1
|
Kang SW, Helm BR, Wang Y, Xiao S, Zhang W, Vasudev A, Lau KS, Liu Q, Richie ER, Hale LP, Manley NR. Insulin-like growth factor 2 as a driving force for exponential expansion and differentiation of the neonatal thymus. Development 2025; 152:dev204347. [PMID: 40110795 PMCID: PMC12045631 DOI: 10.1242/dev.204347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/09/2025] [Indexed: 03/22/2025]
Abstract
Like all organs, the thymus grows in size and function rapidly during development, but this growth comes to a halt after birth. However, the molecular mechanisms behind such a transition in the thymus remain obscure. Using single-cell RNA sequencing (scRNA-seq) of the murine thymic stroma, we identified that major transcriptomic changes occur in the endothelium and mesenchyme across the transition to homeostasis. Differentially expressed gene and intercellular network analyses of temporally resolved scRNA-seq data revealed fibroblast-derived insulin-like growth factor 2 (IGF2) as a candidate driving neonatal thymic expansion. We demonstrated that IGF2 activity promotes a cortical thymic epithelial cell-specific proliferation and is tightly regulated at the thymic growth transition. Bulk RNA-seq of human thymi across the transition also revealed that IGF2 drives thymic expansion, suggesting an evolutionarily conserved role. Our study highlights the role of fibroblast-derived IGF2 in promoting cortical thymic epithelial cell proliferation and differentiation, resulting in early thymic expansion that is followed by downregulation to establish homeostasis.
Collapse
Affiliation(s)
- Seung Woo Kang
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Bryan R. Helm
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Yu Wang
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shiyun Xiao
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Wen Zhang
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| | - Anusha Vasudev
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Ken S. Lau
- Epithlielial Biology Center and Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Qi Liu
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Ellen R. Richie
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Laura P. Hale
- Department of Pathology and the Human Vaccine Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Nancy R. Manley
- Department of Genetics, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Budiono BP, Vider J, Zaid A, Peart JN, Du Toit EF, Headrick JP, Haseler LJ. Swimming induces physiological cardioprotection associated with pro-growth versus anti-inflammatory influences in extracardiac organs. Am J Physiol Regul Integr Comp Physiol 2025; 328:R206-R219. [PMID: 39792091 DOI: 10.1152/ajpregu.00139.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 12/11/2024] [Accepted: 12/21/2024] [Indexed: 01/12/2025]
Abstract
Physical activity improves myocardial structure, function, and resilience via complex, incompletely defined mechanisms. We explored the effects of 1- to 2-wk swim training on cardiac and systemic phenotype in young male C57Bl/6 mice. Two-week forced swimming (90 min twice daily) resulted in cardiac hypertrophy (22% increase in heart:body weight, P < 0.01), with improved inotropy (22% higher left ventricular +dP/dt, P < 0.01) and functional tolerance to ischemia-reperfusion (I-R) (40%-50% reductions in stunning and diastolic dysfunction, P < 0.01; without changes in cell death assessed from enzyme loss) in Langendorff perfused hearts. Initial Western immunoblot analysis indicated no shifts in cardiac expression of determinants of autophagy (LC3A/B), mitochondrial biogenesis/dynamics (PGC-1α, MFN-1, and OPA-1), or stress signaling (caveolin-3 and GSK-3β). Furthermore, no changes in cardiac cytokines (IL-1b, IL-6, IL-10, IL-12, GM-CSF, TNF-α, and IFN-γ) were detected in multiplex immunoassays. Exploratory profiling of RTK phosphorylation provided evidence for moderately increased activity of receptors involved in cardiac/coronary growth and protection (insulin, IGF-1, FGF R2, Tie-2, PDGFβ, and EphB4), together with a fall in M-CSF R and ephrin sub-type receptor phosphorylation. Swimming increased growth factor while reducing inflammatory mediators across extracardiac tissues [brain, pancreas, thymus, lymph nodes, and white adipose tissue (WAT)]. This included a pattern of increased LIF, VEGF, and pentraxin-2 versus reduced CXCL2/MIP-2a, chitinase 3-like 1, CCL6, MMP9, CD40/TNFRSF5, and IGFBP6 in multiple tissues, and a shift to a pro-browning profile in WAT. In summary, swimming produces integrated systemic benefits, improving cardiac growth, inotropy, and resilience in association with increased growth factor and reduced inflammatory and lipogenic mediators in multiple tissues.NEW & NOTEWORTHY Swimming may induce cardiac and systemic benefits distinct from other modes of physical activity. We show that 2-wk forced swim training increases cardiac growth, contractility, and functional resilience to ischemia in hearts of male mice. This is associated with increased growth factor levels and reduced inflammatory and lipogenic protein profiles in peripheral tissues.
Collapse
Affiliation(s)
- Boris P Budiono
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, New South Wales, Australia
| | - Jelena Vider
- School of Pharmacy and Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Ali Zaid
- School of Pharmacy and Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Jason N Peart
- School of Pharmacy and Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Eugene F Du Toit
- School of Pharmacy and Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - John P Headrick
- School of Pharmacy and Medical Science, Griffith University Gold Coast, Southport, Queensland, Australia
| | - Luke J Haseler
- Curtin School of Allied Health, Curtin University, Perth, Western Australia, Australia
| |
Collapse
|
3
|
Kim DW, Kim S, Han J, Belday K, Li E, Mahoney N, Blackshaw S, Rajaii F. Transcriptomic profiling of thyroid eye disease orbital fat demonstrates differences in adipogenicity and IGF-1R pathway. JCI Insight 2024; 9:e182352. [PMID: 39704170 DOI: 10.1172/jci.insight.182352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Despite recent advances in the treatment of thyroid eye disease thyroid-related eye disease (TED), marked gaps remain in our understanding of the underlying molecular mechanisms, particularly concerning the insulin-like growth factor-1 receptor (IGF-1R) pathway. To dissect the pathophysiology of TED, we used single-nucleus RNA-Seq to analyze orbital fat specimens from both patients with TED and matched individuals acting as controls. The analysis demonstrated a marked increase in the proportion of fibroblasts transitioning to adipogenesis in the orbital fat of patients with TED compared with that in control patients. This was associated with diverse alterations in immune cell composition. Significant alterations in the IGF-1R signaling pathway were noted between TED specimens and those from control patients, indicating a potential pathological mechanism driven by IGF-1R signaling abnormalities. Additionally, our data showed that linsitinib, a small-molecule inhibitor of IGF-1R, effectively reduced adipogenesis in TED orbital fibroblasts in vitro, suggesting its potential utility as a therapeutic agent. Our findings reveal that, beyond immune dysfunction, abnormal IGF-1R signaling leading to enhanced adipogenesis is a crucial pathogenic mechanism in TED.
Collapse
Affiliation(s)
- Dong Won Kim
- Danish Research Institute of Translational Neuroscience (DANDRITE), Nordic EMBL Partnership for Molecular Medicine, and
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Soohyun Kim
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jeong Han
- Baylor College of Medicine, Houston, Texas, USA
| | - Karan Belday
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emily Li
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Nicholas Mahoney
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Seth Blackshaw
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology
- Institute for Cell Engineering, and
- Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Fatemeh Rajaii
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
4
|
Lariz FJ, Botero PB, Shoffstall I, Houston KD. Insulin-like growth factor binding protein-6 modulates proliferative antagonism in response to progesterone in breast cancer. Front Endocrinol (Lausanne) 2024; 15:1450648. [PMID: 39698031 PMCID: PMC11652171 DOI: 10.3389/fendo.2024.1450648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Breast cancer is one of the most diagnosed cancers worldwide. The insulin-like growth factor (IGF) system promotes proliferation and survival in breast cancer cells and is regulated by 6 insulin-like growth factor binding proteins (IGFBPs). The IGFBPs sequester IGFs to prolong their half-life and attenuate binding to insulin-like growth factor 1 receptor (IGF1R). While IGFBP-6 has been studied in some cancers it has not been studied extensively in hormone receptor positive breast cancer. Survival analysis using available databases indicated that high IGFBP-6 levels improve overall survival in progesterone receptor positive breast cancers. IGFBP-6 is transcriptionally induced by progesterone in T47D breast cancer cells resulting in increased intracellular and extracellular IGFBP-6 protein. Knockdown of IGFBP-6 resulted in reduced proliferative antagonism when estradiol stimulated T47D cells were cotreated with progesterone and protein levels of both progesterone receptor isoforms (PR-A and PR-B) were decreased following knockdown of IGFBP-6. P21(Cip1/Waf1), which is progesterone responsive, was not induced in response to progesterone following knockdown of IGFBP-6. Cyclin E2, a cell cycle regulator, is induced by progesterone only when IGFBP-6 is knocked down. Stable overexpression of IGFBP-6 in MCF-7 cells resulted in an increase in Epidermal Growth Factor Receptor (EGFR) and this expression was further enhanced when cells were cotreated with progesterone and estradiol. These results indicate that IGFBP-6 is a regulator of progesterone action, and that PR is required for the observed protective effects of IGFBP-6 in breast cancer.
Collapse
Affiliation(s)
| | | | | | - Kevin D. Houston
- New Mexico State University, Department of Chemistry and Biochemistry, Las Cruces, NM, United States
| |
Collapse
|
5
|
Mao S, Zhao Y, Xiong H, Gong C. Excavating regulated cell death signatures to predict prognosis, tumor microenvironment and therapeutic response in HR+/HER2- breast cancer. Transl Oncol 2024; 50:102117. [PMID: 39241556 PMCID: PMC11406102 DOI: 10.1016/j.tranon.2024.102117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/25/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024] Open
Abstract
Regulated cell death (RCD) has been documented to have great potentials for discovering novel biomarkers and therapeutic targets in malignancies. But its role and clinical value in HR+/HER2- breast cancer, the most common subtype of breast cancer, are obscure. In this study, we comprehensively explored 12 types of RCD patterns and found extensive mutations and dysregulations of RCD genes in HR+/HER2- breast cancer. A prognostic RCD scoring system (CDScore) based on six critical genes (LEF1, SLC7A11, SFRP1, IGFBP6, CXCL2, STXBP1) was constructed, in which a high CDScore predicts poor prognosis. The expressions and prognostic value of LEF1 and SFRP1were also validated in our tissue microarrays. The nomogram established basing on CDScore, age and TNM stage performed satisfactory in predicting overall survival, with an area under the ROC curve of 0.89, 0.82 and 0.8 in predicting 1-year, 3-year and 5-year overall survival rates, respectively. Furthermore, CDScore was identified to be correlated with tumor microenvironments and immune checkpoints by excavation of bulk and single-cell sequencing data. Patients in CDScore high group might be resistant to standard chemotherapy and target therapy. Our results underlined the potential effects and importance of RCD in HR+/HER2- breast cancer and provided novel biomarkers and therapeutic targets for HR+/HER2- breast cancer patients.
Collapse
Affiliation(s)
- Shuangshuang Mao
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Yuanyuan Zhao
- Department of Organ Transplantation, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Huihua Xiong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China
| | - Chen Gong
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, China.
| |
Collapse
|
6
|
Xu J, Yang W, Xie X, Gu C, Zhao L, Liu F, Zhang N, Bai Y, Liu D, Liu H, Jin X, Meng Y. Identification of 10 differentially expressed genes involved in the tumorigenesis of cervical cancer via next-generation sequencing. PeerJ 2024; 12:e18157. [PMID: 39372720 PMCID: PMC11453159 DOI: 10.7717/peerj.18157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 09/02/2024] [Indexed: 10/08/2024] Open
Abstract
Background The incidence and mortality of cervical cancer remain high in female malignant tumors worldwide. There is still a lack of diagnostic and prognostic markers for cervical carcinoma. This study aimed to screen differentially expressed genes (DEGs) between normal and cervical cancer tissues to identify candidate genes for further research. Methods Uterine cervical specimens were resected from our clinical patients after radical hysterectomy. Three patients' transcriptomic datasets were built by the next generation sequencing (NGS) results. DEGs were selected through the edgeR and DESeq2 packages in the R environment. Functional enrichment analysis, including GO/DisGeNET/KEGG/Reactome enrichment analysis, was performed. Normal and cervical cancer tissue data from the public databases TCGA and GTEx were collected to compare the expression levels of 10 selected DEGs in tumor and normal tissues. ROC curve and survival analysis were performed to compare the diagnostic and prognostic values of each gene. The expression levels of candidate genes were verified in 15 paired clinical specimens via quantitative real-time polymerase chain reaction. Results There were 875 up-regulated and 1,482 down-regulated genes in cervical cancer samples compared with the paired adjacent normal cervical tissues according to the NGS analysis. The top 10 DEGs included APOD, MASP1, ACKR1, C1QTNF7, SFRP4, HSPB6, GSTM5, IGFBP6, F10 and DCN. GO, DisGeNET and Reactome analyses revealed that the DEGs were related to extracellular matrix and angiogenesis which might influence tumorigenesis. KEGG enrichment showed that PI3K-Akt signaling pathway might be involved in cervical cancer tumorigenesis and progression. The expression levels of selected genes were decreased in tumors in both the public database and our experimental clinical specimens. All the candidate genes showed excellent diagnostic value, and the AUC values exceeded 0.90. Additionally, APOD, ACKR1 and SFRP4 expression levels could help predict the prognosis of patients with cervical cancer. Conclusions In this study, we selected the top 10 DEGs which were down-regulated in cervical cancer tissues. All of them had dramatically diagnostic value. APOD, ACKR1 and SFRP4 were associated with the survivals of cervical cancer. C1QTNF7, HSPB6, GSTM5, IGFBP6 and F10 were first reported to be candidate genes of cervical carcinoma.
Collapse
Affiliation(s)
- Jia Xu
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Wen Yang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Xie
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Chenglei Gu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Luyang Zhao
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Feng Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Nina Zhang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuge Bai
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Dan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hainan Liu
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangshu Jin
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Yuanguang Meng
- School of Medicine, Nankai University, Tianjin, China
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Adasheva DA, Serebryanaya DV. IGF Signaling in the Heart in Health and Disease. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1402-1428. [PMID: 39245453 DOI: 10.1134/s0006297924080042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/11/2024] [Accepted: 06/22/2024] [Indexed: 09/10/2024]
Abstract
One of the most vital processes of the body is the cardiovascular system's proper operation. Physiological processes in the heart are regulated by the balance of cardioprotective and pathological mechanisms. The insulin-like growth factor system (IGF system, IGF signaling pathway) plays a pivotal role in regulating growth and development of various cells and tissues. In myocardium, the IGF system provides cardioprotective effects as well as participates in pathological processes. This review summarizes recent data on the role of IGF signaling in cardioprotection and pathogenesis of various cardiovascular diseases, as well as analyzes severity of these effects in various scenarios.
Collapse
Affiliation(s)
- Daria A Adasheva
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Daria V Serebryanaya
- Department of Biochemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia
| |
Collapse
|
8
|
Li C, Yang L, Zhang Y, Hou Q, Wang S, Lu S, Tao Y, Hu W, Zhao L. Integrating single-cell and bulk transcriptomic analyses to develop a cancer-associated fibroblast-derived biomarker for predicting prognosis and therapeutic response in breast cancer. Front Immunol 2024; 14:1307588. [PMID: 38235137 PMCID: PMC10791883 DOI: 10.3389/fimmu.2023.1307588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/08/2023] [Indexed: 01/19/2024] Open
Abstract
Background Cancer-associated fibroblasts (CAFs) contribute to the progression and treatment of breast cancer (BRCA); however, risk signatures and molecular targets based on CAFs are limited. This study aims to identify novel CAF-related biomarkers to develop a risk signature for predicting the prognosis and therapeutic response of patients with BRCA. Methods CAF-related genes (CAFRGs) and a risk signature based on these genes were comprehensively analyzed using publicly available bulk and single-cell transcriptomic datasets. Modular genes identified from bulk sequencing data were intersected with CAF marker genes identified from single-cell analysis to obtain reliable CAFRGs. Signature CAFRGs were screened via Cox regression and least absolute shrinkage and selection operator (LASSO) analyses. Multiple patient cohorts were used to validate the prognosis and therapeutic responsiveness of high-risk patients stratified based on the CAFRG-based signature. In addition, the relationship between the CAFRG-based signature and clinicopathological factors, tumor immune landscape, functional pathways, chemotherapy sensitivity and immunotherapy sensitivity was examined. External datasets were used and sample experiments were performed to examine the expression pattern of MFAP4, a key CAFRG, in BRCA. Results Integrated analyses of single-cell and bulk transcriptomic data as well as prognostic screening revealed a total of 43 prognostic CAFRGs; of which, 14 genes (TLN2, SGCE, SDC1, SAV1, RUNX1, PDLIM4, OSMR, NT5E, MFAP4, IGFBP6, CTSO, COL12A1, CCDC8 and C1S) were identified as signature CAFRGs. The CAFRG-based risk signature exhibited favorable efficiency and accuracy in predicting survival outcomes and clinicopathological progression in multiple BRCA cohorts. Functional enrichment analysis suggested the involvement of the immune system, and the immune infiltration landscape significantly differed between the risk groups. Patients with high CAF-related risk scores (CAFRSs) exhibited tumor immunosuppression, enhanced cancer hallmarks and hyposensitivity to chemotherapy and immunotherapy. Five compounds were identified as promising therapeutic agents for high-CAFRS BRCA. External datasets and sample experiments validated the downregulation of MFAP4 and its strong correlation with CAFs in BRCA. Conclusions A novel CAF-derived gene signature with favorable predictive performance was developed in this study. This signature may be used to assess prognosis and guide individualized treatment for patients with BRCA.
Collapse
Affiliation(s)
- Chunzhen Li
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Lanjie Yang
- Department of Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Yunyan Zhang
- Department of Respiratory and Critical Care Medicine, Changzheng Hospital, Naval Medical University, Shanghai, China
| | - Qianshan Hou
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Siyi Wang
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Shaoteng Lu
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| | - Yijie Tao
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
- Department of Anesthesia Physiology, Naval Medical University, Shanghai, China
| | - Wei Hu
- Department of Breast Surgery, Changhai Hospital, Naval Medical University, Shanghai, China
| | - Liyuan Zhao
- National Key Laboratory of Immunity & Inflammation, Naval Medical University, Shanghai, China
| |
Collapse
|
9
|
Deng J, Liao X. Lysine lactylation (Kla) might be a novel therapeutic target for breast cancer. BMC Med Genomics 2023; 16:283. [PMID: 37950222 PMCID: PMC10636881 DOI: 10.1186/s12920-023-01726-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Histone lysine lactylation (Kla) is a newly identified histone modification, which plays a crucial role in cancer progression. Hence, we determined the prognostic value of Kla in breast cancer (BC). METHODS We obtained RNA expression profiles of BC from The Cancer Genome Atlas (TCGA), following screening out Kla-specific genes. Furthermore, we determined the prognostic value of Kla by constructing a cox model based on Kla-specific genes. Subsequently, we identified expression of lactate accumulation-related genes and prognostic Kla-specific genes through Human Protein Atlas (HPA), and further performed a correlation analysis based on their expression. Meanwhile, we explored the effects of Kla on BC tumor microenvironment (TME), drug therapy and immunotherapy. Moreover, we predicted the pathways influenced by Kla via gene set enrichment analysis (GSEA). RESULTS A total of 1073 BC samples and 112 normal controls were obtained from TCGA, and 23 tumor samples were removed owing to inadequate clinical information. We identified 257 differentially expressed Kla-specific genes (DEKlaGs) in BC. A cox model involved with CCR7, IGFBP6, NDUFAF6, OVOL1 and SDC1 was established, and risk score could be visualized as an independent biomarker for BC. Meanwhile, Kla was remarkably associated with BC immune microenvironment, drug therapy and immunotherapy. Kla was identified to be related to activation of various BC-related KEGG pathways. CONCLUSION In conclusion, Kla contributes to drug resistance and undesirable immune responses, and plays a crucial role in BC prognosis, suggesting that Kla was expected to be a new therapeutic target for BC.
Collapse
Affiliation(s)
- Jian Deng
- Department of Thyroid Breast Surgery, The Second Affiliated Hospital, Hengyang Medical School, University of South China, No. 35 Jiefang Avenue. Hengyang, Hengyang, 421001, China.
| | - Xinyi Liao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
10
|
Baxter RC. Signaling Pathways of the Insulin-like Growth Factor Binding Proteins. Endocr Rev 2023; 44:753-778. [PMID: 36974712 PMCID: PMC10502586 DOI: 10.1210/endrev/bnad008] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 01/25/2023] [Accepted: 03/15/2023] [Indexed: 03/29/2023]
Abstract
The 6 high-affinity insulin-like growth factor binding proteins (IGFBPs) are multifunctional proteins that modulate cell signaling through multiple pathways. Their canonical function at the cellular level is to impede access of insulin-like growth factor (IGF)-1 and IGF-2 to their principal receptor IGF1R, but IGFBPs can also inhibit, or sometimes enhance, IGF1R signaling either through their own post-translational modifications, such as phosphorylation or limited proteolysis, or by their interactions with other regulatory proteins. Beyond the regulation of IGF1R activity, IGFBPs have been shown to modulate cell survival, migration, metabolism, and other functions through mechanisms that do not appear to involve the IGF-IGF1R system. This is achieved by interacting directly or functionally with integrins, transforming growth factor β family receptors, and other cell-surface proteins as well as intracellular ligands that are intermediates in a wide range of pathways. Within the nucleus, IGFBPs can regulate the diverse range of functions of class II nuclear hormone receptors and have roles in both cell senescence and DNA damage repair by the nonhomologous end-joining pathway, thus potentially modifying the efficacy of certain cancer therapeutics. They also modulate some immune functions and may have a role in autoimmune conditions such as rheumatoid arthritis. IGFBPs have been proposed as attractive therapeutic targets, but their ubiquity in the circulation and at the cellular level raises many challenges. By understanding the diversity of regulatory pathways with which IGFBPs interact, there may still be therapeutic opportunities based on modulation of IGFBP-dependent signaling.
Collapse
Affiliation(s)
- Robert C Baxter
- Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital,St Leonards, NSW 2065, Australia
| |
Collapse
|
11
|
Efimova AS, Antipenko ID, Evtushenko EA, Balan PV, Tonevitskaya SA. Effect of IGFBP6 Knockdown on Proteins Regulating Exosome Synthesis and Secretion in MDA-MB-231 Cell Line. Bull Exp Biol Med 2023:10.1007/s10517-023-05828-9. [PMID: 37336811 DOI: 10.1007/s10517-023-05828-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Indexed: 06/21/2023]
Abstract
One of the potential causes of cancer recurrence is disruption of the cell-cell communication in the primary tumors that is realized, among other things, through secretion and uptake of exosomes by cells. Low expression of the IGFBP6 gene (insulin-like growth factor binding protein 6) is associated with a high recurrence rate and can serve as a prognostic marker of luminal breast cancer. The knockdown of the IGFBP6 gene leads to significant changes in lipid metabolism. We performed a quantitative analysis of both exosomes and proteins involved in the mechanism of their biogenesis. Changes in the expression profile of mRNAs and their proteins responsible for the synthesis and secretion of exosomes were revealed. We showed a decrease in the expression of the of the VPS28 gene mRNA (vacuolar protein sorting-associated protein 28) and the corresponding protein by 2.3 and 5.6 times, respectively. The secretion of exosomes by MDA-MB-231 cells with IGFBP6 knockdown decreased by 2 times. We discussed a mechanism of disruption of cell-cell communication.
Collapse
Affiliation(s)
- A S Efimova
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia.
| | - I D Antipenko
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - E A Evtushenko
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
| | - P V Balan
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - S A Tonevitskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| |
Collapse
|
12
|
Liu Y, Shen S, Yan Z, Yan L, Ding H, Wang A, Xu Q, Sun L, Yuan Y. Expression characteristics and their functional role of IGFBP gene family in pan-cancer. BMC Cancer 2023; 23:371. [PMID: 37088808 PMCID: PMC10124011 DOI: 10.1186/s12885-023-10832-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/11/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND Insulin-like growth factor binding proteins (IGFBPs) are critical regulators of the biological activities of insulin-like growth factors. The IGFBP family plays diverse roles in different types of cancer, which we still lack comprehensive and pleiotropic understandings so far. METHODS Multi-source and multi-dimensional data, extracted from The Cancer Genome Atlas (TCGA), Oncomine, Cancer Cell Line Encyclopedia (CCLE), and the Human Protein Atlas (HPA) was used for bioinformatics analysis by R language. Immunohistochemistry and qRT-PCR were performed to validate the results of the database analysis results. Bibliometrics and literature review were used for summarizing the research progress of IGFBPs in the field of tumor. RESULTS The members of IGFBP gene family are differentially expressed in various cancer types. IGFBPs expression can affect prognosis of different cancers. The expression of IGFBPs expression is associated with multiple signal transduction pathways. The expression of IGFBPs is significantly correlated with tumor mutational burden, microsatellite instability, tumor stemness and tumor immune microenvironment. The qRT-PCR experiments verified the lower expression of IGFBP2 and IGFBP6 in gastric cancer and the lower expression of IGFBP6 in colorectal cancer. Immunohistochemistry validated a marked downregulation of IGFBP2 protein in gastric cancer tissues. The keywords co-occurrence analysis of IGFBP related publications in cancer showed relative research have been more concentrating on the potential of IGFBPs as tumor diagnostic and prognostic markers and developing cancer therapies. CONCLUSIONS These findings provide frontier trend of IGFBPs related research and new clues for identifying novel therapeutic targets for various cancers.
Collapse
Affiliation(s)
- Yingnan Liu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shixuan Shen
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ziwei Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Lirong Yan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Hanxi Ding
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Ang Wang
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qian Xu
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Liping Sun
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| | - Yuan Yuan
- Tumor Etiology and Screening Department of Cancer Institute and General Surgery, The First Hospital of China Medical University, No. 155 North Nanjing Street, Heping District, Shenyang, 110001, Liaoning, People's Republic of China.
- Key Laboratory of Cancer Etiology and Prevention in Liaoning Education Department, The First Hospital of China Medical University, Shenyang, 110001, China.
- Key Laboratory of GI Cancer Etiology and Prevention in Liaoning Province, The First Hospital of China Medical University, Shenyang, 110001, China.
| |
Collapse
|
13
|
Venuto S, Coda ARD, González-Pérez R, Laselva O, Tolomeo D, Storlazzi CT, Liso A, Conese M. IGFBP-6 Network in Chronic Inflammatory Airway Diseases and Lung Tumor Progression. Int J Mol Sci 2023; 24:4804. [PMID: 36902237 PMCID: PMC10003725 DOI: 10.3390/ijms24054804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
The lung is an accomplished organ for gas exchanges and directly faces the external environment, consequently exposing its large epithelial surface. It is also the putative determinant organ for inducing potent immune responses, holding both innate and adaptive immune cells. The maintenance of lung homeostasis requires a crucial balance between inflammation and anti-inflammation factors, and perturbations of this stability are frequently associated with progressive and fatal respiratory diseases. Several data demonstrate the involvement of the insulin-like growth factor (IGF) system and their binding proteins (IGFBPs) in pulmonary growth, as they are specifically expressed in different lung compartments. As we will discuss extensively in the text, IGFs and IGFBPs are implicated in normal pulmonary development but also in the pathogenesis of various airway diseases and lung tumors. Among the known IGFBPs, IGFBP-6 shows an emerging role as a mediator of airway inflammation and tumor-suppressing activity in different lung tumors. In this review, we assess the current state of IGFBP-6's multiple roles in respiratory diseases, focusing on its function in the inflammation and fibrosis in respiratory tissues, together with its role in controlling different types of lung cancer.
Collapse
Affiliation(s)
- Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | | | - Ruperto González-Pérez
- Allergy Department, Hospital Universitario de Canarias, 38320 Tenerife, Spain
- Severe Asthma Unit, Hospital Universitario de Canarias, 38320 Tenerife, Spain
| | - Onofrio Laselva
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| | - Doron Tolomeo
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Clelia Tiziana Storlazzi
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, 70125 Bari, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy
| |
Collapse
|
14
|
Nikulin S, Razumovskaya A, Poloznikov A, Zakharova G, Alekseev B, Tonevitsky A. ELOVL5 and IGFBP6 genes modulate sensitivity of breast cancer cells to ferroptosis. Front Mol Biosci 2023; 10:1075704. [PMID: 36714261 PMCID: PMC9880435 DOI: 10.3389/fmolb.2023.1075704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Introduction: Relapse of breast cancer is one of the key obstacles to successful treatment. Previously we have shown that low expression of ELOVL5 and IGFBP6 genes in breast cancer tissue corresponded to poor prognosis. ELOVL5 participates directly in the elongation of polyunsaturated fatty acids (PUFAs) that are considered to play an important role in cancer cell metabolism. Thus, in this work we studied the changes in lipid metabolism in breast cancer cells with reduced expression of either ELOVL5 or IGFBP6 gene. Methods: MDA-MB-231 cells with a stable knockdown of either ELOVL5 or IGFBP6 gene were used in this study. Transcriptomic and proteomic analysis as well as RT-PCR were utilized to assess gene expression. Content of individual fatty acids in the cells was measured with HPLC-MS. HPLC was used for analysis of the kinetics of PUFAs uptake. Cell viability was measured with MTS assay. Flow cytometry was used to measure activation of apoptosis. Fluorescent microscopy was utilized to assess accumulation of ROS and formation of lipid droplets. Glutathione peroxidase activity was measured with a colorimetric assay. Results: We found that the knockdown of IGFBP6 gene led to significant changes in the profile of fatty acids in the cells and in the expression of many genes associated with lipid metabolism. As some PUFAs are known to inhibit proliferation and cause death of cancer cells, we also tested the response of the cells to single PUFAs and to combinations of docosahexaenoic acid (DHA, a n-3 PUFA) with standard chemotherapeutic drugs. Our data suggest that external PUFAs cause cell death by activation of ferroptosis, an iron-dependent mechanism of cell death with excessive lipid peroxidation. Moreover, both knockdowns increased cells' sensitivity to ferroptosis, probably due to a significant decrease in the activity of the antioxidant enzyme GPX4. Addition of DHA to commonly used chemotherapeutic drugs enhanced their effect significantly, especially for the cells with low expression of IGFBP6 gene. Discussion: The results of this study suggest that addition of PUFAs to the treatment regimen for the patients with low expression of IGFBP6 and ELOVL5 genes can be potentially beneficial and is worth testing in a clinically relevant setting.
Collapse
Affiliation(s)
- Sergey Nikulin
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia,*Correspondence: Sergey Nikulin,
| | | | - Andrey Poloznikov
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Galina Zakharova
- World-Class Research Center “Digital Biodesign and Personalized Healthcare”, Sechenov First Moscow State Medical University, Moscow, Russia
| | - Boris Alekseev
- P. A. Hertsen Moscow Oncology Research Center, Branch of the National Medical Research Radiological Center, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, Higher School of Economics, Moscow, Russia,Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
15
|
Xiong J, Bao J, Hu W, Shang M, Zhang L. Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat. Front Genet 2023; 13:1044017. [PMID: 36685859 PMCID: PMC9852865 DOI: 10.3389/fgene.2022.1044017] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/13/2022] [Indexed: 01/09/2023] Open
Abstract
The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program.
Collapse
|
16
|
Tan J, Ge Y, Zhang M, Ding M. Proteomics analysis uncovers plasminogen activator PLAU as a target of the STING pathway for suppression of cancer cell migration and invasion. J Biol Chem 2022; 299:102779. [PMID: 36496076 PMCID: PMC9823231 DOI: 10.1016/j.jbc.2022.102779] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
The stimulator of interferon genes (STING) pathway is vital for immune defense against pathogen invasion and cancer. Although ample evidence substantiates that the STING signaling pathway plays an essential role in various cancers via cytokines, no comprehensive investigation of secretory proteins regulated by the STING pathway has been conducted hitherto. Herein, we identify 24 secretory proteins significantly regulated by the STING signaling pathway through quantitative proteomics. Mechanistic analyses reveal that STING activation inhibits the translation of urokinase-type plasminogen activator (PLAU) via the STING-PERK-eIF2α signaling axis. PLAU is highly expressed in a variety of cancers and promotes the migration and invasion of cancer cells. Notably, the activation of STING inhibits cancer cell migration and invasion by suppressing PLAU. Collectively, these results provide novel insights into the anticancer mechanism of the STING pathway, offering a theoretical basis for precision therapy for this patient population.
Collapse
|
17
|
Cui Y, Wang XH, Zhao Y, Chen SY, Sheng BY, Wang LH, Chen HS. Association of serum biomarkers with early neurologic improvement after intravenous thrombolysis in ischemic stroke. PLoS One 2022; 17:e0277020. [PMID: 36315566 PMCID: PMC9621449 DOI: 10.1371/journal.pone.0277020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 10/17/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Early neurologic improvement (ENI) after intravenous thrombolysis is associated with favorable outcome, but associated serum biomarkers were not fully determined. We aimed to investigate the issue based on a prospective cohort. METHODS In INTRECIS study, five centers were designed to consecutively collect blood sample from enrolled patients. The patients with ENI and without ENI were matched by propensity score matching with a ratio of 1:1. Preset 49 biomarkers were measured through microarray analysis. Enrichment of gene ontology and pathway, and protein-protein interaction network were analyzed in the identified biomarkers. RESULTS Of 358 patients, 19 patients with ENI were assigned to ENI group, while 19 matched patients without ENI were assigned to Non ENI group. A total of nine biomarkers were found different between two groups, in which serum levels of chemokine (C-C motif) ligand (CCL)-23, chemokine (C-X-C motif) ligand (CXCL)-12, insulin-like growth factor binding protein (IGFBP)-6, interleukin (IL)-5, lymphatic vessel endothelial hyaluronan receptor (LYVE)-1, plasminogen activator inhibitor (PAI)-1, platelet-derived growth factor (PDGF)-AA, suppression of tumorigenicity (ST)-2, and tumor necrosis factor (TNF)-α were higher in the ENI group, compared with those in the Non ENI group. CONCLUSIONS We found that serum levels of CCL-23, CXCL-12, IGFBP-6, IL-5, LYVE-1, PAI-1, PDGF-AA, ST-2, and TNF-α at admission were associated with post-thrombolytic ENI in stroke. The role of biomarkers warrants further investigation. TRIAL REGISTRATION Clinical Trial Registration: https://www.clinicaltrials.gov; identifier: NCT02854592.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Xin-Hong Wang
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Yong Zhao
- Department of Neurology, Haicheng Hospital of Traditional Chinese Medicine, Haicheng, China
| | - Shao-Yuan Chen
- Department of Neurology, Chinese People’s Liberation Army 321 Hospital, Baicheng, China
| | - Bao-Ying Sheng
- Department of Neurology, Jiamusi University First Affiliated Hospital, Jiamusi, China
| | - Li-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| |
Collapse
|
18
|
The Insulin-like Growth Factor System and Colorectal Cancer. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081274. [PMID: 36013453 PMCID: PMC9410426 DOI: 10.3390/life12081274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/29/2022]
Abstract
Insulin-like growth factors (IGFs) are peptides which exert mitogenic, endocrine and cytokine activities. Together with their receptors, binding proteins and associated molecules, they participate in numerous pathophysiological processes, including cancer development. Colorectal cancer (CRC) is a disease with high incidence and mortality rates worldwide, whose etiology usually represents a combination of the environmental and genetic factors. IGFs are most often increased in CRC, enabling excessive autocrine/paracrine stimulation of the cell growth. Overexpression or increased activation/accessibility of IGF receptors is a coinciding step which transmits IGF-related signals. A number of molecules and biochemical mechanisms exert modulatory effects shaping the final outcome of the IGF-stimulated processes, frequently leading to neoplastic transformation in the case of irreparable disbalance. The IGF system and related molecules and pathways which participate in the development of CRC are the focus of this review.
Collapse
|
19
|
Comprehensive Analysis of Prognostic Value and Immune Infiltration of IGFBP Family Members in Glioblastoma. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:2929695. [PMID: 35832140 PMCID: PMC9273392 DOI: 10.1155/2022/2929695] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/25/2022] [Accepted: 06/15/2022] [Indexed: 11/18/2022]
Abstract
Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. The insulin-like growth factor-binding protein (IGFBP) family is involved in tumorigenesis and the development of multiple cancers. However, little is known about the prognostic value and regulatory mechanisms of IGFBPs in GBM. Oncomine, Gene Expression Profiling Interactive Analysis, PrognoScan, cBioPortal, LinkedOmics, TIMER, and TISIDB were used to analyze the differential expression, prognostic value, genetic alteration, biological function, and immune cell infiltration of IGFBPs in GBM. We observed that IGFBP1, IGFBP2, IGFBP3, IGFBP4, and IGFBP5 mRNA expression was significantly upregulated in patients with GBM, whereas IGFBP6 was downregulated; this difference in mRNA expression was statistically insignificant. Subsequent investigations showed that IGFBP4 and IGFBP6 mRNA levels were significantly associated with overall survival in patients with GBM. Functional Gene Ontology Annotation and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis revealed that genes coexpressed with IGFBP4 and IGFBP6 were mainly enriched in immune-related pathways. These results were validated using the TIMER and TSMIDB databases. This study demonstrated that the IGFBP family has prognostic value in patients with GBM. IGFBP4 and IGFBP6 are two members of the IGFBP family that had the highest prognostic value; thus, they have the potential to serve as survival predictors and immunotherapeutic targets in GBM.
Collapse
|
20
|
Piscazzi A, Condelli V, Crispo F, Coda ARD, Calice G, Bruno G, Venuto S, Tibullo D, Giordano G, Pietrafesa M, Liso A, Landriscina M. Differential and divergent activity of insulin-like growth factor binding protein 6 in platinum-sensitive versus platinum-resistant high-grade serous ovarian carcinoma cell lines. Oncol Lett 2022; 23:185. [PMID: 35527787 PMCID: PMC9073571 DOI: 10.3892/ol.2022.13305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/11/2022] [Indexed: 11/08/2022] Open
Abstract
Insulin-like growth factor binding protein 6 (IGFBP6) is a secreted protein with a controversial role in human malignancies, being downregulated in most types of human cancer, but upregulated in selected tumors. Ovarian cancer (OC) is a human malignancy characterized by IGFBP6 downregulation; however, the significance of its low expression during ovarian carcinogenesis is still poorly understood. In the present study, IGFBP6 expression and activation of its associated signaling pathway were evaluated in two matched OC cell lines derived from a high-grade serous OC before and after platinum resistance (PEA1 and PEA2 cells, respectively). A whole genome gene expression analysis was comparatively performed in both cell lines upon IGFBP6 stimulation using Illumina technology. IGFBP6 gene expression data from human OC cases were obtained from public datasets. Gene expression data from public datasets confirmed the downregulation of IGFBP6 in primary and metastatic OC tissues compared with in normal ovarian tissues. The comparative analysis of platinum-sensitive (PEA1) and platinum-resistant (PEA2) cell lines showed quantitative and qualitative differences in the activation of IGFBP6 signaling. Notably, IGFBP6 enhanced ERK1/2 phosphorylation only in PEA1 cells, and induced more evident and significant gene expression reprogramming in PEA1 cells compared with in PEA2 cells. Furthermore, the analysis of selected genes modulated by IGFBP6 (i.e., FOS, JUN, TNF, IL6, IL8 and EGR1) exhibited an inverse regulation in PEA1 versus PEA2 cells. In addition, selected hallmarks (TNFA_signaling_via_NFKB, TGF_beta_signaling, P53_pathway) and IL-6 signaling were positively regulated in PEA1 cells, whereas they were inhibited in PEA2 cells in response to IGFBP6. These data suggested that dysregulation of IGFBP6 signaling may serve a role in the progression of OC, and is likely associated with the development of platinum resistance.
Collapse
Affiliation(s)
- Annamaria Piscazzi
- Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Valentina Condelli
- Laboratory of Pre-Clinical and Translational Research, Scientific Institute for Research, Hospitalization and Healthcare-Referral Cancer Center of Basilicata (IRCCS-CROB), I-85028 Potenza, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, Scientific Institute for Research, Hospitalization and Healthcare-Referral Cancer Center of Basilicata (IRCCS-CROB), I-85028 Potenza, Italy
| | - Anna Rita Daniela Coda
- Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Giovanni Calice
- Laboratory of Pre-Clinical and Translational Research, Scientific Institute for Research, Hospitalization and Healthcare-Referral Cancer Center of Basilicata (IRCCS-CROB), I-85028 Potenza, Italy
| | - Giuseppina Bruno
- Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Santina Venuto
- Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Daniele Tibullo
- Department of Biomedical and Biotechnological Sciences, Section of Biochemistry, University of Catania, I-95123 Catania, Italy
| | - Guido Giordano
- Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Michele Pietrafesa
- Laboratory of Pre-Clinical and Translational Research, Scientific Institute for Research, Hospitalization and Healthcare-Referral Cancer Center of Basilicata (IRCCS-CROB), I-85028 Potenza, Italy
| | - Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
| | - Matteo Landriscina
- Department of Medical and Surgical Sciences, University of Foggia, I-71122 Foggia, Italy
- Laboratory of Pre-Clinical and Translational Research, Scientific Institute for Research, Hospitalization and Healthcare-Referral Cancer Center of Basilicata (IRCCS-CROB), I-85028 Potenza, Italy
| |
Collapse
|
21
|
Giwercman A, Sahlin KB, Pla Parada I, Pawlowski K, Fehninger C, Lundberg Giwercman Y, Leijonhufvud I, Appelqvist R, Marko-Varga G, Sanchez A, Malm J. Novel protein markers of androgen activity in humans: proteomic study of plasma from young chemically castrated men. eLife 2022; 11:74638. [PMID: 35230239 PMCID: PMC8993215 DOI: 10.7554/elife.74638] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Background Reliable biomarkers of androgen activity in humans are lacking. The aim of this study was, therefore, to identify new protein markers of biological androgen activity and test their predictive value in relation to low vs. normal testosterone values and some androgen deficiency linked pathologies. Methods Blood samples from 30 healthy GnRH-antagonist treated males were collected at three time points: a) before GnRH antagonist administration; b) 3 weeks later, just before testosterone undecanoate injection, and c) after additional 2 weeks. Subsequently they were analysed by mass spectrometry to identify potential protein biomarkers of testosterone activity. Levels of proteins most significantly associated with testosterone fluctuations were further tested in a cohort of 75 hypo- and eugonadal males suffering from infertility. Associations between levels of those markers and cardio-metabolic parameters, bone mineral density as well as androgen receptor CAG repeat lengths, were explored. Results Using ROC analysis, 4-hydroxyphenylpyruvate dioxygenase (4HPPD), insulin-like growth factor-binding protein 6 (IGFBP6) and fructose-bisphosphate aldolase (ALDOB), as well as a Multi Marker Algorithm, based on levels of 4HPPD and IGFBP6, were shown to be best predictors of low (< 8 nmol/L) vs. normal (> 12 nmol/L) testosterone. They were also more strongly associated with metabolic syndrome and diabetes than testosterone levels. Levels of ALDOB and 4HPPD levels also showed association with AR CAG-repeat lengths. Conclusions We identified potential new protein biomarkers of testosterone action. Further investigations to elucidate their clinical potential are warranted. Funding The work was supported by ReproUnion 2.0 (grant no 20201846), which is funded by the Interreg V EU program.
Collapse
Affiliation(s)
| | - K Barbara Sahlin
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | | - Krzysztof Pawlowski
- Department of Experimental Design and Bioinformatics, Warsaw University of Life Sciences, Warszawa, Poland
| | - Carl Fehninger
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | | | | - Roger Appelqvist
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | | | - Aniel Sanchez
- Department of Biomedical Engineering, Lund University, Lund, Sweden
| | - Johan Malm
- Department of Translational Medicine, Lund University, Malmo, Sweden
| |
Collapse
|
22
|
Cui Y, Zhao Y, Chen SY, Sheng BY, Wang LH, Meng WH, Chen HS. Association of Serum Biomarkers With Post-Thrombolytic Symptomatic Intracranial Hemorrhage in Stroke: A Comprehensive Protein Microarray Analysis From INTRECIS Study. Front Neurol 2022; 13:751912. [PMID: 35173671 PMCID: PMC8841872 DOI: 10.3389/fneur.2022.751912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/03/2022] [Indexed: 01/28/2023] Open
Abstract
Background Symptomatic intracranial hemorrhage (sICH) after intravenous thrombolysis is closely related to the poor outcome of stroke. Aims To determine the serum biomarkers associated with sICH based on the INTRECIS study. Methods Enrolled patients with sICH and without any ICH were matched by propensity score matching with the ratio of 1:1. Preset 49 biomarkers were measured by protein microarray analysis. Gene Ontology and Pathway Enrichment Analysis and protein-protein interaction network (PPI) were analyzed in the identified biomarkers. Results Of the consecutive 358 patients, eight patients occurred with sICH, which was assigned as an sICH group, while eight matched patients without any ICH were assigned as a Non-sICH group. A total of nine biomarkers were found significantly different between groups, among which the levels of interferon (IFN)-γ and interleukin (IL)-4 were higher, while the levels of C-reactive protein (CRP), glial cell line-derived neurotrophic factor (GDNF), insulin-like growth factor-binding protein (IGFBP)-6, lymphatic vessel endothelial hyaluronan receptor (LYVE)-1, matrix metalloprotein (MMP)-2, plasminogen activator inhibitor (PAI)-1, and platelet-derived growth factor (PDGF)-AA were lower in the sICH group compared with those in the Non-sICH group. Conclusions Our finding indicated that baseline serum CRP, GDNF, IFN-γ, IGFBP-6, IL-4, LYVE-1, MMP-2, PAI-1, and PDGF-AA levels were associated with post-thrombolytic sICH in stroke.
Collapse
Affiliation(s)
- Yu Cui
- Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
| | - Yong Zhao
- Department of Neurology, Haicheng Hospital of Traditional Chinese Medicine, Haicheng, China
| | - Shao-Yuan Chen
- Department of Neurology, Chinese People's Liberation Army 321 Hospital, Baicheng, China
| | - Bao-Ying Sheng
- Department of Neurology, Jiamusi University First Affiliated Hospital, Jiamusi, China
| | - Li-Hua Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wei-Hong Meng
- Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
- *Correspondence: Wei-Hong Meng
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theatre Command, Shenyang, China
- Hui-Sheng Chen
| |
Collapse
|
23
|
The Crosstalk between GPR81/IGFBP6 Promotes Breast Cancer Progression by Modulating Lactate Metabolism and Oxidative Stress. Antioxidants (Basel) 2022; 11:antiox11020275. [PMID: 35204157 PMCID: PMC8868469 DOI: 10.3390/antiox11020275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/24/2022] [Accepted: 01/26/2022] [Indexed: 12/14/2022] Open
Abstract
Breast cancer is the most frequent tumor and the leading cause of cancer deaths in women. In recent years, lactate metabolism and, in particular, its receptor GPR81 have been shown to play a vital role in cancer biology. GPR81 is upregulated in breast cancer and promotes tumor growth by tumor cell-derived lactate. Therefore, the search for possible crosstalk and the involvement of new molecules capable of generating this pathology is always in continuous development. In this study, the relationship between GPR81 and IGFBP6 protein in tumor growth and oxidative stress in the human breast cancer cell line MDA-MB-231 was studied. Cells were treated with lactate or the GPR81 receptor agonist and antagonist 3,5-DHBA and 3-OBA, respectively. In addition, oxidative stress and proliferation were also evaluated in cells challenged with the recombinant IGFBP6 protein. Our data showed that lactate induced cell proliferation and wound healing of the MDA-231 breast cancer cell through the overexpression of both the lactate receptor GPR81 and IGFBP6. The increase in IGFBP6 was able, in turn, to improve the mitochondrial fitness and redox state, as suggested by the reduced levels of mitochondrial ROS production after IGFBP6 treatment, presumably mediated by the increase in the ROS detoxifying genes HMOX1, GSTK1 and NQO1. In conclusion, our data highlight a novel axis between GPR81 and IGFBP6 in MDA-231 cells able to modulate lactate metabolism and oxidative stress. This complex signaling may represent a new therapeutic target for breast cancer.
Collapse
|
24
|
Leñero C, Bowles AC, Correa D, Kouroupis D. Characterization and response to inflammatory stimulation of human endometrial-derived mesenchymal stem/stromal cells. Cytotherapy 2021; 24:124-136. [PMID: 34465515 DOI: 10.1016/j.jcyt.2021.07.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 07/02/2021] [Accepted: 07/09/2021] [Indexed: 12/28/2022]
Abstract
BACKGROUND AIMS The human endometrium has emerged as an attractive source of endometrial-derived mesenchymal stem/stromal cells (eMSCs) that can be easily isolated by non-invasive procedures. The prominent capacity of the endometrium for efficient and scarless regeneration each menstrual cycle indicates the increased eMSC immunomodulatory and pro-angiogenic properties. Herein the authors investigated the molecular responses of eMSCs to an inflammatory environment and whether those intrinsic responses affected their functional attributes. METHODS Human eMSCs immunophenotypic, transcriptional and secretory profiles were evaluated at passage three (P3) and passage eight (P8) to determine culture effects. Functionally, P3 and P8 non-induced and TNF-α/IFN-γ-induced eMSCs were interrogated for their capacity to suppress stimulated peripheral blood mononuclear cell (PBMC) proliferation, whereas non-induced eMSCs were assessed for their support to vascular network formation in co-cultures with human umbilical vein endothelial cells in vitro. RESULTS Non-induced P3 and P8 eMSCs exhibited similar spindle-shaped morphology and clonogenic capacity. Nevertheless, P8 eMSCs showed reduced growth rate capacity and telomere length. The eMSCs displayed the typical MSC-related immunophenotypic profile, with P3 and P8 eMSCs expressing high levels (>98%) of CD140β, intermediate levels (35-60%) of CD146 and SUSD2 and low levels (∼8%) of NG2 pericytic markers. Non-induced P3 and P8 showed similar transcriptional and secretory profiles, though the expression of immunomodulatory HLA-G and IL-8 genes was significantly downregulated in P8 compared with P3 eMSCs. Upon TNF-α/IFN-γ induction, eMSCs showed an immunophenotypic profile similar to that of non-induced eMSCs, except for significant upregulation of HLA-DR protein expression in both induced P3 and P8 eMSCs. However, induced P3 and P8 eMSCs showed significant upregulation of CD10, HLA-G, IDO, IL-6, IL-8, LIF and TSG gene expression compared with non-induced cultures. TNF-α/IFN-γ induction strongly increased the secretion of inflammatory-/angiogenesis-related molecules, whereas growth factor secretion was similar to the non-induced eMSCs. Functionally, P3 and P8 eMSCs showed a strong inhibitory effect on stimulated PBMC proliferation and the capacity to support neovascularization in vitro. CONCLUSIONS The authors' study suggests that serial expansion does not affect eMSC immunophenotypic, transcriptional and secretory profiles. This is directly reflected by the functional immunomodulatory and pro-angiogenic properties of eMSCs, which remain unaltered until P8 in vitro. However, exposure of eMSCs to inflammatory environments enhances their immunomodulatory transcriptional and inflammatory-/angiogenesis-related secretory profiles. Therefore, the resulting evidence of eMSCs serial expansion and exposure to inflammation could serve as a foundation for improved eMSCs manufacturing and potential clinical translation efforts.
Collapse
Affiliation(s)
- Clarissa Leñero
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; CryoVida Banco de Células Madre Adultas, Guadalajara, México
| | - Annie C Bowles
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA; Department of Biomedical Engineering, University of Miami College of Engineering, Miami, Florida, USA
| | - Diego Correa
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA
| | - Dimitrios Kouroupis
- Department of Orthopedics, UHealth Sports Medicine Institute, University of Miami Miller School of Medicine, Miami, Florida, USA; Diabetes Research Institute & Cell Transplant Center, University of Miami Miller School of Medicine, Miami, Florida, USA.
| |
Collapse
|
25
|
Tseng CH. The Relationship between Diabetes Mellitus and Gastric Cancer and the Potential Benefits of Metformin: An Extensive Review of the Literature. Biomolecules 2021; 11:1022. [PMID: 34356646 PMCID: PMC8301937 DOI: 10.3390/biom11071022] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The objective of this review is to summarize the findings of published research that investigated the relationship between diabetes mellitus and gastric cancer (GCa) and the potential benefits of metformin on GCa. Related literature has been extensively reviewed, and findings from studies investigating the relationship between diabetes mellitus and GCa suggest that hyperglycemia, hyperinsulinemia and insulin resistance are closely related to the development of GCa. Although not supported by all, most observational studies suggest an increased risk of GCa in patients with type 2 diabetes mellitus, especially in women and in Asian populations. Incidence of second primary malignancy diagnosed after GCa is significantly higher in diabetes patients. Diabetes patients with GCa may have more complications after gastrectomy or chemotherapy and they may have a poorer prognosis than patients with GCa but without diabetes mellitus. However, glycemic control may improve in the diabetes patients with GCa after receiving gastrectomy, especially after procedures that bypass the duodenum and proximal jejunum, such as Roux-en-Y gastric bypass or Billroth II reconstruction. The potential links between diabetes mellitus and GCa may involve the interactions with shared risk factors (e.g., obesity, hyperglycemia, hyperinsulinemia, insulin resistance, high salt intake, smoking, etc.), Helicobacter pylori (HP) infection, medications (e.g., insulin, metformin, statins, aspirin, proton pump inhibitors, antibiotics, etc.) and comorbidities (e.g., hypertension, dyslipidemia, vascular complications, heart failure, renal failure, etc.). With regards to the potential benefits of metformin on GCa, results of most observational studies suggest a reduced risk of GCa associated with metformin use in patients with T2DM, which can be supported by evidence derived from many in vitro and animal studies. Metformin use may also reduce the risk of HP infection, an important risk factor of GCa. In patients with GCa, metformin users may have improved survival and reduced recurrence. More studies are required to clarify the pathological subtypes/anatomical sites of GCa associated with type 2 diabetes mellitus or prevented by metformin, to confirm whether GCa risk can also be increased in patients with type 1 diabetes mellitus and to explore the possible role of gastric microbiota in the development of GCa.
Collapse
Affiliation(s)
- Chin-Hsiao Tseng
- Department of Internal Medicine, National Taiwan University College of Medicine, Taipei 10051, Taiwan; ; Tel.: +886-2-2388-3578
- Division of Endocrinology and Metabolism, Department of Internal Medicine, National Taiwan University Hospital, Taipei 10051, Taiwan
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan 350, Taiwan
- Department of Internal Medicine, National Taiwan University Hospital, No. 7 Chung-Shan South Road, Taipei 100, Taiwan
| |
Collapse
|
26
|
Nikulin S, Zakharova G, Poloznikov A, Raigorodskaya M, Wicklein D, Schumacher U, Nersisyan S, Bergquist J, Bakalkin G, Astakhova L, Tonevitsky A. Effect of the Expression of ELOVL5 and IGFBP6 Genes on the Metastatic Potential of Breast Cancer Cells. Front Genet 2021; 12:662843. [PMID: 34149804 PMCID: PMC8206645 DOI: 10.3389/fgene.2021.662843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/20/2021] [Indexed: 12/09/2022] Open
Abstract
Breast cancer (BC) is the leading cause of death from malignant neoplasms among women worldwide, and metastatic BC presents the biggest problems for treatment. Previously, it was shown that lower expression of ELOVL5 and IGFBP6 genes is associated with a higher risk of the formation of distant metastases in BC. In this work, we studied the change in phenotypical traits, as well as in the transcriptomic and proteomic profiles of BC cells as a result of the stable knockdown of ELOVL5 and IGFBP6 genes. The knockdown of ELOVL5 and IGFBP6 genes was found to lead to a strong increase in the expression of the matrix metalloproteinase (MMP) MMP1. These results were in good agreement with the correlation analysis of gene expression in tumor samples from patients and were additionally confirmed by zymography. The knockdown of ELOVL5 and IGFBP6 genes was also discovered to change the expression of a group of genes involved in the formation of intercellular contacts. In particular, the expression of the CDH11 gene was markedly reduced, which also complies with the correlation analysis. The spheroid formation assay showed that intercellular adhesion decreased as a result of the knockdown of the ELOVL5 and IGFBP6 genes. Thus, the obtained data indicate that malignant breast tumors with reduced expression of the ELOVL5 and IGFBP6 genes can metastasize with a higher probability due to a more efficient invasion of tumor cells.
Collapse
Affiliation(s)
- Sergey Nikulin
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | | | - Andrey Poloznikov
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Maria Raigorodskaya
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Scientific Research Centre Bioclinicum, Moscow, Russia
| | - Daniel Wicklein
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stepan Nersisyan
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
| | - Jonas Bergquist
- Department of Chemistry – BMC, Uppsala University, Uppsala, Sweden
| | - Georgy Bakalkin
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Lidiia Astakhova
- Scientific Research Centre Bioclinicum, Moscow, Russia
- School of Life Sciences, Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnologies, National Research University Higher School of Economics, Moscow, Russia
- Laboratory of Microfluidic Technologies for Biomedicine, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
| |
Collapse
|
27
|
Tzanakakis GN, Giatagana EM, Berdiaki A, Spyridaki I, Hida K, Neagu M, Tsatsakis AM, Nikitovic D. The Role of IGF/IGF-IR-Signaling and Extracellular Matrix Effectors in Bone Sarcoma Pathogenesis. Cancers (Basel) 2021; 13:cancers13102478. [PMID: 34069554 PMCID: PMC8160938 DOI: 10.3390/cancers13102478] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/27/2021] [Accepted: 05/18/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Bone sarcomas are mesenchymal origin tumors. Bone sarcoma patients show a variable response or do not respond to chemotherapy. Notably, improving efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Most clinical trials aiming at the IGF pathway have had limited success. Developing combinatorial strategies to enhance antitumor responses and better classify the patients that could best benefit from IGF-axis targeting therapies is in order. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects bone sarcomas’ basal functions and their response to therapy. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized. Abstract Bone sarcomas, mesenchymal origin tumors, represent a substantial group of varying neoplasms of a distinct entity. Bone sarcoma patients show a limited response or do not respond to chemotherapy. Notably, developing efficient chemotherapy approaches, dealing with chemoresistance, and preventing metastasis pose unmet challenges in sarcoma therapy. Insulin-like growth factors 1 and 2 (IGF-1 and -2) and their respective receptors are a multifactorial system that significantly contributes to bone sarcoma pathogenesis. Whereas failures have been registered in creating novel targeted therapeutics aiming at the IGF pathway, new agent development should continue, evaluating combinatorial strategies for enhancing antitumor responses and better classifying the patients that could best benefit from these therapies. A plausible approach for developing a combinatorial strategy is to focus on the tumor microenvironment (TME) and processes executed therein. Herewith, we will discuss how the interplay between IGF-signaling and the TME constituents affects sarcomas’ basal functions and their response to therapy. This review highlights key studies focusing on IGF signaling in bone sarcomas, specifically studies underscoring novel properties that make this system an attractive therapeutic target and identifies new relationships that may be exploited. Potential direct and adjunct therapeutical implications of the extracellular matrix (ECM) effectors will also be summarized.
Collapse
Affiliation(s)
- George N. Tzanakakis
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Laboratory of Anatomy, School of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Eirini-Maria Giatagana
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Aikaterini Berdiaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Ioanna Spyridaki
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
| | - Kyoko Hida
- Department of Vascular Biology and Molecular Pathology, Hokkaido University Graduate School of Dental Medicine, Sapporo 060-8586, Japan;
| | - Monica Neagu
- Department of Immunology, Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Aristidis M. Tsatsakis
- Laboratory of Toxicology, School of Medicine, University of Crete, 71003 Heraklion, Greece;
| | - Dragana Nikitovic
- Laboratory of Histology-Embryology, School of Medicine, University of Crete, 71003 Heraklion, Greece; (G.N.T.); (E.-M.G.); (A.B.); (I.S.)
- Correspondence:
| |
Collapse
|
28
|
Ngo MHT, Jeng HY, Kuo YC, Nanda JD, Brahmadhi A, Ling TY, Chang TS, Huang YH. The Role of IGF/IGF-1R Signaling in Hepatocellular Carcinomas: Stemness-Related Properties and Drug Resistance. Int J Mol Sci 2021; 22:ijms22041931. [PMID: 33669204 PMCID: PMC7919800 DOI: 10.3390/ijms22041931] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/10/2021] [Accepted: 02/10/2021] [Indexed: 12/12/2022] Open
Abstract
Insulin-like Growth Factor (IGF)/IGF-1 Receptor (IGF-1R) signaling is known to regulate stem cell pluripotency and differentiation to trigger cell proliferation, organ development, and tissue regeneration during embryonic development. Unbalanced IGF/IGF-1R signaling can promote cancer cell proliferation and activate cancer reprogramming in tumor tissues, especially in the liver. Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related death, with a high incidence and mortality rate in Asia. Most patients with advanced HCC develop tyrosine kinase inhibitor (TKI)-refractoriness after receiving TKI treatment. Dysregulation of IGF/IGF-1R signaling in HCC may activate expression of cancer stemness that leads to TKI refractoriness and tumor recurrence. In this review, we summarize the evidence for dysregulated IGF/IGF-1R signaling especially in hepatitis B virus (HBV)-associated HCC. The regulation of cancer stemness expression and drug resistance will be highlighted. Current clinical treatments and potential therapies targeting IGF/IGF-1R signaling for the treatment of HCC will be discussed.
Collapse
Affiliation(s)
- Mai-Huong Thi Ngo
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Han-Yin Jeng
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Yung-Che Kuo
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
| | - Josephine Diony Nanda
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Ageng Brahmadhi
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
| | - Thai-Yen Ling
- Department and Graduate Institute of Pharmacology, National Taiwan University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Te-Sheng Chang
- School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 33382, Taiwan
- Division of Internal Medicine, Department of Gastroenterology and Hepatology, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| | - Yen-Hua Huang
- International PhD Program for Cell Therapy and Regeneration Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan; (M.-H.T.N.); (J.D.N.); (A.B.)
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.J.); (Y.-C.K.)
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Center for Reproductive Medicine, Taipei Medical University Hospital, Taipei 11031, Taiwan
- Comprehensive Cancer Center, Taipei Medical University, Taipei 11031, Taiwan
- Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- PhD Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (T.-Y.L.); (T.-S.C.); (Y.-H.H.); Tel.: +886-2-2312-3456 (ext. 8-8322) (T.-Y.L.); +886-5-3621-000 (ext. 2242) (T.-S.C.); +886-2-2736-1661 (ext. 3150) (Y.-H.H.)
| |
Collapse
|
29
|
Wang Z, Qi Y, Wang R, Wu W, Li Z, Wang M, Liu R, Zhang C, Li W, Wang S. IGFBP6 regulates vascular smooth muscle cell proliferation and morphology via cyclin E-CDK2. J Cell Physiol 2020; 235:9538-9556. [PMID: 32529639 DOI: 10.1002/jcp.29762] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 03/22/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
Despite the high prevalence of varicose veins, the underlying pathogenesis of this disease remains unclear. The present study aims to explore the role of insulin-like growth factor binding protein 6 (IGFBP6) in vascular smooth muscle cells (VSMCs). Using a protein array approach, we identified several differentially expressed proteins between varicose great saphenous veins and normal great saphenous veins. Bioinformatic analysis showed that IGFBP6 was closely related to cell proliferation. Further validation confirmed that IGFBP6 was one of the most highly expressed proteins in varicose vein tissue. Knocking down IGFBP6 in VSMCs significantly attenuated cell proliferation and induced the S phase arrest during the cell cycle. Further experiments demonstrated that IGFBP6 knockdown increased cyclin E ubiquitination, which reduced expression of cyclin E and phosphorylation of CDK2. Furthermore, IGFBP6 knockdown arrested centrosome replication, which subsequently influenced VSMC morphology. Ultimately, IGFBP6 was validated to be involved in VSMC proliferation in varicose vein tissues. The present study reveals that IGFBP6 is closely correlated with VSMC biological function and provides unprecedented insights into the underlying pathogenesis of varicose veins.
Collapse
Affiliation(s)
- Zhecun Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yunling Qi
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weibin Wu
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zilun Li
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Mian Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ruiming Liu
- Laboratory of General Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunxiang Zhang
- Department of Biomedical Engineering, University of Alabama at Birmingham, Birmingham, Alabama
| | - Wen Li
- Laboratory of General Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Shenming Wang
- Division of Vascular Surgery, National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
30
|
Insulin-Like Growth Factor Binding Protein 6 Is Secreted in Extracellular Vesicles upon Hyperthermia and Oxidative Stress in Dendritic Cells But Not in Monocytes. Int J Mol Sci 2020; 21:ijms21124428. [PMID: 32580339 PMCID: PMC7352465 DOI: 10.3390/ijms21124428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 11/24/2022] Open
Abstract
Recently, insulin-like growth factor binding protein 6 (IGFBP-6) has been shown to play a putative role in the immune system, as monocyte-derived dendritic cells (Mo-DCs) are stimulated by hyperthermia to express IGFBP-6 at both the mRNA and protein levels. However, the presence of IGFBP-6 in extracellular vesicles (EVs) and whether other pro-inflammatory stimuli can induce IGFBP-6 expression in Mo-DCs are not known yet. In this brief report, we show that hyperthermia (39 °C) induces IGFBP-6 secretion associated with microvesicles and exosomes as early as 3 h. Moreover, free IGFBP-6 is found in conditioned media (CM) of hyperthermia- and H2O2-treated Mo-DCs, but not in CM obtained from monocytes similarly treated. These results show that diverse inflammatory stimuli can induce IGFBP-6 association with EVs and secretion in conditioned medium, indicating a role for IGFBP-6 in communication between immune cells.
Collapse
|
31
|
Dabrosin N, Dabrosin C. Postmenopausal Dense Breasts Maintain Premenopausal Levels of GH and Insulin-like Growth Factor Binding Proteins in Vivo. J Clin Endocrinol Metab 2020; 105:5695904. [PMID: 31900484 DOI: 10.1210/clinem/dgz323] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022]
Abstract
CONTEXT Dense breast tissue is associated with 4 to 6 times higher risk of breast cancer by poorly understood mechanisms. No preventive therapy for this high-risk group is available. After menopause, breast density decreases due to involution of the mammary gland. In dense breast tissue, this process is haltered by undetermined biological actions. Growth hormone (GH) and insulin-like binding proteins (IGFBPs) play major roles in normal mammary gland development, but their roles in maintaining breast density are unknown. OBJECTIVE To reveal in vivo levels of GH, IGFBPs, and other pro-tumorigenic proteins in the extracellular microenvironment in breast cancer, in normal breast tissue with various breast density in postmenopausal women, and premenopausal breasts. We also sought to determine possible correlations between these determinants. SETTING AND DESIGN Microdialysis was used to collect extracellular in vivo proteins intratumorally from breast cancers before surgery and from normal human breast tissue from premenopausal women and postmenopausal women with mammographic dense or nondense breasts. RESULTS Estrogen receptor positive breast cancers exhibited increased extracellular GH (P < .01). Dense breasts of postmenopausal women exhibited similar levels of GH as premenopausal breasts and significantly higher levels than in nondense breasts (P < .001). Similar results were found for IGFBP-1, -2, -3, and -7 (P < .01) and for IGFBP-6 (P <.05). Strong positive correlations were revealed between GH and IGFBPs and pro-tumorigenic matrix metalloproteinases, urokinase-type plasminogen activator, Interleukin 6, Interleukin 8, and vascular endothelial growth factor in normal breast tissue. CONCLUSIONS GH pathways may be targetable for cancer prevention therapeutics in postmenopausal women with dense breast tissue.
Collapse
Affiliation(s)
- Nina Dabrosin
- Department of Plastic and Breast Surgery, Aarhus University Hospital, Aarhus, Denmark
| | - Charlotta Dabrosin
- Department of Oncology and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| |
Collapse
|
32
|
De Vincenzo A, Belli S, Franco P, Telesca M, Iaccarino I, Botti G, Carriero MV, Ranson M, Stoppelli MP. Paracrine recruitment and activation of fibroblasts by c-Myc expressing breast epithelial cells through the IGFs/IGF-1R axis. Int J Cancer 2019; 145:2827-2839. [PMID: 31381136 DOI: 10.1002/ijc.32613] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 06/26/2019] [Accepted: 07/30/2019] [Indexed: 12/21/2022]
Abstract
Fibroblasts are among the most abundant stromal cells in the tumor microenvironment (TME), progressively differentiating into activated, motile, myofibroblast-like, protumorigenic cells referred to as Cancer-Associated Fibroblasts (CAFs). To investigate the mechanisms by which epithelial cells direct this transition, the early stages of tumorigenesis were exemplified by indirect cocultures of WI-38 or human primary breast cancer fibroblasts with human mammary epithelial cells expressing an inducible c-Myc oncogene (MCF10A-MycER). After c-Myc activation, the conditioned medium (CM) of MCF10A-MycER cells significantly enhanced fibroblast activation and mobilization. As this was accompanied by decreased insulin-like growth factor binding protein-6 (IGFBP-6) and increased insulin-like growth factor-1 and IGF-II (IGF-I, IGF-II) in the CM, IGFs were investigated as key chemotactic factors. Silencing IGFBP-6 or IGF-I or IGF-II expression in epithelial cells or blocking Insulin-like growth factor 1 receptor (IGF-1R) activity on fibroblasts significantly altered fibroblast mobilization. Exposure of WI-38 fibroblasts to CM from induced MCF10A-MycER cells or to IGF-II upregulated FAK phosphorylation on Tyr397 , as well as the expression of α-smooth muscle actin (α-SMA), features associated with CAF phenotype and increased cell migratory/invasive behavior. In three-dimensional (3D)-organotypic assays, WI-38 or human primary fibroblasts, preactivated with either CM from MCF10A-MycER cells or IGFs, resulted in a permissive TME that enabled nontransformed MCF10A matrix invasion. This effect was abolished by inhibiting IGF-1R activity. Thus, breast epithelial cell oncogenic activation and stromal fibroblast transition to CAFs are linked through the IGFs/IGF-1R axis, which directly promotes TME remodeling and increases tumor invasion.
Collapse
Affiliation(s)
- Anna De Vincenzo
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Stefania Belli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Paola Franco
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Marialucia Telesca
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| | - Ingram Iaccarino
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy.,Hematopathology Section, University Hospital Schleswig-Holstein Campus Kiel, Christian-Albrechts University, Kiel, Germany
| | - Gerardo Botti
- Pathology Unit, IRCCS National Cancer Institute "Fondazione G. Pascale", Naples, Italy
| | - Maria V Carriero
- Department of Experimental Oncology, IRCCS National Cancer Institute "Fondazione G. Pascale", Naples, Italy
| | - Marie Ranson
- Illawarra Health and Medical Research Institute, Wollongong, NSW, Australia.,School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW, Australia
| | - Maria Patrizia Stoppelli
- Institute of Genetics and Biophysics "Adriano Buzzati Traverso", National Research Council, Naples, Italy
| |
Collapse
|
33
|
Vasconcelos A, Santos T, Ravasco P, Neves PM. Dairy Products: Is There an Impact on Promotion of Prostate Cancer? A Review of the Literature. Front Nutr 2019; 6:62. [PMID: 31139629 PMCID: PMC6527888 DOI: 10.3389/fnut.2019.00062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 04/17/2019] [Indexed: 12/21/2022] Open
Abstract
This review of the literature aims to study potential associations between high consumption of milk and/or dairy products and prostate cancer (PC). Literature is scarce, yet there is a direct relationship between mTORC1 activation and PC; several ingredients in milk/dairy products, when in high concentrations, increase signaling of the mTORC1 pathway. However, there are no studies showing an unequivocal relationship between milk products PC initiation and/or progression. Three different reviews were conducted with articles published in the last 5 years: (M1) PC and intake of dairy products, taking into account the possible mTORC1signaling mechanism; (M2) Intake of milk products and incidence/promotion of PC; (M3) mTORC1 activation signaling pathway, levels of IGF-1 and PC; (M4) mTORC pathway and dairy products. Of the 32 reviews identified, only 21 met the inclusion criteria and were analyzed. There is little scientific evidence that directly link the three factors: incidence/promotion of PC, intake of dairy products and PC, and PC and increased mTORC1 signaling. Persistent hyper-activation of mTORC1 is associated with PC promotion. The activity of exosomal mRNA in cellular communication may lead to different impacts of different types of milk and whether or not mammalian milks will have their own characteristics within each species. Based on this review of the literature, it is possible to establish a relationship between the consumption of milk products and the progression of PC; we also found a possible association with PC initiation, hence it is likely that the intake of dairy products should be reduced or minimized in mens' diet.
Collapse
Affiliation(s)
| | - Teresa Santos
- European University of Lisbon, Lisbon, Portugal.,Faculdade de Medicina, Instituto de Saúde Ambiental, Universidade de Lisboa, Lisbon, Portugal.,Instituto de Ciências da Saúde, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Paula Ravasco
- University Hospital of Santa Maria, University of Lisbon, Lisbon, Portugal.,Centre for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| | - Pedro Miguel Neves
- Centre for Interdisciplinary Research in Health, Universidade Católica Portuguesa, Lisbon, Portugal
| |
Collapse
|
34
|
Insulin-Like Growth Factor Binding Protein-6 Promotes the Differentiation of Placental Mesenchymal Stem Cells into Skeletal Muscle Independent of Insulin-Like Growth Factor Receptor-1 and Insulin Receptor. Stem Cells Int 2019; 2019:9245938. [PMID: 30911300 PMCID: PMC6397983 DOI: 10.1155/2019/9245938] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 12/16/2018] [Accepted: 01/06/2019] [Indexed: 12/15/2022] Open
Abstract
As mesenchymal stem cells (MSCs) are being investigated for regenerative therapies to be used in the clinic, delineating the roles of the IGF system in MSC growth and differentiation, in vitro, is vital in developing these cellular therapies to treat degenerative diseases. Muscle differentiation is a multistep process, starting with commitment to the muscle lineage and ending with the formation of multinucleated fibers. Insulin-like growth factor binding protein-6 (IGFBP-6), relative to other IGFBPs, has high affinity for IGF-2. However, the role of IGFBP-6 in muscle development has not been clearly defined. Our previous studies showed that in vitro extracellular IGFBP-6 increased myogenesis in early stages and could enhance the muscle differentiation process in the absence of IGF-2. In this study, we identified the signal transduction mechanisms of IGFBP-6 on muscle differentiation by placental mesenchymal stem cells (PMSCs). We showed that muscle differentiation required activation of both AKT and MAPK pathways. Interestingly, we demonstrated that IGFBP-6 could compensate for IGF-2 loss and help enhance the muscle differentiation process by triggering predominantly the MAPK pathway independent of activating either IGF-1R or the insulin receptor (IR). These findings indicate the complex interactions between IGFBP-6 and IGFs in PMSC differentiation into the skeletal muscle and that the IGF signaling axis, specifically involving IGFBP-6, is important in muscle differentiation. Moreover, although the major role of IGFBP-6 is IGF-2 inhibition, it is not necessarily the case that IGFBP-6 is the main modulator of IGF-2.
Collapse
|
35
|
Liso A, Capitanio N, Gerli R, Conese M. From fever to immunity: A new role for IGFBP-6? J Cell Mol Med 2018; 22:4588-4596. [PMID: 30117676 PMCID: PMC6156343 DOI: 10.1111/jcmm.13738] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/22/2018] [Indexed: 12/12/2022] Open
Abstract
Fever is a fundamental response to infection and a hallmark of inflammatory disease, which has been conserved and shaped through millions of years of natural selection. Although fever is able to stimulate both innate and adaptive immune responses, the very nature of all the molecular thermosensors, the timing and the detailed mechanisms translating a physical trigger into a fundamental biological response are incompletely understood. Here we discuss the consequence of hyperthermic stress in dendritic cells (DCs), and how the sole physical input is sensed as an alert stimulus triggering a complex transition in a very narrow temporal window. Importantly, we review recent findings demonstrating the significant and specific changes discovered in gene expression and in the metabolic phenotype associated with hyperthermia in DCs. Furthermore, we discuss the results that support a model based on a thermally induced autocrine signalling, which rewires and sets a metabolism checkpoint linked to immune activation of dendritic cells. Importantly, in this context, we highlight the novel regulatory functions discovered for IGFBP‐6 protein: induction of chemotaxis; capacity to increase oxidative burst and degranulation of neutrophils, ability to induce metabolic changes in DCs. Finally, we discuss the role of IGFBP‐6 in autoimmune disease and how novel mechanistic insights could lead to exploit thermal stress‐related mechanisms in the context of cancer therapy.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Nazzareno Capitanio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Roberto Gerli
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| |
Collapse
|
36
|
Abstract
Insulin-like growth factor-binding proteins (IGFBPs) 1-6 bind IGFs but not insulin with high affinity. They were initially identified as serum carriers and passive inhibitors of IGF actions. However, subsequent studies showed that, although IGFBPs inhibit IGF actions in many circumstances, they may also potentiate these actions. IGFBPs are widely expressed in most tissues, and they are flexible endocrine and autocrine/paracrine regulators of IGF activity, which is essential for this important physiological system. More recently, individual IGFBPs have been shown to have IGF-independent actions. Mechanisms underlying these actions include (i) interaction with non-IGF proteins in compartments including the extracellular space and matrix, the cell surface and intracellular space, (ii) interaction with and modulation of other growth factor pathways including EGF, TGF-β and VEGF, and (iii) direct or indirect transcriptional effects following nuclear entry of IGFBPs. Through these IGF-dependent and IGF-independent actions, IGFBPs modulate essential cellular processes including proliferation, survival, migration, senescence, autophagy and angiogenesis. They have been implicated in a range of disorders including malignant, metabolic, neurological and immune diseases. A more complete understanding of their cellular roles may lead to the development of novel IGFBP-based therapeutic opportunities.
Collapse
Affiliation(s)
- L A Bach
- Department of Medicine (Alfred)Monash University, Melbourne, Australia
- Department of Endocrinology and DiabetesAlfred Hospital, Melbourne, Australia
| |
Collapse
|
37
|
Tian H, Guan D, Li J. Identifying osteosarcoma metastasis associated genes by weighted gene co-expression network analysis (WGCNA). Medicine (Baltimore) 2018; 97:e10781. [PMID: 29901575 PMCID: PMC6023727 DOI: 10.1097/md.0000000000010781] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 04/24/2018] [Indexed: 12/12/2022] Open
Abstract
Osteosarcoma (OS), the most common malignant bone tumor, accounts for the heavy healthy threat in the period of children and adolescents. OS occurrence usually correlates with early metastasis and high death rate. This study aimed to better understand the mechanism of OS metastasis.Based on Gene Expression Omnibus (GEO) database, we downloaded 4 expression profile data sets associated with OS metastasis, and selected differential expressed genes. Weighted gene co-expression network analysis (WGCNA) approach allowed us to investigate the most OS metastasis-correlated module. Gene Ontology functional and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were used to give annotation of selected OS metastasis-associated genes.We select 897 differential expressed genes from OS metastasis and OS non-metastasis groups. Based on these selected genes, WGCNA further explored 142 genes included in the most OS metastasis-correlated module. Gene Ontology functional and KEGG pathway enrichment analyses showed that significantly OS metastasis-associated genes were involved in pathway correlated with insulin-like growth factor binding.Our research figured out several potential molecules participating in metastasis process and factors acting as biomarker. With this study, we could better explore the mechanism of OS metastasis and further discover more therapy targets.
Collapse
Affiliation(s)
- Honglai Tian
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Donghui Guan
- Department of Orthopaedics, Affiliated Hospital of Shandong University of Traditional Chinese Medicine
| | - Jianmin Li
- Department of Orthopaedics, Qilu Hospital of Shandong University, Wenhua West Road, Jinan City, Shandong, China
| |
Collapse
|
38
|
Role of IGFBP6 Protein in the Regulation of Epithelial-Mesenchymal Transition Genes. Bull Exp Biol Med 2018; 164:650-654. [PMID: 29577195 DOI: 10.1007/s10517-018-4051-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Indexed: 10/17/2022]
Abstract
Protein IGFBP6 plays an important role in the pathogenesis of many malignant tumors, including breast cancer. The relationship between IGFBP6 protein and the expression of genes associated with the epithelial-mesenchymal transition is studied. Gene IGFBP6 knockdown does not trigger the epithelial-mesenchymal transition in MDA-MB-231 cells, but modifies significantly the expression of many genes involved in this process. A decrease of IGFBP6 expression can involve a decrease in the expression of N-cadherin and transcription factor Slug.
Collapse
|
39
|
Ory V, Kietzman WB, Boeckelman J, Kallakury BV, Wellstein A, Furth PA, Riegel AT. The PPARγ agonist efatutazone delays invasive progression and induces differentiation of ductal carcinoma in situ. Breast Cancer Res Treat 2018; 169:47-57. [PMID: 29350308 DOI: 10.1007/s10549-017-4649-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 12/26/2017] [Indexed: 02/06/2023]
Abstract
PURPOSE Ductal carcinoma in situ (DCIS) is a pre-invasive lesion of the breast considered a precursor of invasive ductal carcinoma. This study aimed to determine whether activated PPARγ acts as a tumor suppressor in human DCIS progression. METHODS We utilized the high-affinity PPARγ agonist, efatutazone, to activate endogenous PPARγ in a well-defined model for the progression of basal (triple negative) DCIS, MCFDCIS cells, cultured under 2D and 3D conditions. We studied the effects of activated PPARγ on DCIS progression in MCFDCIS xenograft and C3(1)/Tag transgenic mice treated with 30 mg/kg of efatutazone. RESULTS In vitro, efatutazone did not alter the MCFDCIS cell proliferation but induced phenotypic and gene expression changes, indicating that activated PPARγ is able to differentiate MCFDCIS cells into more luminal and lactational-like cells. In addition, MCFDCIS tumorsphere formation in 3D was reduced by PPARγ activation. In vivo, efatutazone-treated MCFDCIS tumors exhibited fat deposition along with upregulation of PPARγ responsive genes in both epithelial and stromal compartments, suggesting features of milk-producing mammary epithelial cell differentiation. The efatutazone-treated lesions were less invasive with fewer CD44+/p63+ basal progenitor cells. PPARγ activation downregulated Akt phosphorylation in these tumors, although the ERK pathway remained unchanged. Similar trends in gene expression changes consistent with lactational and luminal cell differentiation were observed in the C3(1)/Tag mouse model after efatutazone treatment. CONCLUSIONS Our data suggest that activation of the PPARγ pathway differentiates DCIS lesions and may be a useful approach to delay DCIS progression.
Collapse
Affiliation(s)
- Virginie Ory
- Department of Oncology, Georgetown University, Washington, DC, USA.
| | | | - Jacob Boeckelman
- Department of Oncology, Georgetown University, Washington, DC, USA
| | - Bhaskar V Kallakury
- Department of Pathology, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anton Wellstein
- Department of Oncology, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Priscilla A Furth
- Department of Oncology, Georgetown University, Washington, DC, USA.,Department of Medicine, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| | - Anna T Riegel
- Department of Oncology, Georgetown University, Washington, DC, USA.,The Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA
| |
Collapse
|
40
|
Different Effects of Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-2 on Myogenic Differentiation of Human Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:8286248. [PMID: 29387091 PMCID: PMC5745708 DOI: 10.1155/2017/8286248] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/28/2017] [Accepted: 10/10/2017] [Indexed: 11/18/2022] Open
Abstract
Insulin-like growth factors (IGFs) are critical components of the stem cell niche, as they regulate proliferation and differentiation of stem cells into different lineages, including skeletal muscle. We have previously reported that insulin-like growth factor binding protein-6 (IGFBP-6), which has high affinity for IGF-2, alters the differentiation process of placental mesenchymal stem cells (PMSCs) into skeletal muscle. In this study, we determined the roles of IGF-1 and IGF-2 and their interactions with IGFBP-6. We showed that IGF-1 increased IGFBP-6 levels within 24 hours but decreased after 3 days, while IGF-2 maintained higher levels of IGFBP-6 throughout myogenesis. IGF-1 increased IGFBP-6 in the early phase as a requirement for muscle commitment. In contrast, IGF-2 enhanced muscle differentiation as shown by the expression of muscle differentiation markers MyoD, MyoG, and MHC. IGF-1 and IGF-2 had different effects on muscle differentiation with IGF-1 promoting early commitment to muscle and IGF-2 promoting complete muscle differentiation. We also showed that PMSCs acquired increasing capacity to synthesize IGF-2 during muscle differentiation, and the capacity increased as the differentiation progressed suggesting an autocrine and/or paracrine effect. Additionally, we demonstrated that IGFBP-6 could enhance the muscle differentiation process in the absence of IGF-2.
Collapse
|
41
|
Insulin-like growth factor-6 (IGFBP-6) stimulates neutrophil oxidative burst, degranulation and chemotaxis. Inflamm Res 2017; 67:107-109. [PMID: 29085959 DOI: 10.1007/s00011-017-1107-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/11/2022] Open
Abstract
The aim of this study was to understand whether insulin-like growth factor-binding protein-6 (IGFBP-6) has functional effects on neutrophils, in particular when they cross epithelium during inflammation. We found that IGFBP-6 increased ROS production (cytofluorimetry), degranulation of primary and tertiary granules (ELISA) and transmigration through the epithelial monolayer. No priming by IGFBP-6 on neutrophils stimulated by either PMA or fMLP was observed. IGFBP-6 is an agonist of neutrophils' functions, most likely when these cells have been already activated by other stimuli.
Collapse
|
42
|
Aboalola D, Han VKM. Insulin-Like Growth Factor Binding Protein-6 Alters Skeletal Muscle Differentiation of Human Mesenchymal Stem Cells. Stem Cells Int 2017; 2017:2348485. [PMID: 29181033 PMCID: PMC5618785 DOI: 10.1155/2017/2348485] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 07/07/2017] [Accepted: 07/19/2017] [Indexed: 01/14/2023] Open
Abstract
Insulin-like growth factor binding protein-6 (IGFBP-6), the main regulator of insulin-like growth factor-2 (IGF-2), is a component of the stem cell niche in developing muscle cells. However, its role in muscle development has not been clearly defined. In this study, we investigated the role of IGFBP-6 in muscle commitment and differentiation of human mesenchymal stem cells derived from the placenta. We showed that placental mesenchymal stem cells (PMSCs) have the ability to differentiate into muscle cells when exposed to a specific culture medium by expressing muscle markers Pax3/7, MyoD, myogenin, and myosin heavy chain in a stage-dependent manner with the ultimate formation of multinucleated fibers and losing pluripotency-associated markers, OCT4 and SOX2. The addition of IGFBP-6 significantly increased pluripotency-associated markers as well as muscle differentiation markers at earlier time points, but the latter decreased with time. On the other hand, silencing IGFBP-6 decreased both pluripotent and differentiation markers at early time points. The levels of these markers increased as IGFBP-6 levels were restored. These findings indicate that IGFBP-6 influences MSC pluripotency and myogenic differentiation, with more prominent effects observed at the beginning of the differentiation process before muscle commitment.
Collapse
Affiliation(s)
- Doaa Aboalola
- Departments of Anatomy and Cell Biology, Western Ontario University, London, ON, Canada
- Children's Health Research Institute, Western Ontario University, London, ON, Canada
- Lawson Health Research Institute, Western Ontario University, London, ON, Canada
- King Abdullah International Medical Research Center, National Guard Health Affairs, Jeddah, Saudi Arabia
| | - Victor K. M. Han
- Departments of Anatomy and Cell Biology, Western Ontario University, London, ON, Canada
- Children's Health Research Institute, Western Ontario University, London, ON, Canada
- Lawson Health Research Institute, Western Ontario University, London, ON, Canada
- Departments of Paediatrics, Schulich School of Medicine & Dentistry, Western Ontario University, London, ON, Canada
| |
Collapse
|
43
|
Bei Y, Huang Q, Shen J, Shi J, Shen C, Xu P, Chang H, Xia X, Xu L, Ji B, Chen J. IGFBP6 Regulates Cell Apoptosis and Migration in Glioma. Cell Mol Neurobiol 2017; 37:889-898. [PMID: 27650075 PMCID: PMC11482070 DOI: 10.1007/s10571-016-0426-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/08/2016] [Indexed: 02/07/2023]
Abstract
The insulin-like growth factor binding protein 6 (IGFBP6), as an inhibitor of IGF-II actions, plays an important role in inhibiting survival and migration of tumor cells. In our study, we intended to demonstrate the biological function of IGFBP6 in the development of glioma and its clinical significance. Firstly, Western blot and immunohistochemistry revealed that the expression of IGFBP6 inversely correlated with glioma grade. Secondly, multivariate analysis with the Cox proportional hazards model and Kaplan-Meier analysis indicated that IGFBP6 could be an independent prognostic factor for the survival of glioma patients. In addition, overexpression of IGFBP6 induced glioma cell apoptosis, and depletion of IGFBP6 had the opposite action. Finally, overexpression of IGFBP6 inhibited migration of glioma cells, and depletion of IGFBP6 had the opposite action. Together our findings suggest that IGFBP6 might be an important regulator and prognostic factor for glioma.
Collapse
Affiliation(s)
- Yuanqi Bei
- Department of Radiation Oncology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
- Department of Intensive Care Unit, Affiliated Cancer Hospital of Nantong University, Nantong, 226361, People's Republic of China
| | - Qingfeng Huang
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, Xisi Road No. 20, Nantong, 226001, People's Republic of China
| | - Jianhong Shen
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, Xisi Road No. 20, Nantong, 226001, People's Republic of China
| | - Jinlong Shi
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, Xisi Road No. 20, Nantong, 226001, People's Republic of China
| | - Chaoyan Shen
- Department of Radiation Oncology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Peng Xu
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Hao Chang
- Department of Neurosurgery, Affiliated Wuxi Second Hospital of Nanjing Medical University, Wuxi, 214002, People's Republic of China
| | - Xiaojie Xia
- Department of Radiation Oncology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
- Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, 226001, People's Republic of China
| | - Li Xu
- Department of Neurosurgery, The First Affiliated Hospital of Suzhou University, Suzhou, 215000, People's Republic of China
| | - Bin Ji
- Department of Radiation Oncology and Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, 20 Xisi Road, Nantong, 226001, Jiangsu, People's Republic of China
| | - JianGuo Chen
- Department of Neurosurgery, The Affiliated Hospital of Nantong University, Xisi Road No. 20, Nantong, 226001, People's Republic of China.
| |
Collapse
|
44
|
Liso A, Castellani S, Massenzio F, Trotta R, Pucciarini A, Bigerna B, De Luca P, Zoppoli P, Castiglione F, Palumbo MC, Stracci F, Landriscina M, Specchia G, Bach LA, Conese M, Falini B. Human monocyte-derived dendritic cells exposed to hyperthermia show a distinct gene expression profile and selective upregulation of IGFBP6. Oncotarget 2017; 8:60826-60840. [PMID: 28977828 PMCID: PMC5617388 DOI: 10.18632/oncotarget.18338] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Accepted: 05/12/2017] [Indexed: 12/31/2022] Open
Abstract
Fever plays a role in activating innate immunity while its relevance in activating adaptive immunity is less clear. Even brief exposure to elevated temperatures significantly impacts on the immunostimulatory capacity of dendritic cells (DCs), but the consequences on immune response remain unclear. To address this issue, we analyzed the gene expression profiles of normal human monocyte-derived DCs from nine healthy adults subjected either to fever-like thermal conditions (39°C) or to normal temperature (37°C) for 180 minutes. Exposure of DCs to 39°C caused upregulation of 43 genes and downregulation of 24 genes. Functionally, the up/downregulated genes are involved in post-translational modification, protein folding, cell death and survival, and cellular movement. Notably, when compared to monocytes, DCs differentially upregulated transcription of the secreted protein IGFBP-6, not previously known to be specifically linked to hyperthermia. Exposure of DCs to 39°C induced apoptosis/necrosis and resulted in accumulation of IGFBP-6 in the conditioned medium at 48 h. IGFBP-6 may have a functional role in the hyperthermic response as it induced chemotaxis of monocytes and T lymphocytes, but not of B lymphocytes. Thus, temperature regulates complex biological DC functions that most likely contribute to their ability to induce an efficient adaptive immune response.
Collapse
Affiliation(s)
- Arcangelo Liso
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Stefano Castellani
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Francesca Massenzio
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Rosa Trotta
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | | - Barbara Bigerna
- Institute of Haematology, University of Perugia, Perugia, Italy
| | | | - Pietro Zoppoli
- Dipartimento di Medicina Sperimentale e Clinica, Università degli Studi Magna Graecia, Catanzaro, Italy
| | - Filippo Castiglione
- Institute for Applied Computing, National Research Council of Italy, Rome, Italy
| | | | - Fabrizio Stracci
- Department of Experimental Medicine, Section of Public Health, University of Perugia, Perugia, Italy
| | - Matteo Landriscina
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.,Laboratory of Preclinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, Italy
| | | | - Leon A Bach
- Department of Medicine, Alfred Hospital, Monash University, Melbourne, Australia.,Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne, Australia
| | - Massimo Conese
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | | |
Collapse
|
45
|
Aid is a key regulator of myeloid/erythroid differentiation and DNA methylation in hematopoietic stem/progenitor cells. Blood 2017; 129:1779-1790. [PMID: 28077417 PMCID: PMC5374286 DOI: 10.1182/blood-2016-06-721977] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 01/07/2017] [Indexed: 01/16/2023] Open
Abstract
Recent studies have reported that activation-induced cytidine deaminase (AID) and ten-eleven-translocation (TET) family members regulate active DNA demethylation. Genetic alterations of TET2 occur in myeloid malignancies, and hematopoietic-specific loss of Tet2 induces aberrant hematopoietic stem cell (HSC) self-renewal/differentiation, implicating TET2 as a master regulator of normal and malignant hematopoiesis. Despite the functional link between AID and TET in epigenetic gene regulation, the role of AID loss in hematopoiesis and myeloid transformation remains to be investigated. Here, we show that Aid loss in mice leads to expansion of myeloid cells and reduced erythroid progenitors resulting in anemia, with dysregulated expression of Cebpa and Gata1, myeloid/erythroid lineage-specific transcription factors. Consistent with data in the murine context, silencing of AID in human bone marrow cells skews differentiation toward myelomonocytic lineage. However, in contrast to Tet2 loss, Aid loss does not contribute to enhanced HSC self-renewal or cooperate with Flt3-ITD to induce myeloid transformation. Genome-wide transcription and differential methylation analysis uncover the critical role of Aid as a key epigenetic regulator. These results indicate that AID and TET2 share common effects on myeloid and erythroid lineage differentiation, however, their role is nonredundant in regulating HSC self-renewal and in myeloid transformation.
Collapse
|
46
|
Bach LA. Current ideas on the biology of IGFBP-6: More than an IGF-II inhibitor? Growth Horm IGF Res 2016; 30-31:81-86. [PMID: 27681092 DOI: 10.1016/j.ghir.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 09/15/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022]
Abstract
IGFBP-6 binds IGF-II with higher affinity than IGF-I and it is a relatively specific inhibitor of IGF-II actions. More recently, IGFBP-6 has also been reported to have IGF-independent effects on cell proliferation, survival, differentiation and migration. IGFBP-6 binds to several ligands in the extracellular space, cytoplasm and nucleus. These interactions, together with activation of distinct intracellular signaling pathways, may contribute to its IGF-independent actions; for example, IGF-independent migration induced by IGFBP-6 involves interaction with prohibitin-2 and activation of MAP kinase pathways. A major challenge for the future is delineating the relative roles of the IGF-dependent and -independent actions of IGFBP-6, which may lead to the development of therapeutic approaches for diseases including cancer.
Collapse
Affiliation(s)
- Leon A Bach
- Department of Medicine (Alfred), Monash University, Prahran 3181, Australia; Department of Endocrinology and Diabetes, Alfred Hospital, Melbourne 3004, Australia.
| |
Collapse
|
47
|
Minchenko OH, Kharkova AP, Minchenko DO, Karbovskyi LL. Expression of IGFBP6, IGFBP7, NOV, CYR61, WISP1 and WISP2 genes in U87 glioma cells in glutamine deprivation condition. UKRAINIAN BIOCHEMICAL JOURNAL 2016; 88:66-77. [PMID: 29235329 DOI: 10.15407/ubj88.03.066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
We have studied gene expression of insulin-like growth factor binding proteins in U87 glioma cells upon glutamine deprivation depending on the inhibition of IRE1 (inositol requiring enzyme-1), a central mediator of endoplasmic reticulum stress. We have shown that exposure of control glioma cells upon glutamine deprivation leads to down-regulation of NOV/IGFBP9, WISP1 and WISP2 gene expressions and up-regulation of CYR61/IGFBP10 gene expression at the mRNA level. At the same time, the expression of IGFBP6 and IGFBP7 genes in control glioma cells was resistant to glutamine deprivation. It was also shown that the inhibition of IRE1 modifies the effect of glutamine deprivation on the expression of all studied genes. Thus, the inhibition of IRE1 signaling enzyme enhances the effect of glutamine deprivation on the expression of CYR61 and WISP1 genes and suppresses effect of the deprivation on WISP2 gene expression in glioma cells. Moreover, the inhibition of IRE1 introduces sensitivity of the expression of IGFBP6 and IGFBP7 genes to glutamine deprivation and removes this sensitivity to NOV gene. We have also demonstrated that the expression of all studied genes in glioma cells growing with glutamine is regulated by IRE1 signaling enzyme, because the inhibition of IRE1 significantly down-regulates IGFBP6 and NOV genes and up-regulates IGFBP7, CYR61, WISP1, and WISP2 genes as compared to control glioma cells. The present study demonstrates that glutamine deprivation condition affects most studied IGFBP and WISP gene expressions in relation to IRE1 signaling enzyme function and possibly contributes to slower glioma cell proliferation upon inhibition of IRE1.
Collapse
|
48
|
Effect of hypoxia on the expression of genes that encode some IGFBP and CCN proteins in U87 glioma cells depends on IRE1 signaling. UKRAINIAN BIOCHEMICAL JOURNAL 2015; 87:52-63. [DOI: 10.15407/ubj87.06.052] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
49
|
Goto K, Ishikawa S, Honma R, Tanimoto K, Sakamoto N, Sentani K, Oue N, Teishima J, Matsubara A, Yasui W. The transcribed-ultraconserved regions in prostate and gastric cancer: DNA hypermethylation and microRNA-associated regulation. Oncogene 2015; 35:3598-606. [PMID: 26640143 DOI: 10.1038/onc.2015.445] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Revised: 09/18/2015] [Accepted: 10/05/2015] [Indexed: 12/24/2022]
Abstract
The transcribed-ultraconserved regions (T-UCRs) are a novel class of non-coding RNAs, which are absolutely conserved (100%) between the orthologous regions of the human, rat and mouse genomes. Previous studies have described that several T-UCRs show differential expressions in cancers and might be involved in cancer development. We investigated the transcriptional levels of representative 26 T-UCRs and determined the regions that were differently expressed in prostate cancer (PCa) and gastric cancer (GC). A quantitative reverse transcription-polymerase chain reaction analysis revealed the downregulation of Uc.158+A expression by a DNA methylation-associated mechanism, which was restored by 5-Aza-dC (5-aza-2'-deoxycytidine) treatment. Bisulfite genomic sequencing using cell lines and tissue samples demonstrated cancer-specific CpG hypermethylation in both GC and PCa. However, Uc.416+A was only overexpressed in GC and we identified an miR-153 binding site in the possible regulatory region of Uc.416+A using online databases. Along with a forced expression or knockdown of miR-153 in MKN-74 GC cells, the transcriptional levels of Uc.416+A were significantly disturbed. A luciferase reporter gene assay supported the direct regulation of Uc.416+A expression by miR-153. Furthermore, Uc.416+A was associated with cell growth through the regulation of IGFBP6 (insulin-like growth factor-binding protein 6) in GC. These findings suggest an oncogenic role of Uc.416+A in GC, which suggests that our approach would provide new insights into functional studies of T-UCRs in cancer biology.
Collapse
Affiliation(s)
- K Goto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan.,Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - S Ishikawa
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - R Honma
- School of Medicine, Hiroshima University, Hiroshima, Japan
| | - K Tanimoto
- Department of Radiation Medicine, Hiroshima University Research Institute for Radiation Biology and Medicine, Hiroshima Japan
| | - N Sakamoto
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - K Sentani
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - N Oue
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - J Teishima
- Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - A Matsubara
- Department of Urology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| | - W Yasui
- Department of Molecular Pathology, Hiroshima University Institute of Biomedical and Health Sciences, Hiroshima, Japan
| |
Collapse
|
50
|
Woźniak M, Duś-Szachniewicz K, Ziółkowski P. Insulin-Like Growth Factor-2 Is Induced Following 5-Aminolevulinic Acid-Mediated Photodynamic Therapy in SW620 Human Colon Cancer Cell Line. Int J Mol Sci 2015; 16:23615-29. [PMID: 26445041 PMCID: PMC4632717 DOI: 10.3390/ijms161023615] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 09/06/2015] [Accepted: 09/09/2015] [Indexed: 01/11/2023] Open
Abstract
The IGF system is a family of polypeptide growth factors, which plays a significant role in the development and growth of many cells. Dysregulation of insulin-like growth factors and their pathway components has been connected with essential tumor properties, such as tumor cell proliferation, antiapoptotic properties, invasive behavior and chemotherapy resistance. However, the effects of photodynamic therapy (PDT), one of the cancer treatment methods for the regulation of the IGF signaling pathway, are still unclear. The aim of this study was to investigate the expression of IGF-2 after 5-aminolevulinic acid (5-ALA)-mediated-PDT in SW620 human colorectal cancer cells with evaluation of cell proliferation and apoptosis and to determine the effects of PDT on the IGF-2 receptor (IGF-2R), IGF-2 binding protein-1 (IGF-2BP-1) and the proapoptotic protein, BAX. Cells were treated with 5-aminolevulinic acid and its methyl ester. Changes of the expression and concentration of IGF-2 before and after treatment were assayed by immunocytochemistry, Western blot and ELISA. We found that IGF-2 was significantly overexpressed in the SW620 cell line, while its receptor and binding protein-1 were not significantly changed. Within this study, we would like to suggest that IGF-2 contributes to the effects of PDT and that its expression will influence post-PDT efficacy.
Collapse
Affiliation(s)
- Marta Woźniak
- Department of Pathology, Wroclaw Medical University, Wrocław 50-368, Poland.
| | | | - Piotr Ziółkowski
- Department of Pathology, Wroclaw Medical University, Wrocław 50-368, Poland.
| |
Collapse
|