1
|
van der Heijden EMDL, Lefevre L, Gossner A, Tzelos T, Connelley TK, Hassan MA. Comparative transcriptional analysis identifies genes associated with the attenuation of Theileria parva infected cells after long-term in vitro culture. Sci Rep 2024; 14:8976. [PMID: 38637584 PMCID: PMC11026401 DOI: 10.1038/s41598-024-59197-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Autologous administration of attenuated Theileria parva-infected cells induces immunity to T. parva in cattle. The mechanism of attenuation, however, is largely unknown. Here, we used RNA sequencing of pathogenic and attenuated T. parva-infected T-cells to elucidate the transcriptional changes underpinning attenuation. We observed differential expression of several host genes, including TRAIL, PD-1, TGF-β and granzymes that are known to regulate inflammation and proliferation of infected cells. Importantly, many genes linked with the attenuation of the related T. annulata-infected cells were not dysregulated in this study. Furthermore, known T. parva antigens were not dysregulated in attenuated relative to pathogenic cells, indicating that attenuation is not due to enhanced immunogenicity. Overall this study suggests that attenuation is driven by a decrease in proliferation and restoration of the inflammatory profile of T. parva-infected cells. Additionally, it provides a foundation for future mechanistic studies of the attenuation phenotype in Theileria-infected cells.
Collapse
Affiliation(s)
- Elisabeth M D L van der Heijden
- Division of Infectious Diseases and Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
| | - Lucas Lefevre
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Anton Gossner
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
| | - Thomas Tzelos
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Penicuik, EH26 0PZ, UK
| | - Timothy K Connelley
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK
- Centre for Tropical Livestock Genetics and Health, Easter Bush Campus, Edinburgh, UK
| | - Musa A Hassan
- Division of Immunology, The Roslin Institute, University of Edinburgh, Edinburgh, UK.
- Centre for Tropical Livestock Genetics and Health, Easter Bush Campus, Edinburgh, UK.
| |
Collapse
|
2
|
Bishop LJ, Stutzer C, Maritz-Olivier C. More than Three Decades of Bm86: What We Know and Where to Go. Pathogens 2023; 12:1071. [PMID: 37764879 PMCID: PMC10537462 DOI: 10.3390/pathogens12091071] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 09/29/2023] Open
Abstract
Tick and tick-borne disease control have been a serious research focus for many decades. In a global climate of increasing acaricide resistance, host immunity against tick infestation has become a much-needed complementary strategy to common chemical control. From the earliest acquired resistance studies in small animal models to proof of concept in large production animals, it was the isolation, characterization, and final recombinant protein production of the midgut antigen Bm86 from the Australian cattle tick strain of Rhipicephalus (Boophilus) microplus (later reinstated as R. (B.) australis) that established tick subunit vaccines as a viable alternative in tick and tick-borne disease control. In the past 37 years, this antigen has spawned numerous tick subunit vaccines (either Bm86-based or novel), and though we are still describing its molecular structure and function, this antigen remains the gold standard for all tick vaccines. In this paper, advances in tick vaccine development over the past three decades are discussed alongside the development of biotechnology, where existing gaps and future directives in the field are highlighted.
Collapse
Affiliation(s)
| | | | - Christine Maritz-Olivier
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria 0083, South Africa; (L.J.B.); (C.S.)
| |
Collapse
|
3
|
Wang BH, Du LF, Zhang MZ, Xia LY, Li C, Lin ZT, Wang N, Gao WY, Ye RZ, Liu JY, Han XY, Shi WQ, Shi XY, Jiang JF, Jia N, Cui XM, Zhao L, Cao WC. Genomic Characterization of Theileria luwenshuni Strain Cheeloo. Microbiol Spectr 2023; 11:e0030123. [PMID: 37260375 PMCID: PMC10434005 DOI: 10.1128/spectrum.00301-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 05/11/2023] [Indexed: 06/02/2023] Open
Abstract
Theileria, a tick-borne intracellular protozoan, can cause infections of various livestock and wildlife around the world, posing a threat to veterinary health. Although more and more Theileria species have been identified, genomes have been available only from four Theileria species to date. Here, we assembled a whole genome of Theileria luwenshuni, an emerging Theileria, through next-generation sequencing of purified erythrocytes from the blood of a naturally infected goat. We designated it T. luwenshuni str. Cheeloo because its genome was assembled by the researchers at Cheeloo College of Medicine, Shandong University, China. The genome of T. lunwenshuni str. Cheeloo was the smallest in comparison with the other four Theileria species. T. luwenshuni str. Cheeloo possessed the fewest gene gains and gene family expansion. The protein count of each category was always comparable between T. luwenshuni str. Cheeloo and T. orientalis str. Shintoku in the Eukaryote Orthologs annotation, though there were remarkable differences in genome size. T. luwenshuni str. Cheeloo had lower counts than the other four Theileria species in most categories at level 3 of Gene Ontology annotation. Kyoto Encyclopedia of Genes and Genomes annotation revealed a loss of the c-Myb in T. luwenshuni str. Cheeloo. The infection rate of T. luwenshuni str. Cheeloo was up to 81.5% in a total of 54 goats from three flocks. The phylogenetic analyses based on both 18S rRNA and cox1 genes indicated that T. luwenshuni had relatively low diversity. The first characterization of the T. luwenshuni genome will promote better understanding of the emerging Theileria. IMPORTANCE Theileria has led to substantial economic losses in animal husbandry. Whole-genome sequencing data of the genus Theileria are currently limited, which has prohibited us from further understanding their molecular features. This work depicted whole-genome sequences of T. luwenshuni str. Cheeloo, an emerging Theileria species, and reported a high prevalence of T. luwenshuni str. Cheeloo infection in goats. The first assembly and characterization of T. luwenshuni genome will benefit exploring the infective and pathogenic mechanisms of the emerging Theileria to provide scientific basis for future control strategies of theileriosis.
Collapse
Affiliation(s)
- Bai-Hui Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Li-Feng Du
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Ming-Zhu Zhang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Luo-Yuan Xia
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Cheng Li
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Zhe-Tao Lin
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Ning Wang
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wan-Ying Gao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Run-Ze Ye
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Jin-Yue Liu
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Xiao-Yu Han
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Wen-Qiang Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Yu Shi
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Jia-Fu Jiang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Na Jia
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Xiao-Ming Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| | - Lin Zhao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
| | - Wu-Chun Cao
- Institute of EcoHealth, School of Public Health, Shandong University, Jinan, Shandong, People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Terletsky A, Akhmerova LG. Malignant human thyroid neoplasms associated with blood parasitic (haemosporidian) infection. RUSSIAN JOURNAL OF INFECTION AND IMMUNITY 2023. [DOI: 10.15789/2220-7619-mht-1948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Investigation of archival cytological material obtained by cytologists during fine-needle aspiration biopsy in follicular, papillary, and medullary human thyroid cancers revealed haemosporidian (blood parasitic) infection. Haemosporidian infection was detected as exo- and intraerythrocytic stages of development in thyrocytes schizogony. The exoerythrocytic stage of development is represented as microschizonts in a thyroid needle biopsy specimen. Probably, blood parasitic infection is the common etiology for these pathologies. All biopsy material in medical laboratories was stained with RomanowskyGiemsa stain. To clarify the localization of nuclei (DNA) of thyrocytes and nuclei (DNA) of haemosporidian infection in cytological material following investigation of the entire set of smears, a selective series of original archival smears was stained (restained) with a Feulgen/Schiff reagent. Staining of smears with RomanowskyGiemsa stain is an adsorption method that enables re-use of the same smears for staining with a Feulgen/Schiff reagent where the fuchsin dye, after DNA hydrolysis by hydrochloric acid, is incorporated into DNA and stains it in redviolet (crimsonlilac) color. An intentionally unstained protoplasm of blood parasitic infection was present as a light band around erythrocyte nuclei. In follicular thyroid cancer, Feulgen staining of thyrocytes revealed nuclear DNA and parasitic DNA (haemosporidium nuclei) as point inclusions and rings and diffusely distributed in the thyrocyte cytoplasm. The thyrocyte cytoplasm and nuclei were vacuolated, with thyrocyte nuclei being deformed, flattened, and displaced to the cell periphery. The erythrocytes, which were initially stained with eosin (orange color), contained haemosporidian nuclei (DNA). In some cases, endoglobular inclusions in thyrocytes and erythrocytes were of the same size. In papillary thyroid cancer, we were able to localize the nuclear DNA of thyrocytes and the parasitic DNA as point inclusions and diffusely distributed in the thyrocyte cytoplasm. Two or more polymorphic nuclei may eccentrically occur in the hyperplastic cytoplasm. Haemosporidian microschizonts occurred circumnuclearly in thyrocytes and as an exoerythrocytic stage in the blood. The erythrocyte cytoplasm contained redviolet polymorphic haemosporidian nuclei (DNA). In medullary thyroid cancer, the hyperplastic cytoplasm of thyrocytes contained eccentrically located nuclei (DNA) of thyrocytes and small haemosporidian nuclei (DNA), which may occupy the whole thyrocyte. There were thyrocytes with vacuolated cytoplasm and pronounced nuclear polymorphism. The size of hyperplastic nuclei was several times larger than that of normal thyrocyte nuclei. The color of stained cytoplasmic and nuclear vacuoles of thyrocytes was less redviolet compared with that of surrounding tissues, which probably indicates the presence of parasitic DNA in them. The haemosporidian nuclear material in erythrocytes is represented by polymorphic nuclei, which may indicate the simultaneous presence of different pathogen species and/or generations in the blood. Intracellular parasitism of haemosporidian infection in thyrocytes (schizogony) associated with three thyroid cancers leads to pronounced cytoplasmic hyperplasia, cytoplasmic vacuolization, and nuclear vacuolization of the thyrocyte, followed by impaired secretory function. Multinucleated thyrocytes with incomplete cytokinesis appear. The absence of lytic death of the affected thyrocytes indicates that the contagium is able to control apoptosis and influence physiological functions of the cell. There is deformation of the nuclei, which leads to a decrease in their size, their flattening and displacement to the cell periphery, with high risk of DNA mutations and deletions in affected cells, reaching a neoplastic level.
Collapse
|
5
|
Chepkwony M, Wragg D, Latré de Laté P, Paxton E, Cook E, Ndambuki G, Kitala P, Gathura P, Toye P, Prendergast J. Longitudinal transcriptome analysis of cattle infected with Theileria parva. Int J Parasitol 2022; 52:799-813. [PMID: 36244429 DOI: 10.1016/j.ijpara.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
The apicomplexan cattle parasite Theileria parva is a major barrier to improving the livelihoods of smallholder farmers in Africa, killing over one million cattle on the continent each year. Although exotic breeds not native to Africa are highly susceptible to the disease, previous studies have illustrated that such breeds often show innate tolerance to infection by the parasite. The mechanisms underlying this tolerance remain largely unclear. To better understand the host response to T. parva infection we characterised the transcriptional response over 15 days in tolerant and susceptible cattle (n = 29) naturally exposed to the parasite. We identify key genes and pathways activated in response to infection as well as, importantly, several genes differentially expressed between the animals that ultimately survived or succumbed to infection. These include genes linked to key cell proliferation and infection pathways. Furthermore, we identify response expression quantitative trait loci containing genetic variants whose impact on the expression level of nearby genes changes in response to the infection. These therefore provide an indication of the genetic basis of differential host responses. Together these results provide a comprehensive analysis of the host transcriptional response to this under-studied pathogen, providing clues as to the mechanisms underlying natural tolerance to the disease.
Collapse
Affiliation(s)
- M Chepkwony
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - D Wragg
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - P Latré de Laté
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - E Paxton
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK
| | - E Cook
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - G Ndambuki
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya
| | - P Kitala
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Gathura
- College of Agriculture and Veterinary Sciences (CAVS), University of Nairobi, P.O. Box 29053-00624, Kangemi, Nairobi, Kenya
| | - P Toye
- Centre for Tropical Livestock Genetics and Health (CTLGH), ILRI Kenya, P.O. Box 30709, Nairobi 00100, Kenya.
| | - J Prendergast
- Centre for Tropical Livestock Genetics and Health (CTLGH), Easter Bush Campus, EH25 9RG, UK.
| |
Collapse
|
6
|
Latre de Late P, Cook EAJ, Wragg D, Poole EJ, Ndambuki G, Miyunga AA, Chepkwony MC, Mwaura S, Ndiwa N, Prettejohn G, Sitt T, Van Aardt R, Morrison WI, Prendergast JGD, Toye P. Inherited Tolerance in Cattle to the Apicomplexan Protozoan Theileria parva is Associated with Decreased Proliferation of Parasite-Infected Lymphocytes. Front Cell Infect Microbiol 2021; 11:751671. [PMID: 34804994 PMCID: PMC8602341 DOI: 10.3389/fcimb.2021.751671] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/27/2021] [Indexed: 11/18/2022] Open
Abstract
Theileria parva is the causative agent of East Coast fever and Corridor disease, which are fatal, economically important diseases of cattle in eastern, central and southern Africa. Improved methods of control of the diseases are urgently required. The parasite transforms host lymphocytes, resulting in a rapid, clonal expansion of infected cells. Resistance to the disease has long been reported in cattle from T. parva-endemic areas. We reveal here that first- and second-generation descendants of a single Bos indicus bull survived severe challenge with T. parva, (overall survival rate 57.3% compared to 8.7% for unrelated animals) in a series of five field studies. Tolerant cattle displayed a delayed and less severe parasitosis and febrile response than unrelated animals. The in vitro proliferation of cells from surviving cattle was much reduced compared to those from animals that succumbed to infection. Additionally, some pro-inflammatory cytokines such as IL1β, IL6, TNFα or TGFβ which are usually strongly expressed in susceptible animals and are known to regulate cell growth or motility, remain low in tolerant animals. This correlates with the reduced proliferation and less severe clinical reactions observed in tolerant cattle. The results show for the first time that the inherited tolerance to T. parva is associated with decreased proliferation of infected lymphocytes. The results are discussed in terms of whether the reduced proliferation is the result of a perturbation of the transformation mechanism induced in infected cells or is due to an innate immune response present in the tolerant cattle.
Collapse
Affiliation(s)
- Perle Latre de Late
- International Livestock Research Institute (ILRI), Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, Nairobi, Kenya
| | - Elizabeth A J Cook
- International Livestock Research Institute (ILRI), Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, Nairobi, Kenya
| | - David Wragg
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, Edinburgh, United Kingdom
| | - E Jane Poole
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Gideon Ndambuki
- International Livestock Research Institute (ILRI), Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, Nairobi, Kenya
| | - Antoinette Aluoch Miyunga
- International Livestock Research Institute (ILRI), Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, Nairobi, Kenya
| | - Maurine C Chepkwony
- International Livestock Research Institute (ILRI), Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, Nairobi, Kenya
| | - Stephen Mwaura
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Nicholas Ndiwa
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - Tatjana Sitt
- International Livestock Research Institute (ILRI), Nairobi, Kenya
| | | | - W Ivan Morrison
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - James G D Prendergast
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Centre for Tropical Livestock Genetics and Health, Edinburgh, United Kingdom
| | - Philip Toye
- International Livestock Research Institute (ILRI), Nairobi, Kenya.,Centre for Tropical Livestock Genetics and Health, Nairobi, Kenya
| |
Collapse
|
7
|
Krecek RC, Rabinowitz PM, Conrad PA. Demystifying and Demonstrating the Value of a One Health Approach to Parasitological Challenges. Vet Parasitol 2020; 287:109202. [PMID: 33045550 DOI: 10.1016/j.vetpar.2020.109202] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 08/06/2020] [Indexed: 01/20/2023]
Abstract
The One Health approach recognizes the interconnectedness of human, animal, and ecosystem health and encourages collaboration between diverse disciplines to address complex health problems. In this paper, 3 academics, with diverse training, experience and backgrounds who each work on different pathogenic parasites, will share their stories of tackling parasitic challenges by applying a One Health approach. The pathogenic parasites to be discussed include the helminth Taenia solium and protozoans Giardia, Theileria, Babesia, Neospora and Toxoplasma species. The 3 narratives focus on research and clinical case-based challenges and illustrate where collaboration between human, animal, and environmental health scientists either has or could lead to improved control of human and animal health as well as important research discoveries. The need for better evaluation of interventions and scientific evidence to support changes in clinical practice and encourage enhanced collaboration between human and veterinary clinicians, as well as new governmental policies to improve public and wildlife health, are described. The need for a range of evidence-based metrics to monitor the success and impact of the One Health approach to veterinary parasitology is also discussed.
Collapse
Affiliation(s)
- Rosina C Krecek
- 4302 Berwick Place, College Station, Texas 77845, United States; Department of Zoology, University of Johannesburg, Auckland Park, South Africa
| | - Peter M Rabinowitz
- Departments of Environmental and Occupational Health Sciences, Global Health, Family Medicine, University of Washington Center for One Health Research, 1959 NE Pacific Street HSB F551, Box 357234, Seattle, Washington 98195, United States
| | - Patricia A Conrad
- One Health Institute and Department of Pathology, Microbiology & Immunology, School of Veterinary Medicine, 1 Shields Avenue, University of California Davis, Davis, CA 95616, United States
| |
Collapse
|
8
|
Protein Kinase Inhibitors Arrested the In-Vitro Growth of Theileria equi. Acta Parasitol 2020; 65:644-651. [PMID: 32240490 DOI: 10.2478/s11686-020-00202-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 03/18/2020] [Indexed: 11/20/2022]
Abstract
INTRODUCTION Theileria equi is an intra-erythrocytic apicomplexean protozoa that infect equines. Protein kinases (PK), key molecules of the apicomplexean life cycle, have been implicated as significant drug targets. The growth inhibitory efficacy of PK inhibitors against Theileria/Babesia animal parasites have not been documented so far. METHODS The present study aimed to carry out in-vitro growth inhibitory efficacy studies of four novel drug molecules-SB239063, PD0332991 isethionate, FR180204 and apigenin, targeting different protein kinases of T. equi. A continuous microaerophilic stationary-phase culture (MASP) system was established for propagation of T. equi parasites. This in-vitro culture technique was used to assess the growth inhibitory effect of protein kinase targeted drug molecules, whereas diminazene aceturate was taken as control drug against T. equi. The inhibitory concentration (IC50) was determined for comparative analysis. The potential cytotoxicity of the drug molecule was also assessed on horse's peripheral blood mononuclear cells (PBMCs) cell line. RESULTS SB239063 and diminazene aceturate drugs significantly inhibited (p < 0.05) the in-vitro growth of T. equi parasite at 0.1 µM, 1 µM, 10 µM, 50 µM and 100 µM concentration at ≥ 48 h of incubation period and respective IC50 values were 4.25 µM and 1.23 µM. Furthermore, SB239063 was not cytotoxic to the horse PBMCs and found safer than diminazine aceturate drug. PD0332991 isethionate and FR180204 are extracellular signal-regulated kinase (ERK) inhibitors and significantly (p < 0.05) inhibited T. equi in-vitro growth at higher concentrations (≥ 48 h of incubation period) with respective IC50 value of 10.41 µM and 21.0 µM. Lower concentrations of these two drugs were not effective (p > 0.05) even after 96 h of treatment period. Apigenin (protein kinase-C inhibitor) drug molecule was unsuccessful in inhibiting the T. equi parasite growth completely. After 96 h of in-vitro treatment period, a parasite viability study was performed on drug-treated T. equi parasitized RBCs. These drugs-treated parasitized RBCs were collected and transferred to wells containing fresh culture media (without drug) and naïve host RBCs. Drug-treated RBCs collected from SB239063, PD0332991, diminazene aceturate treatment (1 µM to 100 µM concentration) were unsuccessful in growing/multiplying further. Apigenin drug-treated T. equi parasites were live after 96 h of treatment. CONCLUSION It may be concluded that SB239063 was the most effective drug molecule (being lowest in IC50 value) out of the four different protein kinase inhibitors tested in this study. This drug molecule has insignificant cytotoxic activity against horse's PBMCs.
Collapse
|
9
|
Bai H, Zhou T, Zhao J, Chen B, Pu F, Bai Y, Wu Y, Chen L, Shi Y, Ke Q, Yu X, Xu P. Transcriptome analysis reveals the temporal gene expression patterns in skin of large yellow croaker (Larimichthys crocea) in response to Cryptocaryon irritans infection. FISH & SHELLFISH IMMUNOLOGY 2020; 99:462-472. [PMID: 32070786 DOI: 10.1016/j.fsi.2020.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 02/10/2020] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is one of the most important mariculture fish in China. In the past decades, cryptocaryonosis caused by Cryptocryon irritans has led to huge economic losses, posing great threat to the healthy and sustainable development of L. crocea mariculture industry. As the largest immunologically active mucosal organ in fish, skin provides the first defense line against external pathogens. To better understand the gene expression dynamics, the large yellow croakers were artificially infected with C. irritans and their skin tissues were collected at 0 h, 24 h, 48 h, 72 h and 96 h post infection. The total RNA in the skin tissues were extracted and the transcriptome were sequenced. After sequencing, a total of 1,131, 311, 140 million high quality RNA-seq reads were collected. A set of 215, 473, 968, 1055 differentially expressed genes were identified at 24 h, 48 h, 72 h and 96 h post infection respectively. Further analysis clustered these DEGs into six profiles and 75 hub genes for six profiles were identified. Among these hub genes, 18 immune related genes including TLR5, TOPK, NFKBIZ, MAPK14A were identified post C. irritans infection. Cytokine-cytokine receptor interaction was the only pathway that significantly enriched at four timepoints post infection. This study provides an in-depth understanding of skin transcriptome variance of large yellow croaker after C. irritans infection, which would be helpful for further understanding of the molecular mechanism of L. crocea in response to C. irritans infection.
Collapse
Affiliation(s)
- Huaqiang Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Tao Zhou
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Ji Zhao
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Baohua Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Fei Pu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yulin Bai
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yidi Wu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Lin Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Yue Shi
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China
| | - Qiaozhen Ke
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Xunkai Yu
- State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China
| | - Peng Xu
- State Key Laboratory of Marine Environmental Science, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, 352130, China; Fujian Key Laboratory of Genetics and Breeding of Marine Organisms, College of Ocean and Earth Sciences, Xiamen University, Xiamen, 361102, China.
| |
Collapse
|
10
|
Transcriptomics reveal potential vaccine antigens and a drastic increase of upregulated genes during Theileria parva development from arthropod to bovine infective stages. PLoS One 2018; 13:e0204047. [PMID: 30303978 PMCID: PMC6179218 DOI: 10.1371/journal.pone.0204047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/31/2018] [Indexed: 01/31/2023] Open
Abstract
Theileria parva is a protozoan parasite transmitted by the brown ear tick Rhipicephalus appendiculatus that causes East Coast fever (ECF) in cattle, resulting in substantial economic losses in the regions of southern, eastern and central Africa. The schizont form of the parasite transforms the bovine host lymphocytes into actively proliferating cancer-like cells. However, how T. parva causes bovine host cells to proliferate and maintain a cancerous phenotype following infection is still poorly understood. On the other hand, current efforts to develop improved vaccines have identified only a few candidate antigens. In the present paper, we report the first comparative transcriptomic analysis throughout the course of T. parva infection. We observed that the development of sporoblast into sporozoite and then the establishment in the host cells as schizont is accompanied by a drastic increase of upregulated genes in the schizont stage of the parasite. In contrast, the ten highest gene expression values occurred in the arthropod vector stages. A comparative analysis showed that 2845 genes were upregulated in both sporozoite and schizont stages compared to the sporoblast. In addition, 647 were upregulated only in the sporozoite whereas 310 were only upregulated in the schizont. We detected low p67 expression in the schizont stage, an unexpected finding considering that p67 has been reported as a sporozoite stage-specific gene. In contrast, we found that transcription of p67 was 20 times higher in the sporoblast than in the sporozoite. Using the expression profiles of recently identified candidate vaccine antigens as a benchmark for selection for novel potential vaccine candidates, we identified three genes with expression similar to p67 and several other genes similar to Tp1-Tp10 schizont vaccine antigens. We propose that the antigenicity or chemotherapeutic potential of this panel of new candidate antigens be further investigated. Structural comparisons of the transcripts generated here with the existing gene models for the respective loci revealed indels. Our findings can be used to improve the structural annotation of the T. parva genome, and the identification of alternatively spliced transcripts.
Collapse
|
11
|
Yamagishi J, Asada M, Hakimi H, Tanaka TQ, Sugimoto C, Kawazu SI. Whole-genome assembly of Babesia ovata and comparative genomics between closely related pathogens. BMC Genomics 2017; 18:832. [PMID: 29078748 PMCID: PMC5660447 DOI: 10.1186/s12864-017-4230-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 10/20/2017] [Indexed: 01/13/2023] Open
Abstract
Background Babesia ovata, belonging to the phylum Apicomplexa, is an infectious parasite of bovids. It is not associated with the manifestation of severe symptoms, in contrast to other types of bovine babesiosis caused by B. bovis and B. bigemina; however, upon co-infection with Theileria orientalis, it occasionally induces exacerbated symptoms. Asymptomatic chronic infection in bovines is usually observed only for B. ovata. Comparative genomic analysis could potentially reveal factors involved in these distinguishing characteristics; however, the genomic and molecular basis of these phenotypes remains elusive, especially in B. ovata. From a technical perspective, the current development of a very long read sequencer, MinION, will facilitate the obtainment of highly integrated genome sequences. Therefore, we applied next-generation sequencing to acquire a high-quality genome of the parasite, which provides fundamental information for understanding apicomplexans. Results The genome was assembled into 14,453,397 bp in size with 5031 protein-coding sequences (91 contigs and N50 = 2,090,503 bp). Gene family analysis revealed that ves1 alpha and beta, which belong to multigene families in B. bovis, were absent from B. ovata, the same as in B. bigemina. Instead, ves1a and ves1b, which were originally specified in B. bigemina, were present. The B. ovata and B. bigemina ves1a configure one cluster together even though they divided into two sub-clusters according to the spp. In contrast, the ves1b cluster was more dispersed and the overlap among B. ovata and B. bigemina was limited. The observed redundancy and rapid evolution in sequence might reflect the adaptive history of these parasites. Moreover, same candidate genes which potentially involved in the distinct phenotypes were specified by functional analysis. An anamorsin homolog is one of them. The human anamorsin is involved in hematopoiesis and the homolog was present in B. ovata but absent in B. bigemina which causes severe anemia. Conclusions Taking these findings together, the differences demonstrated by comparative genomics potentially explain the evolutionary history of these parasites and the differences in their phenotypes. Besides, the draft genome provides fundamental information for further characterization and understanding of these parasites. Electronic supplementary material The online version of this article (10.1186/s12864-017-4230-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Junya Yamagishi
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan. .,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan.
| | - Masahito Asada
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Hassan Hakimi
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | | | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Station for Zoonosis Control, GI-CoRE, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Shin-Ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| |
Collapse
|
12
|
Chakraborty S, Roy S, Mistry HU, Murthy S, George N, Bhandari V, Sharma P. Potential Sabotage of Host Cell Physiology by Apicomplexan Parasites for Their Survival Benefits. Front Immunol 2017; 8:1261. [PMID: 29081773 PMCID: PMC5645534 DOI: 10.3389/fimmu.2017.01261] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 09/21/2017] [Indexed: 12/26/2022] Open
Abstract
Plasmodium, Toxoplasma, Cryptosporidium, Babesia, and Theileria are the major apicomplexan parasites affecting humans or animals worldwide. These pathogens represent an excellent example of host manipulators who can overturn host signaling pathways for their survival. They infect different types of host cells and take charge of the host machinery to gain nutrients and prevent itself from host attack. The mechanisms by which these pathogens modulate the host signaling pathways are well studied for Plasmodium, Toxoplasma, Cryptosporidium, and Theileria, except for limited studies on Babesia. Theileria is a unique pathogen taking into account the way it modulates host cell transformation, resulting in its clonal expansion. These parasites majorly modulate similar host signaling pathways, however, the disease outcome and effect is different among them. In this review, we discuss the approaches of these apicomplexan to manipulate the host–parasite clearance pathways during infection, invasion, survival, and egress.
Collapse
Affiliation(s)
| | - Sonti Roy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Hiral Uday Mistry
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Shweta Murthy
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | - Neena George
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| | | | - Paresh Sharma
- National Institute of Animal Biotechnology (NIAB-DBT), Hyderabad, India
| |
Collapse
|
13
|
Mukherjee M, Basu Ball W, Das PK. Leishmania donovani activates SREBP2 to modulate macrophage membrane cholesterol and mitochondrial oxidants for establishment of infection. Int J Biochem Cell Biol 2014; 55:196-208. [PMID: 25218172 DOI: 10.1016/j.biocel.2014.08.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Revised: 07/11/2014] [Accepted: 08/23/2014] [Indexed: 10/24/2022]
Abstract
Establishment of infection by an intracellular pathogen depends on successful internalization with a concomitant neutralization of host defense machinery. Leishmania donovani, an intramacrophage pathogen, targets host SREBP2, a critical transcription factor, to regulate macrophage plasma membrane cholesterol and mitochondrial reactive oxygen species generation, favoring parasite invasion and persistence. Leishmania infection triggered membrane-raft reorientation-dependent Lyn-PI3K/Akt pathway activation which in turn deactivated GSK3β to stabilize nuclear SREBP2. Moreover, cells perceiving less available intracellular cholesterol due to its sequestration at the plasma membrane resulted in the deregulation of the ER-residing SCAP-SREBP2-Insig circuit thereby assisting increased nuclear translocation of SREBP2. Both increased nuclear transport and stabilization of SREBP2 caused HMGCR-catalyzed cholesterol biosynthesis-mediated plasma membrane cholesterol enrichment leading to decreased membrane-fluidity and plausibly assisting delay in phagosomal acidification. Parasite survival ensuing entry was further ensured by SREBP2-dependent transcriptional up-regulation of UCP2, which suppressed mitochondrial ROS generation, one of the primary microbicidal molecules in macrophages recognized for its efficacy against Leishmania. Functional knock-down of SREBP2 both in vitro and in vivo was associated with reduction in macrophage plasma membrane cholesterol, increased ROS production and lower parasite survival. To our knowledge, this study, for the first time, reveals that Leishmania exploits macrophage cholesterol-dependent SREBP2 circuit to facilitate its entry and survival within the host.
Collapse
Affiliation(s)
- Madhuchhanda Mukherjee
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Writoban Basu Ball
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India.
| |
Collapse
|
14
|
Medjkane S, Weitzman JB. A reversible Warburg effect is induced by Theileria parasites to transform host leukocytes. Cell Cycle 2014; 12:2167-8. [PMID: 23803730 PMCID: PMC3755061 DOI: 10.4161/cc.25540] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
15
|
Müller J, Hemphill A. New approaches for the identification of drug targets in protozoan parasites. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 301:359-401. [PMID: 23317822 DOI: 10.1016/b978-0-12-407704-1.00007-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Antiparasitic chemotherapy is an important issue for drug development. Traditionally, novel compounds with antiprotozoan activities have been identified by screening of compound libraries in high-throughput systems. More recently developed approaches employ target-based drug design supported by genomics and proteomics of protozoan parasites. In this chapter, the drug targets in protozoan parasites are reviewed. The gene-expression machinery has been among the first targets for antiparasitic drugs and is still under investigation as a target for novel compounds. Other targets include cytoskeletal proteins, proteins involved in intracellular signaling, membranes, and enzymes participating in intermediary metabolism. In apicomplexan parasites, the apicoplast is a suitable target for established and novel drugs. Some drugs act on multiple subcellular targets. Drugs with nitro groups generate free radicals under anaerobic growth conditions, and drugs with peroxide groups generate radicals under aerobic growth conditions, both affecting multiple cellular pathways. Mefloquine and thiazolides are presented as examples for antiprotozoan compounds with multiple (side) effects. The classic approach of drug discovery employing high-throughput physiological screenings followed by identification of drug targets has yielded the mainstream of current antiprotozoal drugs. Target-based drug design supported by genomics and proteomics of protozoan parasites has not produced any antiparasitic drug so far. The reason for this is discussed and a synthesis of both methods is proposed.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Berne, Berne, Switzerland.
| | | |
Collapse
|
16
|
Hayashida K, Kajino K, Hattori M, Wallace M, Morrison I, Greene MI, Sugimoto C. MDM2 regulates a novel form of incomplete neoplastic transformation of Theileria parva infected lymphocytes. Exp Mol Pathol 2012; 94:228-38. [PMID: 22981919 DOI: 10.1016/j.yexmp.2012.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 08/30/2012] [Indexed: 01/05/2023]
Abstract
Our efforts are concerned with identifying features of incomplete malignant transformation caused by non viral pathogens. Theileria parva (T. parva) is a tick-transmitted protozoan parasite that can cause a fatal lymphoproliferative disease in cattle. The T. parva-infected lymphocytes display a transformed phenotype and proliferate in culture media like the other tumor cells, however those cells will return to normal after antiprotozoal treatment reflecting the incomplete nature of transformation. To identify signaling pathways involved in this form of transformation of T. parva-infected cells, we screened a library of anticancer compounds. Among these, TIBC, a specific inhibitor of MDM2, markedly inhibited proliferation of T. parva-infected lymphocytes and promoted apoptosis. Therefore we analyzed MDM2 function in T. parva-infected cells. Several T. parva-infected cell lines showed increased expression level of MDM2 with alternatively spliced isoforms compared to the lymphoma cells or ConA blasts. In addition, buparvaquone affected MDM2 expression in T. parva transformed cells. Moreover, p53 protein accumulation and function were impaired in T. parva-infected cells after cisplatin induced DNA damage despite the increased p53 transcription level. Finally, the treatment of T. parva-infected cells with boronic-chalcone derivatives TIBC restored p53 protein accumulation and induced Bax expression. These results suggest that the overexpression of MDM2 is closely linked to the inhibition of p53-dependent apoptosis of T. parva-infected lymphocytes. Aberrant expression of host lymphocyte MDM2 induced by cytoplasmic existence of T. parva, directly and/or indirectly, is associated with aspects of this type of transformation of T. parva-infected lymphocytes. This form of transformation shares features of oncogene induced malignant phenotype acquisition.
Collapse
Affiliation(s)
- Kyoko Hayashida
- Division of Collaboration and Education, Hokkaido University, Research Center for Zoonosis Control, Sapporo 001-0020, Japan
| | | | | | | | | | | | | |
Collapse
|
17
|
Benamrouz S, Conseil V, Creusy C, Calderon E, Dei-Cas E, Certad G. Parasites and malignancies, a review, with emphasis on digestive cancer induced by Cryptosporidium parvum (Alveolata: Apicomplexa). Parasite 2012; 19:101-15. [PMID: 22348213 PMCID: PMC3671432 DOI: 10.1051/parasite/2012192101] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The International Agency for Research on Cancer (IARC) identifies ten infectious agents (viruses, bacteria, parasites) able to induce cancer disease in humans. Among parasites, a carcinogenic role is currently recognized to the digenetic trematodes Schistosoma haematobium, leading to bladder cancer, and to Clonorchis sinensis or Opisthorchis viverrini, which cause cholangiocarcinoma. Furthermore, several reports suspected the potential association of other parasitic infections (due to Protozoan or Metazoan parasites) with the development of neoplastic changes in the host tissues. The present work shortly reviewed available data on the involvement of parasites in neoplastic processes in humans or animals, and especially focused on the carcinogenic power of Cryptosporidium parvum infection. On the whole, infection seems to play a crucial role in the etiology of cancer.
Collapse
Affiliation(s)
- S Benamrouz
- Biologie & Diversité des Pathogènes Eucaryotes Émergents (BDEEP), Centre d'Infection et d'Immunité de Lille (CIIL), INSERM U1019, CNRS UMR8402, EA4547, Université Lille Nord-de-France, Institut Pasteur de Lille, France
| | | | | | | | | | | |
Collapse
|
18
|
Yamaguchi T, Yamanaka M, Ikehara S, Kida K, Kuboki N, Mizuno D, Yokoyama N, Narimatsu H, Ikehara Y. Generation of IFN-γ-producing cells that recognize the major piroplasm surface protein in Theileria orientalis-infected bovines. Vet Parasitol 2010; 171:207-15. [DOI: 10.1016/j.vetpar.2010.03.038] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 03/23/2010] [Accepted: 03/26/2010] [Indexed: 12/14/2022]
|
19
|
Vieira FS, Corrêa G, Einicker-Lamas M, Coutinho-Silva R. Host-cell lipid rafts: a safe door for micro-organisms? Biol Cell 2010; 102:391-407. [PMID: 20377525 PMCID: PMC7161784 DOI: 10.1042/bc20090138] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 02/10/2010] [Indexed: 12/20/2022]
Abstract
The lipid raft hypothesis proposed that these microdomains are small (10-200 nM), highly dynamic and enriched in cholesterol, glycosphingolipids and signalling phospholipids, which compartmentalize cellular processes. These membrane regions play crucial roles in signal transduction, phagocytosis and secretion, as well as pathogen adhesion/interaction. Throughout evolution, many pathogens have developed mechanisms to escape from the host immune system, some of which are based on the host membrane microdomain machinery. Thus lipid rafts might be exploited by pathogens as signalling and entry platforms. In this review, we summarize the role of lipid rafts as players in the overall invasion process used by different pathogens to escape from the host immune system.
Collapse
Affiliation(s)
- Flávia Sarmento Vieira
- Laboratório de Imunofisiologia, Universidade Federal do Rio de Janeiro, Instituto de Biofísica Carlos Chagas Filho, CCS, Rio de Janeiro, RJ, Brazil
| | | | | | | |
Collapse
|
20
|
Certad G, Creusy C, Ngouanesavanh T, Guyot K, Gantois N, Mouray A, Chassat T, Flament N, Fleurisse L, Pinon A, Delhaes L, Dei-Cas E. Development of Cryptosporidium parvum-induced gastrointestinal neoplasia in severe combined immunodeficiency (SCID) mice: severity of lesions is correlated with infection intensity. Am J Trop Med Hyg 2010; 82:257-65. [PMID: 20134002 DOI: 10.4269/ajtmh.2010.09-0309] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We reported previously that Cryptosporidium parvum was able to induce intestinal tumors in severe combined immunodeficiency (SCID) mice treated with corticoids. To further characterize this Cryptosporidium-induced cell transformation, SCID mice treated with dexamethasone were challenged with C. parvum oocysts, and euthanatized sequentially after infection for histologic examination. Ki-67 was used as a marker of cellular proliferation. Our previous results were confirmed, and it was also found that mice receiving higher inocula (10(6)-10(7)) experienced more severe neoplastic development. Additionally, neoplastic changes were observed not only in the caecum but also in the stomach and duodenum of some animals. Interestingly, SCID mice (6/6) inoculated with 10(5)-10(7) oocysts showed high grade intraepithelial neoplasia or adenomas with high grade dysplasia in the caecum after Day 46 post-infection (PI). Immunohistochemistry for Ki-67 staining indicated the neoplastic process associated to cryptosporidiosis, and evidenced the first immunohistochemical alterations at early stages of the process, even at 3 weeks PI.
Collapse
Affiliation(s)
- Gabriela Certad
- Ecologie du Parasitisme (EA3609 Université de Lille 2), IFR 142, Institut Pasteur de Lille, Lille, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Morrison WI. The biological and practical significance of antigenic variability in protective T cell responses against Theileria parva. Vet Parasitol 2007; 148:21-30. [PMID: 17580101 DOI: 10.1016/j.vetpar.2007.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The evolution of antigenically distinct pathogen strains that fail to cross-protect is well documented for pathogens controlled primarily by humoral immune responses. Unlike antibodies, which recognise native proteins, protective T cells can potentially recognise epitopes in a variety of proteins that are not necessarily displayed on the pathogen surface. Moreover, individual hosts of different MHC genotypes generally respond to different sets of epitopes. It is therefore less easy to envisage how strain restricted immunity can arise for pathogens controlled by T cell responses, particularly in antigenically complex parasites. Nevertheless, strain restricted immunity is clearly a feature of a number of parasitic infections, where immunity is known to be mediated by T cell responses. One such parasite is Theileria parva which induces potent CD8 T cell responses that play an important role in immunity. CD8 T cells specific for parasitized lymphoblasts exhibit strain specificity, which appears to correlate with the ability of parasite strains to cross-protect. Studies using recently identified T. parva antigens recognised by CD8 T cells have shown that the strain restricted nature of immunity is a consequence of the CD8 T cell response in individual animals being focused on a limited number of dominant polymorphic antigenic determinants. Responses in animals of different MHC genotypes are often directed to different parasite antigens, indicating that, at the host population level, a larger number of parasite proteins can serve as targets for the protective T cell response. Nevertheless, the finding that parasite strains show overlapping antigenic profiles, probably as a consequence of sexual recombination, suggests that induction of responses to an extended but limited set of antigens in individual animals may overcome the strain restricted nature of immunity.
Collapse
Affiliation(s)
- W I Morrison
- Division of Veterinary Clinical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Roslin, Midlothian EH25 9RG, UK.
| |
Collapse
|
22
|
Katzer F, Ngugi D, Schnier C, Walker AR, McKeever DJ. Influence of host immunity on parasite diversity in Theileria parva. Infect Immun 2007; 75:4909-16. [PMID: 17635866 PMCID: PMC2044528 DOI: 10.1128/iai.00710-07] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We examined the influence of host immunity on the genotypic diversity of the intracellular transforming cattle parasite Theileria parva. By tracking the emergence of discrete parasite genotypes in an animal challenged with a bulk stabilate following immunization with its major component clone, we observed a profound modulation of genotypic frequencies in the breakthrough schizont population. In particular, no incidences of the immunizing clone were observed and a progressive decline was apparent in the relatedness of breakthrough genotypes to it. These observations were reflected in the genotypic profile of transmissible parasite stages that emerged in the erythrocyte fraction of the animal and in parasite progeny generated by tick pickup. In a separate experiment, genotypic profiles of breakthrough parasite populations were observed to vary between unrelated immune animals selected on the basis of the major histocompatibility complex (MHC) class I phenotype, a known determinant of the specificity of the immune response. Furthermore, immunization and challenge of calves with molecularly distinct but cross-protective parasite populations revealed that infection results in transmissible erythrocyte forms in spite of a protective immune response. These observations suggest that immunity does not prevent transmission of challenge parasites and that its impact on the parasite at a population level is influenced by herd MHC diversity.
Collapse
Affiliation(s)
- Frank Katzer
- Centre for Tropical Veterinary Medicine, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Veterinary Centre, Roslin, Midlothian EH25 9RG, United Kingdom
| | | | | | | | | |
Collapse
|
23
|
Morrison WI, McKeever DJ. Current status of vaccine development against Theileria parasites. Parasitology 2007; 133 Suppl:S169-87. [PMID: 17274845 DOI: 10.1017/s0031182006001867] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The tick-borne protozoan parasites Theileria parva and Theileria annulata cause economically important diseases of cattle in tropical and sub-tropical regions. Because of shortcomings in disease control measures based on therapy and tick control, there is a demand for effective vaccines against these diseases. Vaccines using live parasites have been available for over two decades, but despite their undoubted efficacy they have not been used on a large scale. Lack of infrastructure for vaccine production and distribution, as well as concerns about the introduction of vaccine parasite strains into local tick populations have curtailed the use of these vaccines. More recently, research has focused on the development of subunit vaccines. Studies of immune responses to different stages of the parasites have yielded immunological probes that have been used to identify candidate vaccine antigens. Immunisation of cattle with antigens expressed in the sporozoite, schizont or merozoite stages has resulted in varying degrees of protection against challenge. Although the levels of protection achieved have not been sufficient to allow exploitation for vaccination, there are clearly further lines of investigation, relating to both the choice of antigens and the antigen delivery systems employed, that need to be pursued to fully explore the potential of the candidate vaccines. Improved knowledge of the molecular biology and immunology of the parasites gained during the course of these studies has also opened up opportunities to refine and improve the quality of live vaccines.
Collapse
Affiliation(s)
- W I Morrison
- Division of Veterinary Clinical Sciences, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
24
|
Guergnon J, Dessauge F, Traincard F, Cayla X, Rebollo A, Bost PE, Langsley G, Garcia A. A PKA survival pathway inhibited by DPT-PKI, a new specific cell permeable PKA inhibitor, is induced by T. annulata in parasitized B-lymphocytes. Apoptosis 2007; 11:1263-73. [PMID: 16761111 DOI: 10.1007/s10495-006-7702-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
T. annulata, an intracellular pathogenic parasite of the Aplicomplexa protozoan family infects bovine B-lymphocytes and macrophages. Parasitized cells that become transformed survive and proliferate independently of exogenous growth factors. In the present study, we used the isogenic non parasitized BL3 and parasitized TBL3 B cell lines, as a model to evaluate the contribution of two-major PI3-K- and PKA-dependent anti-apoptotic pathways in the survival of T. annulata parasitized B lymphocytes. We found that T. annulata increases PKA activity, induces over-expression of the catalytic subunit and down-regulates the pro-survival phosphorylation state of Akt/PKB. Consistent with a role of PKA activation in survival, two pharmacological inhibitors H89 and KT5720 ablate PKA-dependent survival of parasitized cells. To specifically inhibit PKA pro-survival pathways we linked the DPTsh1 peptide shuttle sequence to PKI(5-24) and we generated DPT-PKI, a cell permeable PKI. DPT-PKI specifically inhibited PKA activity in bovine cell extracts and, as expected, also inhibited the PKA-dependent survival of T. annulata parasitized TBL3 cells. Thus, parasite-dependent constitutive activation of PKA in TBL3 cells generates an anti-apoptotic pathway that can protect T. annulata-infected B cells from apoptosis. These results also indicate that DPT-PKI could be a powerful tool to inhibit PKA pathways in other cell types.
Collapse
Affiliation(s)
- Julien Guergnon
- Unité de Chimie Organique-Equipe Phosphatase et Laboratoire de signalisation Immunoparasitaire, URA CNRS 2581, 75015 Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Petersen CA, Krumholz KA, Carmen J, Sinai AP, Burleigh BA. Trypanosoma cruzi infection and nuclear factor kappa B activation prevent apoptosis in cardiac cells. Infect Immun 2006; 74:1580-7. [PMID: 16495529 PMCID: PMC1418648 DOI: 10.1128/iai.74.3.1580-1587.2006] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Studies of cardiac pathology and heart failure have implicated cardiomyocyte apoptosis as a critical determinant of disease. Recent evidence indicates that the intracellular protozoan parasite Trypanosoma cruzi, which causes heart disease in chronically infected individuals, impinges on host apoptotic pathways in a cell type-dependent manner. T. cruzi infection of isolated neuronal cells and cardiomyocytes protects against apoptotic cell death, whereas apoptosis is triggered in T cells in T. cruzi-infected animals. In this study, we demonstrate that the ability of T. cruzi to protect cardiac cells in vitro from apoptosis triggered by a combination of tumor necrosis factor alpha and serum reduction correlates with the presence of intracellular parasites and involves activation of host cell NF-kappaB. We further demonstrate that the apoptotic block diminishes activation of caspase 3. The ability of T. cruzi to prevent apoptosis of infected cardiomyocytes is likely to play an important role in establishment of persistent infection in the heart while minimizing potential damage and remodeling that is associated with cardiomyocyte apoptosis in cardiovascular disease.
Collapse
Affiliation(s)
- Christine A Petersen
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA 02115, USA.
| | | | | | | | | |
Collapse
|
26
|
Bradley PJ, Li N, Boothroyd JC. A GFP-based motif-trap reveals a novel mechanism of targeting for the Toxoplasma ROP4 protein. Mol Biochem Parasitol 2005; 137:111-20. [PMID: 15279957 DOI: 10.1016/j.molbiopara.2004.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2004] [Revised: 05/05/2004] [Accepted: 05/06/2004] [Indexed: 11/27/2022]
Abstract
The protozoan parasite Toxoplasma gondii is a highly specialized eukaryote that contains a remarkable number of intracellular compartments, some unique to Apicomplexans and others typical of eukaryotes in general. We have established a green fluorescent protein (GFP)-based motif-trap to identify proteins targeted to different intracellular locations and subsequently the signals responsible for this sorting. The motif-trap involves the transfection and integration of a linearized GFP construct which lacks a promoter and an initiator methionine codon. FACS is used to isolate parasites in which GFP fuses in-frame into a coding region followed by screening by fluorescence microscopy for those containing GFP targeted to specific intracellular compartments. GFP trapping was successful using vectors designed for integration into regions encoding exons and vectors that were engineered with a splice acceptor site for integration into regions encoding introns. This strategy differs from most protein traps in that the resulting fusions are expressed from the endogenous promoter and starting methionine. Thus, problems from inappropriate expression levels or the creation of fortuitous targeting signals seen in library-based traps are diminished. Using this approach, we have trapped GFP localized to a number of intracellular compartments including the nucleus, nucleolus, endoplasmic reticulum, cytosol, parasite surface and rhoptries of Toxoplasma. Further analysis of a parasite clone containing GFP targeted to the rhoptries shows GFP fused to the gene encoding the rhoptry protein ROP4 and has elucidated an additional mechanism for targeting of this protein.
Collapse
Affiliation(s)
- Peter J Bradley
- Department of Microbiology and Immunology, Stanford University School of Medicine, CA 94305-5124, USA
| | | | | |
Collapse
|
27
|
Mukherjee S, Huang H, Petkova SB, Albanese C, Pestell RG, Braunstein VL, Christ GJ, Wittner M, Lisanti MP, Berman JW, Weiss LM, Tanowitz HB. Trypanosoma cruzi infection activates extracellular signal-regulated kinase in cultured endothelial and smooth muscle cells. Infect Immun 2004; 72:5274-82. [PMID: 15322023 PMCID: PMC517449 DOI: 10.1128/iai.72.9.5274-5282.2004] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2004] [Revised: 05/03/2004] [Accepted: 06/11/2004] [Indexed: 11/20/2022] Open
Abstract
Trypanosoma cruzi infection causes cardiomyopathy and vasculopathy. We examined the consequence of this infection for the mitogen-activated protein kinase (MAPK) pathways, which regulate cell proliferation in cultured human umbilical vein endothelial and vascular smooth muscle cells. Infection of these cells resulted in activation of extracellular signal-regulated kinases 1and 2 (ERK1/2) but not c-Jun N-terminal kinase or p38 MAPK. Treatment of these cells with the MAPK kinase inhibitor PD98059 prior to infection blocked the increase in phosphorylated ERK1/2 seen with infection. Heat-killed parasites did not activate ERK1/2, indicating that activation of ERK1/2 was dependent on infection of these cells by live parasites. Furthermore, transfection with dominant-negative Raf(301) or Ras(N17) constructs reduced the infection-associated levels of phospho-ERK1/2, indicating that the activation of ERK1/2 involved the Ras-Raf-ERK pathway. Infection also resulted in an increase in activator protein 1 (AP-1) activity, which was inhibited by transfection with a dominant-negative Raf(301) construct. T. cruzi-infected endothelial cells secreted endothelin-1 and interleukin-1beta, which activated ERK1/2 and induced cyclin D1 expression in uninfected smooth muscle cells. These data suggest a possible molecular paradigm for the pathogenesis of the vasculopathy and the cardiovascular remodeling associated with T. cruzi infection.
Collapse
Affiliation(s)
- Shankar Mukherjee
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Ave., Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Doerig C. Protein kinases as targets for anti-parasitic chemotherapy. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1697:155-68. [PMID: 15023358 DOI: 10.1016/j.bbapap.2003.11.021] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2003] [Accepted: 11/12/2003] [Indexed: 11/19/2022]
Abstract
Parasitic protozoa infecting humans have a staggering impact on public health, especially in the developing world. Furthermore, several protozoan species are major pathogens of domestic animals and have a considerable impact on food production. In many instances, the parasites have developed resistance against available chemotherapeutic agents, making the search for alternative drugs a priority. In line with the current interest in protein kinases inhibitors as potential drugs against a variety of diseases, the possibility that protein kinases may represent targets for novel anti-parasitic agents is being explored. Research into parasite protein kinases has benefited greatly from genome and EST sequencing projects, with the genomes of a few species fully sequenced (notably that of the human malaria parasite Plasmodium falciparum) and several more under way. The overall picture that emerged from research in this area shows that the phylogenetic isolation of parasitic protozoa is reflected by atypical structural and functional properties of many of their protein kinase homologues. Likewise, evidence is emerging, which suggests that the organisation of some otherwise well-conserved signal transduction pathways is divergent in some parasitic species. The differences between protein kinases of a parasite and their homologues in its host cell suggest that specific inhibition of the former can be achieved. The development of anti-parasitic drugs based on protein kinase inhibition is being pursued following two avenues: one consists of screening chemical libraries on recombinant enzymes; several protein kinases from parasitic protozoa are now available for this approach. The second approach relies on the identification of the molecular targets of kinase inhibitors which display anti-parasitic properties. This has led to promising developments in a few instances, in particular regarding PKG as a drug target against Eimeria and Toxoplasma, and purvalanol B, a purine-based CDK inhibitor which appears to affect unexpected targets in several protozoan parasites. The recent resolution of the structure of a Plasmodium protein kinase complexed with small inhibitory molecules opens the way to a rational approach towards the design of anti-parasitic drugs based on kinase inhibition.
Collapse
Affiliation(s)
- Christian Doerig
- Wellcome Centre for Molecular Parasitology, University of Glasgow, INSERM, 56 Dumbarton Road, Glasgow G11 6NU, Scotland, UK.
| |
Collapse
|
29
|
Küenzi P, Schneider P, Dobbelaere DAE. Theileria parva-transformed T cells show enhanced resistance to Fas/Fas ligand-induced apoptosis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 171:1224-31. [PMID: 12874209 DOI: 10.4049/jimmunol.171.3.1224] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lymphocyte homeostasis is regulated by mechanisms that control lymphocyte proliferation and apoptosis. Activation-induced cell death is mediated by the expression of death ligands and receptors, which, when triggered, activate an apoptotic cascade. Bovine T cells transformed by the intracellular parasite Theileria parva proliferate in an uncontrolled manner and undergo clonal expansion. They constitutively express the death receptor Fas and its ligand, FasL but do not undergo apoptosis. Upon elimination of the parasite from the host cell by treatment with a theilericidal drug, cells become increasingly sensitive to Fas/FasL-induced apoptosis. In normal T cells, the sensitivity to death receptor killing is regulated by specific inhibitor proteins. We found that anti-apoptotic proteins such as cellular (c)-FLIP, which functions as a catalytically inactive form of caspase-8, and X-chromosome-linked inhibitor of apoptosis protein (IAP) as well as c-IAP, which can block downstream executioner caspases, are constitutively expressed in T. parva-transformed T cells. Expression of these proteins is rapidly down-regulated upon parasite elimination. Antiapoptotic proteins of the Bcl-2 family such as Bcl-2 and Bcl-x(L) are also expressed but, in contrast to c-FLIP, c-IAP, and X-chromosome-linked IAP, do not appear to be tightly regulated by the presence of the parasite. Finally, we show that, in contrast to the situation in tumor cells, the phosphoinositide 3-kinase/Akt pathway is not essential for c-FLIP expression. Our findings indicate that by inducing the expression of antiapoptotic proteins, T. parva allows the host cell to escape destruction by homeostatic mechanisms that would normally be activated to limit the continuous expansion of a T cell population.
Collapse
Affiliation(s)
- Peter Küenzi
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, Bern, Switzerland
| | | | | |
Collapse
|
30
|
Abstract
The intracellular protozoan parasites Theileria parva and T. annulata transform the cells they infect, inducing uncontrolled proliferation. This is not a trivial event as, in addition to permanently switching on the complex pathways that govern all steps of the cell cycle, the built-in apoptotic safety mechanisms that prevent 'illegitimate' cell replication also need to be inactivated. Recent experiments show that the NF-kappa B and phosphoinositide 3-kinase (PtdIns-3K) pathways are important participants in the transformation process. I kappa B kinase (IKK), a pivotal kinase complex in the NF-kappa B pathway, is recruited to the parasite surface where it becomes activated. The PtdIns-3K/Akt/PKB pathway is also constitutively activated in a parasite-dependent manner, but contrary to IKK, activation is probably not triggered by direct association with the parasite.
Collapse
Affiliation(s)
- Dirk A E Dobbelaere
- Division of Molecular Pathology, Institute of Animal Pathology, University of Bern, Länggassstrasse 122, CH-3012 Bern, Switzerland.
| | | |
Collapse
|
31
|
Abstract
Throughout evolution, organisms have developed immune-surveillance networks to protect themselves from potential pathogens. At the cellular level, the signalling events that regulate these defensive responses take place in membrane rafts--dynamic microdomains that are enriched in cholesterol and glycosphingolipids--that facilitate many protein-protein and lipid-protein interactions at the cell surface. Pathogens have evolved many strategies to ensure their own survival and to evade the host immune system, in some cases by hijacking rafts. However, understanding the means by which pathogens exploit rafts might lead to new therapeutic strategies to prevent or alleviate certain infectious diseases, such as those caused by HIV-1 or Ebola virus.
Collapse
Affiliation(s)
- Santos Mañes
- Department of Immunology and Oncology, Centro Nacional de Biotecnología/Spanish Council for Scientific Research, Campus de la Universidad Autónoma de Madrid, Cantoblanco, Madrid E-28049, Spain
| | | | | |
Collapse
|
32
|
Dietrich G, Viret JF, Gentschev I. Haemolysin A and listeriolysin--two vaccine delivery tools for the induction of cell-mediated immunity. Int J Parasitol 2003; 33:495-505. [PMID: 12782050 DOI: 10.1016/s0020-7519(03)00058-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Haemolysin A of Escherichia coli and listeriolysin of Listeria monocytogenes represent important bacterial virulence factors. While such cytolysins are usually the reason for morbidity and even mortality, vaccine researchers have turned haemolysin A and listeriolysin into tools for vaccine delivery. Both cytolysins have found widespread application in vaccine research and are highly suitable for the elicitation of cell-mediated immunity. In this paper, we will review vaccine delivery mediated by the haemolysin A secretion system and listeriolysin and will highlight their use in vaccination approaches against protozoan parasites.
Collapse
Affiliation(s)
- Guido Dietrich
- Vaccine Research, Berna Biotech AG, Rehhagstr. 79, CH-3018, Bern, Switzerland.
| | | | | |
Collapse
|
33
|
Nyalwidhe J, Maier UG, Lingelbach K. Intracellular parasitism: cell biological adaptations of parasitic protozoa to a life inside cells. ZOOLOGY 2003; 106:341-8. [PMID: 16351918 DOI: 10.1078/0944-2006-00127] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several protozoan parasites evade the host's immune defence because most of their development takes place inside specific host cells. Only a few of these protozoa live within the host cell cytosol. Most parasites are sequestered within membrane-bound compartments, collectively called 'vacuoles'. Recent advances in the cell biology of intracellular parasites have revealed fundamental differences in the strategies whereby such organisms gain entry into their respective host cells. These differences have important implications for host-parasite interaction and for nutrient acquisition by the parasite. Leishmania spp. take advantage of the phagocytic properties of their host cells and presumably contribute little to the uptake process. In contrast, apicomplexan parasites have developed highly specialised organelles, called micronemes and rhoptries, to actively invade a variety of nucleated cells and, in the case of Plasmodium falciparum, human erythrocytes. Following invasion, parasites use a multitude of strategies to protect themselves from the defence mechanisms of the parasitized cells. In addition, they induce novel pathways within the infected cell that allow a most efficient nutrient acquisition both from the host cell cytoplasm and from the extracellular environment. Parasite-induced changes of host cells are most apparent in erythrocytes infected with Plasmodium spp. Mammalian erythrocytes are deficient in de novo protein and lipid biosynthesis and, consequently, pathways which allow the transport of macromolecules and small solutes are established by metabolic activities of the parasite. Research into the cell biology of intracellular parasitism has identified fascinating phenomena some of which we are beginning to understand at a molecular level. They are fascinating because they allow insights into a very intimate interaction between two eukaryotic cells of entirely different phylogenetic origins.
Collapse
|
34
|
|
35
|
|
36
|
|
37
|
Abstract
Protozoan parasites which reside inside a host cell avoid direct destruction by the immune system of the host. The infected cell, however, still has the capacity to counteract the invasive pathogen by initiating its own death, a process which is called programmed cell death or apoptosis. Apoptotic cells are recognised and phagocytosed by macrophages and the parasite is potentially eliminated together with the infected cell. This potent defence mechanism of the host cell puts strong selective pressure on the parasites which have, in turn, evolved strategies to modulate the apoptotic program of the host cell to their favour. Within the last decade, the existence of cellular signalling pathways which inhibit the apoptotic machinery has been demonstrated. It is not surprising that intracellular pathogens subvert these pathways to ensure their own survival in the infected cell. Molecular mechanisms which interfere with apoptotic pathways have been studied extensively for viruses and parasitic bacteria, but protozoan parasites have come into focus only recently. Intracellular protozoan parasites which have been reported to inhibit the apoptotic program of the host cell, are Toxoplasma gondii, Trypanosoma cruzi, Leishmania sp., Theileria sp., Cryptosporidium parvum, and the microsporidian Nosema algerae. Although these parasites differ in their mechanism of host cell entry and in their final intracellular localisation, they might activate similar pathways in their host cells to inhibit apoptosis. In this respect, two families of molecules, which are known for their capacity to interrupt the apoptotic program, are currently discussed in the literature. First, the expression of heat shock proteins is often induced upon parasite infection and can directly interfere with molecules of the cellular death machinery. Secondly, a more indirect effect is attributed to the parasite-dependent activation of NF-kappaB, a transcription factor that regulates the transcription of anti-apoptotic molecules.
Collapse
Affiliation(s)
- V T Heussler
- Molecular Pathology, Institute of Animal Pathology, University of Berne, Switzerland.
| | | | | |
Collapse
|
38
|
Heussler VT, Küenzi P, Fraga F, Schwab RA, Hemmings BA, Dobbelaere DA. The Akt/PKB pathway is constitutively activated in Theileria-transformed leucocytes, but does not directly control constitutive NF-kappaB activation. Cell Microbiol 2001; 3:537-50. [PMID: 11488815 DOI: 10.1046/j.1462-5822.2001.00134.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intracellular protozoan parasites Theileria parva and Theileria annulata transform leucocytes by interfering with host cell signal transduction pathways. They differ from tumour cells, however, in that the transformation process can be entirely reversed by elimination of the parasite from the host cell cytoplasm using a specific parasiticidal drug. We investigated the state of activation of Akt/PKB, a downstream target of PI3-K-generated phosphoinositides, in Theileria-transformed leucocytes. Akt/PKB is constitutively activated in a PI3-K- and parasite-dependent manner, as judged by the specific phosphorylation of key residues, in vitro kinase assays and its cellular distribution. In previous work, we demonstrated that the parasite induces constitutive activation of the transcription factor NF-kappaB, providing protection against spontaneous apoptosis that accompanies transformation. In a number of other systems, a link has been established between the PI3-K-Akt/PKB pathway and NF-kappaB activation, resulting in protection against apoptosis. In Theileria-transformed leucocytes, activation of the NF-kappaB and the PI3-K-Akt/PKB pathways are not directly linked. The PI3-K-Akt/PKB pathway does not contribute to the persistent induction of IkappaBalpha phosphorylation, NF-kappaB DNA-binding or transcriptional activity. We show that the two pathways are downregulated with different kinetics when the parasite is eliminated from the host cell cytoplasm and that NF-kappaB-dependent protection against apoptosis is not dependent on a functional PI3-K-Akt/PKB pathway. We also demonstrate that Akt/PKB contributes, at least in part, to the proliferation of Theileria-transformed T cells.
Collapse
Affiliation(s)
- V T Heussler
- Molecular Pathology, Institute of Animal Pathology, University of Berne, CH-3012 Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
39
|
Machado J, Fernandez PC, Baumann I, Dobbelaere DA. Characterisation of NF-kappa B complexes in Theileria parva-transformedT cells. Microbes Infect 2000; 2:1311-20. [PMID: 11018447 DOI: 10.1016/s1286-4579(00)01284-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transformation of T cells by the intracellular parasite Theileria parva is accompanied by constitutive I-kappa B degradation and NF-kappa B activation, a process which is essential to prevent the spontaneous apoptosis of these parasite-transformed cells. NF-kappa B-mediated responses are regulated by selective combinations of NF-kappa B proteins as homo- or heterodimers and by distinct kappa B motifs. We characterised the NF-kappa B complexes induced by T. parva infection in TpM(803) T cells. By western blot, we demonstrated that all members of the NF-kappa B/Rel family of proteins translocate to the nucleus of infected cells. Using two different kappa B oligonucleotides (kappa B-1 and kappa B-2), both containing the decameric consensus kappa B motif (GGGACTTTCC), clearly distinct patterns of DNA binding activities could be demonstrated in electrophoretic mobility shift assays. Supershift analysis and UV cross-linking assays showed that complexes binding to kappa B-1 consisted of p50, p65 and RelB homo and/or heterodimers. We could also detect an association of ATF-2 and c-Fos with one of the complexes. The HIV-derived kappa B-2 oligo only bound p50 and p65. Additionally, several agents known to inhibit a wide range of NF-kappa B activation pathways had no inhibitory effect on the activation of NF-kappa B DNA binding in TpM(803) T cells.
Collapse
Affiliation(s)
- J Machado
- Laboratory of Molecular Pathology, Institute of Animal Pathology, University of Berne, Länggass-Strasse 122, 3012, Berne, Switzerland
| | | | | | | |
Collapse
|