1
|
Zhao Y, Zhang Q, Wang M, Wu B, Zhao S, Wei X, Diao Y, Tang Y, Hu J. Integrated analysis of miRNA and mRNA expression profiles in the bursa of Fabricius of specific pathogen-free chickens infected with avian reticuloendotheliosis virus strain SNV. Poult Sci 2025; 104:104847. [PMID: 39874788 PMCID: PMC11810829 DOI: 10.1016/j.psj.2025.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Reticuloendotheliosis virus (REV) is a gamma retrovirus that can cause immunosuppression, dwarf syndrome and acute reticulocytoma in poultry. The molecular mechanism by which REV infection leads to immunosuppression and tumorigenesis is poorly understood. In this study, we elucidated the regulatory network of miRNA-mRNA and the major signaling pathways involved in REV-SNV infection. Therefore, we used the spleen necrosis virus (SNV) model of REV to inoculate one-day-old specific pathogen-free (SPF) chickens and then performed global miRNA and mRNA expression profiling by conducting high-throughput sequencing of 18 bursa of Fabricius samples collected at 7, 14, and 21 dpi. In total, 213 differentially expressed miRNAs (DEMs) and 3311 differentially expressed genes (DEGs) were identified. In the miRNA-mRNA network constructed based on the association analysis of these DEMs and DEGs, 1376 negatively correlated miRNA-mRNA pairs were identified; among them, 82 pairs were identified at 7 dpi, 203 pairs were identified at 14 dpi, and 873 pairs were identified at 21 dpi. Moreover, the results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the mRNAs in the network revealed greater enrichment of immune-related pathways, such as the immune system, signal transduction, cell growth and death, and signaling molecules and interactions. We confirmed the selected immune-related DEMs and their DEGs by conducting quantitative RT-PCR (qRT-PCR) analysis. These findings increased our understanding of the interactions of miRNAs and their target genes during infection with REV-SNV, and contributed to the understanding of host-virus interactions.
Collapse
Affiliation(s)
- Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Qing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Meng Wang
- College of Animal Science and Technology, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Saisai Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Xinhui Wei
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yi Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, China.
| | - Jingdong Hu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| |
Collapse
|
2
|
Khapuinamai A, Rudraprasad D, Pandey S, Mishra DK, Joseph J. Unveiling the Innate and Adaptive Immunity Interplay: Global Transcriptomic Profiling of the Host Immune Response in Candida albicans Endophthalmitis in a Murine Model. ACS OMEGA 2024; 9:41491-41503. [PMID: 39398165 PMCID: PMC11466307 DOI: 10.1021/acsomega.4c05081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/04/2024] [Accepted: 09/17/2024] [Indexed: 10/15/2024]
Abstract
Intraocular fungal infection poses a significant clinical challenge characterized by chronic inflammation along with vision impairment. Understanding the host defense pathways involved in fungal endophthalmitis will play a pivotal role in identifying adjuvant immunotherapy. Clinical isolates of Candida albicans (15,000 CFU/μL) were intravitreally injected in C57BL/6 mice followed by enucleation at 24 and 72 h postinfection. Histopathological analysis was performed to evaluate the retinal changes and the disease severity. RNA-seq analysis was conducted on homogenized eyeballs to assess the relevant gene profiles and their differentially expressed genes (DEGs). Pathway enrichment analysis was performed to further annotate the functions of the DEGs. Histopathological analysis demonstrated a higher disease severity with increased inflammatory cells at 72 hpi and transcriptome analysis revealed 27,717 DEGs, of which 1493 were significant (adj p value ≤0.05, FC ≥ 1.5). Among these, 924 were upregulated, and 569 were downregulated. Majority of the upregulated genes were associated with the inflammatory/host immune response and signal transduction and enriched in the T-cell signaling pathway, natural killer cell-mediated cytotoxicity, C-type receptor signaling pathway, and NOD-like receptor signaling pathway. Furthermore, inflammation-associated genes such as T-cell surface glycoprotein CD3, cathelicidin antimicrobial peptide, and lymphocyte cell-specific protein tyrosine kinase were enriched, while pathways such as MAPK, cAMP, and metabolic pathways were downregulated. Regulating the T-cell influx could be a potential strategy to modulate excessive inflammation in the retina and could potentially aid in better vision recovery in fungal endophthalmitis.
Collapse
Affiliation(s)
- Agimanailiu Khapuinamai
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
- Center
for Doctoral Studies, Manipal Academy of
Higher Education, Karnataka 576104, India
| | - Dhanwini Rudraprasad
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
- Center
for Doctoral Studies, Manipal Academy of
Higher Education, Karnataka 576104, India
| | - Suchita Pandey
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| | - Dilip Kumar Mishra
- Ocular
Pathology Services, L V Prasad Eye Institute, Hyderabad 500034, India
| | - Joveeta Joseph
- Jhaveri
Microbiology Centre, Brien Holden Eye Research Centre, LV Prasad Eye Institute, Hyderabad 500034, Telangana, India
| |
Collapse
|
3
|
Gong M, Myster F, van Campe W, Roels S, Mostin L, van den Berg T, Vanderplasschen A, Dewals BG. Wildebeest-Derived Malignant Catarrhal Fever: A Bovine Peripheral T Cell Lymphoma Caused by Cross-Species Transmission of Alcelaphine Gammaherpesvirus 1. Viruses 2023; 15:v15020526. [PMID: 36851740 PMCID: PMC9968110 DOI: 10.3390/v15020526] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/20/2023] [Accepted: 01/30/2023] [Indexed: 02/16/2023] Open
Abstract
Gammaherpesviruses (γHVs) include viruses that can induce lymphoproliferative diseases and tumors. These viruses can persist in the long term in the absence of any pathological manifestation in their natural host. Alcelaphine gammaherpesvirus 1 (AlHV-1) belongs to the genus Macavirus and asymptomatically infects its natural host, the wildebeest (Connochaetes spp.). However, when transmitted to several susceptible species belonging to the order Artiodactyla, AlHV-1 is responsible for the induction of a lethal lymphoproliferative disease, named wildebeest-derived malignant catarrhal fever (WD-MCF). Understanding the pathogenic mechanisms responsible for the induction of WD-MCF is important to better control the risks of transmission and disease development in susceptible species. The aim of this review is to synthesize the current knowledge on WD-MCF with a particular focus on the mechanisms by which AlHV-1 induces the disease. We discuss the potential mechanisms of pathogenesis from viral entry into the host to the maintenance of viral genomes in infected CD8+ T lymphocytes, and we present current hypotheses to explain how AlHV-1 infection induces a peripheral T cell lymphoma-like disease.
Collapse
Affiliation(s)
- Meijiao Gong
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Françoise Myster
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Willem van Campe
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Stefan Roels
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Laurent Mostin
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Thierry van den Berg
- Sciensano, Scientific Directorate Infectious Diseases in Animals, Experimental Center Machelen, Kerklaan 68, B-1830 Machelen, Belgium
| | - Alain Vanderplasschen
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
| | - Benjamin G. Dewals
- Laboratory of Immunology-Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Laboratory of Parasitology, Faculty of Veterinary Medicine, FARAH, ULiège, Avenue de Cureghem 10, B-4000 Liège, Belgium
- Correspondence:
| |
Collapse
|
4
|
Chen X, Xie L, Jiang Y, Zhang R, Wu W. LCK, FOXC1 and hsa-miR-146a-5p as potential immune effector molecules associated with rheumatoid arthritis. Biomarkers 2023; 28:130-138. [PMID: 36420648 DOI: 10.1080/1354750x.2022.2150315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Rheumatoid arthritis (RA) is a type of systemic immune disease characterized by chronic inflammatory disease of the joints. However, the aetiology and underlying molecular events of RA are unclear. Here, we applied bioinformatics analysis to identify potential immune effector molecules involved in RA. The three microarray datasets were downloaded from the Gene Expression Omnibus (GEO) database. We used the R software screen 115 overlapping differentially expressed genes (DEGs). Subsequently, we constructed a protein-protein interaction (PPI) network encoded by these DEGs and identified 10 genes closely associated with RA - LCK, GZMA, GZMB, CD2, LAG3, IL-15, TNFRSF4, CD247, CCR5 and CCR7. Furthermore, in the miRNA-hub gene networks, we screened out hsa-miR-146a-5p, which is the miRNA controlling the largest number of hub genes. Finally, we found some transcription factors that closely interact with hub genes, such as FOXC1, GATA2, YY1, RUNX2, SREBF1, CEBPB and NFIC. This study successfully predicted that LCK, FOXC1 and hsa-miR-146a-5p can be used as potential immune effector molecules of RA. Our study may have potential implications for future prediction of disease progression in patients with symptomatic RA, and has important significance for the pathogenesis and targeted therapy of RA.
Collapse
Affiliation(s)
- Xuemeng Chen
- Department of Traditional Chinese Medicine and rheumatism immunology, the First Affiliated Hospital of Army Medical University, Chongqing City, China
| | - Li Xie
- Department of Traditional Chinese Medicine, Chongqing Dadukou District People's Hospital, Chongqing City, China
| | - Yi Jiang
- Department of Traditional Chinese Medicine and rheumatism immunology, the First Affiliated Hospital of Army Medical University, Chongqing City, China
| | - Ronghua Zhang
- Department of Traditional Chinese Medicine and rheumatism immunology, the First Affiliated Hospital of Army Medical University, Chongqing City, China
| | - Wei Wu
- Department of Traditional Chinese Medicine and rheumatism immunology, the First Affiliated Hospital of Army Medical University, Chongqing City, China
| |
Collapse
|
5
|
Anto NP, Arya AK, Muraleedharan A, Shaik J, Nath PR, Livneh E, Sun Z, Braiman A, Isakov N. Cyclophilin A associates with and regulates the activity of ZAP70 in TCR/CD3-stimulated T cells. Cell Mol Life Sci 2022; 80:7. [PMID: 36495335 PMCID: PMC11072327 DOI: 10.1007/s00018-022-04657-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/26/2022] [Accepted: 11/26/2022] [Indexed: 12/13/2022]
Abstract
The ZAP70 protein tyrosine kinase (PTK) couples stimulated T cell antigen receptors (TCRs) to their downstream signal transduction pathways and is sine qua non for T cell activation and differentiation. TCR engagement leads to activation-induced post-translational modifications of ZAP70, predominantly by kinases, which modulate its conformation, leading to activation of its catalytic domain. Here, we demonstrate that ZAP70 in TCR/CD3-activated mouse spleen and thymus cells, as well as human Jurkat T cells, is regulated by the peptidyl-prolyl cis-trans isomerase (PPIase), cyclophilin A (CypA) and that this regulation is abrogated by cyclosporin A (CsA), a CypA inhibitor. We found that TCR crosslinking promoted a rapid and transient, Lck-dependent association of CypA with the interdomain B region, at the ZAP70 regulatory domain. CsA inhibited CypA binding to ZAP70 and prevented the colocalization of CypA and ZAP70 at the cell membrane. In addition, imaging analyses of antigen-specific T cells stimulated by MHC-restricted antigen-fed antigen-presenting cells revealed the recruitment of ZAP70-bound CypA to the immunological synapse. Enzymatically active CypA downregulated the catalytic activity of ZAP70 in vitro, an effect that was reversed by CsA in TCR/CD3-activated normal T cells but not in CypA-deficient T cells, and further confirmed in vivo by FRET-based studies. We suggest that CypA plays a role in determining the activity of ZAP70 in TCR-engaged T cells and impact on T cell activation by intervening with the activity of multiple downstream effector molecules.
Collapse
Affiliation(s)
- Nikhil Ponnoor Anto
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Awadhesh Kumar Arya
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Department of Emergency Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA
| | - Amitha Muraleedharan
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Jakeer Shaik
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Pulak Ranjan Nath
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
- Clinical and Translational Immunology Unit, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892-1857, USA
| | - Etta Livneh
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Zuoming Sun
- Department of Immunology and Theranostics, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Alex Braiman
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel
| | - Noah Isakov
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, P.O.B. 653, 84105, Beer Sheva, Israel.
| |
Collapse
|
6
|
Nienhuis WA, Grutters JC. Potential therapeutic targets to prevent organ damage in chronic pulmonary sarcoidosis. Expert Opin Ther Targets 2021; 26:41-55. [PMID: 34949145 DOI: 10.1080/14728222.2022.2022123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Sarcoidosis is a granulomatous inflammatory disease with high chances of reduced quality of life, irreversible organ damage, and reduced life expectancy when vital organs are involved. Any organ system can be affected, and the lungs are most often affected. There is no preventive strategy as the exact etiology is unknown, and complex immunogenetic and environmental factors determine disease susceptibility and phenotype. Present-day treatment options originated from clinical practice and are effective in many patients. However, a substantial percentage of patients suffer from unacceptable side effects or still develop refractory, threatening pulmonary or extrapulmonary disease. AREAS COVERED As non-caseating granulomas, the pathological hallmark of disease, are assigned to divergent activation and regulation of the immune system, targets in relation to the possible triggers of granuloma formation and their sequelae were searched and reviewed. EXPERT OPINION :The immunopathogenesis underlying sarcoidosis has been a dynamic field of study. Several recent new insights give way to promising new therapeutic targets, such as certain antigenic triggers (e.g. from Aspergillus nidulans), mTOR, JAK-STAT and PPARγ pathways, the NRP2 receptor and MMP-12, which await further exploration. Clinical and trigger related phenotyping, and molecular endotyping in sarcoidosis will likely hold the key for precision medicine in the future.
Collapse
Affiliation(s)
- W A Nienhuis
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands
| | - J C Grutters
- ILD Center of Excellence, Department of Pulmonology, St Antonius Hospital, Nieuwegein, The Netherlands.,Division of Hearth and Lungs, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
7
|
Poli A, Fiume R, Mongiorgi S, Zaurito A, Sheth B, Vidalle MC, Hamid SA, Kimber S, Campagnoli F, Ratti S, Rusciano I, Faenza I, Manzoli L, Divecha N. Exploring the controversial role of PI3K signalling in CD4 + regulatory T (T-Reg) cells. Adv Biol Regul 2020; 76:100722. [PMID: 32362560 DOI: 10.1016/j.jbior.2020.100722] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/10/2020] [Accepted: 04/16/2020] [Indexed: 02/07/2023]
Abstract
The immune system is a complex network that acts to protect vertebrates from foreign microorganisms and carries out immunosurveillance to combat cancer. In order to avoid hyper-activation of the immune system leading to collateral damage tissues and organs and to prevent self-attack, the network has the intrinsic control mechanisms that negatively regulate immune responses. Central to this negative regulation are regulatory T (T-Reg) cells, which through cytokine secretion and cell interaction limit uncontrolled clonal expansion and functions of activated immune cells. Given that positive or negative manipulation of T-Regs activity could be utilised to therapeutically treat host versus graft rejection or cancer respectively, understanding how signaling pathways impact on T-Regs function should reveal potential targets with which to intervene. The phosphatidylinositol-3-kinase (PI3K) pathway controls a vast array of cellular processes and is critical in T cell activation. Here we focus on phosphoinositide 3-kinases (PI3Ks) and their ability to regulate T-Regs cell differentiation and function.
Collapse
Affiliation(s)
- Alessandro Poli
- The FIRC Institute of Molecular Oncology (IFOM), 20139, Milan, Italy
| | - Roberta Fiume
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy.
| | - Sara Mongiorgi
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Antonio Zaurito
- Center for Translational Cancer Research (TranslaTUM), Klinikum Rechts der Isar, Technische Universität München, 81675, Munich, Germany
| | - Bhavwanti Sheth
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Magdalena Castellano Vidalle
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Shidqiyyah Abdul Hamid
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - ScottT Kimber
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Francesca Campagnoli
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| | - Stefano Ratti
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Isabella Rusciano
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Irene Faenza
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Lucia Manzoli
- Department of Biomedical Sciences (DIBINEM), University of Bologna, Via Irnerio, 48, 40126, Bologna, Italy
| | - Nullin Divecha
- Inositide Laboratory, School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Life Sciences Building 85, Highfield, Southampton, SO17 1BJ, UK
| |
Collapse
|
8
|
LCK inhibitor attenuates atherosclerosis in ApoE -/- mice via regulating T cell differentiation and reverse cholesterol transport. J Mol Cell Cardiol 2020; 139:87-97. [PMID: 31972265 DOI: 10.1016/j.yjmcc.2020.01.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 12/23/2019] [Accepted: 01/06/2020] [Indexed: 01/26/2023]
Abstract
Lots of studies demonstrated that CD4+ T cells regulate the development of atherosclerosis (AS). Previously, we reported that LCK, a key molecule in activation of T cell receptor (TCR) signalling and T cells, adversely affects reverse cholesterol transport (RCT), which ameliorates AS in vitro. To investigate the effect of LCK on AS in vivo, we injected the LCK inhibitor, PP2, into ApoE-/- mice fed a chow diet or a high-fat diet (HFD). Although, AS plaques were not affected by PP2 in chow diet-fed mice, PP2 significantly reduced the lesion percentage and necrotic core areas in HFD-fed mice. We further analysed the plaque contents and found that the accumulation of lipids and macrophages were decreased, while the contents of collagen and smooth muscle cells were increased by the LCK inhibitor. Thus, inhibiting LCK enhanced the plaque stability. We also found the LCK inhibitor improved cholesterol efflux capacity of HDL and up-regulated RCT regulatory proteins in the spleen. Moreover, inhibiting LCK regulated differentiation of T cells by increasing regulatory T (Treg) cells and decreasing the number of T helper 1 (Th1) cells in the aorta, thymus and spleen. Consistent with these results, infiltration of CD4+ T cells in plaques, secretion of pro-atherosclerotic cytokines, INF-γ and TNF-α synthesized mostly by Th1 cells, and the activation of PI3K/AKT/mTOR signalling were inhibited by the LCK inhibitor. Moreover, the effect of LCK inhibitor on the ratio of Th1 to Treg cells were compromised by activation of mTOR. Together, these data indicate that inhibiting LCK in TCR signalling attenuated the development of AS and promoted plaque stability. Improving RCT by upregulating RCT regulatory proteins and decreasing the Th1/Treg ratio by inhibiting PI3K/AKT/mTOR signalling may contribute to the anti-atherosclerotic effects of LCK inhibition.
Collapse
|
9
|
Mohan A, Malur A, McPeek M, Barna BP, Schnapp LM, Thomassen MJ, Gharib SA. Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis. Am J Physiol Lung Cell Mol Physiol 2017; 314:L617-L625. [PMID: 29212802 DOI: 10.1152/ajplung.00289.2017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mohan A, Malur A, McPeek M, Barna BP, Schnapp LM, Thomassen MJ, Gharib SA. Transcriptional survey of alveolar macrophages in a murine model of chronic granulomatous inflammation reveals common themes with human sarcoidosis. Am J Physiol Lung Cell Mol Physiol 314: L617-L625, 2018. First published December 6, 2017; doi: 10.1152/ajplung.00289.2017 . To advance our understanding of the pathobiology of sarcoidosis, we developed a multiwall carbon nanotube (MWCNT)-based murine model that shows marked histological and inflammatory signal similarities to this disease. In this study, we compared the alveolar macrophage transcriptional signatures of our animal model with human sarcoidosis to identify overlapping molecular programs. Whole genome microarrays were used to assess gene expression of alveolar macrophages in six MWCNT-exposed and six control animals. The results were compared with the transcriptional profiles of alveolar immune cells in 15 sarcoidosis patients and 12 healthy humans. Rigorous statistical methods were used to identify differentially expressed genes. To better elucidate activated pathways, integrated network and gene set enrichment analysis (GSEA) was performed. We identified over 1,000 differentially expressed between control and MWCNT mice. Gene ontology functional analysis showed overrepresentation of processes primarily involved in immunity and inflammation in MCWNT mice. Applying GSEA to both mouse and human samples revealed upregulation of 92 gene sets in MWCNT mice and 142 gene sets in sarcoidosis patients. Commonly activated pathways in both MWCNT mice and sarcoidosis included adaptive immunity, T-cell signaling, IL-12/IL-17 signaling, and oxidative phosphorylation. Differences in gene set enrichment between MWCNT mice and sarcoidosis patients were also observed. We applied network analysis to differentially expressed genes common between the MWCNT model and sarcoidosis to identify key drivers of disease. In conclusion, an integrated network and transcriptomics approach revealed substantial functional similarities between a murine model and human sarcoidosis particularly with respect to activation of immune-specific pathways.
Collapse
Affiliation(s)
- Arjun Mohan
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Anagha Malur
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Matthew McPeek
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Barbara P Barna
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Lynn M Schnapp
- Division of Pulmonary, Critical Care, Allergy and Sleep Medicine, Department of Medicine, Medical University of South Carolina , Charleston, South Carolina
| | - Mary Jane Thomassen
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Brody School of Medicine, East Carolina University , Greenville, North Carolina
| | - Sina A Gharib
- Division of Pulmonary, Critical Care and Sleep Medicine, Computational Medicine Core, Center for Lung Biology, Department of Medicine, University of Washington , Seattle, Washington
| |
Collapse
|
10
|
Crk adaptor proteins regulate CD3ζ chain phosphorylation and TCR/CD3 down-modulation in activated T cells. Cell Signal 2017; 36:117-126. [PMID: 28465009 DOI: 10.1016/j.cellsig.2017.04.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/15/2017] [Accepted: 04/26/2017] [Indexed: 01/06/2023]
Abstract
T cell receptor (TCR) recognition of a peptide antigen in the context of MHC molecules initiates positive and negative cascades that regulate T cell activation, proliferation and differentiation, and culminate in the acquisition of effector T cell functions. These processes are a prerequisite for the induction of specific T cell-mediated adaptive immune responses. A key event in the activation of TCR-coupled signaling pathways is the phosphorylation of tyrosine residues within the cytoplasmic tails of the CD3 subunits, predominantly CD3ζ. These transiently formed phosphotyrosyl epitopes serve as docking sites for SH2-domain containing effector molecules, predominantly the ZAP70 protein tyrosine kinase, which is critical for signal propagation. We found that CrkI and CrkII adaptor proteins also interact with CD3ζ in TCR activated-, but not in resting-, T cells. Crk binding to CD3ζ was independent of ZAP70 and also occurred in ZAP70-deficient T cells. Binding was mediated by Crk-SH2 domain interaction with phosphotyrosine-containing motifs on CD3ζ, via a direct physical interaction, as demonstrated by Far-Western blot. CrkII binding to CD3ζ could also be demonstrated in a heterologous system, where coexpression of a catalytically active Lck was used to phosphorylate the CD3ζ chain. TCR activation-induced Crk binding to CD3ζ resulted in increased and prolonged phosphorylation of CD3ζ, as well as ZAP70 and LAT, suggesting a positive role for CrkI/II binding to CD3ζ in regulation of TCR-coupled signaling pathways. Furthermore, Crk-dependent increased phosphorylation of CD3ζ coincided with inhibition of TCR downmodulation, supporting a positive role for Crk adaptor proteins in TCR-mediated signal amplification.
Collapse
|
11
|
Azizi G, Ghanavatinejad A, Abolhassani H, Yazdani R, Rezaei N, Mirshafiey A, Aghamohammadi A. Autoimmunity in primary T-cell immunodeficiencies. Expert Rev Clin Immunol 2016; 12:989-1006. [PMID: 27063703 DOI: 10.1080/1744666x.2016.1177458] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Primary immunodeficiency diseases (PID) are a genetically heterogeneous group of more than 270 disorders that affect distinct components of both humoral and cellular arms of the immune system. Primary T cell immunodeficiencies affect subjects at the early age of life. In most cases, T-cell PIDs become apparent as combined T- and B-cell deficiencies. Patients with T-cell PID are prone to life-threatening infections. On the other hand, non-infectious complications such as lymphoproliferative diseases, cancers and autoimmunity seem to be associated with the primary T-cell immunodeficiencies. Autoimmune disorders of all kinds (organ specific or systemic ones) could be subjected to this class of PIDs; however, the most frequent autoimmune disorders are immune thrombocytopenic purpura (ITP) and autoimmune hemolytic anemia (AIHA). In this review, we discuss the proposed mechanisms of autoimmunity and review the literature reported on autoimmune disorder in each type of primary T-cell immunodeficiencies.
Collapse
Affiliation(s)
- Gholamreza Azizi
- a Department of Laboratory Medicine , Imam Hassan Mojtaba Hospital, Alborz University of Medical Sciences , Karaj , Iran.,b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Alireza Ghanavatinejad
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Hassan Abolhassani
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran.,d Division of Clinical Immunology, Department of Laboratory Medicine , Karolinska Institute at Karolinska University Hospital Huddinge , Stockholm , Sweden
| | - Reza Yazdani
- e Department of Immunology, School of Medicine , Isfahan University of Medical Sciences , Isfahan , Iran
| | - Nima Rezaei
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| | - Abbas Mirshafiey
- c Department of Immunology, School of Public Health , Tehran University of Medical Sciences , Tehran , Iran
| | - Asghar Aghamohammadi
- b Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center , Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
12
|
Yazdani M, Andresen AMS, Gjøen T. Short-term effect of bisphenol-a on oxidative stress responses in Atlantic salmon kidney cell line: a transcriptional study. Toxicol Mech Methods 2016; 26:295-300. [PMID: 27117342 DOI: 10.1080/15376516.2016.1177864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Bisphenol A (BPA) is regularly detected in aquatic ecosystems due to increased use of products based on polycarbonate plastics and epoxy resins. It migrates from these products directly into rivers and marine waters or indirectly through effluents from wastewater treatment plants and landfilled sites. BPA can affect aquatic organisms both chronically and acutely at sensitive live stages. Despite reports indicating harmful effects of BPA, little is known about its role in oxidative stress responses in fish. In this study, we investigated the transcriptional effect of BPA (0, 1, 10, 100 μM) on an Atlantic salmon kidney (ASK) cell line for 6 h and 24 h by monitoring expression of 11 genes: elongation factor 1-alpha (ef1a), 18S ribosomal RNA (18s), gluthation (gsh), superoxide dismutase (sod), thioredoxin (txd), Salmo salar oxidative stress-responsive serine-rich 1 (oxr), glucose-regulated protein 78 (grp78), heat shock protein 70 (hsp70), sequestosome1 (p62), interleukin-1 beta (il-1beta) and toll-like receptor 8 (tlr8). In general, only the 100 μM concentration treatment altered the mRNA expression. BPA down-regulated the expression of gsh and sod genes for both exposure-times while txd gene was the only down-regulated after 6-h exposure. The up-regulation of genes in the ASK cell line exposed for 6 h was only observed in il-1beta, while the 24-h exposure resulted in the up-regulation of oxr, tlr8, hsp70, p62 and il-1beta genes. The last three genes increased several fold compared to the others. The results showed that BPA exposure at 100 μM imposed oxidative stress on the ASK cell line and longer exposure time involved transcriptional responses of immune-related genes. This may indicate the possible role of BPA-associated oxidative stress in induction of inflammatory response in this macrophage-like cell type.
Collapse
Affiliation(s)
- Mazyar Yazdani
- a Department of Biosciences , University of Oslo , Oslo , Norway ;,b Department of Pharmaceutical Biosciences, School of Pharmacy , University of Oslo , Norway
| | | | - Tor Gjøen
- b Department of Pharmaceutical Biosciences, School of Pharmacy , University of Oslo , Norway
| |
Collapse
|
13
|
Yazdani R, Abolhassani H, Rezaei N, Azizi G, Hammarström L, Aghamohammadi A. Evaluation of Known Defective Signaling-Associated Molecules in Patients Who Primarily Diagnosed as Common Variable Immunodeficiency. Int Rev Immunol 2016; 35:7-24. [DOI: 10.3109/08830185.2015.1136306] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Modulating p56Lck in T-Cells by a Chimeric Peptide Comprising Two Functionally Different Motifs of Tip from Herpesvirus saimiri. J Immunol Res 2015; 2015:395371. [PMID: 26539553 PMCID: PMC4619936 DOI: 10.1155/2015/395371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 04/28/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
The Lck interacting protein Tip of Herpesvirus saimiri is responsible for T-cell transformation both in vitro and in vivo. Here we designed the chimeric peptide hTip-CSKH, comprising the Lck specific interacting motif CSKH of Tip and its hydrophobic transmembrane sequence (hTip), the latter as a vector targeting lipid rafts. We found that hTip-CSKH can induce a fivefold increase in proliferation of human and Aotus sp. T-cells. Costimulation with PMA did not enhance this proliferation rate, suggesting that hTip-CSKH is sufficient and independent of further PKC stimulation. We also found that human Lck phosphorylation was increased earlier after stimulation when T-cells were incubated previously with hTip-CSKH, supporting a strong signalling and proliferative effect of the chimeric peptide. Additionally, Lck downstream signalling was evident with hTip-CSKH but not with control peptides. Importantly, hTip-CSKH could be identified in heavy lipid rafts membrane fractions, a compartment where important T-cell signalling molecules (LAT, Ras, and Lck) are present during T-cell activation. Interestingly, hTip-CSKH was inhibitory to Jurkat cells, in total agreement with the different signalling pathways and activation requirements of this leukemic cell line. These results provide the basis for the development of new compounds capable of modulating therapeutic targets present in lipid rafts.
Collapse
|
15
|
In silico exploration of c-KIT inhibitors by pharmaco-informatics methodology: pharmacophore modeling, 3D QSAR, docking studies, and virtual screening. Mol Divers 2015; 20:41-53. [DOI: 10.1007/s11030-015-9635-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/14/2015] [Indexed: 10/23/2022]
|
16
|
Grundy S, Plumb J, Lea S, Kaur M, Ray D, Singh D. Down regulation of T cell receptor expression in COPD pulmonary CD8 cells. PLoS One 2013; 8:e71629. [PMID: 23977094 PMCID: PMC3747211 DOI: 10.1371/journal.pone.0071629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
CD8 cells may contribute towards an autoimmune process in COPD. Down regulation of T cell receptor (TCR) signalling molecules occurs in autoimmune diseases with consequent T cell dysfunction. We hypothesise that TCR signalling is abnormal in COPD pulmonary CD8 cells. Micro-array gene expression analysis of blood and pulmonary COPD CD8 samples was performed and compared to pulmonary CD8 cells from smoker controls (S). We focused on the TCR signalling pathway, with validation of key findings using polymerase chain reaction and immunofluorescence. TCR signalling molecules in COPD pulmonary CD8 cells were down regulated compared to blood CD8 cells (CD247: fold change (FC) -2.43, Q = 0.001; LCK: FC -2.25, Q = 0.01). Micro-array analysis revealed no significant differences between COPD and S pulmonary CD8 cells. However, PCR revealed significantly lower gene expression levels of CD247 (FC -1.79, p = 0.04) and LCK (FC -1.77, p = 0.01) in COPD compared to S pulmonary CD8 cells. CD247 down regulation in COPD CD8 cells was confirmed by immunofluorescent staining of bronchoalveolar lavage cells: Significantly fewer COPD CD8 cells co-expressed CD247 compared to healthy non-smoker CD8 cells (mean 88.9 vs 75.2%, p<0.05) There is down regulation of TCR signalling molecules in COPD pulmonary CD8 cells. This may cause T cell dysfunction.
Collapse
Affiliation(s)
- Seamus Grundy
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
- * E-mail:
| | - Jonathan Plumb
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | - Simon Lea
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | - Manminder Kaur
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| | - David Ray
- School of Medicine and Manchester Academic Health Science Centre, University of Manchester, Manchester, United Kingdom
| | - Dave Singh
- University of Manchester, Manchester Academic Health Science Centre, University Hospital of South Manchester Foundation Trust, Manchester, United Kingdom
| |
Collapse
|
17
|
Integrative network analysis identifies key genes and pathways in the progression of hepatitis C virus induced hepatocellular carcinoma. BMC Med Genomics 2011; 4:62. [PMID: 21824427 PMCID: PMC3212927 DOI: 10.1186/1755-8794-4-62] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 08/08/2011] [Indexed: 02/08/2023] Open
Abstract
Background Incidence of hepatitis C virus (HCV) induced hepatocellular carcinoma (HCC) has been increasing in the United States and Europe during recent years. Although HCV-associated HCC shares many pathological characteristics with other types of HCC, its molecular mechanisms of progression remain elusive. Methods To investigate the underlying pathology, we developed a systematic approach to identify deregulated biological networks in HCC by integrating gene expression profiles with high-throughput protein-protein interaction data. We examined five stages including normal (control) liver, cirrhotic liver, dysplasia, early HCC and advanced HCC. Results Among the five consecutive pathological stages, we identified four networks including precancerous networks (Normal-Cirrhosis and Cirrhosis-Dysplasia) and cancerous networks (Dysplasia-Early HCC, Early-Advanced HCC). We found little overlap between precancerous and cancerous networks, opposite to a substantial overlap within precancerous or cancerous networks. We further found that the hub proteins interacted with HCV proteins, suggesting direct interventions of these networks by the virus. The functional annotation of each network demonstrates a high degree of consistency with current knowledge in HCC. By assembling these functions into a module map, we could depict the stepwise biological functions that are deregulated in HCV-induced hepatocarcinogenesis. Additionally, these networks enable us to identify important genes and pathways by developmental stage, such as LCK signalling pathways in cirrhosis, MMP genes and TIMP genes in dysplastic liver, and CDC2-mediated cell cycle signalling in early and advanced HCC. CDC2 (alternative symbol CDK1), a cell cycle regulatory gene, is particularly interesting due to its topological position in temporally deregulated networks. Conclusions Our study uncovers a temporal spectrum of functional deregulation and prioritizes key genes and pathways in the progression of HCV induced HCC. These findings present a wealth of information for further investigation.
Collapse
|
18
|
Cao JN, Gollapudi S, Sharman EH, Jia Z, Gupta S. Age-related alterations of gene expression patterns in human CD8+ T cells. Aging Cell 2010; 9:19-31. [PMID: 19878143 DOI: 10.1111/j.1474-9726.2009.00534.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aging is associated with progressive T-cell deficiency and increased incidence of infections, cancer and autoimmunity. In this comprehensive study, we have compared the gene expression profiles in CD8+ T cells from aged and young healthy subjects using Affymetrix microarray Human Genome U133A-2 GeneChips. A total of 5.2% (754) of the genes analyzed had known functions and displayed statistically significant age-associated expression changes. These genes were involved in a broad array of complex biological processes, mainly in nucleic acid and protein metabolism. Functional groups, in which downregulated genes were overrepresented, were the following: RNA transcription regulation, RNA and DNA metabolism, intracellular (Golgi, endoplasmic reticulum and nuclear) transportation, signaling transduction pathways (T-cell receptor, Ras/MAPK, JNK/Stat, PI3/AKT, Wnt, TGFbeta, insulin-like growth factor and insulin), and the ubiquitin cycle. In contrast, the following functional groups contained more up-regulated genes than expected: response to oxidative stress and cytokines, apoptosis, and the MAPKK signaling cascade. These age-associated gene expression changes may be responsible for impaired DNA replication, RNA transcription, and signal transduction, possibly resulting in instability of cellular and genomic integrity, and alterations of growth, differentiation, apoptosis and anergy in human aged CD8+ T cells.
Collapse
Affiliation(s)
- Jia-Ning Cao
- Division of Basic and Clinical Immunology, Department of Medicine, University of California, Medical Sciences I, C-240 Irvine, CA 92697, USA
| | | | | | | | | |
Collapse
|
19
|
Sciabola S, Stanton RV, Mills JE, Flocco MM, Baroni M, Cruciani G, Perruccio F, Mason JS. High-Throughput Virtual Screening of Proteins Using GRID Molecular Interaction Fields. J Chem Inf Model 2009; 50:155-69. [DOI: 10.1021/ci9003317] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Simone Sciabola
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| | - Robert V. Stanton
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| | - James E. Mills
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| | - Maria M. Flocco
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| | - Massimo Baroni
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| | - Gabriele Cruciani
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| | - Francesca Perruccio
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| | - Jonathan S. Mason
- Pfizer Research Technology Center, Cambridge, Massachusetts 02139, Pfizer Global Research and Development, Ramsgate Road, Kent CT13 9NJ, Sandwich, United Kingdom, Molecular Discovery Limited, 215 Marsh Road, HA5 5NE, Pinner, Middlesex, United Kingdom, Laboratory of Chemometrics, University of Perugia, Via Elce di Sotto, 10 I-60123, Perugia, Italy, Syngenta, Schaffhauserstrasse, 4332 Stein AG, Switzerland, Lundbeck A/S, Ottiliavej 9, DK-25000, Copenhagen, Denmark
| |
Collapse
|
20
|
Kabiri Z, Salehi M, Mokarian F, Mohajeri MR, Mahmoodi F, Keyhanian K, Doostan I, Ataollahi MR, Modarressi MH. Evaluation of ARG protein expression in mature B cell lymphomas compared to non-neoplastic reactive lymph node. Cell Immunol 2009; 259:111-6. [PMID: 19604504 DOI: 10.1016/j.cellimm.2009.06.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2009] [Revised: 06/01/2009] [Accepted: 06/01/2009] [Indexed: 11/17/2022]
Abstract
The participation of Abl-Related Gene (ARG) is demonstrated in pathogenesis of different human malignancies. However there is no conclusive evidence on ARG expression level in mature B cell lymphomas. In this study we evaluated ARG protein expression in Follicular Lymphoma (FL), Burkitt's Lymphoma (BL) and Diffused Large B Cell Lymphoma (DLBCL) in comparison with non-neoplastic lymph nodes. Semi-quantitative fluorescent ImmunoHistoChemistry was applied on 14, 7 and 4 patients with DLBCL, FL and BL respectively, adding to 4 normal and 4 reactive lymph nodes. The mean ratio of ARG/GAPDH expression was significantly different (p<0.00) between lymphomas and control samples, with DLBCL having the highest ARG expression amongst all. Over expression of ARG was seen in FL and BL, with FL expressing statistically more ARG than BL. Moreover, the ARG/GAPDH expression ratio increased from DLBCL stage I towards stage VI, all showing significantly more ARG expression than FL and BL (in all cases p<0.00).
Collapse
Affiliation(s)
- Zahra Kabiri
- Department of Genetics and Molecular Biology, Medical School, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Molecular cloning, sequence characterization and tissue transcription profile analyses of two novel genes: LCK and CDK2 from the Black-boned sheep (Ovis aries). Mol Biol Rep 2009; 37:39-45. [PMID: 19340603 DOI: 10.1007/s11033-009-9532-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 03/23/2009] [Indexed: 01/31/2023]
Abstract
The complete coding sequences of two sheep genes--LCK and CDK2--were amplified using the rapid amplification of cDNA ends method based on three sheep EST sequences whose translated amino acids contain the domain PTKc_Lck_BIk and S_TKc domain, respectively. The sequence analyses of these two genes revealed that the sheep LCK gene encodes a protein of 509 amino acids which has high homology with the lymphocyte-specific protein tyrosine kinase (LCK) of eight species: bovine (99%), human (96%), dog (96%), Aotus nancymaae (95%), mouse (94%), rat (91%), horse (91%) and chicken (81%). The sheep CDK2 gene encodes a protein of 298 amino acids which has high homology with the cyclin-dependent kinase 2 (CDK2) of ten species: bovine (100%), goat (100%), rat (99%), mouse (99%), Chinese hamster (99%), dog (98%), golden hamster (98%), human (98%), horse (98%) and rhesus monkey (98%). The tissue transcription profile analyses indicated that that the Black-boned sheep LCK and CDK2 genes are generally but differentially expressed in the detected tissues including in tissues including spleen, muscle, skin, kidney, lung, liver and heart. These data serve as a foundation for further insight into these two genes.
Collapse
|
22
|
Awale M, Mohan CG. Molecular docking guided 3D-QSAR CoMFA analysis of N-4-Pyrimidinyl-1H-indazol-4-amine inhibitors of leukocyte-specific protein tyrosine kinase. J Mol Model 2008; 14:937-47. [PMID: 18626671 DOI: 10.1007/s00894-008-0334-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2008] [Accepted: 06/09/2008] [Indexed: 10/21/2022]
Abstract
Inhibition of leukocyte-specific protein tyrosine kinase (Lck) activity offers one of the approaches for the treatment of T-cell mediated inflammatory disorders including rheumatoid arthritis, transplant rejection and inflammatory bowel disease. To explore the relationship between the structures of the N-4 Pyrimidinyl-1H-indazol-4-amines and their Lck inhibition, 3D-QSAR study using CoMFA analysis have been performed on a dataset of 42 molecules. The bioactive conformation of the template molecule, selected as the most potent molecule 23 from the series was obtained by performing molecular docking at the ATP binding site of Lck, which is then used to build the rest of the molecules in the series. The constructed CoMFA model is robust with r(2)(cv) of 0.603 and conventional r2 of 0.983. The predictive power of the developed model was obtained using a test set of 10 molecules, giving predictive correlation coefficient of 0.921. CoMFA contour analysis was performed to obtain useful information about the structural requirements for the Lck inhibitors which could be utilized in its future design.
Collapse
Affiliation(s)
- Mahendra Awale
- Centre for Pharmacoinformatics, National Institute of Pharmaceutical Education and Research (NIPER), Sector 67, S.A.S. Nagar, 160 062, Punjab, India
| | | |
Collapse
|
23
|
Transcriptomic analysis of responses to infectious salmon anemia virus infection in macrophage-like cells. Virus Res 2008; 136:65-74. [PMID: 18534703 DOI: 10.1016/j.virusres.2008.04.019] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Revised: 04/15/2008] [Accepted: 04/22/2008] [Indexed: 12/19/2022]
Abstract
The aquatic orthomyxovirus infectious salmon anemia virus (ISAV) is an important pathogen for salmonid aquaculture, however little is known about protective and pathological host responses to infection. We have investigated intracellular responses during cytopathic ISAV infection in the macrophage-like Atlantic salmon kidney (ASK) cell line by microarray analysis (1.8k SFA2.0 immunochip) and a functional assay for glutathione. Gene transcription changed rapidly and consistently with time and with minor differences between two virus isolates. While several pro-inflammatory and antiviral immune genes were induced, genes involved in cell signaling and integrity were down-regulated, suggesting isolation of infected cells from cell-to-cell interaction and responses to external signals. Differential expression of genes regulating cell cycle and apoptosis implied opposite cues from host cell and virus. This was in pace with massive down-regulation of genes involved in biosynthesis and processing of nucleotides and nucleic acids. Significant down-regulation of several genes involved in metabolism of reactive oxygen species suggested increased oxidative stress, which was confirmed by a functional assay showing reduced levels of glutathione during infection. Testing of expression data against a microarray database containing diverse experiments revealed candidate marker genes for ISAV infection. Our findings provide novel insight into cellular host responses and determinants for acute cytopathic ISAV infection.
Collapse
|
24
|
Valeri AP, Aguilera-Montilla N, López-Santalla M, Mencía A, Rodríguez-Juan C, Gutiérrez-Calvo A, Martín J, Lasa I, García-Sancho L, Granell J, Pérez-Blas M, Martín-Villa JM. Herpesvirus saimiri transformation may help disclose inherent functional defects of mucosal T lymphocytes in patients with gastric adenocarcinoma. Immunol Cell Biol 2008; 86:289-291. [PMID: 18283295 DOI: 10.1038/sj.icb.7100157] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To dissect the phenotypic and functional features of mucosal T lymphocytes in patients with gastric adenocarcinoma, we have used the Herpesvirus saimiri transformation procedure to achieve T-cell lines from gastric origin. Once achieved, cell function was assessed by in vitro stimulation with mitogens. CD2-specific monoclonal antibodies (alpha-CD2), alone or in combination with interleukin (IL)-2, rendered fewer counts in patients (34 408+/-3965 and 52 157+/-6473 c.p.m., respectively) than in controls (67 471+/-11 755 c.p.m., P<0.01 and 77 864+/-12 545 c.p.m., P<0.05, respectively). Likewise, CD3-based responses were defective in cancer cell lines: alpha-CD3 (54 794+/-9269 vs 86 104+/-10 341 c.p.m., P<0.01), alpha-CD3+IL-2 (57 789+/-8590 vs 88855+/-8516 c.p.m., P<0.01) and alpha-CD3+alpha-CD2 (52 130+/-7559 vs 120 852+/-16 552 c.p.m., P<0.01). Finally, IL-2 failed to adequately stimulate patient cell lines (39 310+/-4023 vs 60 945+/-9463 c.p.m., P<0.05). These results suggest that mucosal T lymphocytes in cancer patients are inherently impaired in their proliferative ability. This may be crucial in the control of tumour growth.
Collapse
Affiliation(s)
- Anna P Valeri
- Inmunología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
|
26
|
|
27
|
Mitchell JL, Trible RP, Emert-Sedlak LA, Weis DD, Lerner EC, Applen JJ, Sefton BM, Smithgall TE, Engen JR. Functional characterization and conformational analysis of the Herpesvirus saimiri Tip-C484 protein. J Mol Biol 2006; 366:1282-93. [PMID: 17207813 PMCID: PMC2262936 DOI: 10.1016/j.jmb.2006.12.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 12/06/2006] [Accepted: 12/07/2006] [Indexed: 11/15/2022]
Abstract
Tyrosine kinase interacting protein (Tip) of Herpesvirus saimiri (HVS) activates the lymphoid-specific member of the Src family kinase Lck. The Tip:Lck interaction is essential for transformation and oncogenesis in HVS-infected cells. As there are no structural data for Tip, hydrogen-exchange mass spectrometry was used to investigate the conformation of a nearly full-length form (residues 1-187) of Tip from HVS strain C484. Disorder predictions suggested that Tip would be mostly unstructured, so great care was taken to ascertain whether recombinant Tip was functional. Circular dichroism and gel-filtration analysis indicated an extended, unstructured protein. In vitro and in vivo binding and kinase assays confirmed that purified, recombinant Tip interacted with Lck, was capable of activating Lck kinase activity strongly and was multiply phosphorylated by Lck. Hydrogen-exchange mass spectrometry of Tip then showed that the majority of backbone amide hydrogen atoms became deuterated after only 10 s of labeling. Such a result suggested that Tip was almost totally unstructured in solution. Digestion of deuterium-labeled Tip revealed some regions with minor protection from exchange. Overall, it was found that, although recombinant Tip is still functional and capable of binding and activating its target Lck, it is largely unstructured.
Collapse
Affiliation(s)
| | - Ronald P. Trible
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Lori A. Emert-Sedlak
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - David D. Weis
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
| | - Edwina C. Lerner
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jeremy J. Applen
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
| | | | - Thomas E. Smithgall
- Molecular Genetics & Biochemistry, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - John R. Engen
- Department of Chemistry, University of New Mexico, Albuquerque, NM 87131
- Chemistry & Chemical Biology and The Barnett Institute of Chemical and Biological Analysis, Northeastern University, Boston, MA 02115
- *Address correspondence: John R. Engen, 341 Mugar Life Sciences, The Barnett Institute, Northeastern University, 360 Huntington Ave., Boston, MA 02115-5000,
| |
Collapse
|
28
|
Heck E, Friedrich U, Gack MU, Lengenfelder D, Schmidt M, Müller-Fleckenstein I, Fleckenstein B, Ensser A, Biesinger B. Growth transformation of human T cells by herpesvirus saimiri requires multiple Tip-Lck interaction motifs. J Virol 2006; 80:9934-42. [PMID: 17005671 PMCID: PMC1617286 DOI: 10.1128/jvi.01112-06] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lymphoma induction and T-cell transformation by herpesvirus saimiri strain C488 depends on two viral oncoproteins, StpC and Tip. The major interaction partner of Tip is the protein tyrosine kinase Lck, a key regulator of T-cell activation. The Lck binding domain (LBD) of Tip comprises two interaction motifs, a proline-rich SH3 domain-binding sequence (SH3B) and a region with homology to the C terminus of Src family kinase domains (CSKH). In addition, biophysical binding analyses with purified Lck-SH2 domain suggest the phosphorylated tyrosine residue 127 of Tip (pY127) as a potential third Lck interaction site. Here, we addressed the relevance of the individual binding motifs, SH3B, CSKH, and pY127, for Tip-Lck interaction and for human T-cell transformation. Both motifs within the LBD displayed Lck binding activities and cooperated to achieve a highly efficient interaction, while pY127, the major tyrosine phosphorylation site of Tip, did not enhance Lck binding in T cells. Herpesvirus saimiri strain C488 recombinants lacking one or both LBD motifs of Tip lost their transforming potential on human cord blood lymphocytes. Recombinant virus expressing Tip with a mutation at position Y127 was still able to transform human T lymphocytes but, in contrast to wild-type virus, was strictly dependent on exogenous interleukin-2. Thus, the strong Lck binding mediated by cooperation of both LBD motifs was essential for the transformation of human T cells by herpesvirus saimiri C488. The major tyrosine phosphorylation site Y127 of Tip was particularly required for transformation in the absence of exogenous interleukin-2, suggesting its involvement in cytokine signaling pathways.
Collapse
Affiliation(s)
- Elke Heck
- Institut für Klinische und Molekulare Virologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schlossgarten 4, D-91054 Erlangen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
BACKGROUND Advances in immunology and molecular biology have shown that colorectal cancer is potentially immunogenic and that host immune responses influence survival. However, immune surveillance and activation is frequently ineffective in preventing and/or controlling tumour growth. AIM To discuss potential ways in which colorectal cancer induces immune suppression, its effect upon prognosis and avenues for therapeutic development. METHOD A literature review was undertaken for evidence of colorectal cancer-induced immune suppression using PubMed and Medline searches. Further studies were identified from the reference lists of identified papers. RESULTS Immune suppression occurs at a molecular and cellular level and can result in a shift from cellular to humoral immunity. Several mechanisms for immune suppression have been described affecting innate and adaptive immunity with suppression linked to poorer clinical outcome. CONCLUSIONS Colorectal cancer causes direct inhibition of the host's immune response with a detrimental effect upon prognosis. Immunotherapy offers a therapeutic strategy to counteract these effects with promising results seen particularly in precancerous conditions and early tumours. This review strongly suggests that immunotherapy should be incorporated into adjuvant therapeutic trials for stage 2 tumours and be considered as adjuvant treatment in conjunction with standard chemotherapy regimes for advanced disease.
Collapse
Affiliation(s)
- C Evans
- Institution Colorectal Surgery Unit & Division of Oncology, St George's Hospital, Blackshaw Road, London, UK
| | | | | |
Collapse
|
30
|
Brinkmann MM, Schulz TF. Regulation of intracellular signalling by the terminal membrane proteins of members of the Gammaherpesvirinae. J Gen Virol 2006; 87:1047-1074. [PMID: 16603506 DOI: 10.1099/vir.0.81598-0] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The human gamma(1)-herpesvirus Epstein-Barr virus (EBV) and the gamma(2)-herpesviruses Kaposi's sarcoma-associated herpesvirus (KSHV), rhesus rhadinovirus (RRV), herpesvirus saimiri (HVS) and herpesvirus ateles (HVA) all contain genes located adjacent to the terminal-repeat region of their genomes, encoding membrane proteins involved in signal transduction. Designated 'terminal membrane proteins' (TMPs) because of their localization in the viral genome, they interact with a variety of cellular signalling molecules, such as non-receptor protein tyrosine kinases, tumour-necrosis factor receptor-associated factors, Ras and Janus kinase (JAK), thereby initiating further downstream signalling cascades, such as the MAPK, PI3K/Akt, NF-kappaB and JAK/STAT pathways. In the case of TMPs expressed during latent persistence of EBV and HVS (LMP1, LMP2A, Stp and Tip), their modulation of intracellular signalling pathways has been linked to the provision of survival signals to latently infected cells and, hence, a contribution to occasional cellular transformation. In contrast, activation of similar pathways by TMPs of KSHV (K1 and K15) and RRV (R1), expressed during lytic replication, may extend the lifespan of virus-producing cells, alter their migration and/or modulate antiviral immune responses. Whether R1 and K1 contribute to the oncogenic properties of KSHV and RRV has not been established satisfactorily, despite their transforming qualities in experimental settings.
Collapse
Affiliation(s)
- Melanie M Brinkmann
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| | - Thomas F Schulz
- Institut für Virologie, Medizinische Hochschule Hannover, Carl-Neuberg Str. 1, D-30625 Hannover, Germany
| |
Collapse
|
31
|
Quantitative Structure-Activity Relationships and Molecular Docking Studies of P56 LCK Inhibitors. B KOREAN CHEM SOC 2006. [DOI: 10.5012/bkcs.2006.27.2.266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Jiang Q, Li WQ, Aiello FB, Mazzucchelli R, Asefa B, Khaled AR, Durum SK. Cell biology of IL-7, a key lymphotrophin. Cytokine Growth Factor Rev 2005; 16:513-33. [PMID: 15996891 DOI: 10.1016/j.cytogfr.2005.05.004] [Citation(s) in RCA: 262] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
IL-7 is essential for the development and survival of T lymphocytes. This review is primarily from the perspective of the cell biology of the responding T cell. Beginning with IL-7 receptor structure and regulation, the major signaling pathways appear to be via PI3K and Stat5, although the requirement for either has yet to be verified by published knockout experiments. The proliferation pathway induced by IL-7 differs from conventional growth factors and is primarily through posttranslational regulation of p27, a Cdk inhibitor, and Cdc25a, a Cdk-activating phosphatase. The survival function of IL-7 is largely through maintaining a favorable balance of bcl-2 family members including Bcl-2 itself and Mcl-1 on the positive side, and Bax, Bad and Bim on the negative side. There are also some remarkable metabolic effects of IL-7 withdrawal. Studies of IL-7 receptor signaling have yet to turn up unique pathways, despite the unique requirement for IL-7 in T cell biology. There remain significant questions regarding IL-7 production and the major producing cells have yet to be fully characterized.
Collapse
Affiliation(s)
- Qiong Jiang
- Laboratory of Molecular Immunoregulation, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2), a gamma2-herpesvirus (rhadinovirus) of non-human primates, causes T-lymphoproliferative diseases in susceptible organisms and transforms human and non-human T lymphocytes to continuous growth in vitro in the absence of stimulation. T cells transformed by H. saimiri retain many characteristics of intact T lymphocytes, such as the sensitivity to interleukin-2 and the ability to recognize the corresponding antigens. As a result, H. saimiri is widely used in immunobiology for immortalization of various difficult-to-obtain and/or -to-maintain T cells in order to obtain useful experimental models. In particular, H. saimiri-transformed human T cells are highly susceptible to infection with HIV-1 and -2. This makes them a convenient tool for propagation of poorly replicating strains of HIV, including primary clinical isolates. Therefore, the mechanisms mediating transformation of T cells by H. saimiri are of considerable interest. A single transformation-associated protein, StpA or StpB, mediates cell transformation by H. saimiri strains of group A or B, respectively. Strains of group C, which exhibit the highest oncogenic potential, have two proteins involved in transformation-StpC and Tip. Both proteins have been shown to dramatically affect signal transduction pathways leading to the activation of crucial transcription factors. This review is focused on the biological effects and molecular mechanisms of action of proteins involved in H. saimiri-dependent transformation.
Collapse
MESH Headings
- Animals
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Gene Expression Regulation, Viral/genetics
- HIV-1/genetics
- HIV-1/metabolism
- Herpesviridae Infections/genetics
- Herpesviridae Infections/metabolism
- Herpesvirus 2, Saimiriine/genetics
- Herpesvirus 2, Saimiriine/metabolism
- Humans
- Lymphoma, T-Cell/genetics
- Lymphoma, T-Cell/metabolism
- Models, Biological
- Oncogene Proteins, Viral/biosynthesis
- Oncogene Proteins, Viral/genetics
- Tumor Virus Infections/genetics
- Tumor Virus Infections/metabolism
Collapse
Affiliation(s)
- Alexander Y Tsygankov
- Department of Microbiology and Immunology, Temple University School of Medicine, 3400 N. Broad Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
34
|
Aguilera-Montilla N, Pérez-Blas M, Valeri AP, López-Santalla M, Rodríguez-Juan C, Mencía A, Castellano G, Manzano ML, Casis B, Sánchez F, Martín-Villa JM. Higher proliferative capacity of T lymphocytes from patients with Crohn disease than from ulcerative colitis is disclosed by use of Herpesvirus saimiri-transformed T-cell lines. Scand J Gastroenterol 2004; 39:1236-1242. [PMID: 15743001 DOI: 10.1080/00365520410008015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND T lymphocytes play a crucial role in the pathogenesis of inflammatory bowel disease. Achieving stable T-cell lines, rather than continuous bleeding of patients, is desirable in order to dissect their implication in the disease. METHODS Long-lasting T-cell lines from patients with Crohn disease and ulcerative colitis and from healthy volunteers have been obtained by transformation of T lymphocytes using the lymphotropic Herpesvirus saimiri. Lines were subjected to phenotypic and functional analyses, and the results compared with freshly isolated peripheral blood mononuclear cells. RESULTS Fresh cells revealed only minor differences between patients and controls, with regard to phenotype and proliferative capacity. In contrast, the use of T-cell lines showed that cells from Crohn disease patients, but not ulcerative colitis patients, over-responded to several membrane or cytoplasmic stimuli when compared to control T-cell lines. Thus, higher responses were found when stimulated with alphaCD3 and IL2, alphaCD3 and alphaCD28, IL2 alone, phorbol esters (PMA) and alphaCD3 and, finally, PMA and alphaCD2 (P < 0.05 in all instances). Further, lines from patients with Crohn disease responded more vigorously to alphaCD3 and alphaCD28 or alphaCD3 and PMA when compared to ulcerative colitis (P < 0.05 in both instances). CONCLUSIONS The data obtained with these lines suggest that T cells from patients with Crohn disease differ in vivo in their proliferative capacity, as compared with those from ulcerative colitis patients, a finding that may reflect the clear Th-1 phenotype found in the former and absent in the latter.
Collapse
|
35
|
Bauer F, Hofinger E, Hoffmann S, Rösch P, Schweimer K, Sticht H. Characterization of Lck-binding elements in the herpesviral regulatory Tip protein. Biochemistry 2004; 43:14932-9. [PMID: 15554700 DOI: 10.1021/bi0485068] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Herpesvirus saimiri encodes a tyrosine kinase interacting protein (Tip) that binds to T-cell-specific tyrosine kinase Lck via multiple sequence motifs and controls its activity. The regulation of Lck by Tip represents a key mechanism in the transformation of human T-lymphocytes during herpesviral infection. In this study, the interaction of Tip with the regulatory SH3 and SH2 domains of Lck was investigated by biophysical and computational techniques. NMR spectroscopy of isotopically labeled Tip(140-191) revealed that the interaction with the LckSH3 domain is not restricted to the classical proline-rich motif, but also involves the C-terminally adjacent residues which pack into a hydrophobic pocket on the surface of the SH3 domain, thus playing a likely role in mediating binding specificity. Fluorescence binding studies of Tip further demonstrate that Tyr127 in its phosphorylated form represents a strong ligand of the LckSH2 domain, indicating the presence of an additional Lck interaction motif. In contrast, Tyr114, known to be essential for STAT-3 binding, does not interact with the LckSH2 domain, showing that the tyrosines in Tip exhibit distinct binding specificity. The existence of numerous interaction sites between Tip and the regulatory domains of Lck implies a complex regulatory mechanism and may have evolved to allow a gradual regulation of Lck activity in different pathogenic states.
Collapse
Affiliation(s)
- Finn Bauer
- Lehrstuhl für Biopolymere, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | |
Collapse
|
36
|
Hasham MG, Tsygankov AY. Tip, an Lck-interacting protein of Herpesvirus saimiri, causes Fas- and Lck-dependent apoptosis of T lymphocytes. Virology 2004; 320:313-29. [PMID: 15016553 DOI: 10.1016/j.virol.2003.11.032] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2003] [Revised: 11/19/2003] [Accepted: 11/24/2003] [Indexed: 11/21/2022]
Abstract
Saimiriine herpesvirus-2 (Herpesvirus saimiri) transforms T lymphocytes, including human, to continuous growth in vitro. H. saimiri-induced transformation is becoming an important tool of T-cell biology, including studies of HIV replication. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T-cell transformation. In spite of the important role of these proteins, their biological functions and the molecular mechanisms of their action remain insufficiently understood. To further elucidate the effects of Tip on T cells, we transduced T lymphocytes, using an efficient lentiviral gene transfer system, to express Tip in the absence of other H. saimiri proteins. Our results indicate that Tip specifically inhibits IL-2 production by human T lymphocytes. Furthermore, Tip promotes T-cell apoptosis, which appears to be the reason for the observed decrease in IL-2 production. Finally, the apoptotic effect of Tip in T cells is mediated by Fas and requires the presence of active Lck in the cell.
Collapse
Affiliation(s)
- Muneer G Hasham
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | | |
Collapse
|
37
|
Sorokina EM, Merlo JJ, Tsygankov AY. Molecular mechanisms of the effect of herpesvirus saimiri protein StpC on the signaling pathway leading to NF-kappaB activation. J Biol Chem 2004; 279:13469-77. [PMID: 14724292 DOI: 10.1074/jbc.m305250200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Herpesvirus saimiri (Saimiriine herpesvirus-2) causes lethal T lymphoproliferative diseases in the susceptible species and transforms T lymphocytes to continuous growth in vitro. H. saimiri-induced transformation of T cells is becoming an important experimental tool of biomedical research. Two proteins of H. saimiri subgroup C, Tip and StpC, are essential for T cell transformation by this virus. It has been shown previously that StpC transforms fibroblasts, activates NF-kappaB, and binds to tumor necrosis factor (TNF)-receptor-associated factor (TRAF) proteins, but the molecular mechanism of its action remains insufficiently understood. This study further characterized the effect of StpC on NF-kappaB. First, StpC activates NF-kappaB via the consensus pathway involving activation of I-kappaB kinase and subsequent phosphorylation and degradation of I-kappaB in both T lymphoid and epithelial cells. Second, triggering of this pathway by StpC in both T lymphoid and epithelial cells is dependent on the presence of functional NF-kappaB-inducing kinase (NIK). Third, StpC physically interacts with TRAF in epithelial cells, and the effect of StpC on NF-kappaB activity in these cells requires the presence of functional TRAF. Finally the effect of StpC is completely independent of TNF-alpha, a well described stimulus of NF-kappaB activity. Moreover it appears that StpC uncouples stimulation of NF-kappaB activity from TNF-alpha stimulation. Overall these results argue that the effect of StpC on NF-kappaB is similar to the effects of other viral proteins, "usurping" the TRAF/NIK/I-kappaB kinase pathway, and reinforce the notion that the role of StpC in cell transformation by H. saimiri may be mediated by signaling that results in NF-kappaB activation.
Collapse
Affiliation(s)
- Elena M Sorokina
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, Pennsylvania 19140, USA
| | | | | |
Collapse
|
38
|
Park J, Cho NH, Choi JK, Feng P, Choe J, Jung JU. Distinct roles of cellular Lck and p80 proteins in herpesvirus saimiri Tip function on lipid rafts. J Virol 2003; 77:9041-51. [PMID: 12885920 PMCID: PMC167239 DOI: 10.1128/jvi.77.16.9041-9051.2003] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid rafts are proposed to function as platforms for both receptor signaling and trafficking. Following interaction with antigenic peptides, the T-cell receptor (TCR) rapidly translocates to lipid rafts, where it transmits signals and subsequently undergoes endocytosis. The Tip protein of herpesvirus saimiri (HVS), which is a T-lymphotropic tumor virus, interacts with cellular Lck tyrosine kinase and p80, a WD domain-containing endosomal protein. Interaction of Tip with p80 induces enlarged vesicles and recruits Lck and TCR complex into these vesicles for trafficking. We report here that Tip is constitutively present in lipid rafts and that Tip interaction with p80 but not with Lck is necessary for its efficient localization in lipid rafts. The Tip-Lck interaction was required for recruitment of the TCR complex to lipid rafts, and the Tip-p80 interaction was critical for the aggregation and internalization of lipid rafts. These results suggest the potential mechanism for Tip-mediated TCR downregulation: Tip interacts with Lck to recruit TCR complex to lipid rafts, and it subsequently interacts with p80 to initiate the aggregation and internalization of the lipid raft domain and thereby downregulate the TCR complex. Thus, the signaling and targeting functions of HVS Tip rely on two functionally and genetically separable mechanisms that independently target cellular Lck tyrosine kinase and p80 endosomal protein.
Collapse
Affiliation(s)
- Junsoo Park
- Department of Microbiology and Molecular Genetics and Tumor Virology Division, New England Primate Research Center, Harvard Medical School, Southborough, Massachusetts 01772-9102, USA
| | | | | | | | | | | |
Collapse
|
39
|
Briese L, Willbold D. Structure determination of human Lck unique and SH3 domains by nuclear magnetic resonance spectroscopy. BMC STRUCTURAL BIOLOGY 2003; 3:3. [PMID: 12734017 PMCID: PMC156628 DOI: 10.1186/1472-6807-3-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2003] [Accepted: 05/07/2003] [Indexed: 11/10/2022]
Abstract
BACKGROUND Protein tyrosine kinases are involved in signal transduction pathways that regulate cell growth, differentiation, activation and transformation. Human lymphocyte specific kinase (Lck) is a 56 kDa protein involved in T-cell- and IL2-receptor signaling. Three-dimensional structures are known for SH3, SH2 and kinase domains of Lck as well as for other tyrosine kinases. No structure is known for the unique domain of any Src-type tyrosine kinase. RESULTS Lck(1-120) comprising unique and SH3 domains was structurally investigated by nuclear magnetic resonance spectroscopy. We found the unique domain, in contrast to the SH3 part, to have basically no defined structural elements. The solution structure of the SH3 part could be determined with very high precision. It does not show significant differences to Lck SH3 in the absence of the unique domain. Minor differences were observed to the X-ray structure of Lck SH3. CONCLUSION The unique domain of Lck does not contain any defined structure elements in the absence of ligands and membranes. Presence of the unique domain is not relevant to the three-dimensional structure of the Lck SH3 domain.
Collapse
Affiliation(s)
- Lars Briese
- Institut für Molekulare Biotechnologie, 07745 Jena, Germany
| | - Dieter Willbold
- Institut für Molekulare Biotechnologie, 07745 Jena, Germany
- IBI-2, Forschungszentrum Jülich, 52425 Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| |
Collapse
|
40
|
Pullar CE, Morris PJ, Wood KJ. Altered proximal T-cell receptor signalling events in mouse CD4+ T cells in the presence of anti-CD4 monoclonal antibodies: evidence for reduced phosphorylation of Zap-70 and LAT. Scand J Immunol 2003; 57:333-41. [PMID: 12662296 DOI: 10.1046/j.1365-3083.2003.01241.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Anti-CD4 monoclonal antibodies are potential therapeutic agents for the prevention of autoimmune disease and treatment of rejection after organ transplantation and are capable of both restoring tolerance to self-antigens and inducing tolerance to antigens introduced under the cover of the antibody therapy in vivo. Tolerance to donor alloantigens can be induced in vivo by administering donor alloantigen in combination with either depleting (YTA 3.1) or nondepleting (YTS 177) anti-CD4, 28 days before heart transplantation in the mouse. The effect of anti-CD4 on proximal T-cell receptor (TCR) signalling pathways and proliferation was investigated in vitro and in vivo in the presence and absence of YTA 3.1 or YTS 177. Anti-CD4 was found to perturb proximal signalling events upon TCR/CD3 ligation, resulting in reduced tyrosine phosphorylation of Zap-70 and LAT (linker for activation of T cells) and reduced association of tyrosine-phosphorylated LAT with lck. This ultimately resulted in severely reduced proliferation of the responding CD4+ T cells. The signalling profile of the anti-CD4-treated cells resembled that of anergic T cells. This could be a result of a common mechanism involving perturbation in the formation of the central supramolecular activation cluster of the immunological synapse by impaired recruitment of CD4 and CD28, thereby resulting in severely reduced lck activation.
Collapse
Affiliation(s)
- C E Pullar
- Nuffield Department of Surgery, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | | | | |
Collapse
|
41
|
Budagian V, Bulanova E, Brovko L, Orinska Z, Fayad R, Paus R, Bulfone-Paus S. Signaling through P2X7 receptor in human T cells involves p56lck, MAP kinases, and transcription factors AP-1 and NF-kappa B. J Biol Chem 2003; 278:1549-60. [PMID: 12424250 DOI: 10.1074/jbc.m206383200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
ATP-gated ion channel P2X receptors are expressed on the surface of most immune cells and can trigger multiple cellular responses, such as membrane permeabilization, cytokine production, and cell proliferation or apoptosis. Despite broad distribution and pleiotropic activities, signaling pathways downstream of these ionotropic receptors are still poorly understood. Here, we describe intracellular signaling events in Jurkat cells treated with millimolar concentrations of extracellular ATP. Within minutes, ATP treatment resulted in the phosphorylation and activation of p56(lck) kinase, extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase but not p38 kinase. These effects were wholly dependent upon the presence of extracellular Ca(2+) ions in the culture medium. Nevertheless, calmodulin antagonist calmidazolium and CaM kinase inhibitor KN-93 both had no effect on the activation of p56(lck) and ERK, whereas a pretreatment of Jurkat cells with MAP kinase kinase inhibitor P098059 was able to abrogate phosphorylation of ERK. Further, expression of c-Jun and c-Fos proteins and activator protein (AP-1) DNA binding activity were enhanced in a time-dependent manner. In contrast, DNA binding activity of NF-kappa B was reduced. ATP failed to stimulate the phosphorylation of ERK and c-Jun N-terminal kinase and activation of AP-1 in the p56(lck)-deficient isogenic T cell line JCaM1, suggesting a critical role for p56(lck) kinase in downstream signaling. Regarding the biological significance of the ATP-induced signaling events we show that although extracellular ATP was able to stimulate proliferation of both Jurkat and JCaM1 cells, an increase in interleukin-2 transcription was observed only in Jurkat cells. The nucleotide selectivity and pharmacological profile data supported the evidence that the ATP-induced effects in Jurkat cells were mediated through the P2X7 receptor. Taken together, these results demonstrate the ability of extracellular ATP to activate multiple downstream signaling events in a human T-lymphoblastoid cell line.
Collapse
Affiliation(s)
- Vadim Budagian
- Department of Immunology and Cellular Biology, Research Center Borstel, D-23845 Borstel, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Park J, Lee BS, Choi JK, Means RE, Choe J, Jung JU. Herpesviral protein targets a cellular WD repeat endosomal protein to downregulate T lymphocyte receptor expression. Immunity 2002; 17:221-33. [PMID: 12196293 DOI: 10.1016/s1074-7613(02)00368-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Herpesvirus saimiri Tip associates with Lck and downregulates Lck signal transduction. Here we demonstrate that Tip targets a lysosomal protein p80, which consists of an N-terminal WD repeat domain and a C-terminal coiled-coil domain. Interaction of Tip with p80 facilitated lysosomal vesicle formation and subsequent recruitment of Lck into the lysosomes for degradation. Consequently, Tip interactions with Lck and p80 result in downregulation of T cell receptor (TCR) and CD4 surface expression. Remarkably, these actions of Tip are functionally and genetically separable: the N-terminal p80 interaction is responsible for TCR downregulation and the C-terminal Lck interaction is responsible for CD4 downregulation. Thus, lymphotropic herpesvirus has evolved an elaborate mechanism to deregulate lymphocyte receptor expression to disarm host immune control.
Collapse
Affiliation(s)
- Junsoo Park
- Department of Microbiology and Molecular Genetics, New England Regional Primate Research Center, Harvard Medical School, Southborough, MA 01772, USA
| | | | | | | | | | | |
Collapse
|
43
|
Schweimer K, Hoffmann S, Bauer F, Friedrich U, Kardinal C, Feller SM, Biesinger B, Sticht H. Structural investigation of the binding of a herpesviral protein to the SH3 domain of tyrosine kinase Lck. Biochemistry 2002; 41:5120-30. [PMID: 11955060 DOI: 10.1021/bi015986j] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herpesvirus saimiri codes for a tyrosine kinase interacting protein (Tip) that interacts with both the SH3 domain and the kinase domain of the T-cell-specific tyrosine kinase Lck via two separate motifs. The activation of Lck by Tip is considered as a key event in the transformation of human T-lymphocytes during herpesviral infection. We investigated the interaction of proline-rich Tip peptides with the LckSH3 domain starting with the structural characterization of the unbound interaction partners. The solution structure of the LckSH3 was determined by heteronuclear multidimensional nuclear magnetic resonance (NMR) spectroscopy using 44 residual dipolar couplings in addition to the conventional experimental restraints. Circular dichroism spectroscopy proved that the polyproline helix of Tip is already formed prior to SH3 binding and is conformationally stable. NMR titration experiments point out three major regions of the Tip-Lck interaction comprising the RT loop, the n-src loop, and a helical turn preceding the last strand of the beta-sheet. Further changes of the chemical shifts were observed for the N- and C-terminal beta-strands of the SH3 domain, indicating additional contacts outside the proline-rich segment or subtle structural rearrangements transmitted from the binding site of the proline helix. Fluorescence spectroscopy shows that Tip binds to the SH3 domains of several Src kinases (Lck, Hck, Lyn, Src, Fyn, Yes), exhibiting the highest affinities for Lyn, Hck, and Lck.
Collapse
Affiliation(s)
- Kristian Schweimer
- Lehrstuhl für Biopolymere, Universität Bayreuth, 95440 Bayreuth, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Hör S, Ensser A, Reiss C, Ballmer-Hofer K, Biesinger B. Herpesvirus saimiri protein StpB associates with cellular Src. J Gen Virol 2001; 82:339-344. [PMID: 11161272 DOI: 10.1099/0022-1317-82-2-339] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Subgroup B isolates of Herpesvirus saimiri are less efficient in T lymphocyte transformation when compared with subgroups A or C. Here it is shown that subgroup B strain SMHI encodes a protein, StpB, at a position equivalent to those of the ORFs for the saimiri transforming proteins (Stp) of subgroups A and C. StpB shares little similarity with StpA or StpC, but interacts with the SH2 domain of cellular Src, as does StpA. Thus, factors other than c-Src binding determine the efficiency of primary T cell transformation by Herpesvirus saimiri.
Collapse
Affiliation(s)
- Simon Hör
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schloßgarten 4, D-91054 Erlangen, Germany1
| | - Armin Ensser
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schloßgarten 4, D-91054 Erlangen, Germany1
| | - Christine Reiss
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schloßgarten 4, D-91054 Erlangen, Germany1
| | - Kurt Ballmer-Hofer
- Institute for Radiobiology at the Paul Scherrer Institute, CH-5232 Villigen-PSI, Switzerland2
| | - Brigitte Biesinger
- Institut für Klinische und Molekulare Virologie, Universität Erlangen-Nürnberg, Schloßgarten 4, D-91054 Erlangen, Germany1
| |
Collapse
|