1
|
Schaub GA. Interaction of Trypanosoma cruzi, Triatomines and the Microbiota of the Vectors-A Review. Microorganisms 2024; 12:855. [PMID: 38792688 PMCID: PMC11123833 DOI: 10.3390/microorganisms12050855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/15/2024] [Accepted: 04/17/2024] [Indexed: 05/26/2024] Open
Abstract
This review summarizes the interactions between Trypanosoma cruzi, the etiologic agent of Chagas disease, its vectors, triatomines, and the diverse intestinal microbiota of triatomines, which includes mutualistic symbionts, and highlights open questions. T. cruzi strains show great biological heterogeneity in their development and their interactions. Triatomines differ from other important vectors of diseases in their ontogeny and the enzymes used to digest blood. Many different bacteria colonize the intestinal tract of triatomines, but only Actinomycetales have been identified as mutualistic symbionts. Effects of the vector on T. cruzi are indicated by differences in the ability of T. cruzi to establish in the triatomines and in colonization peculiarities, i.e., proliferation mainly in the posterior midgut and rectum and preferential transformation into infectious metacyclic trypomastigotes in the rectum. In addition, certain forms of T. cruzi develop after feeding and during starvation of triatomines. Negative effects of T. cruzi on the triatomine vectors appear to be particularly evident when the triatomines are stressed and depend on the T. cruzi strain. Effects on the intestinal immunity of the triatomines are induced by ingested blood-stage trypomastigotes of T. cruzi and affect the populations of many non-symbiotic intestinal bacteria, but not all and not the mutualistic symbionts. After the knockdown of antimicrobial peptides, the number of non-symbiotic bacteria increases and the number of T. cruzi decreases. Presumably, in long-term infections, intestinal immunity is suppressed, which supports the growth of specific bacteria, depending on the strain of T. cruzi. These interactions may provide an approach to disrupt T. cruzi transmission.
Collapse
Affiliation(s)
- Günter A Schaub
- Zoology/Parasitology, Ruhr-University Bochum, Universitätsstr. 150, 44780 Bochum, Germany
| |
Collapse
|
2
|
Meiser CK, Klenner L, Balczun C, Schaub GA. Bacteriolytic activity in saliva of the hematophagous Triatoma infestans (Reduviidae) and novel characterization and expression site of a third lysozyme. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2023; 113:e22013. [PMID: 36973856 DOI: 10.1002/arch.22013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 12/19/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Saliva of hematophagous insects contains many different compounds, mainly acting as anticoagulants. Investigating the bacteriolytic compounds of the saliva of the bloodsucking Triatoma infestans photometrically between pH 3 and pH 10 using unfed fifth instars and nymphs up to 15 days after feeding, we found bacteriolytic activity against lyophilized Micrococcus luteus was stronger at pH 4 and pH 6. After feeding, the activity level at pH 4 was unchanged, but at pH 6 more than doubled between 3 and 7 days after feeding. In zymographs of the saliva and after incubation at pH 4, bacteriolytic activity against Micrococcus luteus was present at eight lysis zones between 14.1 and 38.5 kDa, showing the strongest activity at 24.5 kDa. After incubation at pH 6, lysis zones only appeared at 15.3, 17, and 31.4 kDa. Comparing zymographs of the saliva of unfed and fed nymphs, bacteriolytic activity at 17 kDa increased after feeding. In total nine lysis bands appeared, also at >30 kDa, so far unreported in the saliva of triatomines. Reverse transcription polymerase chain reaction using oligonucleotides based on the previously described lysozyme gene of T. infestans, TiLys1, verified expression of genes encoding TiLys1 and TiLys2 in the salivary glands, but also of an undescribed third lysozyme, TiLys3, of which the cloned cDNA shares characteristics with other c-type lysozymes of insects. While TiLys1 was expressed in the tissue of all three salivary glands, transcripts of TiLys2 and of TiLys3 seem to be present only in the gland G1 and G3, respectively.
Collapse
Affiliation(s)
| | - Lars Klenner
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
| | - Carsten Balczun
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
- Department of Microbiology and Hospital Hygiene, Bundeswehr Central Hospital Koblenz, Koblenz, Germany
| | - Günter A Schaub
- Zoology/Parasitology, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
3
|
Contreras G, Shirdel I, Braun MS, Wink M. Defensins: Transcriptional regulation and function beyond antimicrobial activity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103556. [PMID: 31747541 DOI: 10.1016/j.dci.2019.103556] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 05/20/2023]
Abstract
Defensins are one the largest group of antimicrobial peptides and are part of the innate defence. Defensins are produced by animals, plants and fungi. In animals and plants, defensins can be constitutively or differentially expressed both locally or systemically which confer defence before and a stronger response after infection. Immune signalling pathways regulate the gene expression of defensins. These pathways include cellular receptors, which recognise pathogen-associated molecular patterns and are found both in plants and animals. After recognition, signalling pathways and, subsequently, transcriptional factors are activated. There is an increasing number of novel functions in defensins, such as immunomodulators and immune cell attractors. Identification of defensin triggers could help us to elucidate other new functions. The present article reviews the different elicitors of defensins with a main focus on human, fish and marine invertebrate defensins.
Collapse
Affiliation(s)
- Gabriela Contreras
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| | - Iman Shirdel
- Marine Sciences Faculty, Tarbiat Modares University, Noor, Iran
| | - Markus Santhosh Braun
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany
| | - Michael Wink
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Heidelberg, Germany.
| |
Collapse
|
4
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 PMCID: PMC6721284 DOI: 10.1186/s13059-019-1768-2] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya.,Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA.,Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya.,Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy.,Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA.,Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA.,Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
5
|
Attardo GM, Abd-Alla AMM, Acosta-Serrano A, Allen JE, Bateta R, Benoit JB, Bourtzis K, Caers J, Caljon G, Christensen MB, Farrow DW, Friedrich M, Hua-Van A, Jennings EC, Larkin DM, Lawson D, Lehane MJ, Lenis VP, Lowy-Gallego E, Macharia RW, Malacrida AR, Marco HG, Masiga D, Maslen GL, Matetovici I, Meisel RP, Meki I, Michalkova V, Miller WJ, Minx P, Mireji PO, Ometto L, Parker AG, Rio R, Rose C, Rosendale AJ, Rota-Stabelli O, Savini G, Schoofs L, Scolari F, Swain MT, Takáč P, Tomlinson C, Tsiamis G, Van Den Abbeele J, Vigneron A, Wang J, Warren WC, Waterhouse RM, Weirauch MT, Weiss BL, Wilson RK, Zhao X, Aksoy S. Comparative genomic analysis of six Glossina genomes, vectors of African trypanosomes. Genome Biol 2019; 20:187. [PMID: 31477173 DOI: 10.1101/531749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/22/2019] [Indexed: 05/24/2023] Open
Abstract
BACKGROUND Tsetse flies (Glossina sp.) are the vectors of human and animal trypanosomiasis throughout sub-Saharan Africa. Tsetse flies are distinguished from other Diptera by unique adaptations, including lactation and the birthing of live young (obligate viviparity), a vertebrate blood-specific diet by both sexes, and obligate bacterial symbiosis. This work describes the comparative analysis of six Glossina genomes representing three sub-genera: Morsitans (G. morsitans morsitans, G. pallidipes, G. austeni), Palpalis (G. palpalis, G. fuscipes), and Fusca (G. brevipalpis) which represent different habitats, host preferences, and vectorial capacity. RESULTS Genomic analyses validate established evolutionary relationships and sub-genera. Syntenic analysis of Glossina relative to Drosophila melanogaster shows reduced structural conservation across the sex-linked X chromosome. Sex-linked scaffolds show increased rates of female-specific gene expression and lower evolutionary rates relative to autosome associated genes. Tsetse-specific genes are enriched in protease, odorant-binding, and helicase activities. Lactation-associated genes are conserved across all Glossina species while male seminal proteins are rapidly evolving. Olfactory and gustatory genes are reduced across the genus relative to other insects. Vision-associated Rhodopsin genes show conservation of motion detection/tracking functions and variance in the Rhodopsin detecting colors in the blue wavelength ranges. CONCLUSIONS Expanded genomic discoveries reveal the genetics underlying Glossina biology and provide a rich body of knowledge for basic science and disease control. They also provide insight into the evolutionary biology underlying novel adaptations and are relevant to applied aspects of vector control such as trap design and discovery of novel pest and disease control strategies.
Collapse
Affiliation(s)
- Geoffrey M Attardo
- Department of Entomology and Nematology, University of California, Davis, Davis, CA, USA.
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Alvaro Acosta-Serrano
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - James E Allen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joshua B Benoit
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Jelle Caers
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Mikkel B Christensen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - David W Farrow
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Markus Friedrich
- Department of Biological Sciences, Wayne State University, Detroit, MI, USA
| | - Aurélie Hua-Van
- Laboratoire Evolution, Genomes, Comportement, Ecologie, CNRS, IRD, Univ. Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Emily C Jennings
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Denis M Larkin
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Daniel Lawson
- Department of Life Sciences, Imperial College London, London, UK
| | - Michael J Lehane
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Vasileios P Lenis
- Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
| | - Ernesto Lowy-Gallego
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Rosaline W Macharia
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
- Centre for Biotechnology and Bioinformatics, University of Nairobi, Nairobi, Kenya
| | - Anna R Malacrida
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Heather G Marco
- Department of Biological Sciences, University of Cape Town, Rondebosch, South Africa
| | - Daniel Masiga
- Molecular Biology and Bioinformatics Unit, International Center for Insect Physiology and Ecology, Nairobi, Kenya
| | - Gareth L Maslen
- VectorBase, European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, Cambridgeshire, UK
| | - Irina Matetovici
- Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Richard P Meisel
- Department of Biology and Biochemistry, University of Houston, Houston, TX, USA
| | - Irene Meki
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Veronika Michalkova
- Department of Biological Sciences, Florida International University, Miami, Florida, USA
- Institute of Zoology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Wolfgang J Miller
- Department of Cell and Developmental Biology, Medical University of Vienna, Vienna, Austria
| | - Patrick Minx
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Paul O Mireji
- Department of Biochemistry, Biotechnology Research Institute - Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
- Centre for Geographic Medicine Research Coast, Kenya Medical Research Institute, Kilifi, Kenya
| | - Lino Ometto
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food & Agriculture, Vienna, Vienna, Austria
| | - Rita Rio
- Department of Biology, West Virginia University, Morgantown, WV, USA
| | - Clair Rose
- Department of Vector Biology, Liverpool School of Tropical Medicine, Merseyside, Liverpool, UK
| | - Andrew J Rosendale
- Department of Biology, Mount St. Joseph University, Cincinnati, OH, USA
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
| | - Omar Rota-Stabelli
- Department of Sustainable Ecosystems and Bioresources, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Grazia Savini
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Liliane Schoofs
- Department of Biology - Functional Genomics and Proteomics Group, KU Leuven, Leuven, Belgium
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Martin T Swain
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, Ceredigion, UK
| | - Peter Takáč
- Department of Animal Systematics, Ústav zoológie SAV; Scientica, Ltd, Bratislava, Slovakia
| | - Chad Tomlinson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - George Tsiamis
- Department of Environmental and Natural Resources Management, University of Patras, Agrinio, Etoloakarnania, Greece
| | | | - Aurelien Vigneron
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Jingwen Wang
- School of Life Sciences, Fudan University, Shanghai, China
| | - Wesley C Warren
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
- Bond Life Sciences Center, University of Missouri, Columbia, MO, USA
| | - Robert M Waterhouse
- Department of Ecology & Evolution, Swiss Institute of Bioinformatics, University of Lausanne, Lausanne, Switzerland
| | - Matthew T Weirauch
- Center for Autoimmune Genomics and Etiology and Divisions of Biomedical Informatics and Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Richard K Wilson
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Xin Zhao
- CAS Center for Influenza Research and Early-warning (CASCIRE), Chinese Academy of Sciences, Beijing, China
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
6
|
Moraes APRD, Salles CMCD, Bittencourt VREP, Bittencourt AJ. Antimicrobial activity of Stomoxys calcitrans against Beauveria bassiana sensu lato isolates. REVISTA BRASILEIRA DE PARASITOLOGIA VETERINARIA 2015; 24:331-9. [PMID: 26444064 DOI: 10.1590/s1984-29612015064] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study had the aims of evaluating the antimicrobial characteristics of Stomoxys calcitrans (Diptera: Muscidae) larvae against the fungal isolates CG138, CG228 and ESALQ986 of Beauveria bassiana sensu lato (Balsamo-Crivelli) Vuillemin, 1912 (Hypocreales: Cordycipitaceae). S. calcitrans eggs, larvae and pupae were exposed to these same isolates. Statistical analysis showed that the immature stages of S. calcitrans were not susceptible to the fungal isolates used, regardless of the exposure method. Diffusion test on solid culture medium reveled that macerated S. calcitrans larvae exposed to isolate CG138 reduced CG138 fungal development. The analysis of the chromatographic profiles indicated that the macerate or mucus of larvae of the control group and the groups exposed to the isolate CG138 presented different profiles. Reduced development of the isolate CG138 on the larvae cuticle was observed by means of scanning electron microscopy.
Collapse
|
7
|
Rochon K, Baker RB, Almond GW, Gimeno IM, Pérez de León AA, Watson DW. Persistence and Retention of Porcine Reproductive and Respiratory Syndrome Virus in Stable Flies (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2015; 52:1117-1123. [PMID: 26336236 DOI: 10.1093/jme/tjv096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 06/20/2015] [Indexed: 06/05/2023]
Abstract
We investigated the acquisition of porcine reproductive and respiratory syndrome (PRRS) virus by the stable fly (Diptera: Muscidae; Stomoxys calcitrans (L.)) through a bloodmeal, and virus persistence in the digestive organs of the fly using virus isolation and quantitative reverse-transcription PCR (qRT-PCR). Stable flies were fed blood containing live virus, modified live vaccine virus, chemically inactivated virus, or no virus. Stable flies acquired PRRSV from the bloodmeal and the amount of virus in the flies declined with time, indicating virus did not replicate in fly digestive tissues. Virus RNA was recovered from the flies fed live virus up to 24 h postfeeding using virus isolation techniques and 96 h using qRT-PCR. We further examined the fate of PRRSV in the hemolymph of the flies following intrathoracic injection to bypass the midgut barrier. PRRSV was detected in intrathoracically inoculated adult stable flies for 10 d using qRT-PCR. In contrast to what we observed in the digestive tract, detectable virus quantities in the intrathoracically inoculated stable flies followed an exponential decay curve. The amount of virus decreased fourfold in the first 3 d and remained stable thereafter, up to 10 d.
Collapse
Affiliation(s)
- K Rochon
- University of Manitoba, 214 Entomology Bldg., Winnipeg, Manitoba, Canada, R3T 2N2.
| | - R B Baker
- Iowa State University, College of Veterinary Medicine, PO Box 3020, Ames, IA 50010
| | - G W Almond
- North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough St., Raleigh, NC 27606
| | - I M Gimeno
- North Carolina State University, College of Veterinary Medicine, 4700 Hillsborough St., Raleigh, NC 27606
| | - A A Pérez de León
- Knipling-Bushland US Livestock Insects Research Laboratory, 2700 Fredericksburg Rd., Kerrville, TX 78028-1984
| | - D W Watson
- North Carolina State University, College of Agriculture and Life Sciences, 1111 Grinnells Laboratory, Campus Box 7626, Raleigh, NC 27695-7626
| |
Collapse
|
8
|
Olafson PU, Lohmeyer KH, Edrington TS, Loneragan GH. Survival and fate of Salmonella enterica serovar Montevideo in adult horn flies (Diptera: Muscidae). JOURNAL OF MEDICAL ENTOMOLOGY 2014; 51:993-1001. [PMID: 25276929 DOI: 10.1603/me13217] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Contamination of cattle peripheral lymph nodes with Salmonella enterica is proposed to occur via a transdermal route of entry. If so, bacteria may be introduced to cattle by biting arthropods. Biting flies, such as horn flies (Haematobia irritans irritans (L.)) (Diptera: Muscidae), are intriguing candidates for transmitting Salmonella to cattle because they provide a route of entry when they breach the skin barrier during blood feeding. Using a green fluorescent protein-expressing strain of Salmonella Montevideo (S. Montevideo-GFP), the current study demonstrated that horn fly grooming subsequent to tactile exposure to the bacteria resulted in acquisition of the bacteria on mouthparts as well as microbial ingestion. Consumption of a bloodmeal containing approximately 10(2), approximately 10(4), or 10(6) S. Montevideo-GFP resulted in horn fly colonization for up to 72 h postingestion (PI). Epifluorescent microscopy indicated that the bacteria were not localized to the crop but were observed within the endoperitrophic space, suggesting that regurgitation is not a primary route of transmission. S. Montevideo-GFP were cultured from excreta of 100% of flies beginning 6-7 h PI of a medium or high dose meal and > 12 h PI in excreta from 60% of flies fed the low-dose meal. Animal hides and manure pats are sources for horn flies to acquire the Salmonella and mechanically transmit them to an animal while feeding. Mean quantities of 5.65-67.5 x 10(2) CFU per fly were cultured from fly excreta passed within 1 d after feeding, suggesting the excreta can provide an additional microbial source on the animal's hide.
Collapse
|
9
|
Wasinpiyamongkol L, Patramool S, Luplertlop N, Surasombatpattana P, Doucoure S, Mouchet F, Séveno M, Remoue F, Demettre E, Brizard JP, Jouin P, Biron DG, Thomas F, Missé D. Blood-feeding and immunogenic Aedes aegypti saliva proteins. Proteomics 2010; 10:1906-16. [PMID: 19882664 DOI: 10.1002/pmic.200900626] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mosquito-transmitted pathogens pass through the insect's midgut (MG) and salivary gland (SG). What occurs in these organs in response to a blood meal is poorly understood, but identifying the physiological differences between sugar-fed and blood-fed (BF) mosquitoes could shed light on factors important in pathogens transmission. We compared differential protein expression in the MGs and SGs of female Aedes aegypti mosquitoes after a sugar- or blood-based diet. No difference was observed in the MG protein expression levels but certain SG proteins were highly expressed only in BF mosquitoes. In sugar-fed mosquitoes, housekeeping proteins were highly expressed (especially those related to energy metabolism) and actin was up-regulated. The immunofluorescence assay shows that there is no disruption of the SG cytoskeletal after the blood meal. We have generated for the first time the 2-DE profiles of immunogenic Ae. aegypti SG BF-related proteins. These new data could contribute to the understanding of the physiological processes that appear during the blood meal.
Collapse
Affiliation(s)
- Ladawan Wasinpiyamongkol
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Dreher-Lesnick SM, Ceraul SM, Lesnick SC, Gillespie JJ, Anderson JM, Jochim RC, Valenzuela JG, Azad AF. Analysis of Rickettsia typhi-infected and uninfected cat flea (Ctenocephalides felis) midgut cDNA libraries: deciphering molecular pathways involved in host response to R. typhi infection. INSECT MOLECULAR BIOLOGY 2010; 19:229-41. [PMID: 20017753 PMCID: PMC3179627 DOI: 10.1111/j.1365-2583.2009.00978.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Murine typhus is a flea-borne febrile illness that is caused by the obligate intracellular bacterium, Rickettsia typhi. The cat flea, Ctenocephalides felis, acquires R. typhi by imbibing a bloodmeal from a rickettsemic vertebrate host. To explore which transcripts are expressed in the midgut in response to challenge with R. typhi, cDNA libraries of R. typhi-infected and uninfected midguts of C. felis were constructed. In this study, we examined midgut transcript levels for select C. felis serine proteases, GTPases and defence response genes, all thought to be involved in the fleas response to feeding or infection. An increase in gene expression was observed for the serine protease inhibitors and vesicular trafficking proteins in response to feeding. In addition, R. typhi infection resulted in an increase in gene expression for the chymotrypsin and rab5 that we studied. Interestingly, R. typhi infection had little effect on expression of any of the defence response genes that we studied. We are unsure as to the physiological significance of these gene expression profiles and are currently investigating their potential roles as it pertains to R. typhi infection. To our knowledge, this is the first report of differential expression of flea transcripts in response to infection with R. typhi.
Collapse
Affiliation(s)
- S M Dreher-Lesnick
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Tsetse EP protein protects the fly midgut from trypanosome establishment. PLoS Pathog 2010; 6:e1000793. [PMID: 20221444 PMCID: PMC2832768 DOI: 10.1371/journal.ppat.1000793] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 01/26/2010] [Indexed: 11/22/2022] Open
Abstract
African trypanosomes undergo a complex developmental process in their tsetse fly vector before transmission back to a vertebrate host. Typically, 90% of fly infections fail, most during initial establishment of the parasite in the fly midgut. The specific mechanism(s) underpinning this failure are unknown. We have previously shown that a Glossina-specific, immunoresponsive molecule, tsetse EP protein, is up regulated by the fly in response to gram-negative microbial challenge. Here we show by knockdown using RNA interference that this tsetse EP protein acts as a powerful antagonist of establishment in the fly midgut for both Trypanosoma brucei brucei and T. congolense. We demonstrate that this phenomenon exists in two species of tsetse, Glossina morsitans morsitans and G. palpalis palpalis, suggesting tsetse EP protein may be a major determinant of vector competence in all Glossina species. Tsetse EP protein levels also decline in response to starvation of the fly, providing a possible explanation for increased susceptibility of starved flies to trypanosome infection. As starvation is a common field event, this fact may be of considerable importance in the epidemiology of African trypanosomiasis. In Africa, tsetse flies transmit the trypanosomes causing the devastating diseases sleeping sickness in man and nagana in domesticated animals. These diseases are major causes of underdevelopment in Africa. Paradoxically, most, but not all, flies are resistant to infection with trypanosomes, but we do not have a clear picture of how flies fight off trypanosomes. Here we show that a particular, tsetse-specific immune responsive protein called tsetse EP acts as a powerful antagonist of trypanosome establishment in the fly midgut. It is known that starvation of flies leads to an increase in their susceptibility to trypanosomes and this may be a considerable factor in the epidemiology of the disease in Africa. Here we demonstrate that starvation leads to a decrease in tsetse EP levels, which may explain how starvation of the fly works to increase its susceptibility.
Collapse
|
12
|
Eleftherianos I, Felföldi G, ffrench-Constant RH, Reynolds SE. Induced nitric oxide synthesis in the gut of Manduca sexta protects against oral infection by the bacterial pathogen Photorhabdus luminescens. INSECT MOLECULAR BIOLOGY 2009; 18:507-16. [PMID: 19538546 DOI: 10.1111/j.1365-2583.2009.00899.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Injecting the insect pathogenic bacterium Photorhabdus luminescens into the blood system of the model lepidopteran insect Manduca sexta induces nitric oxide synthase (NOS) expression in the fat body and blood cells (haemocytes), whereas following oral ingestion of bacteria NOS expression is limited to the gut. We used RNA interference to knock-down expression of NOS throughout the insect. Preventing NOS induction in this way adversely affected the survival of orally infected insects and caused a significant increase in the number of bacteria crossing into the haemolymph. By contrast, knock-down of NOS had no effect on the mortality rate of insects infected with P. luminescens by injection. Pharmacological inhibition of NOS decreased both nitric oxide (NO) levels in the gut wall and survival of orally infected insects, whereas elevation of gut wall NO using an NO donor increased survival of NOS silenced caterpillars. Together, our results imply that induced synthesis of NO is important in mediating insect immune defence against the pathogen by inhibiting transfer of bacteria across the gut wall.
Collapse
Affiliation(s)
- I Eleftherianos
- CNRS-UPR9022, Institut de Biologie Moléculaire et Cellulaire, 67084 Strasbourg Cedex, France.
| | | | | | | |
Collapse
|
13
|
Anderson JM, Sonenshine DE, Valenzuela JG. Exploring the mialome of ticks: an annotated catalogue of midgut transcripts from the hard tick, Dermacentor variabilis (Acari: Ixodidae). BMC Genomics 2008; 9:552. [PMID: 19021911 PMCID: PMC2644717 DOI: 10.1186/1471-2164-9-552] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2007] [Accepted: 11/20/2008] [Indexed: 11/30/2022] Open
Abstract
Background Ticks are obligate blood feeders. The midgut is the first major region of the body where blood and microbes ingested with the blood meal come in contact with the tick's internal tissues. Little is known about protein expression in the digestive tract of ticks. In this study, for analysis of global gene expression during tick attachment and feeding, we generated and sequenced 1,679 random transcripts (ESTs) from cDNA libraries from the midguts of female ticks at varying stages of feeding. Results Sequence analysis of the 1,679 ESTs resulted in the identification of 835 distinct transcripts, from these, a total of 82 transcripts were identified as proteins putatively directly involved in blood meal digestion, including enzymes involved in oxidative stress reduction/antimicrobial activity/detoxification, peptidase inhibitors, protein digestion (cysteine-, aspartic-, serine-, and metallo-peptidases), cell, protein and lipid binding including mucins and iron/heme metabolism and transport. A lectin-like protein with a high match to lectins in other tick species, allergen-like proteins and surface antigens important in pathogen recognition and/or antimicrobial activity were also found. Furthermore, midguts collected from the 6-day-fed ticks expressed twice as many transcripts involved in bloodmeal processing as midguts from unfed/2-day-fed ticks. Conclusion This tissue-specific transcriptome analysis provides an opportunity to examine the global expression of transcripts in the tick midgut and to compare the gut response to host attachment versus blood feeding and digestion. In contrast to those in salivary glands of other Ixodid ticks, most proteins in the D. variabilis midgut cDNA library were intracellular. Of the total ESTs associated with a function, an unusually large number of transcripts were associated with peptidases, cell, lipid and protein binding, and oxidative stress or detoxification. Presumably, this is consistent with their role in intracellular processing of the blood meal and response to microbial infections. The presence of many proteins with similar functions is consistent with the hypothesis that gene duplication contributed to the successful adaptation of ticks to hematophagy. Furthermore, these transcripts may be useful to scientists investigating the role of the tick midgut in blood-meal digestion, antimicrobial activity or the transmission of tick-borne pathogens.
Collapse
Affiliation(s)
- Jennifer M Anderson
- Vector Molecular Biology Unit, Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA.
| | | | | |
Collapse
|
14
|
Meredith JM, Hurd H, Lehane MJ, Eggleston P. The malaria vector mosquito Anopheles gambiae expresses a suite of larval-specific defensin genes. INSECT MOLECULAR BIOLOGY 2008; 17:103-12. [PMID: 18353100 PMCID: PMC2459261 DOI: 10.1111/j.1365-2583.2008.00786.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
cDNAs of Anopheles gambiae Defensin 2 (AgDef2), Defensin 3 (AgDef3) and Defensin 4 (AgDef4), identified in the genome sequence, have been characterized and their expression profiles investigated. In contrast to both typical defensins and insect antimicrobial peptides generally, the newly identified defensins were not upregulated with acute-phase kinetics following immune challenge in insects or cell culture. However, mRNA abundance of AgDef2, AgDef3 and AgDef4 increased significantly during the larval stages. Promoter analysis of all three genes failed to identify putative immune response elements previously identified in other mosquito defensin genes. As previous studies failed to identify these larval-specific defensins, it seems likely that further antimicrobial peptide genes with nontypical expression profiles will be identified as more genome sequences become available.
Collapse
Affiliation(s)
- J M Meredith
- School of Life Sciences, Keele University, Staffordshire, UK
| | | | | | | |
Collapse
|
15
|
Boulanger N, Bulet P, Lowenberger C. Antimicrobial peptides in the interactions between insects and flagellate parasites. Trends Parasitol 2006; 22:262-8. [PMID: 16635587 DOI: 10.1016/j.pt.2006.04.003] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2005] [Revised: 03/07/2006] [Accepted: 04/04/2006] [Indexed: 11/17/2022]
Abstract
Innate immunity has a key role in the control of microbial infections in both vertebrates and invertebrates. In insects, including vectors that transmit parasites that cause major human and animal diseases, antimicrobial peptides (AMPs) are important components of innate immunity. AMPs are induced upon parasitic infections and can participate in regulating parasite development in the digestive tract and in the hemolymph. This review presents our current knowledge of a field that is in its infancy: the role of innate immunity in different models of insects infected with flagellate parasites, and in particular the potential role of AMPs in regulating these parasitic infections.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Equipe d'Accueil 3432, Faculté de Pharmacie, Université Louis Pasteur, 67401 Illkirch Cedex, France.
| | | | | |
Collapse
|
16
|
Dana AN, Hillenmeyer ME, Lobo NF, Kern MK, Romans PA, Collins FH. Differential gene expression in abdomens of the malaria vector mosquito, Anopheles gambiae, after sugar feeding, blood feeding and Plasmodium berghei infection. BMC Genomics 2006; 7:119. [PMID: 16712725 PMCID: PMC1508153 DOI: 10.1186/1471-2164-7-119] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Accepted: 05/19/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Large scale sequencing of cDNA libraries can provide profiles of genes expressed in an organism under defined biological and environmental circumstances. We have analyzed sequences of 4541 Expressed Sequence Tags (ESTs) from 3 different cDNA libraries created from abdomens from Plasmodium infection-susceptible adult female Anopheles gambiae. These libraries were made from sugar fed (S), rat blood fed (RB), and P. berghei-infected (IRB) mosquitoes at 30 hours after the blood meal, when most parasites would be transforming ookinetes or very early oocysts. RESULTS The S, RB and IRB libraries contained 1727, 1145 and 1669 high quality ESTs, respectively, averaging 455 nucleotides (nt) in length. They assembled into 1975 consensus sequences--567 contigs and 1408 singletons. Functional annotation was performed to annotate probable molecular functions of the gene products and the biological processes in which they function. Genes represented at high frequency in one or more of the libraries were subjected to digital Northern analysis and results on expression of 5 verified by qRT-PCR. CONCLUSION 13% of the 1965 ESTs showing identity to the A. gambiae genome sequence represent novel genes. These, together with untranslated regions (UTR) present on many of the ESTs, will inform further genome annotation. We have identified 23 genes encoding products likely to be involved in regulating the cellular oxidative environment and 25 insect immunity genes. We also identified 25 genes as being up or down regulated following blood feeding and/or feeding with P. berghei infected blood relative to their expression levels in sugar fed females.
Collapse
Affiliation(s)
- Ali N Dana
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Neil F Lobo
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Marcia K Kern
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Patricia A Romans
- Department of Zoology, University of Toronto, Toronto, ON M5S 3G5, Canada
| | - Frank H Collins
- Center for Tropical Disease Research and Training, Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
17
|
Munks RJL, Sant'Anna MRV, Grail W, Gibson W, Igglesden T, Yoshiyama M, Lehane SM, Lehane MJ. Antioxidant gene expression in the blood-feeding fly Glossina morsitans morsitans. INSECT MOLECULAR BIOLOGY 2005; 14:483-91. [PMID: 16164604 DOI: 10.1111/j.1365-2583.2005.00579.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report the characterization of 11 antioxidant genes from the tsetse fly Glossina m. morsitans. Through similarity searches which detected homology we suggest that these genes consist of two superoxide dismutases (one with a putative signal peptide), three thioredoxin peroxidases (one with a putative signal peptide), three peroxiredoxins, one further signal peptide-containing peroxidase with its closest similarity to a glutathione peroxidase, one catalase and one thioredoxin reductase. We describe the changes occurring in the expression levels of these genes during fly development, in different adult tissues, in the adult midgut through the digestive cycle and following trypanosome infection. Overall, nine of the 11 genes studied showed responses to changes in physiological circumstance, with the peroxiredoxin group showing the smallest variations throughout.
Collapse
Affiliation(s)
- R J L Munks
- School of Biological Sciences, University of Wales, Bangor, Gwynedd, UK
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cônsoli FL, Tian HS, Vinson SB, Coates CJ. Differential gene expression during wing morph differentiation of the ectoparasitoid Melittobia digitata (Hym., Eulophidae). Comp Biochem Physiol A Mol Integr Physiol 2005; 138:229-39. [PMID: 15275658 DOI: 10.1016/j.cbpb.2004.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2003] [Revised: 04/06/2004] [Accepted: 04/07/2004] [Indexed: 10/26/2022]
Abstract
Melittobia digitata is an ectoparasitoid of solitary bees and wasps that displays a trade-off between reproduction and dispersion through the development of two wing morphs (long and short wing morphs (LWM and SWM)). The morph differentiation of this species is an exceptional adaptation to maximize host exploitation and habitat colonization, and an understanding of the mechanisms underlying this developmental process will shed light on how nutrients or environmental elicitors alter regulatory pathways leading to physiological and metabolic changes resulting in such drastic developmental rearrangements. Here we describe the differential gene expression between SWM and LWM larvae of M. digitata in order to unravel the molecular mechanisms controlling the morph differentiation in this minute parasitoid and pinpoint the pathways involved in the regulation of this developmental process. The suppression subtractive hybridization (SSH) methodology was used to isolate differentially expressed genes using mRNA populations collected soon after morph development commitment. Dot blot analysis of 384 clones from a forward SSH library identified approximately 200 differentially expressed clones, including those transcripts present in very low abundance. Further DNA sequence analysis of a sub-population of 42 clones revealed 31 putatively unique transcripts, from which 5 were further analyzed by Northern blot analysis and semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR). The complete cDNA of one of these transcripts, a putative metalloprotease, was fully sequenced and is described. The role of the putative differentially expressed genes during the wing morph differentiation of M. digitata is discussed.
Collapse
Affiliation(s)
- F L Cônsoli
- Department of Entomology, Entomology Research Lab, Texas A&M University, College Station, TX 77843-2475, USA.
| | | | | | | |
Collapse
|
19
|
Abstract
Epithelial cells contribute to innate immunity by releasing antimicrobial peptides (AMPs) onto mucosal surfaces. In the small bowel, Paneth cells at the base of the crypts of Lieberkühn secrete alpha-defensins and additional AMPs at high levels in response to cholinergic stimulation and when exposed to bacterial antigens. The release of Paneth cell products into the crypt lumen is inferred to protect mitotically active crypt cells that renew the epithelial cell monolayer from colonization by potentially pathogenic microbes and to confer protection from enteric infection. The most compelling evidence for a Paneth cell role in enteric resistance to infection is evident from studies of mice transgenic for a human Paneth cell alpha-defensin, HD-5, which are completely immune to infection and systemic disease from orally administered Salmonella typhimurium. Alpha-defensins in Paneth cell secretions may also interact with bacteria in the intestinal lumen above the crypt-villus boundary and influence the composition of the enteric microbial flora, but that remains to be demonstrated.
Collapse
Affiliation(s)
- Andre J Ouellette
- Departments of Pathology and Microbiology and Molecular Genetics, College of Medicine, University of California, Irvine, CA 92697-4800, USA.
| |
Collapse
|
20
|
Bartholomay LC, Fuchs JF, Cheng LL, Beck ET, Vizioli J, Lowenberger C, Christensen BM. Reassessing the role of defensin in the innate immune response of the mosquito, Aedes aegypti. INSECT MOLECULAR BIOLOGY 2004; 13:125-132. [PMID: 15056359 DOI: 10.1111/j.0962-1075.2004.00467.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Defensin is the predominant inducible immune peptide in Aedes aegypti. In spite of its activity against Gram-positive bacteria in vitro, defensin expression is detected in mosquitoes inoculated with Gram-positive or negative bacteria, or with filarial worms. Defensin transcription and expression are dependent upon bacterial dose; however, translation is inconsistent with transcription because peptide is detectable only in mosquitoes inoculated with large doses. In vitro translation assays provide further evidence for post-transcriptional regulation of defensin. Clearance assays show that a majority of bacteria are cleared before defensin is detected. In gene silencing experiments, no significant difference in mortality was observed between defensin-deficient and control mosquitoes after bacteria inoculation. These studies suggest that defensin may have an alternative function in mosquito immunity.
Collapse
Affiliation(s)
- L C Bartholomay
- Department of Animal Health and Biomedical Sciences, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | | | | | | | |
Collapse
|
21
|
Hao Z, Kasumba I, Aksoy S. Proventriculus (cardia) plays a crucial role in immunity in tsetse fly (Diptera: Glossinidiae). INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2003; 33:1155-1164. [PMID: 14563366 DOI: 10.1016/j.ibmb.2003.07.001] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Fat body and hemocytes play a central role in cellular and humoral responses for systemic infections in invertebrates, similar to the mammalian liver and blood cells. Epithelial surfaces, in particular the midgut, participate in the initial local immune responses in order to aid in the generation of the terminal cytotoxic molecules that mediate non-self recognition. Here, we describe for the first time the immune responses of a cluster of cells at the foregut/midgut junction--known as proventriculus (cardia) in the medically and agriculturally important insect, tsetse fly (Diptera: Glossinidae). We provide evidence for the transcriptional induction of the antimicrobial peptides attacin and defensin as well as for the reactive nitrogen intermediate (RNI) nitric oxide synthase (NOS) upon microbial challenge by either microinjection or feeding. Proventriculus from immune challenged flies also has higher NOS and nitric oxide (NO) activities as well as increased levels of the reactive oxygen intermediate (ROI), hydrogen peroxide (H2O2). In several vector pathogen systems, including tsetse flies and African trypanosomes, stimulation of systemic responses prior to pathogen acquisition has been shown to reduce disease transmission. Furthermore, the induction of systemic immune responses has been documented while pathogens are still differentiating within the midgut environment. While evidence for a close molecular communication between the local and systemic responses is accumulating, the molecular signals that mediate these interactions are at present unknown. Reactive intermediates such as NO or H2O2 may function as immunological signals for mediating the molecular communication between the different insect compartments. We discuss the putative role of the proventriculus in invertebrate immunity and specifically speculate on its significance for trypanosome transmission in tsetse.
Collapse
Affiliation(s)
- Zhengrong Hao
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
22
|
Boulanger N, Munks RJL, Hamilton JV, Vovelle F, Brun R, Lehane MJ, Bulet P. Epithelial innate immunity. A novel antimicrobial peptide with antiparasitic activity in the blood-sucking insect Stomoxys calcitrans. J Biol Chem 2002; 277:49921-6. [PMID: 12372834 DOI: 10.1074/jbc.m206296200] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The gut epithelium is an essential interface in insects that transmit parasites. We investigated the role that local innate immunity might have on vector competence, taking Stomoxys calcitrans as a model. S. calcitrans is sympatric with tsetse flies, feeds on many of the same vertebrate hosts, and is thus regularly exposed to the trypanosomes that cause African sleeping sickness and nagana. Despite this, S. calcitrans is not a cyclical vector of these trypanosomes. Trypanosomes develop exclusively in the lumen of digestive organs, and so epithelial immune mechanisms, and in particular antimicrobial peptides (AMPs), may be the prime determinants of the fate of an infection. To investigate why S. calcitrans is not a cyclical vector of trypanosomes, we have looked in its midgut for AMPs with trypanolytic activity. We have identified a new AMP of 42 amino acids, which we named stomoxyn, constitutively expressed and secreted exclusively in the anterior midgut of S. calcitrans. It displays an amphipathic helical structure and exhibits a broad activity spectrum affecting the growth of microorganisms. Interestingly, this AMP exhibits trypanolytic activity to Trypanosoma brucei rhodesiense. We argue that stomoxyn may help to explain why S. calcitrans is not a vector of trypanosomes causing African sleeping sickness and nagana.
Collapse
Affiliation(s)
- Nathalie Boulanger
- Institut de Biologie Moléculaire et Cellulaire, 15 Rue René Descartes, 67084 Strasbourg Cedex, France
| | | | | | | | | | | | | |
Collapse
|
23
|
Hao Z, Aksoy S. Proventriculus-specific cDNAs characterized from the tsetse, Glossina morsitans morsitans. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2002; 32:1663-1671. [PMID: 12429118 DOI: 10.1016/s0965-1748(02)00106-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Peritrophic matrix (peritrophic membrane or PM) is an important structure in the gut of most insects at some stage in their development. It is composed of chitin, proteins and proteoglycans. Multiple roles for the PM ranging from partitioning of digestive enzymes and food to protection of gut epithelial cells from viral and parasitic invasion have been proposed. While most adult members of Diptera have a Type I PM synthesized in response to a blood meal, the medically and agriculturally important vector insect, tsetse has a sleeve-like Type II PM which is constitutively synthesized by cells in the proventriculus (cardia). Using a differential hybridization approach, we have identified three abundant cDNAs from a proventriculus cDNA library of GLOSSINA MORSITANS MORSITANS: GmPro1, GmPro2 and GmPro3. DNA sequence analysis indicates that GmPro1 and GmPro2 share similarities with the peritrophin-15 family of larval PM proteins, while GmPro3 is a member of the serine protease family. Northern analysis indicates that transcripts for all three cDNAs are preferentially expressed in the proventriculus tissue. The expression profile of these genes in response to the presence of trypanosome indicates that transcription of GmPro1 is increased in the presence of parasites (immune sensitive), while the other two are not affected. Western analysis using antibodies developed against the recombinant GmPro2 shows its primary localization in the gut to be within the peritrophic matrix structure. We discuss the molecular characteristics of these proventriculus specific cDNAs and their products as well as their potential role for vector control studies.
Collapse
Affiliation(s)
- Zhengrong Hao
- Department of Epidemiology and Public Health, Section of Vector Biology, Yale University School of Medicine, 60 College St, 606 LEPH, New Haven, Connecticut 06510, USA
| | | |
Collapse
|