1
|
Aoyama K, Yamamura R, Katsurada T, Shimizu T, Takahashi D, Kondo E, Iwasaki N, Tamakoshi A, Soga T, Fukuda S, Sonoshita M, Sakamoto N. Decreased Fecal Nicotinamide and Increased Bacterial Nicotinamidase Gene Expression in Ulcerative Colitis Patients. Inflamm Bowel Dis 2025:izaf092. [PMID: 40357746 DOI: 10.1093/ibd/izaf092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Indexed: 05/15/2025]
Abstract
BACKGROUND/OBJECTIVE Ulcerative colitis (UC) is significantly linked with gut microbiota, which is essential for maintaining gut health. Their metabolites mitigate gut inflammation and bolster barrier function. Among these metabolites, we focused on vitamin B3, which has been reported to improve the pathogenesis of UC in mice. This study aimed to compare fecal vitamin B3 and gut microbiota between non-UC and UC patients. METHODS We assessed fecal metabolites and gut microbiota in 71 UC patients (UC group) and 72 non-UC patients (non-UC group) matched by sex and age in 10-year intervals. Fecal samples were collected and metabolites were analyzed using capillary electrophoresis time-of-flight mass spectrometry. Bacterial DNA was extracted for 16S rRNA gene sequencing. We analyzed fecal nicotinamide levels and gut microbiota composition, employing statistical adjustments for confounding factors. RESULTS We found that the UC group exhibited significantly lower fecal nicotinamide levels and α-diversity (Shannon index) compared to the non-UC group. The relative abundance of bacterial genera such as Treponema, UCG-002, and Fusicatenibacter was decreased, while Sellimonas, Fournierella, and Oscillospira were increased in the UC group. Moreover, a negative correlation was observed between Sellimonas abundance and fecal nicotinamide levels in the UC group. Additionally, the UC group showed higher expression of a bacterial gene encoding nicotinamidase compared to the non-UC group. CONCLUSIONS These findings suggest that gut microbiota dysbiosis contributes to reduced vitamin B3 metabolism in UC patients. The study highlights the potential of replenishing vitamin B3 metabolic pathways as a novel therapeutic approach for UC treatment.
Collapse
Affiliation(s)
- Keiya Aoyama
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Ryodai Yamamura
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Takehiko Katsurada
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Tomohiro Shimizu
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Daisuke Takahashi
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Eiji Kondo
- Center for Sports Medicine, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| | - Norimasa Iwasaki
- Department of Orthopaedic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Akiko Tamakoshi
- Department of Public Health, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Tomoyoshi Soga
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Kanagawa, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Innovative Microbiome Therapy Research Center, Juntendo University Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
- Metagen, Inc., Tsuruoka, Yamagata, Japan
| | - Masahiro Sonoshita
- Division of Biomedical Oncology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
- FlyWorks, K.K., Sapporo, Hokkaido, Japan
- FlyWorks America Inc., Pittsfield, MA, USA
| | - Naoya Sakamoto
- Department of Gastroenterology and Hepatology, Hokkaido University Hospital, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Dettlaff-Pokora A, Swierczynski J. High Concentrations of Circulating 2PY and 4PY-Potential Risk Factor of Cardiovascular Disease in Patients with Chronic Kidney Disease. Int J Mol Sci 2025; 26:4463. [PMID: 40362700 PMCID: PMC12072460 DOI: 10.3390/ijms26094463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2025] [Revised: 05/05/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Recently published data indicate that elevated circulating concentrations of N1-methyl-2-pyridone-5-carboxamide (2PY, also described as Met2PY) and N1-methyl-4-pyridone-5-carboxamide (4PY, also described as Met4PY), terminal catabolites of nicotinamide adenine dinucleotide (NAD+), are associated with cardiovascular disease (CVD) risk in humans. Previously, we and the others have shown that patients with advanced stages of chronic kidney disease (CKD) exhibit several-fold higher circulating 2PY and 4PY concentrations compared to healthy subjects or patients in the early stages of the disease. It is also well documented that patients with advanced CKD stages exhibit markedly elevated CVD risk, which is the main cause of premature death (in these patients). Therefore, we hypothesize that high concentrations of circulating 2PY and 4PY are important factors that may contribute to cardiovascular events and, ultimately, premature death in CKD patients. However, further, accurately controlled clinical research is needed to provide definitive answers concerning the role of 2PY and 4PY in CVD risk in CKD patients. Moreover, we are dealing with some issues related to the use of NAD+ precursors (NAD+ boosters) as drugs (also in CKD patients) and/or supplements. Due to the increase in circulating 2PY and 4PY levels during treatment with NAD+ boosters, these precursors should be used with caution, especially in patients with increased CVD risk.
Collapse
Affiliation(s)
- Agnieszka Dettlaff-Pokora
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdańsk, Dębinki 1, 80-211 Gdańsk, Poland
| | - Julian Swierczynski
- Institute of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| |
Collapse
|
3
|
Chen H, Zhao W, Xiao Y, Gao Q, Yang X, Pang K, Huang B, Liang X. Association between dietary niacin intake and the odds of gallstones in US adults: A cross-sectional study in NHANES 2017-2020. Prev Med Rep 2025; 53:103057. [PMID: 40264748 PMCID: PMC12013329 DOI: 10.1016/j.pmedr.2025.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 03/31/2025] [Accepted: 04/01/2025] [Indexed: 04/24/2025] Open
Abstract
Objective To investigate the association between dietary niacin intake and the risk of gallstones in American adults using data from the National Health and Nutrition Examination Survey (NHANES) from 2017 to 2020. Methods This cross-sectional study analyzed data from 8191 participants aged 18 years and older. Dietary niacin intake was assessed using two 24-h dietary recalls. The presence of gallstones was identified through a questionnaire. Logistic regression models were used to estimate odds ratios (ORs) and 95 % confidence intervals (CIs) for gallstones across quartiles of niacin intake, adjusting for demographic and health-related covariates. Results Participants with higher niacin intake showed a significantly lower risk of gallstones. After adjusting for a wide range of covariates, individuals in the highest quartile of niacin intake had a 49 % reduced risk of gallstones compared to those in the lowest quartile (OR = 0.51, 95 % CI: 0.34, 0.76). Conclusion Higher dietary niacin intake is associated with a reduced risk of gallstones in US adults. These findings suggest that increasing niacin intake could be a viable strategy for the prevention of gallstones. Future longitudinal studies are needed to confirm these results and explore the underlying mechanisms.
Collapse
Affiliation(s)
- Huadi Chen
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Wenting Zhao
- Development Planning Department, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Yi Xiao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Qiaoping Gao
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Xiaoqu Yang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Kangfeng Pang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Baoyi Huang
- Department of Breast Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| | - Xiaolu Liang
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, Guangdong Province, People's Republic of China
| |
Collapse
|
4
|
Chojnowski K, Opiełka M, Urbanowicz K, Zawadzka M, Wangin K, Smoleński RT, Mazurkiewicz-Bełdzińska M. Untargeted metabolomics reveals key metabolic alterations in pediatric epilepsy with insights into Tryptophan metabolism and the gut-brain axis. Sci Rep 2025; 15:15262. [PMID: 40307425 PMCID: PMC12044071 DOI: 10.1038/s41598-025-99805-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
The biochemical processes of childhood-onset epilepsy remain unclear, with no reliable biomarkers for prognosis or management. Untargeted plasma metabolomics offers a valuable approach to uncover underlying pathomechanisms and identify actionable biomarkers. In this study, plasma samples from 18 pediatric patients with epilepsy and 11 age-matched healthy controls were analyzed using liquid chromatography-mass spectrometry. Data were analyzed using univariate and multivariate statistical methods and pathway enrichment analysis. Multivariate analyses demonstrated separation between the patient and control groups. A total of 19 endogenous metabolites (VIP > 1, adjusted p < 0.05) emerged as key differentiators. Compared with controls, patients exhibited significant reductions in tryptophan (Trp), 5-Hydroxyindoleacetic acid (5-HIAA), several gut microbiota-derived metabolites, including indole, indoxyl sulfate, and p-cresyl sulfate, as well as in niacin metabolism end-products - N1-Methyl-2-pyridone-5-carboxamide (Met2PY) and N1-Methyl-4-pyridone-3-carboxamide (Met4PY). In addition, patients showed decreased levels of tricarboxylic acid (TCA) cycle intermediates, concomitant with an increase in fatty acid derivatives and N-acetylneuraminic acid (Neu5Ac). The most substantially altered metabolic pathways in epilepsy patients involved the TCA cycle, vitamin A and C metabolism, prostaglandin synthesis, and D4/E4-neuroprostane formation. Observed alterations in tryptophan and microbiota-derived metabolites suggest gut dysbiosis may contribute to epilepsy development through the gut-brain axis. Moreover, the circulatory metabolic markers indicating an energy deficit and oxidative stress underscore the systemic impact of seizure activity.
Collapse
Affiliation(s)
- Karol Chojnowski
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, 80-211, Poland.
| | - Mikołaj Opiełka
- Department of Biochemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Krzysztof Urbanowicz
- Department of Biochemistry, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Marta Zawadzka
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, 80-211, Poland
| | - Karolina Wangin
- Department of Developmental Neurology, Medical University of Gdansk, Gdansk, 80-211, Poland
| | | | | |
Collapse
|
5
|
Santos MFC, Silva AK, Rezende-de-Souza JH, Monaretto T, Rezende CSM, Karwowski MSM, Macedo REF, Prado CS, Pflanzer SB, Lião LM, Tormena CF. Assessment of the effects of dry and wet aging on dark-cutting Nellore beef meat by TD-NMR and 1H NMR approaches. Food Res Int 2025; 205:115920. [PMID: 40032456 DOI: 10.1016/j.foodres.2025.115920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 01/08/2025] [Accepted: 02/02/2025] [Indexed: 03/05/2025]
Abstract
This study assessed the physicochemical parameters, water distribution, and metabolic profiles of wet- and dry-aged dark-cutting Nellore beef meat using TD-NMR and 1H NMR techniques alongside chemometric analysis. We analysed eight Nellore carcasses (Longissimus lumborum) aged for 28 days using both wet and dry methods. Post-aging, we noted significant reductions in water activity and moisture content in dry-aged samples, while lipid levels remained largely unchanged compared to unaged samples. However, both protein and carbonyl contents increased significantly with aging. Wet- and dry-aged samples also showed enhanced tenderness compared to non-aged beef. TD-NMR analysis identified four typical T2 components related to water distribution. Significant correlations Pearson were found between Aw, moisture and shear force and muscle water properties with moderate correlation found between Aw (inner) and T2.1 time constant. 1H NMR metabolic profiling identified 29 metabolites, including amino acids, dipeptides, and organic acids. Notably, levels of isoleucine, valine, threonine, alanine, and fumarate increased significantly after both aging processes. Acetate, creatinine, and betaine levels also increased significantly, while arginine and glycerol showed slight increases. In contrast, IMP content decreased significantly, while hypoxanthine content increased. These changes suggest metabolite accumulation that contributes to the enhanced flavour, taste, and tenderness of aged beef. This pilot study offers valuable insights that could help define optimal aging protocols for dark-cutting beef, potentially increasing the value of these meat products.
Collapse
Affiliation(s)
- Maria F C Santos
- Physical Organic Chemistry Laboratory (POCL), Institute of Chemistry, Universidade Estadual de Campinas (Unicamp), Campinas, SP 13083-862, Brazil
| | - Andressa K Silva
- Institute of Chemistry, Universidade Federal de Goiás (UFG), Campus Samambaia, 74690-900 Goiânia, GO, Brazil; Centro de Pesquisa de Alimentos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - Jonatã H Rezende-de-Souza
- Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (Unicamp), Campinas, SP 13083-862, Brazil
| | - Tatiana Monaretto
- Oxford Instruments, Halifax Road, High Wycombe HP12 3 SE, United Kingdom
| | - Cíntia S M Rezende
- Centro de Pesquisa de Alimentos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - Marília S M Karwowski
- Laboratory of Agrifood Food Research and Innovation (LAPIAgro), Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, Brazil
| | - Renata E F Macedo
- Laboratory of Agrifood Food Research and Innovation (LAPIAgro), Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná, 80215-901 Curitiba, Brazil
| | - Cristiano S Prado
- Centro de Pesquisa de Alimentos, Escola de Veterinária e Zootecnia, Universidade Federal de Goiás, 74690-900 Goiânia, GO, Brazil
| | - Sérgio B Pflanzer
- Department of Food Engineering and Technology, School of Food Engineering, Universidade Estadual de Campinas (Unicamp), Campinas, SP 13083-862, Brazil
| | - Luciano M Lião
- Institute of Chemistry, Universidade Federal de Goiás (UFG), Campus Samambaia, 74690-900 Goiânia, GO, Brazil
| | - Claudio F Tormena
- Physical Organic Chemistry Laboratory (POCL), Institute of Chemistry, Universidade Estadual de Campinas (Unicamp), Campinas, SP 13083-862, Brazil.
| |
Collapse
|
6
|
Nikitashina V, Bartels B, Mansour JS, LeKieffre C, Decelle J, Hertweck C, Not F, Pohnert G. Metabolic interdependence and rewiring in radiolaria-microalgae photosymbioses. THE ISME JOURNAL 2025; 19:wraf047. [PMID: 40057976 PMCID: PMC11965087 DOI: 10.1093/ismejo/wraf047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 01/24/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Marine planktonic Radiolaria harboring symbiotic microalgae are ubiquitous in the oceans and abundant in oligotrophic areas. In these low-nutrient environments, they are among the most important primary producers. Systematic studies of radiolarian biology are limited because radiolaria are non-culturable and prone to damage during sampling. To obtain insight into the mechanistic basis of radiolarian photosymbiosis, we address here the metabolic contributions of the partners to the performance of the holobiont. Therefore, we describe the metabolic inventory of two highly abundant photosymbiotic radiolaria-colony-forming Collodaria and single-celled Acantharia and compare their metabolomes to metabolomes of respective free-living algae. Most of the metabolites detected in the symbiosis are not present in the free-living algae, suggesting a significant transformation of symbionts' metabolites by the host. The metabolites identified in the holobiont and the free-living algae encompass molecules of primary metabolism and a number of osmolytes, including dimethylsulfoniopropionate. Mass spectrometry imaging revealed the presence of dimethylsulfoniopropionate in the symbionts and host cells, indicating that the algae provide osmolytic protection to the host. Furthermore, our findings suggest a possible dependence of Collodaria on symbiotic vitamin B3. Distinctive differences in phospholipid composition between free-living and symbiotic stages indicate that the algal cell membrane may undergo rearrangement in the symbiosis. Our results demonstrate a strong interdependence and rewiring of the algal metabolism underlying radiolaria-microalgae photosymbioses.
Collapse
Affiliation(s)
- Vera Nikitashina
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Benjamin Bartels
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
| | - Joost Samir Mansour
- Adaptation and Diversity in Marine Environment (AD2M) Laboratory, Ecology of Marine Plankton Team, Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144 AD2M, 29680 Roscoff, France
| | - Charlotte LeKieffre
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAe, IRIG-LPCV, Université Grenoble Alpes, 38054 Grenoble, France
| | - Johan Decelle
- Cell and Plant Physiology Laboratory, CNRS, CEA, INRAe, IRIG-LPCV, Université Grenoble Alpes, 38054 Grenoble, France
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology (Leibniz-HKI), 07745 Jena, Germany
- Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University Jena, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Fabrice Not
- Adaptation and Diversity in Marine Environment (AD2M) Laboratory, Ecology of Marine Plankton Team, Sorbonne Université, CNRS, Station Biologique de Roscoff, UMR7144 AD2M, 29680 Roscoff, France
| | - Georg Pohnert
- Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743 Jena, Germany
| |
Collapse
|
7
|
Kalogerakou T, Antoniadou M. The Role of Dietary Antioxidants, Food Supplements and Functional Foods for Energy Enhancement in Healthcare Professionals. Antioxidants (Basel) 2024; 13:1508. [PMID: 39765836 PMCID: PMC11672929 DOI: 10.3390/antiox13121508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 01/11/2025] Open
Abstract
Healthcare professionals frequently experience significant work overload, which often leads to substantial physical and psychological stress. This stress is closely linked to increased oxidative stress and a corresponding decline in energy levels. This scoping review investigates the potential impact of dietary antioxidants and food supplements in conjunction with diet in controlling these negative effects. Through an analysis of the biochemical pathways involved in oxidative stress and energy metabolism, the paper emphasizes the effectiveness of targeted dietary interventions. Key dietary antioxidants, such as vitamins C and E, polyphenols, and carotenoids, are evaluated for their ability to counteract oxidative stress and enhance energy levels. Additionally, the review assesses various food supplements, including omega-3 fatty acids, coenzyme Q10, and ginseng, and their mechanisms of action in energy enhancement. Practical guidelines for incorporating energy-boost dietary strategies into the routine of healthcare professionals are provided, emphasizing the importance of dietary modifications in reducing oxidative stress and improving overall well-being and performance in high-stress healthcare environments. The review concludes by suggesting directions for future research to validate these findings and to explore new dietary interventions that may further support healthcare professionals under work overload.
Collapse
Affiliation(s)
- Theodora Kalogerakou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Maria Antoniadou
- Department of Dentistry, School of Health Sciences, National and Kapodistrian University of Athens, 11527 Athens, Greece
- Executive Mastering Program in Systemic Management (CSAP), University of Piraeus, 18534 Piraeus, Greece
| |
Collapse
|
8
|
Lin L, Chen S, Zhang C, Li L, Chen Y, Li D, Cai Q, Zhou X, Yang F. Association of dietary niacin intake with all-cause and cardiovascular mortality: National Health and Nutrition Examination Survey (NHANES) 2003-2018. Sci Rep 2024; 14:28313. [PMID: 39550522 PMCID: PMC11569140 DOI: 10.1038/s41598-024-79986-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 11/13/2024] [Indexed: 11/18/2024] Open
Abstract
The long-term health impacts of niacin are still debated, and the association between dietary niacin and mortality risk in populations hasn't been extensively explored. This study included 26,746 US adults aged 20 years or older from the National Health and Nutrition Examination Survey 2003-2018, with a median follow-up of 9.17 years. During this period, there were 3,551 all-cause deaths, including 1,096 cardiovascular deaths. Cox models were used to compare hazard ratios (HRs) for mortality among participants grouped into different dietary niacin intake quartiles. Participants with the highest dietary niacin intake had a lower risk of all-cause mortality (HR 0.74, 95%CI 0.63-0.86) compared to those in the lowest intake quartile. For cardiovascular mortality, the HR was 0.73 (95%CI 0.57-0.95) in the highest niacin intake quartile. A dose-response relationship was revealed between dietary niacin intake and mortality by restricted cubic spline. Subgroup analysis showed a significant interaction between dietary niacin intake and diabetes concerning all-cause mortality (P = 0.046). In this population-based cohort study, higher dietary niacin intake correlates with lower risk of all-cause and cardiovascular mortality among US adults. The influence of niacin intake on all-cause mortality appears to be more significant in non-diabetic individuals compared to those with diabetes.
Collapse
Affiliation(s)
- Ling Lin
- Central laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Chen
- Cardiovascular Department, The First Affiliated Hospital, Fujian Medical University, Fuzhou, 350005, China
| | - Chenhua Zhang
- School of Mechanical, Electrical & Information Engineering, Putian University, Putian, Fujian, China
| | - Li Li
- Central laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Pharmacy and Bioengineering, Chongqing University of technology, Chongqing, 400054, China
| | - Yao Chen
- Central laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Pharmacy and Bioengineering, Chongqing University of technology, Chongqing, 400054, China
| | - Dongling Li
- Central laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Qinrui Cai
- Central laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Xiaoya Zhou
- Central laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China
- School of Pharmacy and Bioengineering, Chongqing University of technology, Chongqing, 400054, China
| | - Fan Yang
- Central laboratory of Chongqing Emergency Medical Center, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, 400014, China.
- School of Medicine, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
9
|
Marhaba M, Nagendla NK, Anjum S, Ganneru S, Singh V, Pal S, Mudiam MKR, Ansari KM. Liquid chromatography-high-resolution mass spectrometry-based metabolomics revealing the effects of zearalenone and alpha-zearalenol on human endometrial cancer cells. Toxicol Res (Camb) 2024; 13:tfae169. [PMID: 39417035 PMCID: PMC11474235 DOI: 10.1093/toxres/tfae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/24/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Human exposure to mycotoxins through food involve a mixture of compounds, which can be harmful to human health. The Fusarium fungal species are known to produce zearalenone (ZEN), a non-steroidal estrogenic mycotoxin, and its metabolite alpha-zearalenol (α-ZEL), both of which possess endocrine-disruptive properties. Given their potential harm to human health through food exposure, investigating the combined effects of ZEN and α-ZEL becomes crucial. Hence, the combined impact of ZEN and α-ZEL study hold significant importance. This in vitro study delves into the critical area, examining their combined impact on the proliferation and metabolic profile of endometrial cancer Ishikawa cells via sulforhodamine, clonogenic, proliferating cell nuclear antigen (PCNA) and liquid chromatography-high resolution mass spectrometry (LC-HRMS) based untargeted metabolomics. Low concentrations of ZEN (25 nm), α-ZEL (10 nm), or a combination of both were observed to significantly enhance cell proliferation of Ishikawa cells, as evidenced by PCNA immunostaining, immunoblotting as well and clonogenic assays. The metabolomics revealed the perturbations in glycerophospholipid metabolism, nicotinate and nicotinamide metabolism and phenylalanine, tyrosine, tryptophan biosynthesis provides valuable insights into potential mechanism by which these mycotoxins may facilitate cell proliferation. However, further investigations are warranted to comprehensively understand the implications of these findings and their possible implications for human health.
Collapse
Affiliation(s)
- Marhaba Marhaba
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Narendra Kumar Nagendla
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Saria Anjum
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Sireesha Ganneru
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
| | - Varsha Singh
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Saurabh Pal
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| | - Mohana Krishna Reddy Mudiam
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
- Analytical and Structural Chemistry Department, CSIR-Indian Institute of Chemical Technology, Tarnaka, Uppal Road, Hyderabad 500007, India
- Advanced Research Methodologies, Institute of Pesticide Formulation Technology (IPFT), Sector-20, Udyog Vihar, Gurugram 122016, Haryana, India
| | - Kausar Mahmood Ansari
- Food Toxicology Laboratory, FEST Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201 002, India
| |
Collapse
|
10
|
Tattoli I, Mathew AR, Verrienti A, Pallotta L, Severi C, Andreola F, Cavallucci V, Giorgi M, Massimi M, Bencini L, Fidaleo M. The Interplay between Liver and Adipose Tissue in the Onset of Liver Diseases: Exploring the Role of Vitamin Deficiency. Cells 2024; 13:1631. [PMID: 39404394 PMCID: PMC11475612 DOI: 10.3390/cells13191631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/24/2024] [Accepted: 09/24/2024] [Indexed: 10/19/2024] Open
Abstract
The deficiency of vitamins, a condition known as "hidden hunger", causes comprehensive pathological states. Research over the years has identified a relationship between liver diseases and hypovitaminosis or defects in vitamin metabolism. The exact mechanisms remain elusive; however, the crucial involvement of specific vitamins in metabolic functions, alongside the reclassification of liver disease as metabolic dysfunction-associated steatotic liver disease (MASLD), has prompted researchers to investigate the potential cause-effect dynamics between vitamin deficiency and liver disease. Moreover, scientists are increasingly investigating how the deficiency of vitamins might disrupt specific organ crosstalk, potentially contributing to liver disease. Although the concept of a dysmetabolic circuit linking adipose tissue and the liver, leading to liver disease, has been discussed, the possible involvement of vitamin deficiency in this axis is a relatively recent area of study, with numerous critical aspects yet to be fully understood. In this review, we examine research from 2019 to July 2024 focusing on the possible link between liver-adipose tissue crosstalk and vitamin deficiency involved in the onset and progression of non-alcoholic fatty liver disease (NAFLD). Studies report that vitamin deficiency can affect the liver-adipose tissue axis, mainly affecting the regulation of systemic energy balance and inflammation.
Collapse
Affiliation(s)
- Ivan Tattoli
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Aimee Rachel Mathew
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Antonella Verrienti
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Lucia Pallotta
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Carola Severi
- Department of Translational and Precision Medicine, Sapienza University of Rome, 00161 Rome, Italy; (A.V.); (L.P.); (C.S.)
| | - Fausto Andreola
- Liver Failure Group, Institute for Liver and Digestive Health, Royal Free Hospital, University College London, London NW3 2PF, UK;
| | - Virve Cavallucci
- Department of Translational Medicine and Surgery, Università Cattolica del Sacro Cuore, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mauro Giorgi
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
| | - Mara Massimi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy;
| | - Lapo Bencini
- Oncology General Surgery, Azienda Ospedaliero Universitaria Careggi, 50139 Florence, Italy; (I.T.); (L.B.)
| | - Marco Fidaleo
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy; (A.R.M.); (M.G.)
- Research Center for Nanotechnology for Engineering of Sapienza (CNIS), Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
11
|
Szupryczyński K, Czeleń P, Jeliński T, Szefler B. What is the Reason That the Pharmacological Future of Chemotherapeutics in the Treatment of Lung Cancer Could Be Most Closely Related to Nanostructures? Platinum Drugs in Therapy of Non-Small and Small Cell Lung Cancer and Their Unexpected, Possible Interactions. The Review. Int J Nanomedicine 2024; 19:9503-9547. [PMID: 39296940 PMCID: PMC11410046 DOI: 10.2147/ijn.s469217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/19/2024] [Indexed: 09/21/2024] Open
Abstract
Over the course of several decades, anticancer treatment with chemotherapy drugs for lung cancer has not changed significantly. Unfortunately, this treatment prolongs the patient's life only by a few months, causing many side effects in the human body. It has also been proven that drugs such as Cisplatin, Carboplatin, Oxaliplatin and others can react with other substances containing an aromatic ring in which the nitrogen atom has a free electron group in its structure. Thus, such structures may have a competitive effect on the nucleobases of DNA. Therefore, scientists are looking not only for new drugs, but also for new alternative ways of delivering the drug to the cancer site. Nanotechnology seems to be a great hope in this matter. Creating a new nanomedicine would reduce the dose of the drug to an absolute minimum, and thus limit the toxic effect of the drug; it would allow for the exclusion of interactions with competitive compounds with a structure similar to nucleobases; it would also permit using the so-called targeted treatment and bypassing healthy cells; it would allow for the introduction of other treatment options, such as radiotherapy directly to the cancer site; and it would provide diagnostic possibilities. This article is a review that aims to systematize the knowledge regarding the anticancer treatment of lung cancer, but not only. It shows the clear possibility of interactions of chemotherapeutics with compounds competitive to the nitrogenous bases of DNA. It also shows the possibilities of using nanostructures as potential Platinum drug carriers, and proves that nanomedicine can easily become a new medicinal product in personalized medicine.
Collapse
Affiliation(s)
- Kamil Szupryczyński
- Doctoral School of Medical and Health Sciences, Faculty of Pharmacy, Collegium Medicum, Nicolaus, Copernicus University, Bydgoszcz, Poland
| | - Przemysław Czeleń
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Tomasz Jeliński
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| | - Beata Szefler
- Department of Physical Chemistry, Faculty of Pharmacy, Collegium Medicum, Nicolaus Copernicus University, Bydgoszcz, Poland
| |
Collapse
|
12
|
Myong S, Nguyen AQ, Challa S. Biological Functions and Therapeutic Potential of NAD + Metabolism in Gynecological Cancers. Cancers (Basel) 2024; 16:3085. [PMID: 39272943 PMCID: PMC11394644 DOI: 10.3390/cancers16173085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/31/2024] [Accepted: 08/31/2024] [Indexed: 09/15/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD+) is an important cofactor for both metabolic and signaling pathways, with the dysregulation of NAD+ levels acting as a driver for diseases such as neurodegeneration, cancers, and metabolic diseases. NAD+ plays an essential role in regulating the growth and progression of cancers by controlling important cellular processes including metabolism, transcription, and translation. NAD+ regulates several metabolic pathways such as glycolysis, the citric acid (TCA) cycle, oxidative phosphorylation, and fatty acid oxidation by acting as a cofactor for redox reactions. Additionally, NAD+ acts as a cofactor for ADP-ribosyl transferases and sirtuins, as well as regulating cellular ADP-ribosylation and deacetylation levels, respectively. The cleavage of NAD+ by CD38-an NAD+ hydrolase expressed on immune cells-produces the immunosuppressive metabolite adenosine. As a result, metabolizing and maintaining NAD+ levels remain crucial for the function of various cells found in the tumor microenvironment, hence its critical role in tissue homeostasis. The NAD+ levels in cells are maintained by a balance between NAD+ biosynthesis and consumption, with synthesis being controlled by the Preiss-Handler, de novo, and NAD+ salvage pathways. The primary source of NAD+ synthesis in a variety of cell types is directed by the expression of the enzymes central to the three biosynthesis pathways. In this review, we describe the role of NAD+ metabolism and its synthesizing and consuming enzymes' control of cancer cell growth and immune responses in gynecologic cancers. Additionally, we review the ongoing efforts to therapeutically target the enzymes critical for NAD+ homeostasis in gynecologic cancers.
Collapse
Affiliation(s)
- Subin Myong
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
| | - Anh Quynh Nguyen
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| | - Sridevi Challa
- The University of Chicago Comprehensive Cancer Center, The University of Chicago, Chicago, IL 60637, USA
- Department of Obstetrics and Gynecology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
13
|
Wang X, Zhao H, Luo X, Chen Y, Shi C, Wang Y, Bai J, Shao Z, Shang Z. NNMT switches the proangiogenic phenotype of cancer-associated fibroblasts via epigenetically regulating ETS2/VEGFA axis. Oncogene 2024; 43:2647-2660. [PMID: 39069579 DOI: 10.1038/s41388-024-03112-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
Cancer-associated fibroblasts (CAFs) are known to promote angiogenesis in oral squamous cell carcinoma (OSCC). However, the epigenetic mechanisms through which CAFs facilitate angiogenesis within the tumor microenvironment are still poorly characterized. Nicotinamide N'-methyltransferase (NNMT), a member of the N-methyltransferase family, was found to be a key molecule in the activation of CAFs. This study shows that NNMT in fibroblasts contributes to angiogenesis and tumor growth through an epigenetic reprogramming-ETS2-VEGFA signaling axis in OSCC. Single-cell RNA Sequencing (scRNA-seq) analysis suggests that NNMT is mainly highly expressed in fibroblasts of head and neck squamous cell carcinoma (HNSCC). Moreover, analysis of the TCGA database and multiple immunohistochemical staining of clinical samples also identified a positive correlation between NNMT and tumor angiogenesis. This research further employed an assembled organoid model and a fibroblast-endothelial cell co-culture model to authenticate the proangiogenic ability of NNMT. At the molecular level, high expression of NNMT in CAFs was found to promote ETS2 expression by regulating H3K27 methylation level through mediating methylation deposition. Furthermore, ETS2 was verified to be an activating transcription factor of VEGFA in this study. Collectively, our findings delineate an epigenetic molecular regulatory network of angiogenesis and provide a theoretical basis for exploring new targets and clinical strategy in OSCC.
Collapse
Affiliation(s)
- Xinmiao Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Hui Zhao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinyue Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yang Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Congyu Shi
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yifan Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Junqiang Bai
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhe Shao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
- Day Surgery Center, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- Department of Oral and Maxillofacial-Head and Neck Oncology, School of Stomatology-Hospital of Stomatology, Wuhan University, Wuhan, China.
- Taikang Center for Life and Medical Sciences of Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Ali HM, Karataş F, Özer D, Saydam S. Element and Water-Soluble Vitamins Profile of Rhus coriaria L. (Sumac) Grown in Different Regions. Biol Trace Elem Res 2024; 202:3293-3302. [PMID: 37776395 DOI: 10.1007/s12011-023-03890-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023]
Abstract
In this study, the amounts of some elements and water-soluble vitamins in Rhus coriaria L. (Sumac) samples grown in different regions were analyzed by ICP-OES and HPLC, respectively. The maximum amount of Na, K, Mg, and P was determined in the sumac samples of Kadana, Sheladize, Maraş, and Derishke regions, respectively. The richest regions in terms of trace elements such as Zn, Cu, Fe, Se, Mn, Cr, Mo, Ni, and B were Charput, Derishke, Ranya, Charput, Ranya, Derishke, Elazığ, Derishke, and Kadana, respectively. The highest amount of As, Cd, Pb, and Hg in sumac samples were determined in Kadana, Kadana, Trawanish, and Charput regions, respectively, while the lowest amounts were determined in Maraş, Sheladize, Elazig, and Trawanish regions sumac samples. Since target hazard coefficient (THQ) and total target hazard coefficient (TTHQ) values calculated for minor, toxic and heavy metals investigated in sumac samples are well below one; therefore, they do not pose a health risk. From the result obtained, sumac is a good food additive spice in terms of water-soluble vitamins except ascorbic acid. The amounts of ascorbic acid, thiamine, riboflavin, nicotine amide, nicotinic acid, pantothenic acid, pyridoxine, folic acid, and cyanocobalamin in sumac samples varied between 78.90-36.57, 173.57-61.11, 518.4-182.3, 314.0-105.6, 1292.1-788.7, 779.2-301.7, 385.8-133.4, 826.2-473.1, and 192.6-73.9 µg/g dw, respectively. Differences in the amount of elements and water-soluble vitamins among sumac samples from different regions may be due to geographical and ecological reasons.
Collapse
Affiliation(s)
- Haval Mohammed Ali
- Chemistry Department, College of Science, University of Duhok, Duhok, Iraq
| | - Fikret Karataş
- Faculty of Science, Department of Chemistry, Fırat University, Elazig, Turkey.
| | - Dursun Özer
- Department of Chemical Engineering, Faculty of Engineering, Firat University, 23119, Elazig, Turkey
| | - Sinan Saydam
- Faculty of Science, Department of Chemistry, Fırat University, Elazig, Turkey
| |
Collapse
|
15
|
Mapfumo PP, Solomun JI, Becker F, Moek E, Leiske MN, Rudolph LK, Brendel JC, Traeger A. Vitamin B3 Containing Polymers for Nanodelivery. Macromol Biosci 2024; 24:e2400002. [PMID: 38484731 DOI: 10.1002/mabi.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/05/2024] [Indexed: 03/24/2024]
Abstract
Polymeric nanoparticles (NPs) with an integrated dual delivery system enable the controlled release of bioactive molecules and drugs, providing therapeutic advantages. Key design targets include high biocompatibility, cellular uptake, and encapsulating efficiency. In this study, a polymer library derived from niacin, also known as vitamin B3 is synthesized. The library comprises poly(2-(acryloyloxy)ethyl nicotinate) (PAEN), poly(2-acrylamidoethyl nicotinate) (PAAEN), and poly(N-(2-acrylamidoethyl)nicotinamide) (PAAENA), with varying hydrophilicity in the backbone and pendant group linker. All polymers are formulated, and those with increased hydrophobicity yield NPs with homogeneous spherical distribution and diameters below 150 nm, as confirmed by scanning electron microscopy and dynamic light scattering. Encapsulation studies utilizing a model drug, neutral lipid orange (NLO), reveal the influence of polymer backbone on encapsulation efficiency. Specifically, efficiencies of 46% and 96% are observed with acrylate and acrylamide backbones, respectively. Biological investigations showed that P(AEN) and P(AAEN) NPs are non-toxic up to 300 µg mL-1, exhibit superior cellular uptake, and boost cell metabolic activity. The latter is attributed to the cellular release of niacin, a precursor to nicotinamide adenine dinucleotide (NAD), a central coenzyme in metabolism. The results underline the potential of nutrient-derived polymers as pro-nutrient and drug-delivery materials.
Collapse
Affiliation(s)
- Prosper P Mapfumo
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Jana I Solomun
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| | - Friedrich Becker
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Elisabeth Moek
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
| | - Meike N Leiske
- Macromolecular Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Bavarian Polymer Institute, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Lenhard K Rudolph
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745, Jena, Germany
| | - Johannes C Brendel
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
- Bavarian Polymer Institute, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Anja Traeger
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstraße 10, 07743, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743, Jena, Germany
| |
Collapse
|
16
|
Al‐Amrani F, Al‐Thihli K, Al‐Ajmi E, Al‐Futaisi A, Al‐Murshedi F. Transient response to high-dose niacin therapy in a patient with NAXE deficiency. JIMD Rep 2024; 65:212-225. [PMID: 38974613 PMCID: PMC11224503 DOI: 10.1002/jmd2.12425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 04/06/2024] [Accepted: 04/22/2024] [Indexed: 07/09/2024] Open
Abstract
Background NAXE-encephalopathy or early-onset progressive encephalopathy with brain edema and/or leukoencephalopathy-1 (PEBEL-1) and NAXD-encephalopathy (PEBEL-2) have been described recently as mitochondrial disorders causing psychomotor regression, hypotonia, ataxia, quadriparesis, ophthalmoparesis, respiratory insufficiency, encephalopathy, and seizures with the onset being usually within the first three years of life. It usually leads to rapid disease progression and death in early childhood. Anecdotal reports suggest that niacin, through its role in nicotinamide adenine dinucleotinde (NAD) de novo synthesis, corrects biochemical derangement, and slows down disease progression. Reports so far have supported this observation. Methods We describe a patient with a confirmed PEBEL-1 diagnosis and report his clinical response to niacin therapy. Moreover, we systematically searched the literature for PEBEL-1 and PEBEL-2 patients treated with niacin and details about response to treatment and clinical data were reviewed. Furthermore, we are describing off-label use of a COX2 inhibitor to treat niacin-related urticaria in NAXE-encephalopathy. Results So far, seven patients with PEBEL-1 and PEBEL-2 treated with niacin were reported, and all patients showed a good response for therapy or stabilization of symptoms. We report a patient exhibiting PEBEL-1 with an unfavorable outcome despite showing initial stabilization and receiving the highest dose of niacin reported to date. Niacin therapy failed to halt disease progression or attain stabilization of the disease in this patient. Conclusion Despite previous positive results for niacin supplementation in patients with PEBEL-1 and PEBEL-2, this is the first report of a patient with PEBEL-1 who deteriorated to fatal outcome despite being started on the highest dose of niacin therapy reported to date.
Collapse
Affiliation(s)
- Fatema Al‐Amrani
- Pediatric Neurology Unit, Department of Child HealthSultan Qaboos University Hospital, Sultan Qaboos UniversityMuscatSultanate of Oman
| | - Khalid Al‐Thihli
- Genetic and Developmental Medicine Clinic, Department of GeneticsSultan Qaboos University Hospital, Sultan Qaboos UniversityMuscatSultanate of Oman
| | - Eiman Al‐Ajmi
- Department of Radiology and Molecular ImagingSultan Qaboos University Hospital, Sultan Qaboos UniversityMuscatSultanate of Oman
| | - Amna Al‐Futaisi
- Department of Child HealthCollege of Medicine and Health Sciences, Sultan Qaboos UniversityMuscatSultanate of Oman
| | - Fathiya Al‐Murshedi
- Genetic and Developmental Medicine Clinic, Department of GeneticsSultan Qaboos University Hospital, Sultan Qaboos UniversityMuscatSultanate of Oman
| |
Collapse
|
17
|
Arslan AK, Yagin FH, Algarni A, AL-Hashem F, Ardigò LP. Combining the Strengths of the Explainable Boosting Machine and Metabolomics Approaches for Biomarker Discovery in Acute Myocardial Infarction. Diagnostics (Basel) 2024; 14:1353. [PMID: 39001243 PMCID: PMC11240568 DOI: 10.3390/diagnostics14131353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Acute Myocardial Infarction (AMI), a common disease that can have serious consequences, occurs when myocardial blood flow stops due to occlusion of the coronary artery. Early and accurate prediction of AMI is critical for rapid prognosis and improved patient outcomes. Metabolomics, the study of small molecules within biological systems, is an effective tool used to discover biomarkers associated with many diseases. This study intended to construct a predictive model for AMI utilizing metabolomics data and an explainable machine learning approach called Explainable Boosting Machines (EBM). The EBM model was trained on a dataset of 102 prognostic metabolites gathered from 99 individuals, including 34 healthy controls and 65 AMI patients. After a comprehensive data preprocessing, 21 metabolites were determined as the candidate predictors to predict AMI. The EBM model displayed satisfactory performance in predicting AMI, with various classification performance metrics. The model's predictions were based on the combined effects of individual metabolites and their interactions. In this context, the results obtained in two different EBM modeling, including both only individual metabolite features and their interaction effects, were discussed. The most important predictors included creatinine, nicotinamide, and isocitrate. These metabolites are involved in different biological activities, such as energy metabolism, DNA repair, and cellular signaling. The results demonstrate the potential of the combination of metabolomics and the EBM model in constructing reliable and interpretable prediction outputs for AMI. The discussed metabolite biomarkers may assist in early diagnosis, risk assessment, and personalized treatment methods for AMI patients. This study successfully developed a pipeline incorporating extensive data preprocessing and the EBM model to identify potential metabolite biomarkers for predicting AMI. The EBM model, with its ability to incorporate interaction terms, demonstrated satisfactory classification performance and revealed significant metabolite interactions that could be valuable in assessing AMI risk. However, the results obtained from this study should be validated with studies to be carried out in larger and well-defined samples.
Collapse
Affiliation(s)
- Ahmet Kadir Arslan
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye;
| | - Fatma Hilal Yagin
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Inonu University, Malatya 44280, Türkiye;
| | - Abdulmohsen Algarni
- Department of Computer Science, King Khalid University, Abha 61421, Saudi Arabia
| | - Fahaid AL-Hashem
- Department of Physiology, College of Medicine, King Khalid University, Abha 61421, Saudi Arabia
| | - Luca Paolo Ardigò
- Department of Teacher Education, NLA University College, 0166 Oslo, Norway
| |
Collapse
|
18
|
Fashe MM, Le TV, Gower MN, Mulrenin IR, Dorman KF, Smith S, Fallon JK, Dumond JB, Boggess KA, Lee CR. Impact of Pregnancy on the Pharmacokinetics and Metabolism of Nicotinamide in Humans. Clin Pharmacol Ther 2024; 115:556-564. [PMID: 38093631 PMCID: PMC11250906 DOI: 10.1002/cpt.3146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 12/11/2023] [Indexed: 12/17/2023]
Abstract
In pre-eclampsia models, nicotinamide (NAM) has protective effects in pre-eclampsia and is being evaluated as a therapeutic nutraceutical in clinical studies. NAM undergoes extensive hepatic metabolism by NAM N-methyltransferase to methylnicotinamide (MNA), which is subsequently metabolized to methyl-2-pyridone-5-carboxamide (M2PY) by aldehyde oxidase. However, the pharmacokinetics of NAM and its major metabolites has never been studied in pregnant individuals. Blood samples were collected before and 1, 2, 4, 8, and 24 hours after single 1 g oral NAM dose in healthy pregnant (gestational age 24-33 weeks) and nonpregnant female volunteers (n = 6/group). Pooled urine was collected from 0 to 8 hours. NAM, MNA, and M2PY area under the concentration-time curve (AUC) data were analyzed by noncompartmental analysis. No difference in the plasma AUC0→24 of NAM (median (25%-75%): 463 (436-576) vs. 510 (423, 725) μM*hour, P = 0.430) and its intermediate metabolite MNA (89.1 (60.4, 124.4) vs. 83.8 (62.7, 93.7) μM*hour, P = 0.515) was observed in pregnant and nonpregnant volunteers, respectively; however, the terminal metabolite M2PY AUC0 → 24 was significantly lower in pregnant individuals (218 (188, 254) vs. 597 (460, 653) μM*hour, P < 0.001). NAM renal clearance (CLR ; P = 0.184), MNA CLR (P = 0.180), and total metabolite formation clearance (P = 0.405) did not differ across groups; however, M2PY CLR was significantly higher in pregnant individuals (10.5 (9.3-11.3) vs. 7.5 (6.4-8.5) L/h, P = 0.002). These findings demonstrate that the PK of NAM and systemic exposure to its intermediate metabolite MNA are not significantly altered during pregnancy, and systemic exposure to NAM's major metabolite M2PY was reduced during pregnancy due to increased renal elimination.
Collapse
Affiliation(s)
- Muluneh M. Fashe
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Tien V. Le
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan N. Gower
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ian R. Mulrenin
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Karen F. Dorman
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Spenser Smith
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - John K. Fallon
- Center for Nanotechnology in Drug Delivery and Division of Pharmacoengineering and Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Julie B. Dumond
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kim A. Boggess
- Department of Obstetrics & Gynecology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Craig R. Lee
- Division of Pharmacotherapy and Experimental Therapeutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
19
|
Schiuma G, Lara D, Clement J, Narducci M, Rizzo R. NADH: the redox sensor in aging-related disorders. Antioxid Redox Signal 2024. [PMID: 38366731 DOI: 10.1089/ars.2023.0375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
SIGNIFICANCE NADH represents the reduced form of NAD+, and together they constitute the two forms of the Nicotinamide adenine dinucleotide whose balance is named as the NAD+/NADH ratio. NAD+/NADH ratio is mainly involved in redox reactions since both the molecules are responsible for carrying electrons to maintain redox homeostasis. NADH acts as a reducing agent and one of the most known processes exploiting NADH function is energy metabolism. The two main pathways generating energy and involving NADH are Glycolysis and Oxidative phosphorylation, occurring in cell cytosol and in the mitochondrial matrix, respectively. RECENT ADVANCES Although NADH is primarily produced through the reduction of NAD+ and consumed by its own oxidation, several are the biosynthetic and consumption pathways, reflecting the NADH role in multiple cellular processes. CRITICAL ISSUES This review gathers all the main current data referring to NADH in correlation with metabolic and cellular pathways, such as its coenzyme activity, effect in cell death and on modulating redox and calcium homeostasis. Data were selected following eligibility criteria accordingly to the reviewed topic. A set of electronic databases (Medline/PubMed, Scopus, Web of Sciences (WOS), Cochrane Library) have been used for a systematic search until January 2024 using MeSH keywords/terms (i.e., NADH, NAD+/NADH and NADH/NAD+ ratio, redox homeostasis, energy metabolism, aging, aging-related disorders, therapies). FUTURE DIRECTION Gene expression control, as well as to the potential impact on neurodegenerative, cardiac disorders and infections suggest NADH application in clinical settings.
Collapse
Affiliation(s)
| | - Djidjell Lara
- University of Ferrara, 9299, Ferrara, FE, Italy
- BetterHumans, Gainesville, Florida, United States;
| | - James Clement
- Betterhumans Inc., Gainesville, Florida, United States
- University of Ferrara, 9299, Ferrara, FE, Italy;
| | - Marco Narducci
- University of Ferrara, 9299, Ferrara, FE, Italy
- BetterHumans, Gainesville, Florida, United States
- Temple University Japan Campus, 83908, Minato-ku, Tokyo, Japan;
| | - Roberta Rizzo
- University of Ferrara, 9299, Via Luigi Borsari 46, Ferrara, Ferrara, FE, Italy, 44121;
| |
Collapse
|
20
|
Ferrell M, Wang Z, Anderson JT, Li XS, Witkowski M, DiDonato JA, Hilser JR, Hartiala JA, Haghikia A, Cajka T, Fiehn O, Sangwan N, Demuth I, König M, Steinhagen-Thiessen E, Landmesser U, Tang WHW, Allayee H, Hazen SL. A terminal metabolite of niacin promotes vascular inflammation and contributes to cardiovascular disease risk. Nat Med 2024; 30:424-434. [PMID: 38374343 PMCID: PMC11841810 DOI: 10.1038/s41591-023-02793-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 12/22/2023] [Indexed: 02/21/2024]
Abstract
Despite intensive preventive cardiovascular disease (CVD) efforts, substantial residual CVD risk remains even for individuals receiving all guideline-recommended interventions. Niacin is an essential micronutrient fortified in food staples, but its role in CVD is not well understood. In this study, untargeted metabolomics analysis of fasting plasma from stable cardiac patients in a prospective discovery cohort (n = 1,162 total, n = 422 females) suggested that niacin metabolism was associated with incident major adverse cardiovascular events (MACE). Serum levels of the terminal metabolites of excess niacin, N1-methyl-2-pyridone-5-carboxamide (2PY) and N1-methyl-4-pyridone-3-carboxamide (4PY), were associated with increased 3-year MACE risk in two validation cohorts (US n = 2,331 total, n = 774 females; European n = 832 total, n = 249 females) (adjusted hazard ratio (HR) (95% confidence interval) for 2PY: 1.64 (1.10-2.42) and 2.02 (1.29-3.18), respectively; for 4PY: 1.89 (1.26-2.84) and 1.99 (1.26-3.14), respectively). Phenome-wide association analysis of the genetic variant rs10496731, which was significantly associated with both 2PY and 4PY levels, revealed an association of this variant with levels of soluble vascular adhesion molecule 1 (sVCAM-1). Further meta-analysis confirmed association of rs10496731 with sVCAM-1 (n = 106,000 total, n = 53,075 females, P = 3.6 × 10-18). Moreover, sVCAM-1 levels were significantly correlated with both 2PY and 4PY in a validation cohort (n = 974 total, n = 333 females) (2PY: rho = 0.13, P = 7.7 × 10-5; 4PY: rho = 0.18, P = 1.1 × 10-8). Lastly, treatment with physiological levels of 4PY, but not its structural isomer 2PY, induced expression of VCAM-1 and leukocyte adherence to vascular endothelium in mice. Collectively, these results indicate that the terminal breakdown products of excess niacin, 2PY and 4PY, are both associated with residual CVD risk. They also suggest an inflammation-dependent mechanism underlying the clinical association between 4PY and MACE.
Collapse
Affiliation(s)
- Marc Ferrell
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Systems Biology and Bioinformatics Program, Department of Nutrition, Case Western Reserve University, Cleveland, OH, USA
| | - Zeneng Wang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James T Anderson
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Xinmin S Li
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Marco Witkowski
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Joseph A DiDonato
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - James R Hilser
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jaana A Hartiala
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arash Haghikia
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tomas Cajka
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
- Institute of Physiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California, Davis, Davis, CA, USA
| | - Naseer Sangwan
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Ilja Demuth
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies, Berlin, Germany
| | - Maximilian König
- Department of Endocrinology and Metabolism, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ulf Landmesser
- Department of Cardiology, Angiology and Intensive Care, Deutsches Herzzentrum der Charité, Campus Benjamin Franklin, Berlin, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Friede Springer Cardiovascular Prevention Center at Charité, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - W H Wilson Tang
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Hooman Allayee
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Biochemistry & Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Stanley L Hazen
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA.
| |
Collapse
|
21
|
Meng Y, Iyamu ID, Ahmed NAM, Huang R. Comparative Analysis of Two NNMT Bisubstrate Inhibitors through Chemoproteomic Studies: Uncovering the Role of Unconventional SAM Analogue Moiety for Improved Selectivity. ACS Chem Biol 2024; 19:89-100. [PMID: 38181447 PMCID: PMC11955877 DOI: 10.1021/acschembio.3c00531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Unconventional S-adenosyl-L-methionine (SAM) mimics with enhanced hydrophobicity are an adaptable building block to develop cell-potent inhibitors for SAM-dependent methyltransferases as targeted therapeutics. We recently discovered cell-potent bisubstrate inhibitors for nicotinamide N-methyltransferase (NNMT) by using an unconventional SAM mimic. To delve into the selectivity implications of the unconventional SAM mimic, we employed a chemoproteomic approach to assess two potent NNMT inhibitors LL320 (Ki, app = 6.8 nM) and II399 (containing an unconventional SAM mimic, Ki, app = 5.9 nM) within endogenous proteomes. Our work began with the rational design and synthesis of immobilized probes 1 and 2, utilizing LL320 and II399 as parent compounds. Systematic analysis of protein networks associated with these probes revealed a comprehensive landscape. Notably, NNMT emerged as the top-ranking hit, substantiating the high selectivity of both inhibitors. Meanwhile, we identified additional interacting proteins for LL320 (38) and II399 (17), showcasing the intricate selectivity profiles associated with these compounds. Subsequent experiments confirmed LL320's interactions with RNMT, DPH5, and SAHH, while II399 exhibited interactions with SHMT2 and MEPCE. Importantly, incorporating the unconventional SAM mimic in II399 led to improved selectivity compared to LL320. Our findings underscore the importance of selectivity profiling and validate the utilization of the unconventional SAM mimic as a viable strategy to create highly selective and cell-permeable inhibitors for SAM-dependent methyltransferases.
Collapse
Affiliation(s)
- Ying Meng
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Iredia D Iyamu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Noha A. M. Ahmed
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| | - Rong Huang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
22
|
Aiges M, Ramana KV. Significance of Vitamin Supplementation in Reducing the Severity of COVID-19. Mini Rev Med Chem 2024; 24:254-264. [PMID: 36967461 DOI: 10.2174/1389557523666230324081713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/24/2022] [Accepted: 01/11/2023] [Indexed: 03/29/2023]
Abstract
Coronavirus disease-19 (COVID-19), a serious pandemic due to the SARS-CoV-2 virus infection, caused significant lockdowns, healthcare shortages, and deaths worldwide. The infection leads to an uncontrolled systemic inflammatory response causing severe respiratory distress and multiple-organ failure. Quick development of several vaccines efficiently controlled the spread of COVID-19. However, the rise of various new subvariants of COVID-19 demonstrated some concerns over the efficacy of existing vaccines. Currently, better vaccines to control these variants are still under development as several new subvariants of COVID-19, such as omicron BA-4, BA-5, and BF-7 are still impacting the world. Few antiviral treatments have been shown to control COVID-19 symptoms. Further, control of COVID-19 symptoms has been explored with many natural and synthetic adjuvant compounds in hopes of treating the deadly and contagious disease. Vitamins have been shown to modulate the immune system, function as antioxidants, and reduce the inflammatory response. Recent studies have investigated the potential role of vitamins, specifically vitamins A, B, C, D, and E, in reducing the immune and inflammatory responses and severity of the complication. In this brief article, we discussed our current understanding of the role of vitamins in controlling COVID-19 symptoms and their potential use as adjuvant therapy.
Collapse
Affiliation(s)
- Myia Aiges
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| | - Kota V Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT-84606, USA
| |
Collapse
|
23
|
Doan HT, Cheng LC, Chiu YL, Cheng YK, Hsu CC, Chen YC, Lo HJ, Chiang HS. Candida tropicalis-derived vitamin B3 exerts protective effects against intestinal inflammation by promoting IL-17A/IL-22-dependent epithelial barrier function. Gut Microbes 2024; 16:2416922. [PMID: 39462273 PMCID: PMC11524206 DOI: 10.1080/19490976.2024.2416922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/16/2024] [Accepted: 10/10/2024] [Indexed: 10/29/2024] Open
Abstract
Candida tropicalis-a prevalent gut commensal fungus in healthy individuals - contributes to intestinal health and disease. However, how commensal C. tropicalis influences intestinal homeostasis and barrier function is poorly understood. Here, we demonstrated that the reference strain of C. tropicalis (MYA-3404) ameliorated intestinal inflammation in murine models of chemically induced colitis and bacterial infection. Intestinal colonization of C. tropicalis robustly upregulated the expression of IL-17A and IL-22 to increase barrier function and promote proliferation of intestinal epithelial cells in the mouse colon. Metabolomics analysis of fecal samples from mice colonized with C. tropicalis revealed alterations in vitamin B3 metabolism, promoting conversion of nicotinamide to nicotinic acid. Although nicotinamide worsened colitis, treatment with nicotinic acid alleviated disease symptoms and enhanced epithelial proliferation and Th17 cell differentiation. Oral gavage of C. tropicalis mitigated nicotinamide-induced intestinal dysfunction in experimental colitis. Blockade of nicotinic acid production with nicotinamidase inhibitors lowered the protective effects against colitis in mice treated with C. tropicalis. Notably, a clinical C. tropicalis strain isolated from patients with candidemia lacked the protective effects against murine colitis observed with the reference strain. Together, our results highlight a novel role for C. tropicalis in resolving intestinal inflammation through the modulation of vitamin B3 metabolism.
Collapse
Affiliation(s)
- Ha T Doan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Li-Chieh Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Chiu
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yuan-Kai Cheng
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
- Leeuwenhoek Laboratories Co. Ltd, Taipei, Taiwan
| | - Yee-Chun Chen
- Department of Internal Medicine, National Taiwan University Hospital and National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hsiu-Jung Lo
- National Institute of Infectious Disease and Vaccinology, National Health Research Institutes, Miaoli, Taiwan
| | - Hao-Sen Chiang
- Department of Life Science, National Taiwan University, Taipei, Taiwan
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Zhao Y, Zhou Y, Wang D, Huang Z, Xiao X, Zheng Q, Li S, Long D, Feng L. Mitochondrial Dysfunction in Metabolic Dysfunction Fatty Liver Disease (MAFLD). Int J Mol Sci 2023; 24:17514. [PMID: 38139341 PMCID: PMC10743953 DOI: 10.3390/ijms242417514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become an increasingly common disease in Western countries and has become the major cause of liver cirrhosis or hepatocellular carcinoma (HCC) in addition to viral hepatitis in recent decades. Furthermore, studies have shown that NAFLD is inextricably linked to the development of extrahepatic diseases. However, there is currently no effective treatment to cure NAFLD. In addition, in 2020, NAFLD was renamed metabolic dysfunction fatty liver disease (MAFLD) to show that its pathogenesis is closely related to metabolic disorders. Recent studies have reported that the development of MAFLD is inextricably associated with mitochondrial dysfunction in hepatocytes and hepatic stellate cells (HSCs). Simultaneously, mitochondrial stress caused by structural and functional disorders stimulates the occurrence and accumulation of fat and lipo-toxicity in hepatocytes and HSCs. In addition, the interaction between mitochondrial dysfunction and the liver-gut axis has also become a new point during the development of MAFLD. In this review, we summarize the effects of several potential treatment strategies for MAFLD, including antioxidants, reagents, and intestinal microorganisms and metabolites.
Collapse
Affiliation(s)
- Ying Zhao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yanni Zhou
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Dan Wang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ziwei Huang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiong Xiao
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qing Zheng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shengfu Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Dan Long
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- NHC Key Laboratory of Transplant Engineering and Immunology, West China Hospital Sichuan University, Chengdu 610041, China
| | - Li Feng
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu 610041, China; (Y.Z.); (Y.Z.); (D.W.); (Z.H.); (X.X.); (Q.Z.); (S.L.); (D.L.)
- Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
25
|
Lyu Y, Xu J, Verdoodt F, Vanhaecke L, Hemeryck LY, Hesta M. Faecal metabolome responses to an altered dietary protein:carbohydrate ratio in adult dogs. Vet Q 2023; 43:1-10. [PMID: 37869782 PMCID: PMC10614716 DOI: 10.1080/01652176.2023.2273891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
High-protein diets may aid weight loss and weight maintenance programs in both humans and dogs, although the effect of dietary protein levels on gut metabolism and functionality has not been studied in depth. The current study aimed to investigate the effect of an altered dietary protein:carbohydrate ratio on gut function in adult dogs by means of faecal metabolomic fingerprinting. More specifically, functional metabolic differences in dogs fed a high-protein/low-carbohydrate (HPLC) vs. low-protein/high-carbohydrate (LPHC) diet were studied by equally allocating twelve clinically healthy (6 lean and 6 obese) Beagles into two groups in a cross-over design, with each group receiving two isocaloric diets for four weeks. The faecal metabolome revealed that different protein:carbohydrate ratio can influence host and/or gut microbiome metabolism and function, while no effect was observed on the body condition. Targeted analysis demonstrated that the HPLC diet significantly increased the concentration of indole, spermidine, and pipecolinic acid and decreased the concentration of azelaic acid, D-fructose, mannose, and galactose (p < 0.05). Multivariate modelling (OPLS-DA) of the untargeted faecal metabolome revealed distinctly different metabolomic profiles following the HPLC vs. LPHC diet, with 18 altered pathways. The HPLC diet influenced amino acid and lipid metabolism, potentially promoting weight loss and immune function, whereas the LPHC diet affected carbohydrate fermentation and may promote anti-oxidative function.
Collapse
Affiliation(s)
- Yang Lyu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Jia Xu
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Fien Verdoodt
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lynn Vanhaecke
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lieselot Y. Hemeryck
- Laboratory of Integrative Metabolomics, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Myriam Hesta
- ECAN Equine and Companion Animal Nutrition, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
26
|
Bhasin S, Seals D, Migaud M, Musi N, Baur JA. Nicotinamide Adenine Dinucleotide in Aging Biology: Potential Applications and Many Unknowns. Endocr Rev 2023; 44:1047-1073. [PMID: 37364580 PMCID: PMC12102727 DOI: 10.1210/endrev/bnad019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/28/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
Recent research has unveiled an expansive role of NAD+ in cellular energy generation, redox reactions, and as a substrate or cosubstrate in signaling pathways that regulate health span and aging. This review provides a critical appraisal of the clinical pharmacology and the preclinical and clinical evidence for therapeutic effects of NAD+ precursors for age-related conditions, with a particular focus on cardiometabolic disorders, and discusses gaps in current knowledge. NAD+ levels decrease throughout life; age-related decline in NAD+ bioavailability has been postulated to be a contributor to many age-related diseases. Raising NAD+ levels in model organisms by administration of NAD+ precursors improves glucose and lipid metabolism; attenuates diet-induced weight gain, diabetes, diabetic kidney disease, and hepatic steatosis; reduces endothelial dysfunction; protects heart from ischemic injury; improves left ventricular function in models of heart failure; attenuates cerebrovascular and neurodegenerative disorders; and increases health span. Early human studies show that NAD+ levels can be raised safely in blood and some tissues by oral NAD+ precursors and suggest benefit in preventing nonmelanotic skin cancer, modestly reducing blood pressure and improving lipid profile in older adults with obesity or overweight; preventing kidney injury in at-risk patients; and suppressing inflammation in Parkinson disease and SARS-CoV-2 infection. Clinical pharmacology, metabolism, and therapeutic mechanisms of NAD+ precursors remain incompletely understood. We suggest that these early findings provide the rationale for adequately powered randomized trials to evaluate the efficacy of NAD+ augmentation as a therapeutic strategy to prevent and treat metabolic disorders and age-related conditions.
Collapse
Affiliation(s)
- Shalender Bhasin
- Department of Medicine, Harvard Medical School, Research Program in Men's Health: Aging and Metabolism, Boston Claude D. Pepper Older Americans Independence Center, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Douglas Seals
- Department of Integrative Physiology and Medicine, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Marie Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of Southern Alabama, Mobile, AL 36688, USA
| | - Nicolas Musi
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joseph A Baur
- Department of Physiology, Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
27
|
Aci R, Keskin A. Antioxidant Capacity of Melatonin against Oxidative Stress Caused by Exercise-Induced Weight Loss in Rats. INDONESIAN JOURNAL OF MEDICAL LABORATORY SCIENCE AND TECHNOLOGY 2023; 5:112-122. [DOI: 10.33086/ijmlst.v5i2.4159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Antioxidant supplements such as melatonin are used to prevent oxidative stress during exercise. This study aimed to investigate the antioxidant capacity of melatonin supplementation against oxidative stress induced by the weight loss observed during exercise. Forty Wistar Albino male rats were subjected to 10 days of jogging exercises. Two groups were formed based on weight loss. Two subgroups were created in each group. Melatonin (5 mg/kg) was administered to each subgroup in each group. The other subgroups were designated as control subgroups. Blood samples were collected after 10 d. Superoxide dismutase (SOD), total antioxidant status (TAS), glutathione peroxidase, melatonin, and malondialdehyde levels were analyzed in blood samples. SOD, glutathione peroxidase, TAS, and melatonin levels in the melatonin subgroup were higher than those in the control subgroup in the non-weight loss group. In contrast, the malondialdehyde levels were lower. Melatonin levels in the melatonin subgroup were higher than those in the control subgroup in the weight loss group. Conversely, the SOD and TAS levels were lower. In addition, there was a positive correlation between weight loss and malondialdehyde levels and a negative correlation with SOD, TAS, and melatonin levels. Melatonin (5 mg/kg) supplementation showed antioxidant capacity in exercise without weight loss, but was insufficient in exercise with weight loss.
Collapse
|
28
|
Goulart Nacácio E Silva S, Occhiutto ML, Costa VP. The use of Nicotinamide and Nicotinamide riboside as an adjunct therapy in the treatment of glaucoma. Eur J Ophthalmol 2023; 33:1801-1815. [PMID: 36916064 DOI: 10.1177/11206721231161101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Glaucoma is an optic neuropathy characterized by death of retinal ganglion cells (RGCs), which leads to progressive visual field loss and may result in blindness. Currently, the only available treatment to avoid or delay progression in glaucoma patients is to decrease intraocular pressure (IOP). However, despite adequate IOP control, approximately 25% of the patients continue to progress. To delay or prevent optic nerve damage in glaucoma, two forms of vitamin B3, nicotinamide (NAM) and nicotinamide riboside (NR) are emerging as viable adjuvant therapies. These compounds are nicotinamide adenine dinucleotide (NAD) precursors. NAD is essential for proper cell functioning and is involved in several metabolic activities, including protection against reactive oxygen species, contribution to the performance of various enzymes, and maintenance of mitochondrial function. Due to its beneficial effects and to the evidence of the reduction of NAD bioavailability with aging, researchers are seeking ways to replenish the cellular NAD pool, by administrating its precursors (NAM and NR), believing that it will reduce the RGC vulnerability to external stressors, such as increased IOP. This article attempts to analyze the current knowledge regarding the use of NAM and NR for the prevention and/or treatment of glaucoma.
Collapse
|
29
|
Yamane T, Imai M, Bamba T, Uchiyama S. Nicotinamide mononucleotide (NMN) intake increases plasma NMN and insulin levels in healthy subjects. Clin Nutr ESPEN 2023; 56:83-86. [PMID: 37344088 DOI: 10.1016/j.clnesp.2023.04.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 03/12/2023] [Accepted: 04/30/2023] [Indexed: 06/23/2023]
Abstract
INTRODUCTION Nicotinamide adenine dinucleotide (NAD+) is a coenzyme of the NAD+-dependent protein deacetylase sirtuin-1 (SIRT1). An increase in NAD+ concentration induces SIRT1 activation that results in various health benefits. Since nicotinamide mononucleotide (NMN) is a precursor of NAD+, NMN ingestion is expected to have multiple health benefits such as alleviation of aging, lifestyle-related and neurodegenerative diseases, through the activation of SIRT1. In this study, we aimed to determine the effects of daily NMN ingestion on plasma levels of NMN and NAD+. METHODS Healthy volunteers received 250 mg of NMN once a day in the morning (n = 11) for 12 weeks, and the plasma concentrations of NMN and NAD+ were measured monthly. Physiological and laboratory tests were performed within 2 h after lunch (at 2 pm) before and during NMN administration. RESULTS Oral administration of NMN increased the plasma concentrations of NMN and NAD+, and the postprandial serum insulin levels. The elevation levels of NMN and insulin varied widely among individuals. No adverse symptoms were observed in the participants. CONCLUSIONS Oral administration of NMN elevates plasma levels of NMN and NAD+, and postprandial serum insulin levels.
Collapse
Affiliation(s)
- Takuya Yamane
- Institute of Metabolomics, BYU-Analytica Inc., Suita, Osaka, 565-0871, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan.
| | - Momoko Imai
- Institute of Metabolomics, BYU-Analytica Inc., Suita, Osaka, 565-0871, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Takeshi Bamba
- Institute of Metabolomics, BYU-Analytica Inc., Suita, Osaka, 565-0871, Japan; Division of Metabolomics/Mass Spectrometry Center, Medical Research Center for High Depth Omics, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Fukuoka, 812-8582, Japan
| | - Susumu Uchiyama
- Institute of Metabolomics, BYU-Analytica Inc., Suita, Osaka, 565-0871, Japan; Department of Biotechnology, Graduate School of Engineering, Osaka University, Suita, Osaka, 565-0871, Japan
| |
Collapse
|
30
|
Dhuguru J, Dellinger RW, Migaud ME. Defining NAD(P)(H) Catabolism. Nutrients 2023; 15:3064. [PMID: 37447389 DOI: 10.3390/nu15133064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
Dietary vitamin B3 components, such as nicotinamide and nicotinic acid, are precursors to the ubiquitous redox cofactor nicotinamide adenine dinucleotide (NAD+). NAD+ levels are thought to decline with age and disease. While the drivers of this decline remain under intense investigation, strategies have emerged seeking to functionally maintain NAD+ levels through supplementation with NAD+ biosynthetic intermediates. These include marketed products, such as nicotinamide riboside (NR) and its phosphorylated form (NMN). More recent developments have shown that NRH (the reduced form of NR) and its phosphorylated form NMNH also increases NAD+ levels upon administration, although they initially generate NADH (the reduced form of NAD+). Other means to increase the combined levels of NAD+ and NADH, NAD(H), include the inhibition of NAD+-consuming enzymes or activation of biosynthetic pathways. Multiple studies have shown that supplementation with an NAD(H) precursor changes the profile of NAD(H) catabolism. Yet, the pharmacological significance of NAD(H) catabolites is rarely considered although the distribution and abundance of these catabolites differ depending on the NAD(H) precursor used, the species in which the study is conducted, and the tissues used for the quantification. Significantly, some of these metabolites have emerged as biomarkers in physiological disorders and might not be innocuous. Herein, we review the known and emerging catabolites of the NAD(H) metabolome and highlight their biochemical and physiological function as well as key chemical and biochemical reactions leading to their formation. Furthermore, we emphasize the need for analytical methods that inform on the full NAD(H) metabolome since the relative abundance of NAD(H) catabolites informs how NAD(H) precursors are used, recycled, and eliminated.
Collapse
Affiliation(s)
- Jyothi Dhuguru
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| | | | - Marie E Migaud
- Department of Pharmacology, Mitchell Cancer Institute, College of Medicine, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36604, USA
| |
Collapse
|
31
|
Taibl KR, Dunlop AL, Barr DB, Li YY, Eick SM, Kannan K, Ryan PB, Schroder M, Rushing B, Fennell T, Chang CJ, Tan Y, Marsit CJ, Jones DP, Liang D. Newborn metabolomic signatures of maternal per- and polyfluoroalkyl substance exposure and reduced length of gestation. Nat Commun 2023; 14:3120. [PMID: 37253729 PMCID: PMC10229585 DOI: 10.1038/s41467-023-38710-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Marginalized populations experience disproportionate rates of preterm birth and early term birth. Exposure to per- and polyfluoroalkyl substances (PFAS) has been reported to reduce length of gestation, but the underlying mechanisms are unknown. In the present study, we characterized the molecular signatures of prenatal PFAS exposure and gestational age at birth outcomes in the newborn dried blood spot metabolome among 267 African American dyads in Atlanta, Georgia between 2016 and 2020. Pregnant people with higher serum perfluorooctanoic acid and perfluorohexane sulfonic acid concentrations had increased odds of an early birth. After false discovery rate correction, the effect of prenatal PFAS exposure on reduced length of gestation was associated with 8 metabolomic pathways and 52 metabolites in newborn dried blood spots, which suggested perturbed tissue neogenesis, neuroendocrine function, and redox homeostasis. These mechanisms explain how prenatal PFAS exposure gives rise to the leading cause of infant death in the United States.
Collapse
Grants
- R01 NR014800 NINR NIH HHS
- U2C ES026542 NIEHS NIH HHS
- P50 ES026071 NIEHS NIH HHS
- R01 MD009064 NIMHD NIH HHS
- R01 MD009746 NIMHD NIH HHS
- R21 ES032117 NIEHS NIH HHS
- U2C ES026560 NIEHS NIH HHS
- P30 ES019776 NIEHS NIH HHS
- R24 ES029490 NIEHS NIH HHS
- U24 ES029490 NIEHS NIH HHS
- UG3 OD023318 NIH HHS
- T32 ES012870 NIEHS NIH HHS
- UH3 OD023318 NIH HHS
- U.S. Department of Health & Human Services | NIH | National Institute of Environmental Health Sciences (NIEHS)
- U.S. Department of Health & Human Services | NIH | National Institute of Nursing Research (NINR)
- U.S. Department of Health & Human Services | NIH | National Institute on Minority Health and Health Disparities (NIMHD)
- Research reported in this publication was supported by the Environmental Influences on Child Health Outcomes (ECHO) program, Office of the Director, National Institutes of Health, under Award Numbers 5U2COD023375-05/A03-3824, the National Institute of Health (NIH) research grants [R21ES032117, R01NR014800, R01MD009064, R24ES029490, R01MD009746], NIH Center Grants [P50ES02607, P30ES019776, UH3OD023318, U2CES026560, U2CES026542], and Environmental Protection Agency (USEPA) center grant [83615301].
Collapse
Affiliation(s)
- Kaitlin R Taibl
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Anne L Dunlop
- Department of Gynecology and Obstetrics, School of Medicine, Emory University, Atlanta, GA, USA.
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Yuan-Yuan Li
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Stephanie M Eick
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - P Barry Ryan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Madison Schroder
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Blake Rushing
- Metabolomics and Exposome Laboratory, Nutrition Research Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Timothy Fennell
- Analytical Chemistry and Pharmaceuticals, RTI International, Research Triangle Park, Durham, NC, USA
| | - Che-Jung Chang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Youran Tan
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dean P Jones
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, School of Medicine, Emory University, Atlanta, GA, USA
| | - Donghai Liang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
32
|
Carretta MD, Creutzburg P, Borquez K, Quiroga J, Alarcón P, Rivera A, Burgos RA. Hydroxycarboxylic acid receptor 2 (HCA2) agonists induce NET formation and MMP-9 release from bovine polymorphonuclear leukocytes. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2023; 139:104562. [PMID: 36183839 DOI: 10.1016/j.dci.2022.104562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/27/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
Periparturient cows are commonly fed diets supplemented with Niacin (nicotinic acid, NA) because of its anti-lipolytic properties. NA confers its anti-lipolytic effects by activating the hydroxycarboxylic acid 2 receptor (HCA2). HCA2 is also activated by the ketone body beta-hydroxybutyrate (BHB) and circulating BHB levels are elevated in postpartum dairy cows. The HCA2 receptor is highly expressed in bovine polymorphonuclear leukocytes (PMN) and could link metabolic and innate immune responses in cattle. We investigated how HCA2 agonists affected bovine PMN function in vitro. We studied different PMN responses, such as granule release, surface expression of CD11b and CD47, generation of neutrophil extracellular traps (NETs), and apoptosis. NA, BHB, and 4,4aR,5,5aR-tetrahydro-1H-cyclopropa [4,5] cyclopenta [1,2-c] pyrazole-3-carboxylic acid (MK-1903) treatment triggered the release of matrix metalloproteinase 9 (MMP-9), a component of the tertiary granule, from neutrophils. Additionally, all HCA2 agonists induced NETs formation but did not affect surface expression of CD11b and CD47. Finally, none of the HCA2 agonists triggered apoptosis in bovine PMN. This information will give new insights into the potential role of the HCA2 receptor in the bovine innate immune response.
Collapse
Affiliation(s)
- Maria Daniella Carretta
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile.
| | - Paz Creutzburg
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Katherine Borquez
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - John Quiroga
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Pablo Alarcón
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Andrés Rivera
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| | - Rafael Agustin Burgos
- Laboratory of Inflammation Pharmacology, Institute of Pharmacology and Morphophysiology, Faculty of Veterinary Science, Universidad Austral de, Chile
| |
Collapse
|
33
|
Wei S, Wang W, Liu S, Sun B, Zeng Q, Wang G, Luo P, Zhang A. Genome-wide DNA methylation pattern in whole blood of patients with coal-burning arsenic poisoning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 248:114323. [PMID: 36436256 DOI: 10.1016/j.ecoenv.2022.114323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/31/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Exposure to coal-burning arsenic leads to an increased risk of cancer, multi-systems damage and chronic diseases, with DNA methylation one potential mechanism of arsenic toxicity. There are few studies on genome-wide methylation in the coal-burning arsenic poisoning population. Illumina 850 K methylation beadchip is the most suitable technology for DNA methylation of epigenome-wide association analysis. This study used 850 K to detect changes in Genome-wide DNA methylation in whole blood samples of 12 patients with coal-burning arsenic poisoning ( Arsenic poisoning group) and four healthy control participants (Healthy control group). There is clearly abnormal genome-wide DNA methylation in coal-burning arsenic poisoning, with 647 significantly different methylation positions, 524 different methylation regions and 335 significantly different methylation genes in arsenic poisoning patients compared with healthy controls. Further functional analysis of Gene ontology (GO) and Kyoto encyclopedia of genes (KEGG) found 592 GO items and 131 KEGG pathways between patients of coal-burning arsenic poisoning and healthy control. Then, analysis of gene degree and combined-score identified NAPRT1, NT5C3B, NEDD4L, SLC22A3 and RAB11B as target genes. Further validation by qRT-PCR indicates that mRNA expression of five genes changes significantly in the arsenic poisoning group (n = 72) compared to the healthy control group (n = 72). These results showed the genome-wide methylation pattern and highlighted five critical genes within the coal-burning arsenic poisoning population that involve Nicotinate and nicotinamide metabolism, Choline metabolism in cancer, and Ubiquitin mediated proteolysis. Next, the methylation profile of coal burning arsenic poisoning will be further excavation and the mechanism of coal burning arsenic poisoning will be further explored from five genes related pathways and functions.
Collapse
Affiliation(s)
- Shaofeng Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China.
| | - Wenjing Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Shiwen Liu
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Baofei Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Qibing Zeng
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Guoze Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Peng Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China
| | - Aihua Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China; The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, People's Republic of China.
| |
Collapse
|
34
|
Wan Z, Zheng J, Zhu Z, Sang L, Zhu J, Luo S, Zhao Y, Wang R, Zhang Y, Hao K, Chen L, Du J, Kan J, He H. Intermediate role of gut microbiota in vitamin B nutrition and its influences on human health. Front Nutr 2022; 9:1031502. [PMID: 36583209 PMCID: PMC9792504 DOI: 10.3389/fnut.2022.1031502] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/28/2022] [Indexed: 12/14/2022] Open
Abstract
Vitamin B consists of a group of water-soluble micronutrients that are mainly derived from the daily diet. They serve as cofactors, mediating multiple metabolic pathways in humans. As an integrated part of human health, gut microbiota could produce, consume, and even compete for vitamin B with the host. The interplay between gut microbiota and the host might be a crucial factor affecting the absorbing processes of vitamin B. On the other hand, vitamin B supplementation or deficiency might impact the growth of specific bacteria, resulting in changes in the composition and function of gut microbiota. Together, the interplay between vitamin B and gut microbiota might systemically contribute to human health. In this review, we summarized the interactions between vitamin B and gut microbiota and tried to reveal the underlying mechanism so that we can have a better understanding of its role in human health.
Collapse
Affiliation(s)
- Zhijie Wan
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | - Lan Sang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Jinwei Zhu
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Shizheng Luo
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yixin Zhao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Ruirui Wang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Yicui Zhang
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Kun Hao
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | - Liang Chen
- Nutrilite Health Institute, Shanghai, China
| | - Jun Du
- Nutrilite Health Institute, Shanghai, China
| | - Juntao Kan
- Nutrilite Health Institute, Shanghai, China
| | - Hua He
- Center of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
35
|
Rushing BR, Fogle HM, Sharma J, You M, McCormac JP, Molina S, Sumner S, Krupenko NI, Krupenko SA. Exploratory Metabolomics Underscores the Folate Enzyme ALDH1L1 as a Regulator of Glycine and Methylation Reactions. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238394. [PMID: 36500483 PMCID: PMC9740053 DOI: 10.3390/molecules27238394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Folate (vitamin B9) is involved in one-carbon transfer reactions and plays a significant role in nucleic acid synthesis and control of cellular proliferation, among other key cellular processes. It is now recognized that the role of folates in different stages of carcinogenesis is complex, and more research is needed to understand how folate reactions become dysregulated in cancers and the metabolic consequences that occur as a result. ALDH1L1 (cytosolic 10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism expressed in many tissues, is ubiquitously downregulated in cancers and is not expressed in cancer cell lines. The RT4 cell line (derived from papillary bladder cancer) which expresses high levels of ALDH1L1 represents an exception, providing an opportunity to explore the metabolic consequences of the loss of this enzyme. We have downregulated this protein in RT4 cells (shRNA driven knockdown or CRISPR driven knockout) and compared metabolomes of ALDH1L1-expressing and -deficient cells to determine if metabolic changes linked to the loss of this enzyme might provide proliferative and/or survival advantages for cancer cells. In this study, cell extracts were analyzed using Ultra High Performance Liquid Chromatography High Resolution Mass Spectrometry (UHPLC-HR-MS). A total of 13,339 signals were identified or annotated using an in-house library and public databases. Supervised and unsupervised multivariate analysis revealed metabolic differences between RT4 cells and ALDH1L1-deficient clones. Glycine (8-fold decrease) and metabolites derived from S-adenosylmethionine utilizing pathways were significantly decreased in the ALDH1L1-deficient clones, compared with RT4 cells. Other changes linked to ALDH1L1 downregulation include decreased levels of amino acids, Krebs cycle intermediates, and ribose-5-phosphate, and increased nicotinic acid. While the ALDH1L1-catalyzed reaction is directly linked to glycine biosynthesis and methyl group flux, its overall effect on cellular metabolism extends beyond immediate metabolic pathways controlled by this enzyme.
Collapse
Affiliation(s)
- Blake R. Rushing
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Halle M. Fogle
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jaspreet Sharma
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
| | - Mikyoung You
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
| | | | - Sabrina Molina
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
| | - Susan Sumner
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (S.S.); (S.A.K.)
| | - Natalia I. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
| | - Sergey A. Krupenko
- Nutrition Research Institute, UNC Chapel Hill, Kannapolis, NC 28081, USA
- Department of Nutrition, UNC Chapel Hill, Chapel Hill, NC 27599, USA
- Correspondence: (S.S.); (S.A.K.)
| |
Collapse
|
36
|
Pozzi V, Campagna R, Sartini D, Emanuelli M. Nicotinamide N-Methyltransferase as Promising Tool for Management of Gastrointestinal Neoplasms. Biomolecules 2022; 12:biom12091173. [PMID: 36139012 PMCID: PMC9496617 DOI: 10.3390/biom12091173] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/21/2022] [Accepted: 08/23/2022] [Indexed: 12/24/2022] Open
Abstract
Gastrointestinal (GI) neoplasms include esophageal, gastric, colorectal, hepatic, and pancreatic cancers. They are characterized by asymptomatic behavior, being responsible for diagnostic delay. Substantial refractoriness to chemo- and radiotherapy, exhibited by late-stage tumors, contribute to determine poor patient outcome. Therefore, it is of outmost importance to identify new molecular targets for the development of effective therapeutic strategies. In this study, we focused on the enzyme nicotinamide N-methyltransferase (NNMT), which catalyzes the N-methylation reaction of nicotinamide and whose overexpression has been reported in numerous neoplasms, including GI cancers. The aim of this review was to report data illustrating NNMT involvement in these tumors, highlighting its contribution to tumor cell phenotype. Cited works clearly demonstrate the interesting potential use of enzyme level determination for both diagnostic and prognostic purposes. NNMT was also found to positively affect cell viability, proliferation, migration, and invasiveness, contributing to sustain in vitro and in vivo tumor growth and metastatic spread. Moreover, enzyme upregulation featuring tumor cells was significantly associated with enhancement of resistance to treatment with chemotherapeutic drugs. Taken together, these results strongly suggest the possibility to target NNMT for setup of molecular-based strategies to effectively treat GI cancers.
Collapse
Affiliation(s)
- Valentina Pozzi
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Roberto Campagna
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
| | - Davide Sartini
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- Correspondence: ; Tel.: +39-071-2204673
| | - Monica Emanuelli
- Department of Clinical Sciences, Polytechnic University of Marche, 60020 Ancona, Italy
- New York-Marche Structural Biology Center (NY-MaSBiC), Polytechnic University of Marche, 60131 Ancona, Italy
| |
Collapse
|
37
|
Synthesis of Mixed Dinucleotides by Mechanochemistry. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103229. [PMID: 35630705 PMCID: PMC9147584 DOI: 10.3390/molecules27103229] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/08/2022] [Accepted: 05/10/2022] [Indexed: 11/17/2022]
Abstract
We report the synthesis of vitamin B1, B2, and B3 derived nucleotides and dinucleotides generated either through mechanochemical or solution phase chemistry. Under the explored conditions, adenosine and thiamine proved to be particularly amenable to milling conditions. Following optimization of the chemistry related to the formation pyrophosphate bonds, mixed dinucleotides of adenine and thiamine (vitamin B1), riboflavin (vitamin B2), nicotinamide riboside and 3-carboxamide 4-pyridone riboside (both vitamin B3 derivatives) were generated in good yields. Furthermore, we report an efficient synthesis of the MW+4 isotopologue of NAD+ for which deuterium incorporation is present on either side of the dinucleotidic linkage, poised for isotopic tracing experiments by mass spectrometry. Many of these mixed species are novel and present unexplored possibilities to simultaneously enhance or modulate cofactor transporters and enzymes of independent biosynthetic pathways.
Collapse
|
38
|
Abstract
Severe oral inflammatory disease is not uncommon in the mouths of canine and feline patients. An approach to oral diagnosis is offered. This article discusses a brief review of important points in the oral diagnosis and management of main canine (canine chronic ulcerative stomatitis (CCUS), eosinophilic stomatitis, and Wegener's granulomatosis (WG)) and feline diseases (feline gingivostomatitis/caudal stomatitis, oral eosinophilic lesions, pyogenic granuloma, and autoimmune diseases with oral manifestations), and-whereby possible-information about the current understanding of disease pathogenesis and treatment is offered.
Collapse
|
39
|
Noro F, Marotta A, Bonaccio M, Costanzo S, Santonastaso F, Orlandi S, Tirozzi A, Parisi R, De Curtis A, Persichillo M, Gianfagna F, Di Castelnuovo A, Donati MB, Cerletti C, de Gaetano G, Iacoviello L, Gialluisi A, Izzi B. Fine-grained investigation of the relationship between human nutrition and global DNA methylation patterns. Eur J Nutr 2021; 61:1231-1243. [PMID: 34741648 DOI: 10.1007/s00394-021-02716-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 10/18/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE Nutrition is an important, modifiable, environmental factor affecting human health by modulating epigenetic processes, including DNA methylation (5mC). Numerous studies investigated the association of nutrition with global and gene-specific DNA methylation and evidences on animal models highlighted a role in DNA hydroxymethylation (5hmC) regulation. However, a more comprehensive analysis of different layers of nutrition in association with global levels of 5mC and 5hmC is lacking. We investigated the association between global levels of 5mC and 5hmC and human nutrition, through the stratification and analysis of dietary patterns into different nutritional layers: adherence to Mediterranean diet (MD), main food groups, macronutrients and micronutrients intake. METHODS ELISA technique was used to measure global 5mC and 5hmC levels in 1080 subjects from the Moli-sani cohort. Food intake during the 12 months before enrolment was assessed using the semi-quantitative EPIC food frequency questionnaire. Complementary approaches involving both classical statistics and supervised machine learning analyses were used to investigate the associations between global 5mC and 5hmC levels and adherence to Mediterranean diet, main food groups, macronutrients and micronutrients intake. RESULTS We found that global DNA methylation, but not hydroxymethylation, was associated with daily intake of zinc and vitamin B3. Random Forests algorithms predicting 5mC and 5hmC through intakes of food groups, macronutrients and micronutrients revealed a significant contribution of zinc, while vitamin B3 was reported among the most influential features. CONCLUSION We found that nutrition may affect global DNA methylation, suggesting a contribution of micronutrients previously implicated as cofactors in methylation pathways.
Collapse
Affiliation(s)
- Fabrizia Noro
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Annalisa Marotta
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Marialaura Bonaccio
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Simona Costanzo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Federica Santonastaso
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Sabatino Orlandi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Roberta Parisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Amalia De Curtis
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Mariarosaria Persichillo
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Francesco Gianfagna
- Mediterranea Cardiocentro, Naples, Italy.,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy
| | | | - Maria Benedetta Donati
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Giovanni de Gaetano
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy. .,Department of Medicine and Surgery, EPIMED Research Center, University of Insubria, Varese, Italy.
| | - Alessandro Gialluisi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | - Benedetta Izzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Via dell'Elettronica, 86077, Pozzilli, IS, Italy
| | | |
Collapse
|
40
|
Effects of dietary nicotinic acid supplementation on meat quality, carcass characteristics, lipid metabolism, and tibia parameters of Wulong geese. Poult Sci 2021; 100:101430. [PMID: 34525445 PMCID: PMC8445892 DOI: 10.1016/j.psj.2021.101430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/28/2021] [Accepted: 08/08/2021] [Indexed: 11/25/2022] Open
Abstract
The purpose of this study was to evaluate the effects of nicotinic acid (NA) supplementation on the meat quality, carcass characteristics, lipid metabolism, and tibia parameters in Wulong geese. A total of 360 twenty-nine-day-old Wulong geese were randomly divided into 6 treatments, and each treatment included 6 pens with 10 birds per pen. Birds were fed a basal diet supplemented with 0, 20, 40, 60, 80, or 100 mg/kg NA for 12 wk. Dietary NA supplementation linearly decreased L* value and increased pH and water-holding capacity in the breast muscle (P < 0.05). Increasing NA levels linearly and quadratically decreased shear force of breast muscle (P < 0.001). Dietary NA supplementation linearly reduced the thickness of subcutaneous fat plus the skin and percentage of abdominal fat, and enhanced the width of intermuscular fat band (P < 0.001). Dietary NA addition linearly and quadratically increased intramuscular fat (IMF) content (P ≤ 0.001). Increasing NA levels decreased serum total cholesterol and low-density lipoprotein cholesterol levels and increased serum lipase activity and hepatic mRNA expression of lipoprotein lipase in a linear manner (P < 0.05). There were linear and quadratic effects in serum triglycerides and high-density lipoprotein cholesterol (HDL-C) levels and malate dehydrogenase activity with the NA addition (P < 0.05). Feeding the NA-supplemented-diets linearly increased tibia length, circumference, fat-free dry weight, and ash content (P < 0.001). There were linear and quadratic increases in Ca and P contents with the NA supplementation (P < 0.05). According to the quadratic regression analyses fitted to shear force, IMF content, serum triglycerides and HDL-C levels, and tibial Ca and P contents, the optimal dietary NA supplementation was 80 to 90 mg/kg. In conclusion, NA addition enhanced meat quality and IMF content, regulated lipid metabolism, and increased tibia quality of Wulong geese. The dosage of 80 mg/kg NA in Wulong geese aged 5 to 16 wk was recommended.
Collapse
|
41
|
Drugs Interfering with Insulin Resistance and Their Influence on the Associated Hypermetabolic State in Severe Burns: A Narrative Review. Int J Mol Sci 2021; 22:ijms22189782. [PMID: 34575946 PMCID: PMC8466307 DOI: 10.3390/ijms22189782] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 12/31/2022] Open
Abstract
It has become widely accepted that insulin resistance and glucose hypermetabolism can be linked to acute pathologies, such as burn injury, severe trauma, or sepsis. Severe burns can determine a significant increase in catabolism, having an important effect on glucose metabolism and on muscle protein metabolism. It is imperative to acknowledge that these alterations can lead to increased mortality through organ failure, even when the patients survive the initial trauma caused by the burn. By limiting the peripheral use of glucose with consequent hyperglycemia, insulin resistance determines compensatory increased levels of insulin in plasma. However, the significant alterations in cellular metabolism lead to a lack of response to insulin's anabolic functions, as well as to a decrease in its cytoprotective role. In the end, via pathological insulin signaling associated with increased liver gluconeogenesis, elevated levels of glucose are detected in the blood. Several cellular mechanisms have been incriminated in the development of insulin resistance in burns. In this context, the main aim of this review article is to summarize some of the drugs that might interfere with insulin resistance in burns, taking into consideration that such an approach can significantly improve the prognosis of the burned patient.
Collapse
|
42
|
Przewodowska D, Marzec W, Madetko N. Novel Therapies for Parkinsonian Syndromes-Recent Progress and Future Perspectives. Front Mol Neurosci 2021; 14:720220. [PMID: 34512258 PMCID: PMC8427499 DOI: 10.3389/fnmol.2021.720220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/23/2021] [Indexed: 11/23/2022] Open
Abstract
Background: Atypical parkinsonian syndromes are rare, fatal neurodegenerative diseases associated with abnormal protein accumulation in the brain. Examples of these syndromes include progressive supranuclear palsy, multiple system atrophy, and corticobasal degeneration. A common clinical feature in parkinsonism is a limited improvement with levodopa. So far, there are no disease-modifying treatments to address these conditions, and therapy is only limited to the alleviation of symptoms. Diagnosis is devastating for patients, as prognosis is extremely poor, and the disease tends to progress rapidly. Currently, potential causes and neuropathological mechanisms involved in these diseases are being widely investigated. Objectives: The goal of this review is to summarize recent advances and gather emerging disease-modifying therapies that could slow the progression of atypical parkinsonian syndromes. Methods: PubMed and Google Scholar databases were searched regarding novel perspectives for atypical parkinsonism treatment. The following medical subject headings were used: "atypical parkinsonian syndromes-therapy," "treatment of atypical parkinsonian syndromes," "atypical parkinsonian syndromes-clinical trial," "therapy of tauopathy," "alpha-synucleinopathy treatment," "PSP therapy/treatment," "CBD therapy/treatment," "MSA therapy/treatment," and "atypical parkinsonian syndromes-disease modifying." All search results were manually reviewed prior to inclusion in this review. Results: Neuroinflammation, mitochondrial dysfunction, microglia activation, proteasomal impairment, and oxidative stress play a role in the neurodegenerative process. Ongoing studies and clinical trials target these components in order to suppress toxic protein accumulation. Various approaches such as stem cell therapy, anti-aggregation/anti-phosphorylation agent administration, or usage of active and passive immunization appear to have promising results. Conclusion: Presently, disease-modifying strategies for atypical parkinsonian syndromes are being actively explored, with encouraging preliminary results. This leads to an assumption that developing accurate, safe, and progression-halting treatment is not far off. Nevertheless, the further investigation remains necessary.
Collapse
Affiliation(s)
- Dominika Przewodowska
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Weronika Marzec
- Students' Scientific Association of the Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| | - Natalia Madetko
- Department of Neurology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
43
|
The Utility of Nicotinamide N-Methyltransferase as a Potential Biomarker to Predict the Oncological Outcomes for Urological Cancers: An Update. Biomolecules 2021; 11:biom11081214. [PMID: 34439880 PMCID: PMC8393883 DOI: 10.3390/biom11081214] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 01/03/2023] Open
Abstract
Nicotinamide N-methyltransferase (NNMT) catalyzes the N-methylation reaction of nicotinamide, using S-adenosyl-L-methionine as the methyl donor. Enzyme overexpression has been described in many non-neoplastic diseases, as well as in a wide range of solid malignancies. This review aims to report and discuss evidence available in scientific literature, dealing with NNMT expression and the potential involvement in main urologic neoplasms, namely, renal, bladder and prostate cancers. Data illustrated in the cited studies clearly demonstrated NNMT upregulation (pathological vs. normal tissue) in association with these aforementioned tumors. In addition to this, enzyme levels were also found to correlate with key prognostic parameters and patient survival. Interestingly, NNMT overexpression also emerged in peripheral body fluids, such as blood and urine, thus leading to candidate the enzyme as promising biomarker for the early and non-invasive detection of these cancers. Examined results undoubtedly showed NNMT as having the capacity to promote cell proliferation, migration and invasiveness, as well as its potential participation in fundamental events highlighting cancer progression, metastasis and resistance to chemo- and radiotherapy. In the light of this evidence, it is reasonable to attribute to NNMT a promising role as a potential biomarker for the diagnosis and prognosis of urologic neoplasms, as well as a molecular target for effective anti-cancer treatment.
Collapse
|
44
|
Awad HH, El-Derany MO, Mantawy EM, Michel HE, El-Naa MM, Salah El-Din RA, El-Brairy AI, El-Demerdash E. Comparative study on beneficial effects of vitamins B and D in attenuating doxorubicin induced cardiotoxicity in rats: Emphasis on calcium homeostasis. Biomed Pharmacother 2021; 140:111679. [PMID: 34029952 DOI: 10.1016/j.biopha.2021.111679] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/27/2021] [Indexed: 12/13/2022] Open
Abstract
The use of doxorubicin (DOX) to treat various tumors is limited by its cardiotoxicity. This study aimed to investigate and compare the cardioprotective effects of nicotinamide (NAM) and alfacalcidol (1α(OH)D3), against DOX-induced cardiotoxicity. Sprague Dawley male rats received DOX (5 mg/kg, i.p.) once/week for four consecutive weeks. Treated groups received either NAM (600 mg/kg, p.o.) for 28 consecutive days or 1α(OH)D3 (0.5 ug/kg, i.p.) once/week for four consecutive weeks. DOX elicited marked cardiac tissue injury manifested by elevated serum cardiotoxicity indices, conduction and histopathological abnormalities. Both NAM and 1α(OH)D3 successfully reversed all these changes. From the mechanistic point of view, DOX provoked intense cytosolic and mitochondrial calcium (Ca2+) overload hence switching on calpain1 (CPN1) and mitochondrial-mediated apoptotic cascades as confirmed by upregulating Bax and caspase-3 while downregulating Bcl-2 expression. DOX also disrupted cardiac bioenergetics as evidenced by adenosine triphosphate (ATP) depletion and a declined ATP/ADP ratio. Moreover, DOX upregulated the Ca2+ sensor; calmodulin kinase II gamma (CaMKII-δ) which further contributed to cardiac damage. Interestingly, co-treatment with either NAM or 1α(OH)D3 reversed all DOX associated abnormalities by preserving Ca2+ homeostasis, replenishing ATP stores and obstructing apoptotic events. Additionally, DOX prompted nuclear factor kappa B (NF-κB) dependent inflammatory responses and subsequently upregulated interleukin-6 (IL-6) expression. Co-treatment with NAM or 1α(OH)D3 effectively obstructed these inflammatory signals. Remarkably, NAM showed superior beneficial cardioprotective properties over 1α(OH)D3. Both NAM and 1α(OH)D3 efficiently attenuated DOX-cardiomyopathy mainly via preserving Ca2+ homeostasis and diminishing apoptotic and inflammatory pathways. NAM definitely exhibited effective cardioprotective capabilities over 1α(OH)D3.
Collapse
Affiliation(s)
- Heba H Awad
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Marwa O El-Derany
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Eman M Mantawy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Haidy E Michel
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Mona M El-Naa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | | | - Amany I El-Brairy
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA University), Cairo, Egypt
| | - Ebtehal El-Demerdash
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt.
| |
Collapse
|
45
|
Mousavi H. A comprehensive survey upon diverse and prolific applications of chitosan-based catalytic systems in one-pot multi-component synthesis of heterocyclic rings. Int J Biol Macromol 2021; 186:1003-1166. [PMID: 34174311 DOI: 10.1016/j.ijbiomac.2021.06.123] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 05/16/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022]
Abstract
Heterocyclic compounds are among the most prestigious and valuable chemical molecules with diverse and magnificent applications in various sciences. Due to the remarkable and numerous properties of the heterocyclic frameworks, the development of efficient and convenient synthetic methods for the preparation of such outstanding compounds is of great importance. Undoubtedly, catalysis has a conspicuous role in modern chemical synthesis and green chemistry. Therefore, when designing a chemical reaction, choosing and or preparing powerful and environmentally benign simple catalysts or complicated catalytic systems for an acceleration of the chemical reaction is a pivotal part of work for synthetic chemists. Chitosan, as a biocompatible and biodegradable pseudo-natural polysaccharide is one of the excellent choices for the preparation of suitable catalytic systems due to its unique properties. In this review paper, every effort has been made to cover all research articles in the field of one-pot synthesis of heterocyclic frameworks in the presence of chitosan-based catalytic systems, which were published roughly by the first quarter of 2020. It is hoped that this review paper can be a little help to synthetic scientists, methodologists, and catalyst designers, both on the laboratory and industrial scales.
Collapse
Affiliation(s)
- Hossein Mousavi
- Department of Organic Chemistry, Faculty of Chemistry, Urmia University, Urmia, Iran.
| |
Collapse
|
46
|
Hayat F, Sonavane M, Makarov MV, Trammell SAJ, McPherson P, Gassman NR, Migaud ME. The Biochemical Pathways of Nicotinamide-Derived Pyridones. Int J Mol Sci 2021; 22:ijms22031145. [PMID: 33498933 PMCID: PMC7866226 DOI: 10.3390/ijms22031145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
As catabolites of nicotinamide possess physiological relevance, pyridones are often included in metabolomics measurements and associated with pathological outcomes in acute kidney injury (AKI). Pyridones are oxidation products of nicotinamide, its methylated form, and its ribosylated form. While they are viewed as markers of over-oxidation, they are often wrongly reported or mislabeled. To address this, we provide a comprehensive characterization of these catabolites of vitamin B3, justify their nomenclature, and differentiate between the biochemical pathways that lead to their generation. Furthermore, we identify an enzymatic and a chemical process that accounts for the formation of the ribosylated form of these pyridones, known to be cytotoxic. Finally, we demonstrate that the ribosylated form of one of the pyridones, the 4-pyridone-3-carboxamide riboside (4PYR), causes HepG3 cells to die by autophagy; a process that occurs at concentrations that are comparable to physiological concentrations of this species in the plasma in AKI patients.
Collapse
Affiliation(s)
- Faisal Hayat
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (F.H.); (M.S.)
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
| | - Manoj Sonavane
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (F.H.); (M.S.)
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
- Department of Physiology & Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Mikhail V. Makarov
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
| | - Samuel A. J. Trammell
- Novo Nordisk Foundation, Center for Basic Metabolic Research, University of Copenhagen, 2200 Copenhagen, Denmark;
| | - Pamela McPherson
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
| | - Natalie R. Gassman
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
- Department of Physiology & Cell Biology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA
| | - Marie E. Migaud
- Department of Pharmacology, College of Medicine, University of South Alabama, Mobile, AL 36688, USA; (F.H.); (M.S.)
- Mitchell Cancer Institute, College of Medicine, University of South Alabama, Mobile, AL 36604, USA; (M.V.M.); (P.M.); (N.R.G.)
- Correspondence:
| |
Collapse
|
47
|
Roberti A, Fernández AF, Fraga MF. Nicotinamide N-methyltransferase: At the crossroads between cellular metabolism and epigenetic regulation. Mol Metab 2021; 45:101165. [PMID: 33453420 PMCID: PMC7868988 DOI: 10.1016/j.molmet.2021.101165] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/30/2020] [Accepted: 01/09/2021] [Indexed: 01/01/2023] Open
Abstract
Background The abundance of energy metabolites is intimately interconnected with the activity of chromatin-modifying enzymes in order to guarantee the finely tuned modulation of gene expression in response to cellular energetic status. Metabolism-induced epigenetic gene regulation is a key molecular axis for the maintenance of cellular homeostasis, and its deregulation is associated with several pathological conditions. Nicotinamide N-methyltransferase (NNMT) is a metabolic enzyme that catalyzes the methylation of nicotinamide (NAM) using the universal methyl donor S-adenosyl methionine (SAM), directly linking one-carbon metabolism with a cell's methylation balance and nicotinamide adenine dinucleotide (NAD+) levels. NNMT expression and activity are regulated in a tissue-specific-manner, and the protein can act either physiologically or pathologically depending on its distribution. While NNMT exerts a beneficial effect by regulating lipid parameters in the liver, its expression in adipose tissue correlates with obesity and insulin resistance. NNMT upregulation has been observed in a variety of cancers, and increased NNMT expression has been associated with tumor progression, metastasis and worse clinical outcomes. Accordingly, NNMT represents an appealing druggable target for metabolic disorders as well as oncological and other diseases in which the protein is improperly activated. Scope of review This review examines emerging findings concerning the complex NNMT regulatory network and the role of NNMT in both NAD metabolism and cell methylation balance. We extensively describe recent findings concerning the physiological and pathological regulation of NNMT with a specific focus on the function of NNMT in obesity, insulin resistance and other associated metabolic disorders along with its well-accepted role as a cancer-associated metabolic enzyme. Advances in strategies targeting NNMT pathways are also reported, together with current limitations of NNMT inhibitor drugs in clinical use. Major conclusions NNMT is emerging as a key point of intersection between cellular metabolism and epigenetic gene regulation, and growing evidence supports its central role in several pathologies. The use of molecules that target NNMT represents a current pharmaceutical challenge for the treatment of several metabolic-related disease as well as in cancer.
Collapse
Affiliation(s)
- Annalisa Roberti
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Health Research Institute of Asturias (ISPA), Oviedo, Spain; Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain; Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Oviedo, Spain
| | - Agustín F Fernández
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Health Research Institute of Asturias (ISPA), Oviedo, Spain; Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain; Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Oviedo, Spain
| | - Mario F Fraga
- Cancer Epigenetics and Nanomedicine Laboratory, Nanomaterials and Nanotechnology Research Center (CINN-CSIC), El Entrego, Spain; Health Research Institute of Asturias (ISPA), Oviedo, Spain; Institute of Oncology of Asturias (IUOPA) and Department of Organisms and Systems Biology (B.O.S.), University of Oviedo, Oviedo, Spain; Rare Diseases CIBER (CIBERER) of the Carlos III Health Institute (ISCIII), Oviedo, Spain.
| |
Collapse
|
48
|
Rodríguez-Cano AM, Calzada-Mendoza CC, Estrada-Gutierrez G, Mendoza-Ortega JA, Perichart-Perera O. Nutrients, Mitochondrial Function, and Perinatal Health. Nutrients 2020; 12:E2166. [PMID: 32708345 PMCID: PMC7401276 DOI: 10.3390/nu12072166] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/13/2020] [Accepted: 07/20/2020] [Indexed: 12/16/2022] Open
Abstract
Mitochondria are active independent organelles that not only meet the cellular energy requirement but also regulate central cellular activities. Mitochondria can play a critical role in physiological adaptations during pregnancy. Differences in mitochondrial function have been found between healthy and complicated pregnancies. Pregnancy signifies increased nutritional requirements to support fetal growth and the metabolism of maternal and fetal tissues. Nutrient availability regulates mitochondrial metabolism, where excessive macronutrient supply could lead to oxidative stress and contribute to mitochondrial dysfunction, while micronutrients are essential elements for optimal mitochondrial processes, as cofactors in energy metabolism and/or as antioxidants. Inadequate macronutrient and micronutrient consumption can result in adverse pregnancy outcomes, possibly through mitochondrial dysfunction, by impairing energy supply, one-carbon metabolism, biosynthetic pathways, and the availability of metabolic co-factors which modulate the epigenetic processes capable of establishing significant short- and long-term effects on infant health. Here, we review the importance of macronutrients and micronutrients on mitochondrial function and its influence on maternal and infant health.
Collapse
Affiliation(s)
- Ameyalli M Rodríguez-Cano
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| | - Claudia C Calzada-Mendoza
- Section for Postgraduate Studies and Research, Higher School of Medicine, Instituto Politécnico Nacional, Mexico City 11340, Mexico; (A.M.R.-C.); (C.C.C.-M.)
| | - Guadalupe Estrada-Gutierrez
- Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Research Division; Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
| | - Jonatan A Mendoza-Ortega
- Immunobiochemistry Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico;
- Immunology Department, National School of Biological Sciences, Instituto Politécnico Nacional, Mexico City 11350, Mexico
| | - Otilia Perichart-Perera
- Nutrition and Bioprogramming Department, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Montes Urales 800, Lomas de Virreyes, Mexico City 11000, Mexico
| |
Collapse
|
49
|
Hayat F, Migaud ME. Nicotinamide riboside-amino acid conjugates that are stable to purine nucleoside phosphorylase. Org Biomol Chem 2020; 18:2877-2885. [PMID: 32236231 PMCID: PMC7953427 DOI: 10.1039/d0ob00134a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nutraceutical Nicotinamide Riboside (NR), an efficacious biosynthetic precursor to NAD, is readily metabolized by the purine nucleoside phosphorylase (PNP). Access to the PNP-stable versions of NR is difficult because the glycosidic bond of NR is easily cleaved. Unlike NR, NRH, the reduced form of NR, offers sufficient chemical stability to allow the successful functionalisation of the ribosyl-moiety. Here, we report on a series of NRH and NR derived amino acid conjugates, generated in good to excellent yields and show that O5'-esterification prevents the PNP-catalyzed phosphorolysis of these NR prodrugs.
Collapse
Affiliation(s)
- Faisal Hayat
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA.
| | - Marie E Migaud
- Mitchell Cancer Institute, Department of Pharmacology, University of South Alabama, 1660 Springhill Avenue, Mobile, AL 36693, USA.
| |
Collapse
|
50
|
Moretti R, Peinkhofer C. B Vitamins and Fatty Acids: What Do They Share with Small Vessel Disease-Related Dementia? Int J Mol Sci 2019; 20:5797. [PMID: 31752183 PMCID: PMC6888477 DOI: 10.3390/ijms20225797] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/21/2019] [Accepted: 11/12/2019] [Indexed: 12/12/2022] Open
Abstract
Many studies have been written on vitamin supplementation, fatty acid, and dementia, but results are still under debate, and no definite conclusion has yet been drawn. Nevertheless, a significant amount of lab evidence confirms that vitamins of the B group are tightly related to gene control for endothelium protection, act as antioxidants, play a co-enzymatic role in the most critical biochemical reactions inside the brain, and cooperate with many other elements, such as choline, for the synthesis of polyunsaturated phosphatidylcholine, through S-adenosyl-methionine (SAM) methyl donation. B-vitamins have anti-inflammatory properties and act in protective roles against neurodegenerative mechanisms, for example, through modulation of the glutamate currents and a reduction of the calcium currents. In addition, they also have extraordinary antioxidant properties. However, laboratory data are far from clinical practice. Many studies have tried to apply these results in everyday clinical activity, but results have been discouraging and far from a possible resolution of the associated mysteries, like those represented by Alzheimer's disease (AD) or small vessel disease dementia. Above all, two significant problems emerge from the research: No consensus exists on general diagnostic criteria-MCI or AD? Which diagnostic criteria should be applied for small vessel disease-related dementia? In addition, no general schema exists for determining a possible correct time of implementation to have effective results. Here we present an up-to-date review of the literature on such topics, shedding some light on the possible interaction of vitamins and phosphatidylcholine, and their role in brain metabolism and catabolism. Further studies should take into account all of these questions, with well-designed and world-homogeneous trials.
Collapse
Affiliation(s)
- Rita Moretti
- Neurology Clinic, Department of Medical, Surgical and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | | |
Collapse
|