1
|
Bouatta AM, Anzenberger F, Riederauer L, Lepper A, Denninger P. Polarized subcellular activation of Rho proteins by specific ROPGEFs drives pollen germination in Arabidopsis thaliana. PLoS Biol 2025; 23:e3003139. [PMID: 40258071 PMCID: PMC12043234 DOI: 10.1371/journal.pbio.3003139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 04/30/2025] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
During plant fertilization, excess male gametes compete for a limited number of female gametes. The dormant male gametophyte, encapsulated in the pollen grain, consists of two sperm cells enclosed in a vegetative cell. After reaching the stigma of a compatible flower, quick and efficient germination of the vegetative cell to a tip-growing pollen tube is crucial to ensure fertilization success. Rho of Plants (ROP) signaling and their activating ROP Guanine Nucleotide Exchange Factors (ROPGEFs) are essential for initiating polar growth processes in multiple cell types. However, which ROPGEFs activate pollen germination is unknown. We investigated the role of ROPGEFs in initiating pollen germination and the required cell polarity establishment. Of the five pollen-expressed ROPGEFs, we found that GEF8, GEF9, and GEF12 are required for pollen germination and male fertilization success, as gef8;gef9;gef12 triple mutants showed almost complete loss of pollen germination in vitro and had a reduced allele transmission rate. Live-cell imaging and spatiotemporal analysis of subcellular protein distribution showed that GEF8, GEF9, and GEF11, but not GEF12, displayed transient polar protein accumulations at the future site of pollen germination minutes before pollen germination, demonstrating specific roles for GEF8 and GEF9 during the initiation of pollen germination. Furthermore, this novel GEF accumulation appears in a biphasic temporal manner and can shift its location laterally. We showed that the C-terminal domain of GEF8 and GEF9 confers their protein accumulation and demonstrated that GEFs locally activate ROPs and alter Ca2+ levels, which is required for pollen tube germination. We demonstrated that not all GEFs act redundantly during pollen germination, and we described for the first time a polar domain with spatiotemporal flexibility, which is crucial for the de novo establishment of a polar growth domain within a cell and, thus, for pollen function and fertilization success.
Collapse
Affiliation(s)
- Alida Melissa Bouatta
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Franziska Anzenberger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Lisa Riederauer
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Andrea Lepper
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| | - Philipp Denninger
- Technical University of Munich, School of Life Sciences, Plant Systems Biology, Freising, Germany
| |
Collapse
|
2
|
Fritz C, Reimann TM, Adler J, Knab J, Schulmeister S, Kriechbaum C, Müller S, Parmryd I, Kost B. Plasma membrane and cytoplasmic compartmentalization: A dynamic structural framework required for pollen tube tip growth. PLANT PHYSIOLOGY 2024; 197:kiae558. [PMID: 39446406 DOI: 10.1093/plphys/kiae558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 09/28/2024] [Indexed: 12/24/2024]
Abstract
Rapid, unidirectional pollen tube tip growth is essential for fertilization and widely employed as a model of polar cell expansion, a process crucial for plant morphogenesis. Different proteins and lipids with key functions in the control of polar cell expansion are associated with distinct domains of the plasma membrane (PM) at the pollen tube tip. These domains need to be dynamically maintained during tip growth, which depends on massive secretory and endocytic membrane trafficking. Very little is currently known about the molecular and cellular mechanisms responsible for the compartmentalization of the pollen tube PM. To provide a reliable structural framework for the further characterization of these mechanisms, an integrated quantitative map was compiled of the relative positions in normally growing Nicotiana tabacum (tobacco) pollen tubes of PM domains (i) enriched in key signaling proteins or lipids, (ii) displaying high membrane order, or (iii) in contact with cytoplasmic structures playing important roles in apical membrane trafficking. Previously identified secretory and endocytic PM domains were also included in this map. Internalization of regulatory proteins or lipids associated with PM regions overlapping with the lateral endocytic domain was assessed based on brefeldin A treatment. These analyses revealed remarkable aspects of the structural organization of tobacco pollen tube tips, which (i) enhance our understanding of cellular and regulatory processes underlying tip growth and (ii) highlight important areas of future research.
Collapse
Affiliation(s)
- Carolin Fritz
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Theresa Maria Reimann
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Knab
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sylwia Schulmeister
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Choy Kriechbaum
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Sabine Müller
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Benedikt Kost
- Division of Cell Biology, Department of Biology, Friedrich-Alexander-University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
3
|
Thompson MEH, Raizada MN. The Microbiome of Fertilization-Stage Maize Silks (Style) Encodes Genes and Expresses Traits That Potentially Promote Survival in Pollen/Style Niches and Host Reproduction. Microorganisms 2024; 12:1473. [PMID: 39065240 PMCID: PMC11278993 DOI: 10.3390/microorganisms12071473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 07/28/2024] Open
Abstract
Within flowers, the style channel receives pollen and transmits male gametes inside elongating pollen tubes to ovules. The styles of maize/corn are called silks. Fertilization-stage silks possess complex microbiomes, which may partially derive from pollen. These microbiomes lack functional analysis. We hypothesize that fertilization-stage silk microbiomes promote host fertilization to ensure their own vertical transmission. We further hypothesize that these microbes encode traits to survive stresses within the silk (water/nitrogen limitation) and pollen (dehydration/aluminum) habitats. Here, bacteria cultured from fertilization-stage silks of 14 North American maize genotypes underwent genome mining and functional testing, which revealed osmoprotection, nitrogen-fixation, and aluminum-tolerance traits. Bacteria contained auxin biosynthesis genes, and testing confirmed indole compound secretion, which is relevant, since pollen delivers auxin to silks to stimulate egg cell maturation. Some isolates encoded biosynthetic/transport compounds known to regulate pollen tube guidance/growth. The isolates encoded ACC deaminase, which degrades the precursor for ethylene that otherwise accelerates silk senescence. The findings suggest that members of the microbiome of fertilization-stage silks encode adaptations to survive the stress conditions of silk/pollen and have the potential to express signaling compounds known to impact reproduction. Overall, whereas these microbial traits have traditionally been assumed to primarily promote vegetative plant growth, this study proposes they may also play selfish roles during host reproduction.
Collapse
Affiliation(s)
| | - Manish N. Raizada
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
4
|
Stephan OOH. Bio-positive effects of ionizing radiation on pollen: The role of ROS. PHYSIOLOGIA PLANTARUM 2024; 176:e14163. [PMID: 39141204 DOI: 10.1111/ppl.14163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 12/18/2023] [Indexed: 08/15/2024]
Abstract
The concept of 'hormesis' is defined as a dose-response relationship whereby low doses of various toxic substances or physical stressors trigger bio-positive effects in diverse biological systems, whereas high doses cause inhibition of cellular performance (e.g. growth, viability). The two-sided phenomenon of specific low-dose stimulation and high-dose inhibition imposed by a 'hormetic-factor' has been well documented in toxicology and pharmacology. Multitudinous factors have been identified that correspondingly cause hormetic effects in diverse taxa of animals, fungi, and plants. This study particularly aims to elucidate the molecular basis for stimulatory implications of ionizing radiation (IR) on plant male gametophytes (pollen). Beyond that, this analysis impacts general research on cell growth, plant breeding, radiation protection, and, in a wider sense, medical treatment. For this purpose, IR-related data were surveyed and discussed in connection with the present knowledge about pollen physiology. It is concluded that IR-induced reactive oxygen species (ROS) have a key role here. Moreover, it is hypothesized that IR-exposure shifts the ratio between diverse types of ROS in the cell. The interrelation between ROS, intracellular Ca2+-gradient, NADPH oxidases, ROS-scavengers, actin dynamics, and cell wall properties are most probably involved in IR-hormesis of pollen germination and tube growth. Modulation of gene expression, phytohormone signalling, and cellular antioxidant capacity are also implicated in IR-hormesis.
Collapse
Affiliation(s)
- Octavian O H Stephan
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, Erlangen, Bavaria, Germany
| |
Collapse
|
5
|
Stroppa N, Onelli E, Moreau P, Maneta-Peyret L, Berno V, Cammarota E, Ambrosini R, Caccianiga M, Scali M, Moscatelli A. Sterols and Sphingolipids as New Players in Cell Wall Building and Apical Growth of Nicotiana tabacum L. Pollen Tubes. PLANTS (BASEL, SWITZERLAND) 2022; 12:8. [PMID: 36616135 PMCID: PMC9824051 DOI: 10.3390/plants12010008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Pollen tubes are tip-growing cells that create safe routes to convey sperm cells to the embryo sac for double fertilization. Recent studies have purified and biochemically characterized detergent-insoluble membranes from tobacco pollen tubes. These microdomains, called lipid rafts, are rich in sterols and sphingolipids and are involved in cell polarization in organisms evolutionarily distant, such as fungi and mammals. The presence of actin in tobacco pollen tube detergent-insoluble membranes and the preferential distribution of these domains on the apical plasma membrane encouraged us to formulate the intriguing hypothesis that sterols and sphingolipids could be a "trait d'union" between actin dynamics and polarized secretion at the tip. To unravel the role of sterols and sphingolipids in tobacco pollen tube growth, we used squalestatin and myriocin, inhibitors of sterol and sphingolipid biosynthesis, respectively, to determine whether lipid modifications affect actin fringe morphology and dynamics, leading to changes in clear zone organization and cell wall deposition, thus suggesting a role played by these lipids in successful fertilization.
Collapse
Affiliation(s)
- Nadia Stroppa
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Elisabetta Onelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Patrick Moreau
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Lilly Maneta-Peyret
- CNRS, Laboratoire de Biogenèse Membranaire, University of Bordeaux, UMR 5200, 71 Avenue Edouard Bourlaux, 33140 Villenave d’Ornon, France
| | - Valeria Berno
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Eugenia Cammarota
- ALEMBIC Advanced Light and Electron Microscopy BioImaging Center, San Raffaele Scientific Institute, DIBIT 1, Via Olgettina 58, 20132 Milan, Italy
| | - Roberto Ambrosini
- Dipartimento di Scienze e Politiche Ambientali, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Marco Caccianiga
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| | - Monica Scali
- Dipartimento di Scienze della Vita, Università degli Studi di Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Alessandra Moscatelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
6
|
Zhou Z, Zheng S, Haq SIU, Zheng D, Qiu QS. Regulation of pollen tube growth by cellular pH and ions. JOURNAL OF PLANT PHYSIOLOGY 2022; 277:153792. [PMID: 35973258 DOI: 10.1016/j.jplph.2022.153792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 06/15/2023]
Abstract
Tip growth of the pollen tube is a model system for the study of cell polarity establishment in flowering plants. The tip growth of the pollen tube displays an oscillating pattern corresponding to cellular ion and pH dynamics. Therefore, cellular pH and ions play an important role in pollen growth and development. In this review, we summarized the current advances in understanding the function of cellular pH and ions in regulating pollen tube growth. We analyzed the physiological roles and underlying mechanisms of cellular pH and ions, including Ca2+, K+, and Cl-, in regulating pollen tube growth. We further examined the function of Ca2+ in regulating cytoskeletons, small G proteins, and cell wall development in relation to pollen tube growth. We also examined the regulatory roles of cellular pH in pollen tube growth as well as pH regulation of ion flow, cell wall development, auxin signaling, and cytoskeleton function in pollen. In addition, we assessed the regulation of pollen tube growth by proton pumps and the maintenance of pH homeostasis in the trans-Golgi network by ion transporters. The interplay of ion homeostasis and pH dynamics was also assessed. We discussed the unanswered questions regarding pollen tube growth that need to be addressed in the future.
Collapse
Affiliation(s)
- Zhenguo Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China.
| | - Sheng Zheng
- College of Life Sciences, Northwest Normal University, Lanzhou, Gansu, 730070, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China
| | - Syed Inzimam Ul Haq
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China
| | - Dianfeng Zheng
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China
| | - Quan-Sheng Qiu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, Gansu, 73000, China; Academy of Plateau Science and Sustainability, Qinghai Normal University, Xining, Qinghai, 810016, China; College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong, 524088, China.
| |
Collapse
|
7
|
Expression of Clementine Asp-Rich Proteins (CcASP-RICH) in Tobacco Plants Interferes with the Mechanism of Pollen Tube Growth. Int J Mol Sci 2022; 23:ijms23147880. [PMID: 35887233 PMCID: PMC9316813 DOI: 10.3390/ijms23147880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 11/29/2022] Open
Abstract
Low-molecular-weight, aspartic-acid-rich proteins (ASP-RICH) have been assumed to be involved in the self-incompatibility process of clementine. The role of ASP-RICH is not known, but hypothetically they could sequester calcium ions (Ca2+) and affect Ca2+-dependent mechanisms. In this article, we analyzed the effects induced by clementine ASP-RICH proteins (CcASP-RICH) when expressed in the tobacco heterologous system, focusing on the male gametophyte. The aim was to gain insight into the mechanism of action of ASP-RICH in a well-known cellular system, i.e., the pollen tube. Pollen tubes of tobacco transgenic lines expressing CcASP-RICH were analyzed for Ca2+ distribution, ROS, proton gradient, as well as cytoskeleton and cell wall. CcASP-RICH modulated Ca2+ content and consequently affected cytoskeleton organization and the deposition of cell wall components. In turn, this affected the growth pattern of pollen tubes. Although the expression of CcASP-RICH did not exert a remarkable effect on the growth rate of pollen tubes, effects at the level of growth pattern suggest that the expression of ASP-RICH may exert a regulatory action on the mechanism of plant cell growth.
Collapse
|
8
|
Shahsavar AR, Shahhosseini A. The metaxenia effects of different pollen grains on secondary metabolites enzymes and sugars of 'Piarom' date palm fruit. Sci Rep 2022; 12:10058. [PMID: 35710814 PMCID: PMC9203562 DOI: 10.1038/s41598-022-14373-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 06/06/2022] [Indexed: 01/18/2023] Open
Abstract
In this research, the characteristics of pollen were studied in eight pollinating cultivars of date palm, namely, ‘Shahani’, ‘Kabkab’, ‘Zahedi’, ‘Beraem’, ‘Faryab’, ‘Sheikhali’, ‘Fard’ and ‘Jarvis’. The characteristics were compared and metaxenia effects were evaluated on secondary metabolites, enzymes and other biochemical compounds of ‘Piarom’ date fruits. The evaluations were carried out during four stages of fruit growth and development. The pollen of these eight pollinating cultivars were compared in terms of carbohydrates, proteins, starch, total phenol, flavonoids, pectin methyl esterase, and amylase enzymes. According to the results, the pollen of ‘Sheikhali’, ‘Fard’, ‘Zahedi’ and ‘Shahani’ cultivars contained more of the above compounds, compared to the other cultivars. Regarding the effects of pollen on the composition of ‘Piarom’ date fruits, ‘Fard’ and ‘Sheikhali’ pollen produced the lowest amount of soluble tannin, which resulted in a better quality of ‘Piarom’ date fruits. Pollen was also obtained from ‘Sheikhali’ and ‘Fard’ cultivars for evaluations, showing that they led to the highest amounts of glucose and fructose in the fruits. Regarding the sucrose amount, ‘Jarvis’ and ‘Shikhali’ produced the best results. Pollen of ‘Sheikhali’ and ‘Fard’ cultivars caused the lowest amount of chlorophyll at the different stages of fruit growth, indicating a better decomposition of fruit chlorophyll and, as a result, better fruit quality. Pollen of ‘Sheikhali’ and ‘Fard’ cultivars produced the highest amounts of secondary metabolites such as total phenol, carotenoids and anthocyanin at the different stages of fruit development. The pollen of ‘Fard’ and ‘Sheikhali’ cultivars produced the highest levels of polygalacturonase, cellulase and invertase enzymes at different growth stages of the ‘Piarom’ date fruit. Regarding cellulase enzyme, fruits of the ‘Zahedi’ cultivar had more cellulase than the fruits of ‘Sheikhali’. In general, the pollen of ‘Fard’ and ‘Sheikhali, in comparison with other cultivars, improved the quantity and quality of ‘Piarom’ date fruits, due to their metaxenia properties.
Collapse
Affiliation(s)
- Ali Reza Shahsavar
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran.
| | - Asma Shahhosseini
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz, Iran
| |
Collapse
|
9
|
Çetinbaş-Genç A, Conti V, Cai G. Let's shape again: the concerted molecular action that builds the pollen tube. PLANT REPRODUCTION 2022; 35:77-103. [PMID: 35041045 DOI: 10.1007/s00497-022-00437-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
The pollen tube is being subjected to control by a complex network of communication that regulates its shape and the misfunction of a single component causes specific deformations. In flowering plants, the pollen tube is a tubular extension of the pollen grain required for successful sexual reproduction. Indeed, maintaining the unique shape of the pollen tube is essential for the pollen tube to approach the embryo sac. Many processes and molecules (such as GTPase activity, phosphoinositides, Ca2+ gradient, distribution of reactive oxygen species and nitric oxide, nonuniform pH values, organization of the cytoskeleton, balance between exocytosis and endocytosis, and cell wall structure) play key and coordinated roles in maintaining the cylindrical shape of pollen tubes. In addition, the above factors must also interact with each other so that the cell shape is maintained while the pollen tube follows chemical signals in the pistil that guide it to the embryo sac. Any intrinsic changes (such as erroneous signals) or extrinsic changes (such as environmental stresses) can affect the above factors and thus fertilization by altering the tube morphology. In this review, the processes and molecules that enable the development and maintenance of the unique shape of pollen tubes in angiosperms are presented emphasizing their interaction with specific tube shape. Thus, the purpose of the review is to investigate whether specific deformations in pollen tubes can help us to better understand the mechanism underlying pollen tube shape.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, 34722, Kadıköy, Istanbul, Turkey.
| | - Veronica Conti
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via Mattioli 4, 53100, Siena, Italy
| |
Collapse
|
10
|
Wang J, Chen J, Huang S, Han D, Li J, Guo D. Investigating the Mechanism of Unilateral Cross Incompatibility in Longan ( Dimocarpus longan Lour.) Cultivars (Yiduo × Shixia). FRONTIERS IN PLANT SCIENCE 2022; 12:821147. [PMID: 35222456 PMCID: PMC8874016 DOI: 10.3389/fpls.2021.821147] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Longan (Dimocarpus longan Lour.) is an important subtropical fruit tree in China. Nearly 90% of longan fruit imports from Thailand are from the cultivar Yiduo. However, we have observed that there exists a unilateral cross incompatibility (UCI) when Yiduo is used as a female parent and Shixia (a famous Chinese cultivar) as a male parent. Here, we performed a comparative transcriptome analysis coupled with microscopy of pistils from two reciprocal pollination combinations [Shixia♂ × Yiduo♀(SY) and Yiduo♀ × Shixia♂(YS)] 4, 8, 12, and 24 h after pollination. We also explored endogenous jasmonic acid (JA) and jasmonyl isoleucine (JA-Ile) levels in pistils of the crosses. The microscopic observations showed that the UCI was sporophytic. The endogenous JA and JA-Ile levels were higher in YS than in SY at the studied time points. We found 7,251 differentially expressed genes from the transcriptome analysis. Our results highlighted that genes associated with JA biosynthesis and signaling, pollen tube growth, cell wall modification, starch and sucrose biosynthesis, and protein processing in endoplasmic reticulum pathways were differentially regulated between SY and YS. We discussed transcriptomic changes in the above-mentioned pathways regarding the observed microscopic and/or endogenous hormone levels. This is the first report on the elaboration of transcriptomic changes in longan reciprocal pollination combination showing UCI. The results presented here will enable the longan breeding community to better understand the mechanisms of UCI.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Ji Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shilian Huang
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongmei Han
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Jianguang Li
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| | - Dongliang Guo
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Key Laboratory of South Subtropical Fruit Biology and Genetic Resource Utilization, Guangdong Provincial Key Laboratory of Tropical and Subtropical Fruit Tree Research, Ministry of Agriculture and Rural Affairs, Guangzhou, China
| |
Collapse
|
11
|
Hasegawa K, Kamada S, Takehara S, Takeuchi H, Nakamura A, Satoh S, Iwai H. Rice Putative Pectin Methyltransferase Gene OsPMT10 Is Required for Maintaining the Cell Wall Properties of Pistil Transmitting Tissues via Pectin Modification. PLANT & CELL PHYSIOLOGY 2021; 62:1902-1911. [PMID: 34057184 DOI: 10.1093/pcp/pcab078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 05/20/2021] [Accepted: 05/31/2021] [Indexed: 06/12/2023]
Abstract
Precise directional control of pollen tube growth via mechanical guidance by pistil tissue is critical for the successful fertilization of flowering plants and requires active cell-to-cell communication and maintenance of softness in the transmitting tissue. However, the regulation of transmitting tissue softness as controlled by cell wall properties, especially pectin, has not been reported. Here we report that regulation of pectin methylesterification supports pollen elongation through pistil transmitting tissues in Oryza sativa. The rice pectin methylesterase gene OsPMT10 was strongly expressed in reproductive tissues, especially the pistil. The ospmt10 mutant did not have a significant effect on vegetative growth, but the fertility rate was reduced by approximately half. In the ospmt10 mutant, pollen tube elongation was observed in the transmitting tissue of the style, but approximately half of the pollen tubes did not extend all the way to the ovule. Tissue cross-sections of the upper ovary were prepared, and immunohistochemical staining using LM19 and LM20 showed that methylesterified pectin distribution was decreased in ospmt10 compared with the wild type. The decreased expression of methylesterified pectins in ospmt10 may have resulted in loss of fluidity in the apoplast space of the transmitting tissue, rendering it difficult for the pollen tube to elongate in the transmitting tissue and thereby preventing it from reaching the ovule.
Collapse
Affiliation(s)
- Kazuya Hasegawa
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Shihomi Kamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Shohei Takehara
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Haruki Takeuchi
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Atsuko Nakamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Shinobu Satoh
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki, Ibaraki 305-8571, Japan
| |
Collapse
|
12
|
Dumais J. Mechanics and hydraulics of pollen tube growth. THE NEW PHYTOLOGIST 2021; 232:1549-1565. [PMID: 34492127 DOI: 10.1111/nph.17722] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
All kingdoms of life have evolved tip-growing cells able to mine their environment or deliver cargo to remote targets. The basic cellular processes supporting these functions are understood in increasing detail, but the multiple interactions between them lead to complex responses that require quantitative models to be disentangled. Here, I review the equations that capture the fundamental interactions between wall mechanics and cell hydraulics starting with a detailed presentation of James Lockhart's seminal model. The homeostatic feedbacks needed to maintain a steady tip velocity are then shown to offer a credible explanation for the pulsatile growth observed in some tip-growing cells. Turgor pressure emerges as a central variable whose role in the morphogenetic process has been a source of controversy for more than 50 yr. I argue that recasting Lockhart's work as a process of chemical stress relaxation can clarify how cells control tip growth and help us internalise the important but passive role played by turgor pressure in the morphogenetic process.
Collapse
Affiliation(s)
- Jacques Dumais
- Faculty of Engineering and Sciences, Universidad Adolfo Ibáñez, Av. Padre Hurtado 750, Viña del Mar, Region of Valparaíso, Chile
| |
Collapse
|
13
|
Winship LJ, Rosen GA, Hepler PK. Apical pollen tube wall curvature correlates with growth and indicates localized changes in the yielding of the cell wall. PROTOPLASMA 2021; 258:1347-1358. [PMID: 34414478 DOI: 10.1007/s00709-021-01694-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 07/26/2021] [Indexed: 05/16/2023]
Abstract
The shape of the apical region of lily pollen tube changes rhythmically as the growth rate of the tube oscillates becoming alternately more prolate then back to oblate. We quantified shape change by calculating the curvature of the cross-sectional edge of the pollen tube tip and cross-correlating curvature changes with growth rate. The apical region takes the form of a partial elliptical spheroid, with variation in the length and location of the minor axis. During oscillation curvature profiles show a sharp increase in curvature at the "shoulders" of the apex when oblate, 4-7 μm from the flatter central zone. As the tip becomes more prolate, the "shoulders" decrease rapidly in curvature and move towards the growth axis as curvature at the tip increases. We understand curvature changes to represent differential changes in local wall expansion rates, driven by uniform turgor pressure and mediated by changes in wall polysaccharides. To become more oblate, the tip region must become less extensible than the "shoulder" region. And, as the tip becomes more prolate, the increased curvature must be due to increased local expansion. We found that changes in the growth velocity of the "shoulders" of the cell measured as the progress of the cell edge along the growth axis are cyclically out of phase with growth velocity at the tip such that the shoulder regions lag for part of the oscillation cycle, then "catch up" as the growth rate at the tip reaches a maximum and begins to decline. In this way the cell becomes oblate. Cell shape and growth rate oscillate in concert and are functionally related. Spatial change in edge growth rate points to important cellular locations for further investigation of vesicle movement and exocytosis, calcium gradients, and actin dynamics in lily pollen tubes.
Collapse
Affiliation(s)
| | - Grace A Rosen
- Hampshire College, Amherst, MA, 01002, USA
- VA Boston Healthcare System, 150 South Huntington Avenue, Boston, MA, 02130, USA
| | | |
Collapse
|
14
|
Zhang R, Wang N, Li S, Wang Y, Xiao S, Zhang Y, Egrinya Eneji A, Zhang M, Wang B, Duan L, Li F, Tian X, Li Z. Gibberellin biosynthesis inhibitor mepiquat chloride enhances root K+ uptake in cotton by modulating plasma membrane H+-ATPase. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:6659-6671. [PMID: 34161578 DOI: 10.1093/jxb/erab302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Potassium deficiency causes severe losses in yield and quality in crops. Mepiquat chloride, a plant growth regulator, can increase K+ uptake in cotton (Gossypium hirsutum), but the underlying physiological mechanisms remain unclear. In this study, we used a non-invasive micro-test technique to measure K+ and H+ fluxes in the root apex with or without inhibitors of K+ channels, K+ transporters, non-selective cation channels, and plasma membrane H+-ATPases. We found that soaking seeds in mepiquat chloride solution increased the K+ influx mediated by K+ channels and reduced the K+ efflux mediated by non-selective cation channels in cotton seedlings. Mepiquat chloride also increased negative membrane potential (Em) and the activity of plasma membrane H+-ATPases in roots, due to higher levels of gene expression and protein accumulation of plasma membrane H+-ATPases as well as phosphorylation of H+-ATPase 11 (GhAHA11). Thus, plasma membrane hyperpolarization mediated by H+-ATPases was able to stimulate the activity of K+ channels in roots treated with mepiquat chloride. In addition, reduced K+ efflux under mepiquat chloride treatment was associated with reduced accumulation of H2O2 in roots. Our results provide important insights into the mechanisms of mepiquat chloride-induced K+ uptake in cotton and hence have the potential to help in improving K nutrition for enhancing cotton production.
Collapse
Affiliation(s)
- Rui Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Ning Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuying Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yiru Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Shuang Xiao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Yichi Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - A Egrinya Eneji
- Department of Soil Science, Faculty of Agriculture, Forestry and Wildlife Resources Management, University of Calabar, Calabar, 540271, Nigeria
| | - Mingcai Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Baomin Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Liusheng Duan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Fangjun Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Xiaoli Tian
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Zhaohu Li
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| |
Collapse
|
15
|
P2K1 Receptor, Heterotrimeric Gα Protein and CNGC2/4 Are Involved in Extracellular ATP-Promoted Ion Influx in the Pollen of Arabidopsis thaliana. PLANTS 2021; 10:plants10081743. [PMID: 34451790 PMCID: PMC8400636 DOI: 10.3390/plants10081743] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 08/20/2021] [Accepted: 08/20/2021] [Indexed: 11/17/2022]
Abstract
As an apoplastic signal, extracellular ATP (eATP) is involved in plant growth and development. eATP promotes tobacco pollen germination (PG) and pollen tube growth (PTG) by stimulating Ca2+ or K+ absorption. Nevertheless, the mechanisms underlying eATP-stimulated ion uptake and their role in PG and PTG are still unclear. Here, ATP addition was found to modulate PG and PTG in 34 plant species and showed a promoting effect in most of these species. Furthermore, by using Arabidopsis thaliana as a model, the role of several signaling components involved in eATP-promoted ion (Ca2+, K+) uptake, PG, and PTG were investigated. ATP stimulated while apyrase inhibited PG and PTG. Patch-clamping results showed that ATP promoted K+ and Ca2+ influx into pollen protoplasts. In loss-of-function mutants of P2K1 (dorn1-1 and dorn1-3), heterotrimeric G protein α subunit (gpa1-1, gpa1-2), or cyclic nucleotide gated ion channel (cngc2, cngc4), eATP-stimulated PG, PTG, and ion influx were all impaired. Our results suggest that these signaling components may be involved in eATP-promoted PG and PTG by regulating Ca2+ or K+ influx in Arabidopsis pollen grains.
Collapse
|
16
|
Li JH, Fan LF, Zhao DJ, Zhou Q, Yao JP, Wang ZY, Huang L. Plant electrical signals: A multidisciplinary challenge. JOURNAL OF PLANT PHYSIOLOGY 2021; 261:153418. [PMID: 33887526 DOI: 10.1016/j.jplph.2021.153418] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/06/2021] [Accepted: 04/06/2021] [Indexed: 05/15/2023]
Abstract
Plant electrical signals, an early event in the plant-stimulus interaction, rapidly transmit information generated by the stimulus to other organs, and even the whole plant, to promote the corresponding response and trigger a regulatory cascade. In recent years, many promising state-of-the-art technologies applicable to study plant electrophysiology have emerged. Research focused on expression of genes associated with electrical signals has also proliferated. We propose that it is appropriate for plant electrical signals to be considered in the form of a "plant electrophysiological phenotype". This review synthesizes research on plant electrical signals from a novel, interdisciplinary perspective, which is needed to improve the efficient aggregation and use of plant electrical signal data and to expedite interpretation of plant electrical signals.
Collapse
Affiliation(s)
- Jin-Hai Li
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Li-Feng Fan
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China
| | - Dong-Jie Zhao
- Institute for Future (IFF), Qingdao University, Qingdao, 266071, China
| | - Qiao Zhou
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Jie-Peng Yao
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China
| | - Zhong-Yi Wang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Modern Precision Agriculture System Integration Research, Ministry of Education, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| | - Lan Huang
- College of Information and Electrical Engineering, China Agricultural University, Beijing, 100083, China; Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture, Beijing, 100083, China.
| |
Collapse
|
17
|
Li K, Prada J, Damineli DSC, Liese A, Romeis T, Dandekar T, Feijó JA, Hedrich R, Konrad KR. An optimized genetically encoded dual reporter for simultaneous ratio imaging of Ca 2+ and H + reveals new insights into ion signaling in plants. THE NEW PHYTOLOGIST 2021; 230:2292-2310. [PMID: 33455006 PMCID: PMC8383442 DOI: 10.1111/nph.17202] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 12/23/2020] [Indexed: 05/07/2023]
Abstract
Whereas the role of calcium ions (Ca2+ ) in plant signaling is well studied, the physiological significance of pH-changes remains largely undefined. Here we developed CapHensor, an optimized dual-reporter for simultaneous Ca2+ and pH ratio-imaging and studied signaling events in pollen tubes (PTs), guard cells (GCs), and mesophyll cells (MCs). Monitoring spatio-temporal relationships between membrane voltage, Ca2+ - and pH-dynamics revealed interconnections previously not described. In tobacco PTs, we demonstrated Ca2+ -dynamics lag behind pH-dynamics during oscillatory growth, and pH correlates more with growth than Ca2+ . In GCs, we demonstrated abscisic acid (ABA) to initiate stomatal closure via rapid cytosolic alkalization followed by Ca2+ elevation. Preventing the alkalization blocked GC ABA-responses and even opened stomata in the presence of ABA, disclosing an important pH-dependent GC signaling node. In MCs, a flg22-induced membrane depolarization preceded Ca2+ -increases and cytosolic acidification by c. 2 min, suggesting a Ca2+ /pH-independent early pathogen signaling step. Imaging Ca2+ and pH resolved similar cytosol and nuclear signals and demonstrated flg22, but not ABA and hydrogen peroxide to initiate rapid membrane voltage-, Ca2+ - and pH-responses. We propose close interrelation in Ca2+ - and pH-signaling that is cell type- and stimulus-specific and the pH having crucial roles in regulating PT growth and stomata movement.
Collapse
Affiliation(s)
- Kunkun Li
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Juan Prada
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - Daniel S. C. Damineli
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
- Department of Pediatrics, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP 01246-903, Brazil
| | - Anja Liese
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Tina Romeis
- Leibniz Institute of Plant Biochemistry, Halle (Saale) 06120, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Wuerzburg, Wuerzburg 97074, Germany
| | - José A. Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Bldg, College Park, MD 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, Wuerzburg 97082, Germany
| |
Collapse
|
18
|
Han W, Ji Y, Wu W, Cheng JK, Feng HQ, Wang Y. ZMK1 Is Involved in K + Uptake and Regulated by Protein Kinase ZmCIPK23 in Zea mays. FRONTIERS IN PLANT SCIENCE 2021; 12:517742. [PMID: 33746991 PMCID: PMC7966722 DOI: 10.3389/fpls.2021.517742] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/10/2021] [Indexed: 05/27/2023]
Abstract
Potassium (K+) is one of essential mineral elements for plant growth and development. K+ channels, especially AKT1-like channels, play crucial roles in K+ uptake in plant roots. Maize is one of important crops; however, the K+ uptake mechanism in maize is little known. Here, we report the physiological functions of K+ channel ZMK1 in K+ uptake and homeostasis in maize. ZMK1 is a homolog of Arabidopsis AKT1 channel in maize, and mainly expressed in maize root. Yeast complementation experiments and electrophysiological characterization in Xenopus oocytes indicated that ZMK1 could mediate K+ uptake. ZMK1 rescued the low-K+-sensitive phenotype of akt1 mutant and enhanced K+ uptake in Arabidopsis. Overexpression of ZMK1 also significantly increased K+ uptake activity in maize, but led to an oversensitive phenotype. Similar to AKT1 regulation, the protein kinase ZmCIPK23 interacted with ZMK1 and phosphorylated the cytosolic region of ZMK1, activating ZMK1-mediated K+ uptake. ZmCIPK23 could also complement the low-K+-sensitive phenotype of Arabidopsis cipk23/lks1 mutant. These findings demonstrate that ZMK1 together with ZmCIPK23 plays important roles in K+ uptake and homeostasis in maize.
Collapse
Affiliation(s)
- Wu Han
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yun Ji
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Wei Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jin-Kui Cheng
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
| | - Han-Qian Feng
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro‐products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, China
| |
Collapse
|
19
|
Lu Y, Moran Lauter AN, Makkena S, Scott MP, Evans MMS. Insights into the molecular control of cross-incompatibility in Zea mays. PLANT REPRODUCTION 2020; 33:117-128. [PMID: 32865620 DOI: 10.1007/s00497-020-00394-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
Gametophytic cross-incompatibility systems in corn have been the subject of genetic studies for more than a century. They have tremendous economic potential as a genetic mechanism for controlling fertilization without controlling pollination. Three major genetically distinct and functionally equivalent cross-incompatibility systems exist in Zea mays: Ga1, Tcb1, and Ga2. All three confer reproductive isolation between maize or teosinte varieties with different haplotypes at any one locus. These loci confer genetically separable functions to the silk and pollen: a female function that allows the silk to block fertilization by non-self-type pollen and a male function that overcomes the block of the female function from the same locus. Identification of some of these genes has shed light on the reproductive isolation they confer. The identification of both male and female factors as pectin methylesterases reveals the importance of pectin methylesterase activity in controlling the decision between pollen acceptance versus rejection, possibly by regulating the degree of methylesterification of the pollen tube cell wall. The appropriate level and spatial distribution of pectin methylesterification is critical for pollen tube growth and is affected by both pectin methylesterases and pectin methylesterase inhibitors. We present a molecular model that explains how cross-incompatibility systems may function that can be tested in Zea and uncharacterized cross-incompatibility systems. Molecular characterization of these loci in conjunction with further refinement of the underlying molecular and cellular mechanisms will allow researchers to bring new and powerful tools to bear on understanding reproductive isolation in Zea mays and related species.
Collapse
Affiliation(s)
- Yongxian Lu
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA, 94305, USA
| | | | | | - M Paul Scott
- Corn Insects and Crop Genetics Research Unit, USDA ARS, Ames, IA, 50011, USA
| | - Matthew M S Evans
- Department of Plant Biology, Carnegie Institute for Science, Stanford, CA, 94305, USA.
| |
Collapse
|
20
|
Çetinbaş-Genç A, Cai G, Del Duca S. Treatment with spermidine alleviates the effects of concomitantly applied cold stress by modulating Ca 2+, pH and ROS homeostasis, actin filament organization and cell wall deposition in pollen tubes of Camellia sinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 156:578-590. [PMID: 33065378 DOI: 10.1016/j.plaphy.2020.10.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 10/08/2020] [Indexed: 06/11/2023]
Abstract
The aim of the current study was to examine the effect of spermidine treatment concomitant with cold stress on the elongation of Camellia sinensis pollen tube. When exogenous spermidine (0.05 mM) was applied concomitantly with cold stress, pollen germination rate and pollen tube length were significantly increased in comparison with cold stressed pollen tubes. In addition, spermidine treatment concomitantly with cold stress reduced pollen tube abnormalities induced by cold stress. Besides, cold-induced disorganizations of actin filaments were ameliorated after spermidine treatment along with cold stress because anisotropy levels of actin filaments in shank and apex of pollen tubes decreased. Changes in cold-induced callose distribution in the pollen tube cell wall were partially recovered after spermidine/cold stress treatment. Other cold-induced effects (decrease in Ca2+ content, reduction of pH gradient, accumulation of ROS) were reverted to adequate levels after spermidine treatment in conjunction with cold stress, indicating that pollen tubes are able to cope with stress. Thus, spermidine treatment reorganized the growth pattern of pollen tubes by modulating Ca2+ and ROS homeostasis, actin cytoskeleton organization, and cell wall deposition in Camellia sinensis pollen tubes under cold stress.
Collapse
Affiliation(s)
- Aslıhan Çetinbaş-Genç
- Department of Biology, Marmara University, Göztepe Campus, Kadıköy, 34722, Istanbul, Turkey.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Via Mattioli 4, 53100, Siena, Italy.
| | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Via Irnerio 42, 40126, Bologna, Italy.
| |
Collapse
|
21
|
Toda K, Kato S, Hirata K, Kikuchi A, Nihei Y, Hajika M. DNA marker-assisted evaluation of cooked bean hardness of three soybean progeny lines. BREEDING SCIENCE 2020; 70:487-493. [PMID: 32968352 PMCID: PMC7495197 DOI: 10.1270/jsbbs.19171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
Cooked bean hardness is an important trait for the processing of soybean products such as nimame, natto, miso, and soy sauce. Previously, we showed that cooked bean hardness is primarily affected by the pectin methylesterase gene Glyma03g03360, and that calcium content has a secondary effect on this trait. To establish a simple and timely method for the evaluation of cooked bean hardness, primers of amplification refractory mutation system-polymerase chain reaction (ARMS-PCR) were designed to detect a single-nucleotide polymorphism of Glyma03g03360 and subsequently used to evaluate three soybean progeny lines. The determined genotypes were compared to those identified using the cleaved amplified polymorphic sequence (CAPS) method. Seven out of 284 lines presented different genotypes, which were determined using the two methods: A genotypes were incorrectly assigned as heterozygous by CAPS, suggesting that ARMS-PCR is more reliable. Glyma03g03360 genotypes could be used to evaluate cooked bean hardness, except for intermediate values. Cooked bean hardness within the same genotype groups was significantly correlated with calcium contents. These findings indicate that ARMS-PCR is useful for a marker-assisted selection of soybean with soft-cooked beans and that calcium content may be used for additional selection.
Collapse
Affiliation(s)
- Kyoko Toda
- NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Shin Kato
- NARO Tohoku Agricultural Research Center, 297 Uenodai, Kariwano, Daisen, Akita 019-2112, Japan
| | - Kaori Hirata
- NARO Tohoku Agricultural Research Center, 297 Uenodai, Kariwano, Daisen, Akita 019-2112, Japan
| | - Akio Kikuchi
- NARO Tohoku Agricultural Research Center, 297 Uenodai, Kariwano, Daisen, Akita 019-2112, Japan
| | - Yumi Nihei
- NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| | - Makita Hajika
- NARO Institute of Crop Science (NICS), 2-1-18 Kannondai, Tsukuba, Ibaraki 305-8518, Japan
| |
Collapse
|
22
|
Candotto Carniel F, Fortuna L, Nepi M, Cai G, Del Casino C, Adami G, Bramini M, Bosi S, Flahaut E, Martín C, Vázquez E, Prato M, Tretiach M. Beyond graphene oxide acidity: Novel insights into graphene related materials effects on the sexual reproduction of seed plants. JOURNAL OF HAZARDOUS MATERIALS 2020; 393:122380. [PMID: 32126426 DOI: 10.1016/j.jhazmat.2020.122380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 06/10/2023]
Abstract
Graphene related materials (GRMs) are currently being used in products and devices of everyday life and this strongly increases the possibility of their ultimate release into the environment as waste items. GRMs have several effects on plants, and graphene oxide (GO) in particular, can affect pollen germination and tube growth due to its acidic properties. Despite the socio-economic importance of sexual reproduction in seed plants, the effect of GRMs on this process is still largely unknown. Here, Corylus avellana L. (common Hazel) pollen was germinated in-vitro with and without 1-100 μg mL-1 few-layer graphene (FLG), GO and reduced GO (rGO) to identify GRMs effects alternative to the acidification damage caused by GO. At 100 μg mL-1 both FLG and GO decreased pollen germination, however only GO negatively affected pollen tube growth. Furthermore, GO adsorbed about 10 % of the initial Ca2+ from germination media accounting for a further decrease in germination of 13 % at the pH created by GO. In addition, both FLG and GO altered the normal tip-focused reactive oxygen species (ROS) distribution along the pollen tube. The results provided here help to understand GRMs effect on the sexual reproduction of seed plants and to address future in-vivo studies.
Collapse
Affiliation(s)
- Fabio Candotto Carniel
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| | - Lorenzo Fortuna
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| | - Massimo Nepi
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Cecilia Del Casino
- Department of Life Sciences, University of Siena, via P. A. Mattioli 4, I-53100, Siena, Italy.
| | - Giampiero Adami
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy.
| | - Mattia Bramini
- Center for Synaptic Neuroscience, Italian Institute of Technology, Largo Rosanna Benzi 10, I-16132, Genova, Italy.
| | - Susanna Bosi
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy.
| | - Emmanuel Flahaut
- CIRIMAT, Université de Toulouse, CNRS, INPT, UPS, UMR CNRS-UPS-INP N° 5085, Université Toulouse 3 Paul Sabatier, Bât. CIRIMAT, 118, route de Narbonne, F-31062, Toulouse cedex 9, France.
| | - Cristina Martín
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005, Ciudad Real, Spain.
| | - Ester Vázquez
- Department of Organic Chemistry, Faculty of Chemical Science and Technology, University of Castilla-La Mancha, Av. Camilo José Cela, s/n, E-13005, Ciudad Real, Spain; Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla-La Mancha, E-13071, Ciudad Real, Spain.
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Science, University of Trieste, via L. Giorgieri 1, I-34127, Trieste, Italy; Carbon Nanobiotechnology Laboratory CIC BiomaGUNE, Paseo de Miramón 182, E-20009, Donostia-San Sebastian, Spain.
| | - Mauro Tretiach
- Department of Life Sciences, University of Trieste, via L. Giorgieri 10, I-34127, Trieste, Italy.
| |
Collapse
|
23
|
Zhao W, Qu X, Zhuang Y, Wang L, Bosch M, Franklin-Tong VE, Xue Y, Huang S. Villin controls the formation and enlargement of punctate actin foci in pollen tubes. J Cell Sci 2020; 133:jcs237404. [PMID: 32051284 DOI: 10.1242/jcs.237404] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 02/01/2020] [Indexed: 11/20/2022] Open
Abstract
Self-incompatibility (SI) in the poppy Papaver rhoeas triggers dramatic alterations in actin within pollen tubes. However, how these actin alterations are mechanistically achieved remains largely unexplored. Here, we used treatment with the Ca2+ ionophore A23187 to mimic the SI-induced elevation in cytosolic Ca2+ and trigger formation of the distinctive F-actin foci. Live-cell imaging revealed that this remodeling involves F-actin fragmentation and depolymerization, accompanied by the rapid formation of punctate actin foci and subsequent increase in their size. We established that actin foci are generated and enlarged from crosslinking of fragmented actin filament structures. Moreover, we show that villins associate with actin structures and are involved in this actin reorganization process. Notably, we demonstrate that Arabidopsis VILLIN5 promotes actin depolymerization and formation of actin foci by fragmenting actin filaments, and controlling the enlargement of actin foci via bundling of actin filaments. Our study thus uncovers important novel insights about the molecular players and mechanisms involved in forming the distinctive actin foci in pollen tubes.
Collapse
Affiliation(s)
- Wanying Zhao
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaolu Qu
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuhui Zhuang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ludi Wang
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Plas Gogerddan, Aberystwyth, SY23 3EE, UK
| | - Vernonica E Franklin-Tong
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Yongbiao Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shanjin Huang
- Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
24
|
Podolyan A, Maksimov N, Breygina M. Redox-regulation of ion homeostasis in growing lily pollen tubes. JOURNAL OF PLANT PHYSIOLOGY 2019; 243:153050. [PMID: 31639533 DOI: 10.1016/j.jplph.2019.153050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/24/2019] [Accepted: 07/31/2019] [Indexed: 05/13/2023]
Abstract
The pollen tube is characterized by cytoplasm compartmentalization typical for cells with polar growth. This concept includes "ion zoning", i.e. gradient distribution of ionic currents across the plasma membrane and free inorganic ions in the cytoplasm. One of the putative mechanisms for maintaining "ion zoning" is indicated by the sensitivity of the ion transport systems to reactive oxygen species (ROS). Here we test the possibility of redox regulation of ionic gradients and membrane potential (MP) gradient in growing pollen tubes using quantitative fluorescence microscopy. ROS quencher MnTMPP and exogenic H2O2 cause different alterations of intracellular Ca2+ gradient, pH gradient and MP gradient during short-term exposure. MnTMPP significantly shifts the gradients of Ca2+ and MP at low concentrations while high concentration cause growth alterations (ballooned tips) and cytoplasm acidification. H2O2 at 0,5 and 1 mM affects ion homeostasis as well (MP, Ca2+, pH) but doesn't decrease viability or alter shape of the tubes. Here we present original quantitative data on the interconnection between ROS and ion transport during tip growth.
Collapse
Affiliation(s)
- Alexandra Podolyan
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Nikita Maksimov
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia
| | - Maria Breygina
- Lomonosov Moscow State University, School of Biology, Department of Plant Physiology, Leninskiye Gory 1-12, Moscow, 119991, Russia; Pirogov Russian National Research Medical University, Ostrovitjanova Street 1, Moscow, 117997, Russia.
| |
Collapse
|
25
|
Qin YJ, Wu WH, Wang Y. ZmHAK5 and ZmHAK1 function in K + uptake and distribution in maize under low K + conditions. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2019; 61:691-705. [PMID: 30548401 DOI: 10.1111/jipb.12756] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 12/03/2018] [Indexed: 05/27/2023]
Abstract
Potassium (K+ ) is an essential macronutrient for plant growth and development. Transporters from the KT/HAK/KUP family play crucial roles in K+ homeostasis and cell growth in various plant species. However, their physiological roles in maize are still unknown. In this study, we cloned ZmHAK5 and ZmHAK1 and investigated their functions in maize (Zea mays L.). In situ hybridization showed that ZmHAK5 was mainly expressed in roots, especially in the epidermis, cortex, and vascular bundle. ZmHAK5 was characterized as a high-affinity K+ transporter. Loss of function of ZmHAK5 led to defective K+ uptake in maize, under low K+ conditions, whereas ZmHAK5-overexpressing plants showed increased K+ uptake activity and improved growth. ZmHAK1 was upregulated under low K+ stress, as revealed by RT-qPCR. ZmHAK1 mediated K+ uptake when heterologously expressed in yeast, but its transport activity was weaker than that of ZmHAK5. Overexpression of ZmHAK1 in maize significantly affected K+ distribution in shoots, leading to chlorosis in older leaves. These findings indicate that ZmHAK5 and ZmHAK1 play distinct roles in K+ homeostasis in maize, functioning in K+ uptake and K+ distribution, respectively. Genetic manipulation of ZmHAK5 may represent a feasible way to improve K+ utilization efficiency in maize.
Collapse
Affiliation(s)
- Ya-Juan Qin
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
26
|
Claessen H, Keulemans W, Van de Poel B, De Storme N. Finding a Compatible Partner: Self-Incompatibility in European Pear ( Pyrus communis); Molecular Control, Genetic Determination, and Impact on Fertilization and Fruit Set. FRONTIERS IN PLANT SCIENCE 2019; 10:407. [PMID: 31057563 PMCID: PMC6477101 DOI: 10.3389/fpls.2019.00407] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 03/18/2019] [Indexed: 05/25/2023]
Abstract
Pyrus species display a gametophytic self-incompatibility (GSI) system that actively prevents fertilization by self-pollen. The GSI mechanism in Pyrus is genetically controlled by a single locus, i.e., the S-locus, which includes at least two polymorphic and strongly linked S-determinant genes: a pistil-expressed S-RNase gene and a number of pollen-expressed SFBB genes (S-locus F-Box Brothers). Both the molecular basis of the SI mechanism and its functional expression have been widely studied in many Rosaceae fruit tree species with a particular focus on the characterization of the elusive SFBB genes and S-RNase alleles of economically important cultivars. Here, we discuss recent advances in the understanding of GSI in Pyrus and provide new insights into the mechanisms of GSI breakdown leading to self-fertilization and fruit set. Molecular analysis of S-genes in several self-compatible Pyrus cultivars has revealed mutations in both pistil- or pollen-specific parts that cause breakdown of self-incompatibility. This has significantly contributed to our understanding of the molecular and genetic mechanisms that underpin self-incompatibility. Moreover, the existence and development of self-compatible mutants open new perspectives for pear production and breeding. In this framework, possible consequences of self-fertilization on fruit set, development, and quality in pear are also reviewed.
Collapse
Affiliation(s)
- Hanne Claessen
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Wannes Keulemans
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Bram Van de Poel
- Laboratory for Molecular Plant Hormone Physiology, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| | - Nico De Storme
- Laboratory for Plant Genetics and Crop Improvement, Division of Crop Biotechnics, Department of Biosystems, KU Leuven, Leuven, Belgium
| |
Collapse
|
27
|
Zheng RH, Su SD, Xiao H, Tian HQ. Calcium: A Critical Factor in Pollen Germination and Tube Elongation. Int J Mol Sci 2019; 20:E420. [PMID: 30669423 PMCID: PMC6358865 DOI: 10.3390/ijms20020420] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 12/20/2018] [Accepted: 12/25/2018] [Indexed: 02/07/2023] Open
Abstract
Pollen is the male gametophyte of higher plants. Its major function is to deliver sperm cells to the ovule to ensure successful fertilization. During this process, many interactions occur among pollen tubes and pistil cells and tissues, and calcium ion (Ca2+) dynamics mediate these interactions among cells to ensure that pollen reaches the embryo sac. Although the precise functions of Ca2+ dynamics in the cells are unknown, we can speculate about its roles on the basis of its spatial and temporal characteristics during these interactions. The results of many studies indicate that calcium is a critical element that is strongly related to pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Ren Hua Zheng
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Shun De Su
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Hui Xiao
- The Key Laboratory of Timber Forest Breeding and Cultivation for Mountainous Areas in Southern China, Fujian Academy of Forestry, Fuzhou 350012, China.
| | - Hui Qiao Tian
- School of Life Sciences, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
28
|
Wu Y, Qin B, Feng K, Yan R, Kang E, Liu T, Shang Z. Extracellular ATP promoted pollen germination and tube growth of Nicotiana tabacum through promoting K + and Ca 2+ absorption. PLANT REPRODUCTION 2018; 31:399-410. [PMID: 29934740 DOI: 10.1007/s00497-018-0341-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 06/15/2018] [Indexed: 05/15/2023]
Abstract
Extracellular ATP (eATP) plays an essential role in plant growth, development, and stress tolerance. Here, we report that eATP participated in Nicotiana tabacum pollen germination (PG) and pollen tube growth (PTG) by regulating K+ and Ca2+ influx. Exogenous ATP or ADP effectively promoted PG and PTG in a dose-dependent manner; weakly hydrolysable ATP analog (ATPγS) showed a similar effect. AMP, adenosine, adenine, and phosphate did not affect PG or PTG. Within a certain range, higher concentrations of K+ or Ca2+ in the medium increased the effect of ATP in promoting PG and PTG. However, in mediums containing K+ or Ca2+ concentrations above this range, the effect of ATP was reversed, resulting in PG and PTG inhibition. Ca2+ chelators (EGTA), Ca2+ channel blockers, and K+ channel blockers suppressed ATP-promoted PG and PTG. Results from a patch clamp showed that ATP activated a K+ and Ca2+ influx in pollen protoplasts. These results suggest that, as an apoplastic signal, eATP may be involved in PG and PTG via regulating Ca2+ and K+ absorption.
Collapse
Affiliation(s)
- Yansheng Wu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
- Department of Chemistry Engineering and Biological Technology, Xingtai University, Xingtai, 054001, Hebei, China
| | - Baozhi Qin
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Kaili Feng
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ruolin Yan
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Erfang Kang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Ting Liu
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China
| | - Zhonglin Shang
- Hebei Key Laboratory of Molecular and Cellular Biology, Key Laboratory of Molecular and Cellular Biology of the Ministry of Education, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei, China.
| |
Collapse
|
29
|
Hemelryck MV, Bernal R, Ispolatov Y, Dumais J. Lily Pollen Tubes Pulse According to a Simple Spatial Oscillator. Sci Rep 2018; 8:12135. [PMID: 30108317 PMCID: PMC6092427 DOI: 10.1038/s41598-018-30635-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 06/07/2018] [Indexed: 11/23/2022] Open
Abstract
Polar growth is a fundamental mode of cell morphogenesis observed in nearly all major groups of organisms. Among polarly growing cells, the angiosperm pollen tubes have emerged as powerful experimental systems in large part because of their oscillatory growth, which provides a window into the network of interactions regulating morphogenesis. Empirical studies of oscillatory pollen tubes have sought to uncover the temporal sequence of cellular and molecular events that constitutes an oscillatory cycle. Here we show that in lily pollen tubes the distance or wavelength (λ = 6.3 ± 1.7 μm) over which an oscillatory cycle unfolds is more robust than the period of oscillation (τ = 39.1 ± 17.6 s) (n = 159 cells). Moreover, the oscillatory cycle is divided into slow and fast phases, with each phase unfolding over precisely one half of the wavelength. Using these observations, we show that a simple spatial bi-oscillator predicts the most common modes of oscillation observed in pollen tubes. These results call into question the traditional view of pollen tube morphogenesis as a temporal succession of cellular events. Space, not time, may be the most natural metric to inteprete the morphogenetic dynamics of these cells.
Collapse
Affiliation(s)
| | - Roberto Bernal
- Departamento de Física, Universidad de Santiago de Chile, Santiago, 9170124, Chile
| | - Yaroslav Ispolatov
- Departamento de Física, Universidad de Santiago de Chile, Santiago, 9170124, Chile
| | - Jacques Dumais
- Facultad de Ingeniería y Ciencias, Universidad Adolfo Ibáñez, Viña del Mar, Region V, Chile.
| |
Collapse
|
30
|
Single measurement detection of individual cell ionic oscillations using an n-type semiconductor - electrolyte interface. Sci Rep 2018; 8:7875. [PMID: 29777196 PMCID: PMC5959918 DOI: 10.1038/s41598-018-26015-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
Pollen tubes are used as models in studies on the type of tip-growth in plants. They are an example of polarised and rapid growth because pollen tubes are able to quickly invade the flower pistil in order to accomplish fertilisation. How different ionic fluxes are perceived, processed or generated in the pollen tube is still not satisfactorily understood. In order to measure the H+, K+, Ca2+ and Cl− fluxes of a single pollen tube, we developed an Electrical Lab on a Photovoltaic-Chip (ELoPvC) on which the evolving cell was immersed in an electrolyte of a germination medium. Pollen from Hyacinthus orientalis L. was investigated ex vivo. We observed that the growing cell changed the (redox) potential in the medium in a periodic manner. This subtle measurement was feasible due to the effects that were taking place at the semiconductor-liquid interface. The experiment confirmed the existence of the ionic oscillations that accompany the periodic extension of pollen tubes, thereby providing – in a single run – the complete discrete frequency spectrum and phase relationships of the ion gradients and fluxes, while all of the metabolic and enzymatic functions of the cell life cycle were preserved. Furthermore, the global 1/fα characteristic of the power spectral density, which corresponds to the membrane channel noise, was found.
Collapse
|
31
|
Gutermuth T, Herbell S, Lassig R, Brosché M, Romeis T, Feijó JA, Hedrich R, Konrad KR. Tip-localized Ca 2+ -permeable channels control pollen tube growth via kinase-dependent R- and S-type anion channel regulation. THE NEW PHYTOLOGIST 2018; 218:1089-1105. [PMID: 29522235 DOI: 10.1111/nph.15067] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 01/18/2018] [Indexed: 05/26/2023]
Abstract
Pollen tubes (PTs) are characterized by having tip-focused cytosolic calcium ion (Ca2+ ) concentration ([Ca2+ ]cyt ) gradients, which are believed to control PT growth. However, the mechanisms by which the apical [Ca2+ ]cyt orchestrates PT growth are not well understood. Here, we aimed to identify these mechanisms by combining reverse genetics, cell biology, electrophysiology, and live-cell Ca2+ and anion imaging. We triggered Ca2+ -channel activation by applying hyperpolarizing voltage pulses and observed that the evoked [Ca2+ ]cyt increases were paralleled by high anion channel activity and a decrease in the cytosolic anion concentration at the PT tip. We confirmed a functional correlation between these patterns by showing that inhibition of Ca2+ -permeable channels eliminated the [Ca2+ ]cyt increase, resulting in the abrogation of anion channel activity via Ca2+ -dependent protein kinases (CPKs). Functional characterization of CPK and anion-channel mutants revealed a CPK2/20/6-dependent activation of SLAH3 and ALMT12/13/14 anion channels. The impaired growth phenotypes of anion channel and CPK mutants support the physiological significance of a kinase- and Ca2+ -dependent pathway to control PT growth via anion channel activation. Other than unveiling this functional link, our membrane hyperpolarization method allows for unprecedented manipulation of the [Ca2+ ]cyt gradient or oscillations in the PT tips and opens an array of opportunities for channel screenings.
Collapse
Affiliation(s)
- Timo Gutermuth
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Sarah Herbell
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Roman Lassig
- Plant Biochemistry, Dahlem Centre of Plant Sciences, FU Berlin, Königin-Luise-Straße 12/16, 14195, Berlin, Germany
| | - Mikael Brosché
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Tina Romeis
- Plant Biochemistry, Dahlem Centre of Plant Sciences, FU Berlin, Königin-Luise-Straße 12/16, 14195, Berlin, Germany
| | - José Alberto Feijó
- Department of Cell Biology & Molecular Genetics, University of Maryland, 2136 Bioscience Research Building, College Park, MD, 20742-5815, USA
| | - Rainer Hedrich
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| | - Kai Robert Konrad
- Department of Botany I, Julius-Von-Sachs Institute for Biosciences, University of Wuerzburg, 97082, Wuerzburg, Germany
| |
Collapse
|
32
|
Konrad KR, Maierhofer T, Hedrich R. Spatio-temporal Aspects of Ca2+ Signalling: Lessons from Guard Cells and Pollen Tubes. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4986225. [PMID: 29701811 DOI: 10.1093/jxb/ery154] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Indexed: 05/06/2023]
Abstract
Changes in cytosolic Ca2+ concentration ([Ca2+]cyt) serve to transmit information in eukaryotic cells. The involvement of this second messenger in plant cell growth as well as osmotic- and water relations is well established. After almost 40 years of intense research on the coding and decoding of plant Ca2+ signals, numerous proteins involved in Ca2+ action have been identified. However, we are still far from understanding the complexity of Ca2+ networks. New in vivo Ca2+ imaging techniques combined with molecular genetics allow visualisation of spatio-temporal aspects of Ca2+ signalling. In parallel, cell biology together with protein biochemistry and electrophysiology are able to dissect information processing by this second messenger in space and time. Here we focus on the time-resolved changes in cellular events upon Ca2+ signals, concentrating on the two best-studied cell types, pollen tubes and guard cells. We put their signalling networks side by side, compare them with those of other cell types and discuss rapid signalling in the context of Ca2+ transients and oscillations to regulate ion homeostasis.
Collapse
Affiliation(s)
- K R Konrad
- University of Wuerzburg, Julius-Von-Sachs Institute for Biosciences, Department of Botany I, Wuerzburg, Germany
| | - T Maierhofer
- University of Wuerzburg, Julius-Von-Sachs Institute for Biosciences, Department of Botany I, Wuerzburg, Germany
| | - R Hedrich
- University of Wuerzburg, Julius-Von-Sachs Institute for Biosciences, Department of Botany I, Wuerzburg, Germany
| |
Collapse
|
33
|
Lamport DTA, Tan L, Held MA, Kieliszewski MJ. Pollen tube growth and guidance: Occam's razor sharpened on a molecular arabinogalactan glycoprotein Rosetta Stone. THE NEW PHYTOLOGIST 2018; 217:491-500. [PMID: 28990197 DOI: 10.1111/nph.14845] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Occam's Razor suggests a new model of pollen tube tip growth based on a novel Hechtian oscillator that integrates a periplasmic arabinogalactan glycoprotein-calcium (AGP-Ca2+ ) capacitor with tip-localized AGPs as the source of tip-focussed cytosolic Ca2+ oscillations: Hechtian adhesion between the plasma membrane and the cell wall of the growing tip acts as a piconewton force transducer that couples the internal stress of a rapidly growing wall to the plasma membrane. Such Hechtian transduction opens stretch-activated Ca2+ channels and activates H+ -ATPase proton pump efflux that dissociates periplasmic AGP-Ca2+ resulting in a Ca2+ influx that activates exocytosis of wall precursors. Thus, a highly simplified pectic primary cell wall regulates its own synthesis by a Hechtian growth oscillator that regulates overall tip growth. By analogy with the three cryptic inscriptions of the classical Rosetta Stone, the Hechtian Hypothesis translates classical AGP function as a Ca2+ capacitor, pollen tube guide and wall plasticizer into a simple but widely applicable model of tip growth. Even wider ramifications of the Hechtian oscillator may implicate AGPs in osmosensing or gravisensing and other tropisms, leading us yet further towards the Holy Grail of plant growth.
Collapse
Affiliation(s)
- Derek T A Lamport
- School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Li Tan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602-4712, USA
| | - Michael A Held
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH, 45701, USA
| | | |
Collapse
|
34
|
Lipowczan M, Pietruszka M. Frequency-associated transition from single-cell asynchronous motion to monotonic growth. J Biol Phys 2017; 43:461-470. [PMID: 28900825 PMCID: PMC5696300 DOI: 10.1007/s10867-017-9462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 07/21/2017] [Indexed: 10/18/2022] Open
Abstract
This paper presents a Fourier analysis of the Ortega equation that examines the growth dynamics of plants, specifically the pollen tubes or non-meristematic zones of elongating coleoptiles. A frequency-induced transition from highly nonlinear (periodical) growth-like the one observed in pollen tubes-to monotonically ascending and asymptotically saturated (sigmoid-like) growth, which is anticipated within the framework of a 'two-fluid model', is shown. A dynamic phase diagram is calculated and presented in the form of a live video clip.
Collapse
Affiliation(s)
- Marcin Lipowczan
- Faculty of Biology and Environment Protection, Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40032, Katowice, Poland
| | - Mariusz Pietruszka
- Faculty of Biology and Environment Protection, Plant Physiology, University of Silesia, Jagiellońska 28, 40032, Katowice, Poland.
| |
Collapse
|
35
|
Wang Y, Wu WH. Regulation of potassium transport and signaling in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:123-128. [PMID: 28710919 DOI: 10.1016/j.pbi.2017.06.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 06/12/2017] [Accepted: 06/12/2017] [Indexed: 05/06/2023]
Abstract
As an essential macronutrient, potassium (K+) plays crucial roles in diverse physiological processes during plant growth and development. The K+ concentration in soils is relatively low and fluctuating. Plants are able to perceive external K+ changes and generate chemical and physical signals in plant cells. The signals can be transducted across the plasma membrane and into the cytosol, and eventually regulates the downstream targets, particularly K+ channels and transporters. As a result, K+ homeostasis in plant cells is modulated, which facilitates plant adaptation to K+ deficient conditions. This minireview focuses on the latest research progress in the diverse functions of K+ channels and transporters as well as their regulatory mechanisms in plant response to low-K+ stress.
Collapse
Affiliation(s)
- Yi Wang
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Wei-Hua Wu
- State Key Laboratory of Plant Physiology and Biochemistry (SKLPPB), College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
36
|
Aloisi I, Cai G, Faleri C, Navazio L, Serafini-Fracassini D, Del Duca S. Spermine Regulates Pollen Tube Growth by Modulating Ca 2+-Dependent Actin Organization and Cell Wall Structure. FRONTIERS IN PLANT SCIENCE 2017; 8:1701. [PMID: 29033970 PMCID: PMC5627395 DOI: 10.3389/fpls.2017.01701] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/15/2017] [Indexed: 05/25/2023]
Abstract
Proper growth of the pollen tube depends on an elaborate mechanism that integrates several molecular and cytological sub-processes and ensures a cell shape adapted to the transport of gametes. This growth mechanism is controlled by several molecules among which cytoplasmic and apoplastic polyamines. Spermine (Spm) has been correlated with various physiological processes in pollen, including structuring of the cell wall and modulation of protein (mainly cytoskeletal) assembly. In this work, the effects of Spm on the growth of pear pollen tubes were analyzed. When exogenous Spm (100 μM) was supplied to germinating pollen, it temporarily blocked tube growth, followed by the induction of apical swelling. This reshaping of the pollen tube was maintained also after growth recovery, leading to a 30-40% increase of tube diameter. Apical swelling was also accompanied by a transient increase in cytosolic calcium concentration and alteration of pH values, which were the likely cause for major reorganization of actin filaments and cytoplasmic organelle movement. Morphological alterations of the apical and subapical region also involved changes in the deposition of pectin, cellulose, and callose in the cell wall. Thus, results point to the involvement of Spm in cell wall construction as well as cytoskeleton organization during pear pollen tube growth.
Collapse
Affiliation(s)
- Iris Aloisi
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, Siena, Italy
| | | | | | - Stefano Del Duca
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
37
|
Zhu J, Nan Q, Qin T, Qian D, Mao T, Yuan S, Wu X, Niu Y, Bai Q, An L, Xiang Y. Higher-Ordered Actin Structures Remodeled by Arabidopsis ACTIN-DEPOLYMERIZING FACTOR5 Are Important for Pollen Germination and Pollen Tube Growth. MOLECULAR PLANT 2017; 10:1065-1081. [PMID: 28606871 DOI: 10.1016/j.molp.2017.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/02/2017] [Accepted: 06/05/2017] [Indexed: 06/07/2023]
Abstract
Dynamics of the actin cytoskeleton are essential for pollen germination and pollen tube growth. ACTIN-DEPOLYMERIZING FACTORs (ADFs) typically contribute to actin turnover by severing/depolymerizing actin filaments. Recently, we demonstrated that Arabidopsis subclass III ADFs (ADF5 and ADF9) evolved F-actin-bundling function from conserved F-actin-depolymerizing function. However, little is known about the physiological function, the evolutional significance, and the actin-bundling mechanism of these neofunctionalized ADFs. Here, we report that loss of ADF5 function caused delayed pollen germination, retarded pollen tube growth, and increased sensitive to latrunculin B (LatB) treatment by affecting the generation and maintenance of actin bundles. Examination of actin filament dynamics in living cells revealed that the bundling frequency was significantly decreased in adf5 pollen tubes, consistent with its biochemical functions. Further biochemical and genetic complementation analyses demonstrated that both the N- and C-terminal actin-binding domains of ADF5 are required for its physiological and biochemical functions. Interestingly, while both are atypical actin-bundling ADFs, ADF5, but not ADF9, plays an important role in mature pollen physiological activities. Taken together, our results suggest that ADF5 has evolved the function of bundling actin filaments and plays an important role in the formation, organization, and maintenance of actin bundles during pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tao Qin
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Tonglin Mao
- State Key Laboratory of Plant Physiology and Biochemistry, Department of Plant Sciences, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Shunjie Yuan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Xiaorong Wu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yue Niu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Qifeng Bai
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou 730000, China.
| |
Collapse
|
38
|
Damineli DSC, Portes MT, Feijó JA. Oscillatory signatures underlie growth regimes in Arabidopsis pollen tubes: computational methods to estimate tip location, periodicity, and synchronization in growing cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3267-3281. [PMID: 28369603 PMCID: PMC5853864 DOI: 10.1093/jxb/erx032] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 01/17/2017] [Indexed: 05/18/2023]
Abstract
Oscillations in pollen tubes have been reported for many cellular processes, including growth, extracellular ion fluxes, and cytosolic ion concentrations. However, there is a shortage of quantitative methods to measure and characterize the different dynamic regimes observed. Herein, a suite of open-source computational methods and original algorithms were integrated into an automated analysis pipeline that we employed to characterize specific oscillatory signatures in pollen tubes of Arabidopsis thaliana (Col-0). Importantly, it enabled us to detect and quantify a Ca2+ spiking behaviour upon growth arrest and synchronized oscillations involving growth, extracellular H+ fluxes, and cytosolic Ca2+, providing the basis for novel hypotheses. Our computational approach includes a new tip detection method with subpixel resolution using linear regression, showing improved ability to detect oscillations when compared to currently available methods. We named this data analysis pipeline 'Computational Heuristics for Understanding Kymographs and aNalysis of Oscillations Relying on Regression and Improved Statistics', or CHUKNORRIS. It can integrate diverse data types (imaging, electrophysiology), extract quantitative and time-explicit estimates of oscillatory characteristics from isolated time series (period and amplitude) or pairs (phase relationships and delays), and evaluate their synchronization state. Here, its performance is tested with ratiometric and single channel kymographs, ion flux data, and growth rate analysis.
Collapse
Affiliation(s)
- Daniel S C Damineli
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Maria Teresa Portes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - José A Feijó
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
39
|
Suwińska A, Wasąg P, Zakrzewski P, Lenartowska M, Lenartowski R. Calreticulin is required for calcium homeostasis and proper pollen tube tip growth in Petunia. PLANTA 2017; 245:909-926. [PMID: 28078426 PMCID: PMC5391374 DOI: 10.1007/s00425-017-2649-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 01/05/2017] [Indexed: 05/19/2023]
Abstract
MAIN CONCLUSION Calreticulin is involved in stabilization of the tip-focused Ca 2+ gradient and the actin cytoskeleton arrangement and function that is required for several key processes driving Petunia pollen tube tip growth. Although the precise mechanism is unclear, stabilization of a tip-focused calcium (Ca2+) gradient seems to be critical for pollen germination and pollen tube growth. We hypothesize that calreticulin (CRT), a Ca2+-binding/buffering chaperone typically residing in the lumen of the endoplasmic reticulum (ER) of eukaryotic cells, is an excellent candidate to fulfill this role. We previously showed that in Petunia pollen tubes growing in vitro, CRT is translated on ER membrane-bound ribosomes that are abundant in the subapical zone of the tube, where CRT's Ca2+-buffering and chaperone activities might be particularly required. Here, we sought to determine the function of CRT using small interfering RNA (siRNA) to, for the first time in pollen tubes growing in vitro, knockdown expression of a gene. We demonstrate that siRNA-mediated post-transcriptional silencing of Petunia hybrida CRT gene (PhCRT) expression strongly impairs pollen tube growth, cytoplasmic zonation, actin cytoskeleton organization, and the tip-focused Ca2+ gradient. Moreover, reduction of CRT alters the localization and disturbs the structure of the ER in abnormally elongating pollen tubes. Finally, cytoplasmic streaming is inhibited, and most of the pollen tubes rupture. Our data clearly show an interplay between CRT, Ca2+ gradient, actin-dependent cytoplasmic streaming, organelle positioning, and vesicle trafficking during pollen tube elongation. Thus, we suggest that CRT functions in Petunia pollen tube growth by stabilizing Ca2+ homeostasis and acting as a chaperone to assure quality control of glycoproteins passing through the ER.
Collapse
Affiliation(s)
- Anna Suwińska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Piotr Wasąg
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Przemysław Zakrzewski
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Marta Lenartowska
- Laboratory of Developmental Biology, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Robert Lenartowski
- Laboratory of Isotope and Instrumental Analysis, Faculty of Biology and Environmental Protection, Nicolaus Copernicus University in Toruń, Toruń, Poland.
| |
Collapse
|
40
|
Konopka-Postupolska D, Clark G. Annexins as Overlooked Regulators of Membrane Trafficking in Plant Cells. Int J Mol Sci 2017; 18:E863. [PMID: 28422051 PMCID: PMC5412444 DOI: 10.3390/ijms18040863] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 04/03/2017] [Accepted: 04/06/2017] [Indexed: 12/11/2022] Open
Abstract
Annexins are an evolutionary conserved superfamily of proteins able to bind membrane phospholipids in a calcium-dependent manner. Their physiological roles are still being intensively examined and it seems that, despite their general structural similarity, individual proteins are specialized toward specific functions. However, due to their general ability to coordinate membranes in a calcium-sensitive fashion they are thought to participate in membrane flow. In this review, we present a summary of the current understanding of cellular transport in plant cells and consider the possible roles of annexins in different stages of vesicular transport.
Collapse
Affiliation(s)
- Dorota Konopka-Postupolska
- Plant Biochemistry Department, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw 02-106, Poland.
| | - Greg Clark
- Molecular, Cell, and Developmental Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
41
|
Liu S, Liu H, Feng S, Lin M, Xu F, Lu TJ. Fountain streaming contributes to fast tip-growth through regulating the gradients of turgor pressure and concentration in pollen tubes. SOFT MATTER 2017; 13:2919-2927. [PMID: 28352884 DOI: 10.1039/c6sm01915c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fountain streaming is a typical microfluidic pattern in plant cells, especially for cells with a high aspect ratio such as pollen tubes. Although it has been found that fountain streaming plays crucial roles in the transport of nutrients and metabolites, the positioning of organelles and the mixing of cytoplasms, its implications for the fast tip growth of pollen tubes remain a mystery. To address this, based on the observations of asiatic lily Lilium Casablanca, we developed physical models for reverse fountain streaming in pollen tubes and solved the hydrodynamics and advection-diffusion dynamics of viscous Stokes flow in the shank and apical region of pollen tubes. Theoretical and numerical results demonstrated that the gradients of turgor pressure and concentration of wall materials along the length of pollen tubes provide undamped driving force and high-efficiency materials supply, which are supposed to contribute to the fast tip-growth of pollen tubes. The sample experimental results show that the tip-growth will be abnormal when the gradients of turgor pressure change under osmotic stress induced by different concentrations of PEG-6000 (a dehydrant).
Collapse
Affiliation(s)
- ShaoBao Liu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Han Liu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China. and MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - ShangSheng Feng
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| | - Min Lin
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China. and MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Feng Xu
- Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China. and MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Tian Jian Lu
- State Key Laboratory for Strength and Vibration of Mechanical Structures, School of Aerospace, Xi'an Jiaotong University, Xi'an 710049, P. R. China. and Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P. R. China.
| |
Collapse
|
42
|
Hu C, Vogler H, Aellen M, Shamsudhin N, Jang B, Burri JT, Läubli N, Grossniklaus U, Pané S, Nelson BJ. High precision, localized proton gradients and fluxes generated by a microelectrode device induce differential growth behaviors of pollen tubes. LAB ON A CHIP 2017; 17:671-680. [PMID: 28098283 DOI: 10.1039/c6lc01307d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pollen tubes are tip-growing plant cells that deliver the sperm cells to the ovules for double fertilization of the egg cell and the endosperm. Various directional cues can trigger the reorientation of pollen tube growth direction on their passage through the female tissues. Among the external stimuli, protons serve an important, regulatory role in the control of pollen tube growth. The generation of local guidance cues has been challenging when investigating the mechanisms of perception and processing of such directional triggers in pollen tubes. Here, we developed and characterized a microelectrode device to generate a local proton gradient and proton flux through water electrolysis. We confirmed that the cytoplasmic pH of pollen tubes varied with environmental pH change. Depending on the position of the pollen tube tip relative to the proton gradient, we observed alterations in the growth behavior, such as bursting at the tip, change in growth direction, or complete growth arrest. Bursting and growth arrest support the hypothesis that changes in the extracellular H+ concentration may interfere with cell wall integrity and actin polymerization at the growing tip. A change in growth direction for some pollen tubes implies that they can perceive the local proton gradient and respond to it. We also showed that the growth rate is directly correlated with the extracellular pH in the tip region. Our microelectrode approach provides a simple method to generate protons and investigate their effect on plant cell growth.
Collapse
Affiliation(s)
- Chengzhi Hu
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Hannes Vogler
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Marianne Aellen
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Naveen Shamsudhin
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Bumjin Jang
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Jan T Burri
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Nino Läubli
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, CH-8008 Zurich, Switzerland
| | - Salvador Pané
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| | - Bradley J Nelson
- Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, CH-8092 Zurich, Switzerland.
| |
Collapse
|
43
|
Yang N, Wang T. Comparative proteomic analysis reveals a dynamic pollen plasma membrane protein map and the membrane landscape of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils in rice. BMC PLANT BIOLOGY 2017; 17:2. [PMID: 28056797 PMCID: PMC5217431 DOI: 10.1186/s12870-016-0961-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 12/22/2016] [Indexed: 05/29/2023]
Abstract
BACKGROUND The coordination of pollen tube (PT) growth, guidance and timely growth arrest and rupture mediated by PT-pistil interaction is crucial for the PT to transport sperm cells into ovules for double fertilization. The plasma membrane (PM) represents an important interface for cell-cell interaction, and PM proteins of PTs are pioneers for mediating PT integrity and interaction with pistils. Thus, understanding the mechanisms underlying these events is important for proteomics. RESULTS Using the efficient aqueous polymer two-phase system and alkali buffer treatment, we prepared high-purity PM from mature and germinated pollen of rice. We used iTRAQ quantitative proteomic methods and identified 1,121 PM-related proteins (PMrPs) (matched to 899 loci); 192 showed differential expression in the two pollen cell types, 119 increased and 73 decreased in abundance during germination. The PMrP and differentially expressed PMrP sets all showed a functional skew toward signal transduction, transporters, wall remodeling/metabolism and membrane trafficking. Their genomic loci had strong chromosome bias. We found 37 receptor-like kinases (RLKs) from 8 kinase subfamilies and 209 transporters involved in flux of diversified ions and metabolites. In combination with the rice pollen transcriptome data, we revealed that in general, the protein expression of these PMrPs disagreed with their mRNA expression, with inconsistent mRNA expression for 74% of differentially expressed PMrPs. CONCLUSIONS This study identified genome-wide pollen PMrPs, and provided insights into the membrane profile of receptor-like kinases and transporters important for pollen tube growth and interaction with pistils. These pollen PMrPs and their mRNAs showed discordant expression. This work provides resource and knowledge to further dissect mechanisms by which pollen or the PT controls PMrP abundance and monitors interactions and ion and metabolite exchanges with female cells in rice.
Collapse
Affiliation(s)
- Ning Yang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, 20 Nanxincun, Xiangshan, Haidianqu, Beijing, 100093 China
| | - Tai Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, and National Center for Plant Gene Research, 20 Nanxincun, Xiangshan, Haidianqu, Beijing, 100093 China
| |
Collapse
|
44
|
Verma C, Kumar Mani A, Mishra S. Biochemical and Molecular Characterization of Cell Wall Degrading Enzyme, Pectin Methylesterase Versus Banana Ripening: An Overview. ACTA ACUST UNITED AC 2016. [DOI: 10.3923/ajbkr.2017.1.23] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
45
|
Kale PB, Jadhav PV, Wakekar RS, Moharil MP, Deshmukh AG, Dudhare MS, Nandanwar RS, Mane SS, Manjaya JG, Dani RG. Cytological behaviour of floral organs and in silico characterization of differentially expressed transcript-derived fragments associated with 'floral bud distortion' in soybean. J Genet 2016; 95:787-799. [PMID: 27994177 DOI: 10.1007/s12041-016-0693-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An attempt was made to understand the 'floral bud distortion' (FBD), an unexplored disorder prevailing in soybean. Cytological behaviour of floral reproductive organs and in silico characterization of differentially expressed transcript-derived fragments (TDFs) in symptomatic and asymptomatic soybean plants were carried out. Pollens in asymptomatic plants do not have defects in number, size, shape and function. However, in symptomatic plant, pollens were found nonviable, abnormal in shape and with reduced germination ability. Here, we employed a computational approach, exploring invaluable resources. The tissue-specific transcript profile of symptomatic and asymptomatic sources was compared to determine differentially expressed TDFs associated with FBD to improve its basic understanding. A total of 60 decamer primers produced 197 scorable amplicons, ranged 162-1130 bp, of which 171 were monomorphic and 26 were differentially regulated. Reproducible TDFs were sequenced and characterized for their homology analysis, annotation, protein-protein interaction, subcellular localization and their physical mapping. Homology-based annotation of TDFs in soybean revealed presence of two characterized and seven uncharacterized hits. Annotation of characterized sequences showed presence of genes, namely auxin response factor 9 (ARF9) and forkhead-associated (FHA) domain, which are directly involved in plant development through various pathways, such as hormonal regulation, plant morphology, embryogenesis and DNA repair.
Collapse
Affiliation(s)
- Prashant B Kale
- Biotechnology Centre, Post Graduate Institute, Dr Panjabrao Deshmukh Krishi Vidyapeeth, Akola 444 104, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Lütz-Meindl U. Micrasterias as a Model System in Plant Cell Biology. FRONTIERS IN PLANT SCIENCE 2016; 7:999. [PMID: 27462330 PMCID: PMC4940373 DOI: 10.3389/fpls.2016.00999] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2016] [Accepted: 06/24/2016] [Indexed: 05/18/2023]
Abstract
The unicellular freshwater alga Micrasterias denticulata is an exceptional organism due to its complex star-shaped, highly symmetric morphology and has thus attracted the interest of researchers for many decades. As a member of the Streptophyta, Micrasterias is not only genetically closely related to higher land plants but shares common features with them in many physiological and cell biological aspects. These facts, together with its considerable cell size of about 200 μm, its modest cultivation conditions and the uncomplicated accessibility particularly to any microscopic techniques, make Micrasterias a very well suited cell biological plant model system. The review focuses particularly on cell wall formation and composition, dictyosomal structure and function, cytoskeleton control of growth and morphogenesis as well as on ionic regulation and signal transduction. It has been also shown in the recent years that Micrasterias is a highly sensitive indicator for environmental stress impact such as heavy metals, high salinity, oxidative stress or starvation. Stress induced organelle degradation, autophagy, adaption and detoxification mechanisms have moved in the center of interest and have been investigated with modern microscopic techniques such as 3-D- and analytical electron microscopy as well as with biochemical, physiological and molecular approaches. This review is intended to summarize and discuss the most important results obtained in Micrasterias in the last 20 years and to compare the results to similar processes in higher plant cells.
Collapse
Affiliation(s)
- Ursula Lütz-Meindl
- Plant Physiology Division, Cell Biology Department, University of SalzburgSalzburg, Austria
| |
Collapse
|
47
|
Zhao LJ, Yuan HM, Guo WD, Yang CP. Digital Gene Expression Analysis of Populus simonii × P. nigra Pollen Germination and Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:825. [PMID: 27379121 PMCID: PMC4908133 DOI: 10.3389/fpls.2016.00825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 05/26/2016] [Indexed: 05/27/2023]
Abstract
Pollen tubes are an ideal model for the study of cell growth and morphogenesis because of their extreme elongation without cell division; however, the genetic basis of pollen germination and tube growth remains largely unknown. Using the Illumina/Solexa digital gene expression system, we identified 13,017 genes (representing 28.3% of the unigenes on the reference genes) at three stages, including mature pollen, hydrated pollen, and pollen tubes of Populus simonii × P. nigra. Comprehensive analysis of P. simonii × P. nigra pollen revealed dynamic changes in the transcriptome during pollen germination and pollen tube growth (PTG). Gene ontology analysis of differentially expressed genes showed that genes involved in functional categories such as catalytic activity, binding, transporter activity, and enzyme regulator activity were overrepresented during pollen germination and PTG. Some highly dynamic genes involved in pollen germination and PTG were detected by clustering analysis. Genes related to some key pathways such as the mitogen-activated protein kinase signaling pathway, regulation of the actin cytoskeleton, calcium signaling, and ubiquitin-mediated proteolysis were significantly changed during pollen germination and PTG. These data provide comprehensive molecular information toward further understanding molecular mechanisms underlying pollen germination and PTG.
Collapse
Affiliation(s)
- Li-Juan Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
- Department of Crop Molecular Breeding, Crop Breeding Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Hong-Mei Yuan
- Medical Plant Research Center, Economic Crop Institute, Heilongjiang Academy of Agricultural SciencesHarbin, China
| | - Wen-Dong Guo
- Biotechnology Research Center, Institute of Natural Resources and Ecology, Heilongjiang Academy of SciencesHarbin, China
| | - Chuan-Ping Yang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry UniversityHarbin, China
| |
Collapse
|
48
|
Paul P, Röth S, Schleiff E. Importance of organellar proteins, protein translocation and vesicle transport routes for pollen development and function. PLANT REPRODUCTION 2016; 29:53-65. [PMID: 26874709 DOI: 10.1007/s00497-016-0274-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 01/18/2016] [Indexed: 05/27/2023]
Abstract
Protein translocation. Cellular homeostasis strongly depends on proper distribution of proteins within cells and insertion of membrane proteins into the destined membranes. The latter is mediated by organellar protein translocation and the complex vesicle transport system. Considering the importance of protein transport machineries in general it is foreseen that these processes are essential for pollen function and development. However, the information available in this context is very scarce because of the current focus on deciphering the fundamental principles of protein transport at the molecular level. Here we review the significance of protein transport machineries for pollen development on the basis of pollen-specific organellar proteins as well as of genetic studies utilizing mutants of known organellar proteins. In many cases these mutants exhibit morphological alterations highlighting the requirement of efficient protein transport and translocation in pollen. Furthermore, expression patterns of genes coding for translocon subunits and vesicle transport factors in Arabidopsis thaliana are summarized. We conclude that with the exception of the translocation systems in plastids-the composition and significance of the individual transport systems are equally important in pollen as in other cell types. Apparently for plastids only a minimal translocon, composed of only few subunits, exists in the envelope membranes during maturation of pollen. However, only one of the various transport systems known from thylakoids seems to be required for the function of the "simple thylakoid system" existing in pollen plastids. In turn, the vesicle transport system is as complex as seen for other cell types as it is essential, e.g., for pollen tube formation.
Collapse
Affiliation(s)
- Puneet Paul
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Sascha Röth
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany
| | - Enrico Schleiff
- Department of Biosciences, Molecular Cell Biology of Plants, Goethe University, 60438, Frankfurt Am Main, Germany.
- Cluster of Excellence Frankfurt, Goethe University, 60438, Frankfurt Am Main, Germany.
- Buchmann Institute for Molecular Life Sciences (BMLS), Goethe University, 60438, Frankfurt Am Main, Germany.
| |
Collapse
|
49
|
Wang W, Sheng X, Shu Z, Li D, Pan J, Ye X, Chang P, Li X, Wang Y. Combined Cytological and Transcriptomic Analysis Reveals a Nitric Oxide Signaling Pathway Involved in Cold-Inhibited Camellia sinensis Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2016; 7:456. [PMID: 27148289 PMCID: PMC4830839 DOI: 10.3389/fpls.2016.00456] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 03/24/2016] [Indexed: 05/05/2023]
Abstract
Nitric oxide (NO) as a signaling molecule plays crucial roles in many abiotic stresses in plant development processes, including pollen tube growth. Here, the signaling networks dominated by NO during cold stress that inhibited Camellia sinensis pollen tube growth are investigated in vitro. Cytological analysis show that cold-induced NO is involved in the inhibition of pollen tube growth along with disruption of the cytoplasmic Ca(2+) gradient, increase in ROS content, acidification of cytoplasmic pH and abnormalities in organelle ultrastructure and cell wall component distribution in the pollen tube tip. Furthermore, differentially expressed genes (DEGs)-related to signaling pathway, such as NO synthesis, cGMP, Ca(2+), ROS, pH, actin, cell wall, and MAPK cascade signal pathways, are identified and quantified using transcriptomic analyses and qRT-PCR, which indicate a potential molecular mechanism for the above cytological results. Taken together, these findings suggest that a complex signaling network dominated by NO, including Ca(2+), ROS, pH, RACs signaling and the crosstalk among them, is stimulated in the C. sinensis pollen tube in response to cold stress, which further causes secondary and tertiary alterations, such as ultrastructural abnormalities in organelles and cell wall construction, ultimately resulting in perturbed pollen tube extension.
Collapse
Affiliation(s)
- Weidong Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xianyong Sheng
- College of Life Sciences, Capital Normal UniversityBeijing, China
| | - Zaifa Shu
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Dongqin Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Junting Pan
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xiaoli Ye
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Pinpin Chang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Xinghui Li
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| | - Yuhua Wang
- College of Horticulture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
50
|
Qian D, Nan Q, Yang Y, Li H, Zhou Y, Zhu J, Bai Q, Zhang P, An L, Xiang Y. Gelsolin-Like Domain 3 Plays Vital Roles in Regulating the Activities of the Lily Villin/Gelsolin/Fragmin Superfamily. PLoS One 2015; 10:e0143174. [PMID: 26587673 PMCID: PMC4654503 DOI: 10.1371/journal.pone.0143174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 11/02/2015] [Indexed: 02/08/2023] Open
Abstract
The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins.
Collapse
Affiliation(s)
- Dong Qian
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qiong Nan
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yueming Yang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Hui Li
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yuelong Zhou
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Jingen Zhu
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Qifeng Bai
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Pan Zhang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Lizhe An
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yun Xiang
- MOE Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|