation between the Raman ratio and culturability, demonstrating that the phase transition becomes irreversible when A. baumannii cells undergo different temperature cycles. Besides the relevance to the present study, we argue that μ-Raman can be used as a powerful nondestructive tool to assess the health status of bacterial cells based on membrane properties with a relatively high throughput.
Collapse
Affiliation(s)
- Elisa Fardelli
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Michael Di Gioacchino
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Massimiliano Lucidi
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- National Biodiversity Future Center, piazza Marina 61, 90133 Palermo, Italy
| | - Giulia Capecchi
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Fabio Bruni
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Armida Sodo
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
| | - Paolo Visca
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- Fondazione Santa Lucia, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - Giovanni Capellini
- Dipartimento di Scienze, Università degli Studi di Roma Tre, Viale Marconi 446, 00146 Rome, Italy
- IHP Leibniz Institut für innovative Mikroelektronik, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany
| |
Collapse
|
10
|
Washington EJ, Zhou Y, Hsu AL, Petrovich M, Tenor JL, Toffaletti DL, Guan Z, Perfect JR, Borgnia MJ, Bartesaghi A, Brennan RG. Structures of trehalose-6-phosphate synthase, Tps1, from the fungal pathogen Cryptococcus neoformans : a target for novel antifungals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.14.530545. [PMID: 36993618 PMCID: PMC10054996 DOI: 10.1101/2023.03.14.530545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Invasive fungal diseases are a major threat to human health, resulting in more than 1.5 million annual deaths worldwide. The arsenal of antifungal therapeutics remains limited and is in dire need of novel drugs that target additional biosynthetic pathways that are absent from humans. One such pathway involves the biosynthesis of trehalose. Trehalose is a disaccharide that is required for pathogenic fungi to survive in their human hosts. In the first step of trehalose biosynthesis, trehalose-6-phosphate synthase (Tps1) converts UDP-glucose and glucose-6-phosphate to trehalose-6-phosphate. Here, we report the structures of full-length Cryptococcus neoformans Tps1 (CnTps1) in unliganded form and in complex with uridine diphosphate and glucose-6-phosphate. Comparison of these two structures reveals significant movement towards the catalytic pocket by the N-terminus upon ligand binding and identifies residues required for substrate-binding, as well as residues that stabilize the tetramer. Intriguingly, an intrinsically disordered domain (IDD), which is conserved amongst Cryptococcal species and closely related Basidiomycetes, extends from each subunit of the tetramer into the "solvent" but is not visible in density maps. We determined that the IDD is not required for C. neoformans Tps1-dependent thermotolerance and osmotic stress survival. Studies with UDP-galactose highlight the exquisite substrate specificity of CnTps1. In toto , these studies expand our knowledge of trehalose biosynthesis in Cryptococcus and highlight the potential of developing antifungal therapeutics that disrupt the synthesis of this disaccharide or the formation of a functional tetramer and the use of cryo-EM in the structural characterization of CnTps1-ligand/drug complexes. Significance Statement Fungal infections are responsible for over a million deaths worldwide each year. Biosynthesis of a disaccharide, trehalose, is required for multiple pathogenic fungi to transition from the environment to the human host. Enzymes in the trehalose biosynthesis pathway are absent in humans and, therefore, are potentially significant targets for novel antifungal therapeutics. One enzyme in the trehalose biosynthesis is trehalose-6-phosphate synthase (Tps1). Here, we describe the cryo-electron microscopy structures of the CnTps1 homo-tetramer in the unliganded form and in complex with a substrate and a product. These structures and subsequent biochemical analysis reveal key details of substrate-binding residues and substrate specificity. These structures should facilitate structure-guided design of inhibitors against CnTps1.
Collapse
|
11
|
Cao Y, Gao C, Yang L, Zhou P, Sun D. Molecular simulation on the interaction between trehalose and asymmetric lipid bilayer mimicking the membrane of human red blood cells. Cryobiology 2024; 115:104898. [PMID: 38663665 DOI: 10.1016/j.cryobiol.2024.104898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 05/05/2024]
Abstract
Trehalose is widely acknowledged for its ability to stabilize plasma membranes during dehydration. However, the exact mechanism by which trehalose interacts with lipid bilayers remains presently unclear. In this study, we conducted atomistic molecular dynamic simulations on asymmetric model bilayers that mimic the membrane of human red blood cells at various trehalose and water contents. We considered three different hydration levels mimicking the full hydration to desiccation scenarios. Results indicate that the asymmetric distribution of lipids did not significantly influence the computed structural characteristics at full and low hydration. At dehydration, however, the order parameter obtained from the symmetric bilayer is significantly higher compared to those obtained from asymmetric ones. Analysis of hydrogen bonds revealed that the protective ability of trehalose is well described by the water replacement hypothesis at full and low hydration, while at dehydration other interaction mechanisms associated with trehalose exclusion from the bilayer may involve. In addition, we found that trehalose exclusion is not attributed to sugar saturation but rather to the reduction in hydration levels. It can be concluded that the protective effect of trehalose is not only related to the hydration level of the bilayer, but also closely tied to the asymmetric distribution of lipids within each leaflet.
Collapse
Affiliation(s)
- Yu Cao
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Cai Gao
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Lei Yang
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Pei Zhou
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Dongfang Sun
- Department of Refrigeration & Cryogenics Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
12
|
Maity S, Pahari S, Santra S, Jana M. Interfacial Glucose to Regulate Hydrated Lipid Bilayer Properties: Influence of Concentrations. J Chem Inf Model 2024; 64:3841-3854. [PMID: 38635679 DOI: 10.1021/acs.jcim.3c01991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
A series of atomistic molecular dynamics (MD) simulations were carried out with a hydrated 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayer with the variation of glucose concentrations from 0 to 30 wt % in the presence of 0.3 M NaCl. The study suggested that although the thickness of the lipid bilayer dropped significantly with the increase in glucose concentration, it expanded laterally at high glucose levels due to the intercalation of glucose between the headgroups of adjacent lipids. We adopted the surface assessment via the grid evaluation method to compute the deviation of the bilayer's key structural features for the different amounts of glucose present. This suggested that the accumulation of glucose molecules near the headgroups influences the local lipid bilayer undulation and crimping of the lipid tails. We find that the area compressibility modulus increases with the glucose level, causing enhanced bilayer rigidity arising from the slow lateral diffusion of lipids. The restricted lipid motion at high glucose concentrations controls the sustainability of the curved bilayer surface. Calculations revealed that certain orientations of CO → of interfacial glucose with the PN → of lipid headgroups are preferred, which helps the glucose to form direct hydrogen bonds (HBs) with the lipid headgroups. Such lipid-glucose (LG) HBs relax slowly at low glucose concentrations and exhibit a higher lifetime, whereas fast structural relaxation of LG HBs with a shorter lifetime was noticed at a higher glucose level. In contrast, lipid-water (LW) HBs exhibited a higher lifetime at a higher glucose level, which gradually decreased with the glucose level lowering. The study interprets that the glucose concentration-driven LW and LG interactions are mutually inclusive. Our detailed analysis will exemplify small saccharide concentration-driven membrane stabilizing efficiency, which is, in general, helpful for drug delivery study.
Collapse
Affiliation(s)
- Sankar Maity
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Somdev Pahari
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Santanu Santra
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| | - Madhurima Jana
- Molecular Simulation Laboratory, Department of Chemistry, National Institute of Technology, Rourkela 769008, India
| |
Collapse
|
13
|
Olgenblum GI, Hutcheson BO, Pielak GJ, Harries D. Protecting Proteins from Desiccation Stress Using Molecular Glasses and Gels. Chem Rev 2024; 124:5668-5694. [PMID: 38635951 PMCID: PMC11082905 DOI: 10.1021/acs.chemrev.3c00752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/18/2024] [Accepted: 02/22/2024] [Indexed: 04/20/2024]
Abstract
Faced with desiccation stress, many organisms deploy strategies to maintain the integrity of their cellular components. Amorphous glassy media composed of small molecular solutes or protein gels present general strategies for protecting against drying. We review these strategies and the proposed molecular mechanisms to explain protein protection in a vitreous matrix under conditions of low hydration. We also describe efforts to exploit similar strategies in technological applications for protecting proteins in dry or highly desiccated states. Finally, we outline open questions and possibilities for future explorations.
Collapse
Affiliation(s)
- Gil I. Olgenblum
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| | - Brent O. Hutcheson
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
| | - Gary J. Pielak
- Department
of Chemistry, University of North Carolina
at Chapel Hill (UNC-CH), Chapel
Hill, North Carolina 27599, United States
- Department
of Chemistry, Department of Biochemistry & Biophysics, Integrated
Program for Biological & Genome Sciences, Lineberger Comprehensive
Cancer Center, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Daniel Harries
- Institute
of Chemistry, Fritz Haber Research Center, and The Harvey M. Krueger
Family Center for Nanoscience & Nanotechnology, The Hebrew University, Jerusalem 9190401, Israel
| |
Collapse
|
14
|
Ong HX, Traini D, Young PM. Liposomes for Inhalation. J Aerosol Med Pulm Drug Deliv 2024; 37:100-110. [PMID: 38640446 DOI: 10.1089/jamp.2024.29112.hxo] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024] Open
Abstract
Inhalation of liposomes formulated with phospholipids similar to endogenous lung surfactants and lipids offers biocompatibility and versatility within the pulmonary medicine field to treat a range of diseases such as lung cancer, cystic fibrosis and lung infections. Manipulation of the physicochemical properties of liposomes enables innovative design of the carrier to meet specific delivery, release and targeting requirements. This delivery system offers several benefits: improved pharmacokinetics with reduced toxicity, enhanced therapeutic efficacy, increased delivery of poorly soluble drugs, taste masking, biopharmaceutics degradation protection and targeted cellular therapy. This section provides an overview of liposomal formulation and delivery, together with their applications for different disease states in the lung.
Collapse
Affiliation(s)
- Hui Xin Ong
- Woolcock Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Daniela Traini
- Woolcock Institute for Medical Research, University of Sydney, Sydney, NSW, Australia
| | - Paul M Young
- CEO, Ab Inito Pharma, Macquarie Park, NSW, Australia
| |
Collapse
|
15
|
He H, Gao H, Xue X, Ren J, Chen X, Niu B. Variation of sugar compounds in Phoebe chekiangensis seeds during natural desiccation. PLoS One 2024; 19:e0299669. [PMID: 38452127 PMCID: PMC10919866 DOI: 10.1371/journal.pone.0299669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 02/14/2024] [Indexed: 03/09/2024] Open
Abstract
To investigate the role of sugar metabolism in desiccation-sensitive seeds, we performed a natural desiccation treatment on Phoebe chekiangensis seeds in a room and systematically analyzed the changes in seed germination, sugar compounds, malondialdehyde, and relative electrical conductivity during the seed desiccation. The results revealed that the initial moisture content of P. chekiangensis seed was very high (37.06%) and the seed was sensitive to desiccation, the germination percentage of the seed decreased to 5.33% when the seed was desiccated to 22.04% of moisture content, therefore, the seeds were considered recalcitrant. Based on the logistic model, we know that the moisture content of the seeds is 29.05% when the germination percentage drops to 50% and that it is desirable to keep the seed moisture content above 31.74% during ambient transportation. During seed desiccation, sucrose and trehalose contents exhibited increasing trends, and raffinose also increased during the late stage of desiccation, however, low levels of the non-reducing sugar accumulations may not prevent the loss of seed viability caused by desiccation. Glucose and fructose predominated among sugar compounds, and they showed a slight increase followed by a significant decrease. Their depletion may have contributed to the accumulation of sucrose and raffinose family oligosaccharides. Correlation analysis revealed a significant relationship between the accumulation of sucrose, trehalose, and soluble sugars, and the reduction in seed viability. Sucrose showed a significant negative correlation with glucose and fructose. Trehalose also exhibited the same pattern of correlation. These results provided additional data and theoretical support for understanding the mechanism of sugar metabolism in seed desiccation sensitivity.
Collapse
Affiliation(s)
- Huangpan He
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Handong Gao
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xiaoming Xue
- College of Criminal Science and Technology, Nanjing Police University, Key Laboratory of Wildlife Evidence Technology of National Forestry and Grassland Administration, Nanjing, China
| | - Jiahui Ren
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Xueqi Chen
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Ben Niu
- College of Forestry and Grassland, College of Soil and Water Conservation, Nanjing Forestry University, Southern Tree Seed Inspection Center, National Forestry and Grassland Administration, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| |
Collapse
|
16
|
Hernández-Galván G, Mercado-Uribe H. Dehydration of biological membranes in a non-condensing environment. SOFT MATTER 2023; 19:9173-9178. [PMID: 37991897 DOI: 10.1039/d3sm01181j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The study of the dehydration process in a cell membrane allows a better understanding of how water is bound to it. While in prior studies, cell dehydration was commonly analyzed under osmotic stress conditions, in the present work, we focus on the dehydration driven by evaporation in a restricted condensing environment. Using a thermogravimetry method, we studied the dehydration of Escherichia coli through isothermal evaporation in the presence of a gas flux. To figure out the loss of mass in this situation, we first evaluated the dynamics of water evaporation of a suspension of multilamellar liposomes. We found that the evaporation of liposomal suspensions composed of individual lipids is constant, although slightly restricted by the presence of liposomes, while the evaporation of liposomal suspensions composed of a mixture of different lipids follows an exponential decay. This is explained considering that the internal pressure at the air-water interface is proportional to the amount of bound water. The evaporation of water from a biomass sample follows this latter behaviour.
Collapse
Affiliation(s)
| | - H Mercado-Uribe
- CINVESTAV-Monterrey, PIIT, Apodaca, Nuevo León, 66600, Mexico.
| |
Collapse
|
17
|
Rivera-Morán MA, Sampedro JG. Isolation of the Sarcoplasmic Reticulum Ca 2+-ATPase from Rabbit Fast-Twitch Muscle. Methods Protoc 2023; 6:102. [PMID: 37888034 PMCID: PMC10608927 DOI: 10.3390/mps6050102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/28/2023] Open
Abstract
The sarcoendoplasmic reticulum Ca2+-ATPase (SERCA) is a membrane protein that is destabilized during purification in the absence of calcium ions. The disaccharide trehalose is a protein stabilizer that accumulates in the yeast cytoplasm when under stress. In the present work, SERCA was purified by including trehalose in the purification protocol. The purified SERCA showed high protein purity (~95%) and ATPase activity. ATP hydrolysis was dependent on the presence of Ca2+ and the enzyme kinetics showed a hyperbolic dependence on ATP (Km = 12.16 ± 2.25 μM ATP). FITC labeling showed the integrity of the ATP-binding site and the identity of the isolated enzyme as a P-type ATPase. Circular dichroism (CD) spectral changes at a wavelength of 225 nm were observed upon titration with ATP, indicating α-helical rearrangements in the nucleotide-binding domain (N-domain), which correlated with ATP affinity (Km). The presence of Ca2+ did not affect FITC labeling or the ATP-mediated structural changes at the N-domain. The use of trehalose in the SERCA purification protocol stabilized the enzyme. The isolated SERCA appears to be suitable for structural and ligand binding studies, e.g., for testing newly designed or natural inhibitors. The use of trehalose is recommended for the isolation of unstable enzymes.
Collapse
Affiliation(s)
| | - José G. Sampedro
- Instituto de Física, Universidad Autónoma de San Luis Potosí, Avenida Chapultepec 1570, Privadas del Pedregal, San Luis Potosí 78295, Mexico
| |
Collapse
|
18
|
Martinez Y, Ribera J, Schwarze FWMR, De France K. Biotechnological development of Trichoderma-based formulations for biological control. Appl Microbiol Biotechnol 2023; 107:5595-5612. [PMID: 37477696 PMCID: PMC10439859 DOI: 10.1007/s00253-023-12687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/30/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Trichoderma spp. are a genus of well-known fungi that promote healthy growth and modulate different functions in plants, as well as protect against various plant pathogens. The application of Trichoderma and its propagules as a biological control method can therefore help to reduce the use of chemical pesticides and fertilizers in agriculture. This review critically discusses and analyzes groundbreaking innovations over the past few decades of biotechnological approaches to prepare active formulations containing Trichoderma. The use of various carrier substances is covered, emphasizing their effects on enhancing the shelf life, viability, and efficacy of the final product formulation. Furthermore, the use of processing techniques such as freeze drying, fluidized bed drying, and spray drying are highlighted, enabling the development of stable, light-weight formulations. Finally, promising microencapsulation techniques for maximizing the performance of Trichoderma spp. during application processes are discussed, leading to the next-generation of multi-functional biological control formulations. KEY POINTS: • The development of carrier substances to encapsulate Trichoderma propagules is highlighted. • Advances in biotechnological processes to prepare Trichoderma-containing formulations are critically discussed. • Current challenges and future outlook of Trichoderma-based formulations in the context of biological control are presented.
Collapse
Affiliation(s)
- Yolanda Martinez
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland
| | - Javier Ribera
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland
| | - Francis W M R Schwarze
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland.
| | - Kevin De France
- Empa - Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Cellulose and Wood Materials, St. Gallen, Switzerland.
- Department of Chemical Engineering, Queen's University, Kingston, Canada.
| |
Collapse
|
19
|
Zhang Y, Gong S, Liu L, Shen H, Liu E, Pan L, Gao N, Chen R, Huang Y. Cyclodextrin-Coordinated Liposome-in-Gel for Transcutaneous Quercetin Delivery for Psoriasis Treatment. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40228-40240. [PMID: 37584330 DOI: 10.1021/acsami.3c07582] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Psoriasis is a chronic inflammatory skin disease that is difficult to treat. Quercetin (QT) is a dietary flavonoid known for its anti-inflammatory effects and safe use in humans. However, the topical application of quercetin for psoriasis treatment presents a significant challenge due to its poor water solubility and low stability in semisolid preparations, where it tends to recrystallize. This work presents a novel liposome-in-gel formulation for the quercetin-based topical treatment of psoriasis. The quercetin-loading liposomes are stabilized by hydroxypropyl-β-cyclodextrin (HPCD), which interacts with phospholipids via hydrogen bonding to form a layer of an HPCD coating on the liposome interface, thus resulting in improved stability. Various analytical techniques, such as FTIR spectroscopy, Raman spectroscopy, and TEM, were used to characterize the molecular coordination patterns between cyclodextrin and liposomes. The results demonstrated that HPCD assisted the liposomes in interfacing with the matrix lipids and keratins of the stratum corneum, thereby enhancing skin permeability and promoting drug penetration and retention in the skin. The in vivo results showed that the topical QT HPCD-liposome-in-gel improved the treatment efficacy of psoriatic plaque compared to free QT. It alleviated the symptoms of skin thickening and downregulated proinflammatory cytokines, including TNF-α, IL-17A, and IL-1β. The results suggested that the HPCD-coordinated liposome-in-gel system could be a stable carrier for topical QT therapy with good potential in psoriasis treatment.
Collapse
Affiliation(s)
- Yuqin Zhang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Shuqing Gong
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Lin Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huan Shen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| | - Ergang Liu
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Li Pan
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
| | - Nan Gao
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Rongli Chen
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
| | - Yongzhuo Huang
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China
- School of Pharmacy, Zunyi Medical University, Zunyi 563003, China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, Shanghai 201203, China
| |
Collapse
|
20
|
Blázquez E, Pujols J, Segalés J, Navarro N, Rodríguez C, Ródenas J, Polo J. Inactivation of African swine fever virus inoculated in liquid plasma by spray drying and storage for 14 days at 4°C or 20°C. PLoS One 2023; 18:e0290395. [PMID: 37607204 PMCID: PMC10443872 DOI: 10.1371/journal.pone.0290395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023] Open
Abstract
African swine fever virus (ASFV) is a dsDNA virus that can cause high mortality in pigs of all ages. Spray-dried porcine plasma (SDPP) is a highly digestible ingredient used in feed because it benefits performance, gut function and immunity. The objectives were to test if the spray-drying (SD) conditions along with post-drying storage of product for 14 days can inactivate ASFV inoculated in liquid plasma. Fresh liquid porcine plasma was inoculated with ASFV (BA71V) to a final concentration of 105.18 ±0.08 TCID50/mL of liquid plasma. Triplicate 2-L samples of spiked plasma were SD in a lab drier set at an outlet temperature of 80°C or 71°C. The final dried samples were stored at 4°C or 20°C for 14 d. Liquid and SD samples were analyzed for ASFV infectivity in two mirror 24-well plaques containing VERO cells monolayers. Wells were inoculated with different dilutions of SDPP dissolved 1:9 in PBS. One plaque was immediately frozen at -80°C and the other was incubated at 37°C for 3 d. Each dilution was replicated 9 times. After incubation both plaques were analyzed for ASFV by qRT-PCR. Results indicated that the SD process inactivated between 3.2 to 4.2 Logs ASFV TCID50/mL and 2.53 to 2.75 Logs TCID50/mL when the outlet temperature were 80°C and 71°C respectively. All SD samples stored at 4°C or 20°C for 14 d were absent of infectious ASFV. The combination of SD and post drying storage at both temperatures for 14 d was able to inactive >5.18 ±0.08 Log10 of ASFV inoculated in liquid porcine plasma, demonstrating that the manufacturing process for SDPP can be considered safe regarding ASFV.
Collapse
Affiliation(s)
- Elena Blázquez
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
- APC Europe, S.L.U. Granollers, Granollers, Spain
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
- OIE Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, Barcelona, Spain
| | - Joaquim Segalés
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
- OIE Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autónoma de Barcelona (UAB), Barcelona, Spain
| | - Núria Navarro
- IRTA, Centre de Recerca en Sanitat Animal (CReSA), Barcelona, Spain
- OIE Collaborating Centre for Emerging and Re-Emerging Pig Diseases in Europe, IRTA-CReSA, Barcelona, Spain
| | | | | | - Javier Polo
- APC Europe, S.L.U. Granollers, Granollers, Spain
- APC LLC, Ankeny, IA, United States of America
| |
Collapse
|
21
|
Vorländer K, Pramann P, Kwade A, Finke JH, Kampen I. Process and formulation parameters influencing the survival of Saccharomyces cerevisiae during spray drying and tableting. Int J Pharm 2023; 642:123100. [PMID: 37286022 DOI: 10.1016/j.ijpharm.2023.123100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/28/2023] [Accepted: 05/30/2023] [Indexed: 06/09/2023]
Abstract
Probiotic microorganisms provide health benefits to the patient when administered in a viable form and in sufficient doses. To ensure this, dry dosage forms are preferred, with tablets in particular being favored due to several advantages. However, the microorganisms must first be dried as gently as possible. Here, the model organism Saccharomyces cerevisiae was dried by spray drying. Various additives were tested for their ability to improve yeast cell survival during drying. In addition, the influence of various process parameters such as inlet temperature, outlet temperature, spray rate, spray pressure and nozzle diameter was investigated. It was possible to dry the yeast cells in such a way that a substantial proportion of living microorganisms was recovered after reconstitution. Systematic variation of formulation and process parameters showed that the use of protective additives is essential and that the outlet temperature determines the survival rate. The subsequent compression of the spray-dried yeast reduced viability and survival could hardly be improved by the addition of excipients, but the tabletability of spray-dried yeast protectant particles was quite good. For the first time, loss of viability during compaction of spray-dried microorganisms was correlated with the specific densification, allowing a deeper understanding of the mechanism of cell inactivation during tableting.
Collapse
Affiliation(s)
- Karl Vorländer
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| | - Paula Pramann
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| | - Arno Kwade
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| | - Jan Henrik Finke
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| | - Ingo Kampen
- Institute for Particle Technology (iPAT), Technische Universität Braunschweig, Volkmaroder Straße 5, 38104 Braunschweig, Germany; Center of Pharmaceutical Engineering (PVZ), Technische Universität Braunschweig, Franz-Liszt-Straße 35A, 38106 Braunschweig, Germany.
| |
Collapse
|
22
|
Chaves MA, Ferreira LS, Baldino L, Pinho SC, Reverchon E. Current Applications of Liposomes for the Delivery of Vitamins: A Systematic Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13091557. [PMID: 37177102 PMCID: PMC10180326 DOI: 10.3390/nano13091557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/27/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Liposomes have been used for several decades for the encapsulation of drugs and bioactives in cosmetics and cosmeceuticals. On the other hand, the use of these phospholipid vesicles in food applications is more recent and is increasing significantly in the last ten years. Although in different stages of technological maturity-in the case of cosmetics, many products are on the market-processes to obtain liposomes suitable for the encapsulation and delivery of bioactives are highly expensive, especially those aiming at scaling up. Among the bioactives proposed for cosmetics and food applications, vitamins are the most frequently used. Despite the differences between the administration routes (oral for food and mainly dermal for cosmetics), some challenges are very similar (e.g., stability, bioactive load, average size, increase in drug bioaccessibility and bioavailability). In the present work, a systematic review of the technological advancements in the nanoencapsulation of vitamins using liposomes and related processes was performed; challenges and future perspectives were also discussed in order to underline the advantages of these drug-loaded biocompatible nanocarriers for cosmetics and food applications.
Collapse
Affiliation(s)
- Matheus A Chaves
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
- Laboratory of Molecular Morphophysiology and Development (LMMD), Department of Veterinary Medicine, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Letícia S Ferreira
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Lucia Baldino
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| | - Samantha C Pinho
- Laboratory of Encapsulation and Functional Foods (LEnAlis), Department of Food Engineering, School of Animal Science and Food Engineering, University of São Paulo, Av. Duque de Caxias Norte, 225, Pirassununga 13635900, SP, Brazil
| | - Ernesto Reverchon
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano, Italy
| |
Collapse
|
23
|
Perez R, Aron S. Protective role of trehalose in the Namib desert ant, Ocymyrmex robustior. J Exp Biol 2023; 226:286983. [PMID: 36695637 DOI: 10.1242/jeb.245149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/12/2023] [Indexed: 01/26/2023]
Abstract
Over recent decades, increasing attention has been paid to how low-molecular-weight molecules affect thermal tolerance in animals. Although the disaccharide sugar trehalose is known to serve as a thermal protectant in unicellular organisms, nothing is known about its potential role in insects. In this study, we investigated the effect of trehalose on heat tolerance in the Namib desert ant, Ocymyrmex robustior, one of the most thermotolerant animals found in terrestrial ecosystems. First, we tested whether a trehalose-supplemented diet increased worker survival following exposure to heat stress. Second, we assessed the degree of protein damage by comparing protein aggregation levels for trehalose-supplemented workers and control workers. Third, we compared the expression levels of three genes involved in trehalose metabolism. We found that trehalose supplementation significantly enhanced worker heat tolerance, increased metabolic levels of trehalose and reduced protein aggregation under conditions of heat stress. Expression levels of the three genes varied in a manner that was consistent with the maintenance of trehalose in the hemolymph and tissues under conditions of heat stress. Altogether, these results suggest that increased trehalose concentration may help protect Namib desert ant individuals against heat stress. More generally, they highlight the role played by sugar metabolites in boosting tolerance in extremophiles.
Collapse
Affiliation(s)
- Rémy Perez
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| | - Serge Aron
- Department of Evolutionary Biology & Ecology, Université Libre de Bruxelles, 50 Avenue F. D. Roosevelt, B-1050 Brussels, Belgium
| |
Collapse
|
24
|
Urea counteracts trimethylamine N-oxide (TMAO) compaction of lipid membranes by modifying van der Waals interactions. J Colloid Interface Sci 2023; 629:165-172. [DOI: 10.1016/j.jcis.2022.08.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
|
25
|
Effect of Trehalose and Lactose Treatments on the Freeze-Drying Resistance of Lactic Acid Bacteria in High-Density Culture. Microorganisms 2022; 11:microorganisms11010048. [PMID: 36677339 PMCID: PMC9866448 DOI: 10.3390/microorganisms11010048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/14/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022] Open
Abstract
Freeze-drying is a commonly used method in commercial preparations of lactic acid bacteria. However, some bacteria are killed during the freeze-drying process. To overcome this, trehalose and lactose are often used as protective agents. Moreover, high-density culture is an efficient way to grow bacterial strains but creates a hypertonic growth environment. We evaluated the effects of trehalose and lactose, as a primary carbon source or as an additive in fermentation, on the freeze-drying survival of Lactobacillus fermentum FXJCJ6-1, Lactobacillus brevis 173-1-2, and Lactobacillus reuteri CCFM1040. Our results showed that L. fermentum FXJCJ6-1 accumulated but did not use intracellular trehalose in a hypertonic environment, which enhanced its freeze-drying resistance. Furthermore, genes that could transport trehalose were identified in this bacterium. In addition, both the lactose addition and lactose culture improved the freeze-drying survival of the bacterium. Further studies revealed that the added lactose might exert its protective effect by attaching to the cell surface, whereas lactose culture acted by reducing extracellular polysaccharide production and promoting the binding of the protectant to the cell membrane. The different mechanisms of lactose and trehalose in enhancing the freeze-drying resistance of bacteria identified in this study will help to elucidate the anti-freeze-drying mechanisms of other sugars in subsequent investigations.
Collapse
|
26
|
Fardelli E, Lucidi M, Di Gioacchino M, Bashiri S, Persichetti L, Capecchi G, Gasperi T, Sodo A, Visca P, Capellini G. Bio-physical mechanisms of dehydrating membranes of Acinetobacter baumannii linked to drought-resistance. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:184045. [PMID: 36108779 DOI: 10.1016/j.bbamem.2022.184045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/29/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Acinetobacter baumanni, is an opportunistic nosocomial multi-drug resistant bacterium, which represents a threat for human health. This pathogen is able to persist in intensive care units thanks to its extraordinary resistance towards dehydration, whose mechanisms are unknown and enable it to easily spread through surfaces, contaminating also medical devices. In this article we reveal, with a multimodal approach, based on μ-R Spectroscopy, Gas Chromatography coupled to Mass Spectroscopy, Atomic Force Microscopy and Fluorescence Recovery After Photobleaching, the bio-physical mechanisms that the membrane of two A. baumannii strains undergoes during dehydration. Showing a substantial decoupling of the phase transition from liquid crystalline to gel phase from evidence of cell lysis. Such decoupling may be the core of the resistance of A. baumannii against dehydration and highlights the different ability to resist to drought between strains.
Collapse
Affiliation(s)
- Elisa Fardelli
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy.
| | - Massimiliano Lucidi
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Michael Di Gioacchino
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Shadi Bashiri
- CNR, NEST, Istituto Nanoscienze, P.zza S. Silvestro, 12, Pisa, 56127, Italy
| | - Luca Persichetti
- University of Tor Vergata, Department of physics, Via della Ricerca Scientifica, 1, Rome, 00133, Italy
| | - Giulia Capecchi
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Tecla Gasperi
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy; National Institute of Biostructures and Biosystems (INBB), Viale delle Medaglie d'Oro, 305, Rome, 00136, Italy
| | - Armida Sodo
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| | - Paolo Visca
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy; Santa Lucia Foundation IRCCS, Via Ardeatina, 306/354, Rome, 00179, Italy
| | - Giovanni Capellini
- University of Roma Tre, Department of Science, Viale G. Marconi, 446, Rome, 00146, Italy
| |
Collapse
|
27
|
Chen J, Lin Y, Wu M, Li C, Cen K, Liu F, Liao Y, Zhou X, Xu J, Cheng Y. Glycyrrhetinic acid proliposomes mediated by mannosylated ligand: Preparation, physicochemical characterization, environmental stability and bioactivity evaluation. Colloids Surf B Biointerfaces 2022; 218:112781. [PMID: 36007313 DOI: 10.1016/j.colsurfb.2022.112781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/11/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
Glycyrrhetinic acid is a bioactive compound extracted from licorice that exhibits inhibition effect on various cancers. However, its hydrophobicity results in low bioavailability that limits application. We aim to overcome this barrier, the present research was performed to prepare glycyrrhetinic acid proliposomes mediated mannosylated ligand (mannose-diester lauric diacid-cholesterol, MDC) and to evaluate its physicochemical characterizations, environmental stability and bioactivity. In preliminary optimization studies of glycyrrhetinic acid proliposomes mediated MDC (MDC-GA-PL), four optimum operating parameters, cryoprotectant of glucose and mannitol, the mixed cryoprotectant ratio (glucose/mannitol) of 1:1, a cryoprotectant/egg phosphatidylcholine mass ratio of 10/1, and -60 ℃ pre-freezing temperature, were obtained after investigation. Under the optimum lyophilization conditions, MDC-GA-PL was freeze-dried and reconstituted proliposomes were characterized. These proliposomes showed that MDC-GA-PL were well-dispersible spherical particles with an average particle size of 120.80 nm, a polydispersity index about 0.095, a zeta potential of -33.15 mV, encapsulation efficiency of 85.9% and drug loading of 6.38%. In vitro drug release study showed that glycyrrhetinic acid release of MDC-GA-PL conforms to the Higuchi release model. In addition, these proliposomes were stable during six months at 4 ℃. Moreover, acute toxicity assay revealed no substantial safety concern for MDC-GA-PL. Finally, in vitro bioactivity of proliposomes was evaluated. Cytotoxicity effect and apoptosis efficiency of MDC-GA-PL by HepG2 cells was significantly higher than that of glycyrrhetinic acid proliposomes without MDC, demonstrating that MDC has a desirable effect on liver target. Overall, we have reason to believe that MDC-GA-PL would be a promising target delivery to improve therapeutic against hepatic diseases.
Collapse
Affiliation(s)
- Jing Chen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China.
| | - Yuan Lin
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Min Wu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Chuangnan Li
- Neurosurgery Department, Jiangmen Wuyi Hospital of TCM, Affiliated Jiangmen TCM Hospital of Jinan University, Jiangmen 529020, PR China
| | - Kaijie Cen
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Fujin Liu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Yazhi Liao
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Xiaoqing Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Jucai Xu
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, PR China
| | - Yi Cheng
- School of Chinese Material Medica, Guangzhou University of Chinese Medicine, Guangzhou 510006, PR China
| |
Collapse
|
28
|
Manser M, Morgan BA, Feng X, Rhem RG, Dolovich MB, Xing Z, Cranston ED, Thompson MR. Dextran Mass Ratio Controls Particle Drying Dynamics in a Thermally Stable Dry Powder Vaccine for Pulmonary Delivery. Pharm Res 2022; 39:2315-2328. [PMID: 35854077 PMCID: PMC9296218 DOI: 10.1007/s11095-022-03341-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE Thermally stable, spray dried vaccines targeting respiratory diseases are promising candidates for pulmonary delivery, requiring careful excipient formulation to effectively encapsulate and protect labile biologics. This study investigates the impact of dextran mass ratio and molecular weight on activity retention, thermal stability and aerosol behaviour of a labile adenoviral vector (AdHu5) encapsulated within a spray dried mannitol-dextran blend. METHODS Comparing formulations using 40 kDa or 500 kDa dextran at mass ratios of 1:3 and 3:1 mannitol to dextran, in vitro quantification of activity losses and powder flowability was used to assess suitability for inhalation. RESULTS Incorporating mannitol in a 1:3 ratio with 500 kDa dextran reduced viral titre processing losses below 0.5 log and displayed strong thermal stability under accelerated aging conditions. Moisture absorption and agglomeration was higher in dextran-rich formulations, but under low humidity the 1:3 ratio with 500 kDa dextran powder had the lowest mass median aerodynamic diameter (4.4 µm) and 84% emitted dose from an intratracheal dosator, indicating strong aerosol performance. CONCLUSIONS Overall, dextran-rich formulations increased viscosity during drying which slowed self-diffusion and favorably hindered viral partitioning at the particle surface. Reducing mannitol content also minimized AdHu5 exclusion from crystalline regions that can force the vector to air-solid interfaces where deactivation occurs. Although increased dextran molecular weight improved activity retention at the 1:3 ratio, it was less influential than the ratio parameter. Improving encapsulation ultimately allows inhalable vaccines to be prepared at higher potency, requiring less powder mass per inhaled dose and higher delivery efficiency.
Collapse
Affiliation(s)
- Myla Manser
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Blair A Morgan
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Xueya Feng
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Rod G Rhem
- Firestone Research Aerosol Laboratory, St. Joseph's Healthcare and Department of Medicine, McMaster University and Hamilton, Hamilton, ON, L8N 4A6, Canada
| | - Myrna B Dolovich
- Firestone Research Aerosol Laboratory, St. Joseph's Healthcare and Department of Medicine, McMaster University and Hamilton, Hamilton, ON, L8N 4A6, Canada
| | - Zhou Xing
- McMaster Immunology Research Centre and Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, L8S 4L7, Canada
| | - Emily D Cranston
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.,Department of Wood Science, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada.,Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Michael R Thompson
- Department of Chemical Engineering, McMaster University, Hamilton, ON, L8S 4L7, Canada.
| |
Collapse
|
29
|
Red Blood Cell Inspired Strategies for Drug Delivery: Emerging Concepts and New Advances. Pharm Res 2022; 39:2673-2698. [PMID: 35794397 DOI: 10.1007/s11095-022-03328-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/29/2022] [Indexed: 12/09/2022]
Abstract
In the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity. In this review, we discuss emerging concepts and new advances in such RBC-inspired strategies, including native RBCs, ghost RBCs, RBC-mimetic nanoparticles, and RBC-derived extracellular vesicles, for drug delivery.
Collapse
|
30
|
Sarkar MK, Karal MAS, Levadny V, Belaya M, Ahmed M, Ahamed MK, Ahammed S. Effects of sugar concentration on the electroporation, size distribution and average size of charged giant unilamellar vesicles. EUROPEAN BIOPHYSICS JOURNAL : EBJ 2022; 51:401-412. [PMID: 35716178 DOI: 10.1007/s00249-022-01607-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
We investigated the effects of sugar concentration on the electroporation, size distribution and average size of giant unilamellar vesicles (GUVs). GUVs were prepared from 40 mol% of 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) and 60 mol% of 1, 2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipids. Pulsed electric field was applied to the 40%DOPG/60%DOPC-GUVs and it induced lateral electric tension (σc) in the membranes of vesicles. The σc-induced probability of rupture (Ppore) and the rate constant of rupture (kp) of GUVs under the sugar concentration, c = 40, 100 and 300 mM, were determined. Both the Ppore and kp increased with the increase of σc, but higher tension was required to generate the same values of Ppore and kp with increasing c. We also investigated average sizes of GUVs from the size distribution of vesicles under various sugar concentrations. With the increase of c, the peak of the size distribution histograms shifted to the region of smaller vesicles. The average size decreased 1.6-fold when c increased from 10 to 300 mM. These investigations help to understand various biomedical, biophysical, and biochemical processes in vesicles and cells. Electroporation, size distribution and average size of charged GUVs were investigated under various sugar concentrations. The sugar concentration influences the electroporation of vesicles and the average size of GUVs.
Collapse
Affiliation(s)
- Malay Kumar Sarkar
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
- Department of Arts and Sciences, Ahsanullah University of Science and Technology, Dhaka, 1208, Bangladesh
| | - Mohammad Abu Sayem Karal
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh.
| | - Victor Levadny
- Theoretical Problem Center of Physico-Chemical Pharmacology, Russian Academy of Sciences, Moscow, 117977, Russia
| | - Marina Belaya
- Department of Mathematics, Russian State University for the Humanities, GSP-3, Moscow, 125993, Russia
| | - Marzuk Ahmed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Md Kabir Ahamed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| | - Shareef Ahammed
- Department of Physics, Bangladesh University of Engineering and Technology, Dhaka, 1000, Bangladesh
| |
Collapse
|
31
|
Abate M, Scotti L, Nele V, Caraglia M, Biondi M, De Rosa G, Leonetti C, Campani V, Zappavigna S, Porru M. Hybrid Self-Assembling Nanoparticles Encapsulating Zoledronic Acid: A Strategy for Fostering Their Clinical Use. Int J Mol Sci 2022; 23:ijms23095138. [PMID: 35563529 PMCID: PMC9102012 DOI: 10.3390/ijms23095138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/01/2023] Open
Abstract
Self-assembling nanoparticles (SANPs) promise an effective delivery of bisphosphonates or microRNAs in the treatment of glioblastoma (GBM) and are obtained through the sequential mixing of four components immediately before use. The self-assembling approach facilitates technology transfer, but the complexity of the SANP preparation protocol raises significant concerns in the clinical setting due to the high risk of human errors during the procedure. In this work, it was hypothesized that the SANP preparation protocol could be simplified by using freeze-dried formulations. An in-depth thermodynamic study was conducted on solutions of different cryoprotectants, namely sucrose, mannitol and trehalose, to test their ability to stabilize the produced SANPs. In addition, the ability of SANPs to deliver drugs after lyophilization was assessed on selected formulations encapsulating zoledronic acid in vitro in the T98G GBM cell line and in vivo in an orthotopic mouse model. Results showed that, after lyophilization optimization, freeze-dried SANPs encapsulating zoledronic acid could retain their delivery ability, showing a significant inhibition of T98G cell growth both in vitro and in vivo. Overall, these results suggest that freeze-drying may help boost the industrial development of SANPs for the delivery of drugs to the brain.
Collapse
Affiliation(s)
- Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy; (M.A.); (M.C.); (S.Z.)
| | - Lorena Scotti
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (L.S.); (V.N.); (M.B.); (G.D.R.)
| | - Valeria Nele
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (L.S.); (V.N.); (M.B.); (G.D.R.)
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy; (M.A.); (M.C.); (S.Z.)
| | - Marco Biondi
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (L.S.); (V.N.); (M.B.); (G.D.R.)
| | - Giuseppe De Rosa
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (L.S.); (V.N.); (M.B.); (G.D.R.)
| | - Carlo Leonetti
- Research and Advanced Technologies Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; (C.L.); (M.P.)
| | - Virginia Campani
- Department of Pharmacy, University Federico II of Naples, Via Domenico Montesano, 49, 80131 Naples, Italy; (L.S.); (V.N.); (M.B.); (G.D.R.)
- Correspondence:
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, Via Santa Maria di Costantinopoli, 16, 80138 Naples, Italy; (M.A.); (M.C.); (S.Z.)
| | - Manuela Porru
- Research and Advanced Technologies Department, IRCCS Regina Elena National Cancer Institute, Via Elio Chianesi, 53, 00144 Rome, Italy; (C.L.); (M.P.)
| |
Collapse
|
32
|
Deryabin AN, Trunova TI. Colligative Effects of Solutions of Low-Molecular Sugars and Their Role in Plants under Hypothermia. BIOL BULL+ 2022. [DOI: 10.1134/s1062359021060042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Iriarte-Alonso MA, Bittner AM, Chiantia S. Influenza A virus hemagglutinin prevents extensive membrane damage upon dehydration. BBA ADVANCES 2022; 2:100048. [PMID: 37082591 PMCID: PMC10074934 DOI: 10.1016/j.bbadva.2022.100048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
While the molecular mechanisms of virus infectivity are rather well known, the detailed consequences of environmental factors on virus biophysical properties are poorly understood. Seasonal influenza outbreaks are usually connected to the low winter temperature, but also to the low relative air humidity. Indeed, transmission rates increase in cold regions during winter. While low temperature must slow degradation processes, the role of low humidity is not clear. We studied the effect of relative humidity on a model of Influenza A H1N1 virus envelope, a supported lipid bilayer containing the surface glycoprotein hemagglutinin (HA), which is present in the viral envelope in very high density. For complete cycles of hydration, dehydration and rehydration, we evaluate the membrane properties in terms of structure and dynamics, which we assess by combining confocal fluorescence microscopy, raster image correlation spectroscopy, line-scan fluorescence correlation spectroscopy and atomic force microscopy. Our findings indicate that the presence of HA prevents macroscopic membrane damage after dehydration. Without HA, fast membrane disruption is followed by irreversible loss of lipid and protein mobility. Although our model is principally limited by the membrane composition, the macroscopic effects of HA under dehydration stress reveal new insights on the stability of the virus at low relative humidity.
Collapse
|
34
|
Li L, Zhou X, Chen Z, Cao Y, Zhao G. The group 3 LEA protein of Artemia franciscana for cryopreservation. Cryobiology 2022; 106:1-12. [DOI: 10.1016/j.cryobiol.2022.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/25/2022] [Accepted: 01/25/2022] [Indexed: 11/03/2022]
|
35
|
Nuylert A, Jampaphaeng K, Tani A, Maneerat S. Survival and stability of
Lactobacillus plantarum
KJ03
as a freeze‐dried autochthonous starter culture for application in stink bean fermentation (
Sataw‐Dong
). J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Aem Nuylert
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| | - Krittanon Jampaphaeng
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| | - Akio Tani
- Institute of Plant Science and Resources Okayama University Kurashiki Japan
| | - Suppasil Maneerat
- Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro‐Industry Prince of Songkla University Hat Yai Thailand
| |
Collapse
|
36
|
Alvarado-Fernández AM, Rodríguez-López EA, Espejo-Mojica AJ, Mosquera-Arévalo AR, Alméciga-Díaz CJ, Trespalacios-Rangel AA. Effect of two preservation methods on the viability and enzyme production of a recombinant Komagataella phaffii (Pichia pastoris) strain. Cryobiology 2021; 105:32-40. [PMID: 34951975 DOI: 10.1016/j.cryobiol.2021.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 11/18/2022]
Abstract
The methylotrophic yeast Komagataella phaffii, previously known as Pichia pastoris, has been reported as a host for producing human recombinant lysosomal enzymes intended for enzyme replacement therapy. K. phaffii has advantages such as easy genetic handling, rapid growth, cost-effective mediums, and the ability to develop mammalian-like post-translational modifications. To maintain cell viability and enzyme activity over time, it is important to consider the bioprocess optimization and the proper selection and preservation of clones. In this study, we evaluated the effect of glycerol and skim milk in cryopreservation at -80 °C, as well as the use of skim milk or its combination with NaCl, disaccharides or sorbitol in freeze-drying on the cell viability and activity of a recombinant lysosomal enzyme (i.e., human β-hexosaminidase-A) produced in K. phaffii GS115 strain. The results showed that cryopreservation with glycerol and skim milk, as well as freeze-drying using disaccharides and sorbitol with skim milk, maintained the viability above 80%. Although variations in enzyme activity among treatments were found, the use of disaccharides had a positive effect on the enzymatic activity levels. This is the first report of the evaluation of two suitable methods to preserve a recombinant K. phaffii strain, preventing the loss of viability and maintaining the activity of the recombinant protein.
Collapse
Affiliation(s)
| | - Edwin Alexander Rodríguez-López
- Institute for the Study of Inborn Errors of Metabolism. Faculty of Sciences. Pontificia Universidad Javeriana. Bogotá D.C., Colombia; Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC). Bogotá D.C., Colombia.
| | - Angela Johana Espejo-Mojica
- Institute for the Study of Inborn Errors of Metabolism. Faculty of Sciences. Pontificia Universidad Javeriana. Bogotá D.C., Colombia.
| | | | - Carlos Javier Alméciga-Díaz
- Institute for the Study of Inborn Errors of Metabolism. Faculty of Sciences. Pontificia Universidad Javeriana. Bogotá D.C., Colombia.
| | | |
Collapse
|
37
|
Bodzen A, Jossier A, Dupont S, Mousset PY, Beney L, Lafay S, Gervais P. Design of a new lyoprotectant increasing freeze-dried Lactobacillus strain survival to long-term storage. BMC Biotechnol 2021; 21:66. [PMID: 34772389 PMCID: PMC8590290 DOI: 10.1186/s12896-021-00726-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Background Stabilization of freeze-dried lactic acid bacteria during long-term storage is challenging for the food industry. Water activity of the lyophilizates is clearly related to the water availability and maintaining a low aw during storage allows to increase bacteria viability. The aim of this study was to achieve a low water activity after freeze-drying and subsequently during long-term storage through the design of a lyoprotectant. Indeed, for the same water content as sucrose (commonly used lyoprotectant), water activity is lower for some components such as whey, micellar casein or inulin. We hypothesized that the addition of these components in a lyoprotectant, with a higher bound water content than sucrose would improve lactobacilli strains survival to long-term storage. Therefore, in this study, 5% whey (w/v), 5% micellar casein (w/v) or 5% inulin (w/v) were added to a 5% sucrose solution (w/v) and compared with a lyoprotectant only composed of 5% sucrose (w/v). Protective effect of the four lyoprotectants was assessed measuring Lactiplantibacillus plantarum CNCM I-4459 survival and water activity after freeze-drying and during 9 months storage at 25 °C. Results The addition whey and inulin were not effective in increasing Lactiplantibacillus plantarum CNCM I-4459 survival to long-term-storage (4 log reduction at 9 months storage). However, the addition of micellar casein to sucrose increased drastically the protective effect of the lyoprotectant (3.6 log i.e. 0.4 log reduction at 9 months storage). Comparing to a lyoprotectant containing whey or inulin, a lyoprotectant containing micellar casein resulted in a lower water activity after freeze-drying and its maintenance during storage (0.13 ± 0.05). Conclusions The addition of micellar casein to a sucrose solution, contrary to the addition of whey and inulin, resulted in a higher bacterial viability to long-term storage. Indeed, for the same water content as the others lyoprotectants, a significant lower water activity was obtained with micellar casein during storage. Probably due to high bound water content of micellar casein, less water could be available for chemical degradation reactions, responsible for bacterial damages during long-term storage. Therefore, the addition of this component to a sucrose solution could be an effective strategy for dried bacteria stabilization during long-term storage.
Collapse
Affiliation(s)
- Aurore Bodzen
- UMR Procédés Alimentaires et Microbiologiques, University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, 21000, Dijon, France.,Indigo Therapeutics, 5 rue Salneuve, 75017, Paris, France
| | - Audrey Jossier
- UMR Procédés Alimentaires et Microbiologiques, University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, 21000, Dijon, France
| | - Sébastien Dupont
- UMR Procédés Alimentaires et Microbiologiques, University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, 21000, Dijon, France
| | | | - Laurent Beney
- UMR Procédés Alimentaires et Microbiologiques, University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, 21000, Dijon, France
| | - Sophie Lafay
- Indigo Therapeutics, 5 rue Salneuve, 75017, Paris, France
| | - Patrick Gervais
- UMR Procédés Alimentaires et Microbiologiques, University Bourgogne Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, 21000, Dijon, France.
| |
Collapse
|
38
|
Hejduková E, Nedbalová L. Experimental freezing of freshwater pennate diatoms from polar habitats. PROTOPLASMA 2021; 258:1213-1229. [PMID: 33909137 DOI: 10.1007/s00709-021-01648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/08/2021] [Indexed: 06/12/2023]
Abstract
Diatoms are microalgae that thrive in a range of habitats worldwide including polar areas. Remarkably, non-marine pennate diatoms do not create any morphologically distinct dormant stages that could help them to successfully face unfavourable conditions. Their survival is probably connected with the adaptation of vegetative cells to freezing and desiccation. Here we assessed the freezing tolerance of vegetative cells and vegetative-looking resting cells of 12 freshwater strains of benthic pennate diatoms isolated from polar habitats. To test the effect of various environmental factors, the strains were exposed to -20 °C freezing in four differently treated cultures: (1) vegetative cells growing in standard conditions in standard WC medium and (2) resting cells induced by cold and dark acclimation and resting cells, where (3) phosphorus or (4) nitrogen deficiency were used in addition to cold and dark acclimation. Tolerance was evaluated by measurement of basal cell fluorescence of chlorophyll and determination of physiological cell status using a multiparameter fluorescent staining. Four strains out of 12 were able to tolerate freezing in at least some of the treatments. The minority of cells appeared to be active immediately after thawing process, while most cells were inactive, injured or dead. Overall, the results showed a high sensitivity of vegetative and resting cells to freezing stress among strains originating from polar areas. However, the importance of resting cells for survival was emphasized by a slight but statistically significant increase of freezing tolerance of nutrient-depleted cells. Low numbers of surviving cells in our experimental setup could indicate their importance for the overwintering of diatom populations in harsh polar conditions.
Collapse
Affiliation(s)
- Eva Hejduková
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic.
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic.
| | - Linda Nedbalová
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, 128 44, Prague 2, Czech Republic
- Institute of Botany of the Czech Academy of Sciences, Dukelská 135, 379 82, Třeboň, Czech Republic
| |
Collapse
|
39
|
Mbinda W, Mukami A. A Review of Recent Advances and Future Directions in the Management of Salinity Stress in Finger Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:734798. [PMID: 34603359 PMCID: PMC8481900 DOI: 10.3389/fpls.2021.734798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress is a major environmental impediment affecting the growth and production of crops. Finger millet is an important cereal grown in many arid and semi-arid areas of the world characterized by erratic rainfall and scarcity of good-quality water. Finger millet salinity stress is caused by the accumulation of soluble salts due to irrigation without a proper drainage system, coupled with the underlying rocks having a high salt content, which leads to the salinization of arable land. This problem is projected to be exacerbated by climate change. The use of new and efficient strategies that provide stable salinity tolerance across a wide range of environments can guarantee sustainable production of finger millet in the future. In this review, we analyze the strategies that have been used for salinity stress management in finger millet production and discuss potential future directions toward the development of salt-tolerant finger millet varieties. This review also describes how advanced biotechnological tools are being used to develop salt-tolerant plants. The biotechnological techniques discussed in this review are simple to implement, have design flexibility, low cost, and highly efficient. This information provides insights into enhancing finger millet salinity tolerance and improving production.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
40
|
Kozuch DJ, Stillinger FH, Debenedetti PG. Effects of Trehalose on Lipid Membranes under Rapid Cooling using All-Atom and Coarse-Grained Molecular Simulations. J Phys Chem B 2021; 125:5346-5357. [PMID: 33978410 DOI: 10.1021/acs.jpcb.1c02575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We investigate the effect of the cryopreservative α-α-trehalose on a model 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) lipid membrane undergoing cooling from 350 to 250 K using all-atom (AA) and coarse-grained (CG) molecular dynamics simulation. In the AA simulations, we find that the addition of trehalose alters the Lα (liquid crystalline) to Pβ (ripple) phase transition, suppressing the major domain of the Pβ phase and increasing the degree of leaflet interdigitation (the minor domain) which yields a thinner membrane with a higher area per lipid. Calculation of dihedral angle distributions for the lipid tails shows a greater fraction of gauche angles in the Pβ phase as trehalose concentration is increased, indicating that trehalose increases lipid disorder in the membrane. In contrast, the CG simulations transition directly from the Lα to the Lβ (gel) phase upon cooling without exhibiting the Pβ phase (likely due to increased lipid mobility in the CG system). Even so, the CG simulations show that the addition of trehalose clearly suppresses the Lα to Lβ phase transition, demonstrating that trehalose increases lipid disorder at low temperatures for the CG system, similar to the AA. Analysis using a two-state binding model provides net affinity coefficients between trehalose and the membrane as well as trehalose partition coefficients between the membrane interface and the bulk solution for both the AA and CG systems.
Collapse
Affiliation(s)
- Daniel J Kozuch
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Frank H Stillinger
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544, United States
| | - Pablo G Debenedetti
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
41
|
Li S, Xu J, Qian J, Gao X. Engineering extracellular vesicles for cancer therapy: recent advances and challenges in clinical translation. Biomater Sci 2021; 8:6978-6991. [PMID: 33155579 DOI: 10.1039/d0bm01385d] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular vesicles (EVs) are receiving increasing attention in recent years in the field of cancer treatment. EVs contain specific contents closely related to their donor cells, such as miRNAs, proteins and dsDNAs. As endogenous vesicles, EVs naturally have the characteristics of low toxicity and low immunogenicity and can stably pass through the circulatory system to reach the recipient cells, which make them good carriers to deliver therapeutic agents such as nucleic acid sequences and chemotherapeutics. In many preclinical studies and clinical trials, EVs have demonstrated their unlimited advantages in the field of cancer therapy. However, there are still some challenges that restrict their clinical application, such as yield, heterogeneity, safety, and specificity. In this review, we will focus on the latest breakthrough of EVs in the field of cancer treatment and discuss the challenges in the clinical translation of EVs.
Collapse
Affiliation(s)
- Sha Li
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), School of Basic Medical Sciences, Fudan University, 131 Dong An Road, Shanghai 200032, China.
| | | | | | | |
Collapse
|
42
|
Qi Y, Fox CB. Development of thermostable vaccine adjuvants. Expert Rev Vaccines 2021; 20:497-517. [PMID: 33724133 PMCID: PMC8292183 DOI: 10.1080/14760584.2021.1902314] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/09/2021] [Indexed: 01/15/2023]
Abstract
INTRODUCTION The importance of vaccine thermostability has been discussed in the literature. Nevertheless, the challenge of developing thermostable vaccine adjuvants has sometimes not received appropriate emphasis. Adjuvants comprise an expansive range of particulate and molecular compositions, requiring innovative thermostable formulation and process development approaches. AREAS COVERED Reports on efforts to develop thermostable adjuvant-containing vaccines have increased in recent years, and substantial progress has been made in enhancing the stability of the major classes of adjuvants. This narrative review summarizes the current status of thermostable vaccine adjuvant development and looks forward to the next potential developments in the field. EXPERT OPINION As adjuvant-containing vaccines become more widely used, the unique challenges associated with developing thermostable adjuvant formulations merit increased attention. In particular, more focused efforts are needed to translate promising proof-of-concept technologies and formulations into clinical products.
Collapse
Affiliation(s)
- Yizhi Qi
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
| | - Christopher B. Fox
- Infectious Disease Research Institute (IDRI), 1616 Eastlake
Ave E, Seattle, WA, USA
- Department of Global Health, University of Washington,
Seattle, WA, USA
| |
Collapse
|
43
|
Bong LJ, Wang CY, Shiodera S, Haraguchi TF, Itoh M, Neoh KB. Effect of body lipid content is linked to nutritional adaptation in the acclimation responses of mesic-adapted Paederus to seasonal variations in desiccation stress. JOURNAL OF INSECT PHYSIOLOGY 2021; 131:104226. [PMID: 33736982 DOI: 10.1016/j.jinsphys.2021.104226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 06/12/2023]
Abstract
Desiccation stress causes mesic-adapted arthropods to lose their body water content. However, mesic-adapted Paederus beetles can survive over prolonged periods under dry field conditions, suggesting that these beetles adopt an array of water conservation mechanisms. We investigated the water balance mechanisms of field-collected Paederus adults over a 14-month sampling period. We also assessed their nutritional adaptations by performing a stable isotope analysis to examine their diet. The water loss rate (WLR) of the beetles was significantly associated with the rice crop cycle and saturation deficit. The cuticular permeability (CP) of adult beetles was maintained at < 30 µg cm-2h-1 mmHg-1; however, CP increased significantly with the WLR. This result indicates that CP might play a minor role in reducing excessive water loss in beetles. The beetles' body water content and percentage total body water content increased when the WLR was high. Trehalose, glucose, and glycogen did not appear to play a central role in enhancing the water reserves in the insects. The body lipid content ranged from 0.22 ± 0.06 to 0.87 ± 0.07 mg and was negatively associated with the WLR. This association indicates that the increase in internal metabolic water was mediated by lipid catabolism. Stable isotope analysis results revealed that the Paederus beetles shifted their diet to carbohydrate-rich plants when the saturation deficit increased and the associated WLR reached its peak; otherwise, they consumed a high amount of staple carbohydrate-poor herbivore prey. The accumulation of energy reserves in the form of lipids through seasonal dietary shifts may exert major effects on the survival and population success of mesic-adapted Paederus beetles.
Collapse
Affiliation(s)
- Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan
| | - Chia-Yu Wang
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan
| | - Satomi Shiodera
- Research Institute for Humanity and Nature, 457-4, Motoyama, Kamigamo, Kyoto 603-8047, Japan; Center for Southeast Asian Studies, Kyoto University, 46 Shimoadachi-cho, Yoshida Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi F Haraguchi
- Biodiversity Research Center, Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, 10-4 Koyamotomachi, Neyagawa, Osaka 572-0088, Japan
| | - Masayuki Itoh
- School of Human Science and Environment, University of Hyogo, 1-1-12 Shin-zaike, Himeji, Hyogo, 670-0092, Japan
| | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, 145, Xingda Rd. South District, Taichung 402, Taiwan.
| |
Collapse
|
44
|
Rockinger U, Funk M, Winter G. Current Approaches of Preservation of Cells During (freeze-) Drying. J Pharm Sci 2021; 110:2873-2893. [PMID: 33933434 DOI: 10.1016/j.xphs.2021.04.018] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 03/13/2021] [Accepted: 04/20/2021] [Indexed: 11/20/2022]
Abstract
The widespread application of therapeutic cells requires a successful stabilization of cells for the duration of transport and storage. Cryopreservation is currently considered the gold standard for the storage of active cells; however, (freeze-) drying cells could enable higher shelf life stability at ambient temperatures and facilitate easier transport and storage. During (freeze-) drying, freezing, (primary and secondary) drying and also the reconstitution step pose the risk of potential cell damage. To prevent these damaging processes, a wide range of protecting excipients has emerged, which can be classified, according to their chemical affiliation, into sugars, macromolecules, polyols, antioxidants and chelating agents. As many excipients cannot easily permeate the cell membrane, researchers have established various techniques to introduce especially trehalose intracellularly, prior to drying. This review aims to summarize the main damaging mechanisms during (freeze-) drying and to introduce the most common excipients with further details on their stabilizing properties and process approaches for the intracellular loading of excipients. Additionally, we would like to briefly explain recently discovered advantages of drying microorganisms, sperm, platelets, red blood cells, and eukaryotic cells, paying particular attention to the drying technique and residual moisture content.
Collapse
Affiliation(s)
- Ute Rockinger
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany.
| | - Martin Funk
- QRSKIN GmbH, Friedrich-Bergius-Ring 15, Würzburg, Germany
| | - Gerhard Winter
- Ludwig-Maximilians-Universität München, Department of Pharmacy, Pharmaceutical Technology and Biopharmaceutics, Munich, Germany
| |
Collapse
|
45
|
Blázquez E, Rodríguez C, Ródenas J, Rosell R, Segalés J, Pujols J, Polo J. Effect of spray-drying and ultraviolet C radiation as biosafety steps for CSFV and ASFV inactivation in porcine plasma. PLoS One 2021; 16:e0249935. [PMID: 33909651 PMCID: PMC8081231 DOI: 10.1371/journal.pone.0249935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 03/27/2021] [Indexed: 12/02/2022] Open
Abstract
Spray-dried animal plasma (SDAP) is widely used in diets of domestic animals to improve health status and increase growth and feed efficiency. Individual steps in the SDAP manufacturing process, including spray-drying, have been validated to inactivate potential pathogens. Manufacturing standards have established a minimum exit temperature of 80°C and a minimum post-drying storage period of 14 days at 20°C for production of SDAP. Also, UV-C irradiation has been evaluated as another inactivation step that could be included in the manufacturing process. The aim of this study was to assess the inactivation effectiveness of spray-drying on Classical swine fever virus (CSFV) and African swine fever virus (ASFV) and the effect of UV-C inactivation on ASFV as redundant biosafety steps of the manufacturing process for producing spray-dried porcine plasma (SDPP). This study demonstrated that UV-C treatment of liquid porcine plasma can inactivate more than 4 Log10 TCID50/mL of ASFV at 3000 J/L. Spray-drying effectively inactivated at least 4 Log10 TCID50/mL of both CSFV and ASFV. Incorporating UV-C technology within the SDAP manufacturing process can add another biosafety step to further enhance product safety.
Collapse
Affiliation(s)
- Elena Blázquez
- R&D Department, APC EUROPE, S.L.U., Granollers, Barcelona, Spain
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Carmen Rodríguez
- R&D Department, APC EUROPE, S.L.U., Granollers, Barcelona, Spain
| | - Jesús Ródenas
- R&D Department, APC EUROPE, S.L.U., Granollers, Barcelona, Spain
| | - Rosa Rosell
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- Departament d’Agricultura, Ramaderia, Pesca i Alimentació (DARP) Generalitat de Catalunya, Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Joaquim Segalés
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
- Departament de Sanitat i Anatomia Animals, Universitat Autònoma de Barcelona (UAB), Bellaterra, Barcelona, Spain
- UAB, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Joan Pujols
- IRTA, Centre de Recerca en Sanitat Animal (CReSA, IRTA-UAB), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- OIE Collaborating Centre for the Research and Control of Emerging and Re-emerging Swine Diseases in Europe (IRTA-CReSA), Bellaterra, Barcelona, Spain
| | - Javier Polo
- R&D Department, APC EUROPE, S.L.U., Granollers, Barcelona, Spain
- R&D Department, APC LLC, Ankeny, IA, United States of America
| |
Collapse
|
46
|
Hincha DK, Zuther E, Popova AV. Stabilization of Dry Sucrose Glasses by Four LEA_4 Proteins from Arabidopsis thaliana. Biomolecules 2021; 11:biom11050615. [PMID: 33919135 PMCID: PMC8143093 DOI: 10.3390/biom11050615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/03/2022] Open
Abstract
Cells of many organisms and organs can withstand an (almost) total water loss (anhydrobiosis). Sugars play an essential role in desiccation tolerance due to their glass formation ability during dehydration. In addition, intrinsically disordered LEA proteins contribute to cellular survival under such conditions. One possible mechanism of LEA protein function is the stabilization of sugar glasses. However, little is known about the underlying mechanisms. Here we used FTIR spectroscopy to investigate sucrose (Suc) glass stability dried from water or from two buffer components in the presence of four recombinant LEA and globular reference proteins. Buffer ions influenced the strength of the Suc glass in the order Suc < Suc/Tris < Suc/NaP. LEA proteins strengthened the sugar H-bonded network and the molecular structure in the glassy state. The position of νOH peak and the wavenumber–temperature coefficient (WTCg) provided similar information about the H-bonded network. Protein aggregation of LEA proteins was reduced in the desiccation-induced Suc glassy state. Detailed knowledge about the role of LEA proteins in the stabilization of dry sugar glasses yields information about their role in anhydrobiosis. This may open the possibility to use such proteins in biotechnical applications requiring dry storage of biologicals such as proteins, cells or tissues.
Collapse
Affiliation(s)
- Dirk K. Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany;
| | - Ellen Zuther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany;
- Correspondence: (E.Z.); (A.V.P.)
| | - Antoaneta V. Popova
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476 Potsdam, Germany;
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria
- Correspondence: (E.Z.); (A.V.P.)
| |
Collapse
|
47
|
Anhydrobiosis in yeast: role of cortical endoplasmic reticulum protein Ist2 in Saccharomyces cerevisiae cells during dehydration and subsequent rehydration. Antonie van Leeuwenhoek 2021; 114:1069-1077. [PMID: 33844120 DOI: 10.1007/s10482-021-01578-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/07/2021] [Indexed: 10/21/2022]
Abstract
Two Saccharomyces cerevisiae strains, BY4741 and BY4741-derived strain lacking the IST2 gene (ist2Δ), were used to characterise the possible role of cortical endoplasmic reticulum (ER) protein Ist2 upon cell dehydration and subsequent rehydration. For the first time, we show that not only protein components of the plasma membrane (PM), but also at least one ER membrane protein (Ist2) play an important role in the maintenance of the viability of yeast cells during dehydration and subsequent rehydration. The low viability of the mutant strain ist2∆ upon dehydration-rehydration stress was related to the lack of Ist2 protein in the ER. We revealed that the PM of ist2∆ strain is not able to completely restore its molecular organisation during reactivation from the state of anhydrobiosis. As the result, the permeability of the PM remains high regardless of the type of reactivation (rapid or gradual rehydration). We conclude that ER protein Ist2 plays an important role in ensuring the stability of molecular organisation and functionality of the PM during dehydration-rehydration stress. These results indicate an important role of ER-PM interactions during cells transition into the state of anhydrobiosis and the subsequent restoration of their physiological activities.
Collapse
|
48
|
Kanach A, Bottorff T, Zhao M, Wang J, Chiu GTC, Applegate B. Evaluation of anhydrous processing and storage methods of the temperate bacteriophage ɸV10 for integration into foodborne pathogen detection methodologies. PLoS One 2021; 16:e0249473. [PMID: 33822808 PMCID: PMC8023450 DOI: 10.1371/journal.pone.0249473] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/18/2021] [Indexed: 11/25/2022] Open
Abstract
Due to the nascency of bacteriophage-based pathogen detection technologies, several practical hurdles stand in the way between providing promising proof-of-concept data and development of robust detection platforms. One such hurdle, and the focus of this work, is the development of methods for transitioning laboratory stocks of bacteriophage into functional, consistent, and shelf-stable delivery methods in commercial detection kits. Research described here was undertaken to evaluate two methods for their ability to store the bacteriophage ɸV10 at ambient temperature without aqueous storage solutions while limiting loss of viability. ɸV10 is a temperate bacteriophage which solely infects the zero-tolerance food adulterant Escherichia coli O157:H7 and has been genetically modified to generate a detectable phenotype in host cells. In order to integrate this reporter bacteriophage into food-borne pathogen detection methodologies, two methods of processing phage suspensions for long-term, ambient storage were evaluated: printing solutions onto pieces of dissolvable paper and lyophilizing suspensions with sucrose. Applying phage to dissolvable paper yielded key attributes to consider when addressing phage viability, however, optimized methodology still resulted in an approximate five-log reduction in titer of viable phage. Lyophilization of ɸV10 with various concentrations of the cryoprotectant molecule, sucrose, yielded losses of approximately 0.3-log after 120 days of storage at 23°C. Liquid storage buffer samples with and without sucrose saw a reduction of viable phage of at least 3.9-log in the same period. Additionally, the ability for ɸV10 to form lysogens in an E. coli O157:H7 host was not negatively affected by lyophilization. Drying ɸV10 at ambient temperature drastically reduces the viability of the phage. However, lyophilizing ɸV10 in the presence of sucrose is an effective method for dehydration and storage of the phage in ambient environmental conditions for an extended time lending to commercial application and integration into foodborne pathogen detection methodologies.
Collapse
Affiliation(s)
- Andrew Kanach
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
- Purdue University Interdisciplinary Life Science Program (PULSe), West Lafayette, Indiana
| | - Theresa Bottorff
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
| | - Min Zhao
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana
| | - Jun Wang
- Department of Food Science, Purdue University, West Lafayette, Indiana
- College of Food Science and Technology, Qingdao Agricultural University, Qingdao, China
| | - George T. C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana
| | - Bruce Applegate
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana
- Department of Food Science, Purdue University, West Lafayette, Indiana
| |
Collapse
|
49
|
Affiliation(s)
- Yuri Shakhman
- Institute of Chemistry and The Fritz Haber Research Center Edmond J. Safra Campus The Hebrew University Jerusalem 9190401 Israel
| | - Daniel Harries
- Institute of Chemistry and The Fritz Haber Research Center Edmond J. Safra Campus The Hebrew University Jerusalem 9190401 Israel
| |
Collapse
|
50
|
Jia L, Jiang Q, He Z, Wang Y. Characterization techniques: The stepping stone to liposome lyophilized product development. Int J Pharm 2021; 601:120519. [PMID: 33775728 DOI: 10.1016/j.ijpharm.2021.120519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/14/2021] [Accepted: 03/21/2021] [Indexed: 10/21/2022]
Abstract
The primary drying is the longest step of the freeze-drying process and becomes one of the focuses for lyophilization cycle development inevitably, which is often approaching through a "trial and error" course and requires a labor-intensive and time-consuming endeavor. Nevertheless, drawing support from characterization techniques to understand the physic-chemical properties changing of the sample during lyophilization and their correlation with process conditions comprehensively, the freeze-drying development and optimization will get more from less. To get the optimal lyophilization cycle in the least time, the instrumental methods assisting primary drying design are summarized. The techniques used for estimating the collapse temperature of products are reviewed at first, aiming to provide a reference on the primary drying temperature setting to guarantee product quality. The instrumental methods for primary drying end prediction are also discussed to get optimal freeze-drying protocol with higher productivity. This review highlights the practicality of the above techniques through expounding basic principles, typical measurement conditions, merits and drawbacks, interpretation of results and practical applications, etc. At last, the techniques used for residual moisture detection of lyophilized products and size determination after liposome rehydration are briefly introduced.
Collapse
Affiliation(s)
- Lirui Jia
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| | - Yongjun Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, PR China.
| |
Collapse
|