1
|
Zhu GY, Jia DD, Yang Y, Miao Y, Wang C, Wang CM. The Effect of Shaoyao Gancao Decoction on Sphincter of Oddi Dysfunction in Hypercholesterolemic Rabbits via Protecting the Enteric Nervous System-Interstitial Cells of Cajal-Smooth Muscle Cells Network. J Inflamm Res 2021; 14:4615-4628. [PMID: 34552344 PMCID: PMC8450191 DOI: 10.2147/jir.s326416] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/17/2021] [Indexed: 11/25/2022] Open
Abstract
Objective This study observes the morphological changes in the enteric nervous system (ENS) – interstitial cells of Cajal (ICC) – smooth muscle cells (SMC) network in sphincter of Oddi dysfunction (SOD) in hypercholesterolemic rabbits following treatment with Shaoyao Gancao decoction (SGD), as well as the apoptosis of the ICC. Methods In this study, 48 healthy adult New Zealand rabbits are randomly divided into three groups (n = 16 in each group): the control, the model, and the SGD treatment groups. The hypercholesterolemic rabbit model is established. Hematoxylin and eosin staining, transmission electron microscopy, immunofluorescence, terminal deoxynucleotidyl transferase dUTP nick end labeling staining, immunohistochemistry, Western blot analysis, and reverse transcription-polymerase chain reaction are used to detect the morphological changes in the ENS–ICC–SMC network, the expression of apoptosis-related proteins in the ICC, and to observe the curative effect of SGD after treatment. Results Compared with the control group, the morphology and the ultrastructure of the SO are destroyed in the model group. In addition, the protein gene product 9.5 (PGP9.5), nitric oxide (NO), the SMCs, and the ICC all significantly decreased while substance P (SP) significantly increased. Compared with the model group, the SO morphology and ultrastructure are repaired in the SGD group. In addition, the PGP9.5, NO, the SMCs, and the ICC significantly increased while SP decreased. In addition, SGD may activate the stem cell factor (SCF)/c-Kit signaling pathway to treat SO dysfunction by up-regulating the expression of c-Kit and SCF. Similarly, this pathway restores SO by up-regulating the expression of Bcl2 and inhibiting cleaved caspase-3, Bax, and the tumor necrosis factor. Conclusion Shaoyao Gancao decoction can promote the recovery of sphincter of Oddi dysfunction in hypercholesterolemic rabbits by protecting the ENS–ICC–SMC network.
Collapse
Affiliation(s)
- Gui-Ying Zhu
- Department of General Surgery of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Dan-Dan Jia
- Department of General Surgery of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Ying Yang
- Department of General Surgery of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Ye Miao
- Department of General Surgery of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Chao Wang
- Department of General Surgery of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| | - Chang-Miao Wang
- Department of General Surgery of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, 116011, People's Republic of China
| |
Collapse
|
2
|
Changes in the Interstitial Cells of Cajal and Immunity in Chronic Psychological Stress Rats and Therapeutic Effects of Acupuncture at the Zusanli Point (ST36). EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:1935372. [PMID: 27594888 PMCID: PMC4987473 DOI: 10.1155/2016/1935372] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/03/2016] [Accepted: 05/18/2016] [Indexed: 02/06/2023]
Abstract
Now, chronic psychological stress (CPS) related diseases are increasing. Many CPS patients have gastrointestinal complaints, immune suppression, and immune imbalance. Increasing evidence is indicating that acupuncture (AP) at the Zusanli point (ST36) can alleviate functional gastrointestinal disorders (FGID), immune suppression, and immune imbalance. However, few studies have investigated the potential mechanisms. In this study, CPS rat models were established, and electroacupuncture (EA) at ST36 was done for CPS rats. Daily food intake, weight, intestinal sensitivity, the morphology of interstitial cell of Cajal (ICC) in the small intestine, and serum indexes were measured. The study found that, in CPS rats, EA at ST36 could improve food intake, weight, visceral hypersensitivity, and immunity; in CPS rats, in small intestine, the morphology of ICCs was abnormal and the number was decreased, which may be part causes of gastrointestinal motility dysfunction. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its repairing effects on ICCs damages; in CPS rats, there were immune suppression and immune imbalance, which may be part causes of visceral hypersensitivity. EA at ST36 showed useful therapeutic effects. The mechanisms may be partially related to its regulation on immunity.
Collapse
|
3
|
Effect of da-cheng-qi decoction on the repair of the injured enteric nerve-interstitial cells of cajal-smooth muscle cells network in multiple organ dysfunction syndrome. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2014; 2014:596723. [PMID: 25477993 PMCID: PMC4247919 DOI: 10.1155/2014/596723] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 01/22/2023]
Abstract
Wistar rats were randomly divided into control group, multiple organ dysfunction syndrome (MODS) group, and Da-Cheng-Qi decoction (DCQD) group. The network of enteric nerves-interstitial cells of Cajal- (ICC-) smooth muscle cells (SMC) in small intestine was observed using confocal laser scanning microscopy and transmission electron microscopy. The results showed that the numbers of cholinergic/nitriergic nerves, and the deep muscular plexus of ICC (ICC-DMP) and connexin43 (Cx43) in small intestine with MODS were significantly decreased. The network integrity of enteric nerves-ICC-SMC was disrupted. The ultrastructures of ICC-DMP, enteric nerves, and SMC were severely damaged. After treatment with DCQD, the damages were repaired and the network integrity of enteric nerves ICC-SMC was significantly recovered. In conclusion, the pathogenesis of gastrointestinal motility dysfunction in MODS in part may be due to the damages to enteric nerves-ICC-SMC network and gap junctions. The therapeutic mechanism of DCQD in part may be that it could repair the damages and maintain the integrity of enteric nerves ICC-SMC network.
Collapse
|
4
|
Matsuyoshi H, Nakagawa T, Zhang GX, Obata K, Misawa H, Kawahara I, Takaki M. Changes in contractile and electrical activity in the ileum of DSS-induced colitis model W/Wv mutant mice. J Smooth Muscle Res 2010; 46:143-56. [PMID: 20647691 DOI: 10.1540/jsmr.46.143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE In the ileum of W/W(v) mutant mice (W/W(v)), the absence of interstitial cells of Cajal (ICC) in the myenteric region (ICC-MY), and cross-talk between ICC in the deep muscular region (ICC-DMP) and enteric nitrergic motor nerves leads to irregular spontaneous electrical and contractile activity. The aim of the present study was to reveal changes in this irregular spontaneous electrical and contractile activity in the ileum of dextran sodium sulfate (DSS: m.w. 40,000)-induced colitis model W/W(v) mice. METHODS Electrical and contractile activity was recorded with a suction electrode and with both an isometric force transducer and a pressure transducer in the ileum of W/W(v) mice either with DSS-induced colitis (DSS (+)) in the distal colon or without in controls (DSS (-)). Neuronal NO synthase (nNOS) and inducible NO synthase (iNOS) immunoreactivity in the ileum was compared between the following groups of mice: W/W(v) DSS (+), W/W(v) DSS (-), wild type (WT) with (DSS (+)) and WT without DSS-induced colitis (DSS (-)). RESULTS DSS induced colitis in the distal colon of W/W(v) mice is reduced compared with that in WT mice, despite the reduction in the number of mast cells in the W/W(v) mutants. Irregular contractions in the ileum without colitis were strongly suppressed in W/W(v) DSS (+) mice. The mean interval of irregular contractions in W/W(v) DSS (+) mice was 5-fold larger than that in W/W(v) DSS (-) mice. N-nitro-L-arginine methyl ester (L-NAME) facilitated the frequency of irregular contractions in the ileum without colitis in W/W(v) DSS (+) mice. L-NAME decreased the mean interval of contractions to one-fourth in the ileum of W/W(v) DSS (+) mice, where strong iNOS immunoreactivity in nitrergic motor nerves was found with unchanged nNOS immunoreactivity. CONCLUSIONS The stronger suppression of irregular contractions of the ileum in DSS-induced colitis model W/W(v) mice was elicited and mediated by cross-talk between ICC-DMP and enteric nitrergic motor nerves expressing iNOS/NO, even though the ileum was not demonstrating colitis.
Collapse
Affiliation(s)
- Hiroko Matsuyoshi
- Department of Physiology II, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | |
Collapse
|
5
|
Wouters MM, Neefs JM, Kerchove d'Exaerde AD, Vanderwinden JM, Smans KA. Downregulation of two novel genes in Sl/Sld and W(LacZ)/Wv mouse jejunum. Biochem Biophys Res Commun 2006; 346:491-500. [PMID: 16765319 DOI: 10.1016/j.bbrc.2006.05.132] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2006] [Accepted: 05/22/2006] [Indexed: 11/22/2022]
Abstract
Interstitial cells of Cajal (ICC) are the so-called pacemaker cells of the gut. W(LacZ)/Wv and Sl/Sld mice lack ICC surrounding the myenteric plexus (MP) in the jejunum. We compared the gene expression profile of wild type (WT) and W(LacZ)/Wv and Sl/Sld mice using suppression subtractive hybridization (SSH), generating a cDNA library of 1303 clones from which 48 unique sequences were differentially expressed with Southern blot. Among them, we identified heme oxygenase2, TROY, and phospholamban in ICC using immunohistochemistry. Using RT-qPCR, c-Kit and two new transcripts Dithp and prenylcysteine oxidase1 were significantly lower expressed in Sl/Sld and W(LacZ)/Wv versus WT. Prenylcysteine oxidase1 appeared cytotoxic for COS-7 cells and was highly expressed in liver while Dithp was mainly expressed in small intestine. The combination of SSH, Southern blot, RT-qPCR, and immunohistochemistry turned out to be a useful approach to identify rarely expressed genes and genes with small differences in expression.
Collapse
Affiliation(s)
- Mira M Wouters
- Department of Internal Medicine, Johnson and Johnson, Pharmaceutical Research and Development, A Subdivision of Janssen Pharmaceutics, Beerse, Belgium
| | | | | | | | | |
Collapse
|
6
|
Nakagawa T, Misawa H, Nakajima Y, Takaki M. Absence of peristalsis in the ileum of W/W(V) mutant mice that are selectively deficient in myenteric interstitial cells of Cajal. J Smooth Muscle Res 2005; 41:141-51. [PMID: 16006747 DOI: 10.1540/jsmr.41.141] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
It is well known that the enteric nervous system plays a key role in the generation of gastrointestinal peristaltic movements. Recently, the networks of interstitial cells of Cajal (ICC) have been found to be essential in the generation of spontaneous gastrointestinal movements. However, the role of ICC in the mechanisms involved in the generation of peristaltic movements is still controversial. The aim of the present study was to reveal how pacemaker myenteric ICC (ICC-MY) and the enteric nervous system contribute to the mechanisms involved in the generation of intestinal peristalsis. We compared spontaneous peristaltic movements of the ileum in wild type (WT) mice with those in W/W(V) mutant mice which are selectively deficient in ICC-MY. Simultaneous recordings were made from both the circular and longitudinal muscle of a 4-cm long segment of ileum under hydrostatic pressure of 0--0.5 cm H(2)O. Mechanical activity and continuous video-images of the ileum were compared between WT and W/W(V) mutant mice under control conditions, in the presence of N-nitro-L-arginine methyl ester (L-NAME) and after tetrodotoxin (TTX). In the WT mouse ileum, peristaltic waves to propagate from the oral to the anal end were frequently observed. The frequency of these peristaltic waves and their associated synchronous longitudinal and circular muscle contractions was increased by L-NAME. The peristaltic waves were abolished by TTX. In the W/W(V) mutant mouse ileum, no peristaltic waves to propagate from the oral to the anal end were observed in control and even after L-NAME, although the local spontaneously generated longitudinal and circular muscle contractions were enhanced by L-NAME. These local contractions were not abolished by TTX. The results presented here suggested that ICC-MY are essential for the generation of spontaneous intestinal peristaltic movements. It is conceivable that ICC-MY may determine the polarity of the excitation of the intestine such that longitudinal and circular muscle contractions propagate from the oral to the anal end of the intestinal segments, although the question of why ICC-MY are necessary for the neural pathways remains unresolved.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | |
Collapse
|
7
|
Nakagawa T, Ueshima S, Fujii H, Nakajima Y, Takaki M. Different modulation of spontaneous activities by nitrergic inhibitory nerves between ileum and jejunum in W/Wv mutant mice. Auton Neurosci 2005; 119:25-35. [PMID: 15893705 DOI: 10.1016/j.autneu.2005.02.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2005] [Revised: 01/07/2005] [Accepted: 02/20/2005] [Indexed: 11/26/2022]
Abstract
We compared the spontaneous electrical and mechanical activities between the jejunum and ileum in the W/Wv mutant mouse, where ICC in the myenteric region (ICC-MY) are deficient. Electrical slow waves (SWs) superimposed with spike potentials, and synchronous circular and longitudinal muscle mechanical activities at a regular rhythm under approximately 1 cm H2O were recorded in the jejunum and ileum of wild-type mice. However, in the jejunum and ileum of W/Wv mice, irregular electrical and mechanical activities without discernable SWs were recorded. N-nitro-L-arginine methyl ester (L-NAME) significantly decreased the mean interval of longitudinal muscle contractions from 4.43+/-3.39 to 2.50+/-1.23 s in the ileum of W/W(V) mice. L-NAME also significantly decreased mean coefficient of variance (decreased irregularity) in the intervals from 2.59+/-0.84 to 0.48+/-0.46 in the ileum. Tetrodotoxin also significantly decreased mean interval and coefficient of variance in the ileum. Neither L-NAME nor tetrodotoxin affected contractile activity in the jejunum. These results suggest that enteric nitrergic nerves in the ileum, but not the jejunum, mediate a steady-state inhibition of myogenic activity in W/Wv mice.
Collapse
Affiliation(s)
- Tadashi Nakagawa
- Department of Physiology II, Nara Medical University School of Medicine, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan
| | | | | | | | | |
Collapse
|
8
|
Tam WY, Yip FP, Chan WY. Abnormalities of Interstitial Cells of Cajal in Dominant Megacolon Mice. Neuroembryology Aging 2004. [DOI: 10.1159/000079402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Daigo Y, Takayama I, Ponder BAJ, Caldas C, Ward SM, Sanders KM, Fujino MA. Novel human, mouse and xenopus genes encoding a member of the RAS superfamily of low-molecular-weight GTP-binding proteins and its downregulation in W/WV mouse jejunum. J Gastroenterol Hepatol 2004; 19:211-7. [PMID: 14731133 DOI: 10.1111/j.1440-1746.2004.03298.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIM Interstitial cells of Cajal (ICC) are pacemakers and mediators of neurotransmission in gastroenteric smooth muscles. Interstitial cells of Cajal require cellular signaling via KIT, a receptor tyrosine kinase, for development and maintenance of cellular phenotype. Much of the evidence demonstrating the functions of ICC comes from studies of W/W V mutant mice, which have reduced KIT function. The aim of the present study was to differentially examine gene expression in the small intestines of wild-type and W/W V mice. METHODS RNA from the jejunum of wild-type and W/W V mice was analyzed using a differential gene display method. RESULTS One candidate gene, encoding a novel small GTPase of the RAS superfamily, was significantly suppressed both in fed and starved W/WV mice. The full-length clone of the murine gene and its human and xenopus counterparts were designated GTP-binding protein, 28 kDa (G28K). Human G28K cDNA encodes a protein of 258 amino acids with homology to the human cell division cycle 42/G25K protein. This gene is located at 1q42.11-q42.3. G28K was abundantly expressed in the human stomach and the small intestine. Semi-quantitative reverse transcription-polymerase chain reaction analysis revealed expression of G28K mRNA within single isolated ICC. CONCLUSIONS Gene analysis showed that G28K was differentially expressed in the small intestines of wild-type and W/W V mice. Interstitial cells of Cajal within the small intestine expressed mRNA for G28K. The specific downregulation of G28K in the jejunum of W/W V mice, and high expression in human intestinal tissue suggest that the G28K gene might be associated with ICC function in mice and in humans.
Collapse
Affiliation(s)
- Yataro Daigo
- Department of Medicine, University of Yamanashi School of Medicine, Yamanashi, Japan
| | | | | | | | | | | | | |
Collapse
|
10
|
Chi MM, Powley TL. c-Kit mutant mouse behavioral phenotype: altered meal patterns and CCK sensitivity but normal daily food intake and body weight. Am J Physiol Regul Integr Comp Physiol 2003; 285:R1170-83. [PMID: 12816741 DOI: 10.1152/ajpregu.00015.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The mouse W/Wv mutation of the c-Kit receptor causes extensive loss of gastrointestinal interstitial cells of Cajal and vagal intramuscular arrays (IMAs; one of the two putative mechanoreceptors in gastrointestinal smooth muscle). To characterize the behavioral phenotype of the c-Kit mouse and to evaluate the roles of these mechanoreceptors in controlling food intake, meal patterns and daily intakes of W/Wv mice and controls were examined using solid (20-mg pellets) and liquid (Isocal) maintenance diets. After the meal pattern experiments, CCK (0.5, 1, 2, 4, 8, and 16 microg/kg ip) was administered to examine the role of the interstitial cells and vagal IMA mechanoreceptors in relaying peripheral signals of satiety activated by CCK-A receptors, whereas the specificity of the response was assessed with the antagonist devazepide (300 microg/kg ip). On both diets, the W/Wv mice ate smaller meals for shorter durations, with a compensatory increase in meal number, resulting in daily intakes and body weights similar to the controls. After CCK injections, the mutant mice consistently suppressed intake more ( approximately 2x) in 30-min tests, regardless of the test diet (12.5% glucose, chow, pellets, and Isocal). The increased sensitivity of W/Wv mice to CCK reflected an increased potency of the hormone (c-Kit mouse ED50 = 2.4 microg/kg; control ED50 = 6.4 microg/kg) and a shift of the dose-response curve to the left. Devazepide blocked the CCK suppression of ingestion. These results indicate that the selective loss of the interstitial cells and IMAs disrupts short-term feeding of the W/Wv mice by inducing an earlier satiety, possibly by altering gastric accommodation and/or emptying, without affecting the long-term mechanisms controlling overall intake or body weight. The results also suggest that the reduction of interstitial cells and IMAs augments the sensitivity to or increases the efficiency of exogenous CCK.
Collapse
Affiliation(s)
- Michael M Chi
- Dept. of Psychological Sciences, Purdue Univ., 703 Third St., West Lafayette, IN 47907-2004, USA
| | | |
Collapse
|
11
|
Ordög T, Redelman D, Miller LJ, Horváth VJ, Zhong Q, Almeida-Porada G, Zanjani ED, Horowitz B, Sanders KM. Purification of interstitial cells of Cajal by fluorescence-activated cell sorting. Am J Physiol Cell Physiol 2003; 286:C448-56. [PMID: 14534083 DOI: 10.1152/ajpcell.00273.2003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Interstitial cells of Cajal (ICC) in the gastrointestinal tract generate and propagate slow waves and mediate neuromuscular neurotransmission. Although damages to ICC have been described in several gastrointestinal motor disorders, analysis of their gene expression in health and disease has been problematic because of the difficulties in isolating these cells. Our goal was to develop techniques for large-scale purification of ICC. Murine ICC were identified in live gastrointestinal muscles with fluorescent Kit antibodies. Because this technique also labels resident macrophages nonspecifically, we attempted to separate ICC from these cells by fluorescence-activated cell sorting with or without immunomagnetic presorting. Efficacy and specificity of ICC purification were tested by quantitative RT-PCR of cell-specific markers. Fluorescence-based separation of small intestinal ICC from unlabeled cells and macrophages tagged with F4/80 antibodies yielded 30,000-40,000 cells and approximately 60-fold enrichment of c-kit mRNA. However, the macrophage marker CD68 was also enriched approximately 6-fold. Magnetic presorting of ICC did not significantly improve selectivity. After labeling contaminating cells with additional paramagnetic (anti-CD11b, -CD11c) and fluorescent antibodies (anti-CD11b) and depleting them by magnetic presorting, we harvested approximately 2,000-4,000 cells from single gastric corpus-antrum muscles and detected an approximately 30-fold increase in c-kit mRNA, no enrichment of mast cells, and an approximately 4-fold reduction of CD68 expression. Adding labeled anti-CD45 antibody to our cocktail further increased c-kit enrichment and eliminated mast cells and macrophages. Smooth muscle cells and myenteric neurons were also depleted. We conclude that immunofluorescence-based sorting can yield ICC in sufficiently high numbers and purity to permit detailed molecular analyses.
Collapse
Affiliation(s)
- Tamás Ordög
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Anderson Bldg., Mail Stop 352, Reno, NV 89557, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Daigo Y, Takayama I, Ponder BAJ, Caldas C, Ward SM, Sanders KM, Fujino MA. Differential gene expression profile in the small intestines of mice lacking pacemaker interstitial cells of Cajal. BMC Gastroenterol 2003; 3:17. [PMID: 12831403 PMCID: PMC198276 DOI: 10.1186/1471-230x-3-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2003] [Accepted: 06/29/2003] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND We previously identified eight known and novel genes differentially expressed in the small intestines of wild type and W/WV mice, which have greatly reduced populations of the interstitial cells of Cajal, that are responsible for the generation of electrical slow waves, by using a differential gene display method. METHODS By using the same method we isolated additional candidate genes that were specifically down- or up-regulated in W/WV mice. Novel transcripts were designated as DDWMEST. RESULTS We isolated seven candidates that were specifically down- or up-regulated in W/WV mice. Two novel transcripts, DDWMEST 1 and -91 were increased in both fed and fasted W/WV mice. Expression of another five genes was suppressed in W/WV mice: ARG2 (Arginase II), ONZIN (encoding leukemia inhibitory factor regulated protein), and three novel transcripts: DDWMEST62, -84, and -100. Together with the previous report, we identified fifteen differentially expressed genes in total in the small intestines of W/WV mice. Eight of these genes were reduced in the jejunums of W/WV mice compared to age matched wild type mice, whereas the other seven genes showed an increase in expression. Differential expression was the same in fasted and fed animals, suggesting that the differences were independent of the dietetic state of the animal. CONCLUSIONS Several known and novel genes are differentially expressed in the small intestines of W/WV mice. Differential gene comparison might contribute to our understanding of motility disorders associated with the loss of the interstitial cells of Cajal.
Collapse
Affiliation(s)
- Yataro Daigo
- Department of Medicine, University of Yamanashi, Faculty of Medicine, Japan.
| | | | | | | | | | | | | |
Collapse
|
13
|
Daigo Y, Takayama I, Ponder BAJ, Caldas C, Ward SM, Sanders KM, Fujino MA. Differential gene expression in the murine gastric fundus lacking interstitial cells of Cajal. BMC Gastroenterol 2003; 3:14. [PMID: 12795813 PMCID: PMC165421 DOI: 10.1186/1471-230x-3-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2002] [Accepted: 06/10/2003] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The muscle layers of murine gastric fundus have no interstitial cells of Cajal at the level of the myenteric plexus and only possess intramuscular interstitial cells and this tissue does not generate electric slow waves. The absence of intramuscular interstitial cells in W/WV mutants provides a unique opportunity to study the molecular changes that are associated with the loss of these intercalating cells. METHOD The gene expression profile of the gastric fundus of wild type and W/WV mice was assayed by murine microarray analysis displaying a total of 8734 elements. Queried genes from the microarray analysis were confirmed by semi-quantitative reverse transcription-polymerase chain reaction. RESULTS Twenty-one genes were differentially expressed in wild type and W/WV mice. Eleven transcripts had 2.0-2.5 fold higher mRNA expression in W/WV gastric fundus when compared to wild type tissues. Ten transcripts had 2.1-3.9 fold lower expression in W/WV mutants in comparison with wild type animals. None of these genes have ever been implicated in any bowel motility function. CONCLUSIONS These data provides evidence that several important genes have significantly changed in the murine fundus of W/WV mutants that lack intramuscular interstitial cells of Cajal and have reduced enteric motor neurotransmission.
Collapse
Affiliation(s)
- Yataro Daigo
- Department of Medicine, University of Yamanashi Faculty of Medicine, Japan
- Cancer Genomics Program, Department of Oncology, University of Cambridge School of Medicine, Cambridge, UK
| | - Ichiro Takayama
- Department of Medicine, University of Yamanashi Faculty of Medicine, Japan
| | - Bruce AJ Ponder
- Cancer Genomics Program, Department of Oncology, University of Cambridge School of Medicine, Cambridge, UK
| | - Carlos Caldas
- Cancer Genomics Program, Department of Oncology, University of Cambridge School of Medicine, Cambridge, UK
| | - Sean M Ward
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, USA
| | - Kenton M Sanders
- Department of Physiology and Cell Biology, University of Nevada School of Medicine, USA
| | - Masayuki A Fujino
- Department of Medicine, University of Yamanashi Faculty of Medicine, Japan
| |
Collapse
|
14
|
Daigo Y, Takayama I, Ward SM, Sanders KM, Fujino MA. Novel human and mouse genes encoding a shank-interacting protein and its upregulation in gastric fundus of W/WV mouse. J Gastroenterol Hepatol 2003; 18:712-8. [PMID: 12753155 DOI: 10.1046/j.1440-1746.2003.03046.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
BACKGROUND AND AIMS A division of labor exists between different classes of interstitial cells of Cajal (ICC) in the gastrointestinal tract. In the stomach and small intestine, ICC at the level of the myenteric plexus (IC-MY) act as slow wave pacemaker cells, whereas intramuscular ICC (IC-IM) in the stomach act as intermediaries in enteric motor neurotransmission. The muscle layers of the gastric fundus do not have IC-MY, therefore electric slow waves are not generated. Intramuscular ICC are absent in the gastric fundus of W/WV mutant mice, and excitatory and inhibitory motor nerve responses are reduced in these tissues. The absence of IC-IM in W/WV mutants in the fundus provides a unique opportunity to study the molecular changes that are associated with the loss of these cells. METHODS The tissue gene expression of wild-type and W/WV mice from gastric fundus was assayed using a murine microarray chip analysis displaying a total of 8734 elements. RESULTS Twenty-one queries were differentially expressed in wild-type and W/WV mice. One candidate gene, encoding a novel protein homologous to rat Shank-interacting protein (Sharpin) was significantly upregulated in fed and starved W/WV mice. The full-length clone of the murine gene and its human counterpart were isolated and designated as Shank-interacting protein-like 1 (SIPL1). Human SIPL1 complementary DNA encodes a protein of 345 amino acids. This gene was localized to chromosome 8. SIPL1 was abundantly expressed in human stomach and small intestine, and scarcely expressed in cecum and rectum. CONCLUSIONS Gene analysis showed that SIPL1 differentially express in the gastric fundus of normal and W/WV mice. The upregulation of SIPL1 in the fundus of W/WV mice, and expression in the upper gastrointestinal tract suggest that the SIPL1 gene could be associated with ICC function in mice and humans.
Collapse
Affiliation(s)
- Yataro Daigo
- Department of Medicine, University of Yamanashi Medical School, Yamanashi, Japan
| | | | | | | | | |
Collapse
|
15
|
Southwell BR. Localization of protein kinase C theta immunoreactivity to interstitial cells of Cajal in guinea-pig gastrointestinal tract. Neurogastroenterol Motil 2003; 15:139-47. [PMID: 12680913 DOI: 10.1046/j.1365-2982.2003.00394.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the gastrointestinal tract, interstitial cells of Cajal (ICC) are located between nerve fibres and muscle cells and have a role in neuromuscular transmission and muscle contractility. Protein kinase C (PKC) is involved in modulation of muscle contractility by neurotransmitters, but it is not known if PKC has a role in ICC. There are 11 different PKC isoforms. The presence of PKC isoforms in ICC in guinea-pig gastrointestinal tract was examined using fluorescence immunohistochemistry and confocal microscopy. Segments of guinea-pig stomach, duodenum, ileum, proximal and distal colon were fixed in zambonis fixative. Frozen sections and wholemounts were incubated with anti-PKC antibodies (alpha, beta, delta, epsilon, gamma, iota, lambda, mu, theta) followed by fluorescent secondary antibody. Only PKC theta (theta) immunoreactivity was found in ICC. None of the other PKC isoforms (alpha, beta, delta, epsilon, gamma, iota, lambda, mu) localized to the ICC. PKC theta immunoreactivity was prominent in ICC located between the circular and longitudinal muscle layers (ICC-MY) in all regions except stomach and within the circular muscle (ICC-IM) in the large intestine. PKC theta was not present in ICC in the deep muscular plexus in either duodenum or ileum. PKC theta immunoreactivity was present in the cell body and proximal processes of the ICC. The cells containing PKC theta also contained cKit confirming the cells were ICC. ICC-MY in the ileum also contained the neurokinin (NK) 1 receptor. In conclusion, PKC theta is present in pacemaker ICC, but its function is not yet known. Functional studies will be needed to determine the role of this kinase in ICC. Knowing the second messenger cascades and being able to manipulate subpopulations of ICC will add to our understanding of the molecular and cell biology of ICC networks within the gastrointestinal tract and may ultimately help in understanding the aetiology of some gastrointestinal motor pathologies.
Collapse
Affiliation(s)
- B R Southwell
- Motility Laboratory, Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Victoria, 3052, Australia.
| |
Collapse
|
16
|
Rumessen JJ, Vanderwinden JM. Interstitial Cells in the Musculature of the Gastrointestinal Tract: Cajal and Beyond. ACTA ACUST UNITED AC 2003; 229:115-208. [PMID: 14669956 DOI: 10.1016/s0074-7696(03)29004-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Expression of the receptor tyrosine kinase KIT on cells referred to as interstitial cells of Cajal (ICC) has been instrumental during the past decade in the tremendous interest in cells in the interstitium of the smooth muscle layers of the digestive tract. ICC generate the pacemaker component (electrical slow waves of depolarization) of the smooth musculature and are involved in neurotransmission. By integration of ICC functions, substantial progress has been made in our understanding of the neuromuscular control of gastrointestinal motility, opening novel therapeutic perspectives. In this article, the ultrastructure and light microscopic morphology, as well as the functions and the development of ICC and of neighboring fibroblast-like cells (FLC), are critically reviewed. Directions for future research are considered and a unifying concept of mesenchymal cells, either KIT positive (the "ICC") or KIT negative "non-Cajal" (including the FLC and possibly also other cell types) cell types in the interstitium of the smooth musculature of the gastrointestinal tract, is proposed. Furthermore, evidence is accumulating to suggest that, as postulated by Santiago Ramon y Cajal, the concept of interstitial cells is not likely to be restricted to the gastrointestinal musculature.
Collapse
Affiliation(s)
- Jüri J Rumessen
- Department of Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | | |
Collapse
|
17
|
Abstract
The enteric nervous system or the 'Little Brain' of the gut controls gastrointestinal motility and secretion, and is involved in visceral sensation. In this chapter, new developments in understanding the function of the enteric nervous system are described. In particular, the interaction of this system with the interstitial cells of Cajal, the pacemaker cells of the gut, is highlighted. The importance of the interaction between the enteric nervous system and the immune system is discussed, especially in relation to functional bowel disorders and post-operative ileus. Evidence is also provided that neurones can change their function and phenotype, a phenomenon called neuronal plasticity, which contributes to the pathogenesis of visceral hypersensitivity. Finally, new developments in stem cell transplantation are described. All these new insights should lead to a better understanding of the enteric nervous system and hopefully to better ways of controlling it.
Collapse
Affiliation(s)
- G E Boeckxstaens
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
18
|
Takayama I, Horiguchi K, Daigo Y, Mine T, Fujino MA, Ohno S. The interstitial cells of Cajal and a gastroenteric pacemaker system. ARCHIVES OF HISTOLOGY AND CYTOLOGY 2002; 65:1-26. [PMID: 12002607 DOI: 10.1679/aohc.65.1] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In spite of a claim by Kobayashi (1990) that they do not correspond to the cells originally depicted by CAJAL, a particular category of fibroblast-like cells have been identified in the gut by electron microscopy (Faussone-Pellegrini, 1977; Thuneberg, 1980) and by immunohistochemistry for Kit protein (Maeda et al., 1992) under the term of the "interstitial cells of Cajal (ICC)". Generating electrical slow waves, the ICC are intercalated between the intramural neurons and the effector smooth muscular cells, to form a gastroenteric pacemaker system. ICC at the level of the myenteric plexus (IC-MY) are multipolar cells forming a reticular network. The network of IC-MY which is believed to be the origin of electrical slow waves is morphologically independent from but associated with the myenteric plexus. On the other hand, intramuscular ICC (IC-IM) usually have spindle-shaped contours arranged in parallel with the bulk smooth muscle cells. Associated with nerve bundles and blood vessels, the IC-IM possess receptors for neurotransmitters and such circulating hormones as cholecystokinin, suggesting their roles in neuromuscular and hormone-muscular transmissions. In addition, gap junctions connect the IC-MY and IC-IM, thereby realizing the electrically synchronized integrity of ICC as a pacemaker system in the gut. The smooth muscle cells are also coupled with ICC via gap junctions, and the functional unit thus formed enables rhythmically synchronized contractions and relaxations. It has recently been found that a lack of Kit-expressing cells may induce hyper-contractility of the tunica muscularis in vitro, whereas a decrease in Kit expression within the muscle wall causes dysmotility-like symptoms in vivo. The pacemaker system in the gut thus seems to play a critical role in the maintenance of both moderate and normal motility of the digestive tract. A loss of Kit positive cells has been detected in several diseases with an impaired motor activity, including diabetic gastroenteropathy. Pathogenesis of these diseases is thought to be accounted for by impaired slow waves and neuromuscular transmissions; a pacemaker disorder may possibly induce a dysmotility-like symptom called 'gastroenteric arrhythmia'. A knowledge of the structure and function of the ICC and the pacemaker system provides a basis for clarifying the normal mechanism and the pathophysiology of motility in the digestive tract.
Collapse
Affiliation(s)
- Ichiro Takayama
- Department of Anatomy, Yamanashi Medical University School of Medicine, Japan.
| | | | | | | | | | | |
Collapse
|
19
|
Huizinga JD. Physiology and pathophysiology of the interstitial cell of Cajal: from bench to bedside. II. Gastric motility: lessons from mutant mice on slow waves and innervation. Am J Physiol Gastrointest Liver Physiol 2001; 281:G1129-34. [PMID: 11668020 DOI: 10.1152/ajpgi.2001.281.5.g1129] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The stomach harbors a network of interstitial cells of Cajal (ICC) associated with Auerbach's plexus as well as intramuscular ICC within the muscle layers that make close apposition contact with nerve varicosities. ICC are critical for slow-wave generation, making ICC the pacemaker cells of the gut, allowing rhythmic peristaltic motor patterns in the mid- and distal stomach. ICC also play a role in neurotransmission, but its importance relative to direct muscle innervation is still under investigation. The role of ICC in many control functions of gastric motility in humans needs further examination. The pathophysiology of ICC in disease can be partially assessed by immunohistochemistry and electron microscopy on tissue samples. Electrogastrogram measurements may also play a role, but this technique needs further refinement. Communication between ICC and muscle may involve electrical coupling, metabolic coupling through gap junctions, or secretion of nitric oxide or carbon monoxide.
Collapse
Affiliation(s)
- J D Huizinga
- McMaster University, Hamilton L8N 3Z5, Ontario, Canada.
| |
Collapse
|