1
|
Imlay JA. The Barrier Properties of Biological Membranes Dictate How Cells Experience Oxidative Stress. Mol Microbiol 2025. [PMID: 40091849 DOI: 10.1111/mmi.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Molecular oxygen, superoxide, and hydrogen peroxide are related oxidants that can each impair the growth of microorganisms. Strikingly, these species exhibit large differences in their abilities to cross biological membranes. This Perspective explains the basis of those differences, and it describes natural situations in which the permeability of membranes to oxidants determines the amount of stress that a bacterium experiences.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois, USA
| |
Collapse
|
2
|
Sang Y, Hao Q, Zhang Y, Wang O, Zheng S, Liu F. Simultaneous removal of methane and high nitrite from the wastewater by Methylomonas sp. with soluble methane monooxygenase. BIORESOURCE TECHNOLOGY 2025; 418:131972. [PMID: 39667626 DOI: 10.1016/j.biortech.2024.131972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
Aerobic methanotrophs play a crucial role in controlling methane emission in wastewater treatment. However, the high nitrite produced during ammonium oxidation, nitrate assimilation, and denitrification hinders methane oxidation and nitrogen removal. In this study, Methylomonas sp. HYX-M1, possessing two methane monooxygenase and multiple nitrite reductase genes, demonstrated efficient methane oxidation, coupled with nitrite removal abilities up to 6 mM. Strain HYX-M1 presented methane oxidation rate of 0.05 mmol/d and nitrite removal rate of 0.53 mM/d under low-oxygen conditions. Assimilation and denitrification mainly accounted for 94.6-96.06 % and 3.10-5.03 % of nitrite removal. Methane monooxygenase genes, pmoA and mmoX expressed in different nitrite concentrations. Meanwhile, the nirB and nirD of strain HYX-M1 upregulated by 2.7- and 8.5-fold in 6 mM, respectively. The sod and ahpC genes upregulated, contributing to the survival of strain HYX-M1 in high nitrite. These findings provide a new strategy for the application of aerobic methanotrophs in regulating methane emission of wastewater with high nitrite.
Collapse
Affiliation(s)
- Yuxuan Sang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Qinqin Hao
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Yuechao Zhang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Oumei Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| | - Shiling Zheng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China
| | - Fanghua Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai Shandong 264003, PR China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Institute of Eco-environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou 510650, PR China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266237, PR China.
| |
Collapse
|
3
|
Rothwell JG, Hong J, Morrison SJ, Vyas HKN, Xia B, Mai-Prochnow A, McConchie R, Phan-Thien KY, Cullen PJ, Carter DA. An Effective Sanitizer for Fresh Produce Production: In Situ Plasma-Activated Water Treatment Inactivates Pathogenic Bacteria and Maintains the Quality of Cucurbit Fruit. Microbiol Spectr 2023; 11:e0003423. [PMID: 37428084 PMCID: PMC10434273 DOI: 10.1128/spectrum.00034-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 06/18/2023] [Indexed: 07/11/2023] Open
Abstract
The effect of plasma-activated water (PAW) generated with a dielectric barrier discharge diffusor (DBDD) system on microbial load and organoleptic quality of cucamelons was investigated and compared to the established sanitizer, sodium hypochlorite (NaOCl). Pathogenic serotypes of Escherichia coli, Salmonella enterica, and Listeria monocytogenes were inoculated onto the surface of cucamelons (6.5 log CFU g-1) and into the wash water (6 log CFU mL-1). PAW treatment involved 2 min in situ with water activated at 1,500 Hz and 120 V and air as the feed gas; NaOCl treatment was a wash with 100 ppm total chlorine; control treatment was a wash with tap water. PAW treatment produced a 3-log CFU g-1 reduction of pathogens on the cucamelon surface without negatively impacting quality or shelf life. NaOCl treatment reduced the pathogenic bacteria on the cucamelon surface by 3 to 4 log CFU g-1; however, this treatment also reduced fruit shelf life and quality. Both systems reduced 6-log CFU mL-1 pathogens in the wash water to below detectable limits. The critical role of superoxide anion radical (·O2-) in the antimicrobial power of DBDD-PAW was demonstrated through a Tiron scavenger assay, and chemistry modeling confirmed that ·O2- generation readily occurs in DBDD-PAW generated with the employed settings. Modeling of the physical forces produced during plasma treatment showed that bacteria likely experience strong local electric fields and polarization. We hypothesize that these physical effects synergize with reactive chemical species to produce the acute antimicrobial activity seen with the in situ PAW system. IMPORTANCE Plasma-activated water (PAW) is an emerging sanitizer in the fresh food industry, where food safety must be achieved without a thermal kill step. Here, we demonstrate PAW generated in situ to be a competitive sanitizer technology, providing a significant reduction of pathogenic and spoilage microorganisms while maintaining the quality and shelf life of the produce item. Our experimental results are supported by modeling of the plasma chemistry and applied physical forces, which show that the system can generate highly reactive ·O2- and strong electric fields that combine to produce potent antimicrobial power. In situ PAW has promise in industrial applications as it requires only low power (12 W), tap water, and air. Moreover, it does not produce toxic by-products or hazardous effluent waste, making it a sustainable solution for fresh food safety.
Collapse
Affiliation(s)
- Joanna G. Rothwell
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Jungmi Hong
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Stuart J. Morrison
- Department of Agricultural and Resource Economics, University of California, Davis, California, USA
| | - Heema Kumari Nilesh Vyas
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| | - Binbin Xia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Anne Mai-Prochnow
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Robyn McConchie
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Kim-Yen Phan-Thien
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
| | - Patrick J. Cullen
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales, Australia
| | - Dee A. Carter
- ARC Training Centre for Food Safety in the Fresh Produce Industry, School of Life and Environmental Sciences, Faculty of Science, Sydney Institute of Agriculture, The University of Sydney, Sydney, New South Wales, Australia
- Sydney Institute of Infectious Diseases, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
4
|
Xia B, Vyas HKN, Zhou R, Zhang T, Hong J, Rothwell JG, Rice SA, Carter D, Ostrikov K(K, Cullen PJ, Mai-Prochnow A. The importance of superoxide anion for Escherichia coli biofilm removal using plasma-activated water. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2023; 11:109977. [DOI: 10.1016/j.jece.2023.109977] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
5
|
Omar NM, Fleury K, Beardsall B, Prášil O, Campbell DA. Genomic capacities for Reactive Oxygen Species metabolism across marine phytoplankton. PLoS One 2023; 18:e0284580. [PMID: 37098087 PMCID: PMC10128935 DOI: 10.1371/journal.pone.0284580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 04/04/2023] [Indexed: 04/26/2023] Open
Abstract
Marine phytoplankton produce and scavenge Reactive Oxygen Species, to support cellular processes, while limiting damaging reactions. Some prokaryotic picophytoplankton have, however, lost all genes encoding scavenging of hydrogen peroxide. Such losses of metabolic function can only apply to Reactive Oxygen Species which potentially traverse the cell membrane outwards, before provoking damaging intracellular reactions. We hypothesized that cell radius influences which elements of Reactive Oxygen Species metabolism are partially or fully dispensable from a cell. We therefore investigated genomes and transcriptomes from diverse marine eukaryotic phytoplankton, ranging from 0.4 to 44 μm radius, to analyze the genomic allocations encoding enzymes metabolizing Reactive Oxygen Species. Superoxide has high reactivity, short lifetimes and limited membrane permeability. Genes encoding superoxide scavenging are ubiquitous across phytoplankton, but the fractional gene allocation decreased with increasing cell radius, consistent with a nearly fixed set of core genes for scavenging superoxide pools. Hydrogen peroxide has lower reactivity, longer intracellular and extracellular lifetimes and readily crosses cell membranes. Genomic allocations to both hydrogen peroxide production and scavenging decrease with increasing cell radius. Nitric Oxide has low reactivity, long intracellular and extracellular lifetimes and readily crosses cell membranes. Neither Nitric Oxide production nor scavenging genomic allocations changed with increasing cell radius. Many taxa, however, lack the genomic capacity for nitric oxide production or scavenging. The probability of presence of capacity to produce nitric oxide decreases with increasing cell size, and is influenced by flagella and colony formation. In contrast, the probability of presence of capacity to scavenge nitric oxide increases with increasing cell size, and is again influenced by flagella and colony formation.
Collapse
Affiliation(s)
- Naaman M Omar
- Department of Biology, Mount Allison University, Sackville, NB, Canada
| | - Katherine Fleury
- Department of Biology, Mount Allison University, Sackville, NB, Canada
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Brian Beardsall
- Department of Biology, Mount Allison University, Sackville, NB, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Ondřej Prášil
- Institute of Microbiology, Center Algatech, Laboratory of Photosynthesis, Trebon, CZ, Czech Republic
| | | |
Collapse
|
6
|
Surface Characterization, Antimicrobial Activity of Nonthermal Atmospheric-Pressure Plasma Jet on Polyvinyl Siloxane Impression Materials. Medicina (B Aires) 2022; 58:medicina58111556. [PMID: 36363513 PMCID: PMC9699206 DOI: 10.3390/medicina58111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 01/20/2023] Open
Abstract
Background and Objectives The antimicrobial efficacy of a nonthermal atmospheric-pressure plasma jet (NAPPJ) on dental impression materials was investigated. Materials and Methods Type 3 polyvinyl siloxane was used as the impression material, and air and nitrogen NAPPJ were applied. The antibacterial effect of the NAPPJ was measured using the number of colony-forming units (CFUs) and scanning electron microscopy (SEM) images of Streptococcus mutans. Surface chemical characteristics of the impression material were examined using X-ray photoelectron spectroscopy (XPS) and contact angle measurement. Additionally, physical properties were analyzed through surface roughness measurement, detail reproduction, and strain-in-compression test. Results Compared with the control group, the plasma treatment group showed ruptured bacteria membranes, destroyed bacteria structures, a significant reduction in the number of CFUs, and a significantly reduced contact angle. Further, XPS analysis showed that their surface was significantly richer in hydroxyl groups. The surface roughness, detail reproduction, and strain-in-compression results indicated no significant differences between the plasma treatment and control groups. NAPPJ treatment could remove bacteria from polyvinyl siloxane dental impression materials without changing the surface's physical properties. Conclusion Therefore, it is considered a promising method for disinfection.
Collapse
|
7
|
Li Y, Liu X, Cui Z, Zheng Y, Jiang H, Zhang Y, Liang Y, Li Z, Zhu S, Wu S. Treating Multi-Drug-Resistant Bacterial Infections by Functionalized Nano-Bismuth Sulfide through the Synergy of Immunotherapy and Bacteria-Sensitive Phototherapy. ACS NANO 2022; 16:14860-14873. [PMID: 36094899 DOI: 10.1021/acsnano.2c05756] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Owing to its flexibility and high treatment efficiency, phototherapy is rapidly emerging for treating bacteria-induced diseases, but how to improve the sensitivity of bacteria to reactive oxygen species (ROS) and heat simultaneously to kill bacteria under mild conditions is still a challenge. Herein, we designed a NIR light catalyst (Bi2S3-S-nitrosothiol-acetylcholine (BSNA)) by transforming •O2- into peroxynitrite in situ, which can enhance the bacterial sensibility to ROS and heat and kill bacteria under a mild temperature. The transformed peroxynitrite in situ possessed a stronger ability to penetrate cell membranes and antioxidant capacity. The BSNA nanoparticles (NPs) inhibited the bacterial glucose metabolic process through down-regulated xerC/xerD expression and disrupted the HSP70/HSP90 secondary structure through nitrifying TYR179. Additionally, the synergistic effect of the designed BSNA and clinical antibiotics increased the antibacterial activity. In the case of tetracycline-class antibiotics, BSNA NPs induced phenolic hydroxyl group structure changes and inhibited the interaction between tetracycline and targeted t-RNA recombinant protein. Besides, BSNA stimulated production of more CD8+ T cells and reduced common complications in peritonitis, which provided immunotherapy activity. The targeted and anti-infective effect of BSNA suggested that we propose a nanotherapeutic strategy to achieve more efficient synergistic therapy under mild temperatures.
Collapse
Affiliation(s)
- Yuan Li
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Xiangmei Liu
- School of Health Science & Biomedical Engineering, Hebei University of Technology, Xiping Avenue 5340, Beichen District, Tianjin 300401, P.R. China
| | - Zhenduo Cui
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Yufeng Zheng
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Hui Jiang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Yu Zhang
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
| | - Yanqin Liang
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Zhaoyang Li
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Shengli Zhu
- The Key Laboratory of Advanced Ceramics and Machining Technology by the Ministry of Education of China, School of Materials Science & Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Shuilin Wu
- School of Materials Science & Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Lin S, Zhu L, Tang Z, Wang ZL. Spin-selected electron transfer in liquid-solid contact electrification. Nat Commun 2022; 13:5230. [PMID: 36064784 PMCID: PMC9445095 DOI: 10.1038/s41467-022-32984-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/26/2022] [Indexed: 01/12/2023] Open
Abstract
Electron transfer has been proven the dominant charge carrier during contact electrification at the liquid-solid interface. However, the effect of electron spin in contact electrification remains to be investigated. This study examines the charge transfer between different liquids and ferrimagnetic solids in a magnetic field, focusing on the contribution of O2 molecules to the liquid-solid contact electrification. The findings reveal that magnetic fields promote electron transfer at the O2-containing liquid-solid interfaces. Moreover, magnetic field-induced electron transfer increases at higher O2 concentrations in the liquids and decreases at elevated temperatures. The results indicate spin-selected electron transfer at liquid-solid interface. External magnetic fields can modulate the spin conversion of the radical pairs at the O2-containing liquid and ferrimagnetic solid interfaces due to the Zeeman interaction, promoting electron transfer. A spin-selected electron transfer model for liquid-solid contact electrification is further proposed based on the radical pair mechanism, in which the HO2 molecules and the free unpaired electrons from the ferrimagnetic solids are considered radical pairs. The spin conversion of the [HO2• •e-] pairs is affected by magnetic fields, rendering the electron transfer magnetic field-sensitive.
Collapse
Affiliation(s)
- Shiquan Lin
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Laipan Zhu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhen Tang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China. .,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China. .,School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332-0245, USA.
| |
Collapse
|
9
|
Grabb KC, Pardis WA, Kapit J, Wankel SD, Hayden EB, Hansel CM. Design Optimization of a Submersible Chemiluminescent Sensor (DISCO) for Improved Quantification of Reactive Oxygen Species (ROS) in Surface Waters. SENSORS (BASEL, SWITZERLAND) 2022; 22:6683. [PMID: 36081142 PMCID: PMC9460491 DOI: 10.3390/s22176683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/30/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Reactive oxygen species (ROS) are key drivers of biogeochemical cycling while also exhibiting both positive and negative effects on marine ecosystem health. However, quantification of the ROS superoxide (O2-) within environmental systems is hindered by its short half-life. Recently, the development of the diver-operated submersible chemiluminescent sensor (DISCO), a submersible, handheld instrument, enabled in situ superoxide measurements in real time within shallow coral reef ecosystems. Here, we present a redesigned and improved instrument, DISCO II. Similar to the previous DISCO, DISCO II is a self-contained, submersible sensor, deployable to 30 m depth and capable of measuring reactive intermediate species in real time. DISCO II is smaller, lighter, lower cost, and more robust than its predecessor. Laboratory validation of DISCO II demonstrated an average limit of detection in natural seawater of 133.1 pM and a percent variance of 0.7%, with stable photo multiplier tube (PMT) counts, internal temperature, and flow rates. DISCO II can also be optimized for diverse environmental conditions by adjustment of the PMT supply voltage and integration time. Field tests showed no drift in the data with a percent variance of 3.0%. Wand tip adaptations allow for in situ calibrations and decay rates of superoxide using a chemical source of superoxide (SOTS-1). Overall, DISCO II is a versatile, user-friendly sensor that enables measurements in diverse environments, thereby improving our understanding of the cycling of reactive intermediates, such as ROS, across various marine ecosystems.
Collapse
Affiliation(s)
- Kalina C. Grabb
- MIT-WHOI Joint Program in Oceanography, Cambridge, MA 02139, USA
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543, USA
| | - William A. Pardis
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering, Woods Hole, MA 02543, USA
| | - Jason Kapit
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering, Woods Hole, MA 02543, USA
| | - Scott D. Wankel
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543, USA
| | - Eric B. Hayden
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering, Woods Hole, MA 02543, USA
| | - Colleen M. Hansel
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry, Woods Hole, MA 02543, USA
| |
Collapse
|
10
|
Giannakis S, Gupta A, Pulgarin C, Imlay J. Identifying the mediators of intracellular E. coli inactivation under UVA light: The (photo) Fenton process and singlet oxygen. WATER RESEARCH 2022; 221:118740. [PMID: 35717710 PMCID: PMC11136163 DOI: 10.1016/j.watres.2022.118740] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/29/2022] [Accepted: 06/11/2022] [Indexed: 06/15/2023]
Abstract
Solar disinfection (SODIS) was probed for its underlying mechanism. When Escherichia coli was exposed to UVA irradiation, the dominant solar fraction acting in SODIS process, cells exhibited a shoulder before death ensued. This profile resembles cell killing by hydrogen peroxide (H2O2). Indeed, the use of specialized strains revealed that UVA exposure triggers intracellular H2O2 formation. The resultant H2O2 stress was especially impactful because UVA also inactivated the processes that degrade H2O2-peroxidases through the suppression of metabolism, and catalases through direct enzyme damage. Cell killing was enhanced when water was replaced with D2O, suggesting that singlet oxygen plays a role, possibly as a precursor to H2O2 and/or as the mediator of catalase damage. UVA was especially toxic to mutants lacking miniferritin (dps) or recombinational DNA repair (recA) enzymes, indicating that reactions between ferrous iron and UVA-generated H2O2 lead to lethal DNA damage. Importantly, experiments showed that the intracellular accumulation of H2O2 alone is insufficient to kill cells; therefore, UVA must do something more to enable death. A possibility is that UVA stimulates the reduction of intracellular ferric iron to its ferrous form, either by stimulating O2•- formation or by generating photoexcited electron donors. These observations and methods open the door to follow-up experiments that can probe the mechanisms of H2O2 formation, catalase inactivation, and iron reduction. Of immediate utility, the data highlight the intracellular pathways formed under UVA light during SODIS, and that the presence of micromolar iron accelerates the rate at which radiation disinfects water.
Collapse
Affiliation(s)
- Stefanos Giannakis
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA; School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad docente Ingeniería Sanitaria, Universidad Politécnica de Madrid (UPM), c/ Profesor Aranguren, s/n, Madrid ES-28040, Spain.
| | - Anshika Gupta
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA
| | - Cesar Pulgarin
- School of Basic Sciences (SB), Group of Advanced Oxidation Processes (GPAO), École Polytechnique Fédérale de Lausanne (EPFL), Institute of Chemical Science and Engineering (ISIC), Station 6, Lausanne CH-1015, Switzerland; Colombian Academy of Exact, Physical and Natural Sciences, Carrera 28 A No. 39A-63, Bogotá, Colombia
| | - James Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL 61801, USA.
| |
Collapse
|
11
|
Lim J, Hong EJ, Kim SB, Ryu S. The Effect of Gap Distance between a Pin and Water Surface on the Inactivation of Escherichia coli Using a Pin-to-Water Plasma. Int J Mol Sci 2022; 23:ijms23105423. [PMID: 35628234 PMCID: PMC9145933 DOI: 10.3390/ijms23105423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Atmospheric plasmas have been applied for the inactivation of microorganisms. Industrials demand to investigate the relation of the key reactive species induced by plasmas and the operating parameters including boundary conditions in order to control plasma treatment processes. In this study, we investigated the effect of gap distance between a pin-electrode and water surface on inactivation efficacy. When the gap distance decreased from 5 mm to 1 mm, the reduction of Escherichia coli (E. coli) was increased to more than 4 log CFU/mL. The reactive oxygen species measured optically and spectrophotometrically were influenced by gap distance. The results from electron spin resonance (ESR) analysis showed that the pin-to-water plasma generated hydroxyl radical (OH•) and singlet oxygen (1O2) in the water and superoxide radical (O2−•) served as a precursor of OH•. The inactivation of E. coli was significantly alleviated by sodium azide (1O2 scavenger), indicating that 1O2 contributes the most to bacterial inactivation. These findings provide a potentially effective strategy for bacterial inactivation using a pin-to-water plasma.
Collapse
|
12
|
Chautrand T, Souak D, Chevalier S, Duclairoir-Poc C. Gram-Negative Bacterial Envelope Homeostasis under Oxidative and Nitrosative Stress. Microorganisms 2022; 10:924. [PMID: 35630368 PMCID: PMC9144841 DOI: 10.3390/microorganisms10050924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Bacteria are frequently exposed to endogenous and exogenous reactive oxygen and nitrogen species which can damage various biomolecules such as DNA, lipids, and proteins. High concentrations of these molecules can induce oxidative and nitrosative stresses in the cell. Reactive oxygen and nitrogen species are notably used as a tool by prokaryotes and eukaryotes to eradicate concurrent species or to protect themselves against pathogens. The main example is mammalian macrophages that liberate high quantities of reactive species to kill internalized bacterial pathogens. As a result, resistance to these stresses is determinant for the survival of bacteria, both in the environment and in a host. The first bacterial component in contact with exogenous molecules is the envelope. In Gram-negative bacteria, this envelope is composed of two membranes and a layer of peptidoglycan lodged between them. Several mechanisms protecting against oxidative and nitrosative stresses are present in the envelope, highlighting the importance for the cell to deal with reactive species in this compartment. This review aims to provide a comprehensive view of the challenges posed by oxidative and nitrosative stresses to the Gram-negative bacterial envelope and the mechanisms put in place in this compartment to prevent and repair the damages they can cause.
Collapse
Affiliation(s)
| | | | | | - Cécile Duclairoir-Poc
- Research Unit Bacterial Communication and Anti-infectious Strategies (UR CBSA), Rouen Normandy University, Normandy University, 55 rue Saint-Germain, 27000 Evreux, France; (T.C.); (D.S.); (S.C.)
| |
Collapse
|
13
|
Cho K, Ueno M, Liang Y, Kim D, Oda T. Generation of Reactive Oxygen Species (ROS) by Harmful Algal Bloom (HAB)-Forming Phytoplankton and Their Potential Impact on Surrounding Living Organisms. Antioxidants (Basel) 2022; 11:206. [PMID: 35204089 PMCID: PMC8868398 DOI: 10.3390/antiox11020206] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/27/2023] Open
Abstract
Most marine phytoplankton with relatively high ROS generation rates are categorized as harmful algal bloom (HAB)-forming species, among which Chattonella genera is the highest ROS-producing phytoplankton. In this review, we examined marine microalgae with ROS-producing activities, with focus on Chattonella genera. Several studies suggest that Chattonella produces superoxide via the activities of an enzyme similar to NADPH oxidase located on glycocalyx, a cell surface structure, while hydrogen peroxide is generated inside the cell by different pathways. Additionally, hydroxyl radical has been detected in Chattonella cell suspension. By the physical stimulation, such as passing through between the gill lamellas of fish, the glycocalyx is easily discharged from the flagellate cells and attached on the gill surface, where ROS are continuously produced, which might cause gill tissue damage and fish death. Comparative studies using several strains of Chattonella showed that ROS production rate and ichthyotoxicity of Chattonella is well correlated. Furthermore, significant levels of ROS have been reported in other raphidophytes and dinoflagellates, such as Cochlodinium polykrikoides and Karenia mikimotoi. Chattonella is the most extensively studied phytoplankton in terms of ROS production and its biological functions. Therefore, this review examined the potential ecophysiological roles of extracellular ROS production by marine microalgae in aquatic environment.
Collapse
Affiliation(s)
- Kichul Cho
- Department of Microbiology, National Marine Biodiversity Institute of Korea (MABIK), Seocheon 33662, Korea;
| | - Mikinori Ueno
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| | - Yan Liang
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| | - Daekyung Kim
- Daegu Center, Korea Basic Science Institute (KBSI), Daegu 41566, Korea
| | - Tatsuya Oda
- Graduate School of Fisheries Science & Environmental Studies, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan; (M.U.); (Y.L.)
| |
Collapse
|
14
|
Kim S, Kim CH. Applications of Plasma-Activated Liquid in the Medical Field. Biomedicines 2021; 9:biomedicines9111700. [PMID: 34829929 PMCID: PMC8615748 DOI: 10.3390/biomedicines9111700] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/01/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Much progress has been made since plasma was discovered in the early 1900s. The first form of plasma was thermal type, which was limited for medical use due to potential thermal damage on living cells. In the late 1900s, with the development of a nonthermal atmospheric plasma called cold plasma, profound clinical research began and ‘plasma medicine’ became a new area in the academic field. Plasma began to be used mainly for environmental problems, such as water purification and wastewater treatment, and subsequent research on plasma and liquid interaction led to the birth of ‘plasma-activated liquid’ (PAL). PAL is currently used in the fields of environment, food, agriculture, nanoparticle synthesis, analytical chemistry, and sterilization. In the medical field, PAL usage can be expanded for accessing places where direct application of plasma is difficult. In this review, recent studies with PAL will be introduced to inform researchers of the application plan and possibility of PAL in the medical field.
Collapse
Affiliation(s)
- Sungryeal Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon 16499, Korea;
- Department of Molecular Science and Technology, Ajou University, Suwon 16499, Korea
- Correspondence:
| |
Collapse
|
15
|
Cubas ALV, Ferreira FM, Gonçalves DB, Machado MDM, Debacher NA, Moecke EHS. Influence of non-thermal plasma reactor geometry and plasma gas on the inactivation of Escherichia coli in water. CHEMOSPHERE 2021; 277:130255. [PMID: 34384175 DOI: 10.1016/j.chemosphere.2021.130255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 02/25/2021] [Accepted: 03/09/2021] [Indexed: 06/13/2023]
Abstract
The inactivation of bacteria Escherichia coli (E. coli) by non-thermal plasma (NTP) was investigated using argon, air and 1:1 mixture of air/Ar as plasma gas on five different reactors. The experiments were carried out in triplicate in each reactor, using 60 mL of distilled water pre-inoculated with E.coli. The physical-chemical analysis of pH, conductivity, nitrite, nitrate and temperature were performed soon after of 10 min of NTP treatment. The microbiological analysis of E. coli inactivation was performed using 100 μL samples withdrawn from the plasma reactor after 10 min and compared with the positive and negative control test results. The best performance were achieved whit the NTP reactors working with the upper electrode in the gas phase using 1:1 air/Ar and air as plasma gas. The results are linked with the E. coli inactivation due to membrane rupture by the NTP discharge followed by the attack of the reactive species produced in the solution. The E. coli inactivation was only partial using argon as plasma gas and the direct barrier discharge reactors showed partial inactivation even when air was used as plasma gas.
Collapse
Affiliation(s)
- Anelise Leal Vieira Cubas
- Environmental Science Master's Program, University of Southern Santa Catarina (Unisul), Av. Pedra Branca, 25, Palhoça, SC, CEP 80137270, Brazil.
| | - Franciele Mendonça Ferreira
- Environmental Science Master's Program, University of Southern Santa Catarina (Unisul), Av. Pedra Branca, 25, Palhoça, SC, CEP 80137270, Brazil
| | - Daniela Borges Gonçalves
- Environmental Science Master's Program, University of Southern Santa Catarina (Unisul), Av. Pedra Branca, 25, Palhoça, SC, CEP 80137270, Brazil
| | - Marina de Medeiros Machado
- Environmental and Sanitary Engineering Department, Federal University of Ouro Preto (UFOP), Diogo de Vasconcelos, 122, Pilar, Ouro Preto, Minas Gerais, CEP 35400-000, Brazil
| | - Nito Angelo Debacher
- Environmental Science Master's Program, University of Southern Santa Catarina (Unisul), Av. Pedra Branca, 25, Palhoça, SC, CEP 80137270, Brazil; Universidade Federal de Santa Catarina, Chemistry Department - CFM, Campus Universitário Trindade, Caixa Postal 476, Florianópolis, SC, CEP 88040-900, Brazil
| | - Elisa Helena Siegel Moecke
- Environmental Science Master's Program, University of Southern Santa Catarina (Unisul), Av. Pedra Branca, 25, Palhoça, SC, CEP 80137270, Brazil
| |
Collapse
|
16
|
Held NA, Sutherland KM, Webb EA, McIlvin MR, Cohen NR, Devaux AJ, Hutchins DA, Waterbury JB, Hansel CM, Saito MA. Mechanisms and heterogeneity of in situ mineral processing by the marine nitrogen fixer Trichodesmium revealed by single-colony metaproteomics. ISME COMMUNICATIONS 2021; 1:35. [PMID: 36739337 PMCID: PMC9723768 DOI: 10.1038/s43705-021-00034-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/10/2021] [Accepted: 06/18/2021] [Indexed: 02/06/2023]
Abstract
The keystone marine nitrogen fixer Trichodesmium thrives in high-dust environments. While laboratory investigations have observed that Trichodesmium colonies can access the essential nutrient iron from dust particles, less clear are the biochemical strategies underlying particle-colony interactions in nature. Here we demonstrate that Trichodesmium colonies engage with mineral particles in the wild with distinct molecular responses. We encountered particle-laden Trichodesmium colonies at a sampling location in the Southern Caribbean Sea; microscopy and synchrotron-based imaging then demonstrated heterogeneous associations with iron oxide and iron-silicate minerals. Metaproteomic analysis of individual colonies by a new low-biomass approach revealed responses in biogeochemically relevant proteins including photosynthesis proteins and metalloproteins containing iron, nickel, copper, and zinc. The iron-storage protein ferritin was particularly enriched implying accumulation of mineral-derived iron, and multiple iron acquisition pathways including Fe(II), Fe(III), and Fe-siderophore transporters were engaged. While the particles provided key trace metals such as iron and nickel, there was also evidence that Trichodesmium was altering its strategy to confront increased superoxide production and metal exposure. Chemotaxis regulators also responded to mineral presence suggesting involvement in particle entrainment. These molecular responses are fundamental to Trichodesmium's ecological success and global biogeochemical impact, and may contribute to the leaching of particulate trace metals with implications for global iron and carbon cycling.
Collapse
Affiliation(s)
- Noelle A Held
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Kevin M Sutherland
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | - Eric A Webb
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Matthew R McIlvin
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Natalie R Cohen
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Alexander J Devaux
- Department of Microbiology, Boston University School of Medicine, Boston, MA, USA
| | - David A Hutchins
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - John B Waterbury
- Department of Biology, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Mak A Saito
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| |
Collapse
|
17
|
McCollum CR, Bertram JR, Nagpal P, Chatterjee A. Photoactivated Indium Phosphide Quantum Dots Treat Multidrug-Resistant Bacterial Abscesses In Vivo. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30404-30419. [PMID: 34156817 DOI: 10.1021/acsami.1c08306] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The increasing prevalence of drug-resistant bacterial strains is causing illness and death in an unprecedented number of people around the globe. Currently implemented small-molecule antibiotics are both increasingly less efficacious and perpetuating the evolution of resistance. Here, we propose a new treatment for drug-resistant bacterial infection in the form of indium phosphide quantum dots (InP QDs), semiconductor nanoparticles that are activated by light to produce superoxide. We show that the superoxide generated by InP QDs is able to effectively kill drug-resistant bacteria in vivo to reduce subcutaneous abscess infection in mice without being toxic to the animal. Our InP QDs are activated by near-infrared wavelengths with high transmission through skin and tissues and are composed of biocompatible materials. Body weight and organ tissue histology show that the QDs are nontoxic at a macroscale. Inflammation and oxidative stress markers in serum demonstrate that the InP QD treatment did not result in measurable effects on mouse health at concentrations that reduce drug-resistant bacterial viability in subcutaneous abscesses. The InP QD treatment decreased bacterial viability by over 3 orders of magnitude in subcutaneous abscesses formed in mice. These InP QDs thus provide a promising alternative to traditional small-molecule antibiotics, with the potential to be applied to a wide variety of infection types, including wound, respiratory, and urinary tract infections.
Collapse
Affiliation(s)
- Colleen R McCollum
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - John R Bertram
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Materials Science and Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
| | - Prashant Nagpal
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
- Quantum Biology, Inc., Boulder, Colorado 80301, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80303, United States
- Antimicrobial Regeneration Consortium, Boulder, Colorado 80301, United States
- Sachi Bioworks, Inc., Boulder, Colorado 80301, United States
| |
Collapse
|
18
|
Sen A, Imlay JA. How Microbes Defend Themselves From Incoming Hydrogen Peroxide. Front Immunol 2021; 12:667343. [PMID: 33995399 PMCID: PMC8115020 DOI: 10.3389/fimmu.2021.667343] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 03/19/2021] [Indexed: 12/02/2022] Open
Abstract
Microbes rely upon iron as a cofactor for many enzymes in their central metabolic processes. The reactive oxygen species (ROS) superoxide and hydrogen peroxide react rapidly with iron, and inside cells they can generate both enzyme and DNA damage. ROS are formed in some bacterial habitats by abiotic processes. The vulnerability of bacteria to ROS is also apparently exploited by ROS-generating host defense systems and bacterial competitors. Phagocyte-derived O 2 - can toxify captured bacteria by damaging unidentified biomolecules on the cell surface; it is unclear whether phagocytic H2O2, which can penetrate into the cell interior, also plays a role in suppressing bacterial invasion. Both pathogenic and free-living microbes activate defensive strategies to defend themselves against incoming H2O2. Most bacteria sense the H2O2via OxyR or PerR transcription factors, whereas yeast uses the Grx3/Yap1 system. In general these regulators induce enzymes that reduce cytoplasmic H2O2 concentrations, decrease the intracellular iron pools, and repair the H2O2-mediated damage. However, individual organisms have tailored these transcription factors and their regulons to suit their particular environmental niches. Some bacteria even contain both OxyR and PerR, raising the question as to why they need both systems. In lab experiments these regulators can also respond to nitric oxide and disulfide stress, although it is unclear whether the responses are physiologically relevant. The next step is to extend these studies to natural environments, so that we can better understand the circumstances in which these systems act. In particular, it is important to probe the role they may play in enabling host infection by microbial pathogens.
Collapse
Affiliation(s)
| | - James A. Imlay
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| |
Collapse
|
19
|
Hansel CM, Diaz JM. Production of Extracellular Reactive Oxygen Species by Marine Biota. ANNUAL REVIEW OF MARINE SCIENCE 2021; 13:177-200. [PMID: 32956016 DOI: 10.1146/annurev-marine-041320-102550] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Reactive oxygen species (ROS) are produced ubiquitously across the tree of life. Far from being synonymous with toxicity and harm, biological ROS production is increasingly recognized for its essential functions in signaling, growth, biological interactions, and physiochemical defense systems in a diversity of organisms, spanning microbes to mammals. Part of this shift in thinking can be attributed to the wide phylogenetic distribution of specialized mechanisms for ROS production, such as NADPH oxidases, which decouple intracellular and extracellular ROS pools by directly catalyzing the reduction of oxygen in the surrounding aqueous environment. Furthermore, biological ROS production contributes substantially to natural fluxes of ROS in the ocean, thereby influencing the fate of carbon, metals, oxygen, and climate-relevant gases. Here, we review the taxonomic diversity, mechanisms, and roles of extracellular ROS production in marine bacteria, phytoplankton, seaweeds, and corals, highlighting the ecological and biogeochemical influences of this fundamental and remarkably widespread process.
Collapse
Affiliation(s)
- Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts 02543, USA;
| | - Julia M Diaz
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California 92093, USA;
| |
Collapse
|
20
|
Saenkham P, Ritter M, Donati GL, Subashchandrabose S. Copper primes adaptation of uropathogenic Escherichia coli to superoxide stress by activating superoxide dismutases. PLoS Pathog 2020; 16:e1008856. [PMID: 32845936 PMCID: PMC7478841 DOI: 10.1371/journal.ppat.1008856] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 09/08/2020] [Accepted: 08/04/2020] [Indexed: 12/26/2022] Open
Abstract
Copper and superoxide are used by the phagocytes to kill bacteria. Copper is a host effector encountered by uropathogenic Escherichia coli (UPEC) during urinary tract infection in a non-human primate model, and in humans. UPEC is exposed to higher levels of copper in the gut prior to entering the urinary tract. Effects of pre-exposure to copper on bacterial killing by superoxide has not been reported. We hypothesized that copper-replete E. coli is more sensitive to killing by superoxide in vitro, and in activated macrophages. We utilized wild-type UPEC strain CFT073, and its isogenic mutants lacking copper efflux systems, superoxide dismutases (SODs), regulators of a superoxide dismutase, and complemented mutants to address this question. Surprisingly, our results reveal that copper protects UPEC against killing by superoxide in vitro. This copper-dependent protection was amplified in the mutants lacking copper efflux systems. Increased levels of copper and manganese were detected in UPEC exposed to sublethal concentration of copper. Copper activated the transcription of sodA in a SoxR- and SoxS-dependent manner resulting in enhanced levels of SodA activity. Importantly, pre-exposure to copper increased the survival of UPEC within RAW264.7 and bone marrow-derived murine macrophages. Loss of SodA, but not SodB or SodC, in UPEC obliterated copper-dependent protection from superoxide in vitro, and from killing within macrophages. Collectively, our results suggest a model in which sublethal levels of copper trigger the activation of SodA and SodC through independent mechanisms that converge to promote the survival of UPEC from killing by superoxide. A major implication of our findings is that bacteria colonizing copper-rich milieus are primed for efficient detoxification of superoxide.
Collapse
Affiliation(s)
- Panatda Saenkham
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Matthew Ritter
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - George L. Donati
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina, United States of America
| | - Sargurunathan Subashchandrabose
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
21
|
During Oxidative Stress the Clp Proteins of Escherichia coli Ensure that Iron Pools Remain Sufficient To Reactivate Oxidized Metalloenzymes. J Bacteriol 2020; 202:JB.00235-20. [PMID: 32601069 DOI: 10.1128/jb.00235-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/20/2020] [Indexed: 11/20/2022] Open
Abstract
Hydrogen peroxide (H2O2) is formed in natural environments by both biotic and abiotic processes. It easily enters the cytoplasms of microorganisms, where it can disrupt growth by inactivating iron-dependent enzymes. It also reacts with the intracellular iron pool, generating hydroxyl radicals that can lethally damage DNA. Therefore, virtually all bacteria possess H2O2-responsive transcription factors that control defensive regulons. These typically include catalases and peroxidases that scavenge H2O2 Another common component is the miniferritin Dps, which sequesters loose iron and thereby suppresses hydroxyl-radical formation. In this study, we determined that Escherichia coli also induces the ClpS and ClpA proteins of the ClpSAP protease complex. Mutants that lack this protease, plus its partner, ClpXP protease, cannot grow when H2O2 levels rise. The growth defect was traced to the inactivity of dehydratases in the pathway of branched-chain amino acid synthesis. These enzymes rely on a solvent-exposed [4Fe-4S] cluster that H2O2 degrades. In a typical cell the cluster is continuously repaired, but in the clpSA clpX mutant the repair process is defective. We determined that this disability is due to an excessively small iron pool, apparently due to the oversequestration of iron by Dps. Dps was previously identified as a substrate of both the ClpSAP and ClpXP proteases, and in their absence its levels are unusually high. The implication is that the stress response to H2O2 has evolved to strike a careful balance, diminishing iron pools enough to protect the DNA but keeping them substantial enough that critical iron-dependent enzymes can be repaired.IMPORTANCE Hydrogen peroxide mediates the toxicity of phagocytes, lactic acid bacteria, redox-cycling antibiotics, and photochemistry. The underlying mechanisms all involve its reaction with iron atoms, whether in enzymes or on the surface of DNA. Accordingly, when bacteria perceive toxic H2O2, they activate defensive tactics that are focused on iron metabolism. In this study, we identify a conundrum: DNA is best protected by the removal of iron from the cytoplasm, but this action impairs the ability of the cell to reactivate its iron-dependent enzymes. The actions of the Clp proteins appear to hedge against the oversequestration of iron by the miniferritin Dps. This buffering effect is important, because E. coli seeks not just to survive H2O2 but to grow in its presence.
Collapse
|
22
|
Smirnova GV, Tyulenev AV, Muzyka NG, Oktyabrsky ON. Study of the relationship between extracellular superoxide and glutathione production in batch cultures of Escherichia coli. Res Microbiol 2020; 171:301-310. [PMID: 32721518 DOI: 10.1016/j.resmic.2020.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/07/2020] [Accepted: 07/20/2020] [Indexed: 11/26/2022]
Abstract
Aerobically growing Escherichia coli generates superoxide flux into the periplasm via the oxidation of dihydromenaquinone and simultaneously carries out continuous transmembrane cycling of glutathione (GSH). Here we have shown that, under the conditions of a gradual decrease in dissolved oxygen (dO2), characteristic of batch culture, the global regulatory system ArcB/ArcA can play an important role in the coordinated control of extracellular superoxide and GSH fluxes and their interaction with intracellular antioxidant systems. The lowest superoxide production was observed in the menA and arcB mutants, while the atpA, atpC and atpE mutants generated superoxide 1.3-1.5 times faster than the parent. The share of exported glutathione in the ubiC, atpA, atpC, and atpE mutants was 2-3 times higher compared to the parent. A high direct correlation (r = 0.87, p = 0.01) between extracellular superoxide and GSH was revealed. The menA and arcB mutants, as well as the cydD mutant lacking the GSH export system CydDC, were not capable of GSH excretion with a decrease in dO2, which indicates a positive control of GSH export by ArcB. In contrast, ArcB downregulates sodA, therefore, an inverse correlation (r = -0.86, p = 0.013) between superoxide production and sodA expression was observed.
Collapse
Affiliation(s)
- Galina V Smirnova
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Aleksey V Tyulenev
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Nadezda G Muzyka
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| | - Oleg N Oktyabrsky
- Institute of Ecology and Genetics of Microorganisms, Perm Federal Research Center, Russian Academy of Sciences, ul. Goleva 13, Perm, 614081, Russia.
| |
Collapse
|
23
|
Grabb KC, Kapit J, Wankel SD, Manganini K, Apprill A, Armenteros M, Hansel CM. Development of a Handheld Submersible Chemiluminescent Sensor: Quantification of Superoxide at Coral Surfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:13850-13858. [PMID: 31660715 DOI: 10.1021/acs.est.9b04022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Reactive oxygen species (ROS) are produced via various photochemical, abiotic, and biological pathways. The low concentration and short lifetime of the ROS superoxide (O2•-) make it challenging to measure in natural systems. Here, we designed, developed, and validated a DIver-operated Submersible Chemiluminescent sensOr (DISCO), the first handheld submersible chemiluminescent sensor. The fluidic system inside DISCO is controlled by two high-precision pumps that introduce sample water and analytical reagents into a mixing cell. The resultant chemiluminescent signal is quantified by a photomultiplier tube, recorded by a miniature onboard computer and monitored in real time via a handheld underwater LED interface. Components are contained within a pressure-bearing housing (max depth 30 m), and an external battery pack supplies power. Laboratory calibrations with filtered seawater verified instrument stability and precision. Field deployment in Cuban coral reefs quantified background seawater-normalized extracellular superoxide concentrations near coral surfaces (0-173 nM) that varied distinctly with coral species. Observations were consistent with previous similar measurements from aquaria and shallow reefs using a standard benchtop system. In situ quantification of superoxide associated with corals was enabled by DISCO, demonstrating the potential application to other shallow water ecosystems and chemical species.
Collapse
Affiliation(s)
- Kalina C Grabb
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry , Woods Hole , Massachusetts 02543 , United States
- Department of Earth, Atmospheric and Planetary Sciences , Massachusetts Institute of Technology , 77 Massachusetts Avenue , Cambridge , Massachusetts 02139 , United States
| | - Jason Kapit
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering , Woods Hole , Massachusetts 02543 , United States
| | - Scott D Wankel
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry , Woods Hole , Massachusetts 02543 , United States
| | - Kevin Manganini
- Woods Hole Oceanographic Institution, Applied Ocean Physics and Engineering , Woods Hole , Massachusetts 02543 , United States
| | - Amy Apprill
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry , Woods Hole , Massachusetts 02543 , United States
| | - Maickel Armenteros
- Centro de Investigaciones Marinas , Universidad de La Habana , 16 # 114, Playa , CP 11300 Habana , Cuba
| | - Colleen M Hansel
- Woods Hole Oceanographic Institution, Marine Chemistry and Geochemistry , Woods Hole , Massachusetts 02543 , United States
| |
Collapse
|
24
|
Mn oxide formation by phototrophs: Spatial and temporal patterns, with evidence of an enzymatic superoxide-mediated pathway. Sci Rep 2019; 9:18244. [PMID: 31796791 PMCID: PMC6890756 DOI: 10.1038/s41598-019-54403-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/13/2019] [Indexed: 12/05/2022] Open
Abstract
Manganese (Mn) oxide minerals influence the availability of organic carbon, nutrients and metals in the environment. Oxidation of Mn(II) to Mn(III/IV) oxides is largely promoted by the direct and indirect activity of microorganisms. Studies of biogenic Mn(II) oxidation have focused on bacteria and fungi, with phototrophic organisms (phototrophs) being generally overlooked. Here, we isolated phototrophs from Mn removal beds in Pennsylvania, USA, including fourteen Chlorophyta (green algae), three Bacillariophyta (diatoms) and one cyanobacterium, all of which consistently formed Mn(III/IV) oxides. Isolates produced cell-specific oxides (coating some cells but not others), diffuse biofilm oxides, and internal diatom-specific Mn-rich nodules. Phototrophic Mn(II) oxidation had been previously attributed to abiotic oxidation mediated by photosynthesis-driven pH increases, but we found a decoupling of Mn oxide formation and pH alteration in several cases. Furthermore, cell-free filtrates of some isolates produced Mn oxides at specific time points, but this activity was not induced by Mn(II). Manganese oxide formation in cell-free filtrates occurred via reaction with the oxygen radical superoxide produced by soluble extracellular proteins. Given the known widespread ability of phototrophs to produce superoxide, the contribution of phototrophs to Mn(II) oxidation in the environment may be greater and more nuanced than previously thought.
Collapse
|
25
|
Gerchman Y, Cohen-Yaniv V, Betzalel Y, Yagur-Kroll S, Belkin S, Mamane H. The involvement of superoxide radicals in medium pressure UV derived inactivation. WATER RESEARCH 2019; 161:119-125. [PMID: 31181447 DOI: 10.1016/j.watres.2019.05.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 05/14/2019] [Accepted: 05/25/2019] [Indexed: 05/19/2023]
Abstract
Today, two types of lamp systems dominate the UV disinfection industry: low-pressure (LP) UV lamps and medium-pressure (MP) polychromatic lamps. Both lamp types have their advantages and disadvantages in microorganism inactivation, with LP lamps being cheaper, having longer life, and working at lower temperature, hence reducing fouling, and MP lamps showing better inactivation per germicidal dose for certain microorganisms. Bacterium-based biosensors were used to compare LP and MP irradiation. These biosensors were Escherichia coli bacteria carrying the lux operon genes under the control of different stress-responding promoters, where activation of the specific promoter is manifested as bioluminescence. MP irradiation, considerably more than LP irradiation, resulted in activation of the superoxide dismutase expression, indicating the formation of superoxide radicals inside the cells. Accordingly, pre-exposure (immunization) of the bacteria to an activator that produces superoxide radicals resulted in lower inactivation and increased resistance to MP irradiation, but not to LP irradiation. This study shows that the difference in germicidal efficiency may result from the production of intracellular superoxide radicals by MP irradiation, at wavelengths other than 254 nm, as emitted by LP lamps.
Collapse
Affiliation(s)
- Yoram Gerchman
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, 36006, Israel.
| | - Vered Cohen-Yaniv
- School of Mechanical Engineering, Faculty of Engineering and Water Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Yifaat Betzalel
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa, Oranim, Tivon, 36006, Israel; School of Mechanical Engineering, Faculty of Engineering and Water Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Sharon Yagur-Kroll
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Shimshon Belkin
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | - Hadas Mamane
- School of Mechanical Engineering, Faculty of Engineering and Water Research Center, Tel Aviv University, Tel Aviv, 69978, Israel
| |
Collapse
|
26
|
Rezaei F, Vanraes P, Nikiforov A, Morent R, De Geyter N. Applications of Plasma-Liquid Systems: A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2751. [PMID: 31461960 PMCID: PMC6747786 DOI: 10.3390/ma12172751] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/22/2019] [Accepted: 08/22/2019] [Indexed: 01/09/2023]
Abstract
Plasma-liquid systems have attracted increasing attention in recent years, owing to their high potential in material processing and nanoscience, environmental remediation, sterilization, biomedicine, and food applications. Due to the multidisciplinary character of this scientific field and due to its broad range of established and promising applications, an updated overview is required, addressing the various applications of plasma-liquid systems till now. In the present review, after a brief historical introduction on this important research field, the authors aimed to bring together a wide range of applications of plasma-liquid systems, including nanomaterial processing, water analytical chemistry, water purification, plasma sterilization, plasma medicine, food preservation and agricultural processing, power transformers for high voltage switching, and polymer solution treatment. Although the general understanding of plasma-liquid interactions and their applications has grown significantly in recent decades, it is aimed here to give an updated overview on the possible applications of plasma-liquid systems. This review can be used as a guide for researchers from different fields to gain insight in the history and state-of-the-art of plasma-liquid interactions and to obtain an overview on the acquired knowledge in this field up to now.
Collapse
Affiliation(s)
- Fatemeh Rezaei
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium.
| | - Patrick Vanraes
- Research group PLASMANT, Department of Chemistry, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Anton Nikiforov
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Rino Morent
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| | - Nathalie De Geyter
- Research Unit Plasma Technology (RUPT), Department of Applied Physics, Faculty of Engineering and Architecture, Ghent University, St-Pietersnieuwstraat 41 B4, 9000 Ghent, Belgium
| |
Collapse
|
27
|
Noster J, Persicke M, Chao TC, Krone L, Heppner B, Hensel M, Hansmeier N. Impact of ROS-Induced Damage of TCA Cycle Enzymes on Metabolism and Virulence of Salmonella enterica serovar Typhimurium. Front Microbiol 2019; 10:762. [PMID: 31105651 PMCID: PMC6491894 DOI: 10.3389/fmicb.2019.00762] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 03/26/2019] [Indexed: 01/10/2023] Open
Abstract
Salmonella enterica serovar Typhimurium (STM) is exposed to reactive oxygen species (ROS) originating from aerobic respiration, antibiotic treatment, and the oxidative burst occurring inside the Salmonella-containing vacuole (SCV) within host cells. ROS damage cellular compounds, thereby impairing bacterial viability and inducing cell death. Proteins containing iron–sulfur (Fe–S) clusters are particularly sensitive and become non-functional upon oxidation. Comprising five enzymes with Fe–S clusters, the TCA cycle is a pathway most sensitive toward ROS. To test the impact of ROS-mediated metabolic perturbations on bacterial physiology, we analyzed the proteomic and metabolic profile of STM deficient in both cytosolic superoxide dismutases (ΔsodAB). Incapable of detoxifying superoxide anions (SOA), endogenously generated SOA accumulate during growth. ΔsodAB showed reduced abundance of aconitases, leading to a metabolic profile similar to that of an aconitase-deficient strain (ΔacnAB). Furthermore, we determined a decreased expression of acnA in STM ΔsodAB. While intracellular proliferation in RAW264.7 macrophages and survival of methyl viologen treatment were not reduced for STM ΔacnAB, proteomic profiling revealed enhanced stress response. We conclude that ROS-mediated reduced expression and damage of aconitase does not impair bacterial viability or virulence, but might increase ROS amounts in STM, which reinforces the bactericidal effects of antibiotic treatment and immune responses of the host.
Collapse
Affiliation(s)
- Janina Noster
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Marcus Persicke
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Bielefeld, Germany
| | - Tzu-Chiao Chao
- Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada
| | - Lena Krone
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Bianca Heppner
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany
| | - Nicole Hansmeier
- Abteilung Mikrobiologie, Universität Osnabrück, Osnabrück, Germany.,Institute of Environmental Change and Society, University of Regina, Regina, SK, Canada.,Luther College, University of Regina, Regina, SK, Canada
| |
Collapse
|
28
|
Cytosolic Fe-superoxide dismutase safeguards Trypanosoma cruzi from macrophage-derived superoxide radical. Proc Natl Acad Sci U S A 2019; 116:8879-8888. [PMID: 30979807 DOI: 10.1073/pnas.1821487116] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Trypanosoma cruzi, the causative agent of Chagas disease (CD), contains exclusively Fe-dependent superoxide dismutases (Fe-SODs). During T. cruzi invasion to macrophages, superoxide radical (O2 •-) is produced at the phagosomal compartment toward the internalized parasite via NOX-2 (gp91-phox) activation. In this work, T. cruzi cytosolic Fe-SODB overexpressers (pRIBOTEX-Fe-SODB) exhibited higher resistance to macrophage-dependent killing and enhanced intracellular proliferation compared with wild-type (WT) parasites. The higher infectivity of Fe-SODB overexpressers compared with WT parasites was lost in gp91-phox -/- macrophages, underscoring the role of O2 •- in parasite killing. Herein, we studied the entrance of O2 •- and its protonated form, perhydroxyl radical [(HO2 •); pKa = 4.8], to T. cruzi at the phagosome compartment. At the acidic pH values of the phagosome lumen (pH 5.3 ± 0.1), high steady-state concentrations of O2 •- and HO2 • were estimated (∼28 and 8 µM, respectively). Phagosomal acidification was crucial for O2 •- permeation, because inhibition of the macrophage H+-ATPase proton pump significantly decreased O2 •- detection in the internalized parasite. Importantly, O2 •- detection, aconitase inactivation, and peroxynitrite generation were lower in Fe-SODB than in WT parasites exposed to external fluxes of O2 •- or during macrophage infections. Other mechanisms of O2 •- entrance participate at neutral pH values, because the anion channel inhibitor 5-nitro-2-(3-phenylpropylamino) benzoic acid decreased O2 •- detection. Finally, parasitemia and tissue parasite burden in mice were higher in Fe-SODB-overexpressing parasites, supporting the role of the cytosolic O2 •--catabolizing enzyme as a virulence factor for CD.
Collapse
|
29
|
Rhen M. Salmonella and Reactive Oxygen Species: A Love-Hate Relationship. J Innate Immun 2019; 11:216-226. [PMID: 30943492 DOI: 10.1159/000496370] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Accepted: 12/19/2018] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica represents an enterobacterial species including numerous serovars that cause infections at, or initiated at, the intestinal epithelium. Many serovars also act as facultative intracellular pathogens with a tropism for phagocytic cells. These bacteria not only survive in phagocytes but also undergo de facto replication therein. Phagocytes, through the activities of phagocyte NADPH-dependent oxidase and inducible nitric oxide synthase, are very proficient in converting molecular oxygen to reactive oxygen (ROS) and nitrogen species (RNS). These compounds represent highly efficient effectors of the innate immune defense. Salmonella is by no means resistant to these effectors, which may stand in contrast to the host niches chosen. To cope with this paradox, these bacteria rely on an array of detoxification and repair systems. Combination these systems allows for a high enough tolerance to ROS and RNS to enable establishment of infection. In addition, salmonella possesses protein factors that have the potential to dampen the infection-associated inflammation, which evidently results in a reduced exposure to ROS and RNS. This review attempts to summarize the activities and strategies by which salmonella tries to cope with ROS and RNS and how the bacterium can make use of these innate defense factors.
Collapse
Affiliation(s)
- Mikael Rhen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden, .,Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden, .,Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden,
| |
Collapse
|
30
|
Piacenza L, Trujillo M, Radi R. Reactive species and pathogen antioxidant networks during phagocytosis. J Exp Med 2019; 216:501-516. [PMID: 30792185 PMCID: PMC6400530 DOI: 10.1084/jem.20181886] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 01/04/2019] [Accepted: 02/04/2019] [Indexed: 11/23/2022] Open
Abstract
The generation of phagosomal cytotoxic reactive species (i.e., free radicals and oxidants) by activated macrophages and neutrophils is a crucial process for the control of intracellular pathogens. The chemical nature of these species, the reactions they are involved in, and the subsequent effects are multifaceted and depend on several host- and pathogen-derived factors that influence their production rates and catabolism inside the phagosome. Pathogens rely on an intricate and synergistic antioxidant armamentarium that ensures their own survival by detoxifying reactive species. In this review, we discuss the generation, kinetics, and toxicity of reactive species generated in phagocytes, with a focus on the response of macrophages to internalized pathogens and concentrating on Mycobacterium tuberculosis and Trypanosoma cruzi as examples of bacterial and parasitic infection, respectively. The ability of pathogens to deal with host-derived reactive species largely depends on the competence of their antioxidant networks at the onset of invasion, which in turn can tilt the balance toward pathogen survival, proliferation, and virulence over redox-dependent control of infection.
Collapse
Affiliation(s)
- Lucía Piacenza
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Madia Trujillo
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| | - Rafael Radi
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Center for Free Radical and Biomedical Research, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
31
|
Imlay JA. Where in the world do bacteria experience oxidative stress? Environ Microbiol 2018; 21:521-530. [PMID: 30307099 DOI: 10.1111/1462-2920.14445] [Citation(s) in RCA: 188] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 10/02/2018] [Accepted: 10/07/2018] [Indexed: 11/26/2022]
Abstract
Reactive oxygen species - superoxide, hydrogen peroxide and hydroxyl radicals - have long been suspected of constraining bacterial growth in important microbial habitats and indeed of shaping microbial communities. Over recent decades, studies of paradigmatic organisms such as Escherichia coli, Salmonella typhimurium, Bacillus subtilis and Saccharomyces cerevisiae have pinpointed the biomolecules that oxidants can damage and the strategies by which microbes minimize their injuries. What is lacking is a good sense of the circumstances under which oxidative stress actually occurs. In this MiniReview several potential natural sources of oxidative stress are considered: endogenous ROS formation, chemical oxidation of reduced species at oxic-anoxic interfaces, H2 O2 production by lactic acid bacteria, the oxidative burst of phagocytes and the redox-cycling of secreted small molecules. While all of these phenomena can be reproduced and verified in the lab, the actual quantification of stress in natural habitats remains lacking - and, therefore, we have a fundamental hole in our understanding of the role that oxidative stress actually plays in the biosphere.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, 601 S. Goodwin Ave, Urbana, IL, 61801, USA
| |
Collapse
|
32
|
Chandana L, Sangeetha CJ, Shashidhar T, Subrahmanyam C. Non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:493-500. [PMID: 29864663 DOI: 10.1016/j.scitotenv.2018.05.342] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 05/27/2018] [Accepted: 05/27/2018] [Indexed: 06/08/2023]
Abstract
This study reports the potential of non-thermal atmospheric pressure plasma jet for the bacterial inactivation in an aqueous medium. All experiments were conducted in a reactor containing aqueous solution i.e., water, pre-inoculated with bacterial suspensions and after plasma exposure solution is inoculated in Petrifilm to know the viable count. The plasma jet exposure to the bacterial aqueous solution was carried out under various gases such as helium, argon, air and also in combination as Argon + Air and Helium + Air. In each case, the oxidizing species such as hydrogen peroxide, nitric acid, hydroxyl radicals and ozone formed in the reactor during the plasma exposure were quantified. The effect of applied voltage and gas flow rate were studied to optimize the conditions for its efficacy. The solution pH plays a prominent role in bacterial inactivation, as the process is effective at low pH exhibiting 7 log reduction of bacterial population. The bacterial inactivation is efficient at below the critical pH (<4.7) and the inactivation process becomes less effective if the pH goes above 4.7. Plasma treatment of deionized water produces some reactive species such as hydrogen peroxide and nitrates, this plasma treated water is used to test the bacterial inactivation. Addition of Fe2+ salt to the plasma treated water improves the efficacy by converting hydrogen peroxide to hydroxyl radicals, which serves to be a major contributor to the bacterial inactivation. Especially, Non-thermal plasma offers an alternative way to sterilize vacuum sensitive and thermo-labile living tissues.
Collapse
Affiliation(s)
- L Chandana
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, 502285, Telangana, India
| | - C J Sangeetha
- Department of Civil Engineering, Indian Institute of Technology, Hyderabad, Kandi, 502285, Telangana, India
| | - T Shashidhar
- Department of Civil Engineering, Indian Institute of Technology, Hyderabad, Kandi, 502285, Telangana, India
| | - Ch Subrahmanyam
- Department of Chemistry, Indian Institute of Technology, Hyderabad, Kandi, 502285, Telangana, India.
| |
Collapse
|
33
|
Diaz JM, Plummer S. Production of extracellular reactive oxygen species by phytoplankton: past and future directions. JOURNAL OF PLANKTON RESEARCH 2018; 40:655-666. [PMID: 30487658 PMCID: PMC6247811 DOI: 10.1093/plankt/fby039] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/12/2018] [Accepted: 08/30/2018] [Indexed: 05/05/2023]
Abstract
In aquatic environments, phytoplankton represent a major source of reactive oxygen species (ROS) such as superoxide and hydrogen peroxide. Many phytoplankton taxa also produce extracellular ROS under optimal growth conditions in culture. However, the physiological purpose of extracellular ROS production by phytoplankton and its wider significance to ecosystem-scale trophic interactions and biogeochemistry remain unclear. Here, we review the rates, taxonomic diversity, subcellular mechanisms and functions of extracellular superoxide and hydrogen peroxide production by phytoplankton with a view towards future research directions. Model eukaryotic phytoplankton and cyanobacteria produce extracellular superoxide and hydrogen peroxide at cell-normalized rates that span several orders of magnitude, both within and between taxa. The potential ecophysiological roles of extracellular ROS production are versatile and appear to be shared among diverse phytoplankton species, including ichthyotoxicity, allelopathy, growth promotion, and iron acquisition. Whereas extracellular hydrogen peroxide likely arises from a combination of intracellular and cell surface production mechanisms, extracellular superoxide is predominantly generated by specialized systems for transplasma membrane electron transport. Future insights into the molecular-level basis of extracellular ROS production, combined with existing high-sensitivity geochemical techniques for the direct quantification of ROS dynamics, will help unveil the ecophysiological and biogeochemical significance of phytoplankton-derived ROS in natural aquatic systems.
Collapse
Affiliation(s)
- Julia M Diaz
- Department of Marine Sciences, Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
- corresponding author:
| | - Sydney Plummer
- Department of Marine Sciences, Skidaway Institute of Oceanography, University of Georgia, Savannah, GA, USA
| |
Collapse
|
34
|
Zinser ER. The microbial contribution to reactive oxygen species dynamics in marine ecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2018; 10:412-427. [PMID: 29411545 DOI: 10.1111/1758-2229.12626] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 01/28/2018] [Indexed: 05/21/2023]
Abstract
This review surveys the current state of knowledge of the concentrations, sources and sinks of reactive oxygen species (ROS) in the ocean. Both abiotic and biotic factors contribute to ROS dynamics in seawater, and ROS can feature prominently in marine microbe-microbe interactions. The sun plays a key role in the production of ROS in the ocean, and consequently ROS concentrations are typically maximal in the sun-exposed surface. However, microbes can also contribute significantly to extracellular ROS. Production of superoxide is widespread within the microbial community, and may benefit the producers as antimicrobial agents or perhaps more generally, as a means of nutrient scavenging. Decomposition of hydrogen peroxide is a community-wide activity, though some members may play less significant roles in this process. The more reactive forms of ROS, singlet oxygen and the hydroxyl radical, may be less important as microbial stressors, as they tend to react with the chemicals in seawater before they can contact the cells. However, exceptions may exist for microbes attached to singlet oxygen-generating sinking particulate matter. Extracellular ROS thus plays an important role in the ecology of marine microbes, the full extent to which we are only beginning to appreciate.
Collapse
Affiliation(s)
- Erik R Zinser
- Department of Microbiology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
35
|
Majou D, Christieans S. Mechanisms of the bactericidal effects of nitrate and nitrite in cured meats. Meat Sci 2018; 145:273-284. [PMID: 30005374 DOI: 10.1016/j.meatsci.2018.06.013] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/12/2018] [Accepted: 06/12/2018] [Indexed: 12/20/2022]
Abstract
For cured meat products, nitrite is recognized for its antimicrobial effects against pathogenic bacteria, even though the specific inhibitory mechanisms are not well known. Nitrite contributes to oxidative stress by being the precursor of peroxynitrite (ONOO-), which is the major strong oxidant. Thus, bacterial stress (highly pH-very low partial pressure of oxygen-dependent) is enhanced by the nitrate-nitrite-peroxynitrite system which is also highly pH- and low partial pressure of oxygen-dependent. Nitrite is a hurdle technology which effectiveness depends on several other hurdle technologies including sodium chloride (accelerating the autoxidation of oxymyoglobin and promote peroxynitrite formation), ascorbate (increasing ONOO- synthesis), and Aw. In this environment, certain species are more resistant than others to acidic, oxidative, and nitrative stresses. The most resistant are gram-negative aerobic/facultative anaerobic bacteria (Escherichia coli, Salmonella), and the most fragile are gram-positive anaerobic bacteria (Clostridium botulinum). This position review highlights the major chemical mechanisms involved, the active molecules and their actions on bacterial metabolisms in the meat ecosystem.
Collapse
Affiliation(s)
- Didier Majou
- Association pour la Coordination Technique pour l'Industrie Agro-Alimentaire (ACTIA), 16, rue Claude Bernard, 75005 Paris 05, France
| | - Souad Christieans
- Association pour le Développement de l'Industrie de la Viande (ADIV), 10, rue Jacqueline Auriol, 63039 Clermont-Ferrand, France..
| |
Collapse
|
36
|
Ohshima T, Ikawa S, Kitano K, Maeda N. A Proposal of Remedies for Oral Diseases Caused by Candida: A Mini Review. Front Microbiol 2018; 9:1522. [PMID: 30038607 PMCID: PMC6046406 DOI: 10.3389/fmicb.2018.01522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/19/2018] [Indexed: 12/31/2022] Open
Abstract
An opportunistic pathogen, Candida is not only related to oral problems such as oral candidiasis and denture stomatitis, but also to systemic diseases such as aspiration pneumonia and fungemia. The carriage rate of Candida species in the oral cavity of individuals wearing dentures and with removable orthodontic appliances, has increased. Moreover, it is one of the causal pathogens in refractory infected root canals because of its resistance to antifungal drugs in root canal therapy and poses a great challenge during the treatment of patients. This problem has led to the search for alternative strategies for the treatment and management of C. albicans infections. In this mini review, recent preventive strategies against Candida infection in the oral mucosa with natural product-derived antifungal molecules were discussed. Inhibitory strategies by introducing competitive naturally-derived antifungal peptide molecules with Candida adhesion molecules were specifically introduced. In addition, novel sterilization methods for Candida-infected root canals and tooth structures in the oral cavity were considered, with focused attention on the activities of reactive oxygen species. The possibility of application of these novel strategies in clinical treatments and daily life was also proposed.
Collapse
Affiliation(s)
- Tomoko Ohshima
- School of Dental Medicine, Tsurumi University, Yokohama, Japan
- School of Engineering, Osaka University, Suita, Japan
| | - Satoshi Ikawa
- Technology Research Institute of Osaka Prefecture, Osaka, Japan
| | - Katsuhisa Kitano
- School of Dental Medicine, Tsurumi University, Yokohama, Japan
- School of Engineering, Osaka University, Suita, Japan
| | - Nobuko Maeda
- School of Dental Medicine, Tsurumi University, Yokohama, Japan
| |
Collapse
|
37
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
38
|
Pérez V, Dorador C, Molina V, Yáñez C, Hengst M. Rhodobacter sp. Rb3, an aerobic anoxygenic phototroph which thrives in the polyextreme ecosystem of the Salar de Huasco, in the Chilean Altiplano. Antonie van Leeuwenhoek 2018; 111:1449-1465. [PMID: 29569108 DOI: 10.1007/s10482-018-1067-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 03/16/2018] [Indexed: 10/17/2022]
Abstract
The Salar de Huasco is an evaporitic basin located in the Chilean Altiplano, which presents extreme environmental conditions for life, i.e. high altitude (3800 m.a.s.l.), negative water balance, a wide salinity range, high daily temperature changes and the occurrence of the highest registered solar radiation on the planet (> 1200 W m-2). This ecosystem is considered as a natural laboratory to understand different adaptations of microorganisms to extreme conditions. Rhodobacter, an anoxygenic aerobic phototrophic bacterial genus, represents one of the most abundant groups reported based on taxonomic diversity surveys in this ecosystem. The bacterial mat isolate Rhodobacter sp. strain Rb3 was used to study adaptation mechanisms to stress-inducing factors potentially explaining its success in a polyextreme ecosystem. We found that the Rhodobacter sp. Rb3 genome was characterized by a high abundance of genes involved in stress tolerance and adaptation strategies, among which DNA repair and oxidative stress were the most conspicuous. Moreover, many other molecular mechanisms associated with oxidative stress, photooxidation and antioxidants; DNA repair and protection; motility, chemotaxis and biofilm synthesis; osmotic stress, metal, metalloid and toxic anions resistance; antimicrobial resistance and multidrug pumps; sporulation; cold shock and heat shock stress; mobile genetic elements and toxin-antitoxin system were detected and identified as potential survival mechanism features in Rhodobacter sp. Rb3. In total, these results reveal a wide set of strategies used by the isolate to adapt and thrive under environmental stress conditions as a model of polyextreme environmental resistome.
Collapse
Affiliation(s)
- Vilma Pérez
- Laboratory of Molecular Ecology and Applied Microbiology, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile.,Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile
| | - Cristina Dorador
- Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile.,Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Departamento de Biotecnología, Universidad de Antofagasta, Antofagasta, Chile
| | - Verónica Molina
- Departamento de Biología, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaiso, Chile
| | - Carolina Yáñez
- Laboratorio Microbiología, Instituto de Biología, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaiso, Chile
| | - Martha Hengst
- Laboratory of Molecular Ecology and Applied Microbiology, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile. .,Centre for Biotechnology & Bioengineering (CeBiB), Santiago, Chile.
| |
Collapse
|
39
|
Role of smeU1VWU2X Operon in Alleviation of Oxidative Stresses and Occurrence of Sulfamethoxazole-Trimethoprim-Resistant Mutants in Stenotrophomonas maltophilia. Antimicrob Agents Chemother 2018; 62:AAC.02114-17. [PMID: 29203487 DOI: 10.1128/aac.02114-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 11/21/2017] [Indexed: 01/23/2023] Open
Abstract
Overexpression of resistance-nodulation-division (RND)-type efflux pumps is an important mechanism for bacteria to combat antimicrobials. RND efflux pumps are also critical for bacterial physiology, such as oxidative stress tolerance. Stenotrophomonas maltophilia, a multidrug-resistant opportunistic pathogen, harbors eight RND-type efflux pump operons. Of these, the smeU1VWU2X operon is unique for its possession of two additional genes, smeU1 and smeU2, which encode proteins of the short-chain dehydrogenase/reductase (SDR) family. Overexpression of the SmeVWX pump is known to contribute to the acquired resistance to chloramphenicol, quinolone, and tetracycline; however, SmeU1 and SmeU2 are little involved in this phenotype. In the study described in this article, we further linked the smeU1VWU2X operon to oxidative stress alleviation and sulfamethoxazole-trimethoprim (SXT)-resistant mutant occurrence. The smeU1VWU2X operon was inducibly expressed upon challenge with menadione (MD), plumbagin (PL), and hydrogen peroxide (H2O2), as verified by the use of the chromosomal smeU1VWU2X-xylE transcriptional fusion construct and quantitative real-time PCR (qRT-PCR). The MD-mediated smeU1VWU2X upexpression was totally dependent on SoxR and partially relied on SmeRv but was less relevant to OxyR. SmeRv, but not SoxR and OxyR, played a regulatory role in the H2O2-mediated smeU1VWU2X upexpression. The significance of smeU1VWU2X upexpression was investigated with respect to oxidative stress alleviation and SXT-resistant mutant occurrence. Overexpression of the smeU1VWU2X operon contributed to the alleviation of MD-mediated oxidative stress. Of the encoded proteins, the SmeVWX pump and SmeU2, rather than SmeU1, participated in MD tolerance. Furthermore, we also demonstrated that the MD-mediated expression of the smeU1VWU2X operon decreased the SXT resistance frequency when S. maltophilia was grown in a reactive oxygen species (ROS)-rich environment.
Collapse
|
40
|
Courtney CM, Goodman SM, Nagy TA, Levy M, Bhusal P, Madinger NE, Detweiler CS, Nagpal P, Chatterjee A. Potentiating antibiotics in drug-resistant clinical isolates via stimuli-activated superoxide generation. SCIENCE ADVANCES 2017; 3:e1701776. [PMID: 28983513 PMCID: PMC5627983 DOI: 10.1126/sciadv.1701776] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 09/13/2017] [Indexed: 05/25/2023]
Abstract
The rise of multidrug-resistant (MDR) bacteria is a growing concern to global health and is exacerbated by the lack of new antibiotics. To treat already pervasive MDR infections, new classes of antibiotics or antibiotic adjuvants are needed. Reactive oxygen species (ROS) have been shown to play a role during antibacterial action; however, it is not yet understood whether ROS contribute directly to or are an outcome of bacterial lethality caused by antibiotics. We show that a light-activated nanoparticle, designed to produce tunable flux of specific ROS, superoxide, potentiates the activity of antibiotics in clinical MDR isolates of Escherichia coli, Salmonella enterica, and Klebsiella pneumoniae. Despite the high degree of antibiotic resistance in these isolates, we observed a synergistic interaction between both bactericidal and bacteriostatic antibiotics with varied mechanisms of action and our superoxide-producing nanoparticles in more than 75% of combinations. As a result of this potentiation, the effective antibiotic concentration of the clinical isolates was reduced up to 1000-fold below their respective sensitive/resistant breakpoint. Further, superoxide-generating nanoparticles in combination with ciprofloxacin reduced bacterial load in epithelial cells infected with S. enterica serovar Typhimurium and increased Caenorhabditis elegans survival upon infection with S. enterica serovar Enteriditis, compared to antibiotic alone. This demonstration highlights the ability to engineer superoxide generation to potentiate antibiotic activity and combat highly drug-resistant bacterial pathogens.
Collapse
Affiliation(s)
- Colleen M. Courtney
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Samuel M. Goodman
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Toni A. Nagy
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Max Levy
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Pallavi Bhusal
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Nancy E. Madinger
- Division of Infectious Diseases, University of Colorado Denver, Aurora, CO 80045, USA
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Boulder, CO 80309, USA
| | - Prashant Nagpal
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
- Materials Science and Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Anushree Chatterjee
- Chemical and Biological Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
- BioFrontiers Institute, University of Colorado Boulder, Boulder, CO 80303, USA
| |
Collapse
|
41
|
Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol 2017; 7:373. [PMID: 28890882 PMCID: PMC5574878 DOI: 10.3389/fcimb.2017.00373] [Citation(s) in RCA: 492] [Impact Index Per Article: 61.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
Reactive oxygen species (ROS) generated by NADPH oxidase play an important role in antimicrobial host defense and inflammation. Their deficiency in humans results in recurrent and severe bacterial infections, while their unregulated release leads to pathology from excessive inflammation. The release of high concentrations of ROS aids in clearance of invading bacteria. Localization of ROS release to phagosomes containing pathogens limits tissue damage. Host immune cells, like neutrophils, also known as PMNs, will release large amounts of ROS at the site of infection following the activation of surface receptors. The binding of ligands to G-protein-coupled receptors (GPCRs), toll-like receptors, and cytokine receptors can prime PMNs for a more robust response if additional signals are encountered. Meanwhile, activation of Fc and integrin directly induces high levels of ROS production. Additionally, GPCRs that bind to the bacterial-peptide analog fMLP, a neutrophil chemoattractant, can both prime cells and trigger low levels of ROS production. Engagement of these receptors initiates intracellular signaling pathways, resulting in activation of downstream effector proteins, assembly of the NADPH oxidase complex, and ultimately, the production of ROS by this complex. Within PMNs, ROS released by the NADPH oxidase complex can activate granular proteases and induce the formation of neutrophil extracellular traps (NETs). Additionally, ROS can cross the membranes of bacterial pathogens and damage their nucleic acids, proteins, and cell membranes. Consequently, in order to establish infections, bacterial pathogens employ various strategies to prevent restriction by PMN-derived ROS or downstream consequences of ROS production. Some pathogens are able to directly prevent the oxidative burst of phagocytes using secreted effector proteins or toxins that interfere with translocation of the NADPH oxidase complex or signaling pathways needed for its activation. Nonetheless, these pathogens often rely on repair and detoxifying proteins in addition to these secreted effectors and toxins in order to resist mammalian sources of ROS. This suggests that pathogens have both intrinsic and extrinsic mechanisms to avoid restriction by PMN-derived ROS. Here, we review mechanisms of oxidative burst in PMNs in response to bacterial infections, as well as the mechanisms by which bacterial pathogens thwart restriction by ROS to survive under conditions of oxidative stress.
Collapse
Affiliation(s)
- Giang T Nguyen
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States
| | - Erin R Green
- Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| | - Joan Mecsas
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts UniversityBoston, MA, United States.,Department of Molecular Biology and Microbiology, Tufts University School of MedicineBoston, MA, United States
| |
Collapse
|
42
|
Myeloperoxidase targets oxidative host attacks to Salmonella and prevents collateral tissue damage. Nat Microbiol 2017; 2:16268. [PMID: 28112722 DOI: 10.1038/nmicrobiol.2016.268] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 12/13/2016] [Indexed: 02/07/2023]
Abstract
Host control of infections crucially depends on the capability to kill pathogens with reactive oxygen species (ROS). However, these toxic molecules can also readily damage host components and cause severe immunopathology. Here, we show that neutrophils use their most abundant granule protein, myeloperoxidase, to target ROS specifically to pathogens while minimizing collateral tissue damage. A computational model predicted that myeloperoxidase efficiently scavenges diffusible H2O2 at the surface of phagosomal Salmonella and converts it into highly reactive HOCl (bleach), which rapidly damages biomolecules within a radius of less than 0.1 μm. Myeloperoxidase-deficient neutrophils were predicted to accumulate large quantities of H2O2 that still effectively kill Salmonella, but most H2O2 would leak from the phagosome. Salmonella stimulation of neutrophils from normal and myeloperoxidase-deficient human donors experimentally confirmed an inverse relationship between myeloperoxidase activity and extracellular H2O2 release. Myeloperoxidase-deficient mice infected with Salmonella had elevated hydrogen peroxide tissue levels and exacerbated oxidative damage of host lipids and DNA, despite almost normal Salmonella control. These data show that myeloperoxidase has a major function in mitigating collateral tissue damage during antimicrobial oxidative bursts, by converting diffusible long-lived H2O2 into highly reactive, microbicidal and locally confined HOCl at pathogen surfaces.
Collapse
|
43
|
Diaz JM, Hansel CM, Apprill A, Brighi C, Zhang T, Weber L, McNally S, Xun L. Species-specific control of external superoxide levels by the coral holobiont during a natural bleaching event. Nat Commun 2016; 7:13801. [PMID: 27924868 PMCID: PMC5150980 DOI: 10.1038/ncomms13801] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/02/2016] [Indexed: 02/01/2023] Open
Abstract
The reactive oxygen species superoxide (O2·−) is both beneficial and detrimental to life. Within corals, superoxide may contribute to pathogen resistance but also bleaching, the loss of essential algal symbionts. Yet, the role of superoxide in coral health and physiology is not completely understood owing to a lack of direct in situ observations. By conducting field measurements of superoxide produced by corals during a bleaching event, we show substantial species-specific variation in external superoxide levels, which reflect the balance of production and degradation processes. Extracellular superoxide concentrations are independent of light, algal symbiont abundance and bleaching status, but depend on coral species and bacterial community composition. Furthermore, coral-derived superoxide concentrations ranged from levels below bulk seawater up to ∼120 nM, some of the highest superoxide concentrations observed in marine systems. Overall, these results unveil the ability of corals and/or their microbiomes to regulate superoxide in their immediate surroundings, which suggests species-specific roles of superoxide in coral health and physiology.
Corals may vary in their ability to regulate reactive oxygen species (ROS) that can influence coral health. Diaz and colleagues conduct in vivo measurements of the ROS superoxide at the surface of corals and find substantial species-level variation in superoxide regulation that is independent of bleaching status.
Collapse
Affiliation(s)
- Julia M Diaz
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, Massachusetts 02543, USA.,Skidaway Institute of Oceanography, Department of Marine Sciences, University of Georgia, 10 Ocean Science Circle, Savannah, Georgia 31411, USA
| | - Colleen M Hansel
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, Massachusetts 02543, USA
| | - Amy Apprill
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, Massachusetts 02543, USA
| | - Caterina Brighi
- Department of Chemistry, Imperial College London, Imperial College Road, London SW7 2AZ, UK
| | - Tong Zhang
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, Massachusetts 02543, USA.,MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 38 Tongyan Road, Tianjin 300350, China
| | - Laura Weber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, Massachusetts 02543, USA
| | - Sean McNally
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, Massachusetts 02543, USA.,School for the Environment, University of Massachusetts Boston, 100 Morrissey Boulevard, Boston, Massachusetts 02125, USA
| | - Liping Xun
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, 266 Woods Hole Rd, Woods Hole, Massachusetts 02543, USA
| |
Collapse
|
44
|
Chaithawiwat K, Vangnai A, McEvoy JM, Pruess B, Krajangpan S, Khan E. Role of oxidative stress in inactivation of Escherichia coli BW25113 by nanoscale zero-valent iron. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 565:857-862. [PMID: 26953142 DOI: 10.1016/j.scitotenv.2016.02.191] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 06/05/2023]
Abstract
An Escherichia coli BW25113 wildtype strain and mutant strains lacking genes that protect against oxidative stress were examined at different growth phases for susceptibility to zero-valent iron (nZVI). Viability of cells was determined by the plate count method. All mutant strains were more susceptible than the wild type strain to nZVI; however, susceptibility differed among the mutant strains. Consistent with the role of rpoS as a global stress regulator, an rpoS gene knockout mutant exhibited the greatest susceptibility to nZVI under the majority of conditions tested (except exponential and declining phases at longer exposure time). Mutants lacking genes encoding the inducible and constitutively expressed cytosolic superoxide dismutases, sodA and sodB, respectively, were more susceptible to nZVI than a mutant lacking the gene encoding sodC, a periplasmic superoxide dismutase. This suggests that nZVI induces oxidative stress inside the cells via superoxide generation. Quantitative polymerase chain reaction was used to examine the expression of katG, a gene encoding the catalase-peroxidase enzyme, in nZVI-treated E. coli at different growth phases. Results showed that nZVI repressed the expression of katG in all but lag phases.
Collapse
Affiliation(s)
- Krittanut Chaithawiwat
- International Postgraduate Programs in Environmental Management, Graduate School Chulalongkorn University, Bangkok 10330, Thailand; Environmental and Conservation Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Alisa Vangnai
- Department of Biochemistry, Chulalongkorn University, Bangkok 10330, Thailand
| | - John M McEvoy
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Birgit Pruess
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108, USA
| | | | - Eakalak Khan
- Department of Civil and Environmental Engineering, North Dakota State University, Fargo, ND 58108, USA.
| |
Collapse
|
45
|
Xiong LG, Chen YJ, Tong JW, Huang JA, Li J, Gong YS, Liu ZH. Tea polyphenol epigallocatechin gallate inhibits Escherichia coli by increasing endogenous oxidative stress. Food Chem 2016; 217:196-204. [PMID: 27664626 DOI: 10.1016/j.foodchem.2016.08.098] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/12/2016] [Accepted: 08/25/2016] [Indexed: 11/18/2022]
Abstract
The antibacterial effects of tea polyphenol epigallocatechin gallate (EGCG), a common phytochemical with a number of potential health benefits, are well known. However, the mechanism of its bactericidal action remains unclear. Using E. coli as a model organism, it is argued here that H2O2 synthesis by EGCG is not attributed to its inhibitory effects. In contrast, the bactericidal action of EGCG was a result of increased intracellular reactive oxygen species and blunted adaptive oxidative stress response in E. coli due to the co-administration of antioxidant N-acetylcysteine, and not on account of exogenous catalase. Furthermore, we noted a synergistic bactericidal effect for EGCG when combined with paraquat. However, under anaerobic conditions, the inhibitory effect of EGCG was prevented. In conclusion, EGCG caused an increase in endogenous oxidative stress in E. coli, thereby inhibiting its growth, and hence the use of EGCG as a prooxidant is supported by this study.
Collapse
Affiliation(s)
- Li-Gui Xiong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yi-Jun Chen
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jie-Wen Tong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Jian-An Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Juan Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yu-Shun Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China.
| | - Zhong-Hua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China; Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan 410128, China.
| |
Collapse
|
46
|
Karimova DN, Manukhov IV, Gnuchikh EY, Karimov IF, Deryabin DG. Reactive oxygen and nitrogen species’ effect on lux-biosensors based on Escherichia coli and Salmonella typhimurium. APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816030078] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Affiliation(s)
- Chynna N. Broxton
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
48
|
Albarracín VH, Gärtner W, Farias ME. Forged Under the Sun: Life and Art of Extremophiles from Andean Lakes. Photochem Photobiol 2015; 92:14-28. [PMID: 26647770 DOI: 10.1111/php.12555] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 10/09/2015] [Accepted: 11/05/2015] [Indexed: 12/25/2022]
Abstract
High-altitude Andean lakes (HAAL) are a treasure chest for microbiological research in South America. Their indigenous microbial communities are exposed to extremely high UV irradiation and to multiple chemical extremes (Arsenic, high salt content, alkalinity). Microbes are found both, free-living or associated into microbial mats with different degrees of mineralization and lithification, including unique modern stromatolites located at 3570 m above sea level. Characterization of these polyextremophilic microbes began only recently, employing morphological and phylogenetic methods as well as high-throughput sequencing and proteomics approach. Aside from providing a general overview on microbial communities, special attention is given to various survival strategies; HAAL's microbes present a complex system of shared genetic and physiological mechanisms (UV-resistome) based on UV photoreceptors and stress sensors with their corresponding response regulators, UV avoidance and protection strategies, damage tolerance and UV damage repair. Molecular information will be provided for what is, so far the most studied HAAL molecule, a CPD-Class I photolyase from Acinetobacter Ver3 (Laguna Verde, 4400 m). This work further proposes some strategies that make an appeal for the preservation of HAAL, a highly fragile environment that offers promising and ample research possibilities.
Collapse
Affiliation(s)
- Virginia Helena Albarracín
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina.,Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Wolfgang Gärtner
- Max-Planck-Institute for Chemical Energy Conversion, Mülheim, Germany
| | - María Eugenia Farias
- Planta Piloto de Procesos Industriales y Microbiológicos (PROIMI), CCT, CONICET, Tucumán, Argentina
| |
Collapse
|
49
|
Abstract
The ancestors of Escherichia coli and Salmonella ultimately evolved to thrive in air-saturated liquids, in which oxygen levels reach 210 μM at 37°C. However, in 1976 Brown and colleagues reported that some sensitivity persists: growth defects still become apparent when hyperoxia is imposed on cultures of E. coli. This residual vulnerability was important in that it raised the prospect that normal levels of oxygen might also injure bacteria, albeit at reduced rates that are not overtly toxic. The intent of this article is both to describe the threat that molecular oxygen poses for bacteria and to detail what we currently understand about the strategies by which E. coli and Salmonella defend themselves against it. E. coli mutants that lack either superoxide dismutases or catalases and peroxidases exhibit a variety of growth defects. These phenotypes constitute the best evidence that aerobic cells continually generate intracellular superoxide and hydrogen peroxide at potentially lethal doses. Superoxide has reduction potentials that allow it to serve in vitro as either a weak univalent reductant or a stronger univalent oxidant. The addition of micromolar hydrogen peroxide to lab media will immediately block the growth of most cells, and protracted exposure will result in the loss of viability. The need for inducible antioxidant systems seems especially obvious for enteric bacteria, which move quickly from the anaerobic gut to fully aerobic surface waters or even to ROS-perfused phagolysosomes. E. coli and Salmonella have provided two paradigmatic models of oxidative-stress responses: the SoxRS and OxyR systems.
Collapse
|
50
|
Smirnova GV, Muzyka NG, Ushakov VY, Tyulenev AV, Oktyabrsky ON. Extracellular superoxide provokes glutathione efflux from Escherichia coli cells. Res Microbiol 2015; 166:609-17. [DOI: 10.1016/j.resmic.2015.07.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 06/23/2015] [Accepted: 07/06/2015] [Indexed: 11/28/2022]
|