1
|
Xu X, Lu X, Zheng Y, Xie Y, Lai W. Cytosolic mtDNA-cGAS-STING axis mediates melanocytes pyroptosis to promote CD8 + T-cell activation in vitiligo. J Dermatol Sci 2025; 117:61-70. [PMID: 39904676 DOI: 10.1016/j.jdermsci.2024.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 11/22/2024] [Accepted: 12/20/2024] [Indexed: 02/06/2025]
Abstract
BACKGROUND The cGAS-STING axis, a DNA sensor pathway, has recently emerged as a key hub in sensing stress signals and initiating the immune cascade in several diseases. However, its role in the pathogenesis of vitiligo remains unclear. OBJECTIVE To explore the pathogenic role of the cGAS-STING axis in linking oxidative stress and CD8+ T-cell-mediated anti-melanocytic immunity in vitiligo. METHODS The expression status of the cGAS-STING axis and cytosolic mtDNA were evaluated in the oxidatively stressed epidermal cells and vitiligo perilesional skin, respectively. Then, we investigated the activation of cGAS-STING axis in mtDNA-treated melanocytes, and the influence of cGAS or STING silencing on mtDNA-induced melanocytes pyroptosis. Finally, the paracrine effects of melanocytes pyroptosis on CD8+ T cell activation were explored. RESULTS We initially demonstrated that the cGAS-STING axis in melanocytes was highly susceptible to oxidative stress and activated in the vitiliginous melanocytes of perilesional skin, accompanied by enhanced cytosolic mtDNA accumulation. Our mechanistic in vitro experiments confirmed that oxidative stress-induced mitochondrial damage in epidermal cells led to cytosolic mtDNA accumulation, which served as a trigger in activating the cGAS-STING axis in melanocytes. Furthermore, the cytosolic mtDNA-cGAS-STING axis was verified to mediate melanocytes pyroptosis. More importantly, we found that IL-1β and IL-18 produced by pyroptotic melanocytes promoted the activation of CD8+ T cells from patients with vitiligo. CONCLUSION The present study confirmed that the cytosolic mtDNA-cGAS-STING axis of melanocytes played an important role in oxidative stress-triggered CD8+ T-cell response, providing novel insights into mechanisms underlying vitiligo onset.
Collapse
Affiliation(s)
- Xinya Xu
- Department of Dermatology, The Third Affiliated Hospital of Sun, Yat-sen University, Guangzhou, China
| | - Xinhua Lu
- Department of Neurosurgery, Foresea Life Insurance Guangzhou General Hospital, Guangzhou, China
| | - Yue Zheng
- Department of Dermatology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yang Xie
- Department of Dermatology, The Third Affiliated Hospital of Sun, Yat-sen University, Guangzhou, China
| | - Wei Lai
- Department of Dermatology, The Third Affiliated Hospital of Sun, Yat-sen University, Guangzhou, China.
| |
Collapse
|
2
|
Zhang H, Zhu C, Zhao J, Zheng R, Xing J, Li Z, Zhang Y, Xu Q. The enhanced hepatotoxicity of isobavachalcone in depigmented zebrafish due to calcium signaling dysregulation and lipid metabolism disorder. J Appl Toxicol 2024; 44:919-932. [PMID: 38400677 DOI: 10.1002/jat.4593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 01/31/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024]
Abstract
Isobavachalcone (IBC) is a flavonoid component derived from Psoraleae Fructus that can increase skin pigmentation and treat vitiligo. However, IBC has been reported to be hepatotoxic. Current studies on IBC hepatotoxicity are mostly on normal organisms but lack studies on hepatotoxicity in patients. This study established the depigmented zebrafish model by using phenylthiourea (PTU) and investigated the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC and the underlying mechanism. Morphological, histological, and ultrastructural examination and RT-qPCR verification were used to evaluate the effects of IBC on the livers of zebrafish larvae. IBC significantly decreased liver volume, altered lipid metabolism, and induced pathological and ultrastructural changes in the livers of zebrafish with depigmentation compared with normal zebrafish. The RNA-sequencing and RT-qPCR results showed that the difference in hepatotoxicity between normal and depigmented zebrafish caused by IBC was closely related to the calcium signaling pathway, lipid decomposition and metabolism, and oxidative stress. This work delved into the mechanism of the enhanced IBC-induced hepatotoxicity in depigmented zebrafish and provided a new insight into the hepatotoxicity of IBC.
Collapse
Affiliation(s)
- Huiwen Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Chengyue Zhu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Jingcheng Zhao
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
- College of Medicine, Xin Jiang Medical University, Urumqi, China
| | - Ruifang Zheng
- Institute of Medicine of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Jianguo Xing
- Institute of Medicine of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Zhijian Li
- College of Medicine, Xin Jiang Medical University, Urumqi, China
- Hospital of Xin Jiang Traditional UYGMJR Medicine, Urumqi, China
| | - Yun Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, China
| | - Qian Xu
- Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Khan AS, Badar Q, Siddiqui K, Hanif S, Lakhan H. Reverse Koebner Phenomenon in a Vitiligo Patient Treated With Radiotherapy. Cureus 2024; 16:e60771. [PMID: 38903331 PMCID: PMC11188008 DOI: 10.7759/cureus.60771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2024] [Indexed: 06/22/2024] Open
Abstract
Radiation-induced hypopigmentation resulting in a skin condition similar to vitiligo is evident in limited studies. In contrast to the typical Koebner phenomenon where new lesions develop at the site of injury, the trauma-induced disappearance of a specific rash in a patient with an already-developed skin disease is seen very rarely. This phenomenon is called "reverse Koebnerization" or "Koebner non-reaction." Herein, we submit a case of a 51-year-old female with already-developed vitiligo who came for treatment for carcinoma of the tongue with radiation therapy. Later, after the treatment, the patient developed a re-pigmentation of her skin.
Collapse
Affiliation(s)
- Asma S Khan
- Department of Radiation Oncology, Dr. Ziauddin Hospital, Karachi, PAK
| | - Quratulain Badar
- Department of Radiation Oncology, Dr. Ziauddin Hospital, Karachi, PAK
| | - Kaynat Siddiqui
- Department of Radiation Oncology, Dr. Ziauddin Hospital, Karachi, PAK
| | - Shoaib Hanif
- Department of Radiation Oncology, Dr. Ziauddin Hospital, Karachi, PAK
| | - Hafeez Lakhan
- Department of Radiation Oncology, Dr. Ziauddin Hospital, Karachi, PAK
| |
Collapse
|
4
|
Silvestrini AVP, Morais MF, Debiasi BW, Praça FG, Bentley MVLB. Nanotechnology strategies to address challenges in topical and cellular delivery of siRNAs in skin disease therapy. Adv Drug Deliv Rev 2024; 207:115198. [PMID: 38341146 DOI: 10.1016/j.addr.2024.115198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/14/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Gene therapy is one of the most advanced therapies in current medicine. In particular, interference RNA-based therapy by small interfering RNA (siRNA) has gained attention in recent years as it is a highly versatile, selective and specific therapy. In dermatological conditions, topical delivery of siRNA offers numerous therapeutic advantages, mainly by inhibiting the expression of target transcripts directly in the skin. However, crossing the stratum corneum and overcoming intracellular barriers is an inherent challenge. Substantial efforts by scientists have moved towards the use of multimodal and multifunctional nanoparticles to overcome these barriers and achieve greater bioavailability in their site of action, the cytoplasm. In this review the most innovative strategies based on nanoparticle and physical methods are presented, as well as the design principles and the main factors that contribute to the performance of these systems. This review also highlights the synergistic contributions of medicine, nanotechnology, and molecular biology to advancing translational research into siRNA-based therapeutics for skin diseases.
Collapse
Affiliation(s)
- Ana Vitoria Pupo Silvestrini
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Milena Finazzi Morais
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Bryan Wender Debiasi
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Fabíola Garcia Praça
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil
| | - Maria Vitória Lopes Badra Bentley
- School of Pharmaceutical Sciences of Ribeirao Preto, University of Sao Paulo, Av. do Café, s/n, 14040-903 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
5
|
Kaushik H, Kumar V, Parsad D. Mitochondria-Melanocyte cellular interactions: An emerging mechanism of vitiligo pathogenesis. J Eur Acad Dermatol Venereol 2023; 37:2196-2207. [PMID: 36897230 DOI: 10.1111/jdv.19019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 02/07/2023] [Indexed: 03/11/2023]
Abstract
Mitochondria has emerged as a potential modulator of melanocyte function other than just meeting its cellular ATP demands. Mitochondrial DNA defects are now an established cause of maternal inheritance diseases. Recent cellular studies have highlighted the mitochondrial interaction with other cellular organelles that lead to disease conditions such as in Duchenne muscular dystrophy, where defective mitochondria was found in melanocytes of these patients. Vitiligo, a depigmentory ailment of the skin, is another such disorder whose pathogenesis is now found to be associated with mitochondria. The complete absence of melanocytes at the lesioned site in vitiligo is a fact; however, the precise mechanism of this destruction is still undefined. In this review we have tried to discuss and link the emerging facts of mitochondrial function or its inter- and intra-organellar communications in vitiligo pathogenesis. Mitochondrial close association with melanosomes, molecular involvement in melanocyte-keratinocyte communication and melanocyte survival are new paradigm of melanogenesis that could ultimately account for vitiligo. This definitely adds the new dimensions to our understanding of vitiligo, its management and designing of future mitochondrial targeted therapy for vitiligo.
Collapse
Affiliation(s)
- Hitaishi Kaushik
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Vinod Kumar
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| | - Davinder Parsad
- Department of Dermatology, Venereology & Leprology, PGIMER, Chandigarh, 160012, India
| |
Collapse
|
6
|
Bzioueche H, Boniface K, Drullion C, Marchetti S, Chignon-Sicard B, Sormani L, Rocchi S, Seneschal J, Passeron T, Tulic MK. Impact of house dust mite in vitiligo skin: environmental contribution to increased cutaneous immunity and melanocyte detachment. Br J Dermatol 2023; 189:312-327. [PMID: 37140010 DOI: 10.1093/bjd/ljad148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/05/2023]
Abstract
BACKGROUND Vitiligo is an autoimmune skin disorder characterized by loss of melanocytes. Protease-mediated disruption of junctions between keratinocytes and/or keratinocyte intrinsic dysfunction may directly contribute to melanocyte loss. House dust mite (HDM), an environmental allergen with potent protease activity, contributes to respiratory and gut disease but also to atopic dermatitis and rosacea. OBJECTIVES To verify if HDM can contribute to melanocyte detachment in vitiligo and if so, by which mechanism(s). METHODS Using primary human keratinocytes, human skin biopsies from healthy donors and patients with vitiligo, and 3D reconstructed human epidermis, we studied the effect of HDM on cutaneous immunity, tight and adherent junction expression and melanocyte detachment. RESULTS HDM increased keratinocyte production of vitiligo-associated cytokines and chemokines and increased expression of toll-like receptor (TLR)-4. This was associated with increased in situ matrix-metalloproteinase (MMP)-9 activity, reduced cutaneous expression of adherent protein E-cadherin, increased soluble E-cadherin in culture supernatant and significantly increased number of suprabasal melanocytes in the skin. This effect was dose-dependent and driven by cysteine protease Der p1 and MMP-9. Selective MMP-9 inhibitor, Ab142180, restored E-cadherin expression and inhibited HDM-induced melanocyte detachment. Keratinocytes from patients with vitiligo were more sensitive to HDM-induced changes than healthy keratinocytes. All results were confirmed in a 3D model of healthy skin and in human skin biopsies. CONCLUSIONS Our results highlight that environmental mite may act as an external source of pathogen-associated molecular pattern molecules in vitiligo and topical MMP-9 inhibitors may be useful therapeutic targets. Whether HDM contributes to the onset of flares in vitiligo remains to be tested in carefully controlled trials.
Collapse
Affiliation(s)
- Hanene Bzioueche
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Katia Boniface
- Bordeaux University, CNRS, ImmunoConcept, UMR 5164, 33000 Bordeaux, France
| | - Claire Drullion
- Bordeaux University, CNRS, ImmunoConcept, UMR 5164, 33000 Bordeaux, France
| | - Sandrine Marchetti
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | | | | | - Stéphane Rocchi
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Julien Seneschal
- Bordeaux University, CNRS, ImmunoConcept, UMR 5164, 33000 Bordeaux, France
- Department of Dermatology and Pediatric Dermatology and National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Thierry Passeron
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| | - Meri K Tulic
- Université Côte d'Azur, INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Nice, France
| |
Collapse
|
7
|
Chen Z, Li Y, Xie Y, Nie S, Chen B, Wu Z. Roflumilast enhances the melanogenesis and attenuates oxidative stress-triggered damage in melanocytes. J Dermatol Sci 2023:S0923-1811(23)00080-4. [PMID: 37069030 DOI: 10.1016/j.jdermsci.2023.04.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/28/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
BACKGROUND The management of vitiligo is challenging due to limited treatment options, and therapeutic strategy varies according to the active or stable stage of vitiligo. PDE4 inhibitor has been used to treat various skin diseases, but the efficacy in vitiligo treatment is mixed. OBJECTIVE In this study, we aimed to investigate whether roflumilast, a PDE4 inhibitor, induces melanogenesis and attenuates oxidative stress-triggered damage in melanocytes, and if so, what is the mechanism. METHODS Melanin content assay, qRT-PCR, western blotting, ELISA, immunofluorescence assays, immunohistochemistry, small interfering RNA, flow cytometry, and transmission electron microscopy were employed. RESULTS Our results demonstrated that roflumilast alone only slightly increased melanogenesis, however, the combination of roflumilast and forskolin could boost cAMP levels, hence promoting melanogenesis more significantly. Moreover, roflumilast attenuated H2O2-induced apoptosis and mitochondrial morphological changes in melanocytes by reducing ROS levels. Furthermore, roflumilast activated AhR/Nrf2 pathway via cAMP whereas AhR silencing blocked roflumilast-induced Nrf2 nuclear translocation and reversed the inhibitory effect of roflumilast on H2O2-induced ROS production. Finally, we observed that the lesional skin of active vitiligo patients exhibited higher PDE4 expression levels. CONCLUSION roflumilast enhances the melanogenesis effect of forskolin and protects melanocytes from H2O2-induced apoptosis by cAMP/AhR/Nrf2-activated ROS inhibition, highlighting its therapeutic potential in vitiligo treatment.
Collapse
|
8
|
Vitiligo Treatments: Review of Current Therapeutic Modalities and JAK Inhibitors. Am J Clin Dermatol 2023; 24:165-186. [PMID: 36715849 DOI: 10.1007/s40257-022-00752-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2022] [Indexed: 01/31/2023]
Abstract
Vitiligo is a chronic autoimmune disease characterized by loss of pigment of the skin, affecting 0.5-2% of the population worldwide. It can have a significant impact on patients' quality of life. In recent years, there has been significant progress in our understanding of the pathogenesis of vitiligo. It is believed that vitiligo develops due to a complex combination of genetics, oxidative stress, inflammation, and environmental triggers. Conventional treatments include camouflage, topical corticosteroids, topical calcineurin inhibitors, oral corticosteroids, phototherapy, and surgical procedures, with the treatment regimen dependent on the patient's preferences and characteristics. With increased understanding of the importance of the Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway in the pathogenesis of vitiligo, treatment has expanded to include the first US FDA-approved cream to repigment patients with vitiligo. This review summarizes our understanding of the major mechanisms involved in the pathogenesis of vitiligo and its most common available treatments.
Collapse
|
9
|
Alopecia Areata: A Review of the Role of Oxidative Stress, Possible Biomarkers, and Potential Novel Therapeutic Approaches. Antioxidants (Basel) 2023; 12:antiox12010135. [PMID: 36670997 PMCID: PMC9854963 DOI: 10.3390/antiox12010135] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/09/2023] Open
Abstract
Alopecia areata (AA) is a dermatological condition characterized by non-scarring hair loss. Exact etiopathogenesis of AA is still unknown although it is known that several factors contribute to the collapse of the hair-follicle (HF)-immune-privileged (IP) site. Oxidative stress (OS) plays an important role in skin diseases. The aim of this review was to clarify the role of OS in AA pathogenesis and diagnosis, and to discuss potential treatment options. Oxidative-stress markers are altered in serum and skin samples of patients with AA, confirming a general pro-oxidative status in patients with AA. OS induces MHC class I chain-related A (MICA) expression in HF keratinocytes that activates the receptor NKG2D, expressed in NK cells and CD8+ T cytotoxic cells leading to destabilization of the HF immune-privileged site through the production of IFN-γ that stimulates JAK1 and JAK2 pathways. OS also activates the KEAP1-NRF2 pathway, an antioxidant system that contributes to skin homeostasis. In addition, a decrease of ATG5 and LC3B in the hair matrix and an increase in p62 levels indicates a reduction of intrafollicular autophagy during the evolution of AA. Potential biomarkers of OS in AA could be: malondialdehyde (MDA), advanced glycation end-products (AGEs), and ischemic-modified albumin (IMA). JAK inhibitors are the new frontier in treatment of AA and the use of nutraceuticals that modulate the OS balance, in combination with standard treatments, represent promising therapeutic tools.
Collapse
|
10
|
Ogawa T, Ishitsuka Y. NRF2 in the Epidermal Pigmentary System. Biomolecules 2022; 13:biom13010020. [PMID: 36671405 PMCID: PMC9855619 DOI: 10.3390/biom13010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Melanogenesis is a major part of the environmental responses and tissue development of the integumentary system. The balance between reduction and oxidation (redox) governs pigmentary responses, for which coordination among epidermal resident cells is indispensable. Here, we review the current understanding of melanocyte biology with a particular focus on the "master regulator" of oxidative stress responses (i.e., the Kelch-like erythroid cell-derived protein with cap'n'collar homology-associated protein 1-nuclear factor erythroid-2-related factor 2 system) and the autoimmune pigment disorder vitiligo. Our investigation revealed that the former is essential in pigmentogenesis, whereas the latter results from unbalanced redox homeostasis and/or defective intercellular communication in the interfollicular epidermis (IFE). Finally, we propose a model in which keratinocytes provide a "niche" for differentiated melanocytes and may "imprint" IFE pigmentation.
Collapse
Affiliation(s)
- Tatsuya Ogawa
- Department of Dermatology, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8575, Japan
| | - Yosuke Ishitsuka
- Department of Dermatology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita 565-0871, Japan
- Correspondence: ; Tel.: +81-66-879-3031; Fax: +81-66-879-3039
| |
Collapse
|
11
|
Lyu C, Sun Y. Immunometabolism in the pathogenesis of vitiligo. Front Immunol 2022; 13:1055958. [PMID: 36439174 PMCID: PMC9684661 DOI: 10.3389/fimmu.2022.1055958] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 10/24/2022] [Indexed: 01/25/2023] Open
Abstract
Vitiligo is a common depigmenting skin disorder characterized by the selective loss of melanocytes. Autoimmunity, genetic, environmental, and biochemical etiology have been proposed in vitiligo pathogenesis. However, the exact molecular mechanisms of vitiligo development and progression are unclear, particularly for immunometabolism. Sporadic studies have suggested mitochondrial dysfunction, enhanced oxidative stress, and specific defects in other metabolic pathways can promote dysregulation of innate and adaptive immune responses in vitiligo. These abnormalities appear to be driven by genetic and epigenetic factors modulated by stochastic events. In addition, glucose and lipid abnormalities in metabolism have been associated with vitiligo. Specific skin cell populations are also involved in the critical role of dysregulation of metabolic pathways, including melanocytes, keratinocytes, and tissue-resident memory T cells in vitiligo pathogenesis. Novel therapeutic treatments are also raised based on the abnormalities of immunometabolism. This review summarizes the current knowledge on immunometabolism reprogramming in the pathogenesis of vitiligo and novel treatment options.
Collapse
|
12
|
Panieri E, Telkoparan-Akillilar P, Saso L. NRF2, a crucial modulator of skin cells protection against vitiligo, psoriasis, and cancer. Biofactors 2022; 49:228-250. [PMID: 36310374 DOI: 10.1002/biof.1912] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/05/2022] [Indexed: 11/12/2022]
Abstract
The skin represents a physical barrier between the organism and the environment that has evolved to confer protection against biological, chemical, and physical insults. The inner layer, known as dermis, is constituted by connective tissue and different types of immune cells whereas the outer layer, the epidermis, is composed by different layers of keratinocytes and an abundant number of melanocytes, localized in the stratum basale of the epidermis. Oxidative stress is a common alteration of inflammatory skin disorders such as vitiligo, dermatitis, or psoriasis but can also play a causal role in skin carcinogenesis and tumor progression. Nuclear factor (erythroid-derived 2)-like 2 (NRF2) has emerged as a crucial regulator of cell defense mechanisms activating complex transcriptional programs that facilitate reactive oxygen species detoxification, repair oxidative damage and prevent xenobiotic-induced toxicity. Accumulating evidence suggests that the keratinocytes, melanocytes, and other skin cell types express high levels of NRF2, which is known to play a pivotal role in the skin homeostasis, differentiation, and metabolism during normal and pathologic conditions. In the present review, we summarize the current evidence linking NRF2 to skin pathophysiology and we discuss some recent modulators of NRF2 activity that have shown a therapeutic efficacy in skin protection against tumor initiation and common inflammatory skin conditions such as vitiligo or psoriasis, with a particular emphasis on natural compounds.
Collapse
Affiliation(s)
- Emiliano Panieri
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
- Department of General Direction (DG), Section of Hazardous Substances, Environmental Education and Training for the Technical Coordination of Management Activities (DGTEC), Italian Institute for Environmental Protection and Research, Rome, Italy
| | | | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
13
|
Regenerative Medicine-Based Treatment for Vitiligo: An Overview. Biomedicines 2022; 10:biomedicines10112744. [DOI: 10.3390/biomedicines10112744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/16/2022] Open
Abstract
Vitiligo is a complex disorder with an important effect on the self-esteem and social life of patients. It is the commonest acquired depigmentation disorder characterized by the development of white macules resulting from the selective loss of epidermal melanocytes. The pathophysiology is complex and involves genetic predisposition, environmental factors, oxidative stress, intrinsic metabolic dysfunctions, and abnormal inflammatory/immune responses. Although several therapeutic options have been proposed to stabilize the disease by stopping the depigmentation process and inducing durable repigmentation, no specific cure has yet been defined, and the long-term persistence of repigmentation is unpredictable. Recently, due to the progressive loss of functional melanocytes associated with failure to spontaneously recover pigmentation, several different cell-based and cell-free regenerative approaches have been suggested to treat vitiligo. This review gives an overview of clinical and preclinical evidence for innovative regenerative approaches for vitiligo patients.
Collapse
|
14
|
Rai RK, Karri R, Dubey KD, Roy G. Regulation of Tyrosinase Enzyme Activity by Glutathione Peroxidase Mimics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9730-9747. [PMID: 35861245 DOI: 10.1021/acs.jafc.2c02359] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Hydrogen peroxide plays a crucial role in the melanogenesis process by regulating the activity of the key melanin-forming enzyme tyrosinase, responsible for the browning of fruits, vegetables, and seafood. Therefore, a molecule with dual activities, both efficient tyrosinase inhibition and strong hydrogen peroxide degrading ability, may act as a promising antibrowning agent. Herein, we report highly efficient selone-based mushroom tyrosinase inhibitors 2 and 3 with remarkable glutathione peroxidase (GPx) enzyme-like activity. The presence of benzimidazole moiety enhances the tyrosinase inhibition efficiency of selone 2 (IC50 = 0.4 μM) by almost 600 times higher than imidazole-based selone 1 (IC50 = 238 μM). Interestingly, the addition of another aromatic ring to the benzimidazole moiety has led to the development of an efficient lipid-soluble tyrosinase inhibitor 3 (IC50 = 2.4 μM). The selenium center and the -NH group of 2 and 3 are extremely crucial to exhibit high GPx-like activity and tyrosinase inhibition potency. The hydrophobic moiety of the inhibitors (2 and 3) further assists them in tightly binding at the active site of the enzyme and facilitates the C═Se group to strongly coordinate with the copper ions. Inhibitor 2 exhibited excellent antibrowning and polyphenol oxidase inhibition properties in banana and apple juice extracts.
Collapse
Affiliation(s)
- Rakesh Kumar Rai
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| | - Ramesh Karri
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh 201314, India
| | - Gouriprasanna Roy
- Department of Chemistry, Indian Institute of Technology Tirupati, Tirupati, Andhra Pradesh 517506, India
| |
Collapse
|
15
|
Hlača N, Žagar T, Kaštelan M, Brajac I, Prpić-Massari L. Current Concepts of Vitiligo Immunopathogenesis. Biomedicines 2022; 10:biomedicines10071639. [PMID: 35884944 PMCID: PMC9313271 DOI: 10.3390/biomedicines10071639] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 12/11/2022] Open
Abstract
Vitiligo is an acquired immune-mediated disorder of pigmentation clinically characterized by well-defined depigmented or chalk-white macules and patches on the skin. The prevalence of vitiligo varies by geographical area, affecting 0.5% to 2% of the population. The disease imposes a significant psychological burden due to its major impact on patients’ social and emotional aspects of life. Given its autoimmune background, vitiligo is frequently associated with other autoimmune diseases or immune-mediated diseases. Vitiligo is a multifaceted disorder that involves both genetic predisposition and environmental triggers. In recent years, major predisposing genetic loci for the development of vitiligo have been discovered. The current findings emphasize the critical role of immune cells and their mediators in the immunopathogenesis of vitiligo. Oxidative-stress-mediated activation of innate immunity cells such as dendritic cells, natural killer, and ILC-1 cells is thought to be a key event in the early onset of vitiligo. Innate immunity cells serve as a bridge to adaptive immunity cells including T helper 1 cells, cytotoxic T cells and resident memory T cells. IFN-γ is the primary cytokine mediator that activates the JAK/STAT pathway, causing keratinocytes to produce the key chemokines CXCL9 and CXCL10. Complex interactions between immune and non-immune cells finally result in apoptosis of melanocytes. This paper summarizes current knowledge on the etiological and genetic factors that contribute to vitiligo, with a focus on immunopathogenesis and the key cellular and cytokine players in the disease’s inflammatory pathways.
Collapse
|
16
|
Shiu J, Zhang L, Lentsch G, Flesher JL, Jin S, Polleys CM, Jo SJ, Mizzoni C, Mobasher P, Kwan J, Rius-Diaz F, Tromberg BJ, Georgakoudi I, Nie Q, Balu M, Ganesan AK. Multimodal analyses of vitiligo skin identifies tissue characteristics of stable disease. JCI Insight 2022; 7:154585. [PMID: 35653192 PMCID: PMC9310536 DOI: 10.1172/jci.insight.154585] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 05/25/2022] [Indexed: 11/24/2022] Open
Abstract
Vitiligo is an autoimmune skin disease characterized by the destruction of melanocytes by autoreactive CD8+ T cells. Melanocyte destruction in active vitiligo is mediated by CD8+ T cells, but the persistence of white patches in stable disease is poorly understood. The interaction between immune cells, melanocytes, and keratinocytes in situ in human skin has been difficult to study due to the lack of proper tools. We combine noninvasive multiphoton microscopy (MPM) imaging and single-cell RNA-Seq (scRNA-Seq) to identify subpopulations of keratinocytes in stable vitiligo patients. We show that, compared with nonlesional skin, some keratinocyte subpopulations are enriched in lesional vitiligo skin and shift their energy utilization toward oxidative phosphorylation. Systematic investigation of cell-to-cell communication networks show that this small population of keratinocyte secrete CXCL9 and CXCL10 to potentially drive vitiligo persistence. Pseudotemporal dynamics analyses predict an alternative differentiation trajectory that generates this new population of keratinocytes in vitiligo skin. Further MPM imaging of patients undergoing punch grafting treatment showed that keratinocytes favoring oxidative phosphorylation persist in nonresponders but normalize in responders. In summary, we couple advanced imaging with transcriptomics and bioinformatics to discover cell-to-cell communication networks and keratinocyte cell states that can perpetuate inflammation and prevent repigmentation.
Collapse
Affiliation(s)
- Jessica Shiu
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Lihua Zhang
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Griffin Lentsch
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Jessica L Flesher
- Department of Dermatology, Massachusetts General Hospital, Boston, United States of America
| | - Suoqin Jin
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Christopher M Polleys
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Seong Jin Jo
- Department of Dermatology, Seoul National University College of Medicine, Seoul, Korea, Republic of
| | - Craig Mizzoni
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Pezhman Mobasher
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| | - Jasmine Kwan
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Francisca Rius-Diaz
- Department of Preventive Medicine and Public Health, University of Malaga, Malaga, Spain
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Irene Georgakoudi
- Department of Biomedical Engineering, Tufts University, Medford, United States of America
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, United States of America
| | - Mihaela Balu
- Department of Surgery, Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, United States of America
| | - Anand K Ganesan
- Department of Dermatology, University of California, Irvine, Irvine, United States of America
| |
Collapse
|
17
|
Li CL, Ma SH, Wu CY, Chang PH, Chang YT, Wu CY. Association Between Sensorineural Hearing Loss and Vitiligo: A Nationwide Population-Based Cohort Study. J Eur Acad Dermatol Venereol 2022; 36:1097-1103. [PMID: 35274365 DOI: 10.1111/jdv.18047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 02/17/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Vitiligo is an acquired depigmentation disease of the skin due to melanocyte destruction. A shared pathogenesis affecting melanocytes in the cochlea has been postulated. However, the association between vitiligo and sensorineural hearing loss (SNHL) is unclear. OBJECTIVE To identify the association between vitiligo and SNHL. METHODS This retrospective, nationwide cohort study included patients with vitiligo and age-, sex-, and comorbidities-matched controls (propensity score matching; 1:4 ratio) from the National Health Insurance Research Database in Taiwan from January 1, 2000 to December 31, 2013. RESULTS In total, 13048 patients with vitiligo and 52192 controls were included. SNHL developed in 0.61% patients with vitiligo and 0.29% controls. After adjusting for sex, age, and comorbidities, a significant association between vitiligo and SNHL was found (adjusted hazard ratio, 2.18; 95% CI, 1.66-2.86). The other risk factors for developing SNHL included increased age, male sex, hyperlipidemia, coronary artery disease, and diffuse connective tissue diseases. In subgroup analysis, the association between vitiligo and SNHL remained significant in almost all the subgroups. CONCLUSION A 2.2-fold increased risk of developing SNHL was found in patients with vitiligo. Proper referral to otologists for early screening and closer follow-up of SNHL should be considered for patients with vitiligo, especially for patients with older age.
Collapse
Affiliation(s)
- Chia-Lun Li
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sheng-Hsiang Ma
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chun-Ying Wu
- Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Clinical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Public Health and Department of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Division of Translational Research and Center of Excellence for Cancer Research, Taipei Veterans General Hospital, Taipei, Taiwan.,Department of Public Health, China Medical University, Taichung, Taiwan
| | - Pei-Hsuan Chang
- Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yun-Ting Chang
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Chen-Yi Wu
- Department of Dermatology, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Institute of Public Health and Department of Public Health, National Yang Ming Chiao Tung University, Taipei, Taiwan.,Department of Dermatology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
18
|
Kang P, Chen J, Zhang W, Guo N, Yi X, Cui T, Chen J, Yang Y, Wang Y, Du P, Ye Z, Li B, Li C, Li S. Oxeiptosis: a novel pathway of melanocytes death in response to oxidative stress in vitiligo. Cell Death Dis 2022; 8:70. [PMID: 35177586 PMCID: PMC8854565 DOI: 10.1038/s41420-022-00863-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 11/09/2022]
Abstract
Vitiligo is a cutaneous depigmenting autoimmune disease caused by the extensive destruction of epidermal melanocytes. Convincing data has defined a critical role for oxidative stress in the pathogenesis of vitiligo. Oxeiptosis is a caspase-independent cell death modality that was reportedly triggered by oxidative stress and operative in pathogen clearance. However, whether oxeiptosis exists in oxidative stress-induced melanocytes demise in vitiligo remains undetermined. In the present study, we initially found that other cell death modalities might exist in addition to the well-recognized apoptosis and necroptosis in H2O2-treated melanocytes. Furthermore, AIFM1 was found to be dephosphorylated at Ser116 in oxidative stress-induced melanocytes death, which was specific to oxeiptosis. Moreover, KEAP1 and PGAM5, upstream of the AIFM1 in oxeiptosis, were found to operate in melanocytic death. Subsequently, the KEAP1-PGAM5-AIFM1 signaling pathway was proved to be involved in oxidative stress-triggered melanocytes demise through the depletion of KEAP1 and PGAM5. Altogether, our study indicated that oxeiptosis might occur in melanocytes death under oxidative stress and contribute to the pathogenesis of vitiligo.
Collapse
Affiliation(s)
- Pan Kang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jianru Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Weigang Zhang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Ningning Guo
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Xiuli Yi
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Tingting Cui
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Jiaxi Chen
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yuqi Yang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Yinghan Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Pengran Du
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Zhubiao Ye
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Baizhang Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Chunying Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China
| | - Shuli Li
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, No. 127 of West Changle Road, Xi'an, Shaanxi, 710032, China.
| |
Collapse
|
19
|
Rodrigues de Souza I, Savio de Araujo-Souza P, Morais Leme D. Genetic variants affecting chemical mediated skin immunotoxicity. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2022; 25:43-95. [PMID: 34979876 DOI: 10.1080/10937404.2021.2013372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The skin is an immune-competent organ and this function may be impaired by exposure to chemicals, which may ultimately result in immune-mediated dermal disorders. Interindividual variability to chemical-induced skin immune reactions is associated with intrinsic individual characteristics and their genomes. In the last 30-40 years, several genes influencing susceptibility to skin immune reactions were identified. The aim of this review is to provide information regarding common genetic variations affecting skin immunotoxicity. The polymorphisms selected for this review are related to xenobiotic-metabolizing enzymes (CYPA1 and CYPB1 genes), antioxidant defense (GSTM1, GSTT1, and GSTP1 genes), aryl hydrocarbon receptor signaling pathway (AHR and ARNT genes), skin barrier function transepidermal water loss (FLG, CASP14, and SPINK5 genes), inflammation (TNF, IL10, IL6, IL18, IL31, and TSLP genes), major histocompatibility complex (MHC) and neuroendocrine system peptides (CALCA, TRPV1, ACE genes). These genes present variants associated with skin immune responses and diseases, as well as variants associated with protecting skin immune homeostasis following chemical exposure. The molecular and association studies focusing on these genetic variants may elucidate their functional consequences and contribution in the susceptibility to skin immunotoxicity. Providing information on how genetic variations affect the skin immune system may reduce uncertainties in estimating chemical hazards/risks for human health in the future.
Collapse
Affiliation(s)
| | | | - Daniela Morais Leme
- Graduate Program in Genetics, Department of Genetics, Federal University of Paraná (UFPR), Curitiba, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, Araraquara, Brazil
| |
Collapse
|
20
|
Faraj S, Kemp EH, Gawkrodger DJ. Patho-immunological mechanisms of vitiligo: the role of the innate and adaptive immunities and environmental stress factors. Clin Exp Immunol 2022; 207:27-43. [PMID: 35020865 PMCID: PMC8802175 DOI: 10.1093/cei/uxab002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 10/15/2021] [Indexed: 12/17/2022] Open
Abstract
Epidermal melanocyte loss in vitiligo, triggered by stresses ranging from trauma to emotional stress, chemical exposure or metabolite imbalance, to the unknown, can stimulate oxidative stress in pigment cells, which secrete damage-associated molecular patterns that then initiate innate immune responses. Antigen presentation to melanocytes leads to stimulation of autoreactive T-cell responses, with further targeting of pigment cells. Studies show a pathogenic basis for cellular stress, innate immune responses and adaptive immunity in vitiligo. Improved understanding of the aetiological mechanisms in vitiligo has already resulted in successful use of the Jak inhibitors in vitiligo. In this review, we outline the current understanding of the pathological mechanisms in vitiligo and locate loci to which therapeutic attack might be directed.
Collapse
Affiliation(s)
- Safa Faraj
- Department of Oncology and Metabolism, University of Sheffield, Sheffield, UK
| | | | - David John Gawkrodger
- Department of Infection, Immunology and Cardiovascular Disease, University of Sheffield, Sheffield, UK
| |
Collapse
|
21
|
Prathap P, Divya N, Asokan N. Premature graying of hair observed as the commonest cutaneous association in vitiligo in a comparative cross-sectional study: a component to be pondered. PIGMENT INTERNATIONAL 2022. [DOI: 10.4103/pigmentinternational.pigmentinternational_17_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Druml T, Brem G, Velie B, Lindgren G, Horna M, Ricard A, Grilz-Seger G. Equine vitiligo-like depigmentation in grey horses is related to genes involved in immune response and tumor metastasis. BMC Vet Res 2021; 17:336. [PMID: 34696794 PMCID: PMC8543801 DOI: 10.1186/s12917-021-03046-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/03/2021] [Indexed: 11/10/2022] Open
Abstract
Background In horses, the autoimmune disease vitiligo is characterized by the loss of melanocytes and results in patchy depigmentation of the skin around the eyes, muzzle and the perianal region. Vitiligo-like depigmentation occurs predominantly in horses displaying the grey coat colour and is observed at a prevalence level of 26.0–67.0% in grey horses compared with only 0.8–3.5% in non-grey horses. While the polygenetic background of this complex disease is well documented in humans, the underlying candidate genes for this skin disorder in horses remain unknown. In this study we aim to perform a genome-wide association study (GWAS) for identifying putative candidate loci for vitiligo-like depigmentation in horses. Methods In the current study, we performed a GWAS analysis using high-density 670 k single nucleotide polymorphism (SNP) data from 152 Lipizzan and 104 Noriker horses, which were phenotyped for vitiligo-like depigmentation by visual inspection. After quality control 376,219 SNPs remained for analyses, the genome-wide Bonferroni corrected significance level was p < 1.33e-7. Results We identified seven candidate genes on four chromosomes (ECA1, ECA13, ECA17, ECA20) putatively involved in vitiligo pathogenesis in grey horses. The highlighted genes PHF11, SETDB2, CARHSP1 and LITAFD, are associated with the innate immune system, while the genes RCBTB1, LITAFD, NUBPL, PTP4A1, play a role in tumor suppression and metastasis. The antagonistic pathogenesis of vitiligo in relation to cancer specific enhanced cell motility and/or metastasis on typical melanoma predilection sites underlines a plausible involvement of RCBTB1, LITAFD, NUBPL, and PTP4A1. Conclusions The proposed candidate genes for equine vitiligo-like depigmentation, indicate an antagonistic relation between vitiligo and tumor metastasis in a horse population with higher incidence of melanoma. Further replication and expression studies should lead to a better understanding of this skin disorder in horses.
Collapse
Affiliation(s)
- Thomas Druml
- Institute of Animal Breeding and Genetics, University of Veterinary sciences Vienna, Veterinärplatz 1, A-1210, Vienna, Austria.
| | - Gottfried Brem
- Institute of Animal Breeding and Genetics, University of Veterinary sciences Vienna, Veterinärplatz 1, A-1210, Vienna, Austria
| | - Brandon Velie
- Equine Genetics & Genomics Group, School of Life & Environmental Sciences, University of Sydney, Sydney, Australia
| | - Gabriella Lindgren
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences Uppsala, Uppsala, Sweden.,Livestock Genetics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Michaela Horna
- Department of Animal Husbandry, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Anne Ricard
- GABI, INRAE, AgroParisTech, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Pôle Développement Innovation Recherche, IFCE, 61310, Gouffern en Auge, France
| | - Gertrud Grilz-Seger
- Institute of Animal Breeding and Genetics, University of Veterinary sciences Vienna, Veterinärplatz 1, A-1210, Vienna, Austria
| |
Collapse
|
23
|
GPNMB Extracellular Fragment Protects Melanocytes from Oxidative Stress by Inhibiting AKT Phosphorylation Independent of CD44. Int J Mol Sci 2021; 22:ijms221910843. [PMID: 34639184 PMCID: PMC8509362 DOI: 10.3390/ijms221910843] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 11/24/2022] Open
Abstract
Glycoprotein non-metastatic melanoma protein B (GPNMB) is a type I transmembrane glycoprotein that plays an important role in cancer metastasis and osteoblast differentiation. In the skin epidermis, GPNMB is mainly expressed in melanocytes and plays a critical role in melanosome formation. In our previous study, GPNMB was also found to be expressed in skin epidermal keratinocytes. In addition, decreased GPNMB expression was observed in the epidermis of lesional skin of patients with vitiligo. However, the exact role of keratinocyte-derived GPNMB and its effect on vitiligo is still unknown. In this study, we demonstrated that GPNMB expression was also decreased in rhododendrol-induced leukoderma, as seen in vitiligo. The extracellular soluble form of GPNMB (sGPNMB) was found to protect melanocytes from cytotoxicity and the impairment of melanogenesis induced by oxidative stress. Furthermore, the effect of rGPNMB was not altered by the knockdown of CD44, which is a well-known receptor of GPNMB, but accompanied by the suppressed phosphorylation of AKT but not ERK, p38, or JNK. In addition, we found that oxidative stress decreased both transcriptional GPNMB expression and sGPNMB protein expression in human keratinocytes. Our results suggest that GPNMB might provide novel insights into the mechanisms related to the pathogenesis of vitiligo and leukoderma.
Collapse
|
24
|
Khaitan BK, Sindhuja T. Autoimmunity in vitiligo: Therapeutic implications and opportunities. Autoimmun Rev 2021; 21:102932. [PMID: 34506987 DOI: 10.1016/j.autrev.2021.102932] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022]
Abstract
Vitiligo is an acquired chronic pigmentary disorder affecting the melanocytes, mainly in the skin and mucosae. It occurs due to the dynamic interaction between genetic and environmental factors leading to autoimmune destruction of melanocytes. Defects in melanocyte adhesion and increased oxidative stress further augment the immune response in vitiligo. It is a cosmetically disfiguring condition with a substantial psychological burden. Its autoimmune nature with resultant chronicity, variable responses to therapeutic modalities, and frequent recurrences have further diminished the quality of life. Hence, treatment should aim to provide more extended remission periods, prevent recurrences, provide good cosmetic outcomes and ensure patient satisfaction. These treatment goals seem plausible with the recent progress in our understanding of the complex pathogenic mechanisms underlying vitiligo at a molecular and genetic level. We provide a literature review of the pathogenic mechanisms and the therapies targeting these mechanisms.
Collapse
Affiliation(s)
- Binod K Khaitan
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India.
| | - Tekumalla Sindhuja
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
25
|
Cui Y, Park SJ, Wu X, Wang R, Qi S, Kim HM, Yoon J. Highly selective two-photon fluorescent off-on probes for imaging tyrosinase activity in living cells and tissues. Chem Commun (Camb) 2021; 57:6911-6914. [PMID: 34152336 DOI: 10.1039/d1cc02374h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A coumarin-based two-photon (TP) fluorescent off-on probe has been developed for detecting tyrosinase activity. High selectivity, sensitivity and biocompatibility enable the probes to successfully image tyrosinase activity in live cells and tissues using TP microscopy.
Collapse
Affiliation(s)
- Yixin Cui
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Sang Jun Park
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon, 443-749, Korea.
| | - Xiaofeng Wu
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Rui Wang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Sujie Qi
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| | - Hwan Myung Kim
- Department of Chemistry and Department of Energy Systems Research, Ajou University, Suwon, 443-749, Korea.
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 120-750, Korea.
| |
Collapse
|
26
|
Herb Sanqi-Derived Compound K Alleviates Oxidative Stress in Cultured Human Melanocytes and Improves Oxidative-Stress-Related Leukoderma in Guinea Pigs. Cells 2021; 10:cells10082057. [PMID: 34440826 PMCID: PMC8393903 DOI: 10.3390/cells10082057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/04/2021] [Accepted: 08/05/2021] [Indexed: 12/02/2022] Open
Abstract
Sanqi, a traditional Chinese herb, is widely used for cardiovascular diseases, and its neuroprotective effects against oxidative stress were recently discovered. The purpose of this study was to investigate whether Sanqi-derived compound K (Sanqi-CK), an active metabolite of Sanqi, could protect melanocytes from oxidative stress. Cultured human primary skin epidermal melanocytes (HEMn-MPs) were treated with hydrogen peroxide (H2O2) in the presence or absence of Sanqi-CK. Sanqi-CK exhibited protective effects against H2O2-induced cell death by reducing oxidative stress. In addition, treatment with Sanqi-CK reversed the decreased glutathione reductase activity and decreased ratio of reduced glutathione (GSH)/oxidized glutathione (GSSG) seen in H2O2-treated melanocytes. Furthermore, topical application of Sanqi-CK alleviated leukoderma in guinea pigs, a disorder characterized by melanocyte cell death resulting from rhododendrol-induced oxidative stress. Taken together, these data suggest that Sanqi-CK protects melanocytes against oxidative stress, and its protective effects are associated with modulating the redox balance between GSH and GSSG and activating glutathione reductase. Thus, Sanqi-CK may be a good candidate for preventing melanocyte loss in oxidative-stress-associated pigmentary disorders.
Collapse
|
27
|
Evaluation of a resorufin-based fluorescent probe for tyrosinase detection in skin pigmentation disorders. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00138-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
28
|
Ryan GE, Harris JE, Richmond JM. Resident Memory T Cells in Autoimmune Skin Diseases. Front Immunol 2021; 12:652191. [PMID: 34012438 PMCID: PMC8128248 DOI: 10.3389/fimmu.2021.652191] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/06/2021] [Indexed: 12/15/2022] Open
Abstract
Tissue resident memory T cells (TRM) are a critical component of the immune system, providing the body with an immediate and highly specific response against pathogens re-infecting peripheral tissues. More recently, however, it has been demonstrated that TRM cells also form during autoimmunity. TRM mediated autoimmune diseases are particularly destructive, because unlike foreign antigens, the self-antigens are never cleared, continuously activating self-reactive TRM T cells. In this article, we will focus on how TRMs mediate disease in autoimmune skin conditions, specifically vitiligo, psoriasis, cutaneous lupus erythematosus, alopecia areata and frontal fibrosing alopecia.
Collapse
Affiliation(s)
- Grace E. Ryan
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| | | | - Jillian M. Richmond
- Department of Dermatology, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
29
|
Effects of a Traditional Caraway Formulation on Experimental Models of Vitiligo and Mechanisms of Melanogenesis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:6675657. [PMID: 33959187 PMCID: PMC8075664 DOI: 10.1155/2021/6675657] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 03/07/2021] [Accepted: 04/08/2021] [Indexed: 12/14/2022]
Abstract
Background Kursi Karwiya or caraway tablet (CWT), a traditional medicine formula, is widely used in Xinjiang, China, for treating vitiligo, a common autoimmune disease for which there is currently no satisfactory cure. Clinical interventions include pharmacological treatment with psoralens, often in conjunction with UVA radiation, but toxic side effects limit this application. Studies on the activities and mechanisms of CWT are scarce. Objective To investigate the in vitro and in vivo effects of CWT in B16 cell line and in animal models of vitiligo, further exploring its mechanisms of regulating melanogenesis. Methods Effects of CWT on melanin synthesis in B16 cells and mushroom tyrosinase activity were investigated in vitro. The signaling pathway of melanogenesis in murine B16 melanoma cells was examined by Western blotting. Two different animal models were used, vitiligo induced by hydroquinone in the mouse model and by hydrogen peroxide in the guinea pig model. Relevant biochemical parameters in blood and skin tissue were measured, and visual inspection, histopathology, and immunohistochemical analysis of treated areas were carried out. Results CWT produced changes in biochemical parameters including TYR, MDA, MAO, AChE, IL-6, INF-α, β-EP, and cAMP in blood and/or skin tissue and in regulating melanogenesis. After treatment with CTW, skin color, melanin containing hair follicles, and expression of TYR, TRP-1, and TRP-2 in the skin of animals were significantly affected. Conclusions CWT alleviated many of detrimental effects in both models of vitiligo. Tyrosinase activity and melanin content in B16 cells were increased, at least in part, via activation of the PKA p38 MAPK signaling pathways. Our results show that CWT produces beneficial effects on parameters of vitiligo and is worthy of further investigation for use in this distressing autoimmune disorder which currently has no effective cure.
Collapse
|
30
|
Boniface K, Passeron T, Seneschal J, Tulic MK. Targeting Innate Immunity to Combat Cutaneous Stress: The Vitiligo Perspective. Front Immunol 2021; 12:613056. [PMID: 33936032 PMCID: PMC8079779 DOI: 10.3389/fimmu.2021.613056] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 03/22/2021] [Indexed: 02/06/2023] Open
Abstract
Multiple factors are involved in the process leading to melanocyte loss in vitiligo including environmental triggers, genetic polymorphisms, metabolic alterations, and autoimmunity. This review aims to highlight current knowledge on how danger signals released by stressed epidermal cells in a predisposed patient can trigger the innate immune system and initiate a cascade of events leading to an autoreactive immune response, ultimately contributing to melanocyte disappearance in vitiligo. We will explore the genetic data available, the specific role of damage-associated-molecular patterns, and pattern-recognition receptors, as well as the cellular players involved in the innate immune response. Finally, the relevance of therapeutic strategies targeting this pathway to improve this inflammatory and autoimmune condition is also discussed.
Collapse
Affiliation(s)
- Katia Boniface
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France
| | - Thierry Passeron
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France.,Côte d'Azur University, Department of Dermatology, CHU Nice, Nice, France
| | - Julien Seneschal
- Univ. Bordeaux, INSERM, BMGIC, U1035, Immuno-dermatology Team, Bordeaux, France.,Department of Dermatology and Pediatric Dermatology, National Reference Center for Rare Skin Disorders, Hôpital Saint-André, Bordeaux, France
| | - Meri K Tulic
- INSERM U1065, Centre Méditerranéen de Médecine Moléculaire (C3M), Côte d'Azur University, Nice, France
| |
Collapse
|
31
|
Huang B, Sun X, Xu A. MicroRNA-145-5p Protects Human Melanocytes Against Oxidative Damage by Targeting Transient Receptor Potential Melastatin 2 (TRPM2). J BIOMATER TISS ENG 2021. [DOI: 10.1166/jbt.2021.2582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Background: Oxidative stress was reported to be involved in the progression of vitiligo. microRNAs (miRNAs) have been confirmed to display critical roles in vitiligo. In this study, we conjectured that miR-145-5p might be related to the development of vitiligo by regulating the
key genes expression in melanocytes. Methods: H2O2 was used to induce the dysfunction of melanocytes. The levels of TRPM2 and miR-145-5p in H2O2-induced human primary melanocytes were assessed using reverse transcription-quantitative polymerase
chain reaction (RT-qPCR). TargetScan and Dual luciferase reporter gene assay were conducted to confirm the correlation between miR-145-5p and TRPM2. Cell viability and apoptosis were determined using MTT and Flow cytometry analysis. Reactive oxygen species (ROS), antioxidant enzymes superoxide
dismutase (SOD) and catalase (CAT) were determined using specific assay kits. The levels of cleaved caspase-3 and pro-Caspase3 were measure by western blotting. Results: TRPM2 was upregulated while miR-145-5p was downregulated in H2O2-induced human primary melanocytes.
Dual luciferase reporter assay confirmed that TRPM2 was a target gene of miR-145-5p. miR-145-5p mimic transfection significantly increased cell viability and inhibited cell apoptosis in H2O2-treated melanocytes. In addition, overexpression of miR-145-5p enhanced the antioxidant
activity of SOD and CAT, and decreased intracellular ROS accumulation. Notably, these findings were abolished by TRPM2-plasmid. Conclusions: Taken together, our study demonstrated that oxidative stress induced up-regulation of TRPM2 and down-regulation of miR-145-5p in melanocytes.
In addition, overexpression of miR-145-5p alleviated melanocytes destruction via targeting TRPM2. These results indicated that miR-145-5p might serve as a potential target for anti-oxidative therapy in vitiligo.
Collapse
Affiliation(s)
- Bo Huang
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou Institute of Dermatology and Venereology, Hangzhou 310008, China
| | - Xuecheng Sun
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou Institute of Dermatology and Venereology, Hangzhou 310008, China
| | - Aie Xu
- Department of Dermatology, Third People’s Hospital of Hangzhou, Hangzhou Institute of Dermatology and Venereology, Hangzhou 310008, China
| |
Collapse
|
32
|
Thakur V, Bishnoi A, Vinay K, Kumaran SM, Parsad D. Vitiligo: Translational research and effective therapeutic strategies. Pigment Cell Melanoma Res 2021; 34:814-826. [PMID: 33756039 DOI: 10.1111/pcmr.12974] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 01/28/2023]
Abstract
This is an exciting phase of vitiligo research with the current understanding of vitiligo pathogenesis and its translation to successful treatment. The pathogenetic origin of vitiligo revolves around autoimmunity with supporting role from many other factors like oxidative stress, inherent melanocyte defects, or defective keratinocytes and fibroblasts. Vitiligo can be classified into segmental or non-segmental depending upon the clinical presentation, or it can be classified as progressing or stable based on the activity of the disease. Vitiligo treatments need to be stratified depending upon which type of vitiligo we are treating and at which phase the vitiligo patient presents to us. There are two different aims of treatment of vitiligo. The first involves rescuing the melanocytes from the damage to arrest the depigmentation. The second strategy focuses on replenishing the melanocytes so that successful repigmentation is achieved. It is also important to maintain the disease in a stable phase or prevent relapse. As stability in non-segmental vitiligo is a dynamic process, maintenance of the stability of repigmentation is also an important consideration in the management of vitiligo. In this review, we shall briefly discuss the current options and future insight into the management of vitiligo.
Collapse
Affiliation(s)
- Vishal Thakur
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Anuradha Bishnoi
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Keshavamurthy Vinay
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sendhil M Kumaran
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Davinder Parsad
- Department of Dermatology, Venereology and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
33
|
Gautron A, Migault M, Bachelot L, Corre S, Galibert MD, Gilot D. Human TYRP1: Two functions for a single gene? Pigment Cell Melanoma Res 2021; 34:836-852. [PMID: 33305505 DOI: 10.1111/pcmr.12951] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/12/2020] [Accepted: 12/01/2020] [Indexed: 01/07/2023]
Abstract
In the animal kingdom, skin pigmentation is highly variable between species, and it contributes to phenotypes. In humans, skin pigmentation plays a part in sun protection. Skin pigmentation depends on the ratio of the two pigments pheomelanin and eumelanin, both synthesized by a specialized cell population, the melanocytes. In this review, we explore one important factor in pigmentation: the tyrosinase-related protein 1 (TYRP1) gene which is involved in eumelanin synthesis via the TYRP1 protein. Counterintuitively, high TYRP1 mRNA expression is associated with a poor clinical outcome for patients with metastatic melanomas. Recently, we were able to explain this unexpected TYRP1 function by demonstrating that TYRP1 mRNA sequesters microRNA-16, a tumor suppressor miRNA. Here, we focus on actors influencing TYRP1 mRNA abundance, particularly transcription factors, single nucleotide polymorphisms (SNPs), and miRNAs, as they all dictate the indirect oncogenic activity of TYRP1.
Collapse
Affiliation(s)
- Arthur Gautron
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Mélodie Migault
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Laura Bachelot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Sébastien Corre
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France
| | - Marie-Dominique Galibert
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,CHU Rennes, Génétique Moléculaire et Génomique, UMR 6290, F-35000, Rennes, France
| | - David Gilot
- CNRS, IGDR (Institut de génétique et développement de Rennes) - UMR 6290, F-35000, Univ. Rennes, Rennes, France.,INSERM U1242, Centre Eugène Marquis, Rennes, France
| |
Collapse
|
34
|
Bergqvist C, Ezzedine K. Vitiligo: A focus on pathogenesis and its therapeutic implications. J Dermatol 2021; 48:252-270. [DOI: 10.1111/1346-8138.15743] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
Affiliation(s)
- Christina Bergqvist
- Department of Dermatology AP‐HP Henri Mondor University Hospital UPEC Créteil France
| | - Khaled Ezzedine
- Department of Dermatology AP‐HP Henri Mondor University Hospital UPEC Créteil France
- EA 7379 EpidermE Université Paris‐Est Créteil, UPEC Créteil France
| |
Collapse
|
35
|
Yamamoto A, Yang L, Kuroda Y, Guo J, Teng L, Tsuruta D, Katayama I. Local Epidermal Endocrine Estrogen Protects Human Melanocytes against Oxidative Stress, a Novel Insight into Vitiligo Pathology. Int J Mol Sci 2020; 22:ijms22010269. [PMID: 33383933 PMCID: PMC7794688 DOI: 10.3390/ijms22010269] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/25/2020] [Indexed: 02/05/2023] Open
Abstract
As the outermost barrier of the body, skin is a major target of oxidative stress. In the brain, estrogen has been reported synthesized locally and protects neurons from oxidative stress. Here, we explored whether estrogen is also locally synthesized in the skin to protect from oxidative stress and whether aberrant local estrogen synthesis is involved in skin disorders. Enzymes and estrogen receptor expression in skin cells were examined first by quantitative real-time PCR and Western blot analyses. Interestingly, the estrogen synthesis enzyme was mainly localized in epidermal keratinocytes and estrogen receptors were mainly expressed in melanocytes among 13 kinds of cultured human skin cells. The most abundant estrogen synthesis enzyme expressed in the epidermis was 17β-hydroxysteroid dehydrogenase 1 (HSD17β1) localized in keratinocytes, and the most dominant estrogen receptor expressed in the epidermis was G protein-coupled estrogen receptor 1 (GPER1) in melanocytes. To investigate whether keratinocyte-derived estradiol could protect melanocytes from oxidative stress, cultured human primary epidermal melanocytes (HEMn-MPs) were treated with H2O2 in the presence or absence of 17β estradiol or co-cultured with HSD17β1 siRNA-transfected keratinocytes. Keratinocyte-derived estradiol exhibited protective effects against H2O2-induced cell death. Further, reduced expression of HSD17β1 in the epidermis of skin from vitiligo patients was observed compared to the skin from healthy donors or in the normal portions of the skin in vitiligo patients. Our results suggest a possible new target for interventions that may be used in combination with current therapies for patients with vitiligo.
Collapse
Affiliation(s)
- Asako Yamamoto
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan; (A.Y.); (Y.K.); (J.G.); (L.T.); (I.K.)
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan;
| | - Lingli Yang
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan; (A.Y.); (Y.K.); (J.G.); (L.T.); (I.K.)
- Correspondence: ; Tel./Fax: +81-6-6556-7618
| | - Yasutaka Kuroda
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan; (A.Y.); (Y.K.); (J.G.); (L.T.); (I.K.)
- Biological Science Laboratories, Kao Corporation, Kanagawa 250-0002, Japan
| | - Jiao Guo
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan; (A.Y.); (Y.K.); (J.G.); (L.T.); (I.K.)
| | - Lanting Teng
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan; (A.Y.); (Y.K.); (J.G.); (L.T.); (I.K.)
| | - Daisuke Tsuruta
- Department of Dermatology, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan;
| | - Ichiro Katayama
- Department of Pigmentation Research and Therapeutics, Graduate School of Medicine, Osaka City University, Osaka 545-0051, Japan; (A.Y.); (Y.K.); (J.G.); (L.T.); (I.K.)
| |
Collapse
|
36
|
Awad SS, Moftah NH, Rashed LA, Touni AA, Telep RAA. Evaluation of the effect of narrow band-ultraviolet B on the expression of tyrosinase, TYRP-1, and TYRP-2 mRNA in vitiligo skin and their correlations with clinical improvement: A retrospective study. Dermatol Ther 2020; 34:e14649. [PMID: 33314655 DOI: 10.1111/dth.14649] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 12/03/2020] [Indexed: 12/01/2022]
Abstract
Narrowband-ultraviolet B (NB-UVB) is considered one of the main therapeutic tools in vitiligo, which is able to induce repigmentation and halt depigmentation. However, little remains known about the effect of NB-UVB on TYR gene family, the main pigmentary genes, in vitiligo patients. To assess the effect of NB-UVB on expression of some genes related to the pigmentary problem of vitiligo; tyrosinase (TYR), tyrosinase related protein 1 (TYRP1) and tyrosinase related protein 2 (TYRP2), mRNA levels of those genes were quantitatively evaluated by Real-Time quantitative Polymerase Chain Reaction (RT-qPCR) in skin biopsies obtained from 30 patients with nonsegmental vitiligo and five healthy controls. Vitiligo patients were classified into two groups; group 1, involving 12 untreated vitiligo patients and group 2, including 18 vitiligo patients treated by NB-UVB. The levels of TYR, TYRP-1, and TYRP-2 mRNAs in untreated group were significantly lower than in control subjects (P < .001). In NB-UVB treated group, the three genes were significantly higher than in group 1 (P < .001), however, they were still significantly lower than in the control subjects (P < .001). A significant positive correlation was detected between TYR and TYRP-2 genes in group 2 (P = .03). This study demonstrated that mRNA level of TYR, TYRP-1, and TYRP-2, which decreased in vitiligo, was significantly increased upon treatment with NB-UVB. Accordingly, the mechanism of depigmentation in vitiligo disease and repigmentation by NB-UVB treatment may be related to the changes in the expression of these genes.
Collapse
Affiliation(s)
- Sherif Shoukry Awad
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Noha Hassan Moftah
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Laila Ahmed Rashed
- Department of Biochemistry, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ahmed Ahmed Touni
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| | - Rowida Ahmed Amer Telep
- Department of Dermatology and Venereology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
37
|
Shakhbazova A, Wu H, Chambers CJ, Sivamani RK. A Systematic Review of Nutrition, Supplement, and Herbal-Based Adjunctive Therapies for Vitiligo. J Altern Complement Med 2020; 27:294-311. [PMID: 33337930 DOI: 10.1089/acm.2020.0292] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Background: Vitiligo is an autoimmune skin condition that affects people globally anywhere, from <0.1% to more than 8% of individuals. The disease destroys skin melanocytes, resulting in a patchy depigmentation of the skin. About 50% of all patients develop the disease before their 20s. Methods: We systematically searched the literature and reviewed the evidence for the use of nutritional supplements and diet in the management of vitiligo. Embase and Medline were searched for diet, herbal, and nutrition-based clinical studies. Additional filters were applied that looked for controlled trial or randomized controlled trial and article or article in press or letter and English and clinical study. We selected clinical studies in humans that showed how diet or natural supplements can improve the symptoms of vitiligo in all of our searches. Results: There were 62 manuscripts that resulted from the PubMed search and 259 from the Embase search. A final of 26 studies were reviewed, and other supplemental case and case-control studies were used to introduce diet components that may influence either exacerbation or amelioration of vitiligo. Possible mechanisms of action are introduced for natural and supplemental interventions. Conclusion: Some of the supplements reviewed include Gingko biloba, oral Polypodium leucotomos, alpha lipoic acid, vitamins B12, D, and E, folic acid, phenylalanine, canthaxanthin, Nigella sativa oil, and other combined herbal bio-actives. Overall, the growing evidence is promising, but more studies are needed in this area to further explore the impact that supplements and diet can have on vitiligo management. The most promising therapies included oral phenylalanine as adjuvant therapy with UVA therapy, oral G. biloba as monotherapy, both of which can be used with other traditional therapies, and oral P. leucotomos with phototherapy or photochemotherapy.
Collapse
Affiliation(s)
| | - Hera Wu
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Department of Dermatology, University of California, Davis, Sacramento, CA, USA
| | - Cindy J Chambers
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA
| | - Raja K Sivamani
- College of Medicine, California Northstate University, Elk Grove, CA, USA.,Department of Dermatology, University of California, Davis, Sacramento, CA, USA.,Pacific Skin Institute, Sacramento, CA, USA.,Zen Dermatology, Sacramento, CA, USA.,Department of Biological Sciences, California State University, Sacramento, Sacramento, CA, USA
| |
Collapse
|
38
|
Lin X, Meng X, Song Z, Lin J. Nuclear factor erythroid 2-related factor 2 (Nrf2) as a potential therapeutic target for vitiligo. Arch Biochem Biophys 2020; 696:108670. [PMID: 33186606 DOI: 10.1016/j.abb.2020.108670] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/28/2020] [Accepted: 11/04/2020] [Indexed: 12/12/2022]
Abstract
Vitiligo is an autoimmune disease of the skin which causes loss of melanocytes from the epidermis. Recently, it is demonstrated that oxidative stress (OS) plays a significant role in the immuno-pathogenesis of vitiligo. A major mechanism in the cellular defense against OS is activation of the nuclear factor erythroid2-related factor (Nrf2)-Kelch-like ECH-associated protein 1(Keap1)-antioxidant responsive element (ARE) signaling pathway. Recently it has been shown that vitiligo melanocytes have impaired Nrf2-ARE signaling. A number of drugs including those known as Nrf2 activators and those known to possess effects to activate Nrf2, have been used in treating vitiligo with certain therapeutic effects. Also, studies have shown that a number of compounds can protect melanocytes against OS via activating Nrf2. These compounds may be considered as candidates for developing new drugs for vitiligo in the future. Nrf2 can be considered as a potential therapeutic target for vitiligo.
Collapse
Affiliation(s)
- Xiran Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| | - Xianmin Meng
- Department of Pathology and Laboratory Medicine, Axia Women's Health, 450 Cresson BLVD, Oaks, PA, 19456, USA.
| | - Zhiqi Song
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| | - Jingrong Lin
- Department of Dermatology, First Affiliated Hospital of Dalian Medical University, 222 Zhongshan Lu, Dalian, 116011, China.
| |
Collapse
|
39
|
Lee JW, Kim TH, Park TJ, Kang HY. p16 ink4a Positivity of Melanocytes in Non-Segmental Vitiligo. Diagnostics (Basel) 2020; 10:diagnostics10110878. [PMID: 33126704 PMCID: PMC7694005 DOI: 10.3390/diagnostics10110878] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 10/22/2020] [Accepted: 10/27/2020] [Indexed: 02/08/2023] Open
Abstract
Cellular senescence is induced in response to cellular stressors such as increased levels of reactive oxygen species. The chronic accumulation of senescent cells is currently recognized as a contributor to the pathologic processes of diverse degenerative diseases. Vitiligo is characterized by the disappearance of melanocytes driven by cellular stress within melanocytes and autoimmune processes. In this study, we examined p16INK4A positivity in the lesional and perilesional skin of 54 non-segmental vitiligo patients to explore cellular senescence in vitiligo. There were more p16INK4A-positive melanocytes in the perilesional vitiligo skin samples than in control samples. It was also found that p16INK4A immunoreactivity was not restricted to melanocytes but also existed in fibroblasts; the number of p16INK4A-positive fibroblasts was significantly increased in lesional skin compared to perilesional skin and normal controls. However, in the subgroup analysis of sun-exposed and non-exposed samples, this outcome was only found at sun-exposed sites, suggesting that fibroblast senescence is an epiphenomenon related to the loss of pigment in skin with vitiligo. In summary, exploring p16INK4A positivity in vitiligo revealed melanocyte senescence in perilesional skin, which may play a role in vitiligo pathogenesis.
Collapse
Affiliation(s)
- Jin Wook Lee
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 443–721, Korea;
- Department of Dermatology, College of Medicine, Chungbuk National University, Cheongju 28644, Korea
| | - Tae Hyung Kim
- Department of Dermatology, Ajou University School of Medicine, Suwon 443–721, Korea;
| | - Tae Jun Park
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 443–721, Korea;
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon 443–721, Korea
- Institute on Ageing, Ajou University Medical Center, Suwon 443–721, Korea
- Correspondence: (T.J.P.); (H.Y.K.); Tel.: +82-31-219-5055 (T.J.P.); +82-31-219-5188 (H.Y.K.)
| | - Hee Young Kang
- Department of Medical Sciences, Ajou University Graduate School of Medicine, Suwon 443–721, Korea;
- Department of Dermatology, Ajou University School of Medicine, Suwon 443–721, Korea;
- Correspondence: (T.J.P.); (H.Y.K.); Tel.: +82-31-219-5055 (T.J.P.); +82-31-219-5188 (H.Y.K.)
| |
Collapse
|
40
|
Aguilera-Durán G, Romo-Mancillas A. Computational Study of C-X-C Chemokine Receptor (CXCR)3 Binding with Its Natural Agonists Chemokine (C-X-C Motif) Ligand (CXCL)9, 10 and 11 and with Synthetic Antagonists: Insights of Receptor Activation towards Drug Design for Vitiligo. Molecules 2020; 25:E4413. [PMID: 32992956 PMCID: PMC7582348 DOI: 10.3390/molecules25194413] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 12/31/2022] Open
Abstract
Vitiligo is a hypopigmentary skin pathology resulting from the death of melanocytes due to the activity of CD8+ cytotoxic lymphocytes and overexpression of chemokines. These include CXCL9, CXCL10, and CXCL11 and its receptor CXCR3, both in peripheral cells of the immune system and in the skin of patients diagnosed with vitiligo. The three-dimensional structure of CXCR3 and CXCL9 has not been reported experimentally; thus, homology modeling and molecular dynamics could be useful for the study of this chemotaxis-promoter axis. In this work, a homology model of CXCR3 and CXCL9 and the structure of the CXCR3/Gαi/0βγ complex with post-translational modifications of CXCR3 are reported for the study of the interaction of chemokines with CXCR3 through all-atom (AA-MD) and coarse-grained molecular dynamics (CG-MD) simulations. AA-MD and CG-MD simulations showed the first activation step of the CXCR3 receptor with all chemokines and the second activation step in the CXCR3-CXCL10 complex through a decrease in the distance between the chemokine and the transmembrane region of CXCR3 and the separation of the βγ complex from the α subunit in the G-protein. Additionally, a general protein-ligand interaction model was calculated, based on known antagonists binding to CXCR3. These results contribute to understanding the activation mechanism of CXCR3 and the design of new molecules that inhibit chemokine binding or antagonize the receptor, provoking a decrease of chemotaxis caused by the CXCR3/chemokines axis.
Collapse
Affiliation(s)
- Giovanny Aguilera-Durán
- Posgrado en Ciencias Químico Biológicas, Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas S/N, Querétaro 76010, Mexico;
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| | - Antonio Romo-Mancillas
- Laboratorio de Diseño Asistido por Computadora y Síntesis de Fármacos, Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario, Querétaro 76010, Mexico
| |
Collapse
|
41
|
Increased Serum Levels of IFN- γ, IL-1 β, and IL-6 in Patients with Alopecia Areata and Nonsegmental Vitiligo. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:5693572. [PMID: 32832001 PMCID: PMC7421748 DOI: 10.1155/2020/5693572] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/16/2020] [Accepted: 07/24/2020] [Indexed: 01/25/2023]
Abstract
Alopecia areata (AA) and vitiligo are both common skin diseases of autoimmune origin. Both alopecia areata and vitiligo have shown to be affected by oxidative stress. The present work is aimed at evaluating and comparing the serum proinflammatory cytokine levels in AA and nonsegmental vitiligo (NSV). A cross-sectional study was conducted of 33 patients with AA, 30 patients with NSV, and 30 healthy controls. Serum levels of interferon γ (IFN-γ), interleukin- (IL-) 1β, and IL-6 were determined quantitatively by ELISA method. Our analysis identified a signature of oxidative stress associated with AA and NSV, characterized by elevated levels of IFN-γ (AA: p = 0.007283; NSV: p = 0.038467), IL-1β (AA; NSV: p ≤ 0.001), and IL-6 (AA; NSV: p ≤ 0.001). IL-6 was also significantly increased in NSV patients in comparison with AA patients (p = 0.004485). Our results supported the hypothesis that oxidative stress may play a significant role in promoting and amplifying the inflammatory process both in AA and vitiligo. The complex understanding of both disease etiopathogenesis involves interrelationships between oxidative stress and autoimmunity. The clinical study registration number is RNN/266/16/KE.
Collapse
|
42
|
Monib KMED, Sabry HH, Hussein MS, El-Fallah AA, Salem RM. Factors affecting vitiligo response to treatment: do MiRNA 196a2C/T gene polymorphism and serum tyrosinase levels have any role? J DERMATOL TREAT 2020; 33:1351-1355. [PMID: 32838589 DOI: 10.1080/09546634.2020.1810202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Factors contributing to the pathogenesis of vitiligo and factors affecting its response to treatment are still a major area of debate. AIM OF THE WORK The study aimed to assess the serum levels of tyrosinase and Micro-RNAs (miRNAs) gene polymorphism in a sample of Egyptian vitiligo patients, and to determine factors affecting the response of vitiligo to treatment. SUBJECTS AND METHODS This prospective case-control interventional study included 212 non-segmental vitiligo patients and 96 control subjects. Before treatment, vitiligo was evaluated using Vitiligo Area Severity Index. Detection of miRNA 196a-2 polymorphism was done using PCR-REELP and serum tyrosinase was measured using ELISA. After treatment, patients were reevaluated clinically and serum tyrosinase levels were re-measured. RESULTS The tyrosinase levels were significantly elevated in patients. The TT genotype was the most prevalent one in the patients. The percentage of improvement showed a significant positive correlation with patients' ages and age of the disease onset and a negative correlation with disease duration, baseline VASI scores and serum tyrosinase levels. CONCLUSION MiRNA 196a-2 C/T (11614913) gene polymorphism and the elevated serum tyrosinase levels might be related to the pathogenesis of vitiligo and may affect its therapeutic response.
Collapse
Affiliation(s)
| | - Hanan Hassan Sabry
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Mohamed Saber Hussein
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Asmaa Adel El-Fallah
- Department of Clinical and Chemical Pathology, Faculty of Medicine, Benha University, Benha, Egypt
| | - Rehab Mohammed Salem
- Department of Dermatology and Andrology, Faculty of Medicine, Benha University, Benha, Egypt
| |
Collapse
|
43
|
Mahendiratta S, Sarma P, Kaur H, Kaur S, Kaur H, Bansal S, Prasad D, Prajapat M, Upadhay S, Kumar S, Kumar H, Singh R, Singh A, Mishra A, Prakash A, Medhi B. Premature graying of hair: Risk factors, co-morbid conditions, pharmacotherapy and reversal-A systematic review and meta-analysis. Dermatol Ther 2020; 33:e13990. [PMID: 32654282 DOI: 10.1111/dth.13990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/29/2022]
Abstract
Premature graying of hair (PGH) being a very common entity for which pharmacotherapy and reversibility are not properly addressed. Therefore, this systematic review was conducted to address these issues. For this relevant study were selected from various databases including PubMed, EMBASE, OVID, Web of science, Scopus, and Google Scholar till January 20, 2019. Studies which reported risk factors, co-morbid conditions associated with PGH, its pharmacotherapy and reversal were included in the study. Although many risk factors are reported in literature, smoking, vitamin deficiency (B12, folic acid, and B7), mineral deficiency (low serum calcium and serum ferritin) are found to be associated with PGH. Other important risk factors are family history of PGH, obesity, high B.P, lack of exercise, drugs, genetic syndromes, dyslipidemia, thyroid disorders, hyperuricemia, and alteration in liver function. PGH is found to be an important marker of CAD, more so in case of smoker. Among different pharmacotherapeutic management options, low grade recommendation (2A) is given to calcium pantothenate, PABA, calcium pantothenate + PABA combination. Anu-tailam is the only herbal agent evaluated in clinical research settings. Finally, treating the accompanying pathologies led to the reversal of the disease in many cases.
Collapse
Affiliation(s)
- Saniya Mahendiratta
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Phulen Sarma
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Hardeep Kaur
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | | | - Harpinder Kaur
- Department of Pharmacology and Toxicology, NIPER, Mohali, India
| | - Seema Bansal
- Department of Pharmacology, Punjab University, Chandigarh, India
| | - Davinder Prasad
- Department of Dermatology, Venereology, and Leprology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Prajapat
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sujata Upadhay
- Dr. Harvansh Singh Judge Institute of Dental Sciences and Hospital, Punjab University, Chandigarh, India
| | - Subodh Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Harish Kumar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Rahul Singh
- Department of Gastroenterology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashutosh Singh
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Abhishek Mishra
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ajay Prakash
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Bikash Medhi
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
44
|
Sun L, Zhou T, Wan QH, Fang SG. Transcriptome Comparison Reveals Key Components of Nuptial Plumage Coloration in Crested Ibis. Biomolecules 2020; 10:E905. [PMID: 32549189 PMCID: PMC7356354 DOI: 10.3390/biom10060905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 06/02/2020] [Accepted: 06/13/2020] [Indexed: 11/16/2022] Open
Abstract
Nuptial plumage coloration is critical in the mating choice of the crested ibis. This species has a characteristic nuptial plumage that develops from the application of a black sticky substance, secreted by a patch of skin in the throat and neck region. We aimed to identify the genes regulating its coloring, by comparing skin transcriptomes between ibises during the breeding and nonbreeding seasons. In breeding season skins, key eumelanin synthesis genes, TYR, DCT, and TYRP1 were upregulated. Tyrosine metabolism, which is closely related to melanin synthesis, was also upregulated, as were transporter proteins belonging to multiple SLC families, which might act during melanosome transportation to keratinocytes. These results indicate that eumelanin is likely an important component of the black substance. In addition, we observed upregulation in lipid metabolism in breeding season skins. We suggest that the lipids contribute to an oil base, which imbues the black substance with water insolubility and enhances its adhesion to feather surfaces. In nonbreeding season skins, we observed upregulation in cell adhesion molecules, which play critical roles in cell interactions. A number of molecules involved in innervation and angiogenesis were upregulated, indicating an ongoing expansion of nerves and blood vessels in sampled skins. Feather β keratin, a basic component of avian feather filament, was also upregulated. These results are consistent with feather regeneration in the black skin of nonbreeding season ibises. Our results provide the first molecular evidence indicating that eumelanin is the key component of ibis coloration.
Collapse
Affiliation(s)
| | | | | | - Sheng-Guo Fang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, State Conservation Centre for Gene Resources of Endangered Wildlife, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; (L.S.); (T.Z.); (Q.-H.W.)
| |
Collapse
|
45
|
Wen Y, Wu X, Peng H, Li C, Jiang Y, Liang H, Zhong R, Liu J, He J, Liang W. Cancer risks in patients with vitiligo: a Mendelian randomization study. J Cancer Res Clin Oncol 2020; 146:1933-1940. [PMID: 32462299 DOI: 10.1007/s00432-020-03245-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 11/29/2022]
Abstract
PURPOSE Few studies have investigated the relationship between vitiligo and risks of various types of cancers, especially those other than skin cancer. Conventional observational studies are susceptible to potential confounders and inverse causation. With a Mendelian randomization approach, we were able to evaluate the causality between vitiligo and different cancer risks. METHODS 37 vitiligo-related single-nucleotide polymorphisms identified by the published genome-wide association studies were used as instrumental variables in our study. Summary data of individual-level genetic information were obtained from corresponding studies and cancer consortia. A total of 246,706 cases and 1,021,154 controls were included. The inverse variance-weighted method was applied to estimate the causation between vitiligo and different cancers. RESULTS The results revealed that vitiligo patients were at lower risks of lung cancer [odds ratio (OR) 0.9513; 95% confidence interval (CI) 0.9174-0.9864; p = 0.0070], breast cancer (OR 0.9827; 95% CI 0.9659-0.9997; p = 0.0468), ovarian cancer (OR 0.9474; 95% CI 0.9271-0.9682; p < 0.001), melanoma (OR 0.9983; 95% CI 0.9976-0.9990; p < 0.001), non-melanoma skin cancer (OR 0.9997; 95% CI 0.9995-0.9999; p < 0.001), kidney cancer (OR 0.9998; 95% CI 0.9996-1.0000; p = 0.0212), and liver cancer (OR 0.9999; 95% CI 0.9999-1.0000; p = 0.0441), while no correlation was observed for other cancer types. CONCLUSIONS Vitiligo was causally associated with reduced risks of several cancers, suggesting that vitiligo-associated autoimmune process might play a role in the suppression of cancer.
Collapse
Affiliation(s)
- Yaokai Wen
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Xiangrong Wu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Haoxin Peng
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Caichen Li
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Yu Jiang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.,Nanshan School, Guangzhou Medical University, Jingxiu Road, Panyu District, Guangzhou, 511436, China
| | - Hengrui Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Ran Zhong
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Jun Liu
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China.,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China.,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China
| | - Jianxing He
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China. .,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China. .,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
| | - Wenhua Liang
- Department of Thoracic Surgery and Oncology, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China. .,State Key Laboratory of Respiratory Disease, Guangzhou, 510120, China. .,National Clinical Research Center for Respiratory Disease, Guangzhou, 510120, China. .,Guangzhou Institute of Respiratory Health, Guangzhou, 510120, China.
| |
Collapse
|
46
|
Abstract
Vitiligo is an autoimmune disease of the skin that targets pigment-producing melanocytes and results in patches of depigmentation that are visible as white spots. Recent research studies have yielded a strong mechanistic understanding of this disease. Autoreactive cytotoxic CD8+ T cells engage melanocytes and promote disease progression through the local production of IFN-γ, and IFN-γ-induced chemokines are then secreted from surrounding keratinocytes to further recruit T cells to the skin through a positive-feedback loop. Both topical and systemic treatments that block IFN-γ signaling can effectively reverse vitiligo in humans; however, disease relapse is common after stopping treatments. Autoreactive resident memory T cells are responsible for relapse, and new treatment strategies focus on eliminating these cells to promote long-lasting benefit. Here, we discuss basic, translational, and clinical research studies that provide insight into the pathogenesis of vitiligo, and how this insight has been utilized to create new targeted treatment strategies.
Collapse
Affiliation(s)
- Michael L. Frisoli
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - Kingsley Essien
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| | - John E. Harris
- University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA;, ,
| |
Collapse
|
47
|
Abdel-Malek ZA, Jordan C, Ho T, Upadhyay PR, Fleischer A, Hamzavi I. The enigma and challenges of vitiligo pathophysiology and treatment. Pigment Cell Melanoma Res 2020; 33:778-787. [PMID: 32198977 DOI: 10.1111/pcmr.12878] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/03/2020] [Accepted: 03/12/2020] [Indexed: 12/20/2022]
Abstract
Vitiligo is the most common acquired pigmentary disorder, which afflicts 0.5%-1% of the world population, and is characterized by depigmented skin patches resulting from melanocyte loss. Vitiligo has a complex etiology and varies in its manifestations, progression, and response to treatment. It presents as an autoimmune disease, evidenced by circulating melanocyte-specific antibodies, and association with other autoimmune diseases. However, autoimmunity may be secondary to the high oxidative stress in vitiligo skin and to intrinsic defects in melanocytes and their microenvironment, which contribute to aberrant stress response, neo-antigenicity, and susceptibility of melanocytes to immune attack and apoptosis. There is also a genetic predisposition to vitiligo, which sensitizes melanocytes to environmental agents, such as phenolic compounds. Currently, there are different treatment modalities for re-pigmenting vitiligo skin. However, when repigmentation is achieved, the major challenge is maintaining the pigmentation, which is lost in 40% of cases. In this review, we present an overview of the clinical aspects of vitiligo, its pathophysiology, the intrinsic defects in melanocytes and their microenvironment, and treatment strategies. Based on lessons from the biology of human melanocytes, we present our perspective of how repigmentation of vitiligo skin can be achieved and sustained.
Collapse
Affiliation(s)
| | - Christian Jordan
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Tina Ho
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Parth Rajendrakumar Upadhyay
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio.,Division of Pharmaceutical Sciences, College of Pharmacy, University of Cincinnati, Cincinnati, Ohio
| | - Alan Fleischer
- Department of Dermatology, University of Cincinnati, Cincinnati, Ohio
| | - Iltefat Hamzavi
- Department of Dermatology, Henry Ford Health System, Detroit, Michigan
| |
Collapse
|
48
|
Bergqvist C, Ezzedine K. Vitiligo: A Review. Dermatology 2020; 236:571-592. [DOI: 10.1159/000506103] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/23/2020] [Indexed: 11/19/2022] Open
Abstract
Vitiligo, a common depigmenting skin disorder, has an estimated prevalence of 0.5–2% of the population worldwide. The disease is characterized by the selective loss of melanocytes which results in typical nonscaly, chalky-white macules. In recent years, considerable progress has been made in our understanding of the pathogenesis of vitiligo which is now clearly classified as an autoimmune disease. Vitiligo is often dismissed as a cosmetic problem, although its effects can be psychologically devastating, often with a considerable burden on daily life. In 2011, an international consensus classified segmental vitiligo separately from all other forms of vitiligo, and the term vitiligo was defined to designate all forms of nonsegmental vitiligo. This review summarizes the current knowledge on vitiligo and attempts to give an overview of the future in vitiligo treatment.
Collapse
|
49
|
Zhang B, Wang J, Zhao G, Lin M, Lang Y, Zhang D, Feng D, Tu C. Apigenin protects human melanocytes against oxidative damage by activation of the Nrf2 pathway. Cell Stress Chaperones 2020; 25:277-285. [PMID: 31953635 PMCID: PMC7058778 DOI: 10.1007/s12192-020-01071-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Vitiligo is a chronic, autoimmune destruction of melanocytes, resulting in progressively expanding depigmented skin patches. Severity of the disorder, which affects approximately 1% of humans, may be mitigated using topical corticosteroids combined with phototherapy; along with other clinical strategies; however, no definitive cures are currently available. Here, the capacity of apigenin, a plant-derived aglycone, to inhibit oxidative stress-mediated melanocyte depletion in vitro using a PIG3V vitiligo perilesional melanocyte cell model is evaluated. PIG3V cells, treated with selected doses of apigenin, were challenged with H2O2, then assessed for viability and the oxidative stress-related parameters: superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) by enzyme-linked immunoabsorbent assay (ELISA). Additionally, expression of nuclear factor erythroid 2p45 (NF-E2)-related factor 2 (Nrf2) and downstream targets was detected using Western blotting. Outcomes demonstrated that compared with negative control cultures, apigenin-treated cells exhibited enhanced viability. Likewise, apigenin enhanced expression of the cellular anti-oxidants SOD, CAT, and GSH-Px, but inhibited production of MDA, an oxidative stress biomarker. Interestingly, the expression and nuclear localization of the Nrf2 transcription factor, an important regulator oxidative stress and its downstream target genes, was significantly increased by apigenin treatment. Apigenin influence on Nrf2 was further validated by experiments demonstrating that Nrf2 knockdown cells failed to exhibit significant apigenin-mediated effects on cell viability and oxidative stress. Apigenin's non-toxicity and ability to affect multiple oxidative stress-related parameters through its effects on Nrf2 signaling in melanocytes suggests that it may prove to be a valuable therapeutic tool in long-term management of vitiligo.
Collapse
Affiliation(s)
- Baoxiang Zhang
- Department of Dermatology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong, China
| | - Jing Wang
- Department of Division of Rheumatology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong, China
| | - Guodong Zhao
- Department of Dermatology, Changle County People's Hospital, Changle, 262400, Shandong, China
| | - Mao Lin
- Department of Dermatology, Chongqing Chinese Medicine Hospital, Yuzhong District, Chongqing, 400011, China
| | - Yong Lang
- Department of Dermatology, Gaomi People's Hospital, Gaomi, 261500, Shandong, China
| | - Diancai Zhang
- Department of Dermatology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong, China
| | - Dianqin Feng
- Department of Dermatology, Yidu Central Hospital, Weifang Medical University, Qingzhou, 262500, Shandong, China
| | - Caixia Tu
- Department of Dermatology, The 2nd Affiliated Hospital of Dalian Medical University, No.467 Zhongshan Road, Dalian, 116027, Liaoning, China.
| |
Collapse
|
50
|
PCAWG Transcriptome Core Group CalabreseClaudia2DavidsonNatalie R.34567DemircioğluDeniz89FonsecaNuno A.2HeYao10KahlesAndré3467LehmannKjong-Van3467LiuFenglin10ShiraishiYuichi11SouletteCameron M.12UrbanLara2, Calabrese C, Davidson NR, Demircioğlu D, Fonseca NA, He Y, Kahles A, Lehmann KV, Liu F, Shiraishi Y, Soulette CM, Urban L, Greger L, Li S, Liu D, Perry MD, Xiang Q, Zhang F, Zhang J, Bailey P, Erkek S, Hoadley KA, Hou Y, Huska MR, Kilpinen H, Korbel JO, Marin MG, Markowski J, Nandi T, Pan-Hammarström Q, Pedamallu CS, Siebert R, Stark SG, Su H, Tan P, Waszak SM, Yung C, Zhu S, Awadalla P, Creighton CJ, Meyerson M, Ouellette BFF, Wu K, Yang H, PCAWG Transcriptome Working Group FonsecaNuno A.2KahlesAndré3467LehmannKjong-Van3467UrbanLara2SouletteCameron M.12ShiraishiYuichi11LiuFenglin10HeYao10DemircioğluDeniz89DavidsonNatalie R.34567CalabreseClaudia2ZhangJunjun15PerryMarc D.1516XiangQian15GregerLiliana2LiSiliang1314LiuDongbing1314StarkStefan G.3467ZhangFan10AminSamirkumar B.37BaileyPeter17ChateignerAurélien15Cortés-CirianoIsidro293839CraftBrian12ErkekSerap18Frenkel-MorgensternMilana40GoldmanMary12HoadleyKatherine A.19HouYong1314HuskaMatthew R.20KhuranaEkta5KilpinenHelena21KorbelJan O.18LamazeFabien C.15LiChang1314LiXiaobo1314LiXinyue13LiuXingmin1314MarinMaximillian G.12MarkowskiJulia20NandiTannistha9NielsenMorten M.41OjesinaAkinyemi I.23284243Pan-HammarströmQiang1322ParkPeter J.2938PedamalluChandra Sekhar232829PedersenJakob S.41SiebertReiner24SuHong1314TanPatrick925TehBin Tean31WangJian13WaszakSebastian M.18XiongHeng1314YakneenSergei18YeChen1314YungChristina15ZhangXiuqing13ZhengLiangtao10ZhuJingchun12ZhuShida1314AwadallaPhilip1526CreightonChad J.27MeyersonMatthew232829OuelletteB. F. Francis30WuKui1314YangHuanming13GökeJonathan931SchwarzRoland F.2203233StegleOliver21833ZhangZemin10BrazmaAlvis2RätschGunnar34567BrooksAngela N.122328, Brazma A, Brooks AN, Göke J, Rätsch G, Schwarz RF, Stegle O, Zhang Z, PCAWG Consortium. Genomic basis for RNA alterations in cancer. Nature 2020; 578:129-136. [PMID: 32025019 PMCID: PMC7054216 DOI: 10.1038/s41586-020-1970-0] [Citation(s) in RCA: 294] [Impact Index Per Article: 58.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 12/11/2019] [Indexed: 01/27/2023]
Abstract
Transcript alterations often result from somatic changes in cancer genomes1. Various forms of RNA alterations have been described in cancer, including overexpression2, altered splicing3 and gene fusions4; however, it is difficult to attribute these to underlying genomic changes owing to heterogeneity among patients and tumour types, and the relatively small cohorts of patients for whom samples have been analysed by both transcriptome and whole-genome sequencing. Here we present, to our knowledge, the most comprehensive catalogue of cancer-associated gene alterations to date, obtained by characterizing tumour transcriptomes from 1,188 donors of the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA)5. Using matched whole-genome sequencing data, we associated several categories of RNA alterations with germline and somatic DNA alterations, and identified probable genetic mechanisms. Somatic copy-number alterations were the major drivers of variations in total gene and allele-specific expression. We identified 649 associations of somatic single-nucleotide variants with gene expression in cis, of which 68.4% involved associations with flanking non-coding regions of the gene. We found 1,900 splicing alterations associated with somatic mutations, including the formation of exons within introns in proximity to Alu elements. In addition, 82% of gene fusions were associated with structural variants, including 75 of a new class, termed 'bridged' fusions, in which a third genomic location bridges two genes. We observed transcriptomic alteration signatures that differ between cancer types and have associations with variations in DNA mutational signatures. This compendium of RNA alterations in the genomic context provides a rich resource for identifying genes and mechanisms that are functionally implicated in cancer.
Collapse
Affiliation(s)
| | - Claudia Calabrese
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Natalie R. Davidson
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,000000041936877Xgrid.5386.8Weill Cornell Medical College, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Deniz Demircioğlu
- 0000 0001 2180 6431grid.4280.eNational University of Singapore, Singapore, Singapore ,0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore
| | - Nuno A. Fonseca
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Yao He
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - André Kahles
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Kjong-Van Lehmann
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Fenglin Liu
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - Yuichi Shiraishi
- 0000 0001 2151 536Xgrid.26999.3dThe University of Tokyo, Minato-ku, Japan
| | - Cameron M. Soulette
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA
| | - Lara Urban
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Liliana Greger
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Siliang Li
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Dongbing Liu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Marc D. Perry
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada ,0000 0001 2297 6811grid.266102.1University of California, San Francisco, San Francisco, CA USA
| | - Qian Xiang
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Fan Zhang
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | - Junjun Zhang
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Peter Bailey
- 0000 0001 2193 314Xgrid.8756.cUniversity of Glasgow, Glasgow, UK
| | - Serap Erkek
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Katherine A. Hoadley
- 0000000122483208grid.10698.36The University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Yong Hou
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Matthew R. Huska
- 0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Helena Kilpinen
- 0000000121901201grid.83440.3bUniversity College London, London, UK
| | - Jan O. Korbel
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Maximillian G. Marin
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA
| | - Julia Markowski
- 0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany
| | - Tannistha Nandi
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore
| | - Qiang Pan-Hammarström
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,0000 0004 1937 0626grid.4714.6Karolinska Institutet, Stockholm, Sweden
| | - Chandra Sekhar Pedamallu
- grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | - Reiner Siebert
- grid.410712.1Ulm University and Ulm University Medical Center, Ulm, Germany
| | - Stefan G. Stark
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Hong Su
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Patrick Tan
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore ,0000 0004 0385 0924grid.428397.3Duke-NUS Medical School, Singapore, Singapore
| | - Sebastian M. Waszak
- 0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany
| | - Christina Yung
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Shida Zhu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Philip Awadalla
- 0000 0004 0626 690Xgrid.419890.dOntario Institute for Cancer Research, Toronto, Ontario, Canada ,0000 0001 2157 2938grid.17063.33University of Toronto, Toronto, Ontario Canada
| | - Chad J. Creighton
- 0000 0001 2160 926Xgrid.39382.33Baylor College of Medicine, Houston, TX USA
| | - Matthew Meyerson
- grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA ,000000041936754Xgrid.38142.3cHarvard Medical School, Boston, MA USA
| | | | - Kui Wu
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China ,China National GeneBank-Shenzhen, Shenzhen, China
| | - Huanming Yang
- 0000 0001 2034 1839grid.21155.32BGI-Shenzhen, Shenzhen, China
| | | | - Alvis Brazma
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK
| | - Angela N. Brooks
- 0000 0001 0740 6917grid.205975.cUniversity of California, Santa Cruz, Santa Cruz, CA USA ,grid.66859.34Broad Institute, Cambridge, MA USA ,0000 0001 2106 9910grid.65499.37Dana-Farber Cancer Institute, Boston, MA USA
| | - Jonathan Göke
- 0000 0004 0620 715Xgrid.418377.eGenome Institute of Singapore, Singapore, Singapore ,0000 0004 0620 9745grid.410724.4National Cancer Centre Singapore, Singapore, Singapore
| | - Gunnar Rätsch
- 0000 0001 2156 2780grid.5801.cETH Zurich, Zurich, Switzerland ,0000 0001 2171 9952grid.51462.34Memorial Sloan Kettering Cancer Center, New York, NY USA ,000000041936877Xgrid.5386.8Weill Cornell Medical College, New York, NY USA ,0000 0001 2223 3006grid.419765.8SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland ,0000 0004 0478 9977grid.412004.3University Hospital Zurich, Zurich, Switzerland
| | - Roland F. Schwarz
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK ,0000 0001 1014 0849grid.419491.0Berlin Institute for Medical Systems Biology, Max Delbruck Center for Molecular Medicine, Berlin, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Consortium (DKTK), partner site Berlin, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Oliver Stegle
- 0000 0000 9709 7726grid.225360.0European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, UK ,0000 0004 0495 846Xgrid.4709.aEuropean Molecular Biology Laboratory, Genome Biology Unit, Heidelberg, Germany ,0000 0004 0492 0584grid.7497.dGerman Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zemin Zhang
- 0000 0001 2256 9319grid.11135.37Peking University, Beijing, China
| | | |
Collapse
|