1
|
Sahu PN, Sen A. Preventing Cancer by Inhibiting Ornithine Decarboxylase: A Comparative Perspective on Synthetic vs. Natural Drugs. Chem Biodivers 2024; 21:e202302067. [PMID: 38404009 DOI: 10.1002/cbdv.202302067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 02/27/2024]
Abstract
This perspective delves into the investigation of synthetic and naturally occurring inhibitors, their patterns of inhibition, and the effectiveness of newly utilized natural compounds as inhibitors targeting the Ornithine decarboxylase enzyme. This enzyme is known to target the MYC oncogene, thereby establishing a connection between polyamine metabolism and oncogenesis in both normal and cancerous cells. ODC activation and heightened polyamine activity are associated with tumor development in numerous cancers and fluctuations in ODC protein levels exert a profound influence on cellular activity for inhibition or suppressing tumor cells. This perspective outlines efforts to develop novel drugs, evaluate natural compounds, and identify promising inhibitors to address gaps in cancer prevention, highlighting the potential of newly designed synthetic moieties and natural flavonoids as alternatives. It also discusses natural compounds with potential as enhanced inhibitors.
Collapse
Affiliation(s)
- Preeti Nanda Sahu
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| | - Anik Sen
- Department of Chemistry, (CMDD Lab) GITAM (Deemed to be), University, Rushikonda, Visakhapatnam, 530045, India
| |
Collapse
|
2
|
Motsinger LA, Okamoto LL, Ineck NE, Udy BA, Erickson CL, Harraq Y, Reichhardt CC, Murdoch GK, Thornton KJ. Understanding the Effects of Trenbolone Acetate, Polyamine Precursors, and Polyamines on Proliferation, Protein Synthesis Rates, and the Abundance of Genes Involved in Myoblast Growth, Polyamine Biosynthesis, and Protein Synthesis in Murine Myoblasts. BIOLOGY 2023; 12:biology12030446. [PMID: 36979138 PMCID: PMC10045634 DOI: 10.3390/biology12030446] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Research suggests that androgens increase skeletal muscle growth by modulating polyamine biosynthesis. As such, the objective of this study was to investigate effects of anabolic hormones, polyamine precursors, and polyamines relative to proliferation, protein synthesis, and the abundance of mRNA involved in polyamine biosynthesis, proliferation, and protein synthesis in C2C12 and Sol8 cells. Cultures were treated with anabolic hormones (trenbolone acetate and/or estradiol), polyamine precursors (methionine or ornithine), or polyamines (putrescine, spermidine, or spermine). Messenger RNA was isolated 0.5 or 1, 12, or 24 h post-treatment. The cell type had no effect (p > 0.10) on proliferation, protein synthesis, or mRNA abundance at any time point. Each treatment increased (p < 0.01) proliferation, and anabolic hormones increased (p = 0.04) protein synthesis. Polyamines increased (p < 0.05) the abundance of mRNA involved in polyamine biosynthesis, proliferation, and protein synthesis. Treatment with polyamine precursors decreased (p < 0.05) the abundance of mRNA involved in proliferation and protein synthesis. Overall, C2C12 and Sol8 myoblasts do not differ (p > 0.10) in proliferation, protein synthesis, or mRNA abundance at the time points assessed. Furthermore, anabolic hormones, polyamines, and polyamine precursors increase proliferation and protein synthesis, and polyamines and their precursors alter the abundance of mRNA involved in growth.
Collapse
Affiliation(s)
- Laura A. Motsinger
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Lillian L. Okamoto
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Nikole E. Ineck
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Brynne A. Udy
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Christopher L. Erickson
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Youssef Harraq
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Caleb C. Reichhardt
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
| | - Gordon K. Murdoch
- Department of Animal Sciences, Washington State University, Pullman, WA 99163, USA
| | - Kara Jean Thornton
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA
- Correspondence: ; Tel.: +435-797-7696; Fax: +435-797-2118
| |
Collapse
|
3
|
Polyamine Metabolism as a Therapeutic Target inHedgehog-Driven Basal Cell Carcinomaand Medulloblastoma. Cells 2019; 8:cells8020150. [PMID: 30754726 PMCID: PMC6406590 DOI: 10.3390/cells8020150] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 02/06/2023] Open
Abstract
Hedgehog (Hh) signaling is a critical developmental regulator and its aberrant activation,due to somatic or germline mutations of genes encoding pathway components, causes Basal CellCarcinoma (BCC) and medulloblastoma (MB). A growing effort has been devoted at theidentification of druggable vulnerabilities of the Hedgehog signaling, leading to the identificationof various compounds with variable efficacy and/or safety. Emerging evidence shows that anaberrant polyamine metabolism is a hallmark of Hh-dependent tumors and that itspharmacological inhibition elicits relevant therapeutic effects in clinical or preclinical models ofBCC and MB. We discuss here the current knowledge of polyamine metabolism, its role in cancerand the available targeting strategies. We review the literature about the connection betweenpolyamines and the Hedgehog signaling, and the potential therapeutic benefit of targetingpolyamine metabolism in two malignancies where Hh pathways play a well-established role: BCCand MB.
Collapse
|
4
|
Bae DH, Lane DJR, Jansson PJ, Richardson DR. The old and new biochemistry of polyamines. Biochim Biophys Acta Gen Subj 2018; 1862:2053-2068. [PMID: 29890242 DOI: 10.1016/j.bbagen.2018.06.004] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 10/14/2022]
Abstract
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.
Collapse
Affiliation(s)
- Dong-Hun Bae
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Darius J R Lane
- Melbourne Dementia Research Centre, The Florey Institute of Neuroscience and Mental Health, Kenneth Myer Building, The University of Melbourne, Parkville, Victoria 3052, Australia.
| | - Patric J Jansson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, The Medical Foundation Building (K25), University of Sydney, Sydney, New South Wales 2006, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan.
| |
Collapse
|
5
|
Effects of Aging and Tocotrienol-Rich Fraction Supplementation on Brain Arginine Metabolism in Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:6019796. [PMID: 29348790 PMCID: PMC5733770 DOI: 10.1155/2017/6019796] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/04/2017] [Accepted: 10/09/2017] [Indexed: 12/31/2022]
Abstract
Accumulating evidence suggests that altered arginine metabolism is involved in the aging and neurodegenerative processes. This study sought to determine the effects of age and vitamin E supplementation in the form of tocotrienol-rich fraction (TRF) on brain arginine metabolism. Male Wistar rats at ages of 3 and 21 months were supplemented with TRF orally for 3 months prior to the dissection of tissue from five brain regions. The tissue concentrations of L-arginine and its nine downstream metabolites were quantified using high-performance liquid chromatography and liquid chromatography tandem mass spectrometry. We found age-related alterations in L-arginine metabolites in the chemical- and region-specific manners. Moreover, TRF supplementation reversed age-associated changes in arginine metabolites in the entorhinal cortex and cerebellum. Multiple regression analysis revealed a number of significant neurochemical-behavioral correlations, indicating the beneficial effects of TRF supplementation on memory and motor function.
Collapse
|
6
|
Characterization of an androgen-responsive, ornithine decarboxylase-related protein in mouse kidney. Biosci Rep 2017; 37:BSR20170163. [PMID: 28607032 PMCID: PMC5518511 DOI: 10.1042/bsr20170163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 01/26/2023] Open
Abstract
We have investigated and characterized a novel ornithine decarboxylase (ODC) related protein (ODCrp) also annotated as gm853. ODCrp shows 41% amino acid sequence identity with ODC and 38% with ODC antizyme inhibitor 1 (AZIN1). The Odcrp gene is selectively expressed in the epithelium of proximal tubuli of mouse kidney with higher expression in males than in females. Like Odc in mouse kidney, Odcrp is also androgen responsive with androgen receptor (AR)-binding loci within its regulatory region. ODCrp forms homodimers but does not heterodimerize with ODC. Although ODCrp contains 20 amino acid residues known to be necessary for the catalytic activity of ODC, no decarboxylase activity could be found with ornithine, lysine or arginine as substrates. ODCrp does not function as an AZIN, as it neither binds ODC antizyme 1 (OAZ1) nor prevents OAZ-mediated inactivation and degradation of ODC. ODCrp itself is degraded via ubiquination and mutation of Cys363 (corresponding to Cys360 of ODC) appears to destabilize the protein. Evidence for a function of ODCrp was found in ODC assays on lysates from transfected Cos-7 cells where ODCrp repressed the activity of endogenous ODC while Cys363Ala mutated ODCrp increased the enzymatic activity of endogenous ODC.
Collapse
|
7
|
Park SJ, Kwak MK, Kang SO. Schiff bases of putrescine with methylglyoxal protect from cellular damage caused by accumulation of methylglyoxal and reactive oxygen species in Dictyostelium discoideum. Int J Biochem Cell Biol 2017; 86:54-66. [PMID: 28330789 DOI: 10.1016/j.biocel.2017.03.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/14/2017] [Accepted: 03/15/2017] [Indexed: 02/08/2023]
Abstract
Polyamines protect protein glycation in cells against the advanced glycation end product precursor methylglyoxal, which is inevitably produced during glycolysis, and the enzymes that detoxify this α-ketoaldehyde have been widely studied. Nonetheless, nonenzymatic methylglyoxal-scavenging molecules have not been sufficiently studied either in vitro or in vivo. Here, we hypothesized reciprocal regulation between polyamines and methylglyoxal modeled in Dictyostelium grown in a high-glucose medium. We based our hypothesis on the reaction between putrescine and methylglyoxal in putrescine-deficient (odc-) or putrescine-overexpressing (odcoe) cells. In these strains, growth and cell cycle were found to be dependent on cellular methylglyoxal and putrescine contents. The odc- cells showed growth defects and underwent G1 phase cell cycle arrest, which was efficiently reversed by exogenous putrescine. Cellular methylglyoxal, reactive oxygen species (ROS), and glutathione levels were remarkably changed in odcoe cells and odc̄ cells. These results revealed that putrescine may act as an intracellular scavenger of methylglyoxal and ROS. Herein, we observed interactions of putrescine and methylglyoxal via formation of a Schiff base complex, by UV-vis spectroscopy, and confirmed this adduct by liquid chromatography with mass spectrometry via electrospray ionization. Schiff bases were isolated, analyzed, and predicted to have molecular masses ranging from 124 to 130. We showed that cellular putrescine-methylglyoxal Schiff bases were downregulated in proportion to the levels of endogenous or exogenous putrescine and glutathione in the odc mutants. The putrescine-methylglyoxal Schiff base affected endogenous metabolite levels. This is the first report showing that cellular methylglyoxal functions as a signaling molecule through reciprocal interactions with polyamines by forming Schiff bases.
Collapse
Affiliation(s)
- Seong-Jun Park
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
8
|
Chintalapati C, Keller T, Mueller TD, Gorboulev V, Schäfer N, Zilkowski I, Veyhl-Wichmann M, Geiger D, Groll J, Koepsell H. Protein RS1 (RSC1A1) Downregulates the Exocytotic Pathway of Glucose Transporter SGLT1 at Low Intracellular Glucose via Inhibition of Ornithine Decarboxylase. Mol Pharmacol 2016; 90:508-521. [PMID: 27555600 DOI: 10.1124/mol.116.104521] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 08/16/2016] [Indexed: 02/14/2025] Open
Abstract
Na+-d-glucose cotransporter 1 (SGLT1) is rate-limiting for glucose absorption in the small intestine. Shortly after intake of glucose-rich food, SGLT1 abundance in the luminal membrane of the small intestine is increased. This upregulation occurs via glucose-induced acceleration of the release of SGLT1-containing vesicles from the trans-Golgi network (TGN), which is regulated by a domain of protein RS1 (RSC1A1) named RS1-Reg. Dependent on phosphorylation, RS1-Reg blocks release of vesicles containing SGLT1 or concentrative nucleoside transporter 1. The hypothesis has been raised that RS1-Reg binds to different receptor proteins at the TGN, which trigger release of vesicles with different transporters. To identify the presumed receptor proteins, two-hybrid screening was performed. Interaction with ornithine decarboxylase 1 (ODC1), the rate-limiting enzyme of polyamine synthesis, was observed and verified by immunoprecipitation. Binding of RS1-Reg mutants to ODC1 was characterized using surface plasmon resonance. Inhibition of ODC1 activity by RS1-Reg mutants and the ODC1 inhibitor difluoromethylornithine (DFMO) was measured in the absence and presence of glucose. In addition, short-term effects of DFMO, RS1-Reg mutants, the ODC1 product putrescine, and/or glucose on SGLT1 expressed in oocytes of Xenopus laevis were investigated. High-affinity binding of RS1-Reg to ODC1 was demonstrated, and evidence for a glucose binding site in ODC1 was provided. Binding of RS1-Reg to ODC1 inhibits the enzymatic activity at low intracellular glucose, which is blunted at high intracellular glucose. The data suggest that generation of putrescine by ODC1 at the TGN stimulates release of SGLT1-containing vesicles. This indicates a biomedically important role of ODC1 in regulation of glucose homeostasis.
Collapse
Affiliation(s)
- Chakravarthi Chintalapati
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Thorsten Keller
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Thomas D Mueller
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Valentin Gorboulev
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Nadine Schäfer
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Ilona Zilkowski
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Maike Veyhl-Wichmann
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Dietmar Geiger
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Jürgen Groll
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| | - Hermann Koepsell
- Institute of Anatomy and Cell Biology (C.C., V.G., M.V.-W., H.K.), and Department of Molecular Plant Physiology and Biophysics, Julius-von-Sachs-Institute (T.K., T.D.M., N.S., D.G., H.K.), University of Würzburg, Würzburg, Germany; and Department of Functional Materials in Medicine and Dentistry, University Hospital Würzburg, Würzburg, Germany (I.Z., J.G.)
| |
Collapse
|
9
|
Umair S, Knight JS, Simpson HV. Molecular and biochemical characterisation of ornithine decarboxylases in the sheep abomasal nematode parasites Teladorsagia circumcincta and Haemonchus contortus. Comp Biochem Physiol B Biochem Mol Biol 2013; 165:119-24. [PMID: 23499950 DOI: 10.1016/j.cbpb.2013.03.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 03/06/2013] [Accepted: 03/07/2013] [Indexed: 11/18/2022]
Abstract
Full length cDNA encoding ornithine decarboxylases (ODC; EC 4.1.1.17) were cloned from the sheep abomasal nematode parasites Teladorsagia circumcincta (TcODC) and Haemonchus contortus (HcODC). The TcODC (1272 bp) and HcODC cDNA (1266 bp) encoded 424 and 422 amino acid proteins respectively. The predicted TcODC amino acid sequence showed 87% identity with HcODC and 65% and 64% with Caenorhabditis elegans and Caenorhabditis briggsae ODC respectively. All binding sites and active regions were completely conserved in both proteins. Soluble N-terminal His-tagged ODC proteins were expressed in Escherichia coli strain BL21, purified and characterised. The recombinant TcODC and HcODC had very similar kinetic properties: K(m) ornithine was 0.2-0.25 mM, optimum [PLP] was 0.3 mM and the pH optima were pH 8. No enzyme activity was detected when arginine was used as substrate. One millimolar difluoromethylornithine (DFMO) completely inhibited TcODC and HcODC activity, whereas 2 mM agmatine did not inhibit activity. The present study showed that ODC is a separate enzyme from arginine decarboxylase and strictly uses ornithine as substrate.
Collapse
Affiliation(s)
- Saleh Umair
- AgResearch Ltd, Hopkirk Research Institute, Grasslands Research Centre, Private Bag 11-008, Palmerston North 4442, New Zealand.
| | | | | |
Collapse
|
10
|
Ray RM, Viar MJ, Johnson LR. Amino acids regulate expression of antizyme-1 to modulate ornithine decarboxylase activity. J Biol Chem 2011; 287:3674-90. [PMID: 22157018 DOI: 10.1074/jbc.m111.232561] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In a glucose-salt solution (Earle's balanced salt solution), asparagine (Asn) stimulates ornithine decarboxylase (ODC) activity in a dose-dependent manner, and the addition of epidermal growth factor (EGF) potentiates the effect of Asn. However, EGF alone fails to activate ODC. Thus, the mechanism by which Asn activates ODC is important for understanding the regulation of ODC activity. Asn reduced antizyme-1 (AZ1) mRNA and protein. Among the amino acids tested, Asn and glutamine (Gln) effectively inhibited AZ1 expression, suggesting a differential role for amino acids in the regulation of ODC activity. Asn decreased the putrescine-induced AZ1 translation. The absence of amino acids increased the binding of eukaryotic initiation factor 4E-binding protein (4EBP1) to 5'-mRNA cap and thereby inhibited global protein synthesis. Asn failed to prevent the binding of 4EBP1 to mRNA, and the bound 4EBP1 was unphosphorylated, suggesting the involvement of the mammalian target of rapamycin (mTOR) in the regulation of AZ1 synthesis. Rapamycin treatment (4 h) failed to alter the expression of AZ1. However, extending the treatment (24 h) allowed expression in the presence of amino acids, indicating that AZ1 is expressed when TORC1 signaling is decreased. This suggests the involvement of cap-independent translation. However, transient inhibition of mTORC2 by PP242 completely abolished the phosphorylation of 4EBP1 and decreased basal as well as putrescine-induced AZ1 expression. Asn decreased the phosphorylation of mTOR-Ser(2448) and AKT-Ser(473), suggesting the inhibition of mTORC2. In the absence of amino acids, mTORC1 is inhibited, whereas mTORC2 is activated, leading to the inhibition of global protein synthesis and increased AZ1 synthesis via a cap-independent mechanism.
Collapse
Affiliation(s)
- Ramesh M Ray
- Department of Physiology, University of Tennessee Health Science Center, Memphis, Tennessee 38163, USA.
| | | | | |
Collapse
|
11
|
Perez-Leal O, Merali S. Regulation of polyamine metabolism by translational control. Amino Acids 2011; 42:611-7. [PMID: 21811825 DOI: 10.1007/s00726-011-1036-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 05/25/2011] [Indexed: 12/18/2022]
Abstract
Polyamines are low molecular weight, positively charged compounds that are ubiquitous in all living cells. They play a crucial role in many biochemical processes including regulation of transcription and translation, modulation of enzyme activities, regulation of ion channels and apoptosis. A strict balance between synthesis, catabolism and excretion tightly controls the cellular concentration of polyamines. The concentrations of rate-limiting enzymes in the polyamine synthesis and degradation pathways are regulated at different levels, including transcription, translation and degradation. Polyamines can modulate the translation of most of the enzymes required for their synthesis and catabolism through feedback mechanisms that are unique for each enzyme. Translational control is associated with cis-acting and trans-acting factors that can be influenced by the concentration of polyamines through mechanisms that are not completely understood. In this review, we present an overview of the translational control mechanisms of the proteins in the polyamine pathway, including ornithine decarboxylase (ODC), ODC antizyme, S-adenosylmethionine decarboxylase and spermidine/spermine N(1) acetyltransferase, highlighting the areas where more research is needed. A better understanding of the translational control of these enzymes would offer the possibility of a novel pharmacological intervention against cancer and other diseases.
Collapse
Affiliation(s)
- Oscar Perez-Leal
- AHB/552, Department of Biochemistry, Temple University of School of Medicine, 3307 N. Broad Street, Philadelphia, PA 19140, USA.
| | | |
Collapse
|
12
|
Husain Khan T, Sultana S. Effect ofAegle marmeloson DEN initiated and 2-AAF promoted hepatocarcinogenesis: a chemopreventive study. Toxicol Mech Methods 2011; 21:453-62. [DOI: 10.3109/15376516.2011.564677] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
13
|
Madrigal Pulido J, Padilla Guerrero I, Magaña Martínez IDJ, Cacho Valadez B, Torres Guzman JC, Salazar Solis E, Felix Gutierrez Corona J, Schrank A, Jiménez Bremont F, González Hernandez A. Isolation, characterization and expression analysis of the ornithine decarboxylase gene (ODC1) of the entomopathogenic fungus, Metarhizium anisopliae. Microbiol Res 2011; 166:494-507. [PMID: 21236653 DOI: 10.1016/j.micres.2010.10.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 09/29/2010] [Accepted: 10/02/2010] [Indexed: 11/30/2022]
Abstract
The gene ODC1, which codes for the ornithine decarboxylase enzyme, was isolated from the entomopathogenic fungus, Metarhizium anisopliae. The deduced amino acid sequence predicted a protein of 447 amino acids with a molecular weight of 49.3 kDa that contained the canonical motifs of ornithine decarboxylases. The ODC1 cDNA sequence was expressed in Escherichia coli cells; radiometric enzyme assays showed that the purified recombinant protein had ornithine decarboxylase activity. The optimum pH of the purified Odc1 protein was 8.0-8.5, and the optimum reaction temperature was 37°C. The apparent K(m) for ornithine at a pyridoxal phosphate concentration of 20mM was 22 μM. The competitive inhibitor of ODC activity, 1,4-diamino-2-butanone (DAB), at 0.25 mM inhibited 95% of ODC activity. The ODC1 mRNA showed an increase at the beginning of appressorium formation in vitro. During the M. anisopliae invasion process into Plutella xylostella larvae, the ODC1 mRNA showed a discrete increase within the germinating spore and during appressorium formation. The second expression peak was higher and prolonged during the invasion and death of the insect. The ODC1 gene complements the polyamine auxotrophy of Yarrowia lipolytica odc null mutant.
Collapse
|
14
|
Aksenova GE, Logvinovich OS, Fialkovskaya LA, Afanasyev VN, Ignat'ev DA, Kolomiytseva IK, Fesenko E E. The effect of hypothermia on the ornithine decarboxylase activity in tissues of rats. DOKL BIOCHEM BIOPHYS 2010; 428:249-51. [PMID: 20848911 DOI: 10.1134/s160767290905007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- G E Aksenova
- Institute of Cell Biophysics, Russian Academy of Sciences, ul. Institutskaya 3, Pushchino, Moscow oblast 142292, Russia
| | | | | | | | | | | | | |
Collapse
|
15
|
Rodríguez-Kessler M, Delgado-Sánchez P, Rodríguez-Kessler GT, Moriguchi T, Jiménez-Bremont JF. Genomic organization of plant aminopropyl transferases. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:574-590. [PMID: 20381365 DOI: 10.1016/j.plaphy.2010.03.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 03/05/2010] [Accepted: 03/12/2010] [Indexed: 05/29/2023]
Abstract
Aminopropyl transferases like spermidine synthase (SPDS; EC 2.5.1.16), spermine synthase and thermospermine synthase (SPMS, tSPMS; EC 2.5.1.22) belong to a class of widely distributed enzymes that use decarboxylated S-adenosylmethionine as an aminopropyl donor and putrescine or spermidine as an amino acceptor to form in that order spermidine, spermine or thermospermine. We describe the analysis of plant genomic sequences encoding SPDS, SPMS, tSPMS and PMT (putrescine N-methyltransferase; EC 2.1.1.53). Genome organization (including exon size, gain and loss, as well as intron number, size, loss, retention, placement and phase, and the presence of transposons) of plant aminopropyl transferase genes were compared between the genomic sequences of SPDS, SPMS and tSPMS from Zea mays, Oryza sativa, Malus x domestica, Populus trichocarpa, Arabidopsis thaliana and Physcomitrella patens. In addition, the genomic organization of plant PMT genes, proposed to be derived from SPDS during the evolution of alkaloid metabolism, is illustrated. Herein, a particular conservation and arrangement of exon and intron sequences between plant SPDS, SPMS and PMT genes that clearly differs with that of ACL5 genes, is shown. The possible acquisition of the plant SPMS exon II and, in particular exon XI in the monocot SPMS genes, is a remarkable feature that allows their differentiation from SPDS genes. In accordance with our in silico analysis, functional complementation experiments of the maize ZmSPMS1 enzyme (previously considered to be SPDS) in yeast demonstrated its spermine synthase activity. Another significant aspect is the conservation of intron sequences among SPDS and PMT paralogs. In addition the existence of microsynteny among some SPDS paralogs, especially in P. trichocarpa and A. thaliana, supports duplication events of plant SPDS genes. Based in our analysis, we hypothesize that SPMS genes appeared with the divergence of vascular plants by a processes of gene duplication and the acquisition of unique exons of as-yet unknown origin.
Collapse
Affiliation(s)
- Margarita Rodríguez-Kessler
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Colonia Chamilpa, CP 62210, Cuernavaca, Morelos, México
| | | | | | | | | |
Collapse
|
16
|
Kuo YC, Chen HH. Effect of electromagnetic field on endocytosis of cationic solid lipid nanoparticles by human brain-microvascular endothelial cells. J Drug Target 2010; 18:447-56. [DOI: 10.3109/10611860903494245] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
17
|
Marcora MS, Cejas S, González NS, Carrillo C, Algranati ID. Polyamine biosynthesis in Phytomonas: biochemical characterisation of a very unstable ornithine decarboxylase. Int J Parasitol 2010; 40:1389-94. [PMID: 20406645 DOI: 10.1016/j.ijpara.2010.04.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/31/2010] [Accepted: 04/01/2010] [Indexed: 11/17/2022]
Abstract
The metabolism of polyamines as well as their functions as growth regulators in plants have been extensively studied for many years. However, almost nothing is known about the biosynthesis and roles of these substances in Phytomonas spp., parasites of several plants. We have used HPLC and electrophoretic analyses to investigate the presence and metabolism of polyamines in Phytomonas Jma strain, detecting both putrescine and spermidine but not spermine. Experiments carried out by incubation of intact parasites with labelled ornithine or putrescine showed the formation of radioactive putrescine or spermidine, respectively. These results indicated that Phytomonas Jma can synthesise these polyamines through the action of ornithine decarboxylase (ODC) and spermidine synthase. On the other hand, we could not detect the conversion of arginine to agmatine, suggesting the absence of arginine decarboxylase (ADC) in Phytomonas. However, we cannot ensure the complete absence of this enzymatic activity in the parasite. Phytomonas ODC required pyridoxal 5'-phosphate for maximum activity and was specifically inhibited by α-difluoromethylornithine. The metabolic turnover of the enzyme was very high, with a half-life of 10-15 min, one of the shortest found among all ODC enzymes studied to date. The parasite proteasome seems to be involved in degradation of the enzyme, since Phytomonas ODC can be markedly stabilized by MG-132, a well known proteasome inhibitor. The addition of polyamines to Phytomonas cultures did not decrease ODC activity, strongly suggesting the possible absence of antizyme in this parasite.
Collapse
Affiliation(s)
- M Silvina Marcora
- Fundación Instituto Leloir, IIBBA - CONICET, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|
18
|
Developmental alterations in expression and subcellular localization of antizyme and antizyme inhibitor and their functional importance in the murine mammary gland. Amino Acids 2009; 38:591-601. [PMID: 19997757 DOI: 10.1007/s00726-009-0422-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
Abstract
Ornithine decarboxylase (ODC), antizyme (AZ), and antizyme inhibitor (AIn) play a key role in regulation of intracellular polyamine levels by forming a regulatory circuit through their interactions. To gain insight into their functional importance in cell growth and differentiation, we systematically examined the changes of their expression, cellular polyamine contents, expression of genes related to polyamine metabolism, and beta-casein gene expression during murine mammary gland development. The activity of ODC and AZ1 as well as putrescine level were low in the virgin and involuting stages, but they increased markedly during late pregnancy and early lactation when mammary cells proliferate extensively and begin to augment their differentiated function. The level of spermidine and expression of genes encoding spermidine synthase and AIn increased in a closely parallel manner with that of casein gene expression during pregnancy and lactation. On the other hand, the level of spermidine/spermine N(1)-acetyltransferase (SSAT) mRNA and AZ2 mRNA decreased during those periods. Immunohistochemical analysis showed the translocation of ODC and AIn between the nucleus and cytoplasm and the continuous presence of AZ in the nucleus during gland development. Reduction of AIn by RNA interference inhibited expression of beta-casein gene stimulated by lactogenic hormones in HC11 cells. In contrast, reduction of AZ by AZsiRNA resulted in the small increase of beta-casein gene expression. These results suggested that AIn plays an important role in the mammary gland development by changing its expression, subcellular localization, and functional interplay with AZ.
Collapse
|
19
|
Serra MP, Senn AM, Algranati ID. Post-translational processing, metabolic stability and catalytic efficiency of oat arginine decarboxylase expressed in Trypanosoma cruzi epimastigotes. Exp Parasitol 2009; 122:169-76. [DOI: 10.1016/j.exppara.2008.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 11/17/2008] [Indexed: 10/21/2022]
|
20
|
Murakami Y, Suzuki JI, Samejima K, Kikuchi K, Hascilowicz T, Murai N, Matsufuji S, Oka T. The change of antizyme inhibitor expression and its possible role during mammalian cell cycle. Exp Cell Res 2009; 315:2301-11. [PMID: 19426728 DOI: 10.1016/j.yexcr.2009.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/24/2009] [Accepted: 04/25/2009] [Indexed: 01/05/2023]
Abstract
Antizyme inhibitor (AIn), a homolog of ODC, binds to antizyme and inactivates it. We report here that AIn increased at the G1 phase of the cell cycle, preceding the peak of ODC activity in HTC cells in culture. During interphase AIn was present mainly in the cytoplasm and turned over rapidly with the half-life of 10 to 20 min, while antizyme was localized in the nucleus. The level of AIn increased again at the G2/M phase along with ODC, and the rate of turn-over of AIn in mitotic cells decreased with the half-life of approximately 40 min. AIn was colocalized with antizyme at centrosomes during the period from prophase through late anaphase and at the midzone/midbody during telophase. Thereafter, AIn and antizyme were separated and present at different regions on the midbody at late telophase. AIn disappeared at late cytokinesis, whereas antizyme remained at the cytokinesis remnant. Reduction of AIn by RNA interference caused the increase in the number of binucleated cells in HTC cells in culture. These findings suggested that AIn contributed to a rapid increase in ODC at the G1 phase and also played a role in facilitating cells to complete mitosis during the cell cycle.
Collapse
Affiliation(s)
- Yasuko Murakami
- Research Institute of Pharmaceutical Sciences, Musashino University, 1-1-20 Shinmachi, Nishi-Tokyo, Tokyo 202-8585, Japan
| | | | | | | | | | | | | | | |
Collapse
|
21
|
López-Contreras AJ, Ramos-Molina B, Martínez-de-la-Torre M, Peñafiel-Verdú C, Puelles L, Cremades A, Peñafiel R. Expression of antizyme inhibitor 2 in male haploid germinal cells suggests a role in spermiogenesis. Int J Biochem Cell Biol 2008; 41:1070-8. [PMID: 18973822 DOI: 10.1016/j.biocel.2008.09.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2008] [Revised: 09/03/2008] [Accepted: 09/30/2008] [Indexed: 02/07/2023]
Abstract
Recently, we have found that the antizyme inhibitor 2, a novel member of the antizyme binding proteins related to polyamine metabolism, was expressed mainly in the adult testes, although its function in testicular physiology is completely unknown. Therefore, in the present work, the spatial and temporal expression of antizyme inhibitor 2, and other genes related to polyamine metabolism were studied in the mouse testis, in an attempt to understand the role of antizyme inhibitor 2 in testicular functions. For that purpose, the temporal expression of different genes, during the first wave of spermatogenesis in postnatal mice, was studied by real-time RT-PCR, and the spatial distribution of transcripts and protein in the adult testis was examined by both RNA in situ hybridization and immunocytochemistry. The results indicated that antizyme inhibitor 2 was specifically expressed in the haploid germinal cells, similarly to antizyme 3, the testis specific antizyme. Conversely, ornithine decarboxylase mRNA was mainly found in the outer part of the seminiferous tubules where spermatogonia and spermatocytes are located. Functional transfection assays and co-immunoprecipitation experiments corroborated that antizyme inhibitor 2 counteracts the negative action of antizyme 3 on polyamine biosynthesis and uptake. All these results indicate that the expression of antizyme inhibitor 2 is postnatally regulated and strongly suggest that antizyme inhibitor 2 may have a role in spermiogenesis.
Collapse
Affiliation(s)
- Andrés J López-Contreras
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain.
| | | | | | | | | | | | | |
Collapse
|
22
|
López-García C, López-Contreras AJ, Cremades A, Castells MT, Marín F, Schreiber F, Peñafiel R. Molecular and morphological changes in placenta and embryo development associated with the inhibition of polyamine synthesis during midpregnancy in mice. Endocrinology 2008; 149:5012-23. [PMID: 18583422 DOI: 10.1210/en.2008-0084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Polyamines play an essential role in murine development, as demonstrated by both gene ablation in ornithine decarboxylase (ODC)-deficient embryos and pharmacological treatments of pregnant mice. However, the molecular and cellular mechanisms by which ODC inhibition affects embryonic development during critical periods of pregnancy are mostly unknown. Our present results demonstrate that the contragestational effect of alpha-difluoromethylornithine (DFMO), a suicide inhibitor of ODC, when given at d 7-9 of pregnancy, is associated with embryo growth arrest and marked alterations in the development of yolk sac and placenta. Blood island formation as well as the transcript levels of embryonary globins alpha-like x chain and beta-like y-chain was markedly decreased in the yolk sac. At the placental level, abnormal chorioallantoic attachment, absence of the spongiotrophoblast layer and a deficient development of the labyrinthine zone were evident. Real-time RT-PCR analysis showed that transcript levels of the steroidogenic genes steroidogenic acute regulatory protein, 3beta-hydroxysteroid dehydrogenase VI, and 17alpha-hydroxylase were markedly decreased by DFMO treatment in the developing placenta at d 9 and 10 of pregnancy. Plasma values of progesterone and androstenedione were also decreased by DFMO treatment. Transcriptomic analysis also detected changes in the expression of several genes involved in placentation and the differentiation of trophoblastic lineages. In conclusion, our results indicate that ODC inhibition at d 8 of pregnancy is related to alterations in yolk sac formation and trophoblast differentiation, affecting processes such as vasculogenesis and steroidogenesis.
Collapse
Affiliation(s)
- Carlos López-García
- Department of Biochemistry and Molecular Biology B and Immunology, Faculty of Medicine, University of Murcia, Campus de Espinardo, 30100 Murcia, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Ning Q, Li C, Wei K, He J, Xu C, Shao Q. Regulatory effects of corticosterone on ornithine decarboxylase activity during liver regeneration in rats. J Gastroenterol Hepatol 2007; 22:1978-82. [PMID: 17914980 DOI: 10.1111/j.1440-1746.2006.04795.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
AIMS The regulation of ornithine decarboxylase (ODC) gene expression and enzyme activity by corticosterone during rat liver regeneration induced by partial hepatectomy (PH) was evaluated. METHODS Bilateral adrenalectomies were performed on ether-anesthetized rats 3 days before PH. Corticosterone in sesame oil was injected subcutaneously to adrenalectomized rats. ODC mRNA, ODC protein and enzyme activity were detected by in situ hybridization, Western blot and high performance liquid chromatography (HPLC), respectively. RESULTS The ODC mRNA levels, protein accumulation and enzyme activity were lower in the intact liver compared to the regenerating liver. After PH, mRNA levels were remarkably enhanced in all groups and peaked at 5 h post-PH, and presented a persistent increase only in adrenalectomy rats during the regeneration process. Corticosterone treatment resulted in a dose-dependent decrease in ODC mRNA content after 5 h post-PH. ODC protein accumulation in adrenalectomy rats was higher than that in sham-adrenalectomy rats, but it decreased in corticosterone-treated (10 mg/kg) rats until 24 h post-PH, with a strong decline seen in 40 mg/kg corticosterone-treated rats. ODC activity was rapidly promoted, and the highest levels were observed at 6 h after PH in all groups. After corticosterone treatment, the activities declined significantly at 6 h post-PH, with the lowest value found in the 40 mg/kg group. CONCLUSIONS Corticosterone treatment results in dose-dependent decreases in ODC mRNA and enzyme protein both in the intact liver and the regenerating liver. The change in ODC activity is partially related to alterations of ODC mRNA and protein accumulation.
Collapse
Affiliation(s)
- Qianji Ning
- College of Life Science, Henan Normal University, Xinxiang, Henan Province, China.
| | | | | | | | | | | |
Collapse
|
24
|
Deignan JL, Livesay JC, Shantz LM, Pegg AE, O'Brien WE, Iyer RK, Cederbaum SD, Grody WW. Polyamine homeostasis in arginase knockout mice. Am J Physiol Cell Physiol 2007; 293:C1296-301. [PMID: 17686999 DOI: 10.1152/ajpcell.00393.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of ornithine decarboxylase (ODC) in polyamine metabolism has long been established, but the exact source of ornithine has always been unclear. The arginase enzymes are capable of producing ornithine for the production of polyamines and may hold important regulatory functions in the maintenance of this pathway. Utilizing our unique set of arginase single and double knockout mice, we analyzed polyamine levels in the livers, brains, kidneys, and small intestines of the mice at 2 wk of age, the latest timepoint at which all of them are still alive, to determine whether tissue polyamine levels were altered in response to a disruption of arginase I (AI) and II (AII) enzymatic activity. Whereas putrescine was minimally increased in the liver and kidneys from the AII knockout mice, spermidine and spermine were maintained. ODC activity was not greatly altered in the knockout animals and did not correlate with the fluctuations in putrescine. mRNA levels of ornithine aminotransferase (OAT), antizyme 1 (AZ1), and spermidine/spermine-N(1)-acetyltransferase (SSAT) were also measured and only minor alterations were seen, most notably an increase in OAT expression seen in the liver of AI knockout and double knockout mice. It appears that putrescine catabolism may be affected in the liver when AI is disrupted and ornithine levels are highly reduced. These results suggest that endogenous arginase-derived ornithine may not directly contribute to polyamine homeostasis in mice. Alternate sources such as diet may provide sufficient polyamines for maintenance in mammalian tissues.
Collapse
Affiliation(s)
- Joshua L Deignan
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095-1732, USA
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Nasizadeh S, Thiman L, Persson L. Sequence elements essential for the rapid turnover of Crithidia fasciculata ornithine decarboxylase. Amino Acids 2007; 34:421-8. [PMID: 17514492 DOI: 10.1007/s00726-007-0552-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Accepted: 03/30/2007] [Indexed: 11/25/2022]
Abstract
Ornithine decarboxylase (ODC) has a very fast turnover in mammalian cells, but is a stable enzyme in T. brucei and other trypanosmatid parasites like Leishmania donovani. However, Crithidia fasciculata, which is a phylogenetically closely related trypanosomatid to L. donovani, has an ODC with a rapid turnover. Interestingly, C. fasciculata ODC, but not L. donovani ODC, is rapidly degraded also in mammalian systems. In order to obtain information on what sequences are important for the rapid degradation of C. fasciculata ODC, we produced a variety of C. fasciculata/L. donovani ODC hybrid proteins and characterized their turnover using two different mammalian expression systems. The results obtained indicate that C. fasciculata ODC contains several sequence elements essential for the rapid turnover of the protein and that these regions are mainly located in the central part of the enzyme.
Collapse
Affiliation(s)
- S Nasizadeh
- Department of Experimental Medical Science, Lund University, Lund, Sweden
| | | | | |
Collapse
|
26
|
Affiliation(s)
- Changjin Zhu
- a Key Laboratory for Bioorganic Phosphorus Chemistry of Ministry of Education, Department of Chemistry, School of Life Science and Engineering , Tsinghua University , Beijing, 100084, China
- b School of Chemical Engineering and Environment , Beijing Institute of Technology , Beijing, China
| | - Yanfeng Jiang
- a Key Laboratory for Bioorganic Phosphorus Chemistry of Ministry of Education, Department of Chemistry, School of Life Science and Engineering , Tsinghua University , Beijing, 100084, China
| | - Yufen Zhao
- a Key Laboratory for Bioorganic Phosphorus Chemistry of Ministry of Education, Department of Chemistry, School of Life Science and Engineering , Tsinghua University , Beijing, 100084, China
| |
Collapse
|
27
|
Frossard ML, Seabra SH, DaMatta RA, de Souza W, de Mello FG, Machado Motta MC. An endosymbiont positively modulates ornithine decarboxylase in host trypanosomatids. Biochem Biophys Res Commun 2006; 343:443-9. [PMID: 16546131 DOI: 10.1016/j.bbrc.2006.02.168] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2006] [Accepted: 02/27/2006] [Indexed: 11/15/2022]
Abstract
Some trypanosomatids, such as Crithidia deanei, are endosymbiont-containing species. Aposymbiotic strains are obtained after antibiotic treatment, revealing interesting aspects of this symbiotic association. Ornithine decarboxylase (ODC) promotes polyamine biosynthesis and contributes to cell proliferation. Here, we show that ODC activity is higher in endosymbiont-bearing trypanosomatids than in aposymbiotic cells, but isolated endosymbionts did not display this enzyme activity. Intriguingly, expressed levels of ODC were similar in both strains, suggesting that ODC is positively modulated in endosymbiont-bearing cells. When the aposymbiotic strain was grown in conditioned medium, obtained after cultivation of the endosymbiont-bearing strain, cellular proliferation as well as ODC activity and localization were similar to that observed in the endosymbiont-containing trypanosomatids. Furthermore, dialyzed-heated medium and trypsin treatment reduced ODC activity of the aposymbiont strain. Taken together, these data indicate that the endosymbiont can enhance the protozoan ODC activity by providing factors of protein nature, which increase the host polyamine metabolism.
Collapse
Affiliation(s)
- Mariana Lins Frossard
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
28
|
Christensen GL, Ivanov IP, Wooding SP, Atkins JF, Mielnik A, Schlegel PN, Carrell DT. Identification of polymorphisms and balancing selection in the male infertility candidate gene, ornithine decarboxylase antizyme 3. BMC MEDICAL GENETICS 2006; 7:27. [PMID: 16542438 PMCID: PMC1526716 DOI: 10.1186/1471-2350-7-27] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2005] [Accepted: 03/16/2006] [Indexed: 11/23/2022]
Abstract
Background The antizyme family is a group of small proteins that play a role in cell growth and division by regulating the biosynthesis of polyamines (putrescine, spermidine, spermine). Antizymes regulate polyamine levels primarily through binding ornithine decarboxylase (ODC), an enzyme key to polyamine production, and targeting ODC for destruction by the 26S proteosome. Ornithine decarboxylase antizyme 3 (OAZ3) is a testis-specific antizyme paralog and the only antizyme expressed in the mid to late stages of spermatogenesis. Methods To see if mutations in the OAZ3 gene are responsible for some cases of male infertility, we sequenced and evaluated the genomic DNA of 192 infertile men, 48 men of known paternity, and 34 African aborigines from the Mbuti tribe in the Democratic Republic of the Congo. The coding sequence of OAZ3 was further screened for polymorphisms by SSCP analysis in the infertile group and an additional 250 general population controls. Identified polymorphisms in the OAZ3 gene were further subjected to a haplotype analysis using PHASE 2.02 and Arlequin 2.0 software programs. Results A total of 23 polymorphisms were identified in the promoter, exons or intronic regions of OAZ3. The majority of these fell within a region of less than two kilobases. Two of the polymorphisms, -239 A/G in the promoter and 4280 C/T, a missense polymorphism in exon 5, may show evidence of association with male infertility. Haplotype analysis identified 15 different haplotypes, which can be separated into two divergent clusters. Conclusion Mutations in the OAZ3 gene are not a common cause of male infertility. However, the presence of the two divergent haplotypes at high frequencies in all three of our subsamples (infertile, control, African) suggests that they have been maintained in the genome by balancing selection, which was supported by a test of Tajima's D statistic. Evidence for natural selection in this region implies that these haplotypes may be associated with a trait other than infertility. This trait may be related to another function of OAZ3 or a region in tight linkage disequilibrium to the gene.
Collapse
Affiliation(s)
- Greg L Christensen
- Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Ivaylo P Ivanov
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Stephen P Wooding
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - John F Atkins
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
- Biosciences Institute, University College, Cork, Ireland
| | - Anna Mielnik
- Department of Urology, Weil Medical College of Cornell University, New York, NY, USA
| | - Peter N Schlegel
- Department of Urology, Weil Medical College of Cornell University, New York, NY, USA
- Center for Biomedical Research, The Population Council, New York, NY, USA
| | - Douglas T Carrell
- Andrology and IVF Laboratories, University of Utah School of Medicine, Salt Lake City, UT, USA
- Department of Physiology, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
29
|
Alexander SPH, Mathie A, Peters JA. Decarboxylases (E.C. 4.1.1.−). Br J Pharmacol 2006. [DOI: 10.1038/sj.bjp.0706582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
30
|
Abstract
Ornithine decarboxylase (ODC) initiates the polyamine biosynthetic pathway. The amount of ODC is altered in response to many growth factors, oncogenes, and tumor promoters and to changes in polyamine levels. Susceptibility to tumor development is increased in transgenic mice expressing high levels of ODC and is decreased in mice with reduced ODC due to loss of one ODC allele or elevated expression of antizyme, a protein that stimulates ODC degradation. This review describes key factors that contribute to the regulation of ODC levels, which can occur at the levels of transcription, translation, and protein turnover.
Collapse
Affiliation(s)
- Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
31
|
Nasizadeh S, Myhre L, Thiman L, Alm K, Oredsson S, Persson L. Importance of polyamines in cell cycle kinetics as studied in a transgenic system. Exp Cell Res 2005; 308:254-64. [PMID: 15923003 DOI: 10.1016/j.yexcr.2005.04.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2005] [Revised: 04/22/2005] [Accepted: 04/26/2005] [Indexed: 11/19/2022]
Abstract
Polyamines are organic cations, which are considered essential for normal cell cycle progression. This view is based on results from numerous studies using a variety of enzyme inhibitors or polyamine analogues interfering with either the metabolism or the physiological functions of the polyamines. However, the presence of non-specific effects may be hard to rule out in such studies. In the present study, we have for the first time used a transgenic cell system to analyze the importance of polyamines in cell growth. We have earlier shown that expression of trypanosomal ODC in an ODC-deficient variant of CHO cells (C55.7) supported growth of these otherwise polyamine auxotrophic cells. However, one of the transgenic cell lines grew much slower than the others. As shown in the present study, the level of ODC activity was much lower in these cells, and that was reflected in a reduction of cellular polyamine levels. Analysis of cell cycle kinetics revealed that reduction of growth was correlated to prolongation of the G1, S, and G2+M phases in the cells. Providing exogenous putrescine to the cells resulted in a normalization of polyamine levels as well as cell cycle kinetics indicating a causal relationship.
Collapse
Affiliation(s)
- Sima Nasizadeh
- Department of Physiological Sciences, Lund University, BMC F-13, S-221 84 Lund, Sweden
| | | | | | | | | | | |
Collapse
|
32
|
Voigt J, Fausel M, Bohley P, Adam KH, Marquardt O. Structure and expression of the ornithine decarboxylase gene of Chlamydomonas reinhardtii. Microbiol Res 2005; 159:403-17. [PMID: 15646386 DOI: 10.1016/j.micres.2004.09.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A cDNA was cloned encoding ornithine decarboxylase (ODC) of the unicellular green alga Chlamydomonas reinhardtii. The polypeptide consists of 396 amino acid residues with 35-37% sequence identity to other eukaryotic ODCs. As indicated by the phylogenetic tree calculated by neighbour joining analysis, the Chlamydomonas ODC has the same evolutionary distances to the ODCs of higher plants and mammalians. The Chlamydomonas ODC gene contains three introns of 222, 133, and 129bp, respectively. As revealed by Northern-blot analyses, expression of the Chlamydomonas ODC gene is neither altered throughout the vegetative cell cycle nor modulated by exogenous polyamines.
Collapse
Affiliation(s)
- Jürgen Voigt
- Physiologisch-chemisches Institut der Eberhard-Karls-Universität, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany.
| | | | | | | | | |
Collapse
|
33
|
Sultana S, Ahmed S, Jahangir T, Sharma S. Inhibitory effect of celery seeds extract on chemically induced hepatocarcinogenesis: modulation of cell proliferation, metabolism and altered hepatic foci development. Cancer Lett 2005; 221:11-20. [PMID: 15797622 DOI: 10.1016/j.canlet.2004.07.030] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2004] [Revised: 07/25/2004] [Accepted: 07/26/2004] [Indexed: 12/12/2022]
Abstract
The chemopreventive activity of methanolic extract of Apium graveolens seeds (celery seeds) has been investigated against Solt Farber protocol of hepatocarcinogenesis, oxidative stress and induction of positive foci of gamma-GT in the liver of Wistar rats. The prophylactic treatment of celery seeds extract protected dose dependently against diethylnitrosoamine (DEN)+2-acetylaminofluorine (AAF)+partial hepatectomy (PH) induced hepatocarcinogenesis and other related events such as induction of gamma-GT positive foci (P<0.001). 2-AAF administration in diet with PH in rats resulted in increased hepatic ornithine decarboxylase (ODC) activity and a consequent increase in the rate of DNA synthesis when compared to saline treated control group while pretreatment of rats with celery seeds extract resulted in inhibition of aforementioned parameters dose dependently. The augmentation of quinone reductase (QR), glutathione-S-transferase (GST) and serum gamma-glutamyl transpeptidase (GGT) activities; and depletion of the tissue GSH content after 2-AAF (i.p. injection) for five consecutive days was prevented with the administration of celery seed extract. On the basis of the above results it can be said that A. graveolens is a potent plant against experimentally induced hepatocarcinogenesis in Wistar rats.
Collapse
Affiliation(s)
- Sarwat Sultana
- Section of Chemoprevention and Nutrition Toxicology, Department of Medical Elementology and Toxicology, Faculty of Science, Jamia Hamdard (Hamdard University), Hamdard Nagar, New Delhi 110062, India. sarwat@
| | | | | | | |
Collapse
|
34
|
Paschalidis KA, Roubelakis-Angelakis KA. Spatial and temporal distribution of polyamine levels and polyamine anabolism in different organs/tissues of the tobacco plant. Correlations with age, cell division/expansion, and differentiation. PLANT PHYSIOLOGY 2005; 138:142-52. [PMID: 15849310 PMCID: PMC1104170 DOI: 10.1104/pp.104.055483] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 12/31/2004] [Accepted: 01/23/2005] [Indexed: 05/18/2023]
Abstract
Polyamine (PA) titers and biosynthesis follow a basipetal decrease along the tobacco (Nicotiana tabacum) plant axis, and they also correlate negatively with cell size. On the contrary, the titers of arginine (Arg), ornithine (Orn), and arginase activity increase with age. The free (soluble)/total-PA ratios gradually increase basipetally, but the soluble conjugated decrease, with spermidine (Spd) mainly to determine these changes. The shoot apical meristems are the main site of Spd and spermine biosynthesis, and the hypogeous tissues synthesize mostly putrescine (Put). High and low Spd syntheses are correlated with cell division and expansion, respectively. Put biosynthetic pathways are differently regulated in hyper- and hypogeous tobacco tissues: Only Arg decarboxylase is responsible for Put synthesis in old hypergeous vascular tissues, whereas, in hypogeous tissues, arginase-catalyzed Orn produces Put via Orn decarboxylase. Furthermore, Orn decarboxylase expression coincides with early cell divisions in marginal sectors of the lamina, and Spd synthase strongly correlates with later cell divisions in the vascular regions. This detailed spatial and temporal profile of the free, soluble-conjugated, and insoluble-conjugated fractions of Put, Spd, and spermine in nearly all tobacco plant organs and the profile of enzymes of PA biosynthesis at the transcript, protein, and specific activity levels, along with the endogenous concentrations of the precursor amino acids Arg and Orn, offer new insight for further understanding the physiological role(s) of PAs. The results are discussed in the light of age dependence, cell division/expansion, differentiation, phytohormone gradients, senescence, and sink-source relationships.
Collapse
|
35
|
Delis C, Dimou M, Efrose RC, Flemetakis E, Aivalakis G, Katinakis P. Ornithine decarboxylase and arginine decarboxylase gene transcripts are co-localized in developing tissues of Glycine max etiolated seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2005; 43:19-25. [PMID: 15763662 DOI: 10.1016/j.plaphy.2004.11.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Accepted: 11/16/2004] [Indexed: 05/02/2023]
Abstract
Unlike other eukaryotes, which synthesize polyamines (PA) only from ornithine, plants possess an additional pathway utilizing arginine as a precursor. In this study, we have identified cDNA clones coding for a Glycine max ornithine decarboxylase (ODC, EC 4.1.1.7) and an arginine decarboxylase (ADC, EC 4.1.1.19). Expression analysis using semi-quantitative RT-PCR approach revealed that both genes coding for enzymes involved in putrescine biosynthesis (ODC and ADC) were found in most plant organs examined. Significant expression levels of both genes were detected in root tips and hypocotyls. The spatial distribution of GmODC and GmADC transcripts in primary and lateral roots and hypocotyls revealed that these genes are co-expressed in expanding cells of cortex parenchyma, expanding cells of central cylinder in main roots and in developing tissues and expanding cells of soybean hypocotyls. The data point out a correlation of the expression patterns of GmODC and GmADC gene to certain physiological roles such as organ development and cell expansion.
Collapse
Affiliation(s)
- Costas Delis
- Laboratory of Molecular Biology, Agricultural University of Athens, Georgios Aivalakis, Athens, Greece
| | | | | | | | | | | |
Collapse
|
36
|
Lee JH, Son MY, Yoon MY, Choi JD, Kim YT. Isolation and characterization of ornithine decarboxylase gene from flounder (Paralichthys olivaceus). MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2004; 6:453-462. [PMID: 15791490 DOI: 10.1007/s10126-004-4100-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2003] [Accepted: 12/28/2003] [Indexed: 05/24/2023]
Abstract
Ornithine decarboxylase (ODC) is a homodimeric enzyme dependent on pyridoxal 5'-phosphate. We identified a complementary DNA clone corresponding to ODC from the brain of adult flounder (Paralichthys olivaceus). The flounder ODC cDNA consisted of 2939 bp encoding 272 amino acid residues. The flounder ODC showed 80.3% sequence identity to zebrafish and 70.8% to rat at the amino acid level. Comparison of the structure and nucleotide sequence of the ODC genes revealed that the gene is highly conserved in the flounder, zebrafish, and rat. The presence of ODC mRNA species in brain, kidney, liver, and embryo was confirmed using the reverse transcriptase polymerase chain reaction. The recombinant protein of flounder ODC containing a short histidine tag at the carboxyl terminus was overexpressed in Escherichia coli BL21 (DE3) codon plus using an inducible T7 expression system, and was purified by Ni-NTA affinity chromatography.
Collapse
Affiliation(s)
- Jae Hyung Lee
- Department of Microbiology, Pukyong National University, Busan 608-737, Korea.
| | | | | | | | | |
Collapse
|
37
|
Lioliou EE, Kyriakidis DA. The role of bacterial antizyme: From an inhibitory protein to AtoC transcriptional regulator. Microb Cell Fact 2004; 3:8. [PMID: 15200682 PMCID: PMC441398 DOI: 10.1186/1475-2859-3-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2004] [Accepted: 06/16/2004] [Indexed: 11/10/2022] Open
Abstract
This review considers the role of bacterial antizyme in the regulation of polyamine biosynthesis and gives new perspectives on the involvement of antizyme in other significant cellular mechanisms. Antizyme is a protein molecule induced by the end product of the enzymic reaction that it inhibits, in a non-competitive manner. The bacterial ornithine decarboxylase is regulated by nucleotides, phosphorylation and antizyme. The inhibition of ornithine decarboxylase by antizyme can be relieved to different degrees by DNA or by a variety of synthetic nucleic acid polymers, attributed to a specific interaction between nucleic acid and antizyme. Recently, this interplay between bacterial antizyme and nucleic acid was determined by discerning an additional function to antizyme that proved to be the atoC gene product, encoding the response regulator of the bacterial two-component system AtoS-AtoC. The gene located just upstream of atoC encodes the sensor kinase, named AtoS, that modulates AtoC activity. AtoC regulates expression of atoDAEB operon which is involved in short-chain fatty acid metabolism. Antizyme is thus referred to as AtoC, functioning both as a post-translational and transcriptional regulator. Also, the AtoS-AtoC signal transduction system in E. coli has a positive regulatory role on poly-(R)-3-hydroxybutyrate biosynthesis. The properties and gene structural similarities of antizymes from different organisms were compared. It was revealed that conserved domains are present mostly in the C-domain of all antizymes. BLAST analysis of the E. coli antizyme protein (AtoC) showed similarities around 69-58% among proteobacteria, g-proteobacteria, enterobacteria and the thermophilic bacterium Thermus thermophilus. A working hypothesis is proposed for the metabolic role of antizyme (AtoC) describing the significant biological implications of this protein molecule. Whether antizymes exist to other enzymes in different tissues, meeting the criteria discussed in the text remains to be elucidated.
Collapse
Affiliation(s)
- Efthimia E Lioliou
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| | - Dimitrios A Kyriakidis
- Laboratory of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki, 54124, Greece
| |
Collapse
|
38
|
Theiss C, Bohley P, Bisswanger H, Voigt J. Uptake of polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effect on ornithine decarboxylase activity. JOURNAL OF PLANT PHYSIOLOGY 2004; 161:3-14. [PMID: 15002659 DOI: 10.1078/0176-1617-00987] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Uptake of exogenous polyamines by the unicellular green alga Chlamydomonas reinhardtii and their effects on polyamine metabolism were investigated. Our data show that, in contrast to mammalian cells, Chlamydomonas reinhardtii does not contain short-living, high-affinity polyamine transporters whose cellular level is dependent on the polyamine concentration. However, exogenous polyamines affect polyamine metabolism in Chlamydomonas cells. Exogenous putrescine caused a slow increase of both putrescine and spermidine and, vice versa, exogenous spermidine also led to an increase of the intracellular levels of both spermidine and putrescine. No intracellular spermine was detected under any conditions. Exogenous spermine was taken up by the cells and caused a decrease in their putrescine and spermidine levels. As in other organisms, exogenous polyamines led to a decrease in the activity of ornithine decarboxylase, a key enzyme of polyamine synthesis. In contrast to mammalian cells, this polyamine-induced decrease in ornithine decarboxylase activity is not mediated by a polyamine-dependent degradation or inactivation, but exclusively due to a decreased synthesis of ornithine decarboxylase. Translation of ornithine decarboxylase mRNA, but not overall protein biosynthesis is slowed by increased polyamine levels.
Collapse
Affiliation(s)
- Christine Theiss
- Physiologisch-Chemisches Institut der Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany
| | | | | | | |
Collapse
|
39
|
Wallace HM, Fraser AV, Hughes A. A perspective of polyamine metabolism. Biochem J 2003; 376:1-14. [PMID: 13678416 PMCID: PMC1223767 DOI: 10.1042/bj20031327] [Citation(s) in RCA: 705] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Revised: 09/16/2003] [Accepted: 09/18/2003] [Indexed: 01/30/2023]
Abstract
Polyamines are essential for the growth and function of normal cells. They interact with various macromolecules, both electrostatically and covalently and, as a consequence, have a variety of cellular effects. The complexity of polyamine metabolism and the multitude of compensatory mechanisms that are invoked to maintain polyamine homoeostasis argue that these amines are critical to cell survival. The regulation of polyamine content within cells occurs at several levels, including transcription and translation. In addition, novel features such as the +1 frameshift required for antizyme production and the rapid turnover of several of the enzymes involved in the pathway make the regulation of polyamine metabolism a fascinating subject. The link between polyamine content and human disease is unequivocal, and significant success has been obtained in the treatment of a number of parasitic infections. Targeting the polyamine pathway as a means of treating cancer has met with limited success, although the development of drugs such as DFMO (alpha-difluoromethylornithine), a rationally designed anticancer agent, has revolutionized our understanding of polyamine function in cell growth and provided 'proof of concept' that influencing polyamine metabolism and content within tumour cells will prevent tumour growth. The more recent development of the polyamine analogues has been pivotal in advancing our understanding of the necessity to deplete all three polyamines to induce apoptosis in tumour cells. The current thinking is that the polyamine inhibitors/analogues may also be useful agents in the chemoprevention of cancer and, in this area, we may yet see a revival of DFMO. The future will be in adopting a functional genomics approach to identifying polyamine-regulated genes linked to either carcinogenesis or apoptosis.
Collapse
Affiliation(s)
- Heather M Wallace
- Department of Medicine and Therapeutics, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK.
| | | | | |
Collapse
|
40
|
Hughes A, Smith NI, Wallace HM. Polyamines reverse non-steroidal anti-inflammatory drug-induced toxicity in human colorectal cancer cells. Biochem J 2003; 374:481-8. [PMID: 12793857 PMCID: PMC1223611 DOI: 10.1042/bj20030280] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2003] [Revised: 06/05/2003] [Accepted: 06/06/2003] [Indexed: 12/19/2022]
Abstract
Naproxen, sulindac and salicylate, three NSAIDs (non-steroidal anti-inflammatory drugs), were cytotoxic to human colorectal cancer cells in culture. Toxicity was accompanied by significant depletion of intracellular polyamine content. Inhibition of ornithine decarboxylase (the first enzyme of the polyamine biosynthetic pathway), induction of polyamine oxidase and spermidine/spermine N(1)-acetyltransferase (the enzymes responsible for polyamine catabolism) and induction of polyamine export all contributed to the decreased intracellular polyamine content. Morphological examination of the cells showed typical signs of apoptosis, and this was confirmed by DNA fragmentation and measurement of caspase-3-like activity. Re-addition of spermidine to the cells partially prevented apoptosis and recovered the cell number. Thus polyamines appear to be an integral part of the signalling pathway mediating NSAID toxicity in human colorectal cancer cells, and may therefore also be important in cancer chemoprevention in humans.
Collapse
Affiliation(s)
- Alun Hughes
- Department of Medicine, University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | | | | |
Collapse
|
41
|
Yang X, Zhu C, Cao S, Liao X, Jiang Y, Zhao Y. Amino-catalyzed hydrolysis of amides and esters in the fragmentation by electrospray ionization tandem mass spectrometry using an ion trap. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:1927-1930. [PMID: 12876696 DOI: 10.1002/rcm.1128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
|
42
|
Hascilowicz T, Murai N, Matsufuji S, Murakami Y. Regulation of ornithine decarboxylase by antizymes and antizyme inhibitor in zebrafish (Danio rerio). BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1578:21-8. [PMID: 12393184 DOI: 10.1016/s0167-4781(02)00476-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Mammalian polyamine synthesis is regulated by a unique feedback mechanism. When cellular polyamine levels increase, antizyme, an ornithine decarboxylase (ODC) inhibitory protein, is induced by polyamine-dependent translational frameshifting. Antizyme not only inhibits ODC, a key enzyme in polyamine synthesis, it also targets the enzyme degradation by the 26S proteasome. Furthermore, it suppresses cellular uptake of polyamines. Previously, we isolated two zebrafish antizymes with different expressions and activities. This suggested that a common feedback mechanism of polyamine metabolism might operate in mammals and zebrafish (Danio rerio). In the present study, cDNAs of zebrafish ODC and antizyme inhibitor, another regulatory protein that inhibits antizyme action, were cloned. The presence of ODC and antizyme inhibitor mRNAs was confirmed by Northern blotting in embryos and adult fish, as well as in a zebrafish-derived cell line (BRF41). The activity of the ODC cDNA expression product was inhibited by short and long zebrafish antizymes, and recombinant zebrafish antizyme inhibitor reversed this inhibition. In the BRF41 cells, the ODC half-life was considerably longer than that of mammalian ODC but shorter than that of Schizosaccharomyces pombe. Spermidine elicited a rapid decay of ODC activity and ODC protein in a protein synthesis-dependent manner.
Collapse
Affiliation(s)
- Tomasz Hascilowicz
- Department of Biochemistry II, Jikei University School of Medicine, Minato, Tokyo 105-8461, Japan
| | | | | | | |
Collapse
|
43
|
Kwak SH, Lee SH. The transcript-level-independent activation of ornithine decarboxylase in suspension-cultured BY2 cells entering the cell cycle. PLANT & CELL PHYSIOLOGY 2002; 43:1165-70. [PMID: 12407196 DOI: 10.1093/pcp/pcf132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The regulation of ornithine decarboxylase (ODC) expression was studied in suspension-cultured tobacco (Nicotiana tabacum L.) BY2 cells. ODC activity increased rapidly 3 h after cells re-entered the cell cycle from the stationary phase, corresponding to the G1 phase, and continued to increase in the subsequent S phase, while the ODC transcript level increased only transiently. ODC activity was suppressed by sucrose-deficiency, while the ODC transcript level was not affected. U0126, a specific inhibitor of mammalian MAPK kinases (MEKs), significantly reduced ODC enzyme activity, but not the ODC transcript level. These results suggest that ODC activity is regulated independently of its transcript level in BY2 cells, and that sucrose and a U0126-sensitive protein kinase are required for the transcript-level-independent activation of ODC.
Collapse
Affiliation(s)
- Su-Hwan Kwak
- Department of Biology, Yonsei University, Shinchon-dong 134, Seodaemun-gu, Seoul 120-749, Korea
| | | |
Collapse
|
44
|
Schipper RG, Verhofstad AAJ. Distribution patterns of ornithine decarboxylase in cells and tissues: facts, problems, and postulates. J Histochem Cytochem 2002; 50:1143-60. [PMID: 12185192 DOI: 10.1177/002215540205000901] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ornithine decarboxylase (ODC) is a key enzyme in polyamine biosynthesis. Increased polyamine levels are required for growth, differentiation, and transformation of cells. In situ detection of ODC in cells and tissues has been performed with biochemical, enzyme cytochemical, immunocytochemical, and in situ hybridization techniques. Different localization patterns at the cellular level have been described, depending on the type of cells or tissues studied. These patterns varied from exclusively cytoplasmic to both cytoplasmic and nuclear. These discrepancies can be partially explained by the (lack of) sensitivity and/or specificity of the methods used, but it is more likely that (sub)cellular localization of ODC is cell type-specific and/or depends on the physiological status (growth, differentiation, malignant transformation, apoptosis) of cells. Intracellular translocation of ODC may be a prerequisite for its regulation and function.
Collapse
Affiliation(s)
- Raymond G Schipper
- Department of Pathology, University Medical Centre Nijmegen, Nijmegen, The Netherlands
| | | |
Collapse
|
45
|
Masuda K, Masuda R, Neidhart M, Simmen BR, Michel BA, Müller-Ladner U, Gay RE, Gay S. Molecular profile of synovial fibroblasts in rheumatoid arthritis depends on the stage of proliferation. ARTHRITIS RESEARCH 2002; 4:R8. [PMID: 12223111 PMCID: PMC125298 DOI: 10.1186/ar427] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Revised: 06/06/2002] [Accepted: 06/21/2002] [Indexed: 11/24/2022]
Abstract
The aim of this study was to explore the molecular profile of proliferating rheumatoid arthritis synovial fibroblasts (RA-SF). Total RNA was extracted from two cultures of RA-SF (low-density [LD] proliferating cells and high-density [HD] nonproliferating cells) and suppression subtractive hybridization was performed to compare differential gene expression of these two cultures. Subtracted cDNA was subcloned, and nucleotide sequences were analyzed to identify each clone. Differential expression of distinct clones was confirmed by semiquantitative RT-PCR. The expression of certain genes in synovial tissues was examined by in situ hybridization. In both LD and HD cells, 44 clones were upregulated. Of the 88 total clones, 46 were identical to sequences that have previously been characterized. Twenty-nine clones were identical to cDNAs that have been identified, but with unknown functions so far, and 13 clones did not show any significant homology to sequences in GenBank (NCBI). Differential expression of distinct clones was confirmed by RT-PCR. In situ hybridization showed that certain genes, such as S100A4, NFAT5, unr and Fbx3, were also expressed predominantly in synovial tissues from patients with RA but not from normal individuals. The expression of distinct genes in proliferating RA-SF could also be found in RA synovium, suggesting that these molecules are involved in synovial activation in RA. Most importantly, the data indicate that the expression of certain genes in RA-SF depends on the stage of proliferation; therefore, the stage needs to be considered in any analysis of differential gene expression in SF.
Collapse
Affiliation(s)
- Kimio Masuda
- Center of Experimental Rheumatology and WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Department of Rheumatology, University Hospital Zürich, Gloriastrasse 25, CH-8091 Zürich, Switzerland
| | - Riako Masuda
- Center of Experimental Rheumatology and WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Department of Rheumatology, University Hospital Zürich, Gloriastrasse 25, CH-8091 Zürich, Switzerland
| | - Michel Neidhart
- Center of Experimental Rheumatology and WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Department of Rheumatology, University Hospital Zürich, Gloriastrasse 25, CH-8091 Zürich, Switzerland
| | - Beat R Simmen
- Upper Extremity and Handsurgery, Schulthess Clinic, Lengghalde 2, CH-8008 Zürich, Switzerland
| | - Beat A Michel
- Department of Rheumatology, University Hospital Zürich, Gloriastrasse 25, CH-8091 Zürich, Switzerland
| | - Ulf Müller-Ladner
- Department of Internal Medicine I, University of Regensburg, D-93042 Regensburg, Germany
| | - Renate E Gay
- Center of Experimental Rheumatology and WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Department of Rheumatology, University Hospital Zürich, Gloriastrasse 25, CH-8091 Zürich, Switzerland
| | - Steffen Gay
- Center of Experimental Rheumatology and WHO Collaborating Center for Molecular Biology and Novel Therapeutic Strategies for Rheumatic Diseases, Department of Rheumatology, University Hospital Zürich, Gloriastrasse 25, CH-8091 Zürich, Switzerland
| |
Collapse
|
46
|
Maupin-Furlow JA, Kaczowka SJ, Ou MS, Wilson HL. Archaeal proteasomes: proteolytic nanocompartments of the cell. ADVANCES IN APPLIED MICROBIOLOGY 2002; 50:279-338. [PMID: 11677686 DOI: 10.1016/s0065-2164(01)50008-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- J A Maupin-Furlow
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida 32611-0700, USA
| | | | | | | |
Collapse
|
47
|
Theiss C, Bohley P, Voigt J. Regulation by polyamines of ornithine decarboxylase activity and cell division in the unicellular green alga Chlamydomonas reinhardtii. PLANT PHYSIOLOGY 2002; 128:1470-9. [PMID: 11950995 PMCID: PMC154274 DOI: 10.1104/pp.010896] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2001] [Revised: 11/13/2001] [Accepted: 01/07/2002] [Indexed: 05/18/2023]
Abstract
Polyamines are required for cell growth and cell division in eukaryotic and prokaryotic organisms. In the unicellular green alga Chlamydomonas reinhardtii, biosynthesis of the commonly occurring polyamines (putrescine, spermidine, and spermine) is dependent on the activity of ornithine decarboxylase (ODC, EC 4.1.1.17) catalyzing the formation of putrescine, which is the precursor of the other two polyamines. In synchronized C. reinhardtii cultures, transition to the cell division phase was preceded by a 4-fold increase in ODC activity and a 10- and a 20-fold increase, respectively, in the putrescine and spermidine levels. Spermine, however, could not be detected in C. reinhardtii cells. Exogenous polyamines caused a decrease in ODC activity. Addition of spermine, but not of spermidine or putrescine, abolished the transition to the cell division phase when applied 7 to 8 h after beginning of the light (growth) phase. Most of the cells had already doubled their cell mass after this growth period. The spermine-induced cell cycle arrest could be overcome by subsequent addition of spermidine or putrescine. The conclusion that spermine affects cell division via a decreased spermidine level was corroborated by the findings that spermine caused a decrease in the putrescine and spermidine levels and that cell divisions also could be prevented by inhibitors of S-adenosyl-methionine decarboxylase and spermidine synthase, respectively, added 8 h after beginning of the growth period. Because protein synthesis was not decreased by addition of spermine under our experimental conditions, we conclude that spermidine affects the transition to the cell division phase directly rather than via protein biosynthesis.
Collapse
Affiliation(s)
- Christine Theiss
- Physiologisch-Chemisches Institut, Universität Tübingen, Hoppe-Seyler-Strasse 4, D-72076 Tübingen, Germany
| | | | | |
Collapse
|
48
|
Laube G, Bernstein HG, Wolf G, Veh RW. Differential distribution of spermidine/spermine-like immunoreactivity in neurons of the adult rat brain. J Comp Neurol 2002; 444:369-86. [PMID: 11891649 DOI: 10.1002/cne.10157] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The polyamines spermidine and spermine are small, widely distributed polycations. In the brain, they confer rectification properties upon inwardly rectifying potassium channels and Ca(2+)-permeable alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionate (AMPA)/kainate receptors and also modify functional properties of N-methyl-D-aspartate receptors. Therefore, functional roles of spermidine/spermine in the adult brain will depend on the colocalization of the spermidine/spermine-sensitive receptors/channels and the polyamines either in the same or in closely associated cell types. We previously immunocytochemically demonstrated a prominent localization of spermidine/spermine in glial cells, especially astrocytes (Laube and Veh [ 1997] Glia 19:171-179). In contrast to the commonly accepted assumption of a ubiquitous distribution of polyamines in various cell types, in neurons of the rat brain, we detected a highly diverse spermidine/spermine-like immunoreactivity. The immunoreactivity in neurons and neuropil throughout the rat brain is listed according to intensity in arbitrary groups. The strongest neuronal staining was observed in the hypothalamic paraventricular, supraoptic, and accessory neurosecretory nuclei. Strong cytoplasmic staining was also evident in some motor and somatosensory areas such as the Me5 nucleus of the mesencephalic trigeminal tract, the nucleus ruber, and the large motor neurons of the spinal cord ventral horn. In contrast, in most cortical and hippocampal regions spermidine/spermine-like immunoreactivity in neurons was relatively weak, whereas in these areas, the labeling pattern was dominated by a diffuse neuropil labeling. In addition to spermidine/spermine immunocytochemistry, ornithine decarboxylase labeling was performed and the resulting labeling patterns were compared. The prominent localization of spermidine/spermine in neurosecretory neurons might point to a functional role different from channel/receptor modification. In these neurons, polyamines might be involved in secretory processes.
Collapse
Affiliation(s)
- Gregor Laube
- Institute for Medical Neurobiology, Medical Faculty, Otto-von-Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | | | | | | |
Collapse
|
49
|
Gandre S, Bercovich Z, Kahana C. Ornithine decarboxylase-antizyme is rapidly degraded through a mechanism that requires functional ubiquitin-dependent proteolytic activity. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:1316-22. [PMID: 11856366 DOI: 10.1046/j.1432-1033.2002.02774.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Antizyme is a polyamine-induced cellular protein that binds to ornithine decarboxylase (ODC), and targets it to rapid ubiquitin-independent degradation by the 26S proteasome. However, the metabolic fate of antizyme is not clear. We have tested the stability of antizyme in mammalian cells. In contrast with previous studies demonstrating stability in vitro in a reticulocyte lysate-based degradation system, in cells antizyme is rapidly degraded and this degradation is inhibited by specific proteasome inhibitors. While the degradation of ODC is stimulated by the presence of cotransfected antizyme, degradation of antizyme seems to be independent of ODC, suggesting that antizyme degradation does not occur while presenting ODC to the 26S proteasome. Interestingly, both species of antizyme, which represent initiation at two in-frame initiation codons, are rapidly degraded. The degradation of both antizyme proteins is inhibited in ts20 cells containing a thermosensitive ubiquitin-activating enzyme, E1. Therefore we conclude that in contrast with ubiquitin-independent degradation of ODC, degradation of antizyme requires a functional ubiquitin system.
Collapse
Affiliation(s)
- Shilpa Gandre
- Department of Molecular Genetics, Weizmann Institute of Science, Israel
| | | | | |
Collapse
|
50
|
Zhu C, Jiang Y, Yang X, Zhao Y. Electrospray ionization mass spectra of monoimidazole/polyamine conjugates. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2002; 16:2273-2277. [PMID: 12478571 DOI: 10.1002/rcm.855] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Imidazole/polyamine amides are biologically important molecules due to their specific DNA binding activity, and much attention has been attracted to the synthesis of their derivatives or analogues. In the present studies, the fragmentation of a series of synthetic monoimidazole/polyamine amides was investigated using electrospray ionization mass spectrometry (ESI-MS) combined with tandem mass spectrometry (ESI-MS/MS). All of the monoimidazole/polyamine amides produced the fragment ion m/z 183 except for the monoimidazole/ethyldiamine amide. The diamine amides produced this ion after the elimination of an alkene, the triamine amides produced it via their corresponding diamine amide fragments, and the tetraamine amide via its triamine and then diamine amide fragments. The characterization of the mass spectra for the different polyamine amides allowed identification of a specific product from the N-acylation of spermidine, and should assist further study of the polyamine amides in DNA binding action.
Collapse
Affiliation(s)
- Changjin Zhu
- Key Laboratory for Bioorganic Phosphorus Chemistry of Ministry of Education, Department of Chemistry, School of Life Science and Engineering, Tsinghua University, Beijing 100084, China
| | | | | | | |
Collapse
|