1
|
Wang Y, Qiao X, Li Y, Yang Q, Wang L, Liu X, Wang H, Shen H. Role of the receptor for activated C kinase 1 during viral infection. Arch Virol 2022; 167:1915-1924. [PMID: 35763066 DOI: 10.1007/s00705-022-05484-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Viruses can survive only in living cells, where they depend on the host's enzymatic system for survival and reproduction. Virus-host interactions are complex. On the one hand, hosts express host-restricted factors to protect the host cells from viral infections. On the other hand, viruses recruit certain host factors to facilitate their survival and transmission. The identification of host factors critical to viral infection is essential for comprehending the pathogenesis of contagion and developing novel antiviral therapies that specifically target the host. Receptor for activated C kinase 1 (RACK1), an evolutionarily conserved host factor that exists in various eukaryotic organisms, is a promising target for antiviral therapy. This review primarily summarizes the roles of RACK1 in regulating different viral life stages, particularly entry, replication, translation, and release.
Collapse
Affiliation(s)
- Yan Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaorong Qiao
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yuhan Li
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Qingru Yang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Lulu Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Xiaolan Liu
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hua Wang
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Hongxing Shen
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
2
|
The role of RNA-binding and ribosomal proteins as specific RNA translation regulators in cellular differentiation and carcinogenesis. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166046. [PMID: 33383105 DOI: 10.1016/j.bbadis.2020.166046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 12/03/2020] [Accepted: 12/10/2020] [Indexed: 02/07/2023]
Abstract
Tight control of mRNA expression is required for cell differentiation; imbalanced regulation may lead to developmental disorders and cancer. The activity of the translational machinery (including ribosomes and translation factors) regulates the rate (slow or fast) of translation of encoded proteins, and the quality of these proteins highly depends on which mRNAs are available for translation. Specific RNA-binding and ribosomal proteins seem to play a key role in controlling gene expression to determine the differentiation fate of the cell. This demonstrates the important role of RNA-binding proteins, specific ribosome-binding proteins and microRNAs as key molecules in controlling the specific proteins required for the differentiation or dedifferentiation of cells. This delicate balance between specific proteins (in terms of quality and availability) and post-translational modifications occurring in the cytoplasm is crucial for cell differentiation, dedifferentiation and oncogenic potential. In this review, we report how defects in the regulation of mRNA translation can be dependent on specific proteins and can induce an imbalance between differentiation and dedifferentiation in cell fate determination.
Collapse
|
3
|
Miller CM, Selvam S, Fuchs G. Fatal attraction: The roles of ribosomal proteins in the viral life cycle. WILEY INTERDISCIPLINARY REVIEWS-RNA 2020; 12:e1613. [PMID: 32657002 DOI: 10.1002/wrna.1613] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 05/20/2020] [Accepted: 05/26/2020] [Indexed: 12/30/2022]
Abstract
Upon viral infection of a host cell, each virus starts a program to generate many progeny viruses. Although viruses interact with the host cell in numerous ways, one critical step in the virus life cycle is the expression of viral proteins, which are synthesized by the host ribosomes in conjunction with host translation factors. Here we review different mechanisms viruses have evolved to effectively seize host cell ribosomes, the roles of specific ribosomal proteins and their posttranslational modifications on viral RNA translation, or the cellular response to infection. We further highlight ribosomal proteins with extra-ribosomal function during viral infection and put the knowledge of ribosomal proteins during viral infection into the larger context of ribosome-related diseases, known as ribosomopathies. This article is categorized under: Translation > Translation Mechanisms Translation > Translation Regulation.
Collapse
Affiliation(s)
- Clare M Miller
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Sangeetha Selvam
- Department of Biological Sciences, University at Albany, Albany, New York, USA
| | - Gabriele Fuchs
- Department of Biological Sciences, University at Albany, Albany, New York, USA.,The RNA Institute, University at Albany, Albany, New York, USA
| |
Collapse
|
4
|
Wang X, Gao L, Yang X, Zuo Q, Lan R, Li M, Yang C, Lin Y, Liu J, Yin G. Porcine RACK1 negatively regulates the infection of classical swine fever virus and the NF-κB activation in PK-15 cells. Vet Microbiol 2020; 246:108711. [PMID: 32605753 DOI: 10.1016/j.vetmic.2020.108711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 11/15/2022]
Abstract
Classical swine fever (CSF) is one of the main viral diseases of swine worldwide. The causative pathogen is CSF virus (CSFV), a small enveloped RNA virus of the genus Pestivirus. Activation of NF-κB is a hallmark of most viral infections and the viral pathogens frequently kidnap NF-κB pathway for their own advantages, however, it is unclear or even controversial about whether CSFV infection can activate NF-κB signal pathway. RACK1 was shown as an interacting host protein with CSFV NS5A protein, but no studies so far have clearly defined the role of RACK1 during CSFV infection and NF-κB activation. In this study, to properly address these open questions, using RT-qPCR, western blot, indirect fluorescence staining, siRNA knockdown and protein overexpression techniques, we demonstrated that CSFV infection reduced the RACK1 expression at both mRNA and protein levels in PK-15 cells. Downregulation of cellular RACK1 enhanced CSFV infection and subsequent NF-κB activation, while RACK1 overexpression inhibited CSFV infection and the NF-κB activation. In conclusion, RACK1 is a negative cellular regulator for CSFV infection and NF-κB activation in PK-15 cells. Our work addressed a novel aspect concerning the regulation of innate antiviral immune response during CSFV infection. This study may provide some insights into the molecular mechanisms of CSFV infection in swine. However, the elaborate mechanism by which CSFV regulates NF-κB activation and how RACK1 plays its roles in CSFV infection and NF-κB induction require further in-depth studies.
Collapse
Affiliation(s)
- Xiaochun Wang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Libo Gao
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Xiaoying Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Qingwei Zuo
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Rui Lan
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Miao Li
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Chao Yang
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institute, 17176 Stockholm, Sweden
| | - Jianping Liu
- School of Clinical Medicine, Dali University, Dali 671003, Yunnan, China.
| | - Gefen Yin
- College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, 650201 Yunnan, China.
| |
Collapse
|
5
|
Lu L, Wang Q, Huang D, Xu Q, Zhou X, Wu J. Rice black-streaked dwarf virus P10 suppresses protein kinase C in insect vector through changing the subcellular localization of LsRACK1. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180315. [PMID: 30967017 DOI: 10.1098/rstb.2018.0315] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Rice black-streaked dwarf virus (RBSDV) was known to be transmitted by the small brown planthopper (SBPH) in a persistent, circulative and propagative manner in nature. Here, we show that RBSDV major outer capsid protein (also known as P10) suppresses the protein kinase C (PKC) activity of SBPH through interacting with the receptor for activated protein kinase C 1 (LsRACK1). The N terminal of P10 (amino acids (aa) 1-270) and C terminal of LsRACK1 (aa 268-315) were mapped as crucial for the interaction. Confocal microscopy and subcellular fractionation showed that RBSDV P10 fused to enhanced green fluorescent protein formed vesicular structures associated with endoplasmic reticulum (ER) membranes in Spodoptera frugiperda nine cells. Our results also indicated that RBSDV P10 retargeted the initial subcellular localization of LsRACK1 from cytoplasm and cell membrane to ER and affected the function of LsRACKs to activate PKC. Inhibition of RACK1 by double stranded RNA-induced gene silencing significantly promoted the replication of RBSDV in SBPH. In addition, the PKC pathway participates in the antivirus innate immune response of SBPH. This study highlights that RACK1 negatively regulates the accumulation of RBSDV in SBPH through activating the PKC signalling pathway, and RBSDV P10 changes the subcellular localization of LsRACK1 and affects its function to activate PKC. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Lina Lu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| | - Qi Wang
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| | - Deqing Huang
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| | - Qiufang Xu
- 2 Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences , Nanjing 210014 , People's Republic of China
| | - Xueping Zhou
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China.,3 State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences , Beijing 100193 , People's Republic of China
| | - Jianxiang Wu
- 1 State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University , Hangzhou, Zhejiang 310058 , People's Republic of China
| |
Collapse
|
6
|
Opposite regulation of Wnt/β-catenin and Shh signaling pathways by Rack1 controls mammalian cerebellar development. Proc Natl Acad Sci U S A 2019; 116:4661-4670. [PMID: 30765517 DOI: 10.1073/pnas.1813244116] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The development of the cerebellum depends on intricate processes of neurogenesis, migration, and differentiation of neural stem cells (NSCs) and progenitor cells. Defective cerebellar development often results in motor dysfunctions and psychiatric disorders. Understanding the molecular mechanisms that underlie the complex development of the cerebellum will facilitate the development of novel treatment options. Here, we report that the receptor for activated C kinase (Rack1), a multifaceted signaling adaptor protein, regulates mammalian cerebellar development in a cell type-specific manner. Selective deletion of Rack1 in mouse NSCs or granule neuron progenitors (GNPs), but not Bergmann glial cells (BGs), causes severe defects in cerebellar morphogenesis, including impaired folia and fissure formation. NSCs and GNPs lacking Rack1 exhibit enhanced Wnt/β-catenin signaling but reduced Sonic hedgehog (Shh) signaling. Simultaneous deletion of β-catenin in NSCs, but not GNPs, significantly rescues the Rack1 mutant phenotype. Interestingly, Rack1 controls the activation of Shh signaling by regulating the ubiquitylation and stability of histone deacetylase 1 (HDAC1)/HDAC2. Suppression of HDAC1/HDAC2 activity in the developing cerebellum phenocopies the Rack1 mutant. Together, these results reveal a previously unknown role of Rack1 in controlling mammalian cerebellar development by opposite regulation of Wnt/β-catenin and Shh signaling pathways.
Collapse
|
7
|
Abstract
As obligate intracellular parasites, viruses are dependent on their infected hosts for survival. Consequently, viruses are under enormous selective pressure to utilize available cellular components and processes to their own advantage. As most, if not all, cellular activities are regulated at some level via protein interactions, host protein interaction networks are particularly vulnerable to viral exploitation. Indeed, viral proteins frequently target highly connected “hub” proteins to “hack” the cellular network, defining the molecular basis for viral control over the host. This widespread and successful strategy of network intrusion and exploitation has evolved convergently among numerous genetically distinct viruses as a result of the endless evolutionary arms race between pathogens and hosts. Here we examine the means by which a particularly well-connected viral hub protein, human adenovirus E1A, compromises and exploits the vulnerabilities of eukaryotic protein interaction networks. Importantly, these interactions identify critical regulatory hubs in the human proteome and help define the molecular basis of their function.
Collapse
|
8
|
Peng H, Gong PG, Li JB, Cai LM, Yang L, Liu YY, Yao KT, Li X. The important role of the receptor for activated C kinase 1 (RACK1) in nasopharyngeal carcinoma progression. J Transl Med 2016; 14:131. [PMID: 27170279 PMCID: PMC4864934 DOI: 10.1186/s12967-016-0885-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 04/28/2016] [Indexed: 01/26/2023] Open
Abstract
Background The receptor for activated C kinase 1 (RACK1) is involved in various cancers, but its roles in nasopharyngeal carcinoma (NPC) have not yet been fully elucidated. Methods Initially, RACK1 expression was analyzed by immunohistochemistry in NPC and normal nasopharyngeal (NP) tissues. It was also detected by qPCR and Western blot in NPC cells. Confocal microscope and immunofluorescence were performed to detect the subcellular compartmentalization of RACK1. Subsequently, after up- or down-regulating RACK1 in NPC cells, cell proliferation and migration/invasion were tested using in vitro assays including MTT, EdU, colony formation, Transwell and Boyden assays. Furthermore, several key molecules were detected by Western blot to explore underlying mechanism. Finally, clinical samples were analyzed to confirm the relationship between RACK1 expression and clinical features. Results Receptor for activated C kinase 1 expression was much higher in NPC than NP tissues. And RACK1 was mainly located in the cytoplasm. Overexpression of RACK1 promoted NPC cell proliferation and metastasis/invasion, whereas depletion of this protein suppressed NPC cell proliferation and metastasis/invasion. Mechanistically, RACK1 deprivation obviously suppressed the activation of Akt and FAK, suggesting the PI3K/Akt/FAK pathway as one of functional mechanisms of RACK1 in NPC. Furthermore, clinical sample analysis indicated a positive correlation between in vivo expression of RACK1 with lymph node invasion and clinical stage of NPC. Conclusion Our results demonstrate that RACK1 protein plays an important role in NPC development and progression. The upregulation of RACK1 can promote the proliferation and invasion of NPC by regulating the PI3K/Akt/FAK signal pathway. Thus, this study contributes to the discovery of a potential therapeutic target for NPC. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-0885-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hong Peng
- Department of Otolaryngology-Head and Neck Surgery, The Second People's Hospital of Guangdong Province, Southern Medical University, Guangzhou, 510317, China.
| | - Ping-Gui Gong
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Jin-Bang Li
- Department of Pathology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, China
| | - Long-Mei Cai
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Le Yang
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yun-Yi Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Kai-Tai Yao
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xin Li
- Cancer Research Institute and the Provincial Key Laboratory of Cancer Immunotherapy, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
9
|
Lin W, Zhang Z, Xu Z, Wang B, Li X, Cao H, Wang Y, Zheng SJ. The association of receptor of activated protein kinase C 1(RACK1) with infectious bursal disease virus viral protein VP5 and voltage-dependent anion channel 2 (VDAC2) inhibits apoptosis and enhances viral replication. J Biol Chem 2015; 290:8500-10. [PMID: 25583988 DOI: 10.1074/jbc.m114.585687] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). Our previous report indicates that IBDV VP5 induces apoptosis via interaction with voltage-dependent anion channel 2 (VDAC2). However, the underlying molecular mechanism is still unclear. We report here that receptor of activated protein kinase C 1 (RACK1) interacts with both VDAC2 and VP5 and that they could form a complex. We found that overexpression of RACK1 inhibited IBDV-induced apoptosis in DF-1 cells and that knockdown of RACK1 by small interfering RNA induced apoptosis associated with activation of caspases 9 and 3 and suppressed IBDV growth. These results indicate that RACK1 plays an antiapoptotic role during IBDV infection via interaction with VDAC2 and VP5, suggesting that VP5 sequesters RACK1 and VDAC2 in the apoptosis-inducing process.
Collapse
Affiliation(s)
- Wencheng Lin
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhiqiang Zhang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Zhichao Xu
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Bin Wang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Xiaoqi Li
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Hong Cao
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yongqiang Wang
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Shijun J Zheng
- From the State Key Laboratory of Agrobiotechnology, Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, and College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| |
Collapse
|
10
|
Li J, Guo Y, Feng X, Wang Z, Wang Y, Deng P, Zhang D, Wang R, Xie L, Xu X, Zhou Y, Ji N, Hu J, Zhou M, Liao G, Geng N, Jiang L, Wang Z, Chen Q. Receptor for activated C kinase 1 (RACK1): a regulator for migration and invasion in oral squamous cell carcinoma cells. J Cancer Res Clin Oncol 2012; 138:563-71. [PMID: 22207523 DOI: 10.1007/s00432-011-1097-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 11/08/2011] [Indexed: 11/25/2022]
Abstract
PURPOSE Receptor of activated protein kinase C 1 (RACK1) has been identified as an anchoring or adaptor protein in multiple intracellular signal transduction pathways. Our previous study has showed that the expression of RACK1 was paralleled with proliferation and correlated with metastasis and clinical outcome. However, the underlined mechanism has not been uncovered. MATERIALS AND METHODS We first selected a most effective siRNA among three siRNAs (siRNA-1, siRNA-2 and siRNA-3) targeting different regions in the RACK1 mRNA and re-evaluated the anticancer effect of RACK1 silencing on HSC-3 and Cal-27 cell lines by cell growth inhibition. And then, we investigated whether knockdown of RACK1 could inhibit cell adhesion, migration and invasion in these two cell lines. To further understand the molecular mechanism of RACK1 in these processes, the expressions of EGFR, pEGFR, HER2, MMP-2 and MMP-9 were detected by western blot. RESULTS We verified that the silence of RACK1 gene in two OSCC cell lines could not only inhibit cell proliferation but also decrease the invasion, migration and adhesion capability of the tumor cells. Further, western blot analysis deduced that it might be related to the decrease in protein expression of EGFR, pEGFR, HER2, MMP-2 and MMP-9. CONCLUSION Our results clearly showed the significance of RACK1-induced OSCC cell migration, invasion and adhesion, which could explain the underlined mechanism of the effect of the gene on metastasis and clinical outcome. Also, our results confirmed its role to be a prognostic indicator and a promising drug target for OSCC cell metastasis.
Collapse
Affiliation(s)
- Jing Li
- State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Sec.3, Renminnan Road, Chengdu 610041, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Adams DR, Ron D, Kiely PA. RACK1, A multifaceted scaffolding protein: Structure and function. Cell Commun Signal 2011; 9:22. [PMID: 21978545 PMCID: PMC3195729 DOI: 10.1186/1478-811x-9-22] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2011] [Accepted: 10/06/2011] [Indexed: 12/17/2022] Open
Abstract
The Receptor for Activated C Kinase 1 (RACK1) is a member of the tryptophan-aspartate repeat (WD-repeat) family of proteins and shares significant homology to the β subunit of G-proteins (Gβ). RACK1 adopts a seven-bladed β-propeller structure which facilitates protein binding. RACK1 has a significant role to play in shuttling proteins around the cell, anchoring proteins at particular locations and in stabilising protein activity. It interacts with the ribosomal machinery, with several cell surface receptors and with proteins in the nucleus. As a result, RACK1 is a key mediator of various pathways and contributes to numerous aspects of cellular function. Here, we discuss RACK1 gene and structure and its role in specific signaling pathways, and address how posttranslational modifications facilitate subcellular location and translocation of RACK1. This review condenses several recent studies suggesting a role for RACK1 in physiological processes such as development, cell migration, central nervous system (CN) function and circadian rhythm as well as reviewing the role of RACK1 in disease.
Collapse
Affiliation(s)
- David R Adams
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland.
| | | | | |
Collapse
|
12
|
Saelee N, Tonganunt-Srithaworn M, Wanna W, Phongdara A. Receptor for Activated C Kinase-1 protein from Penaeus monodon (Pm-RACK1) participates in the shrimp antioxidant response. Int J Biol Macromol 2011; 49:32-6. [PMID: 21439997 DOI: 10.1016/j.ijbiomac.2011.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2010] [Revised: 03/15/2011] [Accepted: 03/17/2011] [Indexed: 01/23/2023]
Abstract
Cellular oxidative stress responses are caused in many ways, but especially by disease and environmental stress. After the initial burst of reactive oxygen species (ROS), the effective elimination of ROS is crucial for the survival of organisms and is mediated by antioxidant defense mechanisms. In this paper, we investigate the possible antioxidant function of Penaeus monodon Receptor for Activated C Kinase-1 (Pm-RACK1). When Pm-RACK1 was over-expressed in Escherichia coli cells or Spodoptera frugiperda (Sf9) insect cells exposed to H(2)O(2), it significantly protected the cells from oxidative damage induced by H(2)O(2). When recombinant Pm-RACK1 protein was expressed as a histidine fusion protein in E. coli and purified with a Ni(2+)-column it possessed antioxidant functions that protected DNA from metal-catalyzed oxidation. Shrimp (Penaeus vannamei) held at an alkaline pH had a much higher hepatopancreatic expression of Pm-RACK1 than in those held at pH 7.4. The exposure of shrimp to alkaline pH is also known to increase ROS production. These results provide strong evidence that Pm-RACK1 can participate in the shrimp antioxidant response induced by the formation of ROS.
Collapse
Affiliation(s)
- Netnapa Saelee
- Center for Genomics and Bioinformatics Research, Faculty of Science, Prince of Songkla University, Songkhla 90112, Thailand
| | | | | | | |
Collapse
|
13
|
Cao XX, Xu JD, Liu XL, Xu JW, Wang WJ, Li QQ, Chen Q, Xu ZD, Liu XP. RACK1: A superior independent predictor for poor clinical outcome in breast cancer. Int J Cancer 2010; 127:1172-9. [PMID: 20020495 DOI: 10.1002/ijc.25120] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We aimed to investigate the expression of RACK1 in breast cancer, evaluate its role in predicting prognosis and compare with commonly used biomarkers: Ki67, ER, PR and HER-2 for patients with breast cancer. The RACK1 expression and its clinical significance were examined in 160 breast carcinoma patients using immunohistochemistry. Correlations of RACK1 expression with other commonly used biomarkers and survival analyses were assessed. Immunohistochemistry results showed that the number of RACK1 cases scoring 0, 1, and 2 were 66, 54, and 40, respectively. RACK1 staining was strongly related to clinical stage, histological grade, Ki67, ER, PR and HER-2 (all p < 0.05). Consistently, all of the cases exhibiting RACK1 staining score 0 were survivors, whereas the majority (55.0%) of those exhibiting RACK1 staining score 2 were deaths. Kaplan-Meier survival analysis of 160 cases revealed a correlation between higher RACK1 expression levels and shorter overall survival times (p < 0.001). Univariate and multivariate analyses revealed that RACK1, tumor size, lymph node metastasis, and HER-2 were independent prognostic factors (all p < 0.05). Interestingly, receiver operator characteristic (ROC) curves showed that the ROC areas for RACK1, Ki67, ER, PR and HER-2 were 0.833, 0.766, 0.446, 0.387, and 0.689, respectively, and the superiority of RACK1 in sensitivity and specificity as biomarker was demonstrated. To our knowledge, it is the first time to investigate the expression of RACK1, and identified that RACK1 is a superior independent biomarker for diagnosis and prognosis comparing with currently widely used diagnostic index in breast carcinoma.
Collapse
Affiliation(s)
- Xi-Xi Cao
- Department of Pathology, Shanghai Medical College, Fudan University, Shanghai, China
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Cao XX, Xu JD, Xu JW, Liu XL, Cheng YY, Wang WJ, Li QQ, Chen Q, Xu ZD, Liu XP. RACK1 promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo. Breast Cancer Res Treat 2009; 123:375-86. [PMID: 19946739 DOI: 10.1007/s10549-009-0657-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Accepted: 11/16/2009] [Indexed: 11/25/2022]
Abstract
A yeast two-hybrid system was utilized to identify novel PI3K p110alpha-interacting proteins, of which receptor of activated protein kinase C1 (RACK1) was chosen for successive detailed analyses. Our aim was to investigate the function(s) of RACK1 and its involvement in mechanisms of breast carcinoma proliferation and invasion/metastasis. Experiments in breast carcinoma cell lines stably transfected with RACK1, as well as nude mouse models, showed that RACK1 promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo. Conversely, knockdown of RACK1 by siRNA in vitro inhibited proliferation, migration, and invasion. In cell lines stably transfected with RACK1, p-AKT, cyclin D1, cyclin D3, and CD147 expression, as well as MMP2 activity, were elevated. RACK1-induced migration could be inhibited by the addition of Rho-kinase inhibitor. In 160 breast carcinoma cases, survival analyses established that RACK1 is an independent prognostic factor for poor outcome (P < 0.001). In conclusion, RACK1 is an independent prognosis-related factor and promotes breast carcinoma proliferation and invasion/metastasis in vitro and in vivo.
Collapse
Affiliation(s)
- Xi-Xi Cao
- Department of Pathology, Shanghai Medical College, Fudan University, 138 Yi Xue Yuan Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Functional interaction between Epstein-Barr virus replication protein Zta and host DNA damage response protein 53BP1. J Virol 2009; 83:11116-22. [PMID: 19656881 DOI: 10.1128/jvi.00512-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epstein-Barr virus (EBV; human herpesvirus 4) poses major clinical problems worldwide. Following primary infection, EBV enters a form of long-lived latency in B lymphocytes, expressing few viral genes, and it persists for the lifetime of the host with sporadic bursts of viral replication. The switch between latency and replication is governed by the action of a multifunctional viral protein Zta (also called BZLF1, ZEBRA, and Z). Using a global proteomic approach, we identified a host DNA damage repair protein that specifically interacts with Zta: 53BP1. 53BP1 is intimately connected with the ATM signal transduction pathway, which is activated during EBV replication. The interaction of 53BP1 with Zta requires the C-terminal ends of both proteins. A series of Zta mutants that show a wild-type ability to perform basic functions of Zta, such as dimer formation, interaction with DNA, and the transactivation of viral genes, were shown to have lost the ability to induce the viral lytic cycle. Each of these mutants also is compromised in the C-terminal region for interaction with 53BP1. In addition, the knockdown of 53BP1 expression reduced viral replication, suggesting that the association between Zta and 53BP1 is involved in the viral replication cycle.
Collapse
|
16
|
Wang Z, Zhang B, Jiang L, Zeng X, Chen Y, Feng X, Guo Y, Chen Q. RACK1, an excellent predictor for poor clinical outcome in oral squamous carcinoma, similar to Ki67. Eur J Cancer 2008; 45:490-6. [PMID: 19087901 DOI: 10.1016/j.ejca.2008.11.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2008] [Accepted: 11/04/2008] [Indexed: 02/05/2023]
Abstract
PURPOSE The aim of this study was to evaluate the significance of RACK1 in predicting outcome for patients with oral squamous cell carcinoma (OSCC) compared with Ki67. METHODS The expression of both RACK1 and Ki67 in 130 patients with OSCC was illustrated by using immunohistochemistry assay. Multiple logistic regression and Pearson's correlation coefficient were used. Recurrence versus non-recurrence of the malignant lesions was considered as the surrogate for clinical outcome of patients. RESULTS Multivariable logistic regression showed that the elevated RACK1 immunostaining was a factor having great influence on OSCC prognosis. RACK1 staining was strongly related to that of Ki67. The area under the receiver operating characteristic curve for both biomarkers in predicting recurrence was 0.72 and 0.70 respectively, indicating an excellent discrimination for RACK1 as well as for Ki67. CONCLUSIONS These data indicate that increased RACK1 expression is an important outcome predictor for OSCC compared with Ki67.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang Z, Jiang L, Huang C, Li Z, Chen L, Gou L, Chen P, Tong A, Tang M, Gao F, Shen J, Zhang Y, Bai J, Zhou M, Miao D, Chen Q. Comparative proteomics approach to screening of potential diagnostic and therapeutic targets for oral squamous cell carcinoma. Mol Cell Proteomics 2008; 7:1639-50. [PMID: 18458027 DOI: 10.1074/mcp.m700520-mcp200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This work demonstrates that a comprehensive strategy of proteomics identification combined with further validation and detailed functional analysis should be adopted in the field of cancer biomarker discovery. A comparative proteomics approach was utilized to identify differentially expressed proteins in 10 oral squamous carcinoma samples paired with their corresponding normal tissues. A total of 52 significantly and consistently altered proteins were identified with eight of these being reported for the first time in oral squamous carcinoma. Of the eight newly implicated proteins, RACK1 was chosen for detailed analysis. RACK1 was demonstrated to be up-regulated in cancer at both the mRNA and protein levels. Immunohistochemical examination showed that the enhanced expression of RACK1 was correlated with the severity of the epithelial dysplasia as well as clinical stage, lymph node involvement, and recurrence, which are known indicators of a relatively poor prognosis in oral squamous carcinoma patients. RNA interference specifically targeted to silence RACK1 could initiate apoptosis of oral squamous carcinoma cells. Taken together, the results indicate that RACK1 is up-regulated in oral squamous carcinoma, not only being closely related to cell proliferation and apoptosis but also linked to clinical invasiveness and metastasis in carcinogenesis. The observations suggest that RACK1 may be a potential biomarker for early diagnosis, prognosis, and monitoring in the therapy of oral squamous carcinoma. Further this comprehensive strategy could be used for identifying other differentially expressed proteins that have potential to be candidate biomarkers of oral squamous carcinoma.
Collapse
Affiliation(s)
- Zhi Wang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Chengdu 610041, Sichuan, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ho CH, Hsu CF, Fong PF, Tai SK, Hsieh SL, Chen CJ. Epstein-Barr virus transcription activator Rta upregulates decoy receptor 3 expression by binding to its promoter. J Virol 2007; 81:4837-47. [PMID: 17301127 PMCID: PMC1900157 DOI: 10.1128/jvi.02448-06] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Decoy receptor 3 (DcR3) is a soluble decoy receptor belonging to the tumor necrosis factor receptor superfamily that is overexpressed in various malignant tumor types. DcR3 has been implicated in tumor cell survival by inhibiting apoptosis and by interfering with immune surveillance. A previous study showed that DcR3 expression is associated with Epstein-Barr virus (EBV)-positive lymphomas but rarely with non-EBV-positive B-cell lymphomas, suggesting that the presence of EBV may affect DcR3 expression. Here, we demonstrated enhanced DcR3 expression upon EBV reactivation in P3HR1 cells and in EBV-infected 293 cells. This enhancement, however, could not be detected in 293 cells infected with EBV with BRLF1 deleted. We found that EBV transactivator, Rta, could upregulate DcR3 expression by direct binding to an Rta-responsive element (RRE) located in the DcR3 promoter region and that this RRE is important for Rta-mediated DcR3 expression. Overexpressing CREB-binding protein (CBP) further enhanced Rta-dependent DcR3 expression, suggesting Rta-dependent DcR3 transcription activity is mediated by CBP. Previously, Rta was shown to enhance phosphatidylinositol-3 kinase (PI3-K) activity. However, Rta-transduced PI 3-K activity plays a minor role in DcR3 expression. This is the first report to demonstrate that Rta upregulates a cellular gene by direct binding to an RRE.
Collapse
Affiliation(s)
- Cheng-Hsun Ho
- Institute of Microbiology and Immunology, National Yang-Ming University, Number 155 Section 2 Linong Street, Taipei 112, Taiwan
| | | | | | | | | | | |
Collapse
|
19
|
Passos DO, Bressan GC, Nery FC, Kobarg J. Ki-1/57 interacts with PRMT1 and is a substrate for arginine methylation. FEBS J 2006; 273:3946-61. [PMID: 16879614 DOI: 10.1111/j.1742-4658.2006.05399.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The human 57 kDa Ki-1 antigen (Ki-1/57) is a cytoplasmic and nuclear protein, associated with Ser/Thr protein kinase activity, and phosphorylated at the serine and threonine residues upon cellular activation. We have shown that Ki-1/57 interacts with chromo-helicase DNA-binding domain protein 3 and with the adaptor/signaling protein receptor of activated kinase 1 in the nucleus. Among the identified proteins that interacted with Ki-1/57 in a yeast two-hybrid system was the protein arginine-methyltransferase-1 (PRMT1). Most interestingly, when PRMT1 was used as bait in a yeast two-hybrid system we were able to identify Ki-1/57 as prey among 14 other interacting proteins, the majority of which are involved in RNA metabolism or in the regulation of transcription. We found that Ki-1/57 and its putative paralog CGI-55 have two conserved Gly/Arg-rich motif clusters (RGG/RXR box, where X is any amino acid) that may be substrates for arginine-methylation by PRMT1. We observed that all Ki-1/57 protein fragments containing RGG/RXR box clusters interact with PRMT1 and are targets for methylation in vitro. Furthermore, we found that Ki-1/57 is a target for methylation in vivo. Using immunofluorescence experiments we observed that treatment of HeLa cells with an inhibitor of methylation, adenosine-2',3'-dialdehyde (Adox), led to a reduction in the cytoplasmic immunostaining of Ki-1/57, whereas its paralog CGI-55 was partially redistributed from the nucleus to the cytoplasm upon Adox treatment. In summary, our data show that the yeast two-hybrid assay is an effective system for identifying novel PRMT arginine-methylation substrates and may be successfully applied to other members of the growing family of PRMTs.
Collapse
Affiliation(s)
- Dario O Passos
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Campinas, Brazil
| | | | | | | |
Collapse
|
20
|
Passos DO, Quaresma AJC, Kobarg J. The methylation of the C-terminal region of hnRNPQ (NSAP1) is important for its nuclear localization. Biochem Biophys Res Commun 2006; 346:517-25. [PMID: 16765914 DOI: 10.1016/j.bbrc.2006.05.152] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 05/21/2006] [Indexed: 11/19/2022]
Abstract
Protein arginine methylation is an irreversible post-translational protein modification catalyzed by a family of at least nine different enzymes entitled PRMTs (protein arginine methyl transferases). Although PRMT1 is responsible for 85% of the protein methylation in human cells, its substrate spectrum has not yet been fully characterized nor are the functional consequences of methylation for the protein substrates well understood. Therefore, we set out to employ the yeast two-hybrid system in order to identify new substrate proteins for human PRMT1. We were able to identify nine different PRMT1 interacting proteins involved in different aspects of RNA metabolism, five of which had been previously described either as substrates for PRMT1 or as functionally associated with PRMT1. Among the four new identified possible protein substrates was hnRNPQ3 (NSAP1), a protein whose function has been implicated in diverse steps of mRNA maturation, including splicing, editing, and degradation. By in vitro methylation assays we were able to show that hnRNPQ3 is a substrate for PRMT1 and that its C-terminal RGG box domain is the sole target for methylation. By further studies with the inhibitor of methylation Adox we provide evidence that hnRNPQ1-3 are methylated in vivo. Finally, we demonstrate by immunofluorescence analysis of HeLa cells that the methylation of hnRNPQ is important for its nuclear localization, since Adox treatment causes its re-distribution from the nucleus to the cytoplasm.
Collapse
Affiliation(s)
- Dario O Passos
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Campinas, SP, Brazil
| | | | | |
Collapse
|
21
|
Maas D, Maret C, Schaade L, Scheithauer S, Ritter K, Kleines M. Reactivation of the Epstein-Barr virus from viral latency by an S-adenosylhomocysteine hydrolase/14-3-3 zeta/PLA2-dependent pathway. Med Microbiol Immunol 2006; 195:217-23. [PMID: 16944201 DOI: 10.1007/s00430-006-0022-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2006] [Indexed: 10/24/2022]
Abstract
The S-adenosylhomocysteine hydrolase (SAH) and 14-3-3 zeta/phospholipase A2 (PLA2) are transcriptionally activated in parallel to the induction of the Epstein-Barr virus (EBV) lytic cycle by the ganglioside IV(3)NeuAc-nLcOse(4)Cer. For analysis of the initiation of the viral reactivation, SAH and 14-3-3 zeta/PLA2 were overexpressed. Expression of EA-D, BZLF1, and BHRF1 was increased in response to both, SAH- and 14-3-3 zeta/PLA2 overexpression indicating the initiation of the EBV lytic cycle. Expression of 14-3-3 zeta/PLA2 was shown to be increased in SAH overexpressing cells. Additionally, SAH-triggered initiation of viral reactivation could be inhibited by PLA2-specific inhibitors. The phosphorylation status of protein kinase C (PKC) was shown to be increased in SAH-overexpressing cells. PKC-specific inhibitors arrested SAH-triggered initiation of viral reactivation. Surprisingly, 14-3-3 zeta/PLA2-induced initiation of viral reactivation did not correlate with PKC activation. PKC-specific inhibitors were of no influence. SAH initiated EBV reactivation via the BZLF1-Zp and the BZLF1-Rp promoter, whereas 14-3-3 zeta/PLA2 was connected to the promoter Rp only. Our results suggest two routes of viral reactivation involving SAH, one associated with PKC and BZLF1-Zp, the other associated with 14-3-3 zeta/PLA2 and BZLF1-Rp.
Collapse
Affiliation(s)
- Diana Maas
- Division of Virology, Department of Medical Microbiology, UK Aachen, RWTH Aachen 52057, Aachen, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Savard M, Gosselin J. Epstein-Barr virus immunossuppression of innate immunity mediated by phagocytes. Virus Res 2006; 119:134-45. [PMID: 16545476 DOI: 10.1016/j.virusres.2006.02.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 02/10/2006] [Accepted: 02/10/2006] [Indexed: 01/31/2023]
Abstract
Epstein-Barr virus (EBV) is an oncogenic human herpesvirus that persistently infects approximately 90% of the world's population. Such a remarkably sustained of viral infectivity relies on EBV's ability to evade the host immune defenses. A crucial part of this anti-EBV response is mediated by cytotoxic CD8+ T lymphocytes, which maintain a life-long control over proliferating latently-infected B cells in order to prevent these from giving rise to lymphomatous diseases. On the other hand, little has been done to assess the role of phagocytes-mediated innate immunity in the pathogenesis of EBV infection. In the course of primary EBV infection, episodes of neutropenia and monocytopenia can be observed during the acute phase of infection. According to the role of those cells in the non specific and specific immunity, such a decrease in circulating phagocytes may then temporarily affect the immune defense and potentially influence the outcome of EBV infection. Recent studies have demonstrated that EBV infects both neutrophils and monocytes and modulates several of their biological functions. This review covers the current state of our knowledge relative to the role of neutrophils and monocytes in EBV pathogenesis and describes the nature of countermeasures deployed by EBV against these cells.
Collapse
Affiliation(s)
- Martin Savard
- Viral Immunology Laboratory, CHUL Research Center (CHUQ), Université Laval, Québec, Canada
| | | |
Collapse
|
23
|
Sklan EH, Podoly E, Soreq H. RACK1 has the nerve to act: structure meets function in the nervous system. Prog Neurobiol 2006; 78:117-34. [PMID: 16457939 DOI: 10.1016/j.pneurobio.2005.12.002] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 11/20/2005] [Accepted: 12/07/2005] [Indexed: 11/26/2022]
Abstract
The receptor for activated protein kinase C 1 (RACK1) is an intracellular adaptor protein. Accumulating evidence attributes to this member of the tryptophan-aspartate (WD) repeat family the role of regulating several major nervous system pathways. Structurally, RACK1 is a seven-bladed-beta-propeller, interacting with diverse proteins having distinct structural folds. When bound to the IP3 receptor, RACK1 regulates intracellular Ca2+ levels, potentially contributing to processes such as learning, memory and synaptic plasticity. By binding to the NMDA receptor, it dictates neuronal excitation and sensitivity to ethanol. When bound to the stress-induced acetylcholinesterase variant AChE-R, RACK1 is implicated in stress responses and behavior, compatible with reports of RACK1 modulations in brain ageing and in various neurodegenerative diseases. This review sheds new light on both the virtues and the variety of neuronal RACK1 interactions and their physiological consequences.
Collapse
Affiliation(s)
- Ella H Sklan
- The Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | |
Collapse
|
24
|
Mourtada-Maarabouni M, Kirkham L, Farzaneh F, Williams GT. Functional expression cloning reveals a central role for the receptor for activated protein kinase C 1 (RACK1) in T cell apoptosis. J Leukoc Biol 2005; 78:503-14. [PMID: 15870214 DOI: 10.1189/jlb.0205070] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Mammalian cDNA expression cloning was used to identify novel genes that regulate apoptosis. Using a functional screen, we identified a partial cDNA for the receptor for activated protein kinase C 1 (RACK1) through selection for resistance to phytohemagglutinin and gamma-irradiation. Expression of this partial cDNA in T cell lines using a mammalian expression vector produced an increase in RACK1 expression and resulted in resistance to dexamethasone- and ultraviolet-induced apoptosis. Down-regulation of RACK1 using RNA interference abolished the resistance of the transfected cells to apoptosis. Overexpression of full-length RACK1 also resulted in the suppression of apoptosis mediated by several apoptotic stimuli, and this effect was quantitatively consistent with the effects of the original cDNA isolated on endogenous RACK1 levels. Together, these findings suggest that RACK1 plays an important role in the intracellular signaling pathways that lead to apoptosis in T cells.
Collapse
|
25
|
Deutsch E, Cohen A, Kazimirsky G, Dovrat S, Rubinfeld H, Brodie C, Sarid R. Role of protein kinase C delta in reactivation of Kaposi's sarcoma-associated herpesvirus. J Virol 2004; 78:10187-92. [PMID: 15331751 PMCID: PMC515025 DOI: 10.1128/jvi.78.18.10187-10192.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
TPA (12-O-tetradecanoylphorbol-13-acetate), a well-known activator of protein kinase C (PKC), can experimentally induce reactivation of Kaposi's sarcoma-associated herpesvirus (KSHV) in certain latently infected cells. We selectively blocked the activity of PKC isoforms by using GF 109203X or rottlerin and demonstrated that this inhibition largely decreased lytic KSHV reactivation by TPA. Translocation of the PKCdelta isoform was evident shortly after TPA stimulation. Overexpression of the dominant-negative PKCdelta mutant supported an essential role for the PKCdelta isoform in virus reactivation, yet overexpression of PKCdelta alone was not sufficient to induce lytic reactivation of KSHV, suggesting that additional signaling molecules participate in this pathway.
Collapse
Affiliation(s)
- Einat Deutsch
- Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | | | | | | | | | | | | |
Collapse
|
26
|
Karaca G, Anobile J, Downs D, Burnside J, Schmidt CJ. Herpesvirus of turkeys: microarray analysis of host gene responses to infection. Virology 2004; 318:102-11. [PMID: 14972539 DOI: 10.1016/j.virol.2003.09.025] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2003] [Revised: 09/08/2003] [Accepted: 09/10/2003] [Indexed: 11/20/2022]
Abstract
Herpesvirus of turkeys (HVT) provides an economically important live vaccine for prevention of Marek's disease (MD) of chickens. MD, characterized by both immunosuppression and T-cell lymphoma, is caused by another herpesvirus termed Marek's disease virus (MDV). Microarrays were used to investigate the response of chicken embryonic fibroblasts (CEF) to infection with HVT. Genes responding to HVT infection include several induced by interferon along with others modulating signal transduction, transcription, scaffolding proteins, and the cytoskeleton. Results are compared with earlier studies examining the responses of CEF cells to infection with MDV.
Collapse
Affiliation(s)
- Gamze Karaca
- Department of Animal and Food Sciences, University of Delaware, Newark, DE 19717-2150, USA
| | | | | | | | | |
Collapse
|
27
|
Chen HC, Chen CH, Chuang NN. Differential effects of prenyl pyrophosphates on the phosphatase activity of phosphotyrosyl protein phosphatase. ACTA ACUST UNITED AC 2004; 301:307-16. [PMID: 15039989 DOI: 10.1002/jez.a.20034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Phosphotyrosyl protein phosphatase (PTPase) 1B was purified from human placenta. Immunoprecipitation analysis revealed that the isolated PTPase 1B appears as a complex with the receptor for protein kinase C (RACK1) and protein kinase C (PKC)delta. The abilities of PTPase 1B and PKCdelta to associate with RACK1 were reconfirmed by an in vitro reconstitution experiment. The E. coli expressed and biotinylated mice-RACK1-encoded fusion protein was capable of recruiting PTPase 1B and PKCdelta in the antibiotin immunoprecipitate as a complex of PTPase 1B/RACK1/PKCdelta. Thus PTPase 1B enzyme preparation was subjected to further purification by selective binding of PTPase 1B onto PEP(Taxol) affinity column in the absence of ATP. The purified PTPase 1B enzyme exihibited dose-dependent phosphatase activity towards [gamma-(32)P]-ATP labeled mice beta-tubulin-encoded fusion protein. The dephosphorylation reaction with PTPase 1B was enhanced with geranylgeranyl pyrophosphate, but not with farnesyl pyrophosphate. Interestingly, additional incubation of the purified PTPase 1B enzyme preparation with RACK1, geranylgeranyl pyrophosphate failed to modulate the dephosphorylation activity of PTPase 1B. In contrast, the enhancement effect of farnesyl pyrophosphate on the kinase activity of PKCdelta was sustained in the presence of RACK1. That is, farnesyl pyrophosphate may function as a signal to induce the kinase activity of PKCdelta in PTPase 1B/RACK1/PKCdelta complex but geranylgeranyl pyrophosphate may not for PTPase 1B. J. Exp. Zool. 301A:307-316, 2004.
Collapse
Affiliation(s)
- Huei-Chen Chen
- Division of Biochemistry and Molecular Science, Institute of Zoology, Academia Sinica, Nankang 11529, Taipei, Taiwan
| | | | | |
Collapse
|
28
|
Severino A, Baldi A, Cottone G, Han M, Sang N, Giordano A, Mileo AM, Paggi MG, De Luca A. RACK1 is a functional target of the E1A oncoprotein. J Cell Physiol 2004; 199:134-9. [PMID: 14978742 DOI: 10.1002/jcp.10448] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The adenoviral E1A proteins have been implicated in promotion of proliferation and transformation, inhibition of differentiation, induction of apoptosis, regulation of transcription, and suppression of tumor growth. The ability of E1A to override the fundamental controls of host cells is based on its ability to physically interact with several cellular proteins. We recently characterized RACK1 as a new E1A-interacting protein. In this report, we show that the extreme N-terminal region of E1A, spanning from aminoacids 1-36, and the conserved WD regions of RACK1 are responsible for this interaction. We also demonstrate that E1A and RACK1 colocalize at the perinuclear membrane in the cells. Furthermore, we provide evidence that E1A is able to antagonize the inhibitory effects of RACK1 on Src activity. These results suggest that RACK1 signaling pathway may be a functional target of E1A, contributing to E1A oncogenic effect in the host cells.
Collapse
Affiliation(s)
- Anna Severino
- Laboratory C, Department for the Development of Therapeutic Programs, Center for Experimental Research, Regina Elena Cancer Institute, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Nery FC, Passos DO, Garcia VS, Kobarg J. Ki-1/57 interacts with RACK1 and is a substrate for the phosphorylation by phorbol 12-myristate 13-acetate-activated protein kinase C. J Biol Chem 2003; 279:11444-55. [PMID: 14699138 DOI: 10.1074/jbc.m306672200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Ki-1/57, the 57-kDa human protein antigen recognized by the CD30 antibody Ki-1, is a cytoplasmic and nuclear protein that is phosphorylated on serine and threonine residues. When isolated from the Hodgkin's lymphoma analogous cell line L540 Ki-1/57 co-immunoprecipitated with a Thr/Ser protein kinase activity. It has been also found to interact with hyaluronic acid and has therefore been termed intracellular IHABP4 (hyaluronan-binding protein 4). Recent studies demonstrated, however, that Ki-1/57 engages in specific interaction with the chromo-helicase-DNA-binding domain protein 3, a nuclear protein involved in chromatin remodeling and transcription regulation. We used the yeast two-hybrid system to find proteins interacting with Ki-1/57 and identified the adaptor protein RACK1 (receptor of activated kinase 1). Next, we confirmed this interaction in vitro and in vivo, performed detailed mapping studies of the interaction sites of Ki-1/57 and RACK-1, and demonstrated that Ki-1/57 also co-precipitates with protein kinase C (PKC) when isolated from phorbol 12-myristate 13-acetate (PMA)-activated L540 tumor cells and is a substrate for PKC phosphorylation in vitro and in vivo. Interestingly, the interaction of Ki-1/57 with RACK1 is abolished upon activation of L540 cells with PMA, which results in the phosphorylation of Ki-1/57 and its exit from the nucleus. Taken together, our data suggest that Ki-1/57 forms a stable complex with RACK-1 in unstimulated cells and upon PMA stimulation gets phosphorylated on threonine residues located at its extreme C terminus. These events associate Ki-1/57 with the RACK1/PKC pathway and may be important for the regulation of its cellular functions.
Collapse
Affiliation(s)
- Flávia C Nery
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro 10.000, C.P. 6192, 13084-971 Campinas, SP, Brasil
| | | | | | | |
Collapse
|
30
|
Rigas AC, Ozanne DM, Neal DE, Robson CN. The scaffolding protein RACK1 interacts with androgen receptor and promotes cross-talk through a protein kinase C signaling pathway. J Biol Chem 2003; 278:46087-93. [PMID: 12958311 DOI: 10.1074/jbc.m306219200] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The androgen receptor (AR), a member of the nuclear hormone receptor superfamily, functions as a ligand-dependent transcription factor that regulates genes involved in cell proliferation and differentiation. Using a C-terminal region of the human AR in a yeast two-hybrid screen, we have identified RACK1 (receptor for activated C kinase-1) as an AR-interacting protein. In this report we found that RACK1, which was previously shown to be a protein kinase C (PKC)-anchoring protein that determines the localization of activated PKCbetaII isoform, facilitates ligand-independent AR nuclear translocation upon PKC activation by indolactam V. We also observed RACK1 to suppress ligand-dependent and -independent AR transactivation through PKC activation. In chromatin immunoprecipitation assays, we demonstrate a decrease in AR recruitment to the AR-responsive prostate-specific antigen (PSA) promoter following stimulation of PKC. Furthermore, prolonged exposure to indolactam V, a PKC activator, caused a reduction in PSA mRNA expression in prostate cancer LNCaP cells. Finally, we found PKC activation to have a repressive effect on AR and PSA protein expression in androgen-treated LNCaP cells. Our data suggest that RACK1 may function as a scaffold for the association and modification of AR by PKC enabling translocation of AR to the nucleus but rendering AR unable to activate transcription of its target genes.
Collapse
Affiliation(s)
- Anastasia C Rigas
- Prostate Research Group, School of Surgical and Reproductive Sciences, University of Newcastle, Framlington Place, Newcastle upon Tyne NE2 4HH, United Kingdom
| | | | | | | |
Collapse
|
31
|
Huang CF, Fan JH, Chuang NN. Farnesyl pyrophosphate promotes and is essential for the binding of RACK1 with beta-tubulin. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 298:119-27. [PMID: 12884273 DOI: 10.1002/jez.a.10277] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Receptors for activated C kinase (RACKs) are a group of protein kinase C (PKC) binding proteins that have been shown to be crucial in the translocation and subsequent functioning of PKC on activation. RACK1 isolated from BALB/3T3 cells transformed with S-ras(Q61K) exhibits receptor activity for PKCgamma as competent as that of RACK1 from BALB/3T3 cells without transformation. However, the ability of RACK1 from transformed cells to bind with beta-tubulin peptide specific for Taxol (PEPtaxol) is defective. Interestingly, when farnesyl pyrophosphate was added at the submicrogram level, the association between RACK1 and PEPtaxol was enhanced significantly in a dosage-dependent manner. A parallel finding for the enhanced effect of farnesyl pyrophosphate on tubulin binding was established with mice RACK1 expressed in vitro. On the other hand, geranylgeranyl pyrophosphate, and retinoic acid failed to modulate the binding between RACK1 and tubulin. The dissociation of RACK1 and tubulin was not effective at damaging the binding between RACK1 and membrane receptor integrin beta1 in transformed cells. These findings indicate that depletion of farnesyl pyrophosphate provides a mechanism to seal PKC signaling on the membrane with immobile RACK1 and to divert cells to aberrant growth, such as transformation.
Collapse
Affiliation(s)
- Chein-Fuang Huang
- Division of Biochemistry and Molecular Science, Institute of Zoology, Academia Sinica, Nankang 11529, Taipei, Taiwan
| | | | | |
Collapse
|
32
|
Abstract
The human gammaherpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) both infect lymphoid and epithelial cells and both are implicated in the development of cancer. The two viruses establish latency in B-lymphoid cells that, once disrupted, leads to a burst of virus replication during the lytic cycle. A basic leucine zipper (bZIP) transcription factor encoded by EBV, Zta (also known as BZLF1 and ZEBRA), is key to the disruption of EBV latency. KSHV encodes a related protein, K-bZIP (also known as RAP and K8alpha). Recent developments in our understanding of the structures and functions of these two viral bZIP proteins have led to the conclusion that they are not homologues. Two important features of Zta are its ability to interact directly with DNA and to induce EBV replication whereas K-bZIP is not known to interact directly with DNA or to induce KSHV replication. Despite these differences, the ability to disrupt cell cycle control is conserved in both Zta and K-bZIP. The interactions of Zta and K-bZIP with cellular genes will be reviewed here.
Collapse
Affiliation(s)
- Alison J Sinclair
- School of Biological Sciences, University of Sussex, Brighton, East Sussex BN1 9QG, UK
| |
Collapse
|
33
|
Nakamura Y, Ozaki T, Koseki H, Nakagawara A, Sakiyama S. Accumulation of p27 KIP1 is associated with BMP2-induced growth arrest and neuronal differentiation of human neuroblastoma-derived cell lines. Biochem Biophys Res Commun 2003; 307:206-13. [PMID: 12850001 DOI: 10.1016/s0006-291x(03)01138-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bone morphogenetic proteins (BMPs) play an essential role in cell fate determination. In this study, we found that BMP2 treatment resulted in growth arrest and differentiation in human neuroblastoma-derived cell lines, SH-SY5Y and RTBM1. Within 30min of BMP2 exposure, phosphorylation of Smad1/5 was observed in these cell lines. In RTBM1 cells, BMP2-induced differentiation was accompanied by a significant decrease in the expression level of DAN, an antagonist of BMP in frog embryos. Immunoblot analysis revealed that BMP2 treatment caused a down-regulation of p53 family members and hence of cyclin-dependent kinase inhibitor p21(WAF1). We found a significant accumulation of p27(KIP1) in response to BMP2, whereas the expression level of Skp2, which is required for ubiquitin-dependent p27(KIP1) degradation, was decreased during this differentiation process. Our results suggest that p27(KIP1) contributes to the BMP-induced growth arrest and neuronal differentiation of neuroblastoma, and BMP treatment might provide a new therapeutic strategy.
Collapse
Affiliation(s)
- Yohko Nakamura
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan.
| | | | | | | | | |
Collapse
|
34
|
Ozaki T, Watanabe KI, Nakagawa T, Miyazaki K, Takahashi M, Nakagawara A. Function of p73, not of p53, is inhibited by the physical interaction with RACK1 and its inhibitory effect is counteracted by pRB. Oncogene 2003; 22:3231-42. [PMID: 12761493 DOI: 10.1038/sj.onc.1206382] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The newly identified p53-related gene, p73, encodes a nuclear transcription factor. Unlike p53, p73 has various isoforms with different NH(2)- and COOH-terminal tails. p73alpha with the longest COOH-terminal extension is most abundantly expressed in many tissues and cells among those splicing isoforms of p73 and the COOH-terminal region appears to have an autoregulatory function. To isolate and characterize the cellular protein(s) that interacts with the unique COOH-terminal region of p73alpha, we employed a yeast two-hybrid screen with a human fetal brain and 293 cell cDNA libraries. We identified the receptor for activated C kinase (RACK1) as a new member of p73alpha-binding proteins. The interaction was confirmed by coimmunoprecipitation experiments, whereas RACK1 did not interact with p53 or p73beta. Ectopic overexpression of RACK1 in SAOS-2 cells reduced the p73alpha-mediated transcription from the p53/p73-responsive promoters, and inhibited the p73alpha-dependent apoptosis. On the other hand, the p53-dependent transcriptional activation as well as apoptosis was unaffected in the presence of RACK1. Furthermore, we found that pRB physically bound to RACK1, and repressed the RACK1-dependent inhibition of p73alpha. Taken together, our observations suggest that pRB diminishes the RACK1-mediated inhibition of p73alpha activity through the interaction with RACK1.
Collapse
Affiliation(s)
- Toshinori Ozaki
- Division of Biochemistry, Chiba Cancer Center Research Institute, 666-2 Nitona, Chuoh-ku, Chiba 260-8717, Japan
| | | | | | | | | | | |
Collapse
|
35
|
Yokota SI, Saito H, Kubota T, Yokosawa N, Amano KI, Fujii N. Measles virus suppresses interferon-alpha signaling pathway: suppression of Jak1 phosphorylation and association of viral accessory proteins, C and V, with interferon-alpha receptor complex. Virology 2003; 306:135-46. [PMID: 12620806 DOI: 10.1016/s0042-6822(02)00026-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
To establish infections, viruses use various strategies to suppress the host defense mechanism, such as interferon (IFN)-induced antiviral state. We found that cells infected with a wild strain of measles virus (MeV) displayed nearly complete suppression of IFN-alpha-induced antiviral state, but not IFN-gamma-induced state. This phenomenon is due to the suppression of IFN-alpha-inducible gene expression at a transcriptional level. In the IFN-alpha signal transduction pathway, Jak1 phosphorylation induced by IFN-alpha is dramatically suppressed in MeV-infected cells; however, phosphorylation induced by IFN-gamma is not. We performed immunoprecipitation experiments using antibodies against type 1 IFN receptor chain 1 (INFAR1) and antibody against RACK1, which is reported to be a scaffold protein interacting with type I IFN receptor chain 2 and STAT1. These experiments indicated that IFNAR1 forms a complex containing the MeV-accessory proteins C and V, RACK1, and STAT1 in MeV-infected cells but not in uninfected cells. Composition of this complex in the infected cells altered little by IFN-alpha treatment. These results indicate that MeV suppresses the IFN-alpha, but not IFN-gamma, signaling pathway by inhibition of Jak1 phosphorylation. Our data suggest that functional disorder of the type I IFN receptor complex is due to "freezing" of the receptor through its association with the C and/or V proteins of MeV.
Collapse
Affiliation(s)
- Shin-ichi Yokota
- Department of Microbiology, Sapporo Medical University School of Medicine, Chuo-ku, 060-8556, Sapporo, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Chen YH, Wang HC, Lin CY, Chuang NN. Effects of prenyl pyrophosphates on the binding of PKCgamma with RACK1. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, COMPARATIVE EXPERIMENTAL BIOLOGY 2003; 295:71-82. [PMID: 12506405 DOI: 10.1002/jez.a.10213] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Receptors for activated C kinase (RACKs) are a group of PKC binding proteins that have been shown to mediate isoform-selective functions of PKC and to be crucial in the translocation and subsequent functioning of the PKC isoenzymes on activation. RACK1 cDNA from the shrimp Penaeus japonicus was isolated by homology cloning. The hepatopancreas cDNA from this shrimp was found to encode a 318-residue polypeptide whose predicted amino acid sequence shared 91% homology with human G(beta2)-like proteins. Expression of the cDNA of shrimp RACK1 in vitro yielded a 45-kDa polypeptide with positive reactivity toward the monoclonal antibodies against RACK1 of mammals. The shrimp RACK1 was biotinylated and used to compare the effects of geranylgeranyl pyrophosphate and farnesyl pyrophosphate on its binding with PKCgamma in anti-biotin-IgG precipitates. PKCgammas were isolated from shrimp eyes and mouse brains. Both enzyme preparations were able to inhibit taxol-induced tubulin polymerization. Interestingly, when either geranylgeranyl pyrophosphate or farnesyl pyrophosphate was reduced to the submicrogram level, the recruitment activity of RACK1 with purified PKCgamma was found to increase dramatically. The activation is especially significant for RACK1 and PKCgamma from different species. The observation implies that the deprivation of prenyl pyrophosphate might function as a signal for RACK1 to switch the binding from the conventional isoenzymes of PKC (cPKC) to the novel isoenzymes of PKC (nPKC). A hydrophobic binding pocket for geranylgeranyl pyrophosphate in RACK1 is further revealed via prenylation with protein geranylgeranyl transferase I of shrimp P. japonicus.
Collapse
Affiliation(s)
- Yu-Hsun Chen
- Division of Biochemistry and Molecular Science, Institute of Zoology, Academia Sinica, Nankang 11529, Taipei, Taiwan
| | | | | | | |
Collapse
|
37
|
Boner W, Morgan IM. Novel cellular interacting partners of the human papillomavirus 16 transcription/replication factor E2. Virus Res 2002; 90:113-8. [PMID: 12457967 DOI: 10.1016/s0168-1702(02)00145-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Human papillomaviruses (HPVs) are causative agents in a number of human diseases. HPV can be divided into two groups: low risk that cause diseases such as genital warts, and high risk that cause ano-genital cancers. Of the high-risk group, HPV16 is the most commonly found in cervical cancer. All HPV encode an E2 protein and this protein regulates transcription from, and replication of, the viral genome making it essential for the viral life cycle. In order to function E2 must interact with cellular proteins; identification of these cellular partners will provide targets for disruption of the viral life cycle and will also provide insights into the processes of transcription and replication. To identify the cellular interacting partners for HPV16 E2, we carried out a yeast two-hybrid screen with the amino-terminus of E2 that is essential for mediating transcription and replication. Here we describe how this screen was carried out and detail the interacting partners that were identified; these include the proteins TopBP1, RACK1, POMP, p27(BBP), ODC antizyme, and Delta-adaptin. Several of these partners have characteristics that make them ideal candidates for mediating E2 function.
Collapse
Affiliation(s)
- Winifred Boner
- Department of Veterinary Pathology, Institute of Comparative Medicine, University of Glasgow, Garscube Estate, Bearsden Road, G61 1QH, Glasgow, UK
| | | |
Collapse
|
38
|
McCahill A, Warwicker J, Bolger GB, Houslay MD, Yarwood SJ. The RACK1 scaffold protein: a dynamic cog in cell response mechanisms. Mol Pharmacol 2002; 62:1261-73. [PMID: 12435793 DOI: 10.1124/mol.62.6.1261] [Citation(s) in RCA: 308] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Angela McCahill
- Molecular Pharmacology Group, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | | | | | | | |
Collapse
|
39
|
El-Guindy AS, Heston L, Endo Y, Cho MS, Miller G. Disruption of Epstein-Barr virus latency in the absence of phosphorylation of ZEBRA by protein kinase C. J Virol 2002; 76:11199-208. [PMID: 12388679 PMCID: PMC136783 DOI: 10.1128/jvi.76.22.11199-11208.2002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
ZEBRA protein converts Epstein-Barr virus (EBV) infection from the latent to the lytic state. The ability of ZEBRA to activate this switch is strictly dependent on the presence of serine or threonine at residue 186 of the protein (A. Francis, T. Ragoczy, L. Gradoville, A. El-Guindy, and G. Miller, J. Virol. 72:4543-4551, 1999). We investigated whether phosphorylation of ZEBRA protein at this site by a serine-threonine protein kinase was required for activation of an early lytic cycle viral gene, BMRF1, as a marker of disruption of latency. Previous studies suggested that phosphorylation of ZEBRA at S186 by protein kinase C (PKC) activated the protein (M. Baumann, H. Mischak, S. Dammeier, W. Kolch, O. Gires, D. Pich, R. Zeidler, H. J. Delecluse, and W. Hammerschmidt, J. Virol 72:8105-8114, 1998). Two residues of ZEBRA, T159 and S186, which fit the consensus for phosphorylation by PKC, were phosphorylated in vitro by this enzyme. Several isoforms of PKC (alpha, beta(1), beta(2), gamma, delta, and epsilon ) phosphorylated ZEBRA. All isoforms that phosphorylated ZEBRA in vitro were blocked by bisindolylmaleimide I, a specific inhibitor of PKC. Studies in cell culture showed that phosphorylation of T159 was not required for disruption of latency in vivo, since the T159A mutant was fully functional. Moreover, the PKC inhibitor did not block the ability of ZEBRA expressed from a transfected plasmid to activate the BMRF1 downstream gene. Of greatest importance, in vivo labeling with [(32)P]orthophosphate showed that the tryptic phosphopeptide maps of wild-type ZEBRA, Z(S186A), and the double mutant Z(T159A/S186A) were identical. Although ZEBRA is a potential target for PKC, in the absence of PKC agonists, ZEBRA is not constitutively phosphorylated in vivo by PKC at T159 or S186. Phosphorylation of ZEBRA by PKC is not essential for the protein to disrupt EBV latency.
Collapse
Affiliation(s)
- Ayman S El-Guindy
- Department of Molecular Biophysics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | |
Collapse
|
40
|
Tcherkasowa AE, Adam-Klages S, Kruse ML, Wiegmann K, Mathieu S, Kolanus W, Krönke M, Adam D. Interaction with factor associated with neutral sphingomyelinase activation, a WD motif-containing protein, identifies receptor for activated C-kinase 1 as a novel component of the signaling pathways of the p55 TNF receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:5161-70. [PMID: 12391233 DOI: 10.4049/jimmunol.169.9.5161] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Factor associated with neutral sphingomyelinase activation (FAN) represents a p55 TNFR (TNF-R55)-associated protein essential for the activation of neutral sphingomyelinase. By means of the yeast interaction trap system, we have identified the scaffolding protein receptor for activated C-kinase (RACK)1 as an interaction partner of FAN. Mapping studies in yeast revealed that RACK1 is recruited to the C-terminal WD-repeat region of FAN and binds to FAN through a domain located within WD repeats V to VII of RACK1. Our data indicate that binding of both proteins is not mediated by linear motifs but requires folding into a secondary structure, such as the multibladed propeller characteristic of WD-repeat proteins. The interaction of FAN and RACK1 was verified in vitro by glutathione S-transferase-based coprecipitation assays as well as in eukaryotic cells by coimmunoprecipitation experiments. Colocalization studies in transfected cells suggest that TNF-R55 forms a complex with FAN and that this complex recruits RACK1 to the plasma membrane. Furthermore, activation of N-SMase by TNF was strongly enhanced when RACK1, FAN, and a noncytotoxic TNF-R55 mutant were expressed concurrently, suggesting RACK1 as a modulator of N-SMase activation. Together, these findings implicate RACK1 as a novel component of the signaling pathways of TNF-R55.
Collapse
MESH Headings
- Amino Acid Motifs
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/physiology
- COS Cells
- Cell Line
- Enzyme Activation/genetics
- Enzyme Activation/immunology
- HeLa Cells
- Humans
- Intracellular Fluid/metabolism
- Intracellular Signaling Peptides and Proteins
- Jurkat Cells
- Molecular Sequence Data
- Peptide Fragments/chemistry
- Peptide Fragments/genetics
- Peptide Fragments/metabolism
- Precipitin Tests
- Protein Binding/genetics
- Protein Binding/immunology
- Protein Interaction Mapping/methods
- Protein Kinase C/chemistry
- Protein Kinase C/genetics
- Protein Kinase C/metabolism
- Proteins/chemistry
- Proteins/genetics
- Proteins/metabolism
- Receptors for Activated C Kinase
- Receptors, Cell Surface/chemistry
- Receptors, Cell Surface/genetics
- Receptors, Cell Surface/metabolism
- Receptors, Tumor Necrosis Factor/chemistry
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type I
- Repetitive Sequences, Amino Acid
- Signal Transduction/genetics
- Signal Transduction/immunology
- Sphingomyelin Phosphodiesterase/chemistry
- Sphingomyelin Phosphodiesterase/genetics
- Sphingomyelin Phosphodiesterase/metabolism
Collapse
|
41
|
He DY, Vagts AJ, Yaka R, Ron D. Ethanol induces gene expression via nuclear compartmentalization of receptor for activated C kinase 1. Mol Pharmacol 2002; 62:272-80. [PMID: 12130678 DOI: 10.1124/mol.62.2.272] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Scaffolding proteins such as receptor for activated C kinase (RACK) 1 are involved in the targeting of signaling proteins and play an important role in the regulation of signal transduction cascades. Recently, we found that in cultured cells and in vivo, acute ethanol exposure induces the nuclear compartmentalization of RACK1. To elucidate a physiological role for nuclear RACK1, the Tat protein transduction system was used to transduce RACK1 and RACK1-derived fragments into C6 glioma cells. We found that nuclear RACK1 is mediating the induction of the immediate early gene c-fos expression induced by ethanol. First, transduction of full-length RACK1 (Tat-RACK1) resulted in the induction of c-fos expression and enhancement of ethanol activities. Second, we determined that the C terminus of RACK1 (Tat-RACK1DeltaN) is mediating transcription. Third, we identified a dominant negative fragment of RACK1 that inhibited the nuclear compartmentalization of endogenous RACK1 and inhibited ethanol-induction of c-fos mRNA and protein expression. Last, acute exposure to ethanol or transduction of full-length Tat-RACK1 resulted in an increase in mRNA levels of an activator protein 1 site-containing gene, PAC1 (pituitary adenylate cyclase-activating polypeptide receptor type I), suggesting that nuclear RACK1 is involved in the regulation of the expression of genes that are altered upon acute ethanol treatment. These results may therefore have important implications for the study of alcohol addiction.
Collapse
Affiliation(s)
- Dao-Yao He
- Ernest Gallo Research Center, Emeryville, California, USA
| | | | | | | |
Collapse
|
42
|
Tardif M, Savard M, Flamand L, Gosselin J. Impaired protein kinase C activation/translocation in Epstein-Barr virus-infected monocytes. J Biol Chem 2002; 277:24148-54. [PMID: 11971896 DOI: 10.1074/jbc.m109036200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Infection of human monocytes by Epstein-Barr virus (EBV) has been linked to a decrease in the production of proinflammatory mediators as well as an impairment of phagocytosis. Considering the key role of protein kinases C (PKCs) in many biological functions of monocytes, including phagocytosis, we investigated the effects of EBV on the PKC activity in infected monocytes. Our results indicate that infection of monocytes by EBV impairs both phorbol 12-myristate 13-acetate (PMA)-induced translocation of PKC isozymes alpha and beta from cytosol to membrane as well as the PKC enzymatic activity. Similarly, the subcellular distribution of the receptor for activated C kinase (RACK), an anchoring protein essential to PKC translocation, was also found to be reduced in EBV-infected monocytes. Transfection of 293T cells with an expression vector coding for the immediate-early protein ZEBRA of EBV resulted in impaired PMA-induced translocation and activity of PKC. Using co-immunoprecipitation assays, the ZEBRA protein was found to physically interact with the RACK1 protein. Thus interaction of ZEBRA with RACK likely results in the inhibition of PKC activity, which in turn affects functions of monocytes, such as phagocytosis.
Collapse
Affiliation(s)
- Melanie Tardif
- Laboratory of Viral Immunology, Laboratory of Virology, Centre de Recherche en Rhumatologie et Immunologie, Centre de Recherche du Centre Hospitalier de l'Université Laval, and Université Laval, Québec G1V 4G2, Canada
| | | | | | | |
Collapse
|
43
|
Gradoville L, Kwa D, El-Guindy A, Miller G. Protein kinase C-independent activation of the Epstein-Barr virus lytic cycle. J Virol 2002; 76:5612-26. [PMID: 11991990 PMCID: PMC137009 DOI: 10.1128/jvi.76.11.5612-5626.2002] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The protein kinase C (PKC) pathway has been considered to be essential for activation of latent Epstein-Barr virus (EBV) into the lytic cycle. The phorbol ester tetradecanoyl phorbol acetate (TPA), a PKC agonist, is one of the best understood activators of EBV lytic replication. Zp, the promoter of the EBV immediate-early gene BZLF1, whose product, ZEBRA, drives the lytic cycle, contains several phorbol ester response elements. We investigated the role of the PKC pathway in lytic cycle activation in prototype cell lines that differed dramatically in their response to inducing agents. We determined whether PKC was involved in lytic cycle induction by histone deacetylase (HDAC) inhibitors. Consistent with prevailing views, B95-8 cells were activated into the lytic cycle by the phorbol ester TPA, via a PKC-dependent mechanism. B95-8 was not inducible by HDAC inhibitors such as n-butyrate and trichostatin A (TSA). Bisindolylmaleimide I, a selective PKC inhibitor, blocked lytic cycle activation in B95-8 cells in response to TPA. In marked contrast, in HH514-16 cells, the immediate-early promoters Zp and Rp were simultaneously activated by the HDAC inhibitors; TPA by itself failed to activate lytic gene expression. Inhibition of PKC activity by bisindolylmaleimide I did not block lytic cycle activation in HH514-16 cells by n-butyrate or TSA. In an extensive exploration of the mechanism underlying these different responses we found that the variable role of the PKC pathway in the two cell lines could not be accounted for by significant polymorphisms in the promoters of the immediate-early genes, by differences in the start sites of immediate-early gene transcription, or by differences in the nucleosomal organization of EBV DNA in the region of Zp or Rp. While B95-8 cells contained more total PKC activity than did HH514-16 cells in an in vitro assay, another EBV-transformed marmoset lymphoblastoid cell line, FF41, in which the lytic cycle was not inducible by TPA, contained comparably high levels of PKC activity. Moreover, two marmoset lymphoblastoid cells lines in which the lytic cycle could not be triggered by TPA maintained the same profile of EBV latency proteins as B95-8 cells. Thus, the profile of EBV latency proteins did not account for susceptibility to induction by PKC agonists. PKC activation is neither obligatory nor sufficient for the switch between latency and lytic cycle gene expression of EBV in many cell backgrounds. Lytic cycle induction by HDAC inhibitors proceeds by a PKC-independent mechanism.
Collapse
Affiliation(s)
- Lyndle Gradoville
- Department of Pediatrics, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | |
Collapse
|
44
|
Hergenhahn M, Soto U, Weninger A, Polack A, Hsu CH, Cheng AL, Rösl F. The chemopreventive compound curcumin is an efficient inhibitor of Epstein-Barr virus BZLF1 transcription in Raji DR-LUC cells. Mol Carcinog 2002; 33:137-45. [PMID: 11870879 DOI: 10.1002/mc.10029] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To characterize the effects of inhibitors of Epstein-Barr virus (EBV) reactivation, we established Raji DR-LUC cells as a new test system. These cells contain the firefly luciferase (LUC) gene under the control of an immediate-early gene promoter (duplicated right region [DR]) of EBV on a self-replicating episome. Luciferase induction thus serves as an intrinsic marker indicative for EBV reactivation from latency. The tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA) induced the viral key activator BamH fragment Z left frame 1 (BZLF1) protein ("ZEBRA") in this system, as demonstrated by induction of the BZLF1 protein-responsive DR promoter upstream of the luciferase gene. Conversely, both BZLF1 protein and luciferase induction were inhibited effectively by the chemopreventive agent curcumin. Semiquantitative reverse transcriptase (RT)-polymerase chain reaction (PCR) further demonstrated that the EBV inducers TPA, sodium butyrate, and transforming growth factor-beta (TGF-beta) increased levels of the mRNA of BZLF1 mRNA at 12, 24, and 48 h after treatment in these cells. TPA treatment also induced luciferase mRNA with similar kinetics. Curcumin was found to be highly effective in decreasing TPA-, butyrate-, and TGF-beta-induced levels of BZLF1 mRNA, and of TPA-induced luciferase mRNA, indicating that three major pathways of EBV are inhibited by curcumin. Electrophoretic mobility shift assays (EMSA) showed that activator protein 1 (AP-1) binding to a cognate AP-1 sequence was detected at 6 h and could be blocked by curcumin. Protein binding to the complete BZLF1 promoter ZIII site (ZIIIA+ZIIIB) demonstrated several specific complexes that gave weak signals at 6 h and 12 h but strong signals at 24 h, all of which were reduced after application of curcumin. Autostimulation of BZLF1 mRNA induction through binding to the ZIII site at 24 h was confirmed by antibody-induced supershift analysis. The present results confirm our previous finding that curcumin is an effective agent for inhibition of EBV reactivation in Raji DR-CAT cells (carrying DR-dependent chloramphenicol acetyltransferase), and they show for the first time that curcumin inhibits EBV reactivation mainly through inhibition of BZLF1 gene transcription.
Collapse
Affiliation(s)
- Manfred Hergenhahn
- Division of Genetic Alterations in Carcinogenesis, Deutsches Krebsforschungszentrum, Heidelberg, Germany
| | | | | | | | | | | | | |
Collapse
|
45
|
Hennig EE, Butruk E, Ostrowski J. RACK1 protein interacts with Helicobacter pylori VacA cytotoxin: the yeast two-hybrid approach. Biochem Biophys Res Commun 2001; 289:103-10. [PMID: 11708784 DOI: 10.1006/bbrc.2001.5950] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The VacA toxin is the major virulence factor of Helicobacter pylori. The studies on VacA intracellular expression suggest that it interacts with cytosolic proteins and that this interaction contributes significantly to vacuolization. The aim of this study was to identify the host protein(s) that interacts with the VacA protein. We used the fragments of VacA protein fused with GAL4-BD as the baits in the yeast two-hybrid approach. The yeast transformed with plasmids encoding bait proteins were screened with human gastric mucosa cDNA library, encoded C-terminal fusion proteins with GAL4-AD. Three independent His-beta-Gal-positive clones were identified in VacA-b1 screen; they matched two different lengths of cDNA encoding RACK1 protein. The specific activity of beta-galactosidase found in the yeast expressing both VacA-b1 and RACK1 fusion proteins was 12-19 times higher compared to all negative controls used. VacA is capable of binding the RACK1 in vitro as was confirmed by the pull-down assay with GST fusion VacA protein and [(35)S]Met-labeled RACK1 protein fragments.
Collapse
Affiliation(s)
- E E Hennig
- Department of Gastroenterology, Meidcal Center for Postgraduate Education, Maria Skłodowska-Curie Memorial Cancer Center and Institute of Oncology, 02-781 Warsaw, Poland.
| | | | | |
Collapse
|