1
|
Grzelakowska A, Podsiadły R, Zielonka J. Phenyl Radical-Mediated Fluorogenic Cyclization for Specific Detection of Peroxynitrite. Anal Chem 2025; 97:7299-7306. [PMID: 40146989 PMCID: PMC11983361 DOI: 10.1021/acs.analchem.4c06983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/25/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
Peroxynitrite (ONOO-), a biological oxidizing and nitrating species responsible for post-translational modification of cellular proteins, has been implicated in numerous pathologies carrying an inflammatory component. Specific detection of ONOO- in biological systems remains a challenge, and boronates are regarded as the most promising class of probes for the detection and quantitation of ONOO-. Oxidation of boronate probes by ONOO- results in the formation of minor ONOO--specific products via a pathway involving a phenyl radical-type intermediate, in addition to the major phenolic product. Here, we report fluorogenic cyclization of the phenyl-type radical formed during oxidation of a boronate probe by ONOO-, with the production of a fluorescent product, and we propose a new approach for the specific detection of ONOO- based on this observation. We characterized the kinetics and stoichiometry of the reaction of benzophenone-2-boronic acid with ONOO- and identified 2-hydroxybenzophenone as the major product and fluorenone (FLN) and 2-nitrobenzophenone as the minor ONOO--specific products. Hydrogen peroxide neither alone nor in the presence of myeloperoxidase and nitrite produces FLN or 2-nitrobenzophenone. FLN can be selectively detected using fluorescence spectroscopy, providing a chemical principle for the development of next-generation probes for ONOO-, with noninvasive, fluorescence-based detection of ONOO--specific products. Fluorescence-based monitoring of FLN was successfully applied for the detection of ONOO- generated in situ from the decomposition of SIN-1, a thermal source of the superoxide radical anion and nitric oxide.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute
of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz 90-537, Poland
- Department
of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| | - Radosław Podsiadły
- Institute
of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, Lodz 90-537, Poland
| | - Jacek Zielonka
- Department
of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, Wisconsin 53226, United States
| |
Collapse
|
2
|
Jung HJ, Park HS, Kim HJ, Park HS, Kim YE, Jeong DE, Noh SG, Park Y, Chun P, Chung HY, Moon HR. Exploring 2-mercapto- N-arylacetamide analogs as promising anti-melanogenic agents: in vitro and in vivo evaluation. Org Biomol Chem 2024; 22:7671-7689. [PMID: 39222053 DOI: 10.1039/d4ob01225a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Based on the hypothesis that the 2-mercaptoacetamide moiety chelates the copper ions of tyrosinase, 2-mercapto-N-arylacetamide (2-MAA) analogs were designed and synthesized as potential tyrosinase inhibitors. Four 2-MAA analogs showed low IC50 values ranging from 0.95 to 2.0 μM against mushroom tyrosinase, which was 12-26 times lower than that of kojic acid (IC50 value = 24.3 μM). However, according to a copper ion chelation experiment performed, the 2-MAA analogs did not participate in chelation with copper ions. To identify the mode of inhibition of the 2-MAA analogs, kinetic studies were performed, and the results were supported by docking results. In addition, docking simulation results suggested that the 2-MAA analogs strongly inhibited tyrosinase activity because of the hydrogen bonding of the amide NH group and the hydrophobic interaction of the aryl ring instead of chelation with copper ions. In experiments using B16F10 cells, 2-MAA analogs were shown to inhibit melanin production by inhibiting cellular tyrosinase activity. Western blotting showed that in addition to directly inhibiting tyrosinase activity, analog 7 also has an anti-melanogenic effect by inhibiting the expression of microphthalmia-associated transcription factor (MITF) and tyrosinase. The 2-MAA analogs showed no appreciable cytotoxicity against HaCaT and B16F10 cells, making them suitable for dermal applications. In a depigmentation experiment using zebrafish embryos, analogs 1 and 2 showed more potent depigmentation effects than kojic acid even at 1000 times lower concentration than that of kojic acid. These results suggest that the 2-MAA analogs are promising anti-melanogenic agents that can inhibit most tyrosinases in various species.
Collapse
Affiliation(s)
- Hee Jin Jung
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Hye Soo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Hye Jin Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Hyeon Seo Park
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Young Eun Kim
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Da Eun Jeong
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| | - Sang Gyun Noh
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Yujin Park
- Department of Medicinal Chemistry, New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, South Korea
| | - Pusoon Chun
- College of Pharmacy and Inje Institute of Pharmaceutical Sciences and Research, Inje University, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Hae Young Chung
- Department of Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea
| | - Hyung Ryong Moon
- Department of Manufacturing Pharmacy, College of Pharmacy and Research Institute for Drug Development, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
3
|
Grzelakowska A, Modrzejewska J, Kolińska J, Szala M, Zielonka M, Dębowska K, Zakłos-Szyda M, Sikora A, Zielonka J, Podsiadły R. Water-soluble cationic boronate probe based on coumarin imidazolium scaffold: Synthesis, characterization, and application to cellular peroxynitrite detection. Free Radic Biol Med 2022; 179:34-46. [PMID: 34923103 DOI: 10.1016/j.freeradbiomed.2021.12.260] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 12/07/2021] [Accepted: 12/14/2021] [Indexed: 02/08/2023]
Abstract
Peroxynitrite (ONOO-) has been implicated in numerous pathologies associated with an inflammatory component, but its selective and sensitive detection in biological settings remains a challenge. Here, the development of a new water-soluble and cationic boronate probe based on a coumarin-imidazolium scaffold (CI-Bz-BA) for the fluorescent detection of ONOO- in cells is reported. The chemical reactivity of the CI-Bz-BA probe toward selected oxidants known to react with the boronate moiety was characterized, and the suitability of the probe for the direct detection of ONOO- in cell-free and cellular system is reported. Oxidation of the probe results in the formation of the primary hydroxybenzyl product (CI-Bz-OH), followed by the spontaneous elimination of the quinone methide moiety to produce the secondary phenol (CI-OH), which is accompanied by a red shift in the fluorescence emission band from 405 nm to 481 nm. CI-Bz-BA reacts with ONOO- stoichiometrically with a rate constant of ∼1 × 106 M-1s-1 to form, in addition to the major phenolic product CI-OH, the minor nitrated product CI-Bz-NO2, which is not formed by other oxidants tested or via myeloperoxidase-catalyzed oxidation/nitration. Both CI-OH and CI-Bz-NO2 products were also formed in the presence of cogenerated fluxes of nitric oxide and superoxide radical anion produced during decomposition of a SIN-1 donor. Using RAW 264.7 cells, we demonstrate the ability of the probe to report endogenously produced ONOO-via fluorescence measurements, including plate reader real time monitoring and two-photon fluorescence imaging. Liquid chromatography/mass spectrometry analyses of cell extracts and media confirmed the formation of both CI-OH and CI-Bz-NO2 in macrophages activated to produce ONOO-. We propose the use of a combination of real-time monitoring of probe oxidation using fluorimetry and fluorescence microscopy with liquid chromatography/mass spectrometry-based product identification for rigorous detection and quantitative analyses of ONOO- in biological systems.
Collapse
Affiliation(s)
- Aleksandra Grzelakowska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Julia Modrzejewska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Jolanta Kolińska
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Marcin Szala
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| | - Monika Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Karolina Dębowska
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Małgorzata Zakłos-Szyda
- Institute of Molecular and Industrial Biotechnology, Faculty of Biotechnology and Food Sciences, Lodz University of Technology, Stefanowskiego 2/22, 90-537, Lodz, Poland.
| | - Adam Sikora
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Lodz, Poland.
| | - Jacek Zielonka
- Department of Biophysics, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI, 53226, United States.
| | - Radosław Podsiadły
- Institute of Polymer and Dye Technology, Faculty of Chemistry, Lodz University of Technology, Stefanowskiego 16, 90-537, Lodz, Poland.
| |
Collapse
|
4
|
Donoso F, Ramírez VT, Golubeva AV, Moloney GM, Stanton C, Dinan TG, Cryan JF. Naturally Derived Polyphenols Protect Against Corticosterone-Induced Changes in Primary Cortical Neurons. Int J Neuropsychopharmacol 2019; 22:765-777. [PMID: 31812985 PMCID: PMC6929673 DOI: 10.1093/ijnp/pyz052] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/18/2019] [Accepted: 12/04/2019] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Polyphenols are phytochemicals that have been associated with therapeutic effects in stress-related disorders. Indeed, studies suggest that polyphenols exert significant neuroprotection against multiple neuronal injuries, including oxidative stress and neuroinflammation, but the mechanisms are unclear. Evidence indicates that polyphenol neuroprotection may be mediated by activation of Nrf2, a transcription factor associated with antioxidant and cell survival responses. On the other hand, in stress-linked disorders, Fkbp5 is a novel molecular target for treatment because of its capacity to regulate glucocorticoid receptor sensitivity. However, it is not clear the role Fkbp5 plays in polyphenol-mediated stress modulation. In this study, the neuroprotective effects and mechanisms of the naturally derived polyphenols xanthohumol and quercetin against cytotoxicity induced by corticosterone were investigated in primary cortical cells. METHODS Primary cortical cells containing both neurons and astrocytes were pre-incubated with different concentrations of quercetin and xanthohumol to examine the neuroprotective effects of polyphenols on cell viability, morphology, and gene expression following corticosterone insult. RESULTS Both polyphenols tested prevented the reduction of cell viability and alterations of neuronal/astrocytic numbers due to corticosterone exposure. Basal levels of Bdnf mRNA were also decreased after corticosterone insult; however, this was reversed by both polyphenol treatments. Interestingly, the Nrf2 inhibitor blocked xanthohumol but not quercetin-mediated neuroprotection. In contrast, we found that Fkbp5 expression is exclusively modulated by quercetin. CONCLUSIONS These results suggest that naturally derived polyphenols protect cortical cells against corticosterone-induced cytotoxicity and enhance cell survival via modulation of the Nrf2 pathway and expression of Fkbp5.
Collapse
Affiliation(s)
- Francisco Donoso
- APC Microbiome Ireland,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | | | - Anna V Golubeva
- APC Microbiome Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Gerard M Moloney
- APC Microbiome Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland,Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Timothy G Dinan
- APC Microbiome Ireland,Department of Psychiatry and Neurobehavioral Science, University College Cork, Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland,Correspondence: Prof. John F. Cryan, Department Anatomy & Neuroscience/APC Microbiome Ireland, University College Cork, Ireland ()
| |
Collapse
|
5
|
He Y, Zhang Y, Zhang D, Zhang M, Wang M, Jiang Z, Otero M, Chen J. 3-morpholinosydnonimine (SIN-1)-induced oxidative stress leads to necrosis in hypertrophic chondrocytes in vitro. Biomed Pharmacother 2018; 106:1696-1704. [PMID: 30119244 DOI: 10.1016/j.biopha.2018.07.128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/05/2018] [Accepted: 07/24/2018] [Indexed: 01/06/2023] Open
Abstract
Chondrocyte is targeted for disruption in Osteoarthritis (OA) and Kashin-Beck Disease (KBD), and chondrocyte death in cartilage may contribute to the progression of OA and KBD. Oxidative stress leads to increased risk for OA. Previous work in our laboratory implicates oxidative stress as a potential mediator in children with KBD. While these studies suggest a role for oxidative stress in the modulation of OA and KBD, the direct effects of reactive oxygen species/reactive nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, decreased the cell viability in hypertrophic chondrocytes in a dose- and time- dependent manner. SIN-1 induced necrosis in hypertrophic chondrocytes, whereas triggered apoptosis in non-hypertrophic cells of non-differentiated ATDC5 cells and C28/I2 cells. Ultrastructural analysis of hypertrophic chondrocyte treated with SIN-1 revealed morphological changes, such as plasma membrane breakdown, generalized swelling of the cytoplasm and organelles, even to disappearance. Moreover, SIN-1 induced chondronecrosis in the deep zone of engineered cartilage tissue, such as cell-free vacancy and "red ghost" cells. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenous ROS/RNS, leads to necrosis in hypertrophic chondrocytes. Oxidative stress-mediated necrotic cell death contributes to chondronecrosis in the deep zone of cartilage in both OA and KBD.
Collapse
Affiliation(s)
- Ying He
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China; Graduate Students Teaching Experiment Center, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, PR China
| | - Ying Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Dan Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Meng Zhang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Mengying Wang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Zhuocheng Jiang
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China
| | - Miguel Otero
- Research Division, HSS Research Institute, Hospital for Special Surgery, and Weill Cornell Medical College, 535 East 70th Street, New York, New York, 10021, USA
| | - Jinghong Chen
- Institute of Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, Key Laboratory of Trace Elements and Endemic Diseases, National Health and Family Planning Commission, Xi'an, 710061, Shaanxi, PR China.
| |
Collapse
|
6
|
Interleukin-1β Protects Neurons against Oxidant-Induced Injury via the Promotion of Astrocyte Glutathione Production. Antioxidants (Basel) 2018; 7:antiox7080100. [PMID: 30044427 PMCID: PMC6115796 DOI: 10.3390/antiox7080100] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 07/04/2018] [Accepted: 07/21/2018] [Indexed: 01/13/2023] Open
Abstract
Interleukin-1β (IL-1β), a key cytokine that drives neuroinflammation in the Central Nervous System (CNS), is enhanced in many neurological diseases/disorders. Although IL-1β contributes to and/or sustains pathophysiological processes in the CNS, we recently demonstrated that IL-1β can protect cortical astrocytes from oxidant injury in a glutathione (GSH)-dependent manner. To test whether IL-1β could similarly protect neurons against oxidant stress, near pure neuronal cultures or mixed cortical cell cultures containing neurons and astrocytes were exposed to the organic peroxide, tert-butyl hydroperoxide (t-BOOH), following treatment with IL-1β or its vehicle. Neurons and astrocytes in mixed cultures, but not pure neurons, were significantly protected from the toxicity of t-BOOH following treatment with IL-1β in association with enhanced GSH production/release. IL-1β failed to increase the GSH levels or to provide protection against t-BOOH toxicity in chimeric mixed cultures consisting of IL-1R1+/+ neurons plated on top of IL-1R1−/− astrocytes. The attenuation of GSH release via block of multidrug resistance-associated protein 1 (MRP1) transport also abrogated the protective effect of IL-1β. These protective effects were not strictly an in vitro phenomenon as we found an increased striatal vulnerability to 3-nitropropionic acid-mediated oxidative stress in IL-1R1 null mice. Overall, our data indicate that IL-1β protects neurons against oxidant injury and that this likely occurs in a non-cell-autonomous manner that relies on an increase in astrocyte GSH production and release.
Collapse
|
7
|
Abstract
The axon initial segment (AIS), the domain responsible for action potential initiation and maintenance of neuronal polarity, is targeted for disruption in a variety of central nervous system pathological insults. Previous work in our laboratory implicates oxidative stress as a potential mediator of structural AIS alterations in two separate mouse models of central nervous system inflammation, as these effects were attenuated following reactive oxygen species scavenging and NADPH oxidase-2 ablation. While these studies suggest a role for oxidative stress in modulation of the AIS, the direct effects of reactive oxygen and nitrogen species (ROS/RNS) on the stability of this domain remain unclear. Here, we demonstrate that oxidative stress, as induced through treatment with 3-morpholinosydnonimine (SIN-1), a spontaneous ROS/RNS generator, drives a reversible loss of AIS protein clustering in primary cortical neurons in vitro. Pharmacological inhibition of both voltage-dependent and intracellular calcium (Ca2+) channels suggests that this mechanism of AIS disruption involves Ca2+ entry specifically through L-type voltage-dependent Ca2+ channels and its release from IP3-gated intracellular stores. Furthermore, ROS/RNS-induced AIS disruption is dependent upon activation of calpain, a Ca2+-activated protease previously shown to drive AIS modulation. Overall, we demonstrate for the first time that oxidative stress, as induced through exogenously applied ROS/RNS, is capable of driving structural alterations in the AIS complex.
Collapse
Affiliation(s)
- Kareem Clark
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,2 Neuroscience Curriculum, 72054 Virginia Commonwealth University , Richmond, VA, USA
| | - Brooke A Sword
- 3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| | - Jeffrey L Dupree
- 1 Department of Anatomy and Neurobiology, 72054 Virginia Commonwealth University , Richmond, VA, USA.,3 20125 Hunter Holmes McGuire VA Medical Center , Richmond, VA, USA
| |
Collapse
|
8
|
Susceptibility to Oxidative Stress Is Determined by Genetic Background in Neuronal Cell Cultures. eNeuro 2018; 5:eN-NWR-0335-17. [PMID: 29568799 PMCID: PMC5861596 DOI: 10.1523/eneuro.0335-17.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 01/28/2018] [Accepted: 02/18/2018] [Indexed: 01/24/2023] Open
Abstract
Traumatic brain injury (TBI) leads to a deleterious and multifactorial secondary inflammatory response in the brain. Oxidative stress from the inflammation likely contributes to the brain damage although it is unclear to which extent. A largely unexplored approach is to consider phenotypic regulation of oxidative stress levels. Genetic polymorphism influences inflammation in the central nervous system and it is possible that the antioxidative response differs between phenotypes and affects the severity of the secondary injury. We therefore compared the antioxidative response in inbred rat strains dark agouti (DA) to piebald viral glaxo (PVG). DA has high susceptibility to inflammatory challenges and PVG is protected. Primary neuronal cell cultures were exposed to peroxynitrite (ONOO-), nitric oxide (NO), superoxide (O2-), and 4-hydroxynonenal (4-HNE). Our findings demonstrated a phenotypic control of the neuronal antioxidative response, specific to manganese O2- dismutase (MnSOD). DA neurons had increased levels of MnSOD, equal levels of peroxiredoxin 5 (PRDX5), decreased oxidative stress markers 3-nitrotyrosine (3-NT) and 4-HNE and decreased neuronal death detected by lactate dehydrogenase (LDH) release after 24 h, and higher oxidative stress levels by CellROX than PVG after 2 h. It is possible that DA neurons had a phenotypic adaptation to a fiercer inflammatory environment. ONOO- was confirmed as the most powerful oxidative damage mediator, while 4-HNE caused few oxidative effects. Inducible NO synthase (iNOS) was not induced, suggesting that inflammatory, while not oxidative stimulation was required. These findings indicate that phenotypic antioxidative regulation affects the secondary inflammation, which should be considered in future individualized treatments and when evaluating antioxidative pharmacological interventions.
Collapse
|
9
|
Zhang Y, Igwe OJ. Exogenous oxidants activate nuclear factor kappa B through Toll-like receptor 4 stimulation to maintain inflammatory phenotype in macrophage. Biochem Pharmacol 2017; 147:104-118. [PMID: 29175419 DOI: 10.1016/j.bcp.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023]
Abstract
Disturbances in redox equilibrium in tissue can lead to inflammatory state, which is a mediatory factor in many human diseases. The mechanism(s) by which exogenous oxidants may activate an inflammatory response is not fully understood. Emerging evidence suggests that oxidant-induced Toll-like receptor 4 (TLR4) activation plays a major role in "sterile" inflammation. In the present study, we used murine macrophage RAW-Blue cells, which are chromosomally integrated with secreted embryonic alkaline phosphatase (SEAP) inducible by NF-κB. We confirmed the expression of TLR4 mRNA and protein in RAW-Blue cells by RT-PCR and Western blot, respectively. We showed that oxidants increased intracellular reactive oxygen species production and lipid peroxidation, which resulted in decreased intracellular total antioxidant capacity. Consistent with the actions of TLR4-specific agonist LPS-EK, exogenous oxidants increased transcriptional activity of NF-κB p65 with subsequent release of NF-κB reporter gene SEAP. These effects were blocked by pretreatment with TLR4 neutralizing pAb and TLR4 signaling inhibitor CLI-095. In addition, oxidants decreased the expression of IκBα with enhanced phosphorylation at the Tyr42 residue. Finally, oxidants and LPS-EK increased TNFα production, but did not affect IL-10 production, which may cause imbalance between pro- and anti-inflammatory processes, which CLI-095 inhibited. For biological relevance, we confirmed that oxidants increased release of TNFα and IL-6 in primary macrophages derived from TLR4-WT and TLR4-KO mice. Our results support the involvement of TLR4 mediated oxidant-induced inflammatory phenotype through NF-κB activation in macrophages. Thus exogenous oxidants may play a role in activating inflammatory phenotypes that propagate and maintain chronic disease states.
Collapse
Affiliation(s)
- Yan Zhang
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| | - Orisa J Igwe
- University of Missouri-Kansas City, School of Pharmacy, Division of Pharmacology & Toxicology, 2464 Charlotte Street, Kansas City, MO 64108, USA.
| |
Collapse
|
10
|
Lipopolysaccharide (LPS)-mediated priming of toll-like receptor 4 enhances oxidant-induced prostaglandin E 2 biosynthesis in primary murine macrophages. Int Immunopharmacol 2017; 54:226-237. [PMID: 29161659 DOI: 10.1016/j.intimp.2017.11.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 12/17/2022]
Abstract
Agonists and pseudo-agonists for toll-like receptor 4 (TLR4) are common in our environment. Thus, human exposure to these agents may result in "priming or sensitization" of TLR4. A body of evidence suggests that LPS-mediated sensitization of TLR4 can increase the magnitude of responses to exogenous agents in multiple tissues. We have previously shown that reactive oxygen and nitrogen species (RONS) stimulate TLR4. There is no evidence that LPS-primed TLR4 can influence the magnitude of responses to oxidants from either endogenous or exogenous sources. In the present study, we directly tested the hypothesis that LPS-primed TLR4 will sensitize primary murine peritoneal macrophages (pM) to oxidant-mediated prostaglandin E2 (PGE2) production. We used potassium peroxychromate (PPC) and potassium peroxynitrite (PPN) as direct in vitro sources of exogenous RONS. Our results showed that a direct treatment with PPC or PPN alone as sources of exogenous oxidants had a limited effect on PGE2 biosynthesis. In contrast, pM sensitized by prior incubation with LPS-EK, a TLR4-specific agonist, followed by oxidant stimulation exhibited increased transcriptional and translational expression of cyclooxygenase-2 (COX-2) with enhanced PGE2 biosynthesis/production only in pM derived from TLR4-WT mice but not in TLR4-KO mice. Thus, we have shown a critical role for LPS-primed TLR4 in oxidant-induced inflammatory phenotypes that have the potential to initiate, propagate and maintain many human diseases.
Collapse
|
11
|
Wu YP, Chew CY, Li TN, Chung TH, Chang EH, Lam CH, Tan KT. Target-activated streptavidin-biotin controlled binding probe. Chem Sci 2017; 9:770-776. [PMID: 29629147 PMCID: PMC5872805 DOI: 10.1039/c7sc04014h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 11/16/2017] [Indexed: 11/21/2022] Open
Abstract
Target-activated chemical probes are important tools in basic biological research and medical diagnosis for monitoring enzyme activities and reactive small molecules. Based on the fluorescence turn-on mechanism, they can be divided into two classes: dye-based fluorescent probes and caged-luciferin. In this paper, we introduce a new type of chemical probe in which the fluorescence turn-on is based on controlled streptavidin-biotin binding. Compared to conventional probes, the streptavidin-biotin controlled binding probe has several advantages, such as minimal background at its "OFF" state, multiple signal amplification steps, and unlimited selection of the optimal dyes for detection. To expand the scope, a new synthetic method was developed, through which a wider range of analyte recognition groups can be easily introduced to construct the binding probe. This probe design was successfully applied to image and study secreted peroxynitrite (ONOO-) at the cell surface of macrophages where information on ONOO- is difficult to obtain. As the signals are generated upon the binding of streptavidin to the biotin probe, this highly versatile design can not only be used in fluorescence detection but can also be applied in various other detection modes, such as electrochemical and enzyme-amplified luminescence detection.
Collapse
Affiliation(s)
- Yung-Peng Wu
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Chee Ying Chew
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Tian-Neng Li
- Institute of Molecular and Cellular Biology , Department of Life Science , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China
| | - Tzu-Hsuan Chung
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - En-Hao Chang
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Chak Hin Lam
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| | - Kui-Thong Tan
- Department of Chemistry , National Tsing Hua University , 101 Sec. 2, Kuang Fu Rd , Hsinchu 30013 , Taiwan , Republic of China .
| |
Collapse
|
12
|
Hewett SJ, Shi J, Gong Y, Dhandapani K, Pilbeam C, Hewett JA. Spontaneous Glutamatergic Synaptic Activity Regulates Constitutive COX-2 Expression in Neurons: OPPOSING ROLES FOR THE TRANSCRIPTION FACTORS CREB (cAMP RESPONSE ELEMENT BINDING) PROTEIN AND Sp1 (STIMULATORY PROTEIN-1). J Biol Chem 2016; 291:27279-27288. [PMID: 27875294 DOI: 10.1074/jbc.m116.737353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 11/10/2016] [Indexed: 11/06/2022] Open
Abstract
Burgeoning evidence supports a role for cyclooxygenase metabolites in regulating membrane excitability in various forms of synaptic plasticity. Two cyclooxygenases, COX-1 and COX-2, catalyze the initial step in the metabolism of arachidonic acid to prostaglandins. COX-2 is generally considered inducible, but in glutamatergic neurons in some brain regions, including the cerebral cortex, it is constitutively expressed. However, the transcriptional mechanisms by which this occurs have not been elucidated. Here, we used quantitative PCR and also analyzed reporter gene expression in a mouse line carrying a construct consisting of a portion of the proximal promoter region of the mouse COX-2 gene upstream of luciferase cDNA to characterize COX-2 basal transcriptional regulation in cortical neurons. Extracts from the whole brain and from the cerebral cortex, hippocampus, and olfactory bulbs exhibited high luciferase activity. Moreover, constitutive COX-2 expression and luciferase activity were detected in cortical neurons, but not in cortical astrocytes, cultured from wild-type and transgenic mice, respectively. Constitutive COX-2 expression depended on spontaneous but not evoked excitatory synaptic activity and was shown to be N-methyl-d-aspartate receptor-dependent. Constitutive promoter activity was reduced in neurons transfected with a dominant-negative cAMP response element binding protein (CREB) and was eliminated by mutating the CRE-binding site on the COX-2 promoter. However, mutation of the stimulatory protein-1 (Sp1)-binding site resulted in an N-methyl-d-aspartate receptor-dependent enhancement of COX-2 promoter activity. Basal binding of the transcription factors CREB and Sp1 to the native neuronal COX-2 promoter was confirmed. In toto, our data suggest that spontaneous glutamatergic synaptic activity regulates constitutive neuronal COX-2 expression via Sp1 and CREB protein-dependent transcriptional mechanisms.
Collapse
Affiliation(s)
- Sandra J Hewett
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210,
| | - Jingxue Shi
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210
| | - Yifan Gong
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210
| | - Krishnan Dhandapani
- the Department of Neurosurgery, Medical College of Georgia, Augusta University, Augusta, Georgia 30912, and
| | - Carol Pilbeam
- the Department of Medicine, University of Connecticut Health Center, Farmington, Connecticut 06030
| | - James A Hewett
- From the Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, New York 13210,
| |
Collapse
|
13
|
Ashworth BE, Stephens E, Bartlett CA, Serghiou S, Giacci MK, Williams A, Hart NS, Fitzgerald M. Comparative assessment of phototherapy protocols for reduction of oxidative stress in partially transected spinal cord slices undergoing secondary degeneration. BMC Neurosci 2016; 17:21. [PMID: 27194427 PMCID: PMC4872332 DOI: 10.1186/s12868-016-0259-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 05/11/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Red/near-infrared light therapy (R/NIR-LT) has been developed as a treatment for a range of conditions, including injury to the central nervous system (CNS). However, clinical trials have reported variable or sub-optimal outcomes, possibly because there are few optimized treatment protocols for the different target tissues. Moreover, the low absolute, and wavelength dependent, transmission of light by tissues overlying the target site make accurate dosing problematic. RESULTS In order to optimize light therapy treatment parameters, we adapted a mouse spinal cord organotypic culture model to the rat, and characterized myelination and oxidative stress following a partial transection injury. The ex vivo model allows a more accurate assessment of the relative effect of different illumination wavelengths (adjusted for equal quantal intensity) on the target tissue. Using this model, we assessed oxidative stress following treatment with four different wavelengths of light: 450 nm (blue); 510 nm (green); 660 nm (red) or 860 nm (infrared) at three different intensities: 1.93 × 10(16) (low); 3.85 × 10(16) (intermediate) and 7.70 × 10(16) (high) photons/cm(2)/s. We demonstrate that the most effective of the tested wavelengths to reduce immunoreactivity of the oxidative stress indicator 3-nitrotyrosine (3NT) was 660 nm. 860 nm also provided beneficial effects at all tested intensities, significantly reducing oxidative stress levels relative to control (p ≤ 0.05). CONCLUSIONS Our results indicate that R/NIR-LT is an effective antioxidant therapy, and indicate that effective wavelengths and ranges of intensities of treatment can be adapted for a variety of CNS injuries and conditions, depending upon the transmission properties of the tissue to be treated.
Collapse
Affiliation(s)
- Bethany Eve Ashworth
- />Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, WA Australia
- />Department of Biology and Biochemistry, The University of Bath, Bath, UK
| | - Emma Stephens
- />Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, WA Australia
- />Department of Biology and Biochemistry, The University of Bath, Bath, UK
| | - Carole A. Bartlett
- />Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, WA Australia
| | - Stylianos Serghiou
- />Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Marcus K. Giacci
- />Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, WA Australia
| | - Anna Williams
- />Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Nathan S. Hart
- />Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, WA Australia
- />Department of Biological Sciences, Macquarie University, Sydney, NSW 2109 Australia
| | - Melinda Fitzgerald
- />Experimental and Regenerative Neurosciences, School of Animal Biology, The University of Western Australia, Crawley, WA Australia
| |
Collapse
|
14
|
Nitroxide antioxidant as a potential strategy to attenuate the oxidative/nitrosative stress induced by hydrogen peroxide plus nitric oxide in cultured neurons. Nitric Oxide 2016; 54:38-50. [DOI: 10.1016/j.niox.2016.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/19/2016] [Accepted: 02/10/2016] [Indexed: 01/31/2023]
|
15
|
Thorn TL, He Y, Jackman NA, Lobner D, Hewett JA, Hewett SJ. A Cytotoxic, Co-operative Interaction Between Energy Deprivation and Glutamate Release From System xc- Mediates Aglycemic Neuronal Cell Death. ASN Neuro 2015; 7:1759091415614301. [PMID: 26553727 PMCID: PMC4641554 DOI: 10.1177/1759091415614301] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The astrocyte cystine/glutamate antiporter (system xc(-)) contributes substantially to the excitotoxic neuronal cell death facilitated by glucose deprivation. The purpose of this study was to determine the mechanism by which this occurred. Using pure astrocyte cultures, as well as, mixed cortical cell cultures containing both neurons and astrocytes, we found that neither an enhancement in system xc(-) expression nor activity underlies the excitotoxic effects of aglycemia. In addition, using three separate bioassays, we demonstrate no change in the ability of glucose-deprived astrocytes--either cultured alone or with neurons--to remove glutamate from the extracellular space. Instead, we demonstrate that glucose-deprived cultures are 2 to 3 times more sensitive to the killing effects of glutamate or N-methyl-D-aspartate when compared with their glucose-containing controls. Hence, our results are consistent with the weak excitotoxic hypothesis such that a bioenergetic deficiency, which is measureable in our mixed but not astrocyte cultures, allows normally innocuous concentrations of glutamate to become excitotoxic. Adding to the burgeoning literature detailing the contribution of astrocytes to neuronal injury, we conclude that under our experimental paradigm, a cytotoxic, co-operative interaction between energy deprivation and glutamate release from astrocyte system xc(-) mediates aglycemic neuronal cell death.
Collapse
Affiliation(s)
- Trista L Thorn
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Yan He
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA
| | - Nicole A Jackman
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT, USA
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, WI, USA
| | - James A Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sandra J Hewett
- Department of Biology, Program in Neuroscience, Syracuse University, NY, USA Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
16
|
Zhang Y, Karki R, Igwe OJ. Toll-like receptor 4 signaling: A common pathway for interactions between prooxidants and extracellular disulfide high mobility group box 1 (HMGB1) protein-coupled activation. Biochem Pharmacol 2015; 98:132-43. [PMID: 26367307 DOI: 10.1016/j.bcp.2015.08.109] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/27/2015] [Indexed: 01/17/2023]
Abstract
Necrotic cells passively release HMGB1, which can stimulate TLR4 in an autocrine fashion to potentially initiate "sterile" inflammation that maintains different disease states. We have shown that prooxidants can induce NF-κB activation through TLR4 stimulation. We examined whether prooxidants enhance HMGB1-induced TLR4 signaling through NF-κB activation. We used LPS-EK as a specific agonist for TLR4, and PPC and SIN-1 as in situ sources for ROS. As model systems, we used HEK-Blue cells (stably transfected with mouse TLR4), RAW-Blue™ cells (derived from murine RAW 264.7 macrophages) and primary murine macrophages from TLR4-KO mice. Both HEK-Blue and RAW-Blue 264.7 cells express optimized secreted embryonic alkaline phosphatase (SEAP) reporter under the control of a promoter inducible by NF-κB. We treated cells with HMGB1 alone and/or in conjunction with prooxidants and/or inhibitors using SEAP release as a measure of TLR4 stimulation. HMGB1 alone and/or in conjunction with prooxidants increased TNFα and IL-6 released from TLR4-WT, but not from TLR4-KO macrophages. Pro-oxidants increased HMGB1 release, which we quantified by ELISA. We used both fluorescence microscopy imaging and flow cytometry to quantify the expression of intracellular ROS. TLR4-neutralizing antibody decreased prooxidant-induced HMGB1 release. Prooxidants promoted HMGB1-induced NF-κB activation as determined by increased release of SEAP and TNF-α, and accumulation of iROS. HMGB1 (Box A), anti-HMGB1 and anti-TLR4-neutralizing pAbs inhibited HMGB1-induced NF-κB activation, but HMGB1 (Box A) and anti-HMGB1 pAb had no effect on prooxidant-induced SEAP release. The present results confirm that prooxidants enhance proinflammatory effects of HMGB1 by activating NF-κB through TLR4 signaling.
Collapse
Affiliation(s)
- Yan Zhang
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missour-Kansas City, 2464 Charlotte Street, HSB # 2247, Kansas City, MO 64108-2718, USA
| | - Rajendra Karki
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missour-Kansas City, 2464 Charlotte Street, HSB # 2247, Kansas City, MO 64108-2718, USA
| | - Orisa J Igwe
- Division of Pharmacology and Toxicology, School of Pharmacy, University of Missour-Kansas City, 2464 Charlotte Street, HSB # 2247, Kansas City, MO 64108-2718, USA.
| |
Collapse
|
17
|
Peteu SF, Boukherroub R, Szunerits S. Nitro-oxidative species in vivo biosensing: Challenges and advances with focus on peroxynitrite quantification. Biosens Bioelectron 2014; 58:359-73. [DOI: 10.1016/j.bios.2014.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/20/2014] [Accepted: 02/10/2014] [Indexed: 12/28/2022]
|
18
|
Marques-da-Silva D, Gutierrez-Merino C. Caveolin-rich lipid rafts of the plasma membrane of mature cerebellar granule neurons are microcompartments for calcium/reactive oxygen and nitrogen species cross-talk signaling. Cell Calcium 2014; 56:108-23. [PMID: 24996880 DOI: 10.1016/j.ceca.2014.06.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Revised: 05/28/2014] [Accepted: 06/07/2014] [Indexed: 11/18/2022]
Abstract
In previous works, we have shown that L-type voltage-operated calcium channels, N-methyl-d-aspartate receptors (NMDAr), neuronal nitric oxide synthase (nNOS) and cytochrome b5 reductase (Cb5R) co-localize within the same lipid rafts-associated nanodomains in mature cerebellar granule neurons (CGN). In this work, we show that the calcium transport systems of the plasma membrane extruding calcium from the cytosol, plasma membrane calcium pumps (PMCA) and sodium-calcium exchangers (NCX), are also associated with these nanodomains. All these proteins were found to co-immunoprecipitate with caveolin-1 after treatment with 25mM methyl-β-cyclodextrin, a lipid rafts solubilizing agent. However, the treatment of CGN with methyl-β-cyclodextrin largely attenuated the rise of cytosolic calcium induced by l-glutamate through NMDAr. Fluorescence energy transfer imaging revealed that all of them are present in sub-microdomains of a size smaller than 200nm, with a peripheral distribution of the calcium extrusion systems PMCA and NCX. Fluorescence microscopy images analysis revealed high calcium dynamic sub-microcompartments near the plasma membrane in fura-2-loaded CGN at short times after addition of l-glutamate. In addition, the close proximity between sources of nitric oxide (nNOS) and superoxide anion (Cb5R) suggests that these nanodomains are involved in the fast and efficient cross-talk between calcium and redox signaling in neurons.
Collapse
Affiliation(s)
- D Marques-da-Silva
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain
| | - C Gutierrez-Merino
- Department of Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, 06006 Badajoz, Spain.
| |
Collapse
|
19
|
Xu L, Zhang S, Fan H, Zhong Z, Li X, Jin X, Chang Q. ClC-3 chloride channel in hippocampal neuronal apoptosis. Neural Regen Res 2013; 8:3047-54. [PMID: 25206625 PMCID: PMC4146203 DOI: 10.3969/j.issn.1673-5374.2013.32.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/10/2013] [Indexed: 12/18/2022] Open
Abstract
Over-production of nitric oxide is pathogenic for neuronal apoptosis around the ischemic area fol-lowing ischemic brain injury. In this study, an apoptotic model in rat hippocampal neurons was tablished by 0.5 mmol/L 3-morpholinosyndnomine (SIN-1), a nitric oxide donor. The models were then cultured with 0.1 mmol/L of 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS; the chloride channel blocker) for 18 hours. Neuronal survival was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and apoptosis was assayed by Hoechst 33342-labeled neuronal DNA fluorescence staining. Western blot analysis and immunoche-nescence staining were applied to determine the changes of activated caspase-3 and CIC-3 channel proteins. Real-time PCR was used to detect the mRNA expression of CIC-3. The results showed that SIN-1 reduced the neuronal survival rate, induced neuronal apoptosis, and promoted ClC-3 chloride channel protein and mRNA expression in the apoptotic neurons. DIDS reversed the effect of SIN-1. Our findings indicate that the increased activities of the ClC-3 chloride channel may be involved in hippocampal neuronal apoptosis induced by nitric oxide.
Collapse
Affiliation(s)
- Lijuan Xu
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
- First Hospital of Putian City, Putian 351100, Fujian Province, China
| | - Shuling Zhang
- Department of Pediatrics, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Hongling Fan
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Zhichao Zhong
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Xi Li
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Xiaoxiao Jin
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Quanzhong Chang
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| |
Collapse
|
20
|
Yang J, Liu Z, Xie Y, Yang Z, Zhang T. Peroxynitrite alters GABAergic synaptic transmission in immature rat hippocampal slices. Neurosci Res 2013; 75:210-7. [PMID: 23357207 DOI: 10.1016/j.neures.2013.01.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2012] [Revised: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 02/01/2023]
Abstract
Increasing of peroxynitrite (ONOO(-)) production during ischemia in the immature brain was considered to be associated with impaired cognitive function. GABAergic synapses played an important role in memory formation including the induction of long-term potentiation (LTP) and long-term depression (LTD) in hippocampus. In the present study, we examined the effects of acute exposure of the ONOO(-) donor, SIN-1 on GABAergic synaptic transmission in immature rat hippocampal slices with whole-cell patch-clamp recordings. The results showed that SIN-1 increased the peak amplitude of evoked inhibitory postsynaptic currents (eIPSCs) and decreased paired pulse ratio via the formation of ONOO(-). In addition, it also increased the frequency of spontaneous (but not miniature) IPSCs in a dose-dependent manner without altering amplitudes or rise and decay times of both (sIPSCs and mIPSCs). It further demonstrated that the presynaptic action of SIN-1 was external calcium dependent and was not related to the changes of interneuron excitability. This study provides electrophysiological evidences from developing hippocampal slices to support that SIN-1 enhances action potential-dependent GABA release. It suggests that the potentiation effect of ONOO(-) may contribute to hyperexcitability and seizures and may underlie one of the mechanisms by which ischemia increases seizure susceptibility in the immature brain.
Collapse
Affiliation(s)
- Jiajia Yang
- College of Life Sciences, Nankai University, Tianjin 300071, PR China
| | | | | | | | | |
Collapse
|
21
|
Yin J, Xu L, Zhang S, Zheng Y, Zhong Z, Fan H, Li X, Chang Q. Chloride channel blocker 4,4-diisothiocyanatostilbene-2,2'-disulfonic acid inhibits nitric oxide-induced apoptosis in cultured rat hippocampal neurons. Neural Regen Res 2013; 8:121-6. [PMID: 25206481 PMCID: PMC4107510 DOI: 10.3969/j.issn.1673-5374.2013.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 10/24/2012] [Indexed: 11/18/2022] Open
Abstract
Apoptosis in cultured rat hippocampal neurons was induced using the nitric oxide donor 3-morpholinosydnonimine, and cells were treated with the chloride channel blocker, 4,4-diisothiocyanatostilbene-2,2′-disulfonic acid. Results showed that the survival rate of neurons was significantly increased after treatment with 4,4-diisothiocyanatostilbene-2,2′-disulfonic acid, and the rate of apoptosis decreased. In addition, the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor were significantly reduced. Our experimental findings indicate that the chloride channel blocker 4,4-diisothiocyanatostilbene-2,2′-disulfonic acid can antagonize apoptotic cell death of hippocampal neurons by inhibiting the expression of the apoptosis-related proteins poly(adenosine diphosphate-ribose)polymerase-1 and apoptosis-inducing factor.
Collapse
Affiliation(s)
- Jinbao Yin
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China ; Department of Pathology, Dongguan Campus of Guangdong Medical College, Dongguan 523808, Guangdong Province, China
| | - Lijuan Xu
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Shuling Zhang
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Yuanyin Zheng
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Zhichao Zhong
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Hongling Fan
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Xi Li
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| | - Quanzhong Chang
- Department of Physiology, Zhuhai Campus of Zunyi Medical College, Zhuhai 519041, Guangdong Province, China
| |
Collapse
|
22
|
Ruhs S, Strätz N, Schlör K, Meinel S, Mildenberger S, Rabe S, Gekle M, Grossmann C. Modulation of transcriptional mineralocorticoid receptor activity by nitrosative stress. Free Radic Biol Med 2012; 53:1088-100. [PMID: 22749806 DOI: 10.1016/j.freeradbiomed.2012.06.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Revised: 05/29/2012] [Accepted: 06/19/2012] [Indexed: 11/18/2022]
Abstract
The mineralocorticoid receptor (MR) plays an important role in salt and water homeostasis and pathological tissue modifications, such as cardiovascular and renal fibrosis. Importantly, MR activation by aldosterone per se is not sufficient for the deleterious effects but requires the additional presence of a certain pathological milieu. Phenomenologically, this milieu could be generated by enhanced nitrosative stress. However, little is known regarding the modulation of MR transcriptional activity in a pathological milieu. The glucocorticoid receptor (GR), the closest relative of the MR, binds to the same hormone-response element but elicits protective effects on the cardiovascular system. To investigate the possible modulation of MR and GR by nitrosative stress under controlled conditions we used human embryonic kidney (HEK) cells and measured MR and GR transactivation after stimulation with the nitric oxide (NO)-donor SNAP and the peroxynitrite-donor Sin-1. In the presence of corticosteroids NO led to a general reduced corticosteroid receptor activity by repression of corticosteroid receptor-DNA interaction. The NO-induced diminished transcriptional MR activity was most pronounced during stimulation with physiological aldosterone concentrations, suggesting that NO treatment prevented its pathophysiological overactivation. In contrast, single peroxynitrite administration specifically induced the MR transactivation activity whereas genomic GR activity remained unchanged. Mechanistically, peroxynitrite permitted nuclear MR translocation whereas the cytosolic GR distribution was unaffected. Consequently, peroxynitrite represents a MR-specific aldosterone mimetic. In summary, our data indicate that the genomic function of corticosteroid receptors can be modulated by nitrosative stress which may induce the shift from physiological toward pathophysiological MR effects.
Collapse
Affiliation(s)
- Stefanie Ruhs
- Julius-Bernstein-Institut für Physiologie der Universität Halle-Wittenberg, Halle, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Hung LW, Villemagne VL, Cheng L, Sherratt NA, Ayton S, White AR, Crouch PJ, Lim S, Leong SL, Wilkins S, George J, Roberts BR, Pham CLL, Liu X, Chiu FCK, Shackleford DM, Powell AK, Masters CL, Bush AI, O'Keefe G, Culvenor JG, Cappai R, Cherny RA, Donnelly PS, Hill AF, Finkelstein DI, Barnham KJ. The hypoxia imaging agent CuII(atsm) is neuroprotective and improves motor and cognitive functions in multiple animal models of Parkinson's disease. ACTA ACUST UNITED AC 2012; 209:837-54. [PMID: 22473957 PMCID: PMC3328361 DOI: 10.1084/jem.20112285] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The PET imaging agent CuII(atsm) improves motor and cognitive function in Parkinson’s disease. Parkinson’s disease (PD) is a progressive, chronic disease characterized by dyskinesia, rigidity, instability, and tremors. The disease is defined by the presence of Lewy bodies, which primarily consist of aggregated α-synuclein protein, and is accompanied by the loss of monoaminergic neurons. Current therapeutic strategies only give symptomatic relief of motor impairment and do not address the underlying neurodegeneration. Hence, we have identified CuII(atsm) as a potential therapeutic for PD. Drug administration to four different animal models of PD resulted in improved motor and cognition function, rescued nigral cell loss, and improved dopamine metabolism. In vitro, this compound is able to inhibit the effects of peroxynitrite-driven toxicity, including the formation of nitrated α-synuclein oligomers. Our results show that CuII(atsm) is effective in reversing parkinsonian defects in animal models and has the potential to be a successful treatment of PD.
Collapse
Affiliation(s)
- Lin W Hung
- The Mental Health Research Institute, the University of Melbourne, Victoria 3010 Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Marques-da-Silva D, Gutierrez-Merino C. L-type voltage-operated calcium channels, N-methyl-D-aspartate receptors and neuronal nitric-oxide synthase form a calcium/redox nano-transducer within lipid rafts. Biochem Biophys Res Commun 2012; 420:257-62. [PMID: 22414691 DOI: 10.1016/j.bbrc.2012.02.145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 02/27/2012] [Indexed: 11/19/2022]
Abstract
Cytosolic calcium plays a leading role in the control of neuronal excitability, plasticity and survival. This work aims to experimentally assess the possibility that lipid rafts of the plasma membrane can provide a structural platform for a faster and tighter functional coupling between calcium and nitric-oxide signaling in neurons. Using primary cerebellar granule neurons (CGN) in culture this hypothesis has been experimentally assessed with fluorescence resonance energy transfer imaging, preparations of lipid rafts-enriched membrane fragments and western blotting. The results obtained in this work demonstrated that major calcium entry systems of the plasma membrane of CGN (L-type calcium channels and N-methyl-D-aspartate receptors) and nitric-oxide synthase are separated by less than 80 nm from each other within lipid rafts-associated sub-microdomains, suggesting a new role of lipid rafts as neuronal calcium/redox nano-transducers.
Collapse
Affiliation(s)
- D Marques-da-Silva
- Dept. Biochemistry and Molecular Biology, Faculty of Sciences, University of Extremadura, Badajoz 06006, Spain.
| | | |
Collapse
|
25
|
Jackman NA, Melchior SE, Hewett JA, Hewett SJ. Non-cell autonomous influence of the astrocyte system xc- on hypoglycaemic neuronal cell death. ASN Neuro 2012; 4:e00074. [PMID: 22220511 PMCID: PMC3275339 DOI: 10.1042/an20110030] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 01/03/2012] [Accepted: 01/05/2012] [Indexed: 01/13/2023] Open
Abstract
Despite longstanding evidence that hypoglycaemic neuronal injury is mediated by glutamate excitotoxicity, the cellular and molecular mechanisms involved remain incompletely defined. Here, we demonstrate that the excitotoxic neuronal death that follows GD (glucose deprivation) is initiated by glutamate extruded from astrocytes via system xc---an amino acid transporter that imports L-cystine and exports L-glutamate. Specifically, we find that depriving mixed cortical cell cultures of glucose for up to 8 h injures neurons, but not astrocytes. Neuronal death is prevented by ionotropic glutamate receptor antagonism and is partially sensitive to tetanus toxin. Removal of amino acids during the deprivation period prevents--whereas addition of L-cystine restores--GD-induced neuronal death, implicating the cystine/glutamate antiporter, system xc-. Indeed, drugs known to inhibit system xc- ameliorate GD-induced neuronal death. Further, a dramatic reduction in neuronal death is observed in chimaeric cultures consisting of neurons derived from WT (wild-type) mice plated on top of astrocytes derived from sut mice, which harbour a naturally occurring null mutation in the gene (Slc7a11) that encodes the substrate-specific light chain of system xc- (xCT). Finally, enhancement of astrocytic system xc- expression and function via IL-1β (interleukin-1β) exposure potentiates hypoglycaemic neuronal death, the process of which is prevented by removal of l-cystine and/or addition of system xc- inhibitors. Thus, under the conditions of GD, our studies demonstrate that astrocytes, via system xc-, have a direct, non-cell autonomous effect on cortical neuron survival.
Collapse
Key Words
- aglycaemia
- astrocyte
- cystine
- glutamate
- neuronal death
- non-cell autonomous
- arac, β-d-cytosine arabinofuranoside
- bss, balanced salt solution
- cns, central nervous system
- cpg, carboxyphenylglycine
- gd, glucose deprivation
- il-1β, interleukin-1β
- ldh, lactate dehydrogenase
- mcao, middle cerebral artery occlusion
- nmda, n-methyl-d-aspartate
- qpcr, quantitative pcr
- wt, wild-type
Collapse
Affiliation(s)
- Nicole A Jackman
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| | - Shannon E Melchior
- *Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030, U.S.A
| | - James A Hewett
- †Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, U.S.A
| | - Sandra J Hewett
- †Department of Biology, Program in Neuroscience, Syracuse University, Syracuse, NY 13244, U.S.A
| |
Collapse
|
26
|
Haber A, Aviram M, Gross Z. Variables that influence cellular uptake and cytotoxic/cytoprotective effects of macrocyclic iron complexes. Inorg Chem 2011; 51:28-30. [PMID: 22148393 DOI: 10.1021/ic202204u] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Determination of the cellular uptake of macrocyclic iron(III) complexes by a facile method, accompanied by cell viability tests under both basal and induced oxidative stress, demonstrates that protection against intracellular oxidative stress requires reasonably high internalization and favorable anti/prooxidant profiles. Of the four tested complexes, only amphipolar iron(III) corrole met these criteria.
Collapse
Affiliation(s)
- Adi Haber
- Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Technion City, Haifa 32000, Israel
| | | | | |
Collapse
|
27
|
Jackman NA, Uliasz TF, Hewett JA, Hewett SJ. Regulation of system x(c)(-)activity and expression in astrocytes by interleukin-1β: implications for hypoxic neuronal injury. Glia 2011; 58:1806-15. [PMID: 20645408 DOI: 10.1002/glia.21050] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We recently demonstrated that interleukin-1β (IL-1β) increases system x(c)(-) (cystine/glutamate antiporter) activity in mixed cortical cell cultures, resulting in an increase in hypoxic neuronal injury when glutamate clearance is impaired. Herein, we demonstrate that neurons, astrocytes, and microglia all express system x(c)(-) subunits (xCT, 4F2hc, RBAT) and are capable of cystine import. However, IL-1β stimulation increases mRNA for xCT--the light chain that confers substrate specificity--in astrocytes only; an effect blocked by the transcriptional inhibitor actinomycin D. Additionally, only astrocytes show an increase in cystine uptake following IL-1β exposure; an effect associated with a change in xCT protein. The increase in cystine uptake that follows IL-1β is lacking in astrocytes derived from mice harboring a mutation in Slc7a11 (sut gene), which encodes for xCT, and in wild-type astrocytes treated with the protein synthesis inhibitor cycloheximide. IL-1β does not regulate the light chain of the amino acid transporter, LAT2, or the expression and function of astrocytic excitatory amino acid transporters (EAATs), demonstrating some target selectivity. Finally, the enhanced neuronal vulnerability to hypoxia that followed IL-1β treatment in our mixed culture system was not observed in chimeric cultures consisting of wild-type neurons plated on top of sut astrocytes. Nor was it observed in wild-type cultures treated with a system x(c)(-) inhibitor or an NMDA receptor antagonist. Overall, our data demonstrate that IL-1β selectively regulates system x(c)(-) activity in astrocytes and that this change is specifically responsible for the deleterious, excitotoxic effects of IL-1β found under hypoxic conditions.
Collapse
Affiliation(s)
- Nicole A Jackman
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | |
Collapse
|
28
|
Moriyama M, Jayakumar AR, Tong XY, Norenberg MD. Role of mitogen-activated protein kinases in the mechanism of oxidant-induced cell swelling in cultured astrocytes. J Neurosci Res 2010; 88:2450-8. [PMID: 20623534 DOI: 10.1002/jnr.22400] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Cytotoxic brain edema, usually a consequence of astrocyte swelling, is an important complication of stroke, traumatic brain injury, hepatic encephalopathy, and other neurological disorders. Although mechanisms underlying astrocyte swelling are not fully understood, oxidative stress (OS) has generally been considered an important factor in its pathogenesis. To better understand the mechanism(s) by which OS causes cell swelling, we examined the potential involvement of mitogen-activated protein kinases (MAPKs) in this process. Cultures exposed to theoxidant H(2)O(2) (10, 25, 50 microM) for different time periods (1-24 hr) significantly increased cell swelling in a triphasic manner. Swelling was initially observed at 10 min (peaking at 30 min), which was followed by cell shrinkage at 1 hr. A subsequent increase in cell volume occurred at approximately 6 hr, and the rise lasted for at least 24 hr. Cultures exposed to H(2)O(2) caused the activation of MAPKs (ERK1/2, JNK and p38-MAPK), whereas inhibition of MAPKs diminished cell swelling induced by 10 and 25 microM H(2)O(2). These findings suggest that activation of MAPKs is an important factor in the mediation of astrocyte swelling following oxidative stress.
Collapse
Affiliation(s)
- M Moriyama
- Department of Pathology, University of Miami School of Medicine, Miami, Florida 33101, USA
| | | | | | | |
Collapse
|
29
|
Durand G, Prosak RA, Han Y, Ortial S, Rockenbauer A, Pucci B, Villamena FA. Spin trapping and cytoprotective properties of fluorinated amphiphilic carrier conjugates of cyclic versus linear nitrones. Chem Res Toxicol 2009; 22:1570-81. [PMID: 19678661 DOI: 10.1021/tx900114v] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Nitrones have been employed as spin trapping reagent as well as pharmacological agent against neurodegenerative diseases and ischemia-reperfusion induced injury. The structure-activity relationship was explored for the two types of nitrones, i.e., cyclic (DMPO) and linear (PBN), which are conjugated to a fluorinated amphiphilic carrier (FAC) for their cytoprotective properties against hydrogen peroxide (H(2)O(2)), 3-morpholinosynonimine hydrochloride (SIN-1), and 4-hydroxynonenal (HNE) induced cell death on bovine aortic endothelial cells. The compound FAMPO was synthesized and characterized, and its physical-chemical and spin trapping properties were explored. Cytotoxicity and cytoprotective properties of various nitrones either conjugated and nonconjugated to FAC (i.e., AMPO, FAMPO, PBN, and FAPBN) were assessed using a 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction assay. Results show that of all the nitrones tested, FAPBN is the most protective against H(2)O(2), but FAMPO and to a lesser extent its unconjugated form, AMPO, are more protective against SIN-1 induced cytotoxicity. However, none of the nitrones used protect the cells from HNE-induced cell death. The difference in the cytoprotective properties observed between the cyclic and linear nitrones may arise from the differences in their intrinsic antioxidant properties and localization in the cell.
Collapse
Affiliation(s)
- Grégory Durand
- Laboratoire de Chimie BioOrganique et des Systèmes Moléculaires Vectoriels, Faculté des Sciences, Université d'Avignon et des Pays de Vaucluse, 33 Rue Louis Pasteur, 84000 Avignon, France.
| | | | | | | | | | | | | |
Collapse
|
30
|
Choe CU, Lewerenz J, Fischer G, Uliasz TF, Espey MG, Hummel FC, King SB, Schwedhelm E, Böger RH, Gerloff C, Hewett SJ, Magnus T, Donzelli S. Nitroxyl exacerbates ischemic cerebral injury and oxidative neurotoxicity. J Neurochem 2009; 110:1766-73. [PMID: 19619135 DOI: 10.1111/j.1471-4159.2009.06266.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitroxyl (HNO) donor compounds function as potent vasorelaxants, improve myocardial contractility and reduce ischemia-reperfusion injury in the cardiovascular system. With respect to the nervous system, HNO donors have been shown to attenuate NMDA receptor activity and neuronal injury, suggesting that its production may be protective against cerebral ischemic damage. Hence, we studied the effect of the classical HNO-donor, Angeli's salt (AS), on a cerebral ischemia/reperfusion injury in a mouse model of experimental stroke and on related in vitro paradigms of neurotoxicity. I.p. injection of AS (40 mumol/kg) in mice prior to middle cerebral artery occlusion exacerbated cortical infarct size and worsened the persistent neurological deficit. AS not only decreased systolic blood pressure, but also induced systemic oxidative stress in vivo indicated by increased isoprostane levels in urine and serum. In vitro, neuronal damage induced by oxygen-glucose-deprivation of mature neuronal cultures was exacerbated by AS, although there was no direct effect on glutamate excitotoxicity. Finally, AS exacerbated oxidative glutamate toxicity - that is, cell death propagated via oxidative stress in immature neurons devoid of ionotropic glutamate receptors. Taken together, our data indicate that HNO might worsen cerebral ischemia-reperfusion injury by increasing oxidative stress and decreasing brain perfusion at concentrations shown to be cardioprotective in vivo.
Collapse
Affiliation(s)
- Chi-un Choe
- Department of Neurology, University Hospital Hamburg-Eppendorf, Hamburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Matsunaga N, Imai S, Inokuchi Y, Shimazawa M, Yokota S, Araki Y, Hara H. Bilberry and its main constituents have neuroprotective effects against retinal neuronal damage in vitro
and in vivo. Mol Nutr Food Res 2009; 53:869-77. [DOI: 10.1002/mnfr.200800394] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
32
|
Kohr MJ, Davis JP, Ziolo MT. Peroxynitrite Increases Protein Phosphatase Activity and Promotes the Interaction of Phospholamban with Protein Phosphatase 2a in the Myocardium. Nitric Oxide 2009; 20:217-221. [PMID: 20664715 PMCID: PMC2909675 DOI: 10.1016/j.niox.2009.01.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
High levels of peroxynitrite have been shown to decrease cardiomyocyte contraction through a reduction in phospholamban (PLB) phosphorylation. However, previous reports did not examine the direct effect of peroxynitrite on protein phosphatase activity in the myocardium or the role of specific phosphatases. Here we test the effect of the peroxynitrite donor SIN-1 on protein phosphatase activity in whole heart homogenates, as well as the interaction of PLB with protein phosphatase 1 (PP1) and 2a (PP2a). SIN-1 (200 μmol/L) induced a significant increase in protein phosphatase activity, which was alleviated with the specific PP1/PP2a inhibitor okadaic acid. Conversely, lower concentrations of SIN-1 and the nitric oxide donor spermine NONOate (300 μmol/L) were both without effect on phosphatase activity. We next examined the effect of SIN-1 on the interaction of PLB with PP1 and PP2a using co-immunoprecipitation, since okadaic acid inhibited the effects of SIN-1 in our current and previous studies. SIN-1 significantly increased the interaction of PLB with PP2a, but had no effect on the interaction between PLB and PP1. Urate, a peroxynitrite scavenger, inhibited the effects of SIN-1 on phosphatase activity and the interaction of PLB with PP2a, thus implicating peroxynitrite as the causal species. The results of this study provide further insight into the mechanism through which high levels of peroxynitrite serve to decrease PLB phosphorylation and myocardial contraction. Therefore, peroxynitrite signaling could play a key role in the contractile dysfunction manifested in heart failure where peroxynitrite production and protein phosphatase activity are increased and PLB phosphorylation is decreased.
Collapse
Affiliation(s)
- Mark J Kohr
- Department of Physiology & Cell Biology, Davis Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | | | | |
Collapse
|
33
|
SIN-1 cytotoxicity to PC12 cells is mediated by thiol-sensitive short-lived substances generated through SIN-1 decomposition in culture medium. Nitric Oxide 2009; 20:270-8. [PMID: 19232545 DOI: 10.1016/j.niox.2009.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Revised: 01/08/2009] [Accepted: 02/08/2009] [Indexed: 12/30/2022]
Abstract
As a generator of peroxynitrite (ONOO(-)), 3-morpholinosydnonimine (SIN-1) is widely used in the study of oxidative/nitrosative stress in cultured cells, although controversy exists regarding active species responsible for cytotoxicity. In this study, we report that unstable thiol-sensitive substances, generated from the reaction of SIN-1 with components in culture medium, play a crucial role in SIN-1 cytotoxicity in PC12 cells. Exposure of cells to culture medium obtained after almost complete SIN-1 decomposition at 37 degrees C for 2h demonstrated almost the same degree of cytotoxicity as did fresh SIN-1. The cytotoxicity of SIN-1-decomposed medium largely depended on serum, decayed with time, and could be completely abolished by the addition of thiols. Degradation of synthetic ONOO(-) in the culture medium did not reproduce the unstable cytotoxicity. The presence of superoxide dismutase (SOD) during SIN-1 decomposition prevented the formation of the cytotoxic substances, whereas SOD had no protection against the cytotoxicity itself, suggesting a crucial role of simultaneously generated superoxide and nitric oxide in the formation of the toxicants, but not in their cytotoxic action. The cytotoxicity of fresh SIN-1 is dramatically suppressed in a basal medium (Hanks balanced salt), suggesting that the cytotoxicity of fresh SIN-1 also requires components of culture medium. These results suggest that SIN-1 cytotoxicity in PC12 cells is mediated via the generation of cytotoxic substances in the medium during its decomposition.
Collapse
|
34
|
Blood-brain barrier changes and cell invasion differ between therapeutic immune clearance of neurotrophic virus and CNS autoimmunity. Proc Natl Acad Sci U S A 2008; 105:15511-6. [PMID: 18829442 DOI: 10.1073/pnas.0807656105] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CNS tissues are protected from circulating cells and factors by the blood-brain barrier (BBB), a specialization of the neurovasculature. Outcomes of the loss of BBB integrity and cell infiltration into CNS tissues can differ vastly. For example, elevated BBB permeability is closely associated with the development of neurological disease in experimental allergic encephalomyelitis (EAE) but not during clearance of the attenuated rabies virus CVS-F3 from the CNS tissues. To probe whether differences in the nature of BBB permeability changes may contribute to the pathogenesis of acute neuroinflammatory disease, we compared the characteristics of BBB permeability changes in mice with EAE and in mice clearing CVS-F3. BBB permeability changes are largely restricted to the cerebellum and spinal cord in both models but differ in the extent of leakage of markers of different size and in the nature of cell accumulation in the CNS tissues. The accumulation in the CNS tissues of CD4 T cells expressing mRNAs specific for IFN-gamma and IL-17 is common to both, but iNOS-positive cells invade into the CNS parenchyma only in EAE. Mice that have been immunized with myelin basic protein (MBP) and infected exhibit the features of EAE. Treatment with the peroxynitrite-dependent radical scavenger urate inhibits the invasion of iNOS-positive cells into the CNS tissues and the development of clinical signs of EAE without preventing the loss of BBB integrity in immunized/infected animals. These findings indicate that BBB permeability changes can occur in the absence of neuropathology provided that cell invasion is restricted.
Collapse
|
35
|
Klassen SS, Rabkin SW. The metalloporphyrin FeTPPS but not by cyclosporin A antagonizes the interaction of peroxynitrate and hydrogen peroxide on cardiomyocyte cell death. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:149-61. [DOI: 10.1007/s00210-008-0342-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 07/25/2008] [Indexed: 11/30/2022]
|
36
|
Taylor AL, Bonventre JV, Uliasz TF, Hewett JA, Hewett SJ. Cytosolic phospholipase A2 alpha inhibition prevents neuronal NMDA receptor-stimulated arachidonic acid mobilization and prostaglandin production but not subsequent cell death. J Neurochem 2008; 106:1828-40. [PMID: 18564366 PMCID: PMC2582587 DOI: 10.1111/j.1471-4159.2008.05527.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phospholipase A(2) (PLA(2)) enzymes encompass a superfamily of at least 13 extracellular and intracellular esterases that hydrolyze the sn-2 fatty acyl bonds of phospholipids to yield fatty acids and lysophospholipids. The purpose of this study was to characterize which phospholipase paralog regulates NMDA receptor-mediated arachidonic acid (AA) release. Using mixed cortical cell cultures containing both neurons and astrocytes, we found that [(3)H]-AA released into the extracellular medium following NMDA receptor stimulation (100 microM) increased with time and was completely prevented by the addition of the NMDA receptor antagonist MK-801 (10 microM) or by removal of extracellular Ca(2+). Neither diacylglycerol lipase inhibition (RHC-80267; 10 microM) nor selective inhibition of Ca(2+)-independent PLA(2) [bromoenol lactone (BEL); 10 microM] alone had an effect on NMDA receptor-stimulated release of [(3)H]-AA. Release was prevented by methyl arachidonyl fluorophosphonate (MAFP) (5 microM) and AACOCF(3) (1 microM), inhibitors of both cytosolic PLA(2) (cPLA(2)) and Ca(2+)-independent PLA(2) isozymes. This inhibition effectively translated to block of NMDA-induced prostaglandin (PG) production. An inhibitor of p38MAPK, SB 203580 (7.5 microM), also significantly reduced NMDA-induced PG production providing suggestive evidence for the role of cPLA(2)alpha. Its involvement in release was confirmed using cultures derived from mice deficient in cPLA(2)alpha, which failed to produce PGs in response to NMDA receptor stimulation. Interestingly, neither MAFP, AACOCF(3) nor cultures derived from cPLA(2)alpha null mutant animals showed any protection against NMDA-mediated neurotoxicity, indicating that inhibition of this enzyme may not be a viable protective strategy in disorders of the cortex involving over-activation of the NMDA receptor.
Collapse
Affiliation(s)
- Ava L Taylor
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | | | | | | | | |
Collapse
|
37
|
Fatokun AA, Stone TW, Smith RA. Prolonged exposures of cerebellar granule neurons to S-nitroso-N-acetylpenicillamine (SNAP) induce neuronal damage independently of peroxynitrite. Brain Res 2008; 1230:265-72. [PMID: 18644353 DOI: 10.1016/j.brainres.2008.06.109] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Revised: 06/24/2008] [Accepted: 06/27/2008] [Indexed: 01/09/2023]
Abstract
Nitric oxide (NO) induces cell proliferation or cell death, depending on the cell type involved, the isoform of nitric oxide synthase activated, and its cellular localisation. In neurons, the damaging effect of NO is usually attributed to the highly toxic peroxynitrite, formed by its reaction with superoxide. Peroxynitrite induces DNA damage and consequently the activation of poly (ADP-ribose) polymerase (PARP). This study set out to examine the contribution of peroxynitrite to the damage induced in cerebellar granule neurons (CGNs) by treatment with the NO donor S-nitroso-N-acetylpenicillamine (SNAP), for short (6 h) or prolonged (24 h) exposures. The Alamar blue assay was used to quantify CGN viability, which was also assessed by morphological examination. SNAP (10 microM-1 mM) induced a concentration- and time-dependent reduction of CGN viability, with associated damage to cell bodies and neurite processes evident following 100 microM SNAP treatments. Damage from 6 h exposures was prevented by the presence of haemoglobin (a NO scavenger), uric acid (a peroxynitrite scavenger), melatonin (a non-specific antioxidant), and by cyclosporin A (a permeability transition pore blocker). It was reduced by the PARP-1 inhibitor 3,4-dihydro-5-[4-(1-piperidinyl)butoxyl]-1(2H)-isoquinolinone (DPQ), whilst superoxide dismutase (SOD) potentiated the effects. Following 24 h exposure to SNAP, damage was only partially blocked by haemoglobin, melatonin, cyclosporin A and DPQ, but was not affected by uric acid or SOD. The data suggest that short exposure to NO induces neuronal damage through peroxynitrite produced by its interaction with superoxide, whereas a longer exposure to NO can induce damage partly by a mechanism which is independent of peroxynitrite formation.
Collapse
Affiliation(s)
- Amos A Fatokun
- Faculty of Biomedical and Life Sciences, Division of Neuroscience and Biomedical Systems, West Medical Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
38
|
KNOCH MEGANE, HARTNETT KARENA, HARA HIROKAZU, KANDLER KARL, AIZENMAN ELIAS. Microglia induce neurotoxicity via intraneuronal Zn(2+) release and a K(+) current surge. Glia 2008; 56:89-96. [PMID: 17955552 PMCID: PMC2561170 DOI: 10.1002/glia.20592] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Microglial cells are critical components of the injurious cascade in a large number of neurodegenerative diseases. However, the precise molecular mechanisms by which microglia mediate neuronal cell death have not been fully delineated. We report here that reactive species released from activated microglia induce the liberation of Zn(2+) from intracellular stores in cultured cortical neurons, with a subsequent enhancement in neuronal voltage-gated K(+) currents, two events that have been intimately linked to apoptosis. Both the intraneuronal Zn(2+) release and the K(+) current surge could be prevented by the NADPH oxidase inhibitor apocynin, the free radical scavenging mixture of superoxide dismutase and catalase, as well as by 5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron(III) chloride. The enhancement of K(+) currents was prevented by neuronal overexpression of metallothionein III or by expression of a dominant negative (DN) vector for the upstream mitogen-activated protein kinase apoptosis signal regulating kinase-1 (ASK-1). Importantly, neurons overexpressing metallothionein-III or transfected with DN vectors for ASK-1 or Kv2.1-encoded K(+) channels were resistant to microglial-induced toxicity. These results establish a direct link between microglial-generated oxygen and nitrogen reactive products and neuronal cell death mediated by intracellular Zn(2+) release and a surge in K(+) currents.
Collapse
Affiliation(s)
- MEGAN E. KNOCH
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - KAREN A. HARTNETT
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - HIROKAZU HARA
- Laboratory of Clinical Pharmaceutics, Gifu Pharmaceutical University, Gifu, Japan
| | - KARL KANDLER
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - ELIAS AIZENMAN
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
39
|
Fogal B, Li J, Lobner D, McCullough LD, Hewett SJ. System x(c)- activity and astrocytes are necessary for interleukin-1 beta-mediated hypoxic neuronal injury. J Neurosci 2007; 27:10094-105. [PMID: 17881516 PMCID: PMC6672668 DOI: 10.1523/jneurosci.2459-07.2007] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The purpose of this study was to elucidate the cellular/biochemical pathway(s) by which interleukin-1beta (IL-1beta) contributes to the pathogenesis of hypoxic-ischemic brain damage. In vivo, IL-1 receptor type I (IL-1RI)-deficient mice showed smaller infarcts and less neurological deficits than wild-type animals after a 90 min reversible middle cerebral artery occlusion. In vitro, IL-1beta mediated an enhancement of hypoxic neuronal injury in murine cortical cultures that was lacking in cultures derived from IL-1RI null mutant animals and was blocked by the IL-1 receptor antagonist or an IL-1RI blocking antibody. This IL-1beta-mediated potentiation of hypoxic neuronal injury was associated with an increase in both cellular cystine uptake ([cystine]i) and extracellular glutamate levels ([glutamate]e) and was prevented by either ionotropic glutamate receptor antagonism or removal of L-cystine, suggesting a role for the cystine/glutamate antiporter (System x(c)-). Indeed, dual System x(c)-/metabotropic glutamate receptor subunit 1 (mGluR1) antagonism but not selective mGluR1 antagonism prevented neuronal injury. Additionally, cultures derived from mGluR1-deficient mice exhibited the same potentiation in injury after treatment with IL-1beta as wild-type cultures, an effect prevented by System x(c)-/mGluR1 antagonism. Finally, assessment of System x(c)- function and kinetics in IL-1beta-treated cultures revealed an increase in velocity of cystine transport (Vmax), in the absence of a change in affinity (Km). Neither the enhancement in [cystine]i, [glutamate]e, or neuronal injury were observed in chimeric cultures consisting of IL-1RI(+/+) neurons plated on top of IL-1RI(-/-) astrocytes, highlighting the importance of astrocyte-mediated alterations in System x(c)- as a novel contributor to the development and progression of hypoxic neuronal injury.
Collapse
Affiliation(s)
| | - Jun Li
- Neurology, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | - Doug Lobner
- Department of Biomedical Sciences, Marquette University, Milwaukee, Wisconsin 53233
| | - Louise D. McCullough
- Neurology, University of Connecticut Health Center, Farmington, Connecticut 06030, and
| | | |
Collapse
|
40
|
Wang HC, Zhang HF, Guo WY, Su H, Zhang KR, Li QX, Yan W, Ma XL, Lopez BL, Christopher TA, Gao F. Hypoxic postconditioning enhances the survival and inhibits apoptosis of cardiomyocytes following reoxygenation: role of peroxynitrite formation. Apoptosis 2007; 11:1453-60. [PMID: 16761110 DOI: 10.1007/s10495-006-7786-z] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVES Our previous study has shown that slow or "controlled" reperfusion for the ischemic heart reduces cardiomyocyte injury and myocardial infarction, while the mechanisms involved are largely unclear. In this study, we tested the hypothesis that enhancement of survival and prevention of apoptosis in hypoxic/reoxygenated cardiomyocytes by hypoxic postconditioning (HPC) are associated with the reduction in peroxynitrite (ONOO(-)) formation induced by hypoxia/reoxygenation (H/R). METHODS Isolated adult rat cardiomyocytes were exposed to 2 h of hypoxia followed by 3 h of reoxygenation. After 2 h of hypoxia the cardiomyocytes were either abruptly reperfused with pre-oxygenized culture medium or postconditioned by two cycles of 5 min of brief reoxygenation and 5 min of re-hypoxia followed by 160 min of abrupt reoxygenation. RESULTS H/R resulted in severe injury in cardiomyocytes as evidenced by decreased cell viability, increased LDH leakage in the culture medium, increased apoptotic index (P values all less than 0.01 vs. normoxia control group) and DNA ladder formation, which could be significantly attenuated by HPC treatment applied before the abrupt reoxygenation (P < 0.05 vs. H/R group). In addition, H/R induced a significant increase in ONOO(-) formation as determined by nitrotyrosine content in cardiomyocytes (P < 0.01 vs. normoxia control). Treatment with the potent ONOO(-) scavenger uric acid (UA) at reoxygenation significantly decreased ONOO(-) production and protected myocytes against H/R injury, whereas the same treatment with UA could not further enhance myocyte survival in HPC group (P > 0.05 vs. HPC alone). Statistical analysis showed that cell viability closely correlated inversely with myocyte ONOO(-) formation (P < 0.01). CONCLUSION These data demonstrate that hypoxic postconditioning protects myocytes against apoptosis following reoxygenation and enhances myocytes survival, which is partly attributable to the reduced ONOO(-) formation following reoxygenation.
Collapse
Affiliation(s)
- Hai-Chang Wang
- Department of Cardiology and Department of Physiology, Xijing Hospital, Fourth Military Medical University, Xi'an 710032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Sharma SS, Dhar A, Kaundal RK. FeTPPS protects against global cerebral ischemic-reperfusion injury in gerbils. Pharmacol Res 2007; 55:335-42. [PMID: 17292620 DOI: 10.1016/j.phrs.2007.01.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2006] [Revised: 12/13/2006] [Accepted: 01/08/2007] [Indexed: 11/18/2022]
Abstract
Neuronal damage following cerebral ischemia is mediated by various mechanisms, among which nitrosative stress plays an important role. Peroxynitrite, a powerful oxidant, contributes heavily to the neuronal damage in cerebral ischemic-reperfusion (IR) injury. In the present study, we have investigated the neuroprotective effects of a peroxynitrite decomposition catalyst, 5,10,15,20-tetrakis(4-sulfonatophenyl) porphyrinato iron(III) [FeTPPS] in global cerebral IR injury in gerbils. Neurological damage was significantly attenuated by FeTPPS treatment (1 and 3mgkg(-1), i.p.) as evident from reduction in neurological symptoms, hyperlocomotion, memory impairment and CA1 hippocampal neuronal damage in IR challenged gerbils. FeTPPS treatment also attenuated the increased malondialdehyde (MDA) levels and terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) positive cells after cerebral IR injury. Results of this study demonstrates the neuroprotective activity of FeTPPS in global cerebral IR injury and its neuroprotective effects may be attributed to reduction in oxidative stress and DNA fragmentation.
Collapse
Affiliation(s)
- Shyam S Sharma
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Sector-67, S.A.S. Nagar, Punjab 160062, India.
| | | | | |
Collapse
|
42
|
Du Y, Chen CP, Tseng CY, Eisenberg Y, Firestein BL. Astroglia-mediated effects of uric acid to protect spinal cord neurons from glutamate toxicity. Glia 2007; 55:463-72. [PMID: 17203476 DOI: 10.1002/glia.20472] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Uric acid (UA) has been demonstrated to reduce damage to neurons elicited by oxidative stress. However, our studies utilizing cultures derived from embryonic rat spinal cord indicate that an astroglia-mediated mechanism is involved in the effects of UA to protect neurons from glutamate toxicity. The damage elicted by glutamate to neurons in a mixed culture of spinal cord cells can be reversed by UA. Furthermore, addition of UA after the termination of glutamate exposure suggests that UA plays an active role in mediating neuroprotection rather than purely binding peroxynitrite, as previously thought. Importantly, in pure neuron cultures from the same tissue, UA does not protect against glutamate toxicity. Addition of astroglia to the pure neuron cultures restores the ability of UA to protect the neurons from glutamate-induced toxicity. Our results also suggest that glia provide EAAT-1 and EAAT-2 glutamate transporters to protect neurons from glutamate, that functional EAATs may be necessary to mediate the effects of UA, and that treatment with UA results in upregulation of EAAT-1 protein. Taken together, our data strongly suggest that astroglia in mixed cultures are essential for mediating the effects of UA, revealing a novel mechanism by which UA, a naturally produced substance in the body, may act to protect neurons from damage during insults such as spinal cord injury.
Collapse
Affiliation(s)
- Yangzhou Du
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, New Jersey, USA
| | | | | | | | | |
Collapse
|
43
|
Lau A, Arundine M, Sun HS, Jones M, Tymianski M. Inhibition of caspase-mediated apoptosis by peroxynitrite in traumatic brain injury. J Neurosci 2006; 26:11540-53. [PMID: 17093075 PMCID: PMC6674768 DOI: 10.1523/jneurosci.3507-06.2006] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
In traumatic brain injury (TBI), neurons surviving the primary insult may succumb through poorly understood secondary mechanisms. In vitro, cortical neurons exposed to stretch injury exhibited enhanced vulnerability to NMDA, apoptotic-like DNA fragmentation, peroxynitrite (PN) formation, and cytoplasmic cytochrome c accumulation. Surprisingly, caspase-3 activity was undetectable by both immunoblotting and fluorogenic activity assays. Therefore, we hypothesized that PN directly inhibits caspases in these neurons. Consistent with this, stretch injury in cultured neurons elicited tyrosine nitration of procaspase-3, but not caspase-9 or Apaf-1, suggesting a direct interaction of PN with caspase-3. In an ex vivo system, PN inhibited the activity of caspase-3, and this inhibition was reversible with the addition of the sulfhydryl reducing agent dithiothreitol, indicating that PN inhibits caspases by cysteinyl oxidation. Moreover, in cultures, the PN donor 3-morpholinosydnonimine (SIN-1) blocked staurosporine-induced caspase-3 activation and its downstream effects including PARP-1 [poly-(ADP-ribose) polymerase-1] cleavage and phosphotidylserine inversion, suggesting that peroxynitrite can inhibit caspase-3-mediated apoptosis. To examine these mechanisms in vivo, rats were exposed to a lateral fluid percussion injury (FPI). FPI caused increased neuronal protein nitration that colocalized with TUNEL staining, indicating that PN was associated with neurodegeneration. Caspase-3 activity was inhibited in brain lysates harvested after FPI and was restored by adding dithiothreitol. Our data show that caspase-mediated apoptosis is inhibited in neurons subjected to stretch in vitro and to TBI in vivo, mostly because of cysteinyl oxidation of caspase-3 by PN. However, this is insufficient to prevent cell death, indicating that the TBI therapy may, at a minimum, require a combination of both anti-apoptotic and anti-oxidant strategies.
Collapse
Affiliation(s)
- Anthony Lau
- Division of Applied and Interventional Research, Toronto Western Research Institute, Toronto, Ontario, Canada M5T 2S8, and
- Departments of Physiology and
| | - Mark Arundine
- Division of Applied and Interventional Research, Toronto Western Research Institute, Toronto, Ontario, Canada M5T 2S8, and
- Departments of Physiology and
| | - Hong-Shuo Sun
- Division of Applied and Interventional Research, Toronto Western Research Institute, Toronto, Ontario, Canada M5T 2S8, and
- Departments of Physiology and
| | - Michael Jones
- Division of Applied and Interventional Research, Toronto Western Research Institute, Toronto, Ontario, Canada M5T 2S8, and
- Departments of Physiology and
| | - Michael Tymianski
- Division of Applied and Interventional Research, Toronto Western Research Institute, Toronto, Ontario, Canada M5T 2S8, and
- Departments of Physiology and
| |
Collapse
|
44
|
Sardo P, Carletti F, D'Agostino S, Rizzo V, Ferraro G. Effects of nitric oxide-active drugs on the discharge of subthalamic neurons: microiontophoretic evidence in the rat. Eur J Neurosci 2006; 24:1995-2002. [PMID: 17040472 DOI: 10.1111/j.1460-9568.2006.05097.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The presence of nitric oxide (NO) synthase and of soluble guanylyl cyclase, the main NO-activated metabolic pathway, has been demonstrated in many cells of the subthalamic nucleus. In this study, the effects induced on the firing of 96 subthalamic neurons by microiontophoretically administering drugs modifying NO neurotransmission were explored in anaesthetized rats. Recorded neurons were classified into regularly and irregularly discharging on the basis of their firing pattern. Nomega-nitro-L-arginine methyl ester (L-NAME; a NO synthase inhibitor), 3-morpholino-sydnonimin-hydrocloride (SIN-1; a NO donor), S-nitroso-glutathione (SNOG; another NO donor) and 8-Br-cGMP (a cell-permeable analogue of cGMP, the main second-messenger of NO neurotransmission) were iontophoretically applied while performing single-unit extracellular recordings. The activity of most neurons was influenced in a statistically significant way: in particular, both current-related inhibitory L-NAME-induced effects (20/39 tested cells) and excitatory effects of SIN-1 (25/41 tested neurons), SNOG (19/32 tested cells) and 8-Br-cGMP (13/19 tested neurons) were demonstrated. Neither statistically significant differences between the responses of regularly and irregularly discharging cells, nor specific topographical clustering of responding neurons, were demonstrated. Neurons administered drugs oppositely modulating the NO neurotransmission often displayed responses to only one treatment. We hypothesize that NO neurotransmission could exert a modulatory influence upon subthalamic neurons, with a prevalent excitatory effect. However, in the light of the presence of some responses of opposite sign to the same drug displayed by different subthalamic neurons, more complex effects of NO neurotransmission could be suggested, probably due to interactions with other classical neurotransmitter systems.
Collapse
Affiliation(s)
- Pierangelo Sardo
- Dipartimento di Medicina Sperimentale, Sezione di Fisiologia umana, Università degli Studi di Palermo, Corso Tukory, 129-90134 Palermo, Italy.
| | | | | | | | | |
Collapse
|
45
|
Tauskela JS, Brunette E, Hewitt M, Mealing G, Morley P. Competing approaches to excitotoxic neuroprotection by inert and catalytic antioxidant porphyrins. Neurosci Lett 2006; 401:236-41. [PMID: 16631306 DOI: 10.1016/j.neulet.2006.03.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 03/03/2006] [Accepted: 03/15/2006] [Indexed: 10/24/2022]
Abstract
The goal of this study was to determine if novel porphyrins protect cultured cortical neurons from excitotoxic NMDA exposure or oxygen-glucose deprivation (OGD), which model key aspects of cerebral ischemia. Porphyrins were chosen based on conventional and unconventional criteria. Metalloporphyrin catalytic antioxidants possessing a redox-sensitive metal core can exhibit potent and wide-ranging catalytic antioxidant abilities, which are conventionally believed to underlie neuroprotection. We report here that a recent-generation potent peroxynitrite decomposition catalyst, FP-15, protected a majority of neurons against OGD and NMDA toxicity, without suppressing NMDA-mediated intracellular Ca2+ (Cai2+) elevations or whole-cell currents. We have previously shown that neuroprotection against OGD and NMDA toxicity correlated with an ability to suppress neurotoxic Cai2+ elevations and not antioxidant ability. We now evaluate if this unconventional mechanism extends to inert metal-free porphyrins. Neuron cultures were completely protected against OGD and NMDA toxicity by H2-meso-tetrakis(3-benzoic acid)porphyrin (H2-TBAP(3)) or H2-meso-tetrakis(4-sulfonatophenyl)porphyrin (H2-TPPS(4)), although only H2-TPPS(4) suppressed (completely) NMDA-induced Cai2+ rises. H2-meso-tetrakis(3,3'-benzoic acid)porphyrin (H2-TBAP(3,3')) or H2-meso-tetrakis(N-methylpyridynium-4-yl)porphyrin (H2-TM-PyP(4)) provided at least partial protection against OGD and NMDA toxicity and partially suppressed NMDA-induced Cai2+ elevations. Despite the complexity of Ca2+-independent and -dependent based mechanisms, the inventory of porphyrins demonstrating neuroprotection in ischemia-relevant insults is now expanded to include FP-15 and inert metal-free compounds, although with no apparent advantage gained by using FP-15.
Collapse
Affiliation(s)
- Joseph Stephen Tauskela
- National Research Council, Institute for Biological Sciences, Synaptic Pathophysiology Group, Montreal Road Campus, Building M-54, Ottawa, Ontario, Canada K1A 0R6.
| | | | | | | | | |
Collapse
|
46
|
Parathath SR, Parathath S, Tsirka SE. Nitric oxide mediates neurodegeneration and breakdown of the blood-brain barrier in tPA-dependent excitotoxic injury in mice. J Cell Sci 2006; 119:339-49. [PMID: 16410551 DOI: 10.1242/jcs.02734] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Stroke and many neurodegenerative diseases culminate in neuronal death through a mechanism known as excitotoxicity. Excitotoxicity proceeds through a complex signaling pathway that includes the participation of the serine protease tissue plasminogen activator (tPA). tPA mediates neurotoxic effects on resident central nervous system cells as well alters blood-brain barrier (BBB) permeability, which further promotes neurodegeneration. Another signaling molecule that promotes neurodegeneration and BBB dysfunction is nitric oxide (NO), although its precise role in pathological progression remains unclear. We examine here the potentially interrelated roles of tPA, NO and peroxynitrite (ONOO-), which is the toxic metabolite of NO, in BBB breakdown and neurodegeneration following intrahippocampal injection of the glutamate analog kainite (KA). We find that NO and ONOO- production are linked to tPA-mediated excitotoxic injury, and demonstrate that NO provision suffices to restore the toxic effects of KA in tPA-deficient mice that are normally resistant to excitotoxicity. NO also promotes BBB breakdown and excitotoxicity. Interestingly, BBB breakdown in itself does not suffice to elicit neurodegeneration; a subsequent ONOO(-)-mediated event is required. In conclusion, NO and ONOO- function as downstream effectors of tPA-mediated excitotoxicity.
Collapse
Affiliation(s)
- Susana R Parathath
- Program in Molecular and Cellular Biology, Department of Pharmacological Sciences, University Medical Center at Stony Brook, Stony Brook, NY 11794-8651, USA
| | | | | |
Collapse
|
47
|
Kulahava TA, Semenkova GN, Kvacheva ZB, Cherenkevich SN, Timoshenko AV. Effects of peroxynitrite and lipopolysaccharide on mitotic activity of C6 glioma cells. Neurosci Lett 2006; 398:286-90. [PMID: 16480818 DOI: 10.1016/j.neulet.2006.01.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2005] [Revised: 12/28/2005] [Accepted: 01/05/2006] [Indexed: 11/23/2022]
Abstract
Peroxynitrite is one of the most potent neurotoxic agents with multiple targets in neurons and glial cells. This study addressed a question of whether peroxynitrite-mediated cytotoxicity can be prevented by Escherichia coli lypopolisaccharide (LPS) due to its mitogenic activity towards C6 glioma cells. A number of characteristic morphological changes (processes impairments, nuclei modifications, cytoplasm vacuolization) and apoptotic cells were observed in the cell culture after 24-h treatment with 3-morpholinosyndnonimine (SIN-1), a well-known donor of peroxynitrite. These morphological changes were clearly associated with a SIN-1 dose-dependent increase in the number of pathological mitoses as well as with SIN-1 inhibition of the menadione-induced, lucigenin-enhanced chemiluminescence of C6 glioma cells, an independent indicator of mitotic activity of these cells. The mitotic index of C6 glioma cells increased in response to LPS and underwent non-uniform changes depending on SIN-1 concentrations. At a mitogenic concentration of 100 ng/ml, LPS reduced significantly the toxicity of SIN-1 determined as the accumulation of pathological mitoses, thus acting as a protective agent. Taken together, our findings indicate that SIN-1 specifically impairs the mitotic process in C6 glioma cells, and provide the first evidence that antimitotic effects of peroxynitrite can be restored by LPS.
Collapse
Affiliation(s)
- Tatsiana A Kulahava
- Department of Biophysics, Physical Faculty, Belarusian State University, Skaryny ave.4, 220050 Minsk, Belarus.
| | | | | | | | | |
Collapse
|
48
|
Tiago T, Ramos S, Aureliano M, Gutiérrez-Merino C. Peroxynitrite induces F-actin depolymerization and blockade of myosin ATPase stimulation. Biochem Biophys Res Commun 2006; 342:44-49. [PMID: 16480685 DOI: 10.1016/j.bbrc.2006.01.112] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2006] [Accepted: 01/24/2006] [Indexed: 02/07/2023]
Abstract
Treatment of F-actin with the peroxynitrite-releasing agent 3-morpholinosydnonimine (SIN-1) produced a dose-dependent F-actin depolymerization. This is due to released peroxynitrite because it is not produced by 'decomposed SIN-1', and it is prevented by superoxide dismutase concentrations efficiently preventing peroxynitrite formation. F-actin depolymerization has been found to be very sensitive to peroxynitrite, as exposure to fluxes as low as 50-100nM peroxynitrite leads to nearly 50% depolymerization in about 1h. G-actin polymerization is also impaired by peroxynitrite although with nearly 2-fold lower sensitivity. Exposure of F-actin to submicromolar fluxes of peroxynitrite produced cysteine oxidation and also a blockade of the ability of actin to stimulate myosin ATPase activity. Our results suggest that an imbalance of the F-actin/G-actin equilibrium can account for the observed structural and functional impairment of myofibrils under the peroxynitrite-mediated oxidative stress reported for some pathophysiological conditions.
Collapse
Affiliation(s)
- Teresa Tiago
- Centre for Marine Sciences (CCMar), Depto. de Química e Bioquímica, FCT, Universidade do Algarve, 8005-139 Faro, Portugal
| | | | | | | |
Collapse
|
49
|
Zhang Y, Wang H, Li J, Dong L, Xu P, Chen W, Neve RL, Volpe JJ, Rosenberg PA. Intracellular zinc release and ERK phosphorylation are required upstream of 12-lipoxygenase activation in peroxynitrite toxicity to mature rat oligodendrocytes. J Biol Chem 2006; 281:9460-70. [PMID: 16431921 DOI: 10.1074/jbc.m510650200] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Peroxynitrite toxicity has been implicated in the pathogenesis of white matter injury. The mechanisms of peroxynitrite toxicity to oligodendrocytes (OLs), the major cell type of the white matter, are unknown. Using primary cultures of mature OLs that express myelin basic protein, we found that 3-morpholinosydnonimine, a peroxynitrite generator, caused toxicity to OLs. N,N,N',N'-tetrakis (2-pyridylmethyl)ethylenediamine, a zinc chelator, completely blocked peroxynitrite-induced toxicity. Use of FluoZin-3, a specific fluorescence zinc indicator, demonstrated the liberation of zinc from intracellular stores by peroxynitrite. Peroxynitrite caused the sequential activation of extracellular signal-regulated kinase 42/44 (ERK42/44), 12-lipoxygenase, and generation of reactive oxygen species, which were all dependent upon the intracellular release of zinc. The same cell death pathway was also activated when exogenous zinc was used. These results suggest that in addition to preventing the formation of peroxynitrite, useful strategies in preventing disease progression in pathologies in which peroxynitrite toxicity plays a critical role might include maintaining intracellular zinc homeostasis, blocking phosphorylation of ERK42/44, inhibiting activation of 12-lipoxygenase, and eliminating the accumulation of reactive oxygen species.
Collapse
Affiliation(s)
- Yumin Zhang
- Department of Neurology and Program in Neuroscience, Children's Hospital and Harvard Medical School, Boston, Mass 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Liu D, Bao F, Prough DS, Dewitt DS. Peroxynitrite Generated at the Level Produced by Spinal Cord Injury Induces Peroxidation of Membrane Phospholipids in Normal Rat Cord: Reduction by a Metalloporphyrin. J Neurotrauma 2005; 22:1123-33. [PMID: 16238488 DOI: 10.1089/neu.2005.22.1123] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The goal of the present study was to determine in vivo whether peroxynitrite, at the concentration and duration produced by SCI, contributes to membrane lipid peroxidation (MLP) after traumatic spinal cord injury (SCI) and the capability of a broad spectrum scavenger of reactive species, Mn (III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), to reduce MLP. This was accomplished by administering a peroxynitrite donor 3-morpholinosydnonimine (SIN-1) into the gray matter of an uninjured rat spinal cord through a microdialysis fiber to generate ONOO at the SCI-elevated levels. The resulting MLP was characterized by measuring the productions of extracellular malondialdehyde and of intracellular 4-hydroxynonenal. We demonstrated that extracellular SIN- 1 administration significantly increased the concentration of malondialdehyde (p < 0.001) and the numbers of hydroxynonenal-positive cells (p < 0.001) as compared to a control group in which ACSF was administered. Simultaneous administration of MnTBAP through a second microdialysis fiber significantly reduced SIN-1-induced malondialdehyde production (p < 0.001) and the numbers of HNE-positive cells (p < 0.001). There was no significant difference between MnTBAP-treated and ACSF-controls (p = 0.3). These results demonstrate in vivo that (1) SCI-produced levels of peroxynitrite sufficient to cause MLP, and therefore that peroxynitrite is an agent of secondary damage after acute SCI; (2) MnTBAP can efficiently reduce SIN-1-induced MLP.
Collapse
Affiliation(s)
- Danxia Liu
- Departments of Neurology, Human Biological Chemistry & Genetics, University of Texas Medical Branch, Galveston, TX 77555-0881, USA.
| | | | | | | |
Collapse
|