1
|
Amundson KK, Borton MA, Wilkins MJ. Anthropogenic impacts on the terrestrial subsurface biosphere. Nat Rev Microbiol 2025; 23:147-161. [PMID: 39406896 DOI: 10.1038/s41579-024-01110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2024] [Indexed: 02/19/2025]
Abstract
The terrestrial subsurface is estimated to be the largest reservoir of microbial life on Earth. However, the subsurface also harbours economic, industrial and environmental resources, on which humans heavily rely, including diverse energy sources and formations for the storage of industrial waste and carbon dioxide for climate change mitigation. As a result of this anthropogenic activity, the subsurface landscape is transformed, including the subsurface biosphere. Through the creation of new environments and the introduction of substrates that fuel microbial life, the structure and function of subsurface microbiomes shift markedly. These microbial changes often have unintended effects on overall ecosystem function and are frequently challenging to manage from the surface of the Earth. In this Review, we highlight emerging research that investigates the impacts of anthropogenic activity on the terrestrial subsurface biosphere. We explore how humans alter the constraints on microbial life in the subsurface through drilling, mining, contamination and resource extraction, along with the resulting impacts of microorganisms on resource recovery and subsurface infrastructure.
Collapse
Affiliation(s)
- Kaela K Amundson
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Mikayla A Borton
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Michael J Wilkins
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
2
|
Zavarzina DG, Maslov AA, Merkel AY, Kharitonova NA, Klyukina AA, Baranovskaya EI, Baydariko EA, Potapov EG, Zayulina KS, Bychkov AY, Chernyh NA, Bonch-Osmolovskaya EA, Gavrilov SN. Analogs of Precambrian microbial communities formed de novo in Caucasian mineral water aquifers. mBio 2025; 16:e0283124. [PMID: 39660920 PMCID: PMC11708057 DOI: 10.1128/mbio.02831-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The microbiome of deep continental aquifers is considered the most slowly evolving part of the biosphere. The Yessentukskoye Mineral Water Basin (YMWB), located in the pre-Caucasus region, contains three closely spaced but distinct aquifers, the Upper Cretaceous, the Lower Cretaceous, and the Upper Jurassic, which represent unique objects for subsurface biosphere research due to gas-hydrogeochemical and thermal anomalies of the area. We analyzed the geological and hydrogeochemical parameters of the three aquifers and a recharge area of the YMWB and investigated their microbial communities using metagenomic and cultivation-based approaches within a long-term survey. Correlation analysis of the obtained data revealed stable and highly stratified microbial communities inhabiting four distinct ecosystems. Their structure and the metabolic traits of their prokaryotic populations were similar to those presumed to have dominated the Earth's biosphere during several critical periods of its evolutionary history, that is, the Early Archean, the period of banded iron formations accumulation, and the Great Oxidation Event. Among the YMWB strata, the Upper Jurassic aquifer, supersaturated with CO2, influenced by magmatic activity, and highly enriched with thermophilic autotrophic hydrogenotrophic acetogens, turned out to be the first described modern ecosystem based on the primary production by a process predicted to support the Last Universal Common Ancestor (LUCA). The characterization of the YMWB microbial communities reveals a contemporary model environment of the early stages of Earth's development and thus contributes to the understanding of the evolutionary traits in microbial populations that may have played a critical role in the formation of the modern biosphere.IMPORTANCEContinental subsurface environments are estimated to harbor up to one-fifth of the planet's total biomass, representing the most stable and slowly evolving part of the biosphere. Among the deep subsurface inhabitants, the microbial communities of drinking mineral waters remain the least studied. Our interdisciplinary study of the Yessentukskoye Mineral Water Basin shows how hydrochemical and hydrodynamic factors shape different subsurface ecosystems, whose microbial populations influence the composition of mineral waters. A comprehensive analysis reveals the similarity of these ecosystems to those predicted for the early Earth. The deepest of the studied aquifers is the first described modern ecosystem with the most probable primary producer performing hydrogenotrophic acetogenesis. Thus, our results contribute to the understanding of the genesis of modern drinking water resources and expand the knowledge of the evolutionary traits that may have played a critical role in the formation of the Earth's biosphere.
Collapse
Affiliation(s)
- Daria G. Zavarzina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Maslov
- Department of Geology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Y. Merkel
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | | | - Alexandra A. Klyukina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina I. Baranovskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Geology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena A. Baydariko
- Department of Geology, Lomonosov Moscow State University, Moscow, Russia
| | - Evgeniy G. Potapov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Pyatigorsk Research Institute of Balneology, North Caucasus Federal Scientific and Clinical Center, Pyatigorsk, Stavropolʹskiy kray, Russia
| | - Kseniya S. Zayulina
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Andrey Y. Bychkov
- Department of Geology, Lomonosov Moscow State University, Moscow, Russia
| | - Nikolay A. Chernyh
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Elizaveta A. Bonch-Osmolovskaya
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
- Department of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey N. Gavrilov
- Winogradsky Institute of Microbiology, Research Centre of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
3
|
Ford SE, Slater GF, Engel K, Warr O, Lollar GS, Brady A, Neufeld JD, Lollar BS. Deep terrestrial indigenous microbial community dominated by Candidatus Frackibacter. COMMUNICATIONS EARTH & ENVIRONMENT 2024; 5:795. [PMID: 39742000 PMCID: PMC11683007 DOI: 10.1038/s43247-024-01966-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 12/16/2024] [Indexed: 01/03/2025]
Abstract
Characterizing deep subsurface microbial communities informs our understanding of Earth's biogeochemistry as well as the search for life beyond the Earth. Here we characterized microbial communities within the Kidd Creek Observatory subsurface fracture water system with mean residence times of hundreds of millions to over one billion years. 16S rRNA analysis revealed that biosamplers well isolated from the mine environment were dominated by a putatively anaerobic and halophilic bacterial species from the Halobacteroidaceae family, Candidatus Frackibacter. Contrastingly, biosamplers and biofilms exposed to the mine environment contained aerobic Sphingomonas taxa. δ13C values of phospholipid fatty acids and putative functional predictions derived from 16S rRNA gene profiles, imply Candidatus Frackibacter may use carbon derived from ancient carbon-rich layers common in these systems. These results indicate that Candidatus Frackibacter is not unique to hydraulically fracked sedimentary basins but rather may be indigenous to a wide range of deep, saline groundwaters hosted in carbon-rich rocks.
Collapse
Affiliation(s)
- Sian E. Ford
- School of Earth, Environment and Society, McMaster University, Hamilton, ON Canada
| | - Greg F. Slater
- School of Earth, Environment and Society, McMaster University, Hamilton, ON Canada
| | | | - Oliver Warr
- Department of Earth Sciences, University of Toronto, Toronto, ON Canada
- Department of Earth and Environmental Sciences, University of Ottawa, Advanced Research Complex, Ottawa, ON Canada
| | - Garnet S. Lollar
- Department of Earth Sciences, University of Toronto, Toronto, ON Canada
| | - Allyson Brady
- School of Earth, Environment and Society, McMaster University, Hamilton, ON Canada
- Department of Biology, Carlton University, Ottawa, ON Canada
| | - Josh D. Neufeld
- Department of Earth Sciences, University of Toronto, Toronto, ON Canada
| | - Barbara Sherwood Lollar
- University of Waterloo, Waterloo, ON Canada
- Institut de Physique du Globe de Paris (IPGP) Université Paris Cité, Paris, France
| |
Collapse
|
4
|
Kaçar B. Reconstructing Early Microbial Life. Annu Rev Microbiol 2024; 78:463-492. [PMID: 39163590 DOI: 10.1146/annurev-micro-041522-103400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
For more than 3.5 billion years, life experienced dramatic environmental extremes on Earth. These include shifts from oxygen-less to overoxygenated atmospheres and cycling between hothouse conditions and global glaciations. Meanwhile, an ecological revolution took place. Earth evolved from one dominated by microbial life to one containing the plants and animals that are most familiar today. Many key cellular features evolved early in the history of life, collectively defining the nature of our biosphere and underpinning human survival. Recent advances in molecular biology and bioinformatics have greatly improved our understanding of microbial evolution across deep time. However, the incorporation of molecular genetics, population biology, and evolutionary biology approaches into the study of Precambrian biota remains a significant challenge. This review synthesizes our current knowledge of early microbial life with an emphasis on ancient metabolisms. It also outlines the foundations of an emerging interdisciplinary area that integrates microbiology, paleobiology, and evolutionary synthetic biology to reconstruct ancient biological innovations.
Collapse
Affiliation(s)
- Betül Kaçar
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA;
| |
Collapse
|
5
|
Thorpe CL, Crawford R, Hand RJ, Radford JT, Corkhill CL, Pearce CI, Neeway JJ, Plymale AE, Kruger AA, Morris K, Boothman C, Lloyd JR. Microbial interactions with phosphorus containing glasses representative of vitrified radioactive waste. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132667. [PMID: 37839373 DOI: 10.1016/j.jhazmat.2023.132667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/17/2023]
Abstract
The presence of phosphorus in borosilicate glass (at 0.1 - 1.3 mol% P2O5) and in iron-phosphate glass (at 53 mol% P2O5) stimulated the growth and metabolic activity of anaerobic bacteria in model systems. Dissolution of these phosphorus containing glasses was either inhibited or accelerated by microbial metabolic activity, depending on the solution chemistry and the glass composition. The breakdown of organic carbon to volatile fatty acids increased glass dissolution. The interaction of microbially reduced Fe(II) with phosphorus-containing glass under anoxic conditions decreased dissolution rates, whereas the interaction of Fe(III) with phosphorus-containing glass under oxic conditions increased glass dissolution. Phosphorus addition to borosilicate glasses did not significantly affect the microbial species present, however, the diversity of the microbial community was enhanced on the surface of the iron phosphate glass. Results demonstrate the potential for microbes to influence the geochemistry of radioactive waste disposal environments with implication for wasteform durability.
Collapse
Affiliation(s)
- C L Thorpe
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK.
| | - R Crawford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - R J Hand
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - J T Radford
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK
| | - C L Corkhill
- Immobilization Science Laboratory, Sir Robert Hadfield Building, University of Sheffield, S1 3JD, UK; School of Earth Sciences, The University of Bristol, Bristol, UK
| | - C I Pearce
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - J J Neeway
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A E Plymale
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - A A Kruger
- Office of River Protection, US Department of Energy, Richland, WA, USA
| | - K Morris
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - C Boothman
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| | - J R Lloyd
- Williamson Research Centre and Research Centre for Radwaste Disposal, Williamson Building, University of Manchester, 176 Oxford Road, M13 9PL, UK
| |
Collapse
|
6
|
Nuppunen-Puputti M, Kietäväinen R, Kukkonen I, Bomberg M. Implications of a short carbon pulse on biofilm formation on mica schist in microcosms with deep crystalline bedrock groundwater. Front Microbiol 2023; 14:1054084. [PMID: 36819068 PMCID: PMC9932282 DOI: 10.3389/fmicb.2023.1054084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/06/2023] [Indexed: 02/05/2023] Open
Abstract
Microbial life in the deep subsurface occupies rock surfaces as attached communities and biofilms. Previously, epilithic Fennoscandian deep subsurface bacterial communities were shown to host genetic potential, especially for heterotrophy and sulfur cycling. Acetate, methane, and methanol link multiple biogeochemical pathways and thus represent an important carbon and energy source for microorganisms in the deep subsurface. In this study, we examined further how a short pulse of low-molecular-weight carbon compounds impacts the formation and structure of sessile microbial communities on mica schist surfaces over an incubation period of ∼3.5 years in microcosms containing deep subsurface groundwater from the depth of 500 m, from Outokumpu, Finland. The marker gene copy counts in the water and rock phases were estimated with qPCR, which showed that bacteria dominated the mica schist communities with a relatively high proportion of epilithic sulfate-reducing bacteria in all microcosms. The dominant bacterial phyla in the microcosms were Proteobacteria, Firmicutes, and Actinobacteria, whereas most fungal genera belonged to Ascomycota and Basidiomycota. Dissimilarities between planktic and sessile rock surface microbial communities were observed, and the supplied carbon substrates led to variations in the bacterial community composition.
Collapse
Affiliation(s)
- Maija Nuppunen-Puputti
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland,*Correspondence: Maija Nuppunen-Puputti,
| | | | - Ilmo Kukkonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Malin Bomberg
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| |
Collapse
|
7
|
Amils R, Escudero C, Oggerin M, Puente Sánchez F, Arce Rodríguez A, Fernández Remolar D, Rodríguez N, García Villadangos M, Sanz JL, Briones C, Sánchez-Román M, Gómez F, Leandro T, Moreno-Paz M, Prieto-Ballesteros O, Molina A, Tornos F, Sánchez-Andrea I, Timmis K, Pieper DH, Parro V. Coupled C, H, N, S and Fe biogeochemical cycles operating in the continental deep subsurface of the Iberian Pyrite Belt. Environ Microbiol 2023; 25:428-453. [PMID: 36453153 PMCID: PMC10107794 DOI: 10.1111/1462-2920.16291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Microbial activity is a major contributor to the biogeochemical cycles that make up the life support system of planet Earth. A 613 m deep geomicrobiological perforation and a systematic multi-analytical characterization revealed an unexpected diversity associated with the rock matrix microbiome that operates in the subsurface of the Iberian Pyrite Belt (IPB). Members of 1 class and 16 genera were deemed the most representative microorganisms of the IPB deep subsurface and selected for a deeper analysis. The use of fluorescence in situ hybridization allowed not only the identification of microorganisms but also the detection of novel activities in the subsurface such as anaerobic ammonium oxidation (ANAMMOX) and anaerobic methane oxidation, the co-occurrence of microorganisms able to maintain complementary metabolic activities and the existence of biofilms. The use of enrichment cultures sensed the presence of five different complementary metabolic activities along the length of the borehole and isolated 29 bacterial species. Genomic analysis of nine isolates identified the genes involved in the complete operation of the light-independent coupled C, H, N, S and Fe biogeochemical cycles. This study revealed the importance of nitrate reduction microorganisms in the oxidation of iron in the anoxic conditions existing in the subsurface of the IPB.
Collapse
Affiliation(s)
- Ricardo Amils
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Cristina Escudero
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Monike Oggerin
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Alejandro Arce Rodríguez
- Institute of Microbiology, Technical University Braunschweig, Germany
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | - Nuria Rodríguez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - José Luis Sanz
- Department of Molecular Biology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Carlos Briones
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Felipe Gómez
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Tania Leandro
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | - Antonio Molina
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | - Fernando Tornos
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| | | | - Kenneth Timmis
- Institute of Microbiology, Technical University Braunschweig, Germany
| | - Dietmar H Pieper
- Microbial Interactions and Processes Research Group, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Victor Parro
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Spain
| |
Collapse
|
8
|
Soares A, Edwards A, An D, Bagnoud A, Bradley J, Barnhart E, Bomberg M, Budwill K, Caffrey SM, Fields M, Gralnick J, Kadnikov V, Momper L, Osburn M, Mu A, Moreau JW, Moser D, Purkamo L, Rassner SM, Sheik CS, Sherwood Lollar B, Toner BM, Voordouw G, Wouters K, Mitchell AC. A global perspective on bacterial diversity in the terrestrial deep subsurface. MICROBIOLOGY (READING, ENGLAND) 2023; 169:001172. [PMID: 36748549 PMCID: PMC9993121 DOI: 10.1099/mic.0.001172] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/07/2022] [Indexed: 01/19/2023]
Abstract
While recent efforts to catalogue Earth's microbial diversity have focused upon surface and marine habitats, 12-20 % of Earth's biomass is suggested to exist in the terrestrial deep subsurface, compared to ~1.8 % in the deep subseafloor. Metagenomic studies of the terrestrial deep subsurface have yielded a trove of divergent and functionally important microbiomes from a range of localities. However, a wider perspective of microbial diversity and its relationship to environmental conditions within the terrestrial deep subsurface is still required. Our meta-analysis reveals that terrestrial deep subsurface microbiota are dominated by Betaproteobacteria, Gammaproteobacteria and Firmicutes, probably as a function of the diverse metabolic strategies of these taxa. Evidence was also found for a common small consortium of prevalent Betaproteobacteria and Gammaproteobacteria operational taxonomic units across the localities. This implies a core terrestrial deep subsurface community, irrespective of aquifer lithology, depth and other variables, that may play an important role in colonizing and sustaining microbial habitats in the deep terrestrial subsurface. An in silico contamination-aware approach to analysing this dataset underscores the importance of downstream methods for assuring that robust conclusions can be reached from deep subsurface-derived sequencing data. Understanding the global panorama of microbial diversity and ecological dynamics in the deep terrestrial subsurface provides a first step towards understanding the role of microbes in global subsurface element and nutrient cycling.
Collapse
Affiliation(s)
- A. Soares
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Institute of Biology, Environmental and Rural Sciences (IBERS), AU, Aberystwyth, UK
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
- Present address: Group for Aquatic Microbial Ecology (GAME), University of Duisburg-Essen, Campus Essen - Environmental Microbiology and Biotechnology, Universitätsstr. 5, 45141 Essen, Germany
| | - A. Edwards
- Institute of Biology, Environmental and Rural Sciences (IBERS), AU, Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| | - D. An
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - A. Bagnoud
- Institut de Génie Thermique (IGT), Haute École d'Ingénierie et de Gestion du Canton de Vaud (HEIG-VD), Yverdon-les-Bains, Switzerland
| | - J. Bradley
- School of Geography, Queen Mary University of London, London, UK
| | - E. Barnhart
- U.S. Geological Survey (USGS), USA, Reston, VA, USA
- Center for Biofilm Engineering (CBE), Montana State University, Bozeman, MT, USA
| | - M. Bomberg
- VTT Technical Research Centre of Finland, Finland
| | | | | | - M. Fields
- Center for Biofilm Engineering (CBE), Montana State University, Bozeman, MT, USA
- Department of Microbiology & Immunology, MSU, Bozeman, MT, USA
| | - J. Gralnick
- Department of Plant and Microbial Biology, University of Minnesota, Minneapolis, MN, USA
| | - V. Kadnikov
- Institute of Bioengineering, Research Center of Biotechnology, Russian Academy of Sciences, Russia
| | - L. Momper
- Department of Earth, Atmospheric and Planetary Sciences (DEAPS), The Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - M. Osburn
- Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA
| | - A. Mu
- Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Doherty Applied Microbial Genomics, Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Australia
- Microbiological Diagnostic Unit Public Health Laboratory, Department of Microbiology and Immunology, University of Melbourne, Melbourne, Australia
| | - J. W. Moreau
- School of Earth Sciences, The University of Melbourne, Parkville, Australia
| | - D. Moser
- Division of Hydrologic Sciences, Desert Research Institute (DRI), Las Vegas, NV, USA
| | - L. Purkamo
- VTT Technical Research Centre of Finland, Finland
- School of Earth and Environmental Sciences (SEES), University of St. Andrews, St. Andrews, UK
- Geological Survey of Finland (GTK), Finland
| | - S. M. Rassner
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| | - C. S. Sheik
- Large Lakes Observatory, University of Minnesota, Duluth, MN, USA
| | | | - B. M. Toner
- Department of Soil, Water & Climate, University of Minnesota, Minneapolis/Saint Paul, MN, USA
| | - G. Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, Canada
| | - K. Wouters
- Institute for Environment, Health and Safety (EHS), Belgian Nuclear Research Centre SCK•CEN, Mol, Belgium
| | - A. C. Mitchell
- Department of Geography and Earth Sciences (DGES), Aberystwyth University (AU), Aberystwyth, UK
- Interdisciplinary Centre for Environmental Microbiology (iCEM), AU, Aberystwyth, UK
| |
Collapse
|
9
|
Active Microbial Airborne Dispersal and Biomorphs as Confounding Factors for Life Detection in the Cell-Degrading Brines of the Polyextreme Dallol Geothermal Field. mBio 2022; 13:e0030722. [PMID: 35384698 PMCID: PMC9040726 DOI: 10.1128/mbio.00307-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Determining the precise limits of life in polyextreme environments is challenging. Studies along gradients of polyextreme conditions in the Dallol proto-volcano area (Danakil salt desert, Ethiopia) showed the occurrence of archaea-dominated communities (up to 99%) in several hypersaline systems but strongly suggested that life did not thrive in the hyperacidic (pH ∼0), hypersaline (∼35% [wt/vol],) and sometimes hot (up to 108°C) ponds of the Dallol dome. However, it was recently claimed that archaea flourish in these brines based on the detection of one Nanohaloarchaeotas 16S rRNA gene and fluorescent in situ hybridization (FISH) experiments with archaea-specific probes. Here, we characterized the diversity of microorganisms in aerosols over Dallol, and we show that, in addition to typical bacteria from soil/dust, they transport halophilic archaea likely originating from neighboring hypersaline ecosystems. We also show that cells and DNA from cultures and natural local halophilic communities are rapidly destroyed upon contact with Dallol brine. Furthermore, we confirm the widespread occurrence of mineral particles, including silica-based biomorphs, in Dallol brines. FISH experiments using appropriate controls show that DNA fluorescent probes and dyes unspecifically bind to mineral precipitates in Dallol brines; cellular morphologies were unambiguously observed only in nearby hypersaline ecosystems. Our results show that airborne cell dispersal and unspecific binding of fluorescent probes are confounding factors likely affecting previous inferences of archaea thriving in Dallol. They highlight the need for controls and the consideration of alternative abiotic explanations before safely drawing conclusions about the presence of life in polyextreme terrestrial or extraterrestrial systems.
Collapse
|
10
|
Thieringer PH, Honeyman AS, Spear JR. Spatial and Temporal Constraints on the Composition of Microbial Communities in Subsurface Boreholes of the Edgar Experimental Mine. Microbiol Spectr 2021; 9:e0063121. [PMID: 34756066 PMCID: PMC8579930 DOI: 10.1128/spectrum.00631-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022] Open
Abstract
The deep biosphere hosts uniquely adapted microorganisms overcoming geochemical extremes at significant depths within the crust of the Earth. Attention is required to understand the near subsurface and its continuity with surface systems, where numerous novel microbial members with unique physiological modifications remain to be identified. This surface-subsurface relationship raises key questions about networking of surface hydrology, geochemistry affecting near-subsurface microbial composition, and resiliency of subsurface ecosystems. Here, we apply molecular and geochemical approaches to determine temporal microbial composition and environmental conditions of filtered borehole fluid from the Edgar Experimental Mine (∼150 m below the surface) in Idaho Springs, CO. Samples were collected over a 4-year collection period from expandable packers deployed to accumulate fluid in previously drilled boreholes located centimeters to meters apart, revealing temporal evolution of borehole microbiology. Meteoric groundwater feeding boreholes demonstrated variable recharge rates likely due to a complex and undefined fracture system within the host rock. 16S rRNA gene analysis determined that unique microbial communities occupy the four boreholes examined. Two boreholes yielded sequences revealing the presence of Desulfosporosinus, Candidatus Nitrotoga, and Chelatococcus associated with endemic subsurface communities. Two other boreholes presented sequences related to nonsubsurface-originating microbiota. High concentration of sulfate along with detected sulfur reducing and oxidizing microorganisms suggests that sulfur related metabolic strategies are prominent within these near-subsurface boreholes. Overall, results indicate that microbial community composition in the near-subsurface is highly dynamic at very fine spatial scales (<20 cm) within fluid-rock equilibrated boreholes, which additionally supports the role of a relationship for surface geochemical processes infiltrating and influencing subsurface environments. IMPORTANCE The Edgar Experimental Mine, Idaho Springs, CO, provides inexpensive and open access to borehole investigations for subsurface microbiology studies. Understanding how microbial processes in the near subsurface are connected to surface hydrological influences is lacking. Investigating microbial communities of subsurface mine boreholes provides evidence of how geochemical processes are linked to biogeochemical processes within each borehole and the geochemical connectedness and mobility of surface influences. This study details microbial community composition and fluid geochemistry over spatial and temporal scales from boreholes within the Edgar Mine. These findings are relevant to biogeochemistry of near-surface mines, caves, and other voids across planetary terrestrial systems. In addition, this work can lead to understanding how microbial communities relate to both fluid-rock equilibration, and geochemical influences may enhance our understanding of subsurface molecular biological tools that aid mining economic practices to reflect biological signals for lucrative veins in the near subsurface.
Collapse
Affiliation(s)
- Patrick H. Thieringer
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - Alexander S. Honeyman
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
11
|
Butts CT, Martin RW. Bayesian estimation of the hydroxyl radical diffusion coefficient at low temperature and high pressure from atomistic molecular dynamics. J Chem Phys 2021; 155:194504. [PMID: 34800943 DOI: 10.1063/5.0064995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The hydroxyl radical is the primary reactive oxygen species produced by the radiolysis of water and is a significant source of radiation damage to living organisms. Mobility of the hydroxyl radical at low temperatures and/or high pressures is hence a potentially important factor in determining the challenges facing psychrophilic and/or barophilic organisms in high-radiation environments (e.g., ice-interface or undersea environments in which radiative heating is a potential heat and energy source). Here, we estimate the diffusion coefficient for the hydroxyl radical in aqueous solution using a hierarchical Bayesian model based on atomistic molecular dynamics trajectories in TIP4P/2005 water over a range of temperatures and pressures.
Collapse
Affiliation(s)
- Carter T Butts
- Departments of Sociology, Statistics, Computer Science, and EECS, University of California, Irvine, California 92697, USA
| | - Rachel W Martin
- Departments of Chemistry and Molecular Biology and Biochemistry, University of California, Irvine, California 92697, USA
| |
Collapse
|
12
|
Tarnas JD, Mustard JF, Sherwood Lollar B, Stamenković V, Cannon KM, Lorand JP, Onstott TC, Michalski JR, Warr O, Palumbo AM, Plesa AC. Earth-like Habitable Environments in the Subsurface of Mars. ASTROBIOLOGY 2021; 21:741-756. [PMID: 33885329 DOI: 10.1089/ast.2020.2386] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In Earth's deep continental subsurface, where groundwaters are often isolated for >106 to 109 years, energy released by radionuclides within rock produces oxidants and reductants that drive metabolisms of non-photosynthetic microorganisms. Similar processes could support past and present life in the martian subsurface. Sulfate-reducing microorganisms are common in Earth's deep subsurface, often using hydrogen derived directly from radiolysis of pore water and sulfate derived from oxidation of rock-matrix-hosted sulfides by radiolytically derived oxidants. Radiolysis thus produces redox energy to support a deep biosphere in groundwaters isolated from surface substrate input for millions to billions of years on Earth. Here, we demonstrate that radiolysis by itself could produce sufficient redox energy to sustain a habitable environment in the subsurface of present-day Mars, one in which Earth-like microorganisms could survive wherever groundwater exists. We show that the source localities for many martian meteorites are capable of producing sufficient redox nutrients to sustain up to millions of sulfate-reducing microbial cells per kilogram rock via radiolysis alone, comparable to cell densities observed in many regions of Earth's deep subsurface. Additionally, we calculate variability in supportable sulfate-reducing cell densities between the martian meteorite source regions. Our results demonstrate that martian subsurface groundwaters, where present, would largely be habitable for sulfate-reducing bacteria from a redox energy perspective via radiolysis alone. We present evidence for crustal regions that could support especially high cell densities, including zones with high sulfide concentrations, which could be targeted by future subsurface exploration missions.
Collapse
Affiliation(s)
- J D Tarnas
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - J F Mustard
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | | | - V Stamenković
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - K M Cannon
- Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado, USA
- Space Resources Program, Colorado School of Mines, Golden, Colorado, USA
| | - J-P Lorand
- Université de Nantes Laboratoire de Planétologie et Géodynamique de Nantes, Nantes, France
| | - T C Onstott
- Princeton University Department of Geosciences, Princeton, New Jersey, USA
| | - J R Michalski
- University of Hong Kong Division of Earth & Planetary Science, Hong Kong
| | - O Warr
- University of Toronto Department of Earth Sciences, Toronto, Canada
| | - A M Palumbo
- Brown University Department of Earth, Environmental and Planetary Sciences, Providence, Rhode Island, USA
| | - A-C Plesa
- German Aerospace Center (DLR) Institute of Planetary Research, Berlin, Germany
| |
Collapse
|
13
|
Abstract
The DOE Joint Genome Institute (JGI) Metagenome Workflow performs metagenome data processing, including assembly; structural, functional, and taxonomic annotation; and binning of metagenomic data sets that are subsequently included into the Integrated Microbial Genomes and Microbiomes (IMG/M) (I.-M. A. Chen, K. Chu, K. Palaniappan, A. Ratner, et al., Nucleic Acids Res, 49:D751–D763, 2021, https://doi.org/10.1093/nar/gkaa939) comparative analysis system and provided for download via the JGI data portal (https://genome.jgi.doe.gov/portal/). This workflow scales to run on thousands of metagenome samples per year, which can vary by the complexity of microbial communities and sequencing depth. Here, we describe the different tools, databases, and parameters used at different steps of the workflow to help with the interpretation of metagenome data available in IMG and to enable researchers to apply this workflow to their own data. We use 20 publicly available sediment metagenomes to illustrate the computing requirements for the different steps and highlight the typical results of data processing. The workflow modules for read filtering and metagenome assembly are available as a workflow description language (WDL) file (https://code.jgi.doe.gov/BFoster/jgi_meta_wdl). The workflow modules for annotation and binning are provided as a service to the user community at https://img.jgi.doe.gov/submit and require filling out the project and associated metadata descriptions in the Genomes OnLine Database (GOLD) (S. Mukherjee, D. Stamatis, J. Bertsch, G. Ovchinnikova, et al., Nucleic Acids Res, 49:D723–D733, 2021, https://doi.org/10.1093/nar/gkaa983). IMPORTANCE The DOE JGI Metagenome Workflow is designed for processing metagenomic data sets starting from Illumina fastq files. It performs data preprocessing, error correction, assembly, structural and functional annotation, and binning. The results of processing are provided in several standard formats, such as fasta and gff, and can be used for subsequent integration into the Integrated Microbial Genomes and Microbiomes (IMG/M) system where they can be compared to a comprehensive set of publicly available metagenomes. As of 30 July 2020, 7,155 JGI metagenomes have been processed by the DOE JGI Metagenome Workflow. Here, we present a metagenome workflow developed at the JGI that generates rich data in standard formats and has been optimized for downstream analyses ranging from assessment of the functional and taxonomic composition of microbial communities to genome-resolved metagenomics and the identification and characterization of novel taxa. This workflow is currently being used to analyze thousands of metagenomic data sets in a consistent and standardized manner.
Collapse
|
14
|
Liu J, Yao J, Sunahara G, Wang F, Li Z, Duran R. Nonferrous metal (loid) s mediate bacterial diversity in an abandoned mine tailing impoundment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:24806-24818. [PMID: 31240654 DOI: 10.1007/s11356-019-05092-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 04/04/2019] [Indexed: 06/09/2023]
Abstract
Migration and transformation of toxic metal (loid) s in tailing sites inevitably lead to ecological disturbances and serious threats to the surroundings. However, the horizontal and vertical distribution of bacterial diversity has not been determined in nonferrous metal (loid) tailing ponds, especially in Guangxi China, where the world's largest and potentially most toxic sources of metal (loid) s are located. Distribution of bacterial communities was stable at horizontal levels. At the surface (0-10 cm), the stability was most attributed to Bacillus and Enterococcus, while bacterial communities at the subsurface (50 cm) were mainly contributed by Nitrospira and Sulfuricella. Variable vertical distribution of bacterial communities has led to the occurrence of specific genera and specific predicted functions (such as transcription regulation factors). Sulfurifustis (a S-oxidizing and inorganic carbon fixing bacteria) genera were specific at the surface, whereas Streptococcus-related genera were found at the surface and subsurface, but were more abundant in the latter depth. Physical-chemical parameters, such as pH, TN, and metal (loid) (As, Cd, Pb, Cu, and Zn) concentrations were the main drivers of bacterial community abundance, diversity, composition, and metabolic functions. These results increase our understanding of the physical-chemical effects on the spatial distribution of bacterial communities and provide useful insight for the bioremediation and site management of nonferrous metal (loid) tailings.
Collapse
Affiliation(s)
- Jianli Liu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Jun Yao
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Geoffrey Sunahara
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Department of Natural Resource Sciences, McGill University, Montreal, H9X3V9, Quebec, Canada
| | - Fei Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| | - Zifu Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China.
| | - Robert Duran
- School of Water Resource and Environment Engineering, Research Center of Environmental Sciences and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing, 100083, China
- Equipe Environnement et Microbiologie, MELODY group, Université de Pau et des Pays de l'Adour, IPREM UMR CNRS 5254, BP 1155, 64013, Pau, Cedex, France
| |
Collapse
|
15
|
Akondi RN, Sharma S, Trexler RV, Mouser PJ, Pfiffner SM. Microbial lipid biomarkers detected in deep subsurface black shales. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:291-307. [PMID: 30688342 DOI: 10.1039/c8em00444g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Evidence for microbes has been detected in extreme subsurface environments as deep as 2.5 km with temperatures as high as 90 °C, demonstrating that microbes can adapt and survive extreme environmental conditions. Deep subsurface shales are increasingly exploited for their energy applications, thus characterizing the prevalence and role of microbes in these ecosystems essential for understanding biogeochemical cycles and maximizing production from hydrocarbon-bearing formations. Here, we describe the distribution of bacterial ester-linked phospholipid fatty acids (PLFA) and diglyceride fatty acids (DGFA) in sidewall cores retrieved from three distinct geologic horizons collected to 2275 m below ground surface in a Marcellus Shale well, West Virginia, USA. We examined the abundance and variety of PLFA and DGFA prior to energy development within and above the Marcellus Shale Formation into the overlying Mahantango Formation of the Appalachian Basin. Lipid biomarkers in the cores suggest the presence of microbial communities comprising Gram (+), Gram (-) as well as stress indicative biomarkers. Microbial PLFA and DGFA degradation in the subsurface can be influenced by stressful environmental conditions associated with the subsurface. The PLFA concentration and variety were higher in the transition zone between the extremely low permeability Marcellus Shale Formation and the more permeable Mahantango Formation. In contrast to this distribution, more abundant and diverse DGFA membrane profiles were associated with the Mahantango Formation. The stress indicative biomarkers like the trans-membrane fatty acids, oxiranes, keto-, and dimethyl lipid fatty acids were present in all cores, potentially indicating that the bacterial communities had experienced physiological stress or nutrient deprivation during or after deposition. The DGFA profiles expressed more stress indicative biomarkers as opposed to the PLFA membrane profiles. These findings suggest the probable presence of indigenous microbial communities in the deep subsurface shale and also improves our understanding of microbial survival mechanisms in ancient deep subsurface environments.
Collapse
Affiliation(s)
- Rawlings N Akondi
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506, USA.
| | | | | | | | | |
Collapse
|
16
|
Solon AJ, Vimercati L, Darcy JL, Arán P, Porazinska D, Dorador C, Farías ME, Schmidt SK. Microbial Communities of High-Elevation Fumaroles, Penitentes, and Dry Tephra "Soils" of the Puna de Atacama Volcanic Zone. MICROBIAL ECOLOGY 2018; 76:340-351. [PMID: 29305629 DOI: 10.1007/s00248-017-1129-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 12/12/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to understand the spatial distribution of microbial communities (18S and 16S rRNA genes) across one of the harshest terrestrial landscapes on Earth. We carried out Illumina sequencing using samples from two expeditions to the high slopes (up to 6050 m.a.s.l.) of Volcán Socompa and Llullaillaco to describe the microbial communities associated with the extremely dry tephra compared to areas that receive water from fumaroles and ice fields made up of nieves penitentes. There were strong spatial patterns relative to these landscape features with the most diverse (alpha diversity) communities being associated with fumaroles. Penitentes did not significantly increase alpha diversity compared to dry tephra at the same elevation (5825 m.a.s.l.) on Volcán Socompa, but the structure of the 18S community (beta diversity) was significantly affected by the presence of penitentes on both Socompa and Llullaillaco. In addition, the 18S community was significantly different in tephra wetted by penitentes versus dry tephra sites across many elevations on Llullaillaco. Traditional phototrophs (algae and cyanobacteria) were abundant in wetter tephra associated with fumaroles, and algae (but not cyanobacteria) were common in tephra associated with penitentes. Dry tephra had neither algae nor cyanobacteria but did host potential phototrophs in the Rhodospirillales on Volcán Llullaillaco, but not on Socompa. These results provide new insights into the distribution of microbes across one of the most extreme terrestrial environments on Earth and provide the first ever glimpse of life associated with nieves penitentes, spire-shaped ice structures that are widespread across the mostly unexplored high-elevation Andean Central Volcanic Zone.
Collapse
Affiliation(s)
- Adam J Solon
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Lara Vimercati
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - J L Darcy
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - Pablo Arán
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Dorota Porazinska
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA
| | - C Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto Antofagasta & Centre for Biotechnology and Bioengineering (CeBiB), Universidad de Antofagasta, Antofagasta, Chile
- Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - M E Farías
- Laboratorio de Investigaciones Microbiológicas de Lagunas Andinas, PROIMI, Tucumán, Argentina
| | - S K Schmidt
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO, 80309, USA.
| |
Collapse
|
17
|
Escudero C, Oggerin M, Amils R. The deep continental subsurface: the dark biosphere. Int Microbiol 2018; 21:3-14. [DOI: 10.1007/s10123-018-0009-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 11/28/2022]
|
18
|
Bose H, Satyanarayana T. Microbial Carbonic Anhydrases in Biomimetic Carbon Sequestration for Mitigating Global Warming: Prospects and Perspectives. Front Microbiol 2017; 8:1615. [PMID: 28890712 PMCID: PMC5574912 DOI: 10.3389/fmicb.2017.01615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/08/2017] [Indexed: 11/13/2022] Open
Abstract
All the leading cities in the world are slowly becoming inhospitable for human life with global warming playing havoc with the living conditions. Biomineralization of carbon dioxide using carbonic anhydrase (CA) is one of the most economical methods for mitigating global warming. The burning of fossil fuels results in the emission of large quantities of flue gas. The temperature of flue gas is quite high. Alkaline conditions are necessary for CaCO3 precipitation in the mineralization process. In order to use CAs for biomimetic carbon sequestration, thermo-alkali-stable CAs are, therefore, essential. CAs must be stable in the presence of various flue gas contaminants too. The extreme environments on earth harbor a variety of polyextremophilic microbes that are rich sources of thermo-alkali-stable CAs. CAs are the fastest among the known enzymes, which are of six basic types with no apparent sequence homology, thus represent an elegant example of convergent evolution. The current review focuses on the utility of thermo-alkali-stable CAs in biomineralization based strategies. A variety of roles that CAs play in various living organisms, the use of CA inhibitors as drug targets and strategies for overproduction of CAs to meet the demand are also briefly discussed.
Collapse
|
19
|
Twing KI, Brazelton WJ, Kubo MDY, Hyer AJ, Cardace D, Hoehler TM, McCollom TM, Schrenk MO. Serpentinization-Influenced Groundwater Harbors Extremely Low Diversity Microbial Communities Adapted to High pH. Front Microbiol 2017; 8:308. [PMID: 28298908 PMCID: PMC5331062 DOI: 10.3389/fmicb.2017.00308] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/14/2017] [Indexed: 11/25/2022] Open
Abstract
Serpentinization is a widespread geochemical process associated with aqueous alteration of ultramafic rocks that produces abundant reductants (H2 and CH4) for life to exploit, but also potentially challenging conditions, including high pH, limited availability of terminal electron acceptors, and low concentrations of inorganic carbon. As a consequence, past studies of serpentinites have reported low cellular abundances and limited microbial diversity. Establishment of the Coast Range Ophiolite Microbial Observatory (California, U.S.A.) allowed a comparison of microbial communities and physicochemical parameters directly within serpentinization-influenced subsurface aquifers. Samples collected from seven wells were subjected to a range of analyses, including solute and gas chemistry, microbial diversity by 16S rRNA gene sequencing, and metabolic potential by shotgun metagenomics, in an attempt to elucidate what factors drive microbial activities in serpentinite habitats. This study describes the first comprehensive interdisciplinary analysis of microbial communities in hyperalkaline groundwater directly accessed by boreholes into serpentinite rocks. Several environmental factors, including pH, methane, and carbon monoxide, were strongly associated with the predominant subsurface microbial communities. A single operational taxonomic unit (OTU) of Betaproteobacteria and a few OTUs of Clostridia were the almost exclusive inhabitants of fluids exhibiting the most serpentinized character. Metagenomes from these extreme samples contained abundant sequences encoding proteins associated with hydrogen metabolism, carbon monoxide oxidation, carbon fixation, and acetogenesis. Metabolic pathways encoded by Clostridia and Betaproteobacteria, in particular, are likely to play important roles in the ecosystems of serpentinizing groundwater. These data provide a basis for further biogeochemical studies of key processes in serpentinite subsurface environments.
Collapse
Affiliation(s)
- Katrina I Twing
- Department of Microbiology and Molecular Genetics, Michigan State University, East LansingMI, USA; Department of Biology, University of Utah, Salt Lake CityUT, USA
| | | | | | - Alex J Hyer
- Department of Biology, University of Utah, Salt Lake City UT, USA
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island, Kingston RI, USA
| | - Tori M Hoehler
- Exobiology Branch, NASA Ames Research Center, Moffett Field CA, USA
| | - Tom M McCollom
- Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder CO, USA
| | - Matthew O Schrenk
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing MI, USA
| |
Collapse
|
20
|
Podosokorskaya OA, Merkel AY, Heerden EV, Cason ED, Kopitsyn DS, Vasilieva M, Bonch-Osmolovskaya EA, Kublanov IV. Sporosalibacterium tautonense sp. nov., a thermotolerant, halophilic, hydrolytic bacterium isolated from a gold mine, and emended description of the genus Sporosalibacterium. Int J Syst Evol Microbiol 2016; 67:1457-1461. [PMID: 27974092 DOI: 10.1099/ijsem.0.001737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel strictly anaerobic, thermotolerant, moderately halophilic, organotrophic bacterium, strain MRo-4T, was isolated from a sample of a microbial mat, developed under the flow of subsurface water in TauTona gold mine, South Africa. Cells of the novel isolate stained Gram-positive and were motile, spore-forming rods, 0.2-0.3 µm in width and 5-20 µm in length. Strain MRo-4T grew at 25-50 °C, at pH 7.0-8.8 and at an NaCl concentration of 5-100 g l-1. The isolate was able to ferment yeast extract, peptone and mono-, oligo- and polysaccharides, including cellulose and chitin. Elemental sulfur, thiosulfate, sulfate, sulfite, nitrate, nitrite, fumarate and arsenate were not reduced. The major fatty acids were iso-C15 : 0, iso-C15 : 0 dimethyl acetyl and anteiso-C15 : 0. The G+C content of the DNA was 32.9 mol%. Phylogenetic analysis of 16S rRNA gene sequences of strain MRo-4T and its nearest relatives showed its affiliation to the genus Sporosalibacterium. Sporosalibacteriumfaouarense SOL3f37T, the only valid published representative of the genus, appeared to be its closest relative (96.8 % 16S rRNA gene sequence similarity). However, strains MRo-4T and S. faouarense SOL3f37T differed in temperature, pH and salinity ranges for growth, requirement for yeast extract and substrate profiles. Based on the phylogenetic analysis and physiological properties of the novel isolate, we propose a novel species, Sporosalibacterium tautonense sp. nov. The type strain is MRo-4T (=DSM 28179T=VKM B-2948T).
Collapse
Affiliation(s)
- Olga A Podosokorskaya
- Research Center for Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Alexander Y Merkel
- Research Center for Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| | - Esta van Heerden
- TIA-UFS SAENSE Platform, University of the Free State, Bloemfontein, South Africa
| | - Errol D Cason
- TIA-UFS SAENSE Platform, University of the Free State, Bloemfontein, South Africa
| | | | - Maria Vasilieva
- Immanuel Kant Baltic Federal University, Kaliningrad, Russia
| | | | - Ilya V Kublanov
- Research Center for Biotechnology, Russian Academy of Sciences, Winogradsky Institute of Microbiology, Moscow, Russia
| |
Collapse
|
21
|
Mouser PJ, Borton M, Darrah TH, Hartsock A, Wrighton KC. Hydraulic fracturing offers view of microbial life in the deep terrestrial subsurface. FEMS Microbiol Ecol 2016; 92:fiw166. [DOI: 10.1093/femsec/fiw166] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2016] [Indexed: 11/12/2022] Open
|
22
|
Reitschuler C, Spötl C, Hofmann K, Wagner AO, Illmer P. Archaeal Distribution in Moonmilk Deposits from Alpine Caves and Their Ecophysiological Potential. MICROBIAL ECOLOGY 2016; 71:686-699. [PMID: 26790864 DOI: 10.1007/s00248-015-0727-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/27/2015] [Indexed: 06/05/2023]
Abstract
(Alpine) caves are, in general, windows into the Earth's subsurface. Frequently occurring structures in caves such as moonmilk (secondary calcite deposits) offer the opportunity to study intraterrestrial microbial communities, adapted to oligotrophic and cold conditions. This is an important research field regarding the dimensions of subsurface systems and cold regions on Earth. On a methodological level, moonmilk deposits from 11 caves in the Austrian Alps were collected aseptically and investigated using a molecular (qPCR and DGGE sequencing-based) methodology in order to study the occurrence, abundance, and diversity of the prevailing native Archaea community. Furthermore, these Archaea were enriched in complex media and studied regarding their physiology, with a media selection targeting different physiological requirements, e.g. methanogenesis and ammonia oxidation. The investigation of the environmental samples showed that all moonmilk deposits were characterized by the presence of the same few habitat-specific archaeal species, showing high abundances and constituting about 50 % of the total microbial communities. The largest fraction of these Archaea was ammonia-oxidizing Thaumarchaeota, while another abundant group was very distantly related to extremophilic Euryarchaeota (Moonmilk Archaea). The archaeal community showed a depth- and oxygen-dependent stratification. Archaea were much more abundant (around 80 %), compared to bacteria, in the actively forming surface part of moonmilk deposits, decreasing to about 5 % down to the bedrock. Via extensive cultivation efforts, it was possible to enrich the enigmatic Moonmilk Archaea and also AOA significantly above the level of bacteria. The most expedient prerequisites for cultivating Moonmilk Archaea were a cold temperature, oligotrophic conditions, short incubation times, a moonmilk surface inoculum, the application of erythromycin, and anaerobic (microaerophilic) conditions. On a physiological level, it seems that methanogenesis is of marginal importance, while ammonia oxidation and a still undiscovered metabolic pathway are vital elements in the (archaeal) moonmilk biome.
Collapse
Affiliation(s)
- Christoph Reitschuler
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria.
| | - Christoph Spötl
- Institute of Geology, University of Innsbruck, Innrain 52, A-6020, Innsbruck, Austria
| | - Katrin Hofmann
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Andreas O Wagner
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| | - Paul Illmer
- Institute of Microbiology, University of Innsbruck, Technikerstrasse 25, A-6020, Innsbruck, Austria
| |
Collapse
|
23
|
Microbiology of the Deep Continental Biosphere. THEIR WORLD: A DIVERSITY OF MICROBIAL ENVIRONMENTS 2016. [DOI: 10.1007/978-3-319-28071-4_6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
24
|
Magnabosco C, Ryan K, Lau MCY, Kuloyo O, Sherwood Lollar B, Kieft TL, van Heerden E, Onstott TC. A metagenomic window into carbon metabolism at 3 km depth in Precambrian continental crust. ISME JOURNAL 2015; 10:730-41. [PMID: 26325359 DOI: 10.1038/ismej.2015.150] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 07/04/2015] [Accepted: 07/20/2015] [Indexed: 11/09/2022]
Abstract
Subsurface microbial communities comprise a significant fraction of the global prokaryotic biomass; however, the carbon metabolisms that support the deep biosphere have been relatively unexplored. In order to determine the predominant carbon metabolisms within a 3-km deep fracture fluid system accessed via the Tau Tona gold mine (Witwatersrand Basin, South Africa), metagenomic and thermodynamic analyses were combined. Within our system of study, the energy-conserving reductive acetyl-CoA (Wood-Ljungdahl) pathway was found to be the most abundant carbon fixation pathway identified in the metagenome. Carbon monoxide dehydrogenase genes that have the potential to participate in (1) both autotrophic and heterotrophic metabolisms through the reversible oxidization of CO and subsequent transfer of electrons for sulfate reduction, (2) direct utilization of H2 and (3) methanogenesis were identified. The most abundant members of the metagenome belonged to Euryarchaeota (22%) and Firmicutes (57%)-by far, the highest relative abundance of Euryarchaeota yet reported from deep fracture fluids in South Africa and one of only five Firmicutes-dominated deep fracture fluids identified in the region. Importantly, by combining the metagenomics data and thermodynamic modeling of this study with previously published isotopic and community composition data from the South African subsurface, we are able to demonstrate that Firmicutes-dominated communities are associated with a particular hydrogeologic environment, specifically the older, more saline and more reducing waters.
Collapse
Affiliation(s)
- Cara Magnabosco
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, USA
| | - Kathleen Ryan
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, USA
| | - Maggie C Y Lau
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, USA
| | - Olukayode Kuloyo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | | - Thomas L Kieft
- Department of Biology, New Mexico Institute of Mining and Technology, Socorro, NM, USA
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | - Tullis C Onstott
- Department of Geosciences, Guyot Hall, Princeton University, Princeton, NJ, USA
| |
Collapse
|
25
|
Blanco Y, Rivas LA, García-Moyano A, Aguirre J, Cruz-Gil P, Palacín A, van Heerden E, Parro V. Deciphering the prokaryotic community and metabolisms in South African deep-mine biofilms through antibody microarrays and graph theory. PLoS One 2014; 9:e114180. [PMID: 25531640 PMCID: PMC4273990 DOI: 10.1371/journal.pone.0114180] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/05/2014] [Indexed: 11/18/2022] Open
Abstract
In the South African deep mines, a variety of biofilms growing in mine corridor walls as water seeps from intersections or from fractures represents excellent proxies for deep-subsurface environments. However, they may be greatly affected by the oxygen inputs through the galleries of mining activities. As a consequence, the interaction between the anaerobic water coming out from the walls with the oxygen inputs creates new conditions that support rich microbial communities. The inherent difficulties for sampling these delicate habitats, together with transport and storage conditions may alter the community features and composition. Therefore, the development of in situ monitoring methods would be desirable for quick evaluation of the microbial community. In this work, we report the usefulness of an antibody-microarray (EMChip66) immunoassay for a quick check of the microbial diversity of biofilms located at 1.3 km below surface within the Beatrix deep gold mine (South Africa). In addition, a deconvolution method, previously described and used for environmental monitoring, based on graph theory and applied on antibody cross-reactivity was used to interpret the immunoassay results. The results were corroborated and further expanded by 16S rRNA gene sequencing analysis. Both culture-independent techniques coincided in detecting features related to aerobic sulfur-oxidizers, aerobic chemoorganotrophic Alphaproteobacteria and metanotrophic Gammaproteobacteria. 16S rRNA gene sequencing detected phylotypes related to nitrate-reducers and anaerobic sulfur-oxidizers, whereas the EMChip66 detected immunological features from methanogens and sulfate-reducers. The results reveal a diverse microbial community with syntrophic metabolisms both anaerobic (fermentation, methanogenesis, sulphate and nitrate reduction) and aerobic (methanotrophy, sulphur oxidation). The presence of oxygen-scavenging microbes might indicate that the system is modified by the artificial oxygen inputs from the mine galleries.
Collapse
Affiliation(s)
- Yolanda Blanco
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Luis A. Rivas
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Antonio García-Moyano
- TIA/UFS Metagenomics Platform, Department of Biotechnology, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa
| | - Jacobo Aguirre
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Patricia Cruz-Gil
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
| | - Arantxa Palacín
- Centro de Biotecnología y Genómica de Plantas, Campus de Montegancedo, Autopista M40, km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Esta van Heerden
- TIA/UFS Metagenomics Platform, Department of Biotechnology, University of the Free State, P. O. Box 339, Bloemfontein, 9300, South Africa
| | - Víctor Parro
- Department of Molecular Evolution, Centro de Astrobiología (INTA-CSIC), Carretera de Ajalvir, km 4, Torrejón de Ardoz, 28850, Madrid, Spain
- * E-mail:
| |
Collapse
|
26
|
Magnabosco C, Tekere M, Lau MCY, Linage B, Kuloyo O, Erasmus M, Cason E, van Heerden E, Borgonie G, Kieft TL, Olivier J, Onstott TC. Comparisons of the composition and biogeographic distribution of the bacterial communities occupying South African thermal springs with those inhabiting deep subsurface fracture water. Front Microbiol 2014; 5:679. [PMID: 25566203 PMCID: PMC4269199 DOI: 10.3389/fmicb.2014.00679] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 11/20/2014] [Indexed: 02/01/2023] Open
Abstract
South Africa has numerous thermal springs that represent topographically driven meteoric water migrating along major fracture zones. The temperature (40-70°C) and pH (8-9) of the thermal springs in the Limpopo Province are very similar to those of the low salinity fracture water encountered in the South African mines at depths ranging from 1.0 to 3.1 km. The major cation and anion composition of these thermal springs are very similar to that of the deep fracture water with the exception of the dissolved inorganic carbon and dissolved O2, both of which are typically higher in the springs than in the deep fracture water. The in situ biological relatedness of such thermal springs and the subsurface fracture fluids that feed them has not previously been evaluated. In this study, we evaluated the microbial diversity of six thermal spring and six subsurface sites in South Africa using high-throughput sequencing of 16S rRNA gene hypervariable regions. Proteobacteria were identified as the dominant phylum within both subsurface and thermal spring environments, but only one genera, Rheinheimera, was identified among all samples. Using Morisita similarity indices as a metric for pairwise comparisons between sites, we found that the communities of thermal springs are highly distinct from subsurface datasets. Although the Limpopo thermal springs do not appear to provide a new window for viewing subsurface bacterial communities, we report that the taxonomic compositions of the subsurface sites studied are more similar than previous results would indicate and provide evidence that the microbial communities sampled at depth are more correlated to subsurface conditions than geographical distance.
Collapse
Affiliation(s)
- Cara Magnabosco
- Department of Geosciences, Princeton UniversityPrinceton, NJ, USA
| | - Memory Tekere
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South AfricaFlorida, South Africa
| | - Maggie C. Y. Lau
- Department of Geosciences, Princeton UniversityPrinceton, NJ, USA
| | - Borja Linage
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Olukayode Kuloyo
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Mariana Erasmus
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Errol Cason
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | - Esta van Heerden
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free StateBloemfontein, South Africa
| | | | - Thomas L. Kieft
- Biology Department, New Mexico Institute of Mining and TechnologySocorro, NM, USA
| | - Jana Olivier
- Department of Environmental Sciences, School of Agriculture and Environmental Sciences, University of South AfricaFlorida, South Africa
| | | |
Collapse
|
27
|
Summons RE, Sessions AL, Allwood AC, Barton HA, Beaty DW, Blakkolb B, Canham J, Clark BC, Dworkin JP, Lin Y, Mathies R, Milkovich SM, Steele A. Planning considerations related to the organic contamination of Martian samples and implications for the Mars 2020 Rover. ASTROBIOLOGY 2014; 14:969-1027. [PMID: 25495496 DOI: 10.1089/ast.2014.1244] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Affiliation(s)
- R E Summons
- 1 Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology , Cambridge, Massachusetts
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Rummel JD, Beaty DW, Jones MA, Bakermans C, Barlow NG, Boston PJ, Chevrier VF, Clark BC, de Vera JPP, Gough RV, Hallsworth JE, Head JW, Hipkin VJ, Kieft TL, McEwen AS, Mellon MT, Mikucki JA, Nicholson WL, Omelon CR, Peterson R, Roden EE, Sherwood Lollar B, Tanaka KL, Viola D, Wray JJ. A new analysis of Mars "Special Regions": findings of the second MEPAG Special Regions Science Analysis Group (SR-SAG2). ASTROBIOLOGY 2014; 14:887-968. [PMID: 25401393 DOI: 10.1089/ast.2014.1227] [Citation(s) in RCA: 160] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A committee of the Mars Exploration Program Analysis Group (MEPAG) has reviewed and updated the description of Special Regions on Mars as places where terrestrial organisms might replicate (per the COSPAR Planetary Protection Policy). This review and update was conducted by an international team (SR-SAG2) drawn from both the biological science and Mars exploration communities, focused on understanding when and where Special Regions could occur. The study applied recently available data about martian environments and about terrestrial organisms, building on a previous analysis of Mars Special Regions (2006) undertaken by a similar team. Since then, a new body of highly relevant information has been generated from the Mars Reconnaissance Orbiter (launched in 2005) and Phoenix (2007) and data from Mars Express and the twin Mars Exploration Rovers (all 2003). Results have also been gleaned from the Mars Science Laboratory (launched in 2011). In addition to Mars data, there is a considerable body of new data regarding the known environmental limits to life on Earth-including the potential for terrestrial microbial life to survive and replicate under martian environmental conditions. The SR-SAG2 analysis has included an examination of new Mars models relevant to natural environmental variation in water activity and temperature; a review and reconsideration of the current parameters used to define Special Regions; and updated maps and descriptions of the martian environments recommended for treatment as "Uncertain" or "Special" as natural features or those potentially formed by the influence of future landed spacecraft. Significant changes in our knowledge of the capabilities of terrestrial organisms and the existence of possibly habitable martian environments have led to a new appreciation of where Mars Special Regions may be identified and protected. The SR-SAG also considered the impact of Special Regions on potential future human missions to Mars, both as locations of potential resources and as places that should not be inadvertently contaminated by human activity.
Collapse
Affiliation(s)
- John D Rummel
- 1 Department of Biology, East Carolina University , Greenville, North Carolina, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Slobodkin AI, Slobodkina GB. Thermophilic prokaryotes from deep subterranean habitats. Microbiology (Reading) 2014. [DOI: 10.1134/s0026261714030151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
30
|
Konno U, Kouduka M, Komatsu DD, Ishii K, Fukuda A, Tsunogai U, Ito K, Suzuki Y. Novel microbial populations in deep granitic groundwater from Grimsel Test Site, Switzerland. MICROBIAL ECOLOGY 2013; 65:626-637. [PMID: 23340500 DOI: 10.1007/s00248-013-0184-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 01/09/2013] [Indexed: 06/01/2023]
Abstract
Freshwater aquifers in granitic rocks are widespread microbial habitats in the terrestrial subsurface. Microbial populations in deep granitic groundwater from two recently drilled (1 and 2 years) and two old boreholes (14 and 25 years) were compared. The 16S rRNA gene sequences related to "Candidatus Magnetobacterium bavaricum", Thermodesulfovibrio spp. of Nitrospirae (90.5-93.1 % similarity) and a novel candidate division with <90 % similarity to known cultivated species were dominant in all boreholes. Most of the environmental clones closely related to the novel lineages in Nitrospirae, which have been detected exclusively in deep groundwater samples. In contrast, betaproteobacterial sequences related to the family Rhodocyclaceae were obtained only from the recently drilled boreholes, which had higher total cell numbers. Catalyzed reporter deposition-fluorescence in situ hybridization (CARD-FISH) analysis supported the result from clone library analysis; betaproteobacterial cells were dominantly detected in recently drilled boreholes. These results suggest that while indigenous microbial populations represented by the novel phylotypes persisted in the boreholes for 25 years, betaproteobacterial species disappeared after 2 years owing to the change of substrate availability.
Collapse
Affiliation(s)
- Uta Konno
- Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ragon M, Van Driessche AES, García-Ruíz JM, Moreira D, López-García P. Microbial diversity in the deep-subsurface hydrothermal aquifer feeding the giant gypsum crystal-bearing Naica Mine, Mexico. Front Microbiol 2013; 4:37. [PMID: 23508882 PMCID: PMC3589807 DOI: 10.3389/fmicb.2013.00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 02/12/2013] [Indexed: 11/13/2022] Open
Abstract
The Naica Mine in northern Mexico is famous for its giant gypsum crystals, which may reach up to 11 m long and contain fluid inclusions that might have captured microorganisms during their formation. These crystals formed under particularly stable geochemical conditions in cavities filled by low salinity hydrothermal water at 54-58°C. We have explored the microbial diversity associated to these deep, saline hydrothermal waters collected in the deepest (ca. 700-760 m) mineshafts by amplifying, cloning and sequencing small-subunit ribosomal RNA genes using primers specific for archaea, bacteria, and eukaryotes. Eukaryotes were not detectable in the samples and the prokaryotic diversity identified was very low. Two archaeal operational taxonomic units (OTUs) were detected in one sample. They clustered with, respectively, basal Thaumarchaeota lineages and with a large clade of environmental sequences branching at the base of the Thermoplasmatales within the Euryarchaeota. Bacterial sequences belonged to the Candidate Division OP3, Firmicutes and the Alpha- and Beta-proteobacteria. Most of the lineages detected appear autochthonous to the Naica system, since they had as closest representatives environmental sequences retrieved from deep sediments or the deep subsurface. In addition, the high GC content of 16S rRNA gene sequences belonging to the archaea and to some OP3 OTUs suggests that at least these lineages are thermophilic. Attempts to amplify diagnostic functional genes for methanogenesis (mcrA) and sulfate reduction (dsrAB) were unsuccessful, suggesting that those activities, if present, are not important in the aquifer. By contrast, genes encoding archaeal ammonium monooxygenase (AamoA) were amplified, suggesting that Naica Thaumarchaeota are involved in nitrification. These organisms are likely thermophilic chemolithoautotrophs adapted to thrive in an extremely energy-limited environment.
Collapse
Affiliation(s)
- Marie Ragon
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud Orsay, France
| | | | | | | | | |
Collapse
|
32
|
Frouz J, Cajthaml T, Kříbek B, Schaeffer P, Bartuška M, Galertová R, Rojík P, Krištůfek V. Deep, subsurface microflora after excavation respiration and biomass and its potential role in degradation of fossil organic matter. Folia Microbiol (Praha) 2011; 56:389-96. [PMID: 21858671 DOI: 10.1007/s12223-011-0062-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Accepted: 08/07/2011] [Indexed: 10/17/2022]
Abstract
Three types of Miocene claystones (amorphous, lamellar, and transitional) were aseptically sampled from depths of 30 m and 150 m below the soil surface. Respiration of these sediments was measured under conditions that prevented inoculation by other microorganisms not indigenous to the claystones in situ. Microbial respiration was higher in lamellar than amorphous claystones and was not affected by sampling depth. During cultivation, microbial biomass (as indicated by PLFA) significantly increased. Microbial biomass after cultivation was significantly higher in sediments from 30 m than from 150 m depth. Both microbial respiration and biomass increased after glucose addition.
Collapse
Affiliation(s)
- Jan Frouz
- Institute of Soil Biology BC ASCR, Na Sádkách 7, CZ37005, České Budějovice, Czech Republic.
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Rastogi G, Osman S, Kukkadapu R, Engelhard M, Vaishampayan PA, Andersen GL, Sani RK. Microbial and mineralogical characterizations of soils collected from the deep biosphere of the former Homestake gold mine, South Dakota. MICROBIAL ECOLOGY 2010; 60:539-550. [PMID: 20386898 DOI: 10.1007/s00248-010-9657-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
A microbial census on deep biosphere (1.34 km depth) microbial communities was performed in two soil samples collected from the Ross and number 6 Winze sites of the former Homestake gold mine, Lead, South Dakota using high-density 16S microarrays (PhyloChip). Soil mineralogical characterization was carried out using X-ray diffraction, X-ray photoelectron, and Mössbauer spectroscopic techniques which demonstrated silicates and iron minerals (phyllosilicates and clays) in both samples. Microarray data revealed extensive bacterial diversity in soils and detected the largest number of taxa in Proteobacteria phylum followed by Firmicutes and Actinobacteria. The archael communities in the deep gold mine environments were less diverse and belonged to phyla Euryarchaeota and Crenarchaeota. Both the samples showed remarkable similarities in microbial communities (1,360 common OTUs) despite distinct geochemical characteristics. Fifty-seven phylotypes could not be classified even at phylum level representing a hitherto unidentified diversity in deep biosphere. PhyloChip data also suggested considerable metabolic diversity by capturing several physiological groups such as sulfur-oxidizer, ammonia-oxidizers, iron-oxidizers, methane-oxidizers, and sulfate-reducers in both samples. High-density microarrays revealed the greatest prokaryotic diversity ever reported from deep subsurface habitat of gold mines.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
de Oliveira LL, Costa RB, Okada DY, Vich DV, Duarte ICS, Silva EL, Varesche MBA. Anaerobic degradation of linear alkylbenzene sulfonate (LAS) in fluidized bed reactor by microbial consortia in different support materials. BIORESOURCE TECHNOLOGY 2010; 101:5112-5122. [PMID: 20189800 DOI: 10.1016/j.biortech.2010.01.141] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Revised: 01/15/2010] [Accepted: 01/19/2010] [Indexed: 05/28/2023]
Abstract
Four anaerobic fluidized bed reactors filled with activated carbon (R1), expanded clay (R2), glass beads (R3) and sand (R4) were tested for anaerobic degradation of LAS. All reactors were inoculated with sludge from a UASB reactor treating swine wastewater and were fed with a synthetic substrate supplemented with approximately 20 mg l(-1) of LAS, on average. To 560 mg l(-1) COD influent, the maximum COD and LAS removal efficiencies were mean values of 97+/-2% and 99+/-2%, respectively, to all reactors demonstrating the potential applicability of this reactor configuration for treating LAS. The reactors were kept at 30 degrees C and operated with a hydraulic retention time (HRT) of 18h. The use of glass beads and sand appear attractive because they favor the development of biofilms capable of supporting LAS degradation. Subsequent 16S rRNA gene sequencing and phylogenetic analysis of samples from reactors R3 and R4 revealed that these reactors gave rise to broad microbial diversity, with microorganisms belonging to the phyla Bacteroidetes, Firmicutes, Actinobacteria and Proteobacteria, indicating the role of microbial consortia in degrading the surfactant LAS.
Collapse
Affiliation(s)
- Lorena Lima de Oliveira
- Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, Av Trabalhador Sãocarlense 400, 13566-590 São Carlos, SP, Brazil.
| | | | | | | | | | | | | |
Collapse
|
35
|
Waddell EJ, Elliott TJ, Sani RK, Vahrenkamp JM, Roggenthen WM, Anderson CM, Bang SS. Phylogenetic evidence of noteworthy microflora from the subsurface of the former Homestake gold mine, Lead, South Dakota. ENVIRONMENTAL TECHNOLOGY 2010; 31:979-991. [PMID: 20662386 PMCID: PMC3565620 DOI: 10.1080/09593331003789511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Molecular characterization of subsurface microbial communities in the former Homestake gold mine, South Dakota, was carried out by 16S rDNA sequence analysis using a water sample and a weathered soil-like sample. Geochemical analyses indicated that both samples were high in sulphur, rich in nitrogen and salt, but with significantly different metal concentrations. Microbial diversity comparisons unexpectedly revealed three distinct operational taxonomic units (OTUs) belonging to the archaeal phylum Thaumarchaeota, typically identified from marine environments, and one OTU belonging to a potentially novel phylum that fell sister to Thaumarchaeota. To our knowledge this is only the second report of Thaumarchaeota in a terrestrial environment. The majority of the clones from Archaea sequence libraries fell into two closely related OTUs and were grouped most closely to an ammonia-oxidizing, carbon-fixing and halophilic thaumarchaeote genus, Nitrosopumilus. The two samples showed neither Euryarchaeota nor Crenarchaeota members that have often been identified from other subsurface terrestrial ecosystems. Bacteria OTUs containing the highest percentage of sequences were related to sulphur-oxidizing bacteria of the orders Chromatiales and Thiotrichales. Community members of Bacteria from individual Homestake ecosystems were heterogeneous and distinctive to each community, with unique phylotypes identified within each sample.
Collapse
Affiliation(s)
- Evan J. Waddell
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | - Terran J. Elliott
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | - Rajesh K. Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | | | - William M. Roggenthen
- Department of Geology and Geological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| | | | - Sookie S. Bang
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701
| |
Collapse
|
36
|
Honma H, Asano R, Obara M, Otawa K, Suyama Y, Nakai Y. Bacterial populations in epilithic biofilms along two oligotrophic rivers in the Tohoku region in Japan. J GEN APPL MICROBIOL 2010; 55:359-71. [PMID: 19940382 DOI: 10.2323/jgam.55.359] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Bacterial populations in epilithic biofilms collected from two distinct oligotrophic rivers of Japan were studied using denaturing gradient gel electrophoresis (DGGE). PCR-DGGE of the 16S rRNA gene and subsequent sequencing analysis suggested that in freshwater biofilms, members of the Cytophaga-Flavobacterium-Bacteroides (CFB) group were the most dominant, followed by those of alpha, beta, gamma, and delta-Proteobacteria; Leptospiraceae; and unidentified bacteria. Members of the CFB group, alpha-Proteobacteria, and cyanobacteria/plastid DNA were also detected from the biofilms collected from the estuary site, but the species in these samples differed from those detected in biofilms in the freshwater areas of the rivers. A comparison between the determined sequences revealed that similar bacterial species existed in biofilms at different sites of a river, and identical species existed in biofilms of distinct rivers. The results suggested that bacterial species in biofilms found in the estuary were different from those found in the freshwater areas of the rivers; however, the common bacterial species were distributed in biofilms collected from not only different sites along the same river but also sites in distinct oligotrophic rivers.
Collapse
Affiliation(s)
- Hajime Honma
- Laboratory of Sustainable Environmental Biology, Graduate School of Agricultural Science, Tohoku University, Miyagi 989-6711, Japan
| | | | | | | | | | | |
Collapse
|
37
|
Onstott TC, McGown DJ, Bakermans C, Ruskeeniemi T, Ahonen L, Telling J, Soffientino B, Pfiffner SM, Sherwood-Lollar B, Frape S, Stotler R, Johnson EJ, Vishnivetskaya TA, Rothmel R, Pratt LM. Microbial communities in subpermafrost saline fracture water at the Lupin Au mine, Nunavut, Canada. MICROBIAL ECOLOGY 2009; 58:786-807. [PMID: 19568805 DOI: 10.1007/s00248-009-9553-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Accepted: 06/06/2009] [Indexed: 05/22/2023]
Abstract
We report the first investigation of a deep subpermafrost microbial ecosystem, a terrestrial analog for the Martian subsurface. Our multidisciplinary team analyzed fracture water collected at 890 and 1,130 m depths beneath a 540-m-thick permafrost layer at the Lupin Au mine (Nunavut, Canada). 14C, 3H, and noble gas isotope analyses suggest that the Na-Ca-Cl, suboxic, fracture water represents a mixture of geologically ancient brine, approximately25-kyr-old, meteoric water and a minor modern talik-water component. Microbial planktonic concentrations were approximately10(3) cells mL(-1). Analysis of the 16S rRNA gene from extracted DNA and enrichment cultures revealed 42 unique operational taxonomic units in 11 genera with Desulfosporosinus, Halothiobacillus, and Pseudomonas representing the most prominent phylotypes and failed to detect Archaea. The abundance of terminally branched and midchain-branched saturated fatty acids (5 to 15 mol%) was consistent with the abundance of Gram-positive bacteria in the clone libraries. Geochemical data, the ubiquinone (UQ) abundance (3 to 11 mol%), and the presence of both aerobic and anaerobic bacteria indicated that the environment was suboxic, not anoxic. Stable sulfur isotope analyses of the fracture water detected the presence of microbial sulfate reduction, and analyses of the vein-filling pyrite indicated that it was in isotopic equilibrium with the dissolved sulfide. Free energy calculations revealed that sulfate reduction and sulfide oxidation via denitrification and not methanogenesis were the most thermodynamically viable consistent with the principal metabolisms inferred from the 16S rRNA community composition and with CH4 isotopic compositions. The sulfate-reducing bacteria most likely colonized the subsurface during the Pleistocene or earlier, whereas aerobic bacteria may have entered the fracture water networks either during deglaciation prior to permafrost formation 9,000 years ago or from the nearby talik through the hydrologic gradient created during mine dewatering. Although the absence of methanogens from this subsurface ecosystem is somewhat surprising, it may be attributable to an energy bottleneck that restricts their migration from surface permafrost deposits where they are frequently reported. These results have implications for the biological origin of CH4 on Mars.
Collapse
Affiliation(s)
- T C Onstott
- Department of Geosciences, Princeton University, Princeton, 08544, NJ 08544, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rastogi G, Stetler LD, Peyton BM, Sani RK. Molecular analysis of prokaryotic diversity in the deep subsurface of the former Homestake gold mine, South Dakota, USA. J Microbiol 2009; 47:371-84. [PMID: 19763410 DOI: 10.1007/s12275-008-0249-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Accepted: 04/10/2009] [Indexed: 11/29/2022]
Abstract
A culture-independent molecular phylogenetic analysis was carried out to study the prokaryotic diversity in two soil samples collected from the subsurface (1.34 km depth) of the former Homestake gold mine, Lead, South Dakota, USA at two sites, the Ross shaft and number 6 Winze. Microbial community analyses were performed by cloning and sequencing of 16S rRNA genes retrieved directly from soil samples. Geochemical characterization of soils revealed high amount of toxic metals such as As, Cd, Co, Cr, Cu, Ni, Pb, Zn, and U at both the sites. Phylogenetic analyses showed that soil samples were predominantly composed of phylotypes related to phylum Proteobacteria. Other phyla detected in libraries were Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Chlorobi, Firmicutes, Gemmatimonadetes, Nitrospirae, Planctomycetes, Verrucomicrobia, and candidate divisions OP10 and TM7. The majority (>95%) of the phylotypes retrieved in the libraries were most closely related to environmental sequences from yet-uncultured bacteria representing a hitherto unidentified diversity. The archaeal communities at both the sites exhibited lower diversity and were most closely affiliated to uncultivated species within the Crenarchaeota. Results showed the existence of diverse microbial populations in deep subsurface environment of the Homestake gold mine. Statistical analyses demonstrated that each site harbored phylogenetically distinct microbial populations that were more diverse at Ross site compare to winze site.
Collapse
Affiliation(s)
- Gurdeep Rastogi
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | | | | | | |
Collapse
|
39
|
Description of Tessaracoccus profundi sp.nov., a deep-subsurface actinobacterium isolated from a Chesapeake impact crater drill core (940 m depth). Antonie van Leeuwenhoek 2009; 96:515-26. [PMID: 19669589 DOI: 10.1007/s10482-009-9367-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Accepted: 07/13/2009] [Indexed: 10/20/2022]
Abstract
A novel actinobacterium, designated CB31(T), was isolated from a 940 m depth sample of a drilling core obtained from the Chesapeake meteor impact crater. The strain was isolated aerobically on R2A medium agar plates supplemented with NaCl (20 g l(-1)) and MgCl2 x 6 H2O (3 g l(-1)). The colonies were circular, convex, smooth and orange. Cells were slightly curved, rod-shaped in young cultures and often appeared in pairs. In older cultures cells were coccoid. Cells stained Gram-positive, were non-motile and did not form endospores. The diagnostic diamino acid of the peptidoglycan was LL: -diaminopimelic acid. The polar lipids included phosphatidylglycerol, diphosphatidglycerol, four different glycolipids, two further phospholipids and one unidentified lipid. The dominant menaquinone was MK-9(H(4)) (70%). The major cellular fatty acid was anteiso C15:0 (83%). The DNA G + C content was 68 mol%. The strain grew anaerobically by reducing nitrate to nitrite or by fermenting glucose. It was catalase positive and oxidase negative. It grew between 10 and 45 degrees C, with an optimum between 35 and 40 degrees C. The pH range for growth was 5.7-9.3, with an optimum at pH 7.5. The closest phylogenetic neighbors based on 16S rRNA gene sequence identity were members of the genus Tessaracoccus (95-96% identity). On the basis of phenotypic and phylogenetic distinctiveness, strain CB31(T) is considered to represent a novel species of the genus Tessaracoccus, for which we propose the name Tessaracoccus profundi sp. nov.. It is the first member of this genus that has been isolated from a deep subsurface environment. The type strain is CB31(T) (=NCIMB 14440(T) = DSM 21240(T)).
Collapse
|
40
|
Coombs JM. Potential for horizontal gene transfer in microbial communities of the terrestrial subsurface. Methods Mol Biol 2009; 532:413-33. [PMID: 19271199 DOI: 10.1007/978-1-60327-853-9_24] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The deep terrestrial subsurface is a vast, largely unexplored environment that is oligotrophic, highly heterogeneous, and may contain extremes of both physical and chemical factors. In spite of harsh conditions, subsurface studies at several widely distributed geographic sites have revealed diverse communities of viable organisms, which have provided evidence of low but detectable metabolic activity. Although much of the terrestrial subsurface may be considered to be distant and isolated, the concept of horizontal gene transfer (HGT) in this environment has far-reaching implications for bioremediation efforts and groundwater quality, industrial harvesting of subsurface natural resources such as petroleum, and accurate assessment of the risks associated with DNA release and transport from genetically modified organisms. This chapter will explore what is known about some of the major mechanisms of HGT, and how the information gained from surface organisms might apply to conditions in the terrestrial subsurface. Evidence for the presence of mobile elements in subsurface bacteria and limited retrospective studies examining genetic signatures of potential past gene transfer events will be discussed.
Collapse
Affiliation(s)
- Jonna M Coombs
- Department of Biology, Adelphi University, Garden City, NY, USA
| |
Collapse
|
41
|
Gérard E, Moreira D, Philippot P, Van Kranendonk MJ, López-García P. Modern subsurface bacteria in pristine 2.7 Ga-old fossil stromatolite drillcore samples from the Fortescue Group, Western Australia. PLoS One 2009; 4:e5298. [PMID: 19396360 PMCID: PMC2671143 DOI: 10.1371/journal.pone.0005298] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Accepted: 03/23/2009] [Indexed: 11/23/2022] Open
Abstract
Background Several abiotic processes leading to the formation of life-like signatures or later contamination with actual biogenic traces can blur the interpretation of the earliest fossil record. In recent years, a large body of evidence showing the occurrence of diverse and active microbial communities in the terrestrial subsurface has accumulated. Considering the time elapsed since Archaean sedimentation, the contribution of subsurface microbial communities postdating the rock formation to the fossil biomarker pool and other biogenic remains in Archaean rocks may be far from negligible. Methodology/Principal Findings In order to evaluate the degree of potential contamination of Archean rocks by modern microorganisms, we looked for the presence of living indigenous bacteria in fresh diamond drillcores through 2,724 Myr-old stromatolites (Tumbiana Formation, Fortescue Group, Western Australia) using molecular methods based on the amplification of small subunit ribosomal RNA genes (SSU rDNAs). We analyzed drillcore samples from 4.3 m and 66.2 m depth, showing signs of meteoritic alteration, and also from deeper “fresh” samples showing no apparent evidence for late stage alteration (68 m, 78.8 m, and 99.3 m). We also analyzed control samples from drilling and sawing fluids and a series of laboratory controls to establish a list of potential contaminants introduced during sample manipulation and PCR experiments. We identified in this way the presence of indigenous bacteria belonging to Firmicutes, Actinobacteria, and Alpha-, Beta-, and Gammaproteobacteria in aseptically-sawed inner parts of drillcores down to at least 78.8 m depth. Conclusions/Significance The presence of modern bacterial communities in subsurface fossil stromatolite layers opens the possibility that a continuous microbial colonization had existed in the past and contributed to the accumulation of biogenic traces over geological timescales. This finding casts shadow on bulk analyses of early life remains and makes claims for morphological, chemical, isotopic, and biomarker traces syngenetic with the rock unreliable in the absence of detailed contextual analyses at microscale.
Collapse
Affiliation(s)
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud 11, Orsay, France
| | | | | | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud 11, Orsay, France
- * E-mail:
| |
Collapse
|
42
|
Reduction of vanadium(V) by Enterobacter cloacae EV-SA01 isolated from a South African deep gold mine. Biotechnol Lett 2009; 31:845-9. [PMID: 19229481 DOI: 10.1007/s10529-009-9946-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Revised: 01/20/2009] [Accepted: 01/26/2009] [Indexed: 10/21/2022]
Abstract
Dissimilatory reduction of vanadium(V) by Enterobacter cloacae EV-SA01, isolated from a gold mine at 1.6 km below surface, is shown to occur anaerobically as well as aerobically. Growth rates were unaffected by up to 2 mM V(2)O(5). Reduction of vanadium(V) was growth phase-dependent and resulted in cell deformities and precipitation of the vanadium in its lower oxidation states. The vanadate reductase activity was membrane-associated and coupled the oxidation of NADH to the reduction of vanadate.
Collapse
|
43
|
Isolation and characterization of cellulose-degrading bacteria from the deep subsurface of the Homestake gold mine, Lead, South Dakota, USA. J Ind Microbiol Biotechnol 2009; 36:585-98. [PMID: 19189143 DOI: 10.1007/s10295-009-0528-9] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
The present study investigated the cultivable mesophilic (37 degrees C) and thermophilic (60 degrees C) cellulose-degrading bacterial diversity in a weathered soil-like sample collected from the deep subsurface (1.5 km depth) of the Homestake gold mine in Lead, South Dakota, USA. Chemical characterization of the sample by X-ray fluorescence spectroscopy revealed a high amount of toxic heavy metals such as Cu, Cr, Pb, Ni, and Zn. Molecular community structures were determined by phylogenetic analysis of 16S rRNA gene sequences retrieved from enrichment cultures growing in presence of microcrystalline cellulose as the sole source of carbon. All phylotypes retrieved from enrichment cultures were affiliated to Firmicutes. Cellulose-degrading mesophilic and thermophilic pure cultures belonging to the genera Brevibacillus, Paenibacillus, Bacillus, and Geobacillus were isolated from enrichment cultures, and selected cultures were studied for enzyme activities. For a mesophilic isolate (DUSELG12), the optimum pH and temperature for carboxymethyl cellulase (CMCase) were 5.5 and 55 degrees C, while for a thermophilic isolate (DUSELR7) they were 5.0 and 75 degrees C, respectively. Furthermore, DUSELG12 retained about 40% CMCase activity after incubation at 60 degrees C for 8 h. Most remarkably, thermophilic isolate, DUSELR7 retained 26% CMCase activity at 60 degrees C up to a period of 300 h. Overall, the present work revealed the presence of different cellulose-degrading bacterial lineages in the unique deep subsurface environment of the mine. The results also have strong implications for biological conversion of cellulosic agricultural and forestry wastes to commodity chemicals including sugars.
Collapse
|
44
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|
45
|
Pfiffner SM, Onstott TC, Ruskeeniemi T, Talikka M, Bakermans C, McGown D, Chan E, Johnson A, Phelps TJ, Le Puil M, Difurio SA, Pratt LM, Stotler R, Frape S, Telling J, Lollar BS, Neill I, Zerbin B. Challenges for coring deep permafrost on Earth and Mars. ASTROBIOLOGY 2008; 8:623-638. [PMID: 18680412 DOI: 10.1089/ast.2007.0159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A scientific drilling expedition to the High Lake region of Nunavut, Canada, was recently completed with the goals of collecting samples and delineating gradients in salinity, gas composition, pH, pe, and microbial abundance in a 400 m thick permafrost zone and accessing the underlying pristine subpermafrost brine. With a triple-barrel wireline tool and the use of stringent quality assurance and quality control (QA/QC) protocols, 200 m of frozen, Archean, mafic volcanic rock was collected from the lower boundary that separates the permafrost layer and subpermafrost saline water. Hot water was used to remove cuttings and prevent the drill rods from freezing in place. No cryopegs were detected during penetration through the permafrost. Coring stopped at the 535 m depth, and the drill water was bailed from the hole while saline water replaced it. Within 24 hours, the borehole iced closed at 125 m depth due to vapor condensation from atmospheric moisture and, initially, warm water leaking through the casing, which blocked further access. Preliminary data suggest that the recovered cores contain viable anaerobic microorganisms that are not contaminants even though isotopic analyses of the saline borehole water suggests that it is a residue of the drilling brine used to remove the ice from the upper, older portion of the borehole. Any proposed coring mission to Mars that seeks to access subpermafrost brine will not only require borehole stability but also a means by which to generate substantial heating along the borehole string to prevent closure of the borehole from condensation of water vapor generated by drilling.
Collapse
Affiliation(s)
- S M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee 37932, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Malik S, Beer M, Megharaj M, Naidu R. The use of molecular techniques to characterize the microbial communities in contaminated soil and water. ENVIRONMENT INTERNATIONAL 2008; 34:265-276. [PMID: 18083233 DOI: 10.1016/j.envint.2007.09.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 08/16/2007] [Accepted: 09/02/2007] [Indexed: 05/25/2023]
Abstract
Traditionally, the identification and characterization of microbial communities in contaminated soil and water has previously been limited to those microorganisms that are culturable. The application of molecular techniques to study microbial populations at contaminated sites without the need for culturing has led to the discovery of unique and previously unrecognized microorganisms as well as complex microbial diversity in contaminated soil and water which shows an exciting opportunity for bioremediation strategies. Nucleic acid extraction from contaminated sites and their subsequent amplification by polymerase chain reaction (PCR) has proved extremely useful in assessing the changes in microbial community structure by several microbial community profiling techniques. This review examines the current application of molecular techniques for the characterization of microbial communities in contaminated soil and water. Techniques that identify and quantify microbial population and catabolic genes involved in biodegradation are examined. In addition, methods that directly link microbial phylogeny to its ecological function at contaminated sites as well as high throughput methods for complex microbial community studies are discussed.
Collapse
Affiliation(s)
- Seidu Malik
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes Boulevard, Mawson Lakes, South Australia 5095, Australia
| | | | | | | |
Collapse
|
48
|
Allen JP, Atekwana EA, Atekwana EA, Duris JW, Werkema DD, Rossbach S. The microbial community structure in petroleum-contaminated sediments corresponds to geophysical signatures. Appl Environ Microbiol 2007; 73:2860-70. [PMID: 17351087 PMCID: PMC1892848 DOI: 10.1128/aem.01752-06] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The interdependence between geoelectrical signatures at underground petroleum plumes and the structures of subsurface microbial communities was investigated. For sediments contaminated with light non-aqueous-phase liquids, anomalous high conductivity values have been observed. Vertical changes in the geoelectrical properties of the sediments were concomitant with significant changes in the microbial community structures as determined by the construction and evaluation of 16S rRNA gene libraries. DNA sequencing of clones from four 16S rRNA gene libraries from different depths of a contaminated field site and two libraries from an uncontaminated background site revealed spatial heterogeneity in the microbial community structures. Correspondence analysis showed that the presence of distinct microbial populations, including the various hydrocarbon-degrading, syntrophic, sulfate-reducing, and dissimilatory-iron-reducing populations, was a contributing factor to the elevated geoelectrical measurements. Thus, through their growth and metabolic activities, microbial populations that have adapted to the use of petroleum as a carbon source can strongly influence their geophysical surroundings. Since changes in the geophysical properties of contaminated sediments parallel changes in the microbial community compositions, it is suggested that geoelectrical measurements can be a cost-efficient tool to guide microbiological sampling for microbial ecology studies during the monitoring of natural or engineered bioremediation processes.
Collapse
Affiliation(s)
- Jonathan P Allen
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA
| | | | | | | | | | | |
Collapse
|
49
|
Moser DP, Gihring TM, Brockman FJ, Fredrickson JK, Balkwill DL, Dollhopf ME, Lollar BS, Pratt LM, Boice E, Southam G, Wanger G, Baker BJ, Pfiffner SM, Lin LH, Onstott TC. Desulfotomaculum and Methanobacterium spp. dominate a 4- to 5-kilometer-deep fault. Appl Environ Microbiol 2006; 71:8773-83. [PMID: 16332873 PMCID: PMC1317344 DOI: 10.1128/aem.71.12.8773-8783.2005] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Alkaline, sulfidic, 54 to 60 degrees C, 4 to 53 million-year-old meteoric water emanating from a borehole intersecting quartzite-hosted fractures >3.3 km beneath the surface supported a microbial community dominated by a bacterial species affiliated with Desulfotomaculum spp. and an archaeal species related to Methanobacterium spp. The geochemical homogeneity over the 650-m length of the borehole, the lack of dividing cells, and the absence of these microorganisms in mine service water support an indigenous origin for the microbial community. The coexistence of these two microorganisms is consistent with a limiting flux of inorganic carbon and SO4(2-) in the presence of high pH, high concentrations of H2 and CH4, and minimal free energy for autotrophic methanogenesis. Sulfide isotopic compositions were highly enriched, consistent with microbial SO4(2-) reduction under hydrologic isolation. An analogous microbial couple and similar abiogenic gas chemistry have been reported recently for hydrothermal carbonate vents of the Lost City near the Mid-Atlantic Ridge (D. S. Kelly et al., Science 307:1428-1434, 2005), suggesting that these features may be common to deep subsurface habitats (continental and marine) bearing this geochemical signature. The geochemical setting and microbial communities described here are notably different from microbial ecosystems reported for shallower continental subsurface environments.
Collapse
Affiliation(s)
- Duane P Moser
- Environmental Microbiology Group, Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang G, Dong H, Xu Z, Zhao D, Zhang C. Microbial diversity in ultra-high-pressure rocks and fluids from the Chinese Continental Scientific Drilling Project in China. Appl Environ Microbiol 2005; 71:3213-27. [PMID: 15933024 PMCID: PMC1151863 DOI: 10.1128/aem.71.6.3213-3227.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microbial communities in ultra-high-pressure (UHP) rocks and drilling fluids from the Chinese Continental Scientific Drilling Project were characterized. The rocks had a porosity of 1 to 3.5% and a permeability of approximately 0.5 mDarcy. Abundant fluid and gas inclusions were present in the minerals. The rocks contained significant amounts of Fe2O3, FeO, P2O5, and nitrate (3 to 16 ppm). Acridine orange direct counting and phospholipid fatty acid analysis indicated that the total counts in the rocks and the fluids were 5.2 x 10(3) to 2.4 x 10(4) cells/g and 3.5 x 10(8) to 4.2 x 10(9) cells/g, respectively. Enrichment assays resulted in successful growth of thermophilic and alkaliphilic bacteria from the fluids, and some of these bacteria reduced Fe(III) to magnetite. 16S rRNA gene analyses indicated that the rocks were dominated by sequences similar to sequences of Proteobacteria and that most organisms were related to nitrate reducers from a saline, alkaline, cold habitat; however, some phylotypes were either members of a novel lineage or closely related to uncultured clones. The bacterial communities in the fluids were more diverse and included Proteobacteria, Bacteroidetes, gram-positive bacteria, Planctomycetes, and Candidatus taxa. The archaeal diversity was lower, and most sequences were not related to any known cultivated species. Some archaeal sequences were 90 to 95% similar to sequences recovered from ocean sediments or other subsurface environments. Some archaeal sequences from the drilling fluids were >93% similar to sequences of Sulfolobus solfataricus, and the thermophilic nature was consistent with the in situ temperature. We inferred that the microbes in the UHP rocks reside in fluid and gas inclusions, whereas those in the drilling fluids may be derived from subsurface fluids.
Collapse
Affiliation(s)
- Gengxin Zhang
- Department of Geology, Miami University, Oxford, Ohio 45056, USA
| | | | | | | | | |
Collapse
|