1
|
Bermúdez-Méndez E, Bronsvoort KF, Zwart MP, van de Water S, Cárdenas-Rey I, Vloet RPM, Koenraadt CJM, Pijlman GP, Kortekaas J, Wichgers Schreur PJ. Incomplete bunyavirus particles can cooperatively support virus infection and spread. PLoS Biol 2022; 20:e3001870. [PMID: 36378688 PMCID: PMC9665397 DOI: 10.1371/journal.pbio.3001870] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
Bunyaviruses lack a specific mechanism to ensure the incorporation of a complete set of genome segments into each virion, explaining the generation of incomplete virus particles lacking one or more genome segments. Such incomplete virus particles, which may represent the majority of particles produced, are generally considered to interfere with virus infection and spread. Using the three-segmented arthropod-borne Rift Valley fever virus as a model bunyavirus, we here show that two distinct incomplete virus particle populations unable to spread autonomously are able to efficiently complement each other in both mammalian and insect cells following co-infection. We further show that complementing incomplete virus particles can co-infect mosquitoes, resulting in the reconstitution of infectious virus that is able to disseminate to the mosquito salivary glands. Computational models of infection dynamics predict that incomplete virus particles can positively impact virus spread over a wide range of conditions, with the strongest effect at intermediate multiplicities of infection. Our findings suggest that incomplete particles may play a significant role in within-host spread and between-host transmission, reminiscent of the infection cycle of multipartite viruses.
Collapse
Affiliation(s)
- Erick Bermúdez-Méndez
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Kirsten F. Bronsvoort
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Mark P. Zwart
- Department of Microbial Ecology, The Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Sandra van de Water
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | - Ingrid Cárdenas-Rey
- Department of Bacteriology, Host-Pathogen Interactions and Diagnostics Development, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Rianka P. M. Vloet
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
| | | | - Gorben P. Pijlman
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Jeroen Kortekaas
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- Laboratory of Virology, Wageningen University & Research, Wageningen, The Netherlands
| | - Paul J. Wichgers Schreur
- Department of Virology and Molecular Biology, Wageningen Bioveterinary Research, Lelystad, The Netherlands
- * E-mail:
| |
Collapse
|
2
|
Kaavya K, Tharakan J, Joshi CO, Aneesh EM. Role of vertically transmitted viral and bacterial endosymbionts of Aedes mosquitoes. Does Paratransgenesis influence vector-borne disease control? Symbiosis 2022. [DOI: 10.1007/s13199-022-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
3
|
Effects of Manipulating Fibroblast Growth Factor Expression on Sindbis Virus Replication In Vitro and in Aedes aegypti Mosquitoes. Viruses 2020; 12:v12090943. [PMID: 32858937 PMCID: PMC7552049 DOI: 10.3390/v12090943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/14/2020] [Accepted: 08/23/2020] [Indexed: 12/05/2022] Open
Abstract
Fibroblast growth factors (FGFs) are conserved among vertebrate and invertebrate animals and function in cell proliferation, cell differentiation, tissue repair, and embryonic development. A viral fibroblast growth factor (vFGF) homolog encoded by baculoviruses, a group of insect viruses, is involved in escape of baculoviruses from the insect midgut by stimulating basal lamina remodeling. This led us to investigate whether cellular FGF is involved in the escape of an arbovirus from mosquito midgut. In this study, the effects of manipulating FGF expression on Sindbis virus (SINV) replication and escape from the midgut of the mosquito vector Aedes aegypti were examined. RNAi-mediated silencing of either Ae. aegypti FGF (AeFGF) or FGF receptor (AeFGFR) expression reduced SINV replication following oral infection of Ae. aegypti mosquitoes. However, overexpression of baculovirus vFGF using recombinant SINV constructs had no effect on replication of these viruses in cultured mosquito or vertebrate cells, or in orally infected Ae. aegypti mosquitoes. We conclude that reducing FGF signaling decreases the ability of SINV to replicate in mosquitoes, but that overexpression of vFGF has no effect, possibly because endogenous FGF levels are already sufficient for optimal virus replication. These results support the hypothesis that FGF signaling, possibly by inducing remodeling of midgut basal lamina, is involved in arbovirus midgut escape following virus acquisition from a blood meal.
Collapse
|
4
|
Wolbachia and dengue virus infection in the mosquito Aedes fluviatilis (Diptera: Culicidae). PLoS One 2017; 12:e0181678. [PMID: 28732048 PMCID: PMC5521830 DOI: 10.1371/journal.pone.0181678] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 07/05/2017] [Indexed: 01/05/2023] Open
Abstract
Dengue represents a serious threat to human health, with billions of people living at risk of the disease. Wolbachia pipientis is a bacterial endosymbiont common to many insect species. Wolbachia transinfections in mosquito disease vectors have great value for disease control given the bacterium’s ability to spread into wild mosquito populations, and to interfere with infections of pathogens, such as dengue virus. Aedes fluviatilis is a mosquito with a widespread distribution in Latin America, but its status as a dengue vector has not been clarified. Ae. fluviatilis is also naturally infected by the wFlu Wolbachia strain, which has been demonstrated to enhance infection with the avian malarial parasite Plasmodium gallinaceum. We performed experimental infections of Ae. fluviatilis with DENV-2 and DENV-3 isolates from Brazil via injection or oral feeding to provide insight into its competence for the virus. We also examined the effect of the native Wolbachia infection on the virus using a mosquito line where the wFlu infection had been cleared by antibiotic treatment. Through RT-qPCR, we observed that Ae. fluviatilis could become infected with both viruses via either method of infection, although at a lower rate than Aedes aegypti, the primary dengue vector. We then detected DENV-2 and DENV-3 in the saliva of injected mosquitoes, and observed that injection of DENV-3-infected saliva produced subsequent infections in naïve Ae. aegypti. However, across our data we observed no difference in prevalence of infection and viral load between Wolbachia-infected and -uninfected mosquitoes, suggesting that there is no effect of wFlu on dengue virus. Our results highlight that Ae. fluviatilis could potentially serve as a dengue vector under the right circumstances, although further testing is required to determine if this occurs in the field.
Collapse
|
5
|
Barletta ABF, Alves LR, Silva MCLN, Sim S, Dimopoulos G, Liechocki S, Maya-Monteiro CM, Sorgine MHF. Emerging role of lipid droplets in Aedes aegypti immune response against bacteria and Dengue virus. Sci Rep 2016; 6:19928. [PMID: 26887863 PMCID: PMC4757862 DOI: 10.1038/srep19928] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/21/2015] [Indexed: 12/19/2022] Open
Abstract
In mammals, lipid droplets (LDs) are ubiquitous organelles that modulate immune and inflammatory responses through the production of lipid mediators. In insects, it is unknown whether LDs play any role during the development of immune responses. We show that Aedes aegypti Aag2 cells – an immune responsive cell lineage – accumulates LDs when challenged with Enterobacter cloacae, Sindbis, and Dengue viruses. Microarray analysis of Aag2 challenged with E.cloacae or infected with Dengue virus revealed high transcripts levels of genes associated with lipid storage and LDs biogenesis, correlating with the increased LDs numbers in those conditions. Similarly, in mosquitoes, LDs accumulate in midgut cells in response to Serratia marcescens and Sindbis virus or when the native microbiota proliferates, following a blood meal. Also, constitutive activation of Toll and IMD pathways by knocking-down their respective negative modulators (Cactus and Caspar) increases LDs numbers in the midgut. Our results show for the first time an infection-induced LDs accumulation in response to both bacterial and viral infections in Ae. Aegypti, and we propose a role for LDs in mosquito immunity. These findings open new venues for further studies in insect immune responses associated with lipid metabolism.
Collapse
Affiliation(s)
- Ana Beatriz Ferreira Barletta
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
| | - Liliane Rosa Alves
- Instituto Nacional de Câncer, Hospital do Câncer II, Rio de Janeiro, RJ, Brasil
| | - Maria Clara L Nascimento Silva
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil
| | - Shuzhen Sim
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sally Liechocki
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Clarissa M Maya-Monteiro
- Laboratory of Immunopharmacology, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brasil
| | - Marcos H Ferreira Sorgine
- Laboratório de Bioquímica de Artrópodes Hematófagos, Instituto de Bioquímica Médica Leopoldo De Meis, Programa de Biologia Molecular e Biotecnologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brasil.,Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular (INCT-EM), Brasil
| |
Collapse
|
6
|
Rapid selection against arbovirus-induced apoptosis during infection of a mosquito vector. Proc Natl Acad Sci U S A 2015; 112:E1152-61. [PMID: 25713358 DOI: 10.1073/pnas.1424469112] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Millions of people are infected each year by arboviruses (arthropod-borne viruses) such as chikungunya, dengue, and West Nile viruses, yet for reasons that are largely unknown, only a relatively small number of mosquito species are able to transmit arboviruses. Understanding the complex factors that determine vector competence could facilitate strategies for controlling arbovirus infections. Apoptosis is a potential antiviral defense response that has been shown to be important in other virus-host systems. However, apoptosis is rarely seen in arbovirus-infected mosquito cells, raising questions about its importance as an antiviral defense in mosquitoes. We tested the effect of stimulating apoptosis during arbovirus infection by infecting Aedes aegypti mosquitoes with a Sindbis virus (SINV) clone called MRE/Rpr, in which the MRE-16 strain of SINV was engineered to express the proapoptotic gene reaper from Drosophila. MRE/Rpr exhibited an impaired infection phenotype that included delayed midgut infection, delayed virus replication, and reduced virus accumulation in saliva. Nucleotide sequencing of the reaper insert in virus populations isolated from individual mosquitoes revealed evidence of rapid and strong selection against maintenance of Reaper expression in MRE/Rpr-infected mosquitoes. The impaired phenotype of MRE/Rpr, coupled with the observed negative selection against Reaper expression, indicates that apoptosis is a powerful defense against arbovirus infection in mosquitoes and suggests that arboviruses have evolved mechanisms to avoid stimulating apoptosis in mosquitoes that serve as vectors.
Collapse
|
7
|
Nasar F, Haddow AD, Tesh RB, Weaver SC. Eilat virus displays a narrow mosquito vector range. Parasit Vectors 2014; 7:595. [PMID: 25515341 PMCID: PMC4297418 DOI: 10.1186/s13071-014-0595-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 12/06/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Most alphaviruses are arthropod-borne and utilize mosquitoes as vectors for transmission to susceptible vertebrate hosts. This ability to infect both mosquitoes and vertebrates is essential for maintenance of most alphaviruses in nature. A recently characterized alphavirus, Eilat virus (EILV), isolated from a pool of Anopheles coustani s.I. is unable to replicate in vertebrate cell lines. The EILV host range restriction occurs at both attachment/entry as well as genomic RNA replication levels. Here we investigated the mosquito vector range of EILV in species encompassing three genera that are responsible for maintenance of other alphaviruses in nature. METHODS Susceptibility studies were performed in four mosquito species: Aedes albopictus, A. aegypti, Anopheles gambiae, and Culex quinquefasciatus via intrathoracic and oral routes utilizing EILV and EILV expressing red fluorescent protein (-eRFP) clones. EILV-eRFP was injected at 10(7) PFU/mL to visualize replication in various mosquito organs at 7 days post-infection. Mosquitoes were also injected with EILV at 10(4)-10(1) PFU/mosquito and virus replication was measured via plaque assays at day 7 post-infection. Lastly, mosquitoes were provided bloodmeals containing EILV-eRFP at doses of 10(9), 10(7), 10(5) PFU/mL, and infection and dissemination rates were determined at 14 days post-infection. RESULTS All four species were susceptible via the intrathoracic route; however, replication was 10-100 fold less than typical for most alphaviruses, and infection was limited to midgut-associated muscle tissue and salivary glands. A. albopictus was refractory to oral infection, while A. gambiae and C. quinquefasciatus were susceptible only at 10(9) PFU/mL dose. In contrast, A. aegypti was susceptible at both 10(9) and 10(7) PFU/mL doses, with body infection rates of 78% and 63%, and dissemination rates of 26% and 8%, respectively. CONCLUSIONS The exclusion of vertebrates in its maintenance cycle may have facilitated the adaptation of EILV to a single mosquito host. As a consequence, EILV displays a narrow vector range in mosquito species responsible for the maintenance of other alphaviruses in nature.
Collapse
Affiliation(s)
- Farooq Nasar
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
- Present Address: Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| | - Andrew D Haddow
- Present Address: Virology Division, United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Frederick, MD, 21702, USA.
| | - Robert B Tesh
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| | - Scott C Weaver
- Institute for Human Infections and Immunity, Center for Tropical Diseases, and Department of Pathology, University of Texas Medical Branch, Galveston, TX, 77555, USA.
| |
Collapse
|
8
|
Wernet MF, Klovstad M, Clandinin TR. A Drosophila toolkit for the visualization and quantification of viral replication launched from transgenic genomes. PLoS One 2014; 9:e112092. [PMID: 25386852 PMCID: PMC4227818 DOI: 10.1371/journal.pone.0112092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Accepted: 10/12/2014] [Indexed: 11/18/2022] Open
Abstract
Arthropod RNA viruses pose a serious threat to human health, yet many aspects of their replication cycle remain incompletely understood. Here we describe a versatile Drosophila toolkit of transgenic, self-replicating genomes ('replicons') from Sindbis virus that allow rapid visualization and quantification of viral replication in vivo. We generated replicons expressing Luciferase for the quantification of viral replication, serving as useful new tools for large-scale genetic screens for identifying cellular pathways that influence viral replication. We also present a new binary system in which replication-deficient viral genomes can be activated 'in trans', through co-expression of an intact replicon contributing an RNA-dependent RNA polymerase. The utility of this toolkit for studying virus biology is demonstrated by the observation of stochastic exclusion between replicons expressing different fluorescent proteins, when co-expressed under control of the same cellular promoter. This process is analogous to 'superinfection exclusion' between virus particles in cell culture, a process that is incompletely understood. We show that viral polymerases strongly prefer to replicate the genome that encoded them, and that almost invariably only a single virus genome is stochastically chosen for replication in each cell. Our in vivo system now makes this process amenable to detailed genetic dissection. Thus, this toolkit allows the cell-type specific, quantitative study of viral replication in a genetic model organism, opening new avenues for molecular, genetic and pharmacological dissection of virus biology and tool development.
Collapse
Affiliation(s)
- Mathias F. Wernet
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Martha Klovstad
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Thomas R. Clandinin
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
| |
Collapse
|
9
|
Arboviral bottlenecks and challenges to maintaining diversity and fitness during mosquito transmission. Viruses 2014; 6:3991-4004. [PMID: 25341663 PMCID: PMC4213574 DOI: 10.3390/v6103991] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 10/18/2014] [Accepted: 10/20/2014] [Indexed: 12/23/2022] Open
Abstract
The term arbovirus denotes viruses that are transmitted by arthropods, such as ticks, mosquitoes, and other biting arthropods. The infection of these vectors produces a certain set of evolutionary pressures on the virus; involving migration from the midgut, where the blood meal containing the virus is processed, to the salivary glands, in order to transmit the virus to the next host. During this process the virus is subject to numerous bottlenecks, stochastic events that significantly reduce the number of viral particles that are able to infect the next stage. This article reviews the latest research on the bottlenecks that occur in arboviruses and the way in which these affect the evolution and fitness of these viruses. In particular we focus on the latest research on three important arboviruses, West Nile virus, Venezuelan equine encephalitis virus and Chikungunya viruses and compare the differing effects of the mosquito bottlenecks on these viruses as well as other evolutionary pressures that affect their evolution and transmission.
Collapse
|
10
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
11
|
Phillips AT, Stauft CB, Aboellail TA, Toth AM, Jarvis DL, Powers AM, Olson KE. Bioluminescent imaging and histopathologic characterization of WEEV neuroinvasion in outbred CD-1 mice. PLoS One 2013; 8:e53462. [PMID: 23301074 PMCID: PMC3534643 DOI: 10.1371/journal.pone.0053462] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 11/29/2012] [Indexed: 01/23/2023] Open
Abstract
Western equine encephalitis virus (WEEV; Alphavirus) is a mosquito-borne virus that can cause severe encephalitis in humans and equids. Previous studies have shown that intranasal infection of outbred CD-1 mice with the WEEV McMillan (McM) strain result in high mortality within 4 days of infection. Here in vivo and ex vivo bioluminescence (BLM) imaging was applied on mice intranasally infected with a recombinant McM virus expressing firefly luciferase (FLUC) to track viral neuroinvasion by FLUC detection and determine any correlation between BLM and viral titer. Immunological markers of disease (MCP-1 and IP-10) were measured and compared to wild type virus infection. Histopathology was guided by corresponding BLM images, and showed that neuroinvasion occurred primarily through cranial nerves, mainly in the olfactory tract. Olfactory bulb neurons were initially infected with subsequent spread of the infection into different regions of the brain. WEEV distribution was confirmed by immunohistochemistry as having marked neuronal infection but very few infected glial cells. Axons displayed infection patterns consistent with viral dissemination along the neuronal axis. The trigeminal nerve served as an additional route of neuroinvasion showing significant FLUC expression within the brainstem. The recombinant virus WEEV.McM.FLUC had attenuated replication kinetics and induced a weaker immunological response than WEEV.McM but produced comparable pathologies. Immunohistochemistry staining for FLUC and WEEV antigen showed that transgene expression was present in all areas of the CNS where virus was observed. BLM provides a quantifiable measure of alphaviral neural disease progression and a method for evaluating antiviral strategies.
Collapse
Affiliation(s)
- Aaron T Phillips
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, Colorado, United States of America.
| | | | | | | | | | | | | |
Collapse
|
12
|
Reagan KL, Machain-Williams C, Wang T, Blair CD. Immunization of mice with recombinant mosquito salivary protein D7 enhances mortality from subsequent West Nile virus infection via mosquito bite. PLoS Negl Trop Dis 2012; 6:e1935. [PMID: 23236530 PMCID: PMC3516580 DOI: 10.1371/journal.pntd.0001935] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 10/18/2012] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Mosquito salivary proteins (MSPs) modulate the host immune response, leading to enhancement of arboviral infections. Identification of proteins in saliva responsible for immunomodulation and counteracting their effects on host immune response is a potential strategy to protect against arboviral disease. We selected a member of the D7 protein family, which are among the most abundant and immunogenic in mosquito saliva, as a vaccine candidate with the aim of neutralizing effects on the mammalian immune response normally elicited by mosquito saliva components during arbovirus transmission. METHODOLOGY/PRINCIPAL FINDINGS We identified D7 salivary proteins of Culex tarsalis, a West Nile virus (WNV) vector in North America, and expressed 36 kDa recombinant D7 (rD7) protein for use as a vaccine. Vaccinated mice exhibited enhanced interferon-γ and decreased interleukin-10 expression after uninfected mosquito bite; however, we found unexpectedly that rD7 vaccination resulted in enhanced pathogenesis from mosquito-transmitted WNV infection. Passive transfer of vaccinated mice sera to naïve mice also resulted in increased mortality rates from subsequent mosquito-transmitted WNV infection, implicating the humoral immune response to the vaccine in enhancement of viral pathogenesis. Vaccinated mice showed decreases in interferon-γ and increases in splenocytes producing the regulatory cytokine IL-10 after WNV infection by mosquito bite. CONCLUSIONS/SIGNIFICANCE Vector saliva vaccines have successfully protected against other blood-feeding arthropod-transmitted diseases. Nevertheless, the rD7 salivary protein vaccine was not a good candidate for protection against WNV disease since immunized mice infected via an infected mosquito bite exhibited enhanced mortality. Selection of salivary protein vaccines on the bases of abundance and immunogenicity does not predict efficacy.
Collapse
Affiliation(s)
- Krystle L. Reagan
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Carlos Machain-Williams
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
| | - Tian Wang
- Department of Microbiology and Immunology, Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Carol D. Blair
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology Immunology and Pathology, Colorado State University, Fort Collins, Colorado, United States of America
- * E-mail:
| |
Collapse
|
13
|
Qualls WA, Day JF, Xue RD, Bowers DF. Sindbis virus infection alters blood feeding responses and DEET repellency in Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2012; 49:418-423. [PMID: 22493862 DOI: 10.1603/me11102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Aedes aegypti (L.) (Diptera: Culicidae) female mosquitoes infected systemically with Sindbis virus (SINV) took longer than uninfected mosquitoes to locate and fully engorge on blood. On days 7 and 14 postexposure, blood feeding took 1.3 and 1.5 times longer in mosquitoes with a disseminated SINV infection, respectively. SINV dissemination did not affect the average weight of unfed Ae. aegypti, but did result in a 10 and 12% increase in blood imbibed compared with mosquitoes without a positive SINV dissemination and non-SINV-exposed mosquitoes, respectively. Ae. aegypti mosquitoes with a disseminated SINV infection fed an average of 4 h sooner than uninfected mosquitoes when offered a bloodmeal contained inside a DEET (N,N-diethyl-3-methylbenzamide) saturated (30%) bovine sausage casing. Together, these results indicate that behavioral changes in mosquito host-seeking, blood feeding and sensitivity to DEET occurred in mosquitoes after SINV infection and dissemination.
Collapse
Affiliation(s)
- Whitney A Qualls
- Anastasia Mosquito Control District, 500 Old Beach Road, St. Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
14
|
Qualls WA, Day JF, Xue RD, Bowers DF. Altered response to DEET repellent after infection of Aedes aegypti (Diptera: Culicidae) with Sindbis virus. JOURNAL OF MEDICAL ENTOMOLOGY 2011; 48:1226-1230. [PMID: 22238883 DOI: 10.1603/me10163] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
To determine whether a Sindbis virus (family Togaviridae, genus Alphavirus, SINV) infection in Aedes aegypti (L.) (Diptera: Culicidae) affected its response to the repellent DEET, we orally exposed Ae. aegypti to an artificial bloodmeal containing SINV or diluent and then allowed to feed on a 10% sucrose suspension containing 3% DEET. When tested seven or more days after the initial bloodmeal, although none of the diluent-exposed mosquitoes fed on the DEET-sucrose suspension, at least 60% of the SINV-exposed mosquitoes fed on the suspension. When legs from the SINV-exposed mosquitoes were tested to determine dissemination status, 89% of those that fed on the DEET-sucrose suspension contained virus. In contrast, only 34% of the nonfeeders had a disseminated infection. When offered a choice between sucrose with or without DEET, a significantly higher percentage of the SINV-exposed mosquitoes than the control mosquitoes fed on the sucrose containing 3% DEET. Together, these results indicate that mosquitoes with a disseminated SINV infection may be less responsive to DEET than uninfected mosquitoes. Therefore, repellent use may be less effective in deterring infected mosquitoes from biting than previously believed.
Collapse
Affiliation(s)
- Whitney A Qualls
- Anastasia Mosquito Control District, 500 Old Beach Rd., St. Augustine, FL 32080, USA
| | | | | | | |
Collapse
|
15
|
Wang Z, Zhang X, Li C, Zhang Y, Xin D, Zhao T. Dissemination of western equine encephalomyelitis virus in the potential vector, Culex pipiens pallens. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2010; 35:313-317. [PMID: 21175937 DOI: 10.1111/j.1948-7134.2010.00088.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Two western equine encephalomyelitis virus (WEEV) strains have been isolated in China. Our previous studies have verified that the mosquito Culex pipiens pallens Coquillett (Diptera: Culicidae) infected with WEEV was capable of transmitting this arbovirus, but it was not clear how the sequential multiplication and spread of virus occurred within the mosquito. In this study, we observed the distribution of WEEV antigen in orally-infected Cx. p. pallens by immunohistochemistry in order to better understand the initial infection, dissemination, and transmission of WEEV in the potential vector. Orally-infected WEEV dissemination varied within the different tissues of Cx. p. pallens, with virus antigen consistently observed in the salivary glands, foregut, midgut epithelial cells, Malpighian tubules, hindgut, and ovarian follicles of some individuals after various days of extrinsic incubation. We suggest that Cx. p. pallens, the potential vector of WEEV, has the ability to harbor the virus through the alimentary system, and the midgut epithelial cell may be the initial site of WEEV replication after ingestion of a viremic blood meal.
Collapse
Affiliation(s)
- Zhongming Wang
- State Key Laboratory of Pathogens and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, 100071, PR China
| | | | | | | | | | | |
Collapse
|
16
|
Phillips A, Mossel E, Sanchez-Vargas I, Foy B, Olson K. Alphavirus transducing system: tools for visualizing infection in mosquito vectors. J Vis Exp 2010:2363. [PMID: 21178952 DOI: 10.3791/2363] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Alphavirus transducing systems (ATSs) are important tools for expressing genes of interest (GOI) during infection. ATSs are derived from cDNA clones of mosquito-borne RNA viruses (genus Alphavirus; family Togaviridae). The Alphavirus genus contains about 30 different mosquito-borne virus species. Alphaviruses are enveloped viruses and contain single-stranded RNA genomes (~11.7 Kb). Alphaviruses transcribe a subgenomic mRNA that encodes the structural proteins of the virus required for encapsidation of the genome and maturation of the virus. Alphaviruses are usually highly lytic in vertebrate cells, but persistently infect susceptible mosquito cells with minimal cytopathology. These attributes make them excellent tools for gene expression in mosquito vectors. The most common ATSs in use are derived from Sindbis virus (SINV). The broad species tropism of SINV allows for infection of insect, avian, and mammalian cells8. However, ATSs have been derived from other alphaviruses as well. Foreign gene expression is made possible by the insertion of an additional viral subgenomic RNA initiation site or promoter. ATSs in which an exogenous gene sequence is positioned 5' to the viral structural genes is used for stable protein expression in insects. ATSs, in which a gene sequence is positioned 3' to the structural genes, is used to trigger RNAi and silence expression of that gene in the insect. ATSs have proven to be valuable tools for understanding vector-pathogen interactions, molecular details of viral replication and maintenance infectious cycles. In particular, the expression of fluorescent and bioluminescent reporters has been instrumental tracking the viral infection in the vector and virus transmission. Additionally, the vector immune response has been described using two strains of SINV engineered to express GFP(2,9). Here, we present a method for the production of SINV containing a fluorescent reporter (GFP) from the cDNA infectious clone. Infectious, full-length RNA is transcribed from the linearized cDNA clone. Infectious RNA is introduced into permissive target cells by electroporation. Transfected cells generate infectious virus particles expressing the GOI. Harvested virus is used to infect mosquitoes, as described here, or other host species (not shown herein). Vector competence is assessed by detecting fluorescence outside the midgut or by monitoring virus transmission. Use of a fluorescent reporter as the GOI allows for convenient estimation of virus spread throughout a cell culture, for determination of rate of infection, dissemination in exposed mosquitoes, virus transmission from the mosquito and provides a rapid gauge of vector competence.
Collapse
Affiliation(s)
- Aaron Phillips
- Microbiology, Immunology, and Pathology, Colorado State University, USA
| | | | | | | | | |
Collapse
|
17
|
McGee CE, Shustov AV, Tsetsarkin K, Frolov IV, Mason PW, Vanlandingham DL, Higgs S. Infection, dissemination, and transmission of a West Nile virus green fluorescent protein infectious clone by Culex pipiens quinquefasciatus mosquitoes. Vector Borne Zoonotic Dis 2010; 10:267-74. [PMID: 19619041 DOI: 10.1089/vbz.2009.0067] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We report the construction and comparative characterization of a full-length West Nile virus (WNV) cDNA infectious clone (ic) that contains a green fluorescent protein (GFP) expression cassette fused within the viral open reading frame. Virus derived from WNV-GFP ic stably infected Culex pipiens quinquefasciatus mosquitoes at comparable rates to virus derived from the parental (non-GFP) ic. However, insertion of this GFP cassette resulted in a temporal delay in in vivo replication kinetics and significantly decreased dissemination to head tissue. Consistent with previous reports of WNV-infected mosquito midguts, focal GFP expression was observed at 3 days post-infection (dpi), with the majority of posterior midgut epithelial cells being positive by 7 dpi. GFP foci were observed in one pair of salivary glands (1/15) dissected 14 dpi. Mice exposed to WNV-GFP-infected mosquitoes developed viremia, and GFP was detected in lymph node homogenates. These data demonstrate the effectiveness of our strategy to generate a replication competent construct with increased reporter gene stability that may be used to study early events in infection.
Collapse
Affiliation(s)
- Charles E McGee
- Department of Pathology, University of Texas Medical Branch , Galveston, Texas 77539-0609, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Daubnerová I, Roller L, Žitňan D. Transgenesis approaches for functional analysis of peptidergic cells in the silkworm Bombyx mori. Gen Comp Endocrinol 2009; 162:36-42. [PMID: 19111552 PMCID: PMC2854327 DOI: 10.1016/j.ygcen.2008.11.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2008] [Revised: 11/14/2008] [Accepted: 11/18/2008] [Indexed: 10/21/2022]
Abstract
The domestic silkworm, Bombyx mori represents an insect model of great scientific and economic importance. Besides the establishment of a stable germline transformation using the PiggyBac vector, technically feasible methods for in vivo gene delivery and transient gene expression were developed using viral based vectors, especially Sindbis viruses and baculoviruses. The recombinant baculovirus, Autographa californica multiple nucleopolyhedrovirus (AcMNPV), commonly used for large-scale protein production in permissive cell lines or insects, has been used for foreign gene transfer into specific peptidergic cells of B. mori in vivo. Since targeted gene expression is essential for functional analysis of neuropeptide genes and their receptors, the baculovirus-mediated gene transfer can serve as a reliable approach in reverse genetic studies in the silkworm. We review various strategies employing the baculovirus vector system for transient expression of molecular markers and transcription factors in specific peptidergic cells to investigate their roles in B. mori. We also use this system for functional analysis of neuropeptide signaling in the ecdysis behavioral sequence. Our data indicate that the AcMNPV vector is suitable for efficient delivery of foreign genes and their expression directed into specific peptidergic neurons and endocrine cells of B. mori larvae and pupae. However, some modifications of the vector and steps for optimization are necessary to minimize negative effects of viral infection on the host development. The transient gene expression using the AcMNPV and other virus vectors are promising tools for analysis of molecular mechanisms underlying various neuroendocrine processes during development of B. mori.
Collapse
Affiliation(s)
- Ivana Daubnerová
- Institute of Zoology, Slovak Academy of Sciences, SAV, Dúbravská cesta 9, 84506 Bratislava, Slovakia
- Department of Genetics, Faculty of Natural Sciences, Comenius University, 84205 Bratislava, Slovakia
| | - Ladislav Roller
- Institute of Zoology, Slovak Academy of Sciences, SAV, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| | - Dušan Žitňan
- Institute of Zoology, Slovak Academy of Sciences, SAV, Dúbravská cesta 9, 84506 Bratislava, Slovakia
| |
Collapse
|
19
|
Abstract
Horizontally transmitted mosquito-borne viruses enter the midgut with a blood meal then disseminate to infect the salivary glands. En route to the salivary glands, these viruses encounter the plasma (haemolymph) and blood cells (haemocytes). Haemocytes respond to a variety of micro-organisms, but their role in virus replication and dissemination has not been described. To look for a potential haemocyte tropism for an arbovirus, a Sindbis virus was injected intrathoracically into four species of mosquito. Virus infects haemocytes as early as 6 h post injection (p.i.) and infection was evident in these cells for as long as 4 days p.i. More than 90 % of haemocytes were infected, most often the phagocytic granulocytes. Virus titres in the haemolymph increased from 24 h p.i. through 60 h p.i. Similar results were found when Aedes aegypti mosquitoes were injected with orally infectious Sindbis. These data prove that an arbovirus infects, and replicates in, haemocytes.
Collapse
Affiliation(s)
- Grishma R Parikh
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| | - Jonathan D Oliver
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| | - Lyric C Bartholomay
- Department of Entomology, College of Agriculture and Life Sciences, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
20
|
Wang H, Blair CD, Olson KE, Clem RJ. Effects of inducing or inhibiting apoptosis on Sindbis virus replication in mosquito cells. J Gen Virol 2009; 89:2651-2661. [PMID: 18931060 DOI: 10.1099/vir.0.2008/005314-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Sindbis virus (SINV) is a mosquito-borne virus in the genus Alphavirus, family Togaviridae. Like most alphaviruses, SINVs exhibit lytic infection (apoptosis) in many mammalian cell types, but are generally thought to cause persistent infection with only moderate cytopathic effects in mosquito cells. However, there have been several reports of apoptotic-like cell death in mosquitoes infected with alphaviruses or flaviviruses. Given that apoptosis has been shown to be an antiviral response in other systems, we have constructed recombinant SINVs that express either pro-apoptotic or anti-apoptotic genes in order to test the effects of inducing or inhibiting apoptosis on SINV replication in mosquito cells. Recombinant SINVs expressing the pro-apoptotic genes reaper (rpr) from Drosophila or michelob_x (mx) from Aedes aegypti caused extensive apoptosis in cells from the mosquito cell line C6/36, thus changing the normal persistent infection observed with SINV to a lytic infection. Although the infected cells underwent apoptosis, high levels of virus replication were still observed during the initial infection. However, virus production subsequently decreased compared with persistently infected cells, which continued to produce high levels of virus over the next several days. Infection of C6/36 cells with SINV expressing the baculovirus caspase inhibitor P35 inhibited actinomycin D-induced caspase activity and protected infected cells from actinomycin D-induced apoptosis, but had no observable effect on virus replication. This study is the first to test directly whether inducing or inhibiting apoptosis affects arbovirus replication in mosquito cells.
Collapse
Affiliation(s)
- Hua Wang
- Molecular, Cellular, and Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Carol D Blair
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Ken E Olson
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Rollie J Clem
- Molecular, Cellular, and Developmental Biology Program, Arthropod Genomics Center, Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| |
Collapse
|
21
|
Abstract
Alphavirus transducing systems (ATSs) are important tools for expressing genes of interest (GOI) in mosquitoes and nonvector insects. ATSs are derived from infectious cDNA clones of mosquito-borne RNA viruses (family Togaviridae). The most common ATSs in use are derived from Sindbis viruses; however, ATSs have been derived from other alphaviruses as well. ATSs generate viruses with genomes that contain GOI's that can be expressed from additional viral subgenomic promoters. ATSs in which an exogenous gene sequence is positioned 5' to the viral structural genes is used for stable protein expression in insects. ATSs in which a gene sequence is positioned 3' to the structural genes is used to trigger RNAi and silence expression of that gene in the insect. ATSs are proving to be invaluable tools for understanding vector-pathogen interactions, vector competence, and other components of vector-pathogen amplification and maintenance cycles in nature. These virus-based expression systems also facilitate the researcher's ability to decide which gene-based disease control strategies merit a further investment in time and resources in transgenic mosquitoes.
Collapse
|
22
|
Genetic determinants of Sindbis virus mosquito infection are associated with a highly conserved alphavirus and flavivirus envelope sequence. J Virol 2007; 82:2966-74. [PMID: 18160430 DOI: 10.1128/jvi.02060-07] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Wild-type Sindbis virus (SINV) strain MRE16 efficiently infects Aedes aegypti midgut epithelial cells (MEC), but laboratory-derived neurovirulent SINV strain TE/5'2J infects MEC poorly. SINV determinants for MEC infection have been localized to the E2 glycoprotein. The E2 amino acid sequences of MRE16 and TE/5'2J differ at 60 residue sites. To identify the genetic determinants of MEC infection of MRE16, the TE/5'2J virus genome was altered to contain either domain chimeras or more focused nucleotide substitutions of MRE16. The growth patterns of derived viruses in cell culture were determined, as were the midgut infection rates (MIR) in A. aegypti mosquitoes. The results showed that substitutions of MRE16 E2 aa 95 to 96 and 116 to 119 into the TE/5'2J virus increased MIR both independently and in combination with each other. In addition, a unique PPF/.GDS amino acid motif was located between these two sites that was found to be a highly conserved sequence among alphaviruses and flaviviruses but not other arboviruses.
Collapse
|
23
|
Smith DR, Adams AP, Kenney JL, Wang E, Weaver SC. Venezuelan equine encephalitis virus in the mosquito vector Aedes taeniorhynchus: infection initiated by a small number of susceptible epithelial cells and a population bottleneck. Virology 2007; 372:176-86. [PMID: 18023837 DOI: 10.1016/j.virol.2007.10.011] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 09/28/2007] [Accepted: 10/10/2007] [Indexed: 11/17/2022]
Abstract
We evaluated infection of Aedes taeniorhynchus mosquitoes, vectors of Venezuelan equine encephalitis virus (VEEV), using radiolabeled virus and replicon particles expressing green (GFP) or cherry fluorescent protein (CFP). More epidemic VEEV bound to and infected mosquito midguts compared to an enzootic strain, and a small number of midgut cells was preferentially infected. Chimeric replicons infected midgut cells at rates comparable to those of the structural gene donor. The numbers of midgut cells infected averaged 28, and many infections were initiated in only 1-5 cells. Infection by a mixture of GFP- and CFP-expressing replicons indicated that only about 100 midgut cells were susceptible. Intrathoracic injections yielded similar patterns of replication with both VEEV strains, suggesting that midgut infection is the primary limitation to transmission. These results indicate that the structural proteins determine initial infection of a small number of midgut cells, and that VEEV undergoes population bottlenecks during vector infection.
Collapse
Affiliation(s)
- Darci R Smith
- Department of Pathology and Center for Tropical Diseases, University of Texas Medical, Branch, Galveston, TX 77555-0609, USA
| | | | | | | | | |
Collapse
|
24
|
Geiss BJ, Shimonkevitz LH, Sackal CI, Olson KE. Recombination-ready Sindbis replicon expression vectors for transgene expression. Virol J 2007; 4:112. [PMID: 17963504 PMCID: PMC2164957 DOI: 10.1186/1743-422x-4-112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2007] [Accepted: 10/26/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Sindbis viruses have been widely used as tools to study gene function in cells. Despite the utility of these systems, the construction and production of alphavirus replicons is time consuming and inefficient due to potential additional restriction sites within the insert region and lack of directionality for insert ligation. In this report, we present a system useful for producing recombinant Sindbis replicons that uses lambda phage recombination technology to rapidly and specifically construct replicon expression plasmids that contain insert regions in the desired orientation. RESULTS Recombination of the gene of interest with the replicon plasmid resulted in nearly 100% recombinants, each of which contained a correctly orientated insert. Replicons were easily produced in cell culture and packaged into pseudo-infectious viral particles. Insect and mammalian cells infected with pseudo-infectious viral particles expressed various transgenes at high levels. Finally, inserts from persistently replicating replicon RNA were easily isolated and recombined back into entry plasmids for sequencing and subsequent analysis. CONCLUSION Replication-ready replicon expression plasmids make the use of alphavirus replicons fast and easy as compared to traditional replicon production methods. This system represents a significant step forward in the utility and ease of use of alphavirus replicons in the study of gene function.
Collapse
Affiliation(s)
- Brian J Geiss
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Molecular Biology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | |
Collapse
|
25
|
Vanlandingham DL, Tsetsarkin K, Hong C, Klingler K, McElroy KL, Lehane MJ, Higgs S. Development and characterization of a double subgenomic chikungunya virus infectious clone to express heterologous genes in Aedes aegypti mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2005; 35:1162-70. [PMID: 16102421 DOI: 10.1016/j.ibmb.2005.05.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 05/20/2005] [Accepted: 05/20/2005] [Indexed: 05/04/2023]
Abstract
Three full-length infectious cDNA clones based on the alphavirus chikungunya (CHIKV) were developed and characterized in vitro and in vivo. The full-length clone retained the viral phenotypes of CHIKV in both cell culture and in mosquitoes and should be a valuable tool for the study of virus interactions in an epidemiologically significant natural vector, Aedes aegypti. Two additional infectious clones were constructed that express green fluorescent protein (EGFP) in the midgut, salivary glands, and nervous tissue of Aedes aegypti mosquitoes following oral infection. The two constructs differed in the placement of the subgenomic promoter and the gene encoding EGFP. Viruses derived from the pCHIKic EGFP constructs (5' CHIKV EGFP and 3' CHIKV EGFP) expressed EGFP in 100% of the Ae. aegypti mosquitoes tested on days 7 and 14 post infection (p.i.). The 5' CHIKV EGFP disseminated to 90% of the salivary glands and nervous tissue by day 14 p.i. Dissemination rates of this new viral vector exceeds those of previous systems, thus expanding the repertoire and potential for gene expression studies on this important vector species.
Collapse
Affiliation(s)
- Dana L Vanlandingham
- Department of Pathology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
Hanley KA, Goddard LB, Gilmore LE, Scott TW, Speicher J, Murphy BR, Pletnev AG. Infectivity of West Nile/dengue chimeric viruses for West Nile and dengue mosquito vectors. Vector Borne Zoonotic Dis 2005; 5:1-10. [PMID: 15815144 DOI: 10.1089/vbz.2005.5.1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
West Nile virus (WN), an agent of significant human and veterinary disease, is endemic in the Old World and rapidly spreading throughout the Americas. Vaccines are needed to halt the geographic expansion of this virus and prevent disease where it is established. However, to preclude introduction of a vaccine virus into the environment, a live attenuated WN vaccine should have low potential for transmission by mosquitoes. A chimeric WN vaccine candidate was previously generated by replacing the membrane and envelope structural protein genes of recombinant dengue type 4 virus (rDEN4) with those of WN; a derivative of this virus, WN/DEN4-3'delta30, contains a 30-nucleotide deletion in the 3' untranslated region. To assess the potential for transmission by mosquitoes of these vaccine candidates, the ability of each chimeric virus to infect the mosquito midgut, disseminate to the head, and pass into the saliva was compared to that of their wild-type parental WN and DEN4 viruses in three vector species. The WN/DEN4 chimeric viruses were significantly attenuated in both Culex tarsalis, a vector able to transmit WN but not dengue, and in Ae. aegypti, a vector able to transmit dengue but not WN. However, the chimeric viruses were as infectious as either wild-type virus for Ae. albopictus, a vector able to transmit both dengue and WN. These results indicate that chimerization caused a contraction in vector host range rather than universal attenuation for mosquitoes per se. This restriction in potential vectors renders it less likely that WN/DEN4 and WN/DEN4-3'delta30 would be transmitted from vaccinees to mosquitoes.
Collapse
Affiliation(s)
- Kathryn A Hanley
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA.
| | | | | | | | | | | | | |
Collapse
|
27
|
Brault AC, Foy BD, Myles KM, Kelly CLH, Higgs S, Weaver SC, Olson KE, Miller BR, Powers AM. Infection patterns of o'nyong nyong virus in the malaria-transmitting mosquito, Anopheles gambiae. INSECT MOLECULAR BIOLOGY 2004; 13:625-635. [PMID: 15606811 DOI: 10.1111/j.0962-1075.2004.00521.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Arthropod-borne alphaviruses transmitted by mosquitoes almost exclusively use culicines; however, the alphavirus o'nyong-nyong (ONNV) has the unusual characteristic of being transmitted primarily by anopheline mosquitoes. This unusual attribute makes ONNV a valuable tool in the characterization of mosquito determinants of infection as well as a useful expression system in Anopheles species. We developed a series of recombinant alphaviruses, based upon the genome of ONNV, designed for the expression of heterologous genes. The backbone genome is a full-length infectious cDNA clone of ONNV from which wild-type virus can be rescued. Additional constructs are variants of the primary clone and contain the complete genome plus a duplicated subgenomic promoter element with a multiple cloning site for insertion of heterologous genes. We inserted a green fluorescent protein (GFP) gene downstream of this promoter and used it to characterize infection and dissemination patterns of ONNV within An. gambiae mosquitoes. These experiments allowed us to identify atypical sites of initial infection and dissemination patterns in this mosquito species not frequently observed in comparable culicine infections. The utility of these ONNVs for studies in anopheline mosquitoes includes the potential for identification of vector infection determinants and to serve as tools for antimalaria studies. Viruses that can express a heterologous gene in a vector and rapidly and efficiently infect numerous tissues in An. gambiae mosquitoes will be a valuable asset in parasite-mosquito interaction and interference research.
Collapse
Affiliation(s)
- A C Brault
- Division of Vector-Borne Infectious Diseases, Centers for Disease Control and Prevention, Fort Collins, CO 80522, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Scholle F, Girard YA, Zhao Q, Higgs S, Mason PW. trans-Packaged West Nile virus-like particles: infectious properties in vitro and in infected mosquito vectors. J Virol 2004; 78:11605-14. [PMID: 15479801 PMCID: PMC523254 DOI: 10.1128/jvi.78.21.11605-11614.2004] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
A trans-packaging system for West Nile virus (WNV) subgenomic replicon RNAs (repRNAs), deleted for the structural coding region, was developed. WNV repRNAs were efficiently encapsidated by the WNV C/prM/E structural proteins expressed in trans from replication-competent, noncytopathic Sindbis virus-derived RNAs. Infectious virus-like particles (VLPs) were produced in titers of up to 10(9) infectious units/ml. WNV VLPs established a single round of infection in a variety of different cell lines without production of progeny virions. The infectious properties of WNV and VLPs were indistinguishable when efficiencies of infection of a number of different cell lines and inhibition of infection by neutralizing antibodies were determined. To investigate the usefulness of VLPs to address biological questions in vivo, Culex pipiens quinquefasciatus mosquitoes were orally and parenterally infected with VLPs, and dissected tissues were analyzed for WNV antigen expression. Antigen-positive cells in midguts of orally infected mosquitoes were detected as early as 2 days postinfection and as late as 8 days. Intrathoracic inoculation of VLPs into mosquitoes demonstrated a dose-dependent pattern of infection of secondary tissues and identified fat body, salivary glands, tracheal cells, and midgut muscle as susceptible WNV VLP infection targets. These results demonstrate that VLPs can serve as a valuable tool for the investigation of tissue tropism during the early stages of infection, where virus spread and the need for biosafety level 3 containment complicate the use of wild-type virus.
Collapse
Affiliation(s)
- Frank Scholle
- Department of Pathology, 3.218 Mary Moody Northen, University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-0436, USA.
| | | | | | | | | |
Collapse
|
29
|
Kramer MG. Recent advances in transgenic arthropod technology. BULLETIN OF ENTOMOLOGICAL RESEARCH 2004; 94:95-110. [PMID: 15153293 DOI: 10.1079/ber2003290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The ability to insert foreign genes into arthropod genomes has led to a diverse set of potential applications for transgenic arthropods, many of which are designed to advance public health or improve agricultural production. New techniques for expressing foreign genes in arthropods have now been successfully used in at least 18 different genera. However, advances in field biology are lagging far behind those in the laboratory, and considerable work is needed before deployment in nature can be a reality. A mechanism to drive the gene of interest though a natural population must be developed and thoroughly evaluated before any field release, but progress in this area has been limited. Likewise, serious consideration of potential risks associated with deployment in nature has been lacking. This review gives an overview of the most promising techniques for expressing foreign genes in arthropods, considers the potential risks associated with their deployment, and highlights the areas of research that are most urgently needed for the field to advance out of the laboratory and into practice.
Collapse
Affiliation(s)
- M G Kramer
- US Environmental Protection Agency, Office of Science Coordination and Policy, Washington, DC 20460, USA.
| |
Collapse
|
30
|
Foy BD, Myles KM, Pierro DJ, Sanchez-Vargas I, Uhlírová M, Jindra M, Beaty BJ, Olson KE. Development of a new Sindbis virus transducing system and its characterization in three Culicine mosquitoes and two Lepidopteran species. INSECT MOLECULAR BIOLOGY 2004; 13:89-100. [PMID: 14728670 DOI: 10.1111/j.1365-2583.2004.00464.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alphavirus transducing systems (ATSs) are alphavirus-based tools for expressing genes in insects. Here we describe an ATS (5'dsMRE16ic) based entirely on Sindbis MRE16 virus. GFP expression was used to characterize alimentary tract infections and dissemination in three Culicine and two Lepidopteran species. Following per os infection, 5'dsMRE16ic-EGFP efficiently infected Aedes aegypti and Culex tritaeniorhynchus, but not Culex pipiens pipiens. Ae. aegypti clearly showed accumulation of green fluorescent protein (GFP) in the posterior midgut and foregut/midgut junction within 2-3 days postinfection. Following parenteral infection of larvae, Bombyx mori had extensive GFP expression in larvae and adults, but Manduca sexta larvae were mostly resistant. 5'dsMRE16ic should be a valuable tool for gene expression in several important insect species that are otherwise difficult to manipulate genetically.
Collapse
Affiliation(s)
- B D Foy
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Myles KM, Pierro DJ, Olson KE. Comparison of the transmission potential of two genetically distinct Sindbis viruses after oral infection of Aedes aegypti (Diptera: Culicidae). JOURNAL OF MEDICAL ENTOMOLOGY 2004; 41:95-106. [PMID: 14989352 DOI: 10.1603/0022-2585-41.1.95] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Within mosquitoes, arboviruses encounter barriers to infection and dissemination that are critical determinants of vector competence. The molecular mechanisms responsible for these barriers have yet to be elucidated. The prototype Sindbis (SIN) strain, AR339, and viruses derived from this strain, such as TR339 virus, have limited infection and transmission potential in the medically important arthropod vector, Aedes aegypti (L.). However, the Malaysian SIN virus strain, MRE16, disseminates in nearly 100% of Ae. aegypti 14 d after oral infection. Here, we compare the spatial and temporal infection patterns of MRE16 and TR339 viruses in Ae. aegypti. The results indicate that a midgut escape barrier is primarily responsible for the significantly lower dissemination and transmission potentials observed after oral infection with TR339 virus. MRE16 and TR339 viruses now represent a well-characterized model system for the further study of virus determinants of vector infection, particularly determinants affecting the midgut escape barrier in Ae. aegypti.
Collapse
Affiliation(s)
- Kevin M Myles
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | |
Collapse
|
32
|
Myles KM, Pierro DJ, Olson KE. Deletions in the putative cell receptor-binding domain of Sindbis virus strain MRE16 E2 glycoprotein reduce midgut infectivity in Aedes aegypti. J Virol 2003; 77:8872-81. [PMID: 12885905 PMCID: PMC167217 DOI: 10.1128/jvi.77.16.8872-8881.2003] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The Sindbis virus (Alphavirus; Togaviridae) strain MRE16 efficiently infects Aedes aegypti mosquitoes that ingest a blood meal containing 8 to 9 log(10) PFU of virus/ml. However, a small-plaque variant of this virus, MRE16sp, poorly infects mosquitoes after oral infection with an equivalent titer. To determine the genetic differences between MRE16 and MRE16sp viruses, we have sequenced the MRE16sp structural genes and found a 90-nucleotide deletion in the E2 glycoprotein that spans the 3' end of the coding region for the putative cell-receptor binding domain (CRBD). We examined the role of this deletion in oral infection of mosquitoes by constructing infectious clones pMRE16icDeltaE200-Y229 and pMRE16ic, representing MRE16 virus genomes with and without the deletion, respectively. A third infectious clone, pMRE16icDeltaE200-C220, was also constructed that contained a smaller deletion extending only to the 3' terminus of the CRBD coding region. Virus derived from pMRE16ic replicated with the same efficiency as parental virus in vertebrate (BHK-21) and mosquito (C6/36) cells and orally infected A. aegypti. Viruses derived from pMRE16icDeltaE200-Y229 and pMRE16icDeltaE200-C220 replicated 10- to 100-fold less efficiently in C6/36 and BHK-21 cells than did MRE16ic virus. Each deletion mutant poorly infected A. aegypti and dramatically reduced midgut infectivity and dissemination. However, all viruses generated nearly equal titers (approximately 6.0 log(10) PFU/ml) in mosquitoes 4 days after infection by intrathoracic inoculation. These results suggest that the deleted portion of the E2 CRBD represents an important determinant of MRE16 virus midgut infectivity in A. aegypti.
Collapse
Affiliation(s)
- Kevin M Myles
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado 80526, USA
| | | | | |
Collapse
|
33
|
Dasgupta R, Cheng LL, Bartholomay LC, Christensen BM. Flock house virus replicates and expresses green fluorescent protein in mosquitoes. J Gen Virol 2003; 84:1789-1797. [PMID: 12810873 DOI: 10.1099/vir.0.18938-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Flock house virus (FHV) is a non-enveloped, positive-sense RNA virus of insect origin that belongs to the family Nodaviridae. FHV has been shown to overcome the kingdom barrier and to replicate in plants, insects, yeast and mammalian cells. Although of insect origin, FHV has not previously been shown to replicate in mosquitoes. We have tested FHV replication in vitro in C6/36 cells (derived from neonatal Aedes albopictus) and in vivo in four different genera of mosquitoes, Aedes, Culex, Anopheles and Armigeres. FHV replicated to high titres in C6/36 cells that had been subcloned to support maximum growth of FHV. When adult mosquitoes were orally fed or injected with the virus, FHV antigen was detected in various tissues and infectious virus was recovered. Vectors developed from an infectious cDNA clone of a defective-interfering RNA, derived from FHV genomic RNA2, expressed green fluorescent protein in Drosophila cells and adult mosquitoes. This demonstrates the potential of FHV-based vectors for expression of foreign genes in mosquitoes and possibly other insects.
Collapse
Affiliation(s)
- Ranjit Dasgupta
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Li-Lin Cheng
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Lyric C Bartholomay
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| | - Bruce M Christensen
- Department of Animal Health and Biomedical Sciences, University of Wisconsin-Madison, 1656 Linden Drive, Madison, WI 53706, USA
| |
Collapse
|
34
|
Pierro DJ, Myles KM, Foy BD, Beaty BJ, Olson KE. Development of an orally infectious Sindbis virus transducing system that efficiently disseminates and expresses green fluorescent protein in Aedes aegypti. INSECT MOLECULAR BIOLOGY 2003; 12:107-116. [PMID: 12653932 DOI: 10.1046/j.1365-2583.2003.00392.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We have constructed an orally infectious Sindbis virus, ME2/5'2J/GFP, that expresses green fluorescent protein (GFP) in the midgut of Aedes aegypti and in other tissues as the virus disseminates. This virus has two unique features that are improvements over the SIN-based expression systems currently used in mosquitoes. First, a subgenomic RNA promoter and GFP coding sequence is located 5'- to the second subgenomic promoter and structural genes of the virus. Second, the E2 glycoprotein gene of TE/5'2J/GFP is replaced with the E2 gene of MRE16 SIN virus. The first feature enhances virus genome stability during virus dissemination from the midgut to other tissues and the second allows efficient virus entry into the midgut epithelial cells and then spread of the virus throughout the mosquito.
Collapse
Affiliation(s)
- D J Pierro
- Arthropod-Borne and Infectious Diseases Laboratory, Department of Microbiology, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | |
Collapse
|
35
|
Vähä-Koskela MJV, Tuittila MT, Nygårdas PT, Nyman JKE, Ehrengruber MU, Renggli M, Hinkkanen AE. A novel neurotropic expression vector based on the avirulent A7(74) strain of Semliki Forest virus. J Neurovirol 2003; 9:1-15. [PMID: 12587064 DOI: 10.1080/13550280390173382] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2002] [Revised: 07/17/2002] [Accepted: 09/17/2002] [Indexed: 10/20/2022]
Abstract
Semliki Forest virus (SFV), an enveloped alphavirus of the family Togaviridae, infects a wide range of mammalian host cells. Most strains are neurotropic but differ in virulence. The authors took advantage of the nonpathogenic properties of SFV strain A7(74), cloned recently in their laboratory, and constructed a replication-proficient expression vector to target the central nervous system (CNS) for heterologous gene expression. The vector, termed VA7, was engineered to drive expression of foreign inserts through a second subgenomic promoter inserted in the viral 3' nontranslated region (NTR). Infectious virus was obtained by in vitro transcription and transfection into BHK cells, and was shown to direct synthesis of heterologous proteins in several mammalian cell lines. Although novel expression vehicle is not applicable for targeting specific cell populations within the CNS in its present form, in cultured rat hippocampal slices, VA7 encoding enhanced green fluorescent protein (EGFP) efficiently transduced pyramidal cells, interneurons, and glial cells. With prolonged time post infection, the number of EGFP-expressing neurons in hippocampal slices increased. Mice infected intraperitoneally with the recombinant virus remained completely asymptomatic but showed CNS expression of EGFP as evidenced by immunohistochemistry. SFV A7(74) is a nonintegrating virus, which gives rise to a randomly distributed, patchy infection of the adult CNS that is cleared within 10 days. With the advantage of noninvasive administration, the expression vector described in this work is thus applicable for short-term gene expression in the CNS.
Collapse
|
36
|
Black WC, Bennett KE, Gorrochótegui-Escalante N, Barillas-Mury CV, Fernández-Salas I, de Lourdes Muñoz M, Farfán-Alé JA, Olson KE, Beaty BJ. Flavivirus susceptibility in Aedes aegypti. Arch Med Res 2002; 33:379-88. [PMID: 12234528 DOI: 10.1016/s0188-4409(02)00373-9] [Citation(s) in RCA: 242] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aedes aegypti is the primary vector of yellow fever (YF) and dengue fever (DF) flaviviruses worldwide. In this review we focus on past and present research on genetic components and environmental factors in Aedes aegypti that appear to control flavivirus transmission. We review genetic relationships among Ae. aegypti populations throughout the world and discuss how variation in vector competence is correlated with overall genetic differences among populations. We describe current research into how genetic and environmental factors jointly affect distribution of vector competence in natural populations. Based on this information, we propose a population genetic model for vector competence and discuss our recent progress in testing this model. We end with a discussion of approaches being taken to identify the genes that may control flavivirus susceptibility in Ae. aegypti.
Collapse
Affiliation(s)
- William C Black
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Brault AC, Powers AM, Weaver SC. Vector infection determinants of Venezuelan equine encephalitis virus reside within the E2 envelope glycoprotein. J Virol 2002; 76:6387-92. [PMID: 12021373 PMCID: PMC136209 DOI: 10.1128/jvi.76.12.6387-6392.2002] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epizootic subtype IAB and IC Venezuelan equine encephalitis viruses (VEEV) readily infect the epizootic mosquito vector Aedes taeniorhynchus. The inability of enzootic subtype IE viruses to infect this mosquito species provides a model system for the identification of natural viral determinants of vector infectivity. To map mosquito infection determinants, reciprocal chimeric viruses generated from epizootic subtype IAB and enzootic IE VEEV were tested for mosquito infectivity. Chimeras containing the IAB epizootic structural gene region and, more specifically, the IAB PE2 envelope glycoprotein E2 precursor gene demonstrated an efficient infection phenotype. Introduction of the PE2 gene from an enzootic subtype ID virus into an epizootic IAB or IC genetic backbone resulted in lower infection rates than those of the epizootic parent. The finding that the E2 envelope glycoprotein, the site of epitopes that define the enzootic and epizootic subtypes, also encodes mosquito infection determinants suggests that selection for efficient infection of epizootic mosquito vectors may mediate VEE emergence.
Collapse
Affiliation(s)
- Aaron C Brault
- Center for Tropical Diseases and Department of Pathology, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | |
Collapse
|
38
|
Adelman ZN, Jasinskiene N, James AA. Development and applications of transgenesis in the yellow fever mosquito, Aedes aegypti. Mol Biochem Parasitol 2002; 121:1-10. [PMID: 11985858 DOI: 10.1016/s0166-6851(02)00028-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Transgenesis technology has been developed for the yellow fever mosquito, Aedes aegypti. Successful integration of exogenous DNA into the germline of this mosquito has been achieved with the class II transposable elements, Hermes, mariner and piggyBac. A number of marker genes, including the cinnabar(+) gene of Drosophila melanogaster, and fluorescent protein genes, can be used to monitor the insertion of these elements. The availability of multiple elements and marker genes provides a powerful set of tools to investigate basic biological properties of this vector insect, as well as the materials for developing novel, genetics-based, control strategies for the transmission of disease.
Collapse
Affiliation(s)
- Zachary N Adelman
- Department of Molecular Biology and Biochemistry, University of California, 3205 McGaugh, Irvine, CA 92697-3900, USA
| | | | | |
Collapse
|
39
|
Cheng LL, Bartholomay LC, Olson KE, Lowenberger C, Vizioli J, Higgs S, Beaty BJ, Christensen BM. Characterization of an endogenous gene expressed in Aedes aegypti using an orally infectious recombinant Sindbis virus. JOURNAL OF INSECT SCIENCE (ONLINE) 2001; 1:10. [PMID: 15455070 PMCID: PMC355894 DOI: 10.1672/1536-2442(2001)001%5b0001:coaege%5d2.0.co;2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 06/06/2001] [Accepted: 09/05/2001] [Indexed: 12/12/2022]
Abstract
Sindbis virus expression vectors have been used successfully to express and silence genes of interest in vivo in several mosquito species, including Aedes aegypti, Ae. albopictus, Ae. triseriatus,Culex pipiens, Armigeres subalbatus and Anopheles gambiae. Here we describe the expression of an endogenous gene, defensin, in Ae. aegypti using the orally infectious Sindbis virus, MRE/3'2J expression vector. We optimized conditions to infect mosquito larvae per os using C6/36Ae. albopictus cells infected with the recombinant virus to maximize virus infection and expression of defensin. Infection with the parental Sindbis virus (MRE/3'2J) did not induce defensin expression. Mosquito larvae infected by ingestion of recombinant Sindbis virus-infected C6/36 cells expressed defensin when they emerged as adults. Defensin expression was observed by western analysis or indirect fluorescent assay in all developmental stages of mosquitoes infected with MRE/3'2J virus that contained the defensin insert. The multiplicity of infection of C6/36 cells and the quantity of infected cells consumed by larvae played an important role in defensin expression. Parental viruses, missing the defensin insert, and/or other defective interfering virus may have contributed to these observations.
Collapse
Affiliation(s)
- L L Cheng
- AHABS, University of Wisconsin, Madison, WI, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Morlais I, Severson DW. Identification of a polymorphic mucin-like gene expressed in the midgut of the mosquito, Aedes aegypti, using an integrated bulked segregant and differential display analysis. Genetics 2001; 158:1125-36. [PMID: 11454761 PMCID: PMC1461701 DOI: 10.1093/genetics/158.3.1125] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The identification of putative differentially expressed genes within genome regions containing QTL determining susceptibility of the mosquito, Aedes aegypti, to the malarial parasite, Plasmodium gallinaceum, was investigated using an integrated, targeted approach based on bulked segregant and differential display analysis. A mosquito F2 population was obtained from pairwise matings between the parasite-susceptible RED strain and the resistant MOYO-R substrain. DNA from female carcasses was used to genotype individuals at RFLP markers of known chromosomal position around the major QTL (pgs 1). Midguts, dissected 48 hr after an infected blood meal, were used to prepare two RNA bulks, each representing one of the parental genotypes at the QTL interval. The RNA bulks were compared by differential display PCR. A mucin-like protein gene (AeIMUC1) was isolated and characterized. The gene maps within the pgs 1 QTL interval and is expressed in the adult female midgut. AeIMUC1 RNA abundance decreased with time after blood meal ingestion. No differential expression was observed between the two mosquito strains but three different alleles with inter- and intrastrain allelic polymorphisms including indels and SNPs were characterized. The AeIMUC1 gene chromosome location and allelic polymorphisms raise the possibility that the protein might be involved in parasite-mosquito interactions.
Collapse
Affiliation(s)
- I Morlais
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | | |
Collapse
|
41
|
Atkinson PW, Pinkerton AC, O'Brochta DA. Genetic transformation systems in insects. ANNUAL REVIEW OF ENTOMOLOGY 2001; 46:317-346. [PMID: 11112172 DOI: 10.1146/annurev.ento.46.1.317] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The past 5 years have witnessed the emergence of techniques that permit the stable genetic transformation of a number of non-drosophilid insect species. These transposable-element-based strategies, together with virus-based techniques that allow the expression of genes to be quickly examined in insects, provide insect scientists with a first generation of genetic tools that can begin to be harnessed to further increase our understanding of gene function and regulation in insects. We review and compare the characteristics of these gene transfer systems and conclude that, although significant progress has been made, these systems still do not meet the requirements of robust genetic tools. We also review risk assessment issues arising from the generation and probable release of genetically engineered insects.
Collapse
Affiliation(s)
- P W Atkinson
- Department of Entomology, University of California, Riverside, California 92521, USA.
| | | | | |
Collapse
|