1
|
Yilmaz İU, Koc A. Boron stress signal is transmitted through the TOR pathway. J Trace Elem Med Biol 2023; 79:127222. [PMID: 37270859 DOI: 10.1016/j.jtemb.2023.127222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 05/14/2023] [Accepted: 05/23/2023] [Indexed: 06/06/2023]
Abstract
Although boron is an essential element for many organisms, an excess amount of it can cause toxicity, and the mechanism behind this toxicity is not yet fully understood. The Gcn4 transcription factor plays a crucial role in the boron stress response by directly activating the expression of the boron efflux pump Atr1. More than a dozen transcription factors and multiple cell signaling pathways have roles in regulating the Gcn4 transcription factor under various circumstances. However, it is unknown which pathways or factors mediate boron signaling to Gcn4. Using the yeast Saccharomyces cerevisiae as a model, we analyzed the factors that converge on the Gcn4 transcription factor to assess their possible roles in boron stress signaling. Our findings show that the GCN system is activated by uncharged tRNA stress in response to boron treatment and that GCN1, which plays a role in transferring uncharged tRNAs to Gcn2, is necessary for the kinase activity of Gcn2. The SNF and PKA pathways were not involved in mediating boron stress, even though they interact with Gcn4. Mutations in TOR pathway genes, such as GLN3 and TOR1, abolished Gcn4 and ATR1 activation in response to boric acid treatment. Therefore, our study suggests that the TOR pathway must be functional to form a proper response against boric acid stress.
Collapse
Affiliation(s)
- İrem Uluisik Yilmaz
- Department of Biomedical Engineering, Iskenderun Technical University, Hatay 31200, Turkey; Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35430, Turkey
| | - Ahmet Koc
- Department of Genetics, Inonu University School of Medicine, Malatya 44280, Turkey; Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir 35430, Turkey.
| |
Collapse
|
2
|
Chen S, Tang Y, Zhang Z, Zheng J, He Y, Wang Z, Mai K, Ai Q. Replacement of Dietary Fishmeal Protein with Degossypolized Cottonseed Protein on Growth Performance, Nonspecific Immune Response, Antioxidant Capacity, and Target of Rapamycin Pathway of Juvenile Large Yellow Croaker ( Larimichthys crocea). AQUACULTURE NUTRITION 2022; 2022:8529556. [PMID: 36860446 PMCID: PMC9973143 DOI: 10.1155/2022/8529556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 06/03/2023]
Abstract
A 70-day feeding experiment was carried out to assess the replacement of dietary fishmeal (FM) protein with degossypolized cottonseed protein (DCP) on large yellow croaker (Larimichthys crocea) with initial body weight (13.09 ± 0.50 g). Five isonitrogenous and isolipidic diets replaced fishmeal protein with 0%, 20%, 40%, 60%, and 80% DCP were formulated and named as FM (the control group), DCP20, DCP40, DCP60, and DCP80, respectively. Results displayed that weight gain rate (WGR) and specific growth rate (SGR) in the DCP20 group (263.91% and 1.85% d-1) were significantly increased compared with the control group (194.79% and 1.54% d-1) (P < 0.05). Furthermore, fish fed the diet with 20% DCP significantly increased the activity of hepatic superoxide dismutase (SOD) compared with the control group (P < 0.05). Meanwhile, the content of hepatic malondialdehyde (MDA) in the DCP20, DCP40, and DCP80 groups was significantly lower than that in the control group (P < 0.05). The activity of intestinal trypsin in the DCP20 group was significantly degraded compared with that in the control group (P < 0.05). The transcription of hepatic proinflammatory cytokine genes (interleukin-6 (il-6); tumor necrosis factor-α (tnf-α); and interferon-γ (ifn-γ)) in the DCP20 and DCP40 groups was significantly upregulated compared with that in the control group (P < 0.05). As to the target of rapamycin (TOR) pathway, the transcription of hepatic target of rapamycin (tor) and ribosomal protein (s6) was significantly up-regulated, while the transcription of hepatic eukaryotic translation initiation factor 4E binding protein 1 (4e-bp1) gene was significantly downregulated in the DCP group compared with the control group (P < 0.05). In summary, based on the broken line regression model analysis of WGR and SGR against dietary DCP replacement levels, the optimal replacement level was recommended to be 8.12% and 9.37% for large yellow croaker, respectively. These results revealed that FM protein replaced with 20% DCP could promote digestive enzyme activities and antioxidant capacity and further activate immune response and the TOR pathway so that growth performance of juvenile large yellow croaker was improved.
Collapse
Affiliation(s)
- Sheng Chen
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yuhang Tang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhou Zhang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Jichang Zheng
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Yuliang He
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Zhen Wang
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
| | - Kangsen Mai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture and Rural Affairs, The Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 5 Yushan Road, Qingdao, Shandong 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, 1 Wenhai Road, Qingdao, Shandong 266237, China
| |
Collapse
|
3
|
Devilliers M, Garrido D, Poidevin M, Rubin T, Le Rouzic A, Montagne J. Differential metabolic sensitivity of insulin-like-response- and TORC1-dependent overgrowth in Drosophila fat cells. Genetics 2021; 217:1-12. [PMID: 33683355 DOI: 10.1093/genetics/iyaa010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 11/02/2020] [Indexed: 12/19/2022] Open
Abstract
Glycolysis and fatty acid (FA) synthesis directs the production of energy-carrying molecules and building blocks necessary to support cell growth, although the absolute requirement of these metabolic pathways must be deeply investigated. Here, we used Drosophila genetics and focus on the TOR (Target of Rapamycin) signaling network that controls cell growth and homeostasis. In mammals, mTOR (mechanistic-TOR) is present in two distinct complexes, mTORC1 and mTORC2; the former directly responds to amino acids and energy levels, whereas the latter sustains insulin-like-peptide (Ilp) response. The TORC1 and Ilp signaling branches can be independently modulated in most Drosophila tissues. We show that TORC1 and Ilp-dependent overgrowth can operate independently in fat cells and that ubiquitous over-activation of TORC1 or Ilp signaling affects basal metabolism, supporting the use of Drosophila as a powerful model to study the link between growth and metabolism. We show that cell-autonomous restriction of glycolysis or FA synthesis in fat cells retrains overgrowth dependent on Ilp signaling but not TORC1 signaling. Additionally, the mutation of FASN (Fatty acid synthase) results in a drop in TORC1 but not Ilp signaling, whereas, at the cell-autonomous level, this mutation affects none of these signals in fat cells. These findings thus reveal differential metabolic sensitivity of TORC1- and Ilp-dependent growth and suggest that cell-autonomous metabolic defects might elicit local compensatory pathways. Conversely, enzyme knockdown in the whole organism results in animal death. Importantly, our study weakens the use of single inhibitors to fight mTOR-related diseases and strengthens the use of drug combination and selective tissue-targeting.
Collapse
Affiliation(s)
- Maelle Devilliers
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Damien Garrido
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Mickael Poidevin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Thomas Rubin
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| | - Arnaud Le Rouzic
- Laboratoire Evolution, Génomes, Comportement et Ecologie, CNRS, Université Paris-Saclay, UMR 9191, F-91190 Gif-sur-Yvette, France
| | - Jacques Montagne
- Institute for Integrative Biology of the Cell (I2BC), CNRS, Université Paris-Saclay, CEA, F-91190 Gif-sur-Yvette, France
| |
Collapse
|
4
|
White JP. Amino Acid Trafficking and Skeletal Muscle Protein Synthesis: A Case of Supply and Demand. Front Cell Dev Biol 2021; 9:656604. [PMID: 34136478 PMCID: PMC8201612 DOI: 10.3389/fcell.2021.656604] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/28/2021] [Indexed: 11/20/2022] Open
Abstract
Skeletal muscle protein synthesis is a highly complex process, influenced by nutritional status, mechanical stimuli, repair programs, hormones, and growth factors. The molecular aspects of protein synthesis are centered around the mTORC1 complex. However, the intricacies of mTORC1 regulation, both up and downstream, have expanded overtime. Moreover, the plastic nature of skeletal muscle makes it a unique tissue, having to coordinate between temporal changes in myofiber metabolism and hypertrophy/atrophy stimuli within a tissue with considerable protein content. Skeletal muscle manages the push and pull between anabolic and catabolic pathways through key regulatory proteins to promote energy production in times of nutrient deprivation or activate anabolic pathways in times of nutrient availability and anabolic stimuli. Branched-chain amino acids (BCAAs) can be used for both energy production and signaling to induce protein synthesis. The metabolism of BCAAs occur in tandem with energetic and anabolic processes, converging at several points along their respective pathways. The fate of intramuscular BCAAs adds another layer of regulation, which has consequences to promote or inhibit muscle fiber protein anabolism. This review will outline the general mechanisms of muscle protein synthesis and describe how metabolic pathways can regulate this process. Lastly, we will discuss how BCAA availability and demand coordinate with synthesis mechanisms and identify key factors involved in intramuscular BCAA trafficking.
Collapse
Affiliation(s)
- James P White
- Department of Medicine, Duke University School of Medicine, Durham, NC, United States.,Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC, United States.,Duke Center for the Study of Aging and Human Development, Duke University School of Medicine, Durham, NC, United States
| |
Collapse
|
5
|
Conejos JRV, Ghassemi Nejad J, Kim JE, Moon JO, Lee JS, Lee HG. Supplementing with L-Tryptophan Increases Medium Protein and Alters Expression of Genes and Proteins Involved in Milk Protein Synthesis and Energy Metabolism in Bovine Mammary Cells. Int J Mol Sci 2021; 22:ijms22052751. [PMID: 33803156 PMCID: PMC7963161 DOI: 10.3390/ijms22052751] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/24/2021] [Accepted: 03/02/2021] [Indexed: 12/12/2022] Open
Abstract
The objective of this study was to investigate the effects of supplementing with L-tryptophan (L-Trp) on milk protein synthesis using an immortalized bovine mammary epithelial (MAC-T) cell line. Cells were treated with 0, 0.3, 0.6, 0.9, 1.2, and 1.5 mM of supplemental L-Trp, and the most efficient time for protein synthesis was determined by measuring cell, medium, and total protein at 0, 24, 48, 72, and 96 h. Time and dose tests showed that the 48 h incubation time and a 0.9 mM dose of L-Trp were the optimal values. The mechanism of milk protein synthesis was elucidated through proteomic analysis to identify the metabolic pathway involved. When L-Trp was supplemented, extracellular protein (medium protein) reached its peak at 48 h, whereas intracellular cell protein reached its peak at 96 h with all L-Trp doses. β-casein mRNA gene expression and genes related to milk protein synthesis, such as mammalian target of rapamycin (mTOR) and ribosomal protein 6 (RPS6) genes, were also stimulated (p < 0.05). Overall, there were 51 upregulated and 59 downregulated proteins, many of which are involved in protein synthesis. The results of protein pathway analysis showed that L-Trp stimulated glycolysis, the pentose phosphate pathway, and ATP synthesis, which are pathways involved in energy metabolism. Together, these results demonstrate that L-Trp supplementation, particularly at 0.9 mM, is an effective stimulus in β-casein synthesis by stimulating genes, proteins, and pathways related to protein and energy metabolism.
Collapse
Affiliation(s)
- Jay Ronel V. Conejos
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
- Institute of Animal Science, College of Agriculture and Food Sciences, University of the Philippines Los Baños, College Batong Malake, Los Baños, Laguna 4031, Philippines
| | - Jalil Ghassemi Nejad
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Jung-Eun Kim
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Jun-Ok Moon
- Institute of Integrated Technology, CJ CheilJedang, Suwon 16495, Korea;
| | - Jae-Sung Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
| | - Hong-Gu Lee
- Department of Animal Science and Technology, Konkuk University, Seoul 05029, Korea; (J.R.V.C.); (J.G.N.); (J.-E.K.); (J.-S.L.)
- Correspondence: ; Tel.: +82-2-450-0523 or +82-2-457-8567
| |
Collapse
|
6
|
A Drosophila genetic screen for suppressors of S6kinase-dependent growth identifies the F-box subunit Archipelago/FBXW7. Mol Genet Genomics 2019; 294:573-582. [PMID: 30656413 DOI: 10.1007/s00438-018-01529-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 12/26/2018] [Indexed: 12/12/2022]
Abstract
This study was designed to identify novel negative regulators of the Drosophila S6kinase (dS6K). S6K is a downstream effector of the growth-regulatory complex mTORC1 (mechanistic-Target-of-Rapamycin complex 1). Nutrients activate mTORC1, which in turn induces the phosphorylation of S6K to promote cell growth, whereas fasting represses mTORC1 activity. Here, we screened 11,000 RNA-interfering (RNAi) lines and retained those that enhanced a dS6K-dependent growth phenotype. Since RNAi induces gene knockdown, enhanced tissue growth supports the idea that the targeted gene acts as a growth suppressor. To validate the resulting candidate genes, we monitored dS6K phosphorylation and protein levels in double-stranded RNAi-treated S2 cells. We identified novel dS6K negative regulators, including gene products implicated in basal cellular functions, suggesting that feedback inputs modulate mTORC1/dS6K signaling. We also identified Archipelago (Ago), the Drosophila homologue of FBXW7, which is an E3-ubiquitin-ligase subunit that loads ubiquitin units onto target substrates for proteasome-mediated degradation. Despite a previous report showing an interaction between Ago/FBXW7 and dS6K in a yeast two-hybrid assay and the presence of an Ago/FBXW7-consensus motif in the dS6K polypeptide, we could not see a direct interaction in immunoprecipitation assay. Nevertheless, we observed that loss-of-ago/fbxw7 in larvae resulted in an increase in dS6K protein levels, but no change in the levels of phosphorylated dS6K or dS6K transcripts, suggesting that Ago/FBXW7 indirectly controls dS6K translation or stability. Through the identification of novel negative regulators of the downstream target, dS6K, our study may help deciphering the underlying mechanisms driving deregulations of mTORC1, which underlies several human diseases.
Collapse
|
7
|
Fan SJ, Goberdhan DCI. PATs and SNATs: Amino Acid Sensors in Disguise. Front Pharmacol 2018; 9:640. [PMID: 29971004 PMCID: PMC6018406 DOI: 10.3389/fphar.2018.00640] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 05/29/2018] [Indexed: 11/30/2022] Open
Abstract
Solute Carriers (SLCs) are involved in the transport of substances across lipid bilayers, including nutrients like amino acids. Amino acids increase the activity of the microenvironmental sensor mechanistic Target of Rapamycin Complex 1 (mTORC1) to promote cellular growth and anabolic processes. They can be brought in to cells by a wide range of SLCs including the closely related Proton-assisted Amino acid Transporter (PAT or SLC36) and Sodium-coupled Neutral Amino acid Transporter (SNAT or SLC38) families. More than a decade ago, the first evidence emerged that members of the PAT family can act as amino acid-stimulated receptors, or so-called "transceptors," connecting amino acids to mTORC1 activation. Since then, further studies in human cell models have suggested that other PAT and SNAT family members, which share significant homology within their transmembrane domains, can act as transceptors. A paradigm shift has also led to the PATs and SNATs at the surface of multiple intracellular compartments being linked to the recruitment and activation of different pools of mTORC1. Much focus has been on late endosomes and lysosomes as mTORC1 regulatory hubs, but more recently a Golgi-localized PAT was shown to be required for mTORC1 activation. PATs and SNATs can also traffic between the cell surface and intracellular compartments, with regulation of this movement providing a means of controlling their mTORC1 regulatory activity. These emerging features of PAT and SNAT amino acid sensors, including the transceptor mechanism, have implications for the pharmacological inhibition of mTORC1 and new therapeutic interventions.
Collapse
Affiliation(s)
| | - Deborah C. I. Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Lushchak O, Strilbytska O, Piskovatska V, Storey KB, Koliada A, Vaiserman A. The role of the TOR pathway in mediating the link between nutrition and longevity. Mech Ageing Dev 2017; 164:127-138. [DOI: 10.1016/j.mad.2017.03.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 02/23/2017] [Accepted: 03/13/2017] [Indexed: 01/13/2023]
|
9
|
Ang JE, Pandher R, Ang JC, Asad YJ, Henley AT, Valenti M, Box G, de Haven Brandon A, Baird RD, Friedman L, Derynck M, Vanhaesebroeck B, Eccles SA, Kaye SB, Workman P, de Bono JS, Raynaud FI. Plasma Metabolomic Changes following PI3K Inhibition as Pharmacodynamic Biomarkers: Preclinical Discovery to Phase I Trial Evaluation. Mol Cancer Ther 2016; 15:1412-24. [PMID: 27048952 PMCID: PMC5321508 DOI: 10.1158/1535-7163.mct-15-0815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/29/2016] [Indexed: 12/30/2022]
Abstract
PI3K plays a key role in cellular metabolism and cancer. Using a mass spectrometry-based metabolomics platform, we discovered that plasma concentrations of 26 metabolites, including amino acids, acylcarnitines, and phosphatidylcholines, were decreased in mice bearing PTEN-deficient tumors compared with non-tumor-bearing controls and in addition were increased following dosing with class I PI3K inhibitor pictilisib (GDC-0941). These candidate metabolomics biomarkers were evaluated in a phase I dose-escalation clinical trial of pictilisib. Time- and dose-dependent effects were observed in patients for 22 plasma metabolites. The changes exceeded baseline variability, resolved after drug washout, and were recapitulated on continuous dosing. Our study provides a link between modulation of the PI3K pathway and changes in the plasma metabolome and demonstrates that plasma metabolomics is a feasible and promising strategy for biomarker evaluation. Also, our findings provide additional support for an association between insulin resistance, branched-chain amino acids, and related metabolites following PI3K inhibition. Mol Cancer Ther; 15(6); 1412-24. ©2016 AACR.
Collapse
Affiliation(s)
- Joo Ern Ang
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Rupinder Pandher
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Joo Chew Ang
- School of Physics, University of Melbourne, Melbourne, Victoria, Australia
| | - Yasmin J Asad
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alan T Henley
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Melanie Valenti
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Gary Box
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Alexis de Haven Brandon
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Richard D Baird
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | | | | | | | - Suzanne A Eccles
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Stan B Kaye
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Paul Workman
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom
| | - Johann S de Bono
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom
| | - Florence I Raynaud
- Cancer Research UK Cancer Therapeutics Unit, The Institute of Cancer Research, London, United Kingdom. Drug Development Unit, The Royal Marsden NHS Foundation Trust, Sutton, United Kingdom.
| |
Collapse
|
10
|
Yang C, Yang X, Lackeyram D, Rideout TC, Wang Z, Stoll B, Yin Y, Burrin DG, Fan MZ. Expression of apical Na(+)-L-glutamine co-transport activity, B(0)-system neutral amino acid co-transporter (B(0)AT1) and angiotensin-converting enzyme 2 along the jejunal crypt-villus axis in young pigs fed a liquid formula. Amino Acids 2016; 48:1491-508. [PMID: 26984322 DOI: 10.1007/s00726-016-2210-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Accepted: 02/29/2016] [Indexed: 01/11/2023]
Abstract
Gut apical amino acid (AA) transport activity is high at birth and during suckling, thus being essential to maintain luminal nutrient-dependent mucosal growth through providing AA as essential metabolic fuel, substrates and nutrient stimuli for cellular growth. Because system-B(0) Na(+)-neutral AA co-transporter (B(0)AT1, encoded by the SLC6A19 gene) plays a dominant role for apical uptake of large neutral AA including L-Gln, we hypothesized that high apical Na(+)-Gln co-transport activity, and B(0)AT1 (SLC6A19) in co-expression with angiotensin-converting enzyme 2 (ACE2) were expressed along the entire small intestinal crypt-villus axis in young animals via unique control mechanisms. Kinetics of Na(+)-Gln co-transport activity in the apical membrane vesicles, prepared from epithelial cells sequentially isolated along the jejunal crypt-villus axis from liquid formula-fed young pigs, were measured with the membrane potential being clamped to zero using thiocyanate. Apical maximal Na(+)-Gln co-transport activity was much higher (p < 0.05) in the upper villus cells than in the middle villus (by 29 %) and the crypt (by 30 %) cells, whereas Na(+)-Gln co-transport affinity was lower (p < 0.05) in the upper villus cells than in the middle villus and the crypt cells. The B(0)AT1 (SLC6A19) mRNA abundance was lower (p < 0.05) in the crypt (by 40-47 %) than in the villus cells. There were no significant differences in B(0)AT1 and ACE2 protein abundances on the apical membrane among the upper villus, the middle villus and the crypt cells. Our study suggests that piglet fast growth is associated with very high intestinal apical Na(+)-neutral AA uptake activities via abundantly co-expressing B(0)AT1 and ACE2 proteins in the apical membrane and by transcribing the B(0)AT1 (SLC6A19) gene in the epithelia along the entire crypt-villus axis.
Collapse
Affiliation(s)
- Chengbo Yang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada. .,Department of Animal Science, Faculty of Agricultural and Food Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| | - Xiaojian Yang
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Southern Research and Outreach Center, University of Minnesota, Waseca, MN, 56093, USA
| | - Dale Lackeyram
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Todd C Rideout
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Department of Exercise and Nutrition Sciences, the State University of New York at Buffalo, New York, 14214, USA
| | - Zirong Wang
- College of Animal Science, Xinjiang Agricultural University, Urumqi, 830052, Xinjiang, China
| | - Barbara Stoll
- US Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Yulong Yin
- Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, 410125, Hunan, China
| | - Douglas G Burrin
- US Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ming Z Fan
- Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
11
|
Bouhlel A, Zhou D, Li A, Yuan L, Rich KM, McConathy J. Synthesis, Radiolabeling, and Biological Evaluation of (R)- and (S)-2-Amino-5-[(18)F]fluoro-2-methylpentanoic Acid ((R)-, (S)-[(18)F]FAMPe) as Potential Positron Emission Tomography Tracers for Brain Tumors. J Med Chem 2015; 58:3817-29. [PMID: 25843369 DOI: 10.1021/jm502023y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel (18)F-labeled α,α-disubstituted amino acid-based tracer, 2-amino-5-[(18)F]fluoro-2-methylpentanoic acid ([(18)F]FAMPe), has been developed for brain tumor imaging with a longer alkyl side chain than previously reported compounds to increase brain availability via system L amino acid transport. Both enantiomers of [(18)F]FAMPe were obtained in good radiochemical yield (24-52% n = 8) and high radiochemical purity (>99%). In vitro uptake assays in mouse DBT gliomas cells revealed that (S)-[(18)F]FAMPe enters cells partly via sodium-independent system L transporters and also via other nonsystem A transport systems including transporters that recognize glutamine. Biodistribution and small animal PET/CT studies in the mouse DBT model of glioblastoma showed that both (R)- and (S)-[(18)F]FAMPe have good tumor imaging properties with the (S)-enantiomer providing higher tumor uptake and tumor to brain ratios. Comparison of the SUVs showed that (S)-[(18)F]FAMPe had higher tumor to brain ratios compared to (S)-[(18)F]FET, a well-established system L substrate.
Collapse
Affiliation(s)
- Ahlem Bouhlel
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Dong Zhou
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Aixiao Li
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Liya Yuan
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Keith M Rich
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| | - Jonathan McConathy
- †Department of Radiology, and ‡Department of Neurosurgery, Washington University in Saint Louis, School of Medicine, St. Louis, Missouri 63110, United States
| |
Collapse
|
12
|
Laufenberg LJ, Pruznak AM, Navaratnarajah M, Lang CH. Sepsis-induced changes in amino acid transporters and leucine signaling via mTOR in skeletal muscle. Amino Acids 2014; 46:2787-98. [PMID: 25218136 DOI: 10.1007/s00726-014-1836-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 09/03/2014] [Indexed: 12/13/2022]
Abstract
The present study tested the hypothesis that sepsis-induced leucine (Leu) resistance in skeletal muscle is associated with a down-regulation of amino acid transporters important in regulating Leu flux or an impairment in the formation of the Leu-sensitive mTOR-Ragulator complex. Sepsis in adult male rats decreased basal protein synthesis in gastrocnemius, associated with a reduction in mTOR activation as indicated by decreased 4E-BP1 and S6K1 phosphorylation. The ability of oral Leu to increase protein synthesis and mTOR kinase after 1 h was largely prevented in sepsis. Sepsis increased CAT1, LAT2 and SNAT2 mRNA content two- to fourfold, but only the protein content for CAT1 (20 % decrease) differed significantly. Conversely, sepsis decreased the proton-assisted amino acid transporter (PAT)-2 mRNA by 60 %, but without a coordinate change in PAT2 protein. There was no sepsis or Leu effect on the protein content for RagA-D, LAMTOR-1 and -2, raptor, Rheb or mTOR in muscle. The binding of mTOR, PRAS40 and RagC to raptor did not differ for control and septic muscle in the basal condition; however, the Leu-induced decrease in PRAS40·raptor and increase in RagC·raptor seen in control muscle was absent in sepsis. The intracellular Leu concentration was increased in septic muscle, compared to basal control conditions, and oral Leu further increased the intracellular Leu concentration similarly in both control and septic rats. Hence, while alterations in select amino acid transporters are not associated with development of sepsis-induced Leu resistance, the Leu-stimulated binding of raptor with RagC and the recruitment of mTOR/raptor to the endosome-lysosomal compartment may partially explain the inability of Leu to fully activate mTOR and muscle protein synthesis.
Collapse
Affiliation(s)
- Lacee J Laufenberg
- Departments of Cellular and Molecular Physiology (H166), and Surgery, Penn State College of Medicine, Hershey, PA, 17033, USA
| | | | | | | |
Collapse
|
13
|
Liu H, Liu R, Xiong Y, Li X, Wang X, Ma Y, Guo H, Hao L, Yao P, Liu L, Wang D, Yang X. Leucine facilitates the insulin-stimulated glucose uptake and insulin signaling in skeletal muscle cells: involving mTORC1 and mTORC2. Amino Acids 2014; 46:1971-9. [PMID: 24806638 DOI: 10.1007/s00726-014-1752-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2013] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
Abstract
Leucine, a branched-chain amino acid, has been shown to promote glucose uptake and increase insulin sensitivity in skeletal muscle, but the exact mechanism remains unestablished. We addressed this issue in cultured skeletal muscle cells in this study. Our results showed that leucine alone did not have an effect on glucose uptake or phosphorylation of protein kinase B (AKT), but facilitated the insulin-induced glucose uptake and AKT phosphorylation. The insulin-stimulated glucose uptake and AKT phosphorylation were inhibited by the phosphatidylinositol 3-kinase inhibitor, wortmannin, but the inhibition was partially reversed by leucine. The inhibitor of mammalian target of rapamycin complex 1 (mTORC1), rapamycin, had no effect on the insulin-stimulated glucose uptake, but eliminated the facilitating effect of leucine in the insulin-stimulated glucose uptake and AKT phosphorylation. In addition, leucine facilitation of the insulin-induced AKT phosphorylation was neutralized by knocking down the core component of the mammalian target of rapamycin complex 2 (mTORC2) with specific siRNA. Together, these findings show that leucine can facilitate the insulin-induced insulin signaling and glucose uptake in skeletal muscle cells through both mTORC1 and mTORC2, implicating the potential importance of this amino acid in glucose homeostasis and providing new mechanistic insights.
Collapse
Affiliation(s)
- Hui Liu
- Hubei Key Laboratory of Food Nutrition and Safety, MOE Key Laboratory of Environment and Health, Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, 430030, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ahmed Nasef N, Mehta S, Ferguson LR. Dietary interactions with the bacterial sensing machinery in the intestine: the plant polyphenol case. Front Genet 2014; 5:64. [PMID: 24772116 PMCID: PMC3983525 DOI: 10.3389/fgene.2014.00064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/13/2014] [Indexed: 12/20/2022] Open
Abstract
There are millions of microbes that live in the human gut. These are important in digestion as well as defense. The host immune system needs to be able to distinguish between the harmless bacteria and pathogens. The initial interaction between bacteria and the host happen through the pattern recognition receptors (PRRs). As these receptors are in direct contact with the external environment, this makes them important candidates for regulation by dietary components and therefore potential targets for therapy. In this review, we introduce some of the main PRRs including a cellular process known as autophagy, and how they function. Additionally we review dietary phytochemicals from plants which are believed to be beneficial for humans. The purpose of this review was to give a better understanding of how these components work in order to create better awareness on how they could be explored in the future.
Collapse
Affiliation(s)
- Noha Ahmed Nasef
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Sunali Mehta
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| | - Lynnette R Ferguson
- Department of Nutrition, Faculty of Medical and Health Sciences, University of Auckland Auckland, New Zealand
| |
Collapse
|
15
|
Dickinson JM, Rasmussen BB. Amino acid transporters in the regulation of human skeletal muscle protein metabolism. Curr Opin Clin Nutr Metab Care 2013; 16:638-44. [PMID: 24100668 PMCID: PMC4164966 DOI: 10.1097/mco.0b013e3283653ec5] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW To highlight recent research on amino acid sensing and signaling and the role of amino acid transporters in the regulation of human skeletal muscle protein metabolism. RECENT FINDINGS The mechanisms that sense amino acid availability and activate mechanistic target of rapamycin complex 1 signaling and protein synthesis are emerging, with multiple new proteins and intracellular amino acid sensors recently identified. Amino acid transporters have a role in the delivery of amino acids to these intracellular sensors and new findings provide further support for amino acid transporters as possible extracellular amino acid sensors. There is growing evidence in human skeletal muscle that amino acid transporter expression is dynamic and responsive to various stimuli, indicating amino acid transporters may have a unique role in the regulation of human skeletal muscle adaptation. SUMMARY There is a clear need to further examine the role of amino acid transporters in human skeletal muscle and their link to cellular amino acid sensing and signaling in the control of protein metabolism. A better understanding of amino acid transport and transporters will allow us to optimize nutritional strategies to accelerate muscle health and improve outcomes for clinical populations.
Collapse
Affiliation(s)
- Jared M Dickinson
- Department of Nutrition and Metabolism, University of Texas Medical Branch, Galveston, Texas, USA
| | | |
Collapse
|
16
|
Offord EA, Karagounis LG, Vidal K, Fielding R, Meydani S, Penninger JM. Nutrition and the biology of human ageing: bone health and osteoporosis / sarcopenia / immune deficiency. J Nutr Health Aging 2013; 17:712-6. [PMID: 24097029 DOI: 10.1007/s12603-013-0374-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- E A Offord
- J.M. Penninger, IMBA, Institute of Molecular Biotechnology of the Austrian Academy of Sciences, 1030 Vienna, Austria. E-mail:
| | | | | | | | | | | |
Collapse
|
17
|
Sikalidis AK. Cellular and animal indispensable amino acid limitation responses and health promotion. Can the two be linked? A critical review. Int J Food Sci Nutr 2012; 64:300-11. [PMID: 23113611 DOI: 10.3109/09637486.2012.738649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cellular growth repression can mediate positive health outcomes by improving resistance while delaying the manifestation and decelerating the progression, of chronic diseases. Sensing systems that respond to amino acid limitation are, the general control non-derepressible kinase 2 (GCN2), the mammalian target of rapamycin (mTOR; namely mammalian target of rapamycin complex 1), the extracellular signal-regulated kinase (ERK)-mitogen-activated protein kinase pathway, the adenosine 5-mono-phosphate-activated protein kinase system. GCN2 particularly, under limiting essential amino acid conditions, activates the integrated stress response (ISR) causing selective up- /down-regulation of pro-survival/pro-apoptotic genes, respectively, rendering beneficial adaptation responses to amino acid limitation. This review attempts to bridge the link between molecular events and mechanisms observed at the cellular level with the potential health benefits possibly achieved at the whole organism level. The article describes mechanisms of essential amino acid sensing and provides a discussion on relevant research that suggests a potential role of essential amino acid sensing for promoting health.
Collapse
Affiliation(s)
- Angelos K Sikalidis
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
18
|
Proton-assisted amino acid transporter PAT1 complexes with Rag GTPases and activates TORC1 on late endosomal and lysosomal membranes. PLoS One 2012; 7:e36616. [PMID: 22574197 PMCID: PMC3344915 DOI: 10.1371/journal.pone.0036616] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 04/03/2012] [Indexed: 01/19/2023] Open
Abstract
Mammalian Target of Rapamycin Complex 1 (mTORC1) is activated by growth factor-regulated phosphoinositide 3-kinase (PI3K)/Akt/Rheb signalling and extracellular amino acids (AAs) to promote growth and proliferation. These AAs induce translocation of mTOR to late endosomes and lysosomes (LELs), subsequent activation via mechanisms involving the presence of intralumenal AAs, and interaction between mTORC1 and a multiprotein assembly containing Rag GTPases and the heterotrimeric Ragulator complex. However, the mechanisms by which AAs control these different aspects of mTORC1 activation are not well understood. We have recently shown that intracellular Proton-assisted Amino acid Transporter 1 (PAT1)/SLC36A1 is an essential mediator of AA-dependent mTORC1 activation. Here we demonstrate in Human Embryonic Kidney (HEK-293) cells that PAT1 is primarily located on LELs, physically interacts with the Rag GTPases and is required for normal AA-dependent mTOR relocalisation. We also use the powerful in vivo genetic methodologies available in Drosophila to investigate the regulation of the PAT1/Rag/Ragulator complex. We show that GFP-tagged PATs reside at both the cell surface and LELs in vivo, mirroring PAT1 distribution in several normal mammalian cell types. Elevated PI3K/Akt/Rheb signalling increases intracellular levels of PATs and synergistically enhances PAT-induced growth via a mechanism requiring endocytosis. In light of the recent identification of the vacuolar H+-ATPase as another Rag-interacting component, we propose a model in which PATs function as part of an AA-sensing engine that drives mTORC1 activation from LEL compartments.
Collapse
|
19
|
Abstract
Nutrient sensing and the capacity to respond to starvation is tightly regulated as a means of cell survival. Among the features of the starvation response are induction of both translational repression and autophagy. Despite the fact that intracellular parasite like Toxoplasma gondii within a host cell predicted to be nutrient rich, they encode genes involved in both translational repression and autophagy. We therefore examined the consequence of starvation, a classic trigger of autophagy, on intracellular parasites. As expected, starvation results in the activation of the translational repression system as evidenced by elevation of phosphorylated TgIF2α (TgIF2α-P). Surprisingly, we also observe a rapid and selective fragmentation of the single parasite mitochondrion that leads irreversibly to parasite death. This profound effect was dependent primarily on the limitation of amino acids and involved signalling by the parasite TOR homologue. Notably, the effective blockade of mitochondrial fragmentation by the autophagy inhibitor 3-methyl adenine (3-MA) suggests an autophagic mechanism. In the absence of a documented apoptotic cascade in T. gondii, the data suggest that autophagy is the primary mechanism of programmed cell death in T. gondii and potentially other related parasites.
Collapse
Affiliation(s)
- Debasish Ghosh
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| | - Julia L. Walton
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| | - Paul D. Roepe
- Departments of Chemistry, Biochemistry and Cellular and Molecular Biology, Georgetown University, Washington DC. 20057, USA
| | - Anthony P. Sinai
- Department of Microbiology, Immunology and Molecular Genetics; University of Kentucky College of Medicine, Lexington KY 40536, USA
| |
Collapse
|
20
|
Abstract
This chapter presents an overview of the methods that have been used to overexpress or downregulate the level of mTOR isoforms in mammalian cells. The techniques of transient overexpression, generation of stable cell lines, retroviral- and lentiviral-mediated overexpression or downregulation are discussed.
Collapse
Affiliation(s)
- Mahmoud Khalil
- Department of Structural and Molecular Biology, Institute of Structural and Molecular Biology, University College London, London, UK
| | | |
Collapse
|
21
|
van Dam TJP, Zwartkruis FJT, Bos JL, Snel B. Evolution of the TOR pathway. J Mol Evol 2011; 73:209-20. [PMID: 22057117 PMCID: PMC3236823 DOI: 10.1007/s00239-011-9469-9] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/24/2011] [Indexed: 11/27/2022]
Abstract
The TOR kinase is a major regulator of growth in eukaryotes. Many components of the TOR pathway are implicated in cancer and metabolic diseases in humans. Analysis of the evolution of TOR and its pathway may provide fundamental insight into the evolution of growth regulation in eukaryotes and provide a practical framework on which experimental evidence can be compared between species. Here we performed phylogenetic analyses on the components of the TOR pathway and determined their point of invention. We find that the two TOR complexes and a large part of the TOR pathway originated before the Last Eukaryotic Common Ancestor and form a core to which new inputs have been added during animal evolution. In addition, we provide insight into how duplications and sub-functionalization of the S6K, RSK, SGK and PKB kinases shaped the complexity of the TOR pathway. In yeast we identify novel AGC kinases that are orthologous to the S6 kinase. These results demonstrate how a vital signaling pathway can be both highly conserved and flexible in eukaryotes.
Collapse
Affiliation(s)
- Teunis J P van Dam
- Theoretical Biology and Bioinformatics, Department of Biology, Science Faculty, Utrecht University, Padualaan 8, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
22
|
Benner J, Daniel H, Spanier B. A glutathione peroxidase, intracellular peptidases and the TOR complexes regulate peptide transporter PEPT-1 in C. elegans. PLoS One 2011; 6:e25624. [PMID: 21980510 PMCID: PMC3182239 DOI: 10.1371/journal.pone.0025624] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 09/08/2011] [Indexed: 11/18/2022] Open
Abstract
The intestinal peptide transporter PEPT-1 in Caenorhabditis elegans is a rheogenic H+-dependent carrier responsible for the absorption of di- and tripeptides. Transporter-deficient pept-1(lg601) worms are characterized by impairments in growth, development and reproduction and develop a severe obesity like phenotype. The transport function of PEPT-1 as well as the influx of free fatty acids was shown to be dependent on the membrane potential and on the intracellular pH homeostasis, both of which are regulated by the sodium-proton exchanger NHX-2. Since many membrane proteins commonly function as complexes, there could be proteins that possibly modulate PEPT-1 expression and function. A systematic RNAi screening of 162 genes that are exclusively expressed in the intestine combined with a functional transport assay revealed four genes with homologues existing in mammals as predicted PEPT-1 modulators. While silencing of a glutathione peroxidase surprisingly caused an increase in PEPT-1 transport function, silencing of the ER to Golgi cargo transport protein and of two cytosolic peptidases reduced PEPT-1 transport activity and this even corresponded with lower PEPT-1 protein levels. These modifications of PEPT-1 function by gene silencing of homologous genes were also found to be conserved in the human epithelial cell line Caco-2/TC7 cells. Peptidase inhibition, amino acid supplementation and RNAi silencing of targets of rapamycin (TOR) components in C. elegans supports evidence that intracellular peptide hydrolysis and amino acid concentration are a part of a sensing system that controls PEPT-1 expression and function and that involves the TOR complexes TORC1 and TORC2.
Collapse
Affiliation(s)
- Jacqueline Benner
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Hannelore Daniel
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
| | - Britta Spanier
- ZIEL Research Center of Nutrition and Food Sciences, Abteilung Biochemie, Technische Universität München, Freising, Germany
- * E-mail:
| |
Collapse
|
23
|
McConathy J, Yu W, Jarkas N, Seo W, Schuster DM, Goodman MM. Radiohalogenated nonnatural amino acids as PET and SPECT tumor imaging agents. Med Res Rev 2011; 32:868-905. [DOI: 10.1002/med.20250] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Jonathan McConathy
- Mallinckrodt Institute of Radiology; Washington University School of Medicine; St. Louis Missouri
| | - Weiping Yu
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Nachwa Jarkas
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Wonewoo Seo
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - David M. Schuster
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| | - Mark M. Goodman
- Department of Radiology and Imaging Sciences; School of Medicine, Emory University; Atlanta Georgia
| |
Collapse
|
24
|
Appuhamy JADRN, Bell AL, Nayananjalie WAD, Escobar J, Hanigan MD. Essential amino acids regulate both initiation and elongation of mRNA translation independent of insulin in MAC-T cells and bovine mammary tissue slices. J Nutr 2011; 141:1209-15. [PMID: 21525255 DOI: 10.3945/jn.110.136143] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Current nutrient requirement models assume fixed efficiencies of absorbed amino acid (AA) conversion to milk protein. Regulation of mammary protein synthesis (PS) potentially violates this assumption by changing the relationship between AA supply and milk protein output. The objective of this study was to investigate the effects of essential AA (EAA) and insulin on cellular signaling and PS rates in bovine mammary cells. MAC-T cells were subjected to 0 or 100% of normal EAA concentrations in DMEM/F12 and 0 or 100 μg insulin/L in a 2 × 2 factorial arrangement of treatments. Lactogenic bovine mammary tissue slices (MTS) were subjected to the same treatments, except low-EAA was 5% of normal DMEM/F12 concentrations. In MAC-T cells, EAA increased phosphorylation of mammalian target of rapamycin (mTOR; Ser2448), ribosomal protein S6 kinase 1 (S6K1; Thr389), eIF4E binding protein 1 (4EBP1; Thr37/46), and insulin receptor substrate 1 (IRS1; Ser1101), and reduced phosphorylation of eukaryotic elongation factor 2 (eEF2; Thr56) and eukaryotic initiation factor (eIF) 2-α (Ser51). In the presence of insulin, phosphorylation of Akt (Ser473), mTOR, S6K1, 4EBP1, and IRS1 increased in MAC-T cells. In MTS, EAA had similar effects on phosphorylation of signaling proteins and increased mammary PS rates. Insulin did not affect MTS signaling, perhaps due to inadequate levels. Effects of EAA and insulin were independent and additive for mTOR signaling in MAC-T cells. EAA did not inhibit insulin stimulation of Akt phosphorylation. PS rates were strongly associated with phosphorylation of 4EBP1 and eEF2 in MTS. EAA availability affected translation initiation and elongation control points to more strongly regulate PS than insulin.
Collapse
|
25
|
Dickinson JM, Fry CS, Drummond MJ, Gundermann DM, Walker DK, Glynn EL, Timmerman KL, Dhanani S, Volpi E, Rasmussen BB. Mammalian target of rapamycin complex 1 activation is required for the stimulation of human skeletal muscle protein synthesis by essential amino acids. J Nutr 2011; 141:856-62. [PMID: 21430254 PMCID: PMC3077888 DOI: 10.3945/jn.111.139485] [Citation(s) in RCA: 192] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The relationship between mammalian target of rapamycin complex 1 (mTORC1) signaling and muscle protein synthesis during instances of amino acid surplus in humans is based solely on correlational data. Therefore, the goal of this study was to use a mechanistic approach specifically designed to determine whether increased mTORC1 activation is requisite for the stimulation of muscle protein synthesis following L-essential amino acid (EAA) ingestion in humans. Examination of muscle protein synthesis and signaling were performed on vastus lateralis muscle biopsies obtained from 8 young (25 ± 2 y) individuals who were studied prior to and following ingestion of 10 g of EAA during 2 separate trials in a randomized, counterbalanced design. The trials were identical except during 1 trial, participants were administered a single oral dose of a potent mTORC1 inhibitor (rapamycin) prior to EAA ingestion. In response to EAA ingestion, an ~60% increase in muscle protein synthesis was observed during the control trial, concomitant with increased phosphorylation of mTOR (Ser(2448)), ribosomal S6 kinase 1 (Thr(389)), and eukaryotic initiation factor 4E binding protein 1 (Thr(37/46)). In contrast, prior administration of rapamycin completely blocked the increase in muscle protein synthesis and blocked or attenuated activation of mTORC1-signaling proteins. The inhibition of muscle protein synthesis and signaling was not due to differences in either extracellular or intracellular amino acid availability, because these variables were similar between trials. These data support a fundamental role for mTORC1 activation as a key regulator of human muscle protein synthesis in response to increased EAA availability. This information will be useful in the development of evidence-based nutritional therapies targeting mTORC1 to counteract muscle wasting associated with numerous clinical conditions.
Collapse
Affiliation(s)
- Jared M. Dickinson
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555
| | - Christopher S. Fry
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555
| | - Micah J. Drummond
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555
| | - David M. Gundermann
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555
| | - Dillon K. Walker
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555
| | - Erin L. Glynn
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555
| | - Kyle L. Timmerman
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555
| | - Shaheen Dhanani
- Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555
| | - Elena Volpi
- Department of Internal Medicine, and University of Texas Medical Branch, Galveston, TX 77555,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555
| | - Blake B. Rasmussen
- Division of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, TX 77555,Sealy Center on Aging, University of Texas Medical Branch, Galveston, TX 77555,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
26
|
Mittenthal JE, Zou L. To signal a conjunction of many inputs negative regulation is likely. Math Biosci 2011; 231:69-75. [DOI: 10.1016/j.mbs.2011.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 02/01/2011] [Accepted: 02/09/2011] [Indexed: 12/22/2022]
|
27
|
Drummond MJ, Fry CS, Glynn EL, Timmerman KL, Dickinson JM, Walker DK, Gundermann DM, Volpi E, Rasmussen BB. Skeletal muscle amino acid transporter expression is increased in young and older adults following resistance exercise. J Appl Physiol (1985) 2011; 111:135-42. [PMID: 21527663 DOI: 10.1152/japplphysiol.01408.2010] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Amino acid transporters and mammalian target of rapamycin complex 1 (mTORC1) signaling are important contributors to muscle protein anabolism. Aging is associated with reduced mTORC1 signaling following resistance exercise, but the role of amino acid transporters is unknown. Young (n = 13; 28 ± 2 yr) and older (n = 13; 68 ± 2 yr) subjects performed a bout of resistance exercise. Skeletal muscle biopsies (vastus lateralis) were obtained at basal and 3, 6, and 24 h postexercise and were analyzed for amino acid transporter mRNA and protein expression and regulators of amino acid transporter transcription utilizing real-time PCR and Western blotting. We found that basal amino acid transporter expression was similar in young and older adults (P > 0.05). Exercise increased L-type amino acid transporter 1/solute-linked carrier (SLC) 7A5, CD98/SLC3A2, sodium-coupled neutral amino acid transporter 2/SLC38A2, proton-assisted amino acid transporter 1/SLC36A1, and cationic amino acid transporter 1/SLC7A1 mRNA expression in both young and older adults (P < 0.05). L-type amino acid transporter 1 and CD98 protein increased only in younger adults (P < 0.05). eukaryotic initiation factor 2 α-subunit (S52) increased similarly in young and older adults postexercise (P < 0.05). Ribosomal protein S6 (S240/244) and activating transcription factor 4 nuclear protein expression tended to be higher in the young, while nuclear signal transducer and activator of transcription 3 (STAT3) (Y705) was higher in the older subjects postexercise (P < 0.05). These results suggest that the rapid upregulation of amino acid transporter expression following resistance exercise may be regulated differently between the age groups, but involves a combination of mTORC1, activating transcription factor 4, eukaryotic initiation factor 2 α-subunit, and STAT3. We propose an increase in amino acid transporter expression may contribute to enhanced amino acid sensitivity following exercise in young and older adults. In older adults, the increased nuclear STAT3 phosphorylation may be indicative of an exercise-induced stress response, perhaps to export amino acids from muscle cells.
Collapse
Affiliation(s)
- Micah J Drummond
- University of Texas Medical Branch, Department of Nutrition and Metabolism, Division of Rehabilitation Sciences, Sealy Center on Aging, 301 Univ. Blvd., Galveston, TX 77555-1144, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
PURPOSE OF REVIEW In various diseases amino acid imbalances occur which have been described especially in the 1980s of the last century. It was noted that some of these imbalances may exert specific negative physiological effects. However, mainly because of economic reasons, no real attempts have been made to develop special amino acid solutions for disease processed associated with amino acid imbalances to restore normal amino acid concentrations. RECENT FINDINGS A recent study performed in the fruit-fly Drosophila indicated that modifying the amino acid supply may influence both lifespan and fecundity. It was shown that adding amino acids but not carbohydrates or fat to a restricted diet decreases lifespan. In contrast, administration of certain amino acids especially of methionine increased fecundity without decreasing lifespan. It is known that dietary restriction can decrease fecundity at the cost of a prolonged lifespan. SUMMARY Recent investigations revealed that amino acids are powerful molecules in mediating cell signalling. Therefore, it can be hypothesized that the severe amino acid imbalances as observed in uraemia or liver failure may exert a relevant impact on various physiologic processes and on organ function. The recent results described in Drosophila should stimulate a new research area on the effect of amino acid supply in various disease processes.
Collapse
Affiliation(s)
- Erich Roth
- Department of Surgery, Division of Nephrology, Vienna General Hospital, Vienna, Austria.
| | | |
Collapse
|
29
|
Reitelseder S, Agergaard J, Doessing S, Helmark IC, Lund P, Kristensen NB, Frystyk J, Flyvbjerg A, Schjerling P, van Hall G, Kjaer M, Holm L. Whey and casein labeled with L-[1-13C]leucine and muscle protein synthesis: effect of resistance exercise and protein ingestion. Am J Physiol Endocrinol Metab 2011; 300:E231-42. [PMID: 21045172 DOI: 10.1152/ajpendo.00513.2010] [Citation(s) in RCA: 140] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Muscle protein turnover following resistance exercise and amino acid availability are relatively well described. By contrast, the beneficial effects of different sources of intact proteins in relation to exercise need further investigation. Our objective was to compare muscle anabolic responses to a single bolus intake of whey or casein after performance of heavy resistance exercise. Young male individuals were randomly assigned to participate in two protein trials (n = 9) or one control trial (n = 8). Infusion of l-[1-(13)C]leucine was carried out, and either whey, casein (0.3 g/kg lean body mass), or a noncaloric control drink was ingested immediately after exercise. l-[1-(13)C]leucine-labeled whey and casein were used while muscle protein synthesis (MPS) was assessed. Blood and muscle tissue samples were collected to measure systemic hormone and amino acid concentrations, tracer enrichments, and myofibrillar protein synthesis. Western blots were used to investigate the Akt signaling pathway. Plasma insulin and branched-chain amino acid concentrations increased to a greater extent after ingestion of whey compared with casein. Myofibrillar protein synthesis was equally increased 1-6 h postexercise after whey and casein intake, both of which were higher compared with control (P < 0.05). Phosphorylation of Akt and p70(S6K) was increased after exercise and protein intake (P < 0.05), but no differences were observed between the types of protein except for total 4E-BP1, which was higher after whey intake than after casein intake (P < 0.05). In conclusion, whey and casein intake immediately after resistance exercise results in an overall equal MPS response despite temporal differences in insulin and amino acid concentrations and 4E-BP1.
Collapse
Affiliation(s)
- Søren Reitelseder
- Institute of Sports Medicine Copenhagen, Department of Orthopedic Surgery M, Bispebjerg Hospital and Center for Healthy Aging, University of Copenhagen, Copenhagen NV, Denmark.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Cell growth is highly regulated and its deregulation is related to many human diseases such as cancer. Nutritional cues stimulate cell growth through modulation of TOR (target of rapamycin) signaling pathway. At the center of this pathway is a large serine/threonine protein kinase TOR, which forms two distinct functional complexes TORC1 and TORC2 in a cell. TORC1 senses the environmental nutrient quality/quantity and transmits the growth signals to multiple effectors to regulate a broad spectrum of biological processes including translation initiation, ribosome biogenesis, autophagy, nutrient uptake, and metabolism. By using budding yeast as a model, recent studies began to elucidate the complexity of the TOR signaling pathway.
Collapse
|
31
|
Trojel-Hansen C, Erichsen KD, Christensen MK, Jensen PB, Sehested M, Nielsen SJ. Novel small molecule drugs inhibit tumor cell metabolism and show potent anti-tumorigenic potential. Cancer Chemother Pharmacol 2010; 68:127-38. [PMID: 20852860 DOI: 10.1007/s00280-010-1453-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2010] [Accepted: 09/01/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND Rapidly dividing tumor cells have an increased demand for nutrients to support their characteristic unabated growth; this demand is met by an increased availability of nutrients such as amino acids through vasculogenesis and by the enhanced cellular entry of nutrients through the upregulation of specific transporters. Deprivation of intracellular amino acids or block of amino acid uptake has been shown to be cytotoxic to many established human cancer cell lines in vitro and in human cancer xenograft models. RESULTS In this paper, we provide evidence that the two small molecule oxyphenisatine analogs TOP001 and TOP216 exert their anti-cancer effect by affecting tumor cell metabolism and inducing intracellular amino acid deprivation, leading to a block of cell proliferation. GCN2-mediated phosphorylation of eIF2α as well as mTOR pathway inhibition supports the above notion. In addition, these novel anti-cancer compounds inhibit DNA and protein synthesis and induce apoptosis in a broad spectrum of cancer cell lines. In vivo, the compounds induce tumor stasis and regression in mouse xenograft models of human breast, prostate, ovarian and pancreatic cancer, both when administered intravenously and orally. CONCLUSION In conclusion, these small molecules, built on a 1,3-dihydroindole-2-one scaffold, elicit strong anti-proliferative and cytotoxic activity, and importantly, a strong anti-tumorigenicity is observed in in vivo xenograft models of human breast, ovary, prostate and pancreatic cancers encouraging the translation of this class of compounds into the clinic.
Collapse
Affiliation(s)
- Christina Trojel-Hansen
- XPU Bartholin, Rigshospitalet 3731, TopoTarget A/S, Copenhagen Biocenter, Ole Maaløesvej 5, 2200 Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
32
|
Peter C, Waldmann H, Cobbold SP. mTOR signalling and metabolic regulation of T cell differentiation. Curr Opin Immunol 2010; 22:655-61. [PMID: 20833524 DOI: 10.1016/j.coi.2010.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2010] [Accepted: 08/15/2010] [Indexed: 01/28/2023]
Abstract
T cells constantly monitor energy status and nutrient levels in order to adjust metabolic pathways according to their nutritional status and other environmental stimuli. It is increasingly evident that the regulation of cellular metabolism is tightly coupled to T cell differentiation that ultimately determines the cellular fate. The mammalian target of Rapamycin (mTOR) pathway has emerged as a key player in sensing these nutritional/energetic signals and in addition, acts as a major integrator of growth factor induced signals, so placing mTOR at the core of a signalling network controlling metabolism and cellular fate. The mTOR pathway has been shown to play an important role in determining the differentiation of CD4(+) T cells into inflammatory and regulatory subsets, in the induction of anergy, in the development of CD8(+) memory T cells and the regulation of T cell trafficking.
Collapse
Affiliation(s)
- Christian Peter
- Sir William Dunn School of Pathology, Oxford University, South Parks Road, Oxford OX1 3RE, United Kingdom
| | | | | |
Collapse
|
33
|
Proton-assisted amino-acid transporters are conserved regulators of proliferation and amino-acid-dependent mTORC1 activation. Oncogene 2010; 29:4068-79. [PMID: 20498635 DOI: 10.1038/onc.2010.177] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The phosphoinositide3-kinase (PI3K)/Akt and downstream mammalian target of rapamycin complex 1 (mTORC1) signalling cascades promote normal growth and are frequently hyperactivated in tumour cells. mTORC1 is also regulated by local nutrients, particularly amino acids, but the mechanisms involved are poorly understood. Unexpectedly, members of the proton-assisted amino-acid transporter (PAT or SLC36) family emerged from in vivo genetic screens in Drosophila as transporters with uniquely potent effects on mTORC1-mediated growth. In this study, we show the two human PATs that are widely expressed in normal tissues and cancer cell lines, namely PAT1 and PAT4, behave similarly to fly PATs when expressed in Drosophila. Small interfering RNA knockdown shows that these molecules are required for the activation of mTORC1 targets and for proliferation in human MCF-7 breast cancer and HEK-293 embryonic kidney cell lines. Furthermore, activation of mTORC1 in starved HEK-293 cells stimulated by amino acids requires PAT1 and PAT4, and is elevated in PAT1-overexpressing cells. Importantly, in HEK-293 cells, PAT1 is highly concentrated in intracellular compartments, including endosomes, wherein mTOR shuttles upon amino-acid stimulation. Therefore our data are consistent with a model in which PATs modulate the activity of mTORC1 not by transporting amino acids into the cell but by modulating the intracellular response to amino acids.
Collapse
|
34
|
Drummond MJ, Glynn EL, Fry CS, Timmerman KL, Volpi E, Rasmussen BB. An increase in essential amino acid availability upregulates amino acid transporter expression in human skeletal muscle. Am J Physiol Endocrinol Metab 2010; 298:E1011-8. [PMID: 20304764 PMCID: PMC2867366 DOI: 10.1152/ajpendo.00690.2009] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Essential amino acids (EAA) stimulate skeletal muscle mammalian target of rapamycin complex 1 (mTORC1) signaling and protein synthesis. It has recently been reported that an increase in amino acid (AA) transporter expression during anabolic conditions is rapamycin-sensitive. The purpose of this study was to determine whether an increase in EAA availability increases AA transporter expression in human skeletal muscle. Muscle biopsies were obtained from the vastus lateralis of seven young adult subjects (3 male, 4 female) before and 1-3 h after EAA ingestion (10 g). Blood and muscle samples were analyzed for leucine kinetics using stable isotopic techniques. Quantitative RT-PCR, and immunoblotting were used to determine the mRNA and protein expression, respectively, of AA transporters and members of the general AA control pathway [general control nonrepressed (GCN2), activating transcription factor (ATF4), and eukaryotic initiation factor (eIF2) alpha-subunit (Ser(52))]. EAA ingestion increased blood leucine concentration, delivery of leucine to muscle, transport of leucine from blood into muscle, intracellular muscle leucine concentration, ribosomal protein S6 (Ser(240/244)) phosphorylation, and muscle protein synthesis. This was followed with increased L-type AA transporter (LAT1), CD98, sodium-coupled neutral AA transporter (SNAT2), and proton-coupled amino acid transporter (PAT1) mRNA expression at 1 h (P < 0.05) and modest increases in LAT1 protein expression (3 h post-EAA) and SNAT2 protein expression (2 and 3 h post-EAA, P < 0.05). Although there were no changes in GCN2 expression and eIF2 alpha phosphorylation, ATF4 protein expression reached significance by 2 h post-EAA (P < 0.05). We conclude that an increase in EAA availability upregulates human skeletal muscle AA transporter expression, perhaps in an mTORC1-dependent manner, which may be an adaptive response necessary for improved AA intracellular delivery.
Collapse
Affiliation(s)
- Micah J Drummond
- University of Texas Medical Branch, Department of Physical Therapy, Division of Rehabilitation Sciences, Sealy Center on Aging, 301 Univ. Blvd., Galveston, TX 77555-1144, USA
| | | | | | | | | | | |
Collapse
|
35
|
Drosophila expresses a CD98 transporter with an evolutionarily conserved structure and amino acid-transport properties. Biochem J 2009; 420:363-72. [PMID: 19335336 DOI: 10.1042/bj20082198] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mammalian CD98 heterodimeric amino acid transporters consist of a promiscuous single-pass transmembrane glycoprotein, CD98hc (CD98 heavy chain), and one of six multipass transmembrane proteins or 'light chains'. The heterodimeric complexes of CD98hc and the light chains LAT1 (L-type amino acid transporter 1) or LAT2 specifically promote sodium-independent System L exchange of neutral amino acids, including leucine. CD98hc is also implicated in other processes, including cell fusion, cell adhesion and activation of TOR (target of rapamycin) signalling. Surprisingly, recent reports suggested that insects lack a membrane-bound CD98hc, but in the present study we show that Drosophila CG2791 encodes a functional CD98hc orthologue with conservation in intracellular, transmembrane and extracellular domains. We demonstrate by RNA-interference knockdown in Drosophila Schneider cells that CG2791 and two Drosophila homologues of the mammalian CD98 light chains, Mnd (Minidiscs) and JhI-21, are required for normal levels of System L transport. Furthermore, we show that System L activity is increased by methoprene, an analogue of the developmentally regulated endocrine hormone juvenile hormone, an effect that is potentially mediated by elevated Mnd expression. Co-expression of CG2791 and JhI-21, but not CG2791 and Mnd, in Xenopus oocytes mediates System L transport. Finally, mapping of conserved sequences on to the recently determined crystal structure of the human CD98hc extracellular domain highlights two conserved exposed hydrophobic patches at either end of the domain that are potential protein-protein-interaction surfaces. Therefore our results not only show that there is functional conservation of CD98hc System L transporters in flies, but also provide new insights into the structure, functions and regulation of heterodimeric amino acid transporters.
Collapse
|
36
|
mTOR: dissecting regulation and mechanism of action to understand human disease. Biochem Soc Trans 2009; 37:213-6. [PMID: 19143634 DOI: 10.1042/bst0370213] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
mTOR (mammalian target of rapamycin) is a highly conserved serine/threonine protein kinase that has roles in cell metabolism, cell growth and cell survival. Although it has been known for some years that mTOR acts as a hub for inputs from growth factors (in particular insulin and insulin-like growth factors), nutrients and cellular stresses, some of the mechanisms involved are still poorly understood. Recent work has implicated mTOR in a variety of important human pathologies, including cancer, Type 2 diabetes and neurodegenerative disorders, heightening interest and accelerating progress in dissecting out the control and functions of mTOR.
Collapse
|